1
|
Zhang X, Chao P, Zhang L, Lu J, Yang A, Jiang H, Lu C. Integrating network pharmacology, molecular docking and simulation approaches with machine learning reveals the multi-target pharmacological mechanism of Berberis integerrima against diabetic nephropathy. J Biomol Struct Dyn 2025; 43:2092-2108. [PMID: 38379386 DOI: 10.1080/07391102.2023.2294165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/02/2023] [Indexed: 02/22/2024]
Abstract
Diabetic nephropathy (DN) is one of the most feared complications of diabetes and key cause of end-stage renal disease (ESRD). Berberis integerrima has been widely used to treat diabetic complications, but exact molecular mechanism is yet to be discovered. Data on active ingredients of B. integerrima and target genes of both diabetic nephropathy and B.integerrima were obtained from public databases. Common results between B. integerrima and DN targets were used to create protein-protein interaction (PPI) network using STRING database and exported to Cytoscape software for the selection of hub genes based on degree of connectivity. Future, PPI network between constituents and overlapping targets was created using Cytoscape to investigate the network pharmacological effects of B. integerrima on DN. KEGG pathway analysis of core genes exposed their involvement in excess glucose-activated signaling pathway. Then, expression of core genes was validated through machine learning classifiers. Finally, PyRx and AMBER18 software was used for molecular docking and simulation. We found that Armepavine, Berberine, Glaucine, Magnoflorine, Reticuline, Quercetin inhibits the growth of diabetic nephropathy by affecting ICAM1, PRKCB, IKBKB, KDR, ALOX5, VCAM1, SYK, TBXA2R, LCK, and F3 genes. Machine learning revealed SYK and PRKCB as potential genes that could use as diagnostic biomarkers against DN. Furthermore, docking and simulation analysis showed the binding affinity and stability of the active compound with target genes. Our study revealed that B. integerrima has preventive effect on DN by acting on glucose-activated signaling pathways. However, experimental studies are needed to reveal biosafety profiles of B. integerrima in DN.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Xueqin Zhang
- Department of Nephrology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Peng Chao
- Department of Cardiology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Lei Zhang
- Department of Endocrine, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Jinyu Lu
- Xinjiang Medical University, Urumqi, China
| | - Aiping Yang
- Department of Traditional Chinese Medicine, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Hong Jiang
- Department of Nephrology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Chen Lu
- Department of Nephrology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| |
Collapse
|
2
|
Tariq Z, Abusnana S, Mussa BM, Zakaria H. New insights on genetic background of major diabetic vascular complications. Diabetol Metab Syndr 2024; 16:243. [PMID: 39375805 PMCID: PMC11457557 DOI: 10.1186/s13098-024-01473-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 09/21/2024] [Indexed: 10/09/2024] Open
Abstract
BACKGROUND By 2045, it is expected that 693 million individuals worldwide will have diabetes and with greater risk of morbidity, mortality, loss of vision, renal failure, and a decreased quality of life due to the devastating effects of macro- and microvascular complications. As such, clinical variables and glycemic control alone cannot predict the onset of vascular problems. An increasing body of research points to the importance of genetic predisposition in the onset of both diabetes and diabetic vascular complications. OBJECTIVES Purpose of this article is to review these approaches and narrow down genetic findings for Diabetic Mellitus and its consequences, highlighting the gaps in the literature necessary to further genomic discovery. MATERIAL AND METHODS In the past, studies looking for genetic risk factors for diabetes complications relied on methods such as candidate gene studies, which were rife with false positives, and underpowered genome-wide association studies, which were constrained by small sample sizes. RESULTS The number of genetic findings for diabetes and diabetic complications has over doubled due to the discovery of novel genomics data, including bioinformatics and the aggregation of global cohort studies. Using genetic analysis to determine whether diabetes individuals are at the most risk for developing diabetic vascular complications (DVC) might lead to the development of more accurate early diagnostic biomarkers and the customization of care plans. CONCLUSIONS A newer method that uses extensive evaluation of single nucleotide polymorphisms (SNP) in big datasets is Genome-Wide Association Studies (GWAS).
Collapse
Affiliation(s)
- Zuira Tariq
- Diabetes and Endocrinology Department, University Hospital Sharjah, P.O. Box: 27272, Sharjah, United Arab Emirates
| | - Salah Abusnana
- Diabetes and Endocrinology Department, University Hospital Sharjah, P.O. Box: 27272, Sharjah, United Arab Emirates.
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.
| | - Bashair M Mussa
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Hala Zakaria
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
3
|
Liu J, Xiong Y, Mo H, Niu H, Miao J, Shen W, Zhou S, Wang X, Li X, Zhang Y, Ma K, Zhou L. MicroRNA-29b Plays a Vital Role in Podocyte Injury and Glomerular Diseases through Inducing Mitochondrial Dysfunction. Int J Biol Sci 2024; 20:4654-4673. [PMID: 39309435 PMCID: PMC11414390 DOI: 10.7150/ijbs.93506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 08/12/2024] [Indexed: 09/25/2024] Open
Abstract
Diabetic kidney disease (DKD) is becoming the most leading cause of end-stage renal disease (ESRD). Podocyte injury plays a critical role in DKD progression. Notably, mitochondrial dysfunction is crucial for podocyte injury. MicroRNAs (miRNAs) involves in various kidney diseases. Herein, we discovered miR-29b was induced in the urine of 126 patients with DKD (stage I and II), and negatively correlated with kidney function and podocyte homeostasis. Mechanically, miR-29b targeted peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α), a co-activator of transcription factors regulating mitochondrial biogenesis and energy metabolism. In vitro, ectopic miR-29b downregulated PGC-1α and promoted podocyte injury, while inhibition of miR-29b alleviated podocyte injury. Consistently, inhibition of miR-29b mitigated podocyte injury and preserved kidney function in ADR nephropathy and db/db mice, and overexpression of miR-29b accelerated disease. Knockout miR-29b specifically in podocyte inhibited mitochondrial dysfunction and podocyte injury. These results revealed miR-29b plays a crucial role in mitochondrial dysfunction through targeted inhibition on PGC-1α, leading to podocyte injury and DKD progression. Importantly, miR-29b could serve as a novel biomarker of podocyte injury and assists to early diagnose DKD.
Collapse
Affiliation(s)
- Jiafeng Liu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Nephrology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yabing Xiong
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Nephrology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Hongyan Mo
- Department of Nephrology, the First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Hongxin Niu
- Special Medical Service Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jinhua Miao
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Weiwei Shen
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shan Zhou
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoxu Wang
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaolong Li
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yunfang Zhang
- Department of Nephrology, Huadu District People's Hospital, Southern Medical University, Guangzhou, China
| | - Kunling Ma
- Department of Nephrology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lili Zhou
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
4
|
Helmy SA, Nour OA, G Abd El Salam AS. Ameliorative effect of Metformin / alpha-lipoic acid combination on diabetic nephropathy via modulation of YAP/ miR-29a/PTEN/p-AKT axis. Int Immunopharmacol 2024; 135:112294. [PMID: 38776856 DOI: 10.1016/j.intimp.2024.112294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/10/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024]
Abstract
Diabetic nephropathy (DN) is the most frequent and serious complication of type 2 diabetes (T2DM). Lack of a precise remedy and socio-economic burden of DN patients implements searching about alternative therapies. This study aims to evaluate the possible beneficial effect of alpha-lipoic acid (α-LA) alone or in combination with metformin (Met) in ameliorating STZ/High fat diet (HFD)-induced DN. T2DM was induced via HFD administration for 15 weeks and single ip injection of STZ (35 mg/kg) at week 7. Male Sprague-Dawley rats were randomly grouped as follows: control group, STZ/HFD-induced DN, Met/T; daily treated with 150 mg/kg Met, α-LA/T group; daily treated with 100 mg/kg α-LA, and Met/T + α-LA/T group; daily treated with Met and α-LA at same doses. Administration of Met and α-LA succeeded in attenuating STZ/HFD-induced DN as manifested by significant decrease in kidney weight as well as renal and cardiac hypertrophy index. Moreover, Met and α-LA improved glycemic control, kidney functions and lipid profile as well as restored redox balance. Additionally, Met and α-LA administration significantly upregulated PTEN level accompanied by significant downregulation in renal p-AKT and miR-29a levels. Histopathologically, Met and α-LA administration mitigated STZ/HFD-induced histopathological alterations in kidney and heart. Moreover, immunohistochemical examination revealed a significant decrease in renal YAP, collagen I and Ki-67. Taken together, these observations revealed that Met and α-LA administration could protect against STZ/HFD-induced DN.
Collapse
Affiliation(s)
- Sahar A Helmy
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura post code: 35516, Egypt.
| | - Omnia A Nour
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura post code: 35516, Egypt
| | - Al Shaima G Abd El Salam
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura post code: 35516, Egypt
| |
Collapse
|
5
|
Nugroho P, Susanto TH, Bonar M, Rizka A, Lydia A, Koesno S, Soewondo P, Shatri H, Chundiawan CC, Hermanto F. The Correlation of MicroRNA-21 With the Nephrin, Podocin, and Urinary Albumin-Creatinine Ratio in Patients With Type 2 Diabetes and Albuminuria: A Cross-Sectional Study. Can J Kidney Health Dis 2024; 11:20543581241260948. [PMID: 38894727 PMCID: PMC11185036 DOI: 10.1177/20543581241260948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/14/2024] [Indexed: 06/21/2024] Open
Abstract
Background Diabetic kidney disease (DKD) is the most common and deranging microvascular complication of diabetes mellitus (DM). Podocytopathy is a key component of glomerular damage in DKD. Micro RNA-21 (miRNA-21) is an epigenetic regulator that plays a role in podocyte damage; however, the results of previous studies have not resolved the controversy about the role of miRNA-21 in the pathogenesis of DKD. Objective The objective was to investigate the correlation between miRNA-21 levels and urinary nephrin, podocin, and urinary albumin-creatinine ratio (UACR) in patients with type 2 DM and albuminuria. Design This is a cross-sectional study. Setting This study was carried out in internal medicine outpatient clinic of Cipto Mangunkusumo Hospital Jakarta, Indonesia. Patients This study consisted of 42 adults with type 2 DM and albuminuria. Measurements The measurements include (1) Serum miRNA-21; (2) urinary podocin, nephrin, and albumin-creatinine ratio; and (3) serum miRNA-21 correlated to urinary podocin, nephrin, and albumin-creatinine ratio. Methods The Spearman bivariate analysis to assess the correlation of miRNA-21 with nephrin, podocin, and UACR. Results The mean relative expression of miRNA-21 was 0.069 (0.024), the median for nephrin, podocin, and UACR was 35.5 (15.75-51.25) ng/mL, 0.516 (0.442-0.545) ng/mL, and 150 (94.56-335.75) ng/mL, respectively. A correlation between miRNA-21 and nephrin was observed (r = 0.598; P < .0001). There was a correlation between miRNA-21 and UACR (r = 0.604; P < .0001). No correlation was found between miRNA-21 and podocin. Limitations A lack of non-DM and non-albuminuric control population and small sample size. We could not exclude concurrent disease, and all other potential confounding variables, particularly those related to inflammation. Conclusions The miRNA-21 can be considered an early biomarker for podocytopathy and albuminuria in DM, highlighting its potential for early diagnostic and therapeutic interventions. Further research is required to confirm these findings and explore their clinical applications, which could significantly alter management strategies for DKD.
Collapse
Affiliation(s)
- Pringgodigdo Nugroho
- Division of Nephrology and Hypertension, Department of Internal Medicine, Faculty of Medicine and Cipto Mangunkusumo Hospital, Universitas Indonesia, Jakarta, Indonesia
| | - Tri Hadi Susanto
- Department of Internal Medicine, Faculty of Medicine and Cipto Mangunkusumo Hospital, Universitas Indonesia, Jakarta, Indonesia
| | - Maruhum Bonar
- Division of Nephrology and Hypertension, Department of Internal Medicine, Faculty of Medicine and Cipto Mangunkusumo Hospital, Universitas Indonesia, Jakarta, Indonesia
| | - Aulia Rizka
- Division of Geriatrics, Department of Internal Medicine, Faculty of Medicine and Cipto Mangunkusumo Hospital, Universitas Indonesia, Jakarta, Indonesia
| | - Aida Lydia
- Division of Nephrology and Hypertension, Department of Internal Medicine, Faculty of Medicine and Cipto Mangunkusumo Hospital, Universitas Indonesia, Jakarta, Indonesia
| | - Soekamto Koesno
- Division of Allergy and Immunology, Department of Internal Medicine, Faculty of Medicine and Cipto Mangunkusumo Hospital, Universitas Indonesia, Jakarta, Indonesia
| | - Pradana Soewondo
- Division of Metabolic Endocrine, Department of Internal Medicine, Faculty of Medicine and Cipto Mangunkusumo Hospital, Universitas Indonesia, Jakarta, Indonesia
| | - Hamzah Shatri
- Division of Psychosomatic, Department of Internal Medicine, Faculty of Medicine and Cipto Mangunkusumo Hospital, Universitas Indonesia, Jakarta, Indonesia
| | - Carissa Cornelia Chundiawan
- Division of Nephrology and Hypertension, Department of Internal Medicine, Faculty of Medicine and Cipto Mangunkusumo Hospital, Universitas Indonesia, Jakarta, Indonesia
| | - Fidel Hermanto
- Division of Nephrology and Hypertension, Department of Internal Medicine, Faculty of Medicine and Cipto Mangunkusumo Hospital, Universitas Indonesia, Jakarta, Indonesia
| |
Collapse
|
6
|
Hassafy MYE, Elhadidi AS, Tahoon MM, Hemimi EED, Lashen SA. Liver stiffness, hepatorenal index, and microRNA-130b as predictors for chronic kidney disease in patients with non-alcoholic fatty liver disease. EGYPTIAN LIVER JOURNAL 2023; 13:37. [DOI: 10.1186/s43066-023-00269-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 07/03/2023] [Indexed: 11/18/2024] Open
Abstract
Abstract
Background and aim
Currently, nonalcoholic liver disease (NAFLD) is the most predominant chronic liver disorder. NAFLD has been linked to hepatic and extrahepatic morbidities. We aimed to investigate the role of acoustic radiation force impulse (ARFI), hepatorenal index (HRI), and serum microRNA-130b as non-invasive predictors for chronic kidney disease (CKD) in NAFLD patients.
Material and methods
In a case–control design, we included 40 NAFLD patients (20 NAFLD with CKD and 20 NAFLD without CKD) and 20 healthy controls. After clinical evaluation, laboratory assessments including liver test profile, renal function test, and quantification of microRNA-130b were done. Liver steatosis and stiffness were evaluated using HRI and ARFI.
Results
HRI and ARFI readings were significantly higher among NAFLD with CKD patients compared to other groups (P < 0.001). The median values of microRNA-130b were 32.1, 27.01, and 25.36 copies/µl in NAFLD with CKD, NAFLD without CKD, and healthy controls, respectively, with significant differences between groups (P < 0.05). ARFI values and HRI were positively correlated with microRNA-130b (P < 0.05). At a cutoff value > 28.13 copies/µl, microRNA-130b could differentiate between “NAFLD with CKD” and “NAFLD without CKD” patients with a sensitivity and specificity of 75% and 70%, respectively (AUC = 71.9%, P = 0.018).
Conclusions
Serum microRNA-130b, HRI, and ARFI are valuable noninvasive markers for the assessment of NAFLD. MicroRNA-130b is suggested as a sensitive biomarker for the prediction of CKD among NAFLD patients with good sensitivity and specificity.
Collapse
|
7
|
Wan X, Liao J, Lai H, Zhang S, Cui J, Chen C. Roles of microRNA-192 in diabetic nephropathy: the clinical applications and mechanisms of action. Front Endocrinol (Lausanne) 2023; 14:1179161. [PMID: 37396169 PMCID: PMC10309560 DOI: 10.3389/fendo.2023.1179161] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/25/2023] [Indexed: 07/04/2023] Open
Abstract
Diabetic nephropathy (DN) is one of the most common and intractable microvascular complications of diabetes worldwide, serving as the main cause of terminal renal disease. Due to the lack of early specific symptoms and diagnostic markers, DN severely threatens the sufferer's life. MicroRNA-192 (miR-192) was early identified in human renal cortical tissue and stored and excreted in urine as microvesicles. MiR-192 was found to be involved in the development of DN. For the first time, the present review summarized all the current evidence on the topic of the roles of miR-192 in DN. Finally, 28 studies (ten clinical trials and eighteen experimental studies) were eligible for thorough reviewing. Most of the clinical trials (7/10, 70%) indicated miR-192 might be a protective factor for DN development and progression, while the majority of experimental studies (14/18, 78%) suggested miR-192 might be a pathogenic factor for DN. Mechanistically, miR-192 interacts with various direct targeted proteins (i.e., ZEB1, ZEB2, SIP1, GLP1R, and Egr1) and signaling cascades (i.e., SMAD/TGF-β and PTEN/PI3K/AKT), together contribute to the pathogenesis of DN through epithelial-to-mesenchymal transition (EMT), extracellular matrix deposition, and fibrosis formation. The current review highlights the dual role of miR-192 in the development of DN. Low serum miR-192 expression could be applied for the early prediction of DN (the early stage of DN), while the high miR-192 level in renal tissues and urine may imply the progression of DN (the late stage of DN). Further investigations are still warranted to illustrate this inconsistent phenomenon, which may facilitate promoting the therapeutic applications of miR-192 in predicting and treating DN.
Collapse
Affiliation(s)
- Xiaoqing Wan
- Department of Nephrology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| | - Jian Liao
- Department of Nephrology, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing, Zhejiang, China
| | - Hongting Lai
- Clinical Medical College, Tianjin Medical University, Tianjin, China
| | - Shilong Zhang
- Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Jianling Cui
- Department of Nephrology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| | - Chunyan Chen
- Department of Nephrology, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing, Zhejiang, China
| |
Collapse
|
8
|
Al-Mahayni S, Ali M, Khan M, Jamsheer F, Moin ASM, Butler AE. Glycemia-Induced miRNA Changes: A Review. Int J Mol Sci 2023; 24:ijms24087488. [PMID: 37108651 PMCID: PMC10144997 DOI: 10.3390/ijms24087488] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Diabetes is a rapidly increasing global health concern that significantly strains the health system due to its downstream complications. Dysregulation in glycemia represents one of the fundamental obstacles to achieving glycemic control in diabetic patients. Frequent hyperglycemia and/or hypoglycemia events contribute to pathologies that disrupt cellular and metabolic processes, which may contribute to the development of macrovascular and microvascular complications, worsening the disease burden and mortality. miRNAs are small single-stranded non-coding RNAs that regulate cellular protein expression and have been linked to various diseases, including diabetes mellitus. miRNAs have proven useful in the diagnosis, treatment, and prognosis of diabetes and its complications. There is a vast body of literature examining the role of miRNA biomarkers in diabetes, aiming for earlier diagnoses and improved treatment for diabetic patients. This article reviews the most recent literature discussing the role of specific miRNAs in glycemic control, platelet activity, and macrovascular and microvascular complications. Our review examines the different miRNAs involved in the pathological processes leading to the development of type 2 diabetes mellitus, such as endothelial dysfunction, pancreatic beta-cell dysfunction, and insulin resistance. Furthermore, we discuss the potential applications of miRNAs as next-generation biomarkers in diabetes with the aim of preventing, treating, and reversing diabetes.
Collapse
Affiliation(s)
- Sara Al-Mahayni
- School of Medicine, Royal College of Surgeons in Ireland Bahrain, Busaiteen 15503, Bahrain
| | - Mohamed Ali
- School of Medicine, Royal College of Surgeons in Ireland Bahrain, Busaiteen 15503, Bahrain
| | - Muhammad Khan
- School of Medicine, Royal College of Surgeons in Ireland Bahrain, Busaiteen 15503, Bahrain
| | - Fatema Jamsheer
- School of Medicine, Royal College of Surgeons in Ireland Bahrain, Busaiteen 15503, Bahrain
| | - Abu Saleh Md Moin
- Research Department, Royal College of Surgeons in Ireland Bahrain, Busaiteen 15503, Bahrain
| | - Alexandra E Butler
- Research Department, Royal College of Surgeons in Ireland Bahrain, Busaiteen 15503, Bahrain
| |
Collapse
|
9
|
Akpınar K, Aslan D, Fenkçi SM, Caner V. miR-21-3p and miR-192-5p in patients with type 2 diabetic nephropathy. Diagnosis (Berl) 2022; 9:499-507. [PMID: 35976169 DOI: 10.1515/dx-2022-0036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 07/23/2022] [Indexed: 12/29/2022]
Abstract
OBJECTIVES Microribonucleic acids (microRNA/miRNA/miR-) are predicted to be useful in the early diagnosis, monitoring, and treatment of diabetic nephropathy (DN). We aimed to investigate the relationship of DN to miR-21-3p, miR-29a-3p, miR-29b-3p, miR-29c-3p, miR-126-3p, miR-129-1-3p, miR-137, miR-192-5p, miR-212-3p, and miR-320c. METHODS There were 50 healthy controls and 100 patients with type 2 diabetes mellitus (T2DM). The diabetic patients were divided into three subgroups: normal to mildly increased (A1, n=51), moderately increased (A2, n=25), and severely increased (A3, n=24) albuminuria. The biochemical measurements were analysed using Roche Cobas 8000. The plasma miRNAs were analysed using RT-qPCR based on SYBR green chemistry. RESULTS The relative expression of miR-21-3p was significantly lower in the (A3 p=0.005, 6.6-fold decrease) and DN (A1 + A3) (p=0.005, 6.6-fold decrease) groups compared to the controls. The relative expression of miR-192-5p was also significantly lower in the DN group (p=0.027, 2.4-fold decrease) compared to the controls. The area under curve value was 0.726 for miR-21-3p and 0.717 for miR-192-5p for distinguishing the DN group from the controls. CONCLUSIONS The decreased expressions of miR-21-3p and miR-192-5p are associated with the development of DN and may be potential biomarkers for the early diagnosis of DN.
Collapse
Affiliation(s)
- Kadriye Akpınar
- Department of Medical Biochemistry, School of Medicine, Pamukkale University, Denizli, Turkey
| | - Diler Aslan
- Department of Medical Biochemistry, School of Medicine, Pamukkale University, Denizli, Turkey
| | - Semin Melahat Fenkçi
- Department of Internal Medicine, Division of Endocrinology and Metabolism, School of Medicine, Pamukkale University, Denizli, Turkey
| | - Vildan Caner
- Department of Medical Genetics, School of Medicine, Pamukkale University, Denizli, Turkey
| |
Collapse
|
10
|
Mahtal N, Lenoir O, Tinel C, Anglicheau D, Tharaux PL. MicroRNAs in kidney injury and disease. Nat Rev Nephrol 2022; 18:643-662. [PMID: 35974169 DOI: 10.1038/s41581-022-00608-6] [Citation(s) in RCA: 106] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2022] [Indexed: 11/09/2022]
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression by degrading or repressing the translation of their target messenger RNAs. As miRNAs are critical regulators of cellular homeostasis, their dysregulation is a crucial component of cell and organ injury. A substantial body of evidence indicates that miRNAs are involved in the pathophysiology of acute kidney injury (AKI), chronic kidney disease and allograft damage. Different subsets of miRNAs are dysregulated during AKI, chronic kidney disease and allograft rejection, which could reflect differences in the physiopathology of these conditions. miRNAs that have been investigated in AKI include miR-21, which has an anti-apoptotic role, and miR-214 and miR-668, which regulate mitochondrial dynamics. Various miRNAs are downregulated in diabetic kidney disease, including the miR-30 family and miR-146a, which protect against inflammation and fibrosis. Other miRNAs such as miR-193 and miR-92a induce podocyte dedifferentiation in glomerulonephritis. In transplantation, miRNAs have been implicated in allograft rejection and injury. Further work is needed to identify and validate miRNAs as biomarkers of graft function and of kidney disease development and progression. Use of combinations of miRNAs together with other molecular markers could potentially improve diagnostic or predictive power and facilitate clinical translation. In addition, targeting specific miRNAs at different stages of disease could be a promising therapeutic strategy.
Collapse
Affiliation(s)
- Nassim Mahtal
- Paris Cardiovascular Research Center - PARCC, Inserm, Université Paris Cité, Paris, France
| | - Olivia Lenoir
- Paris Cardiovascular Research Center - PARCC, Inserm, Université Paris Cité, Paris, France.
| | - Claire Tinel
- Service de Néphrologie et Transplantation Adulte, Hôpital Necker-Enfants Malades, Université Paris Cité, Assistance Publique-Hôpitaux de Paris, Paris, France.,Institut Necker-Enfants Malades, Inserm, Université Paris Cité, Paris, France
| | - Dany Anglicheau
- Service de Néphrologie et Transplantation Adulte, Hôpital Necker-Enfants Malades, Université Paris Cité, Assistance Publique-Hôpitaux de Paris, Paris, France.,Institut Necker-Enfants Malades, Inserm, Université Paris Cité, Paris, France
| | - Pierre-Louis Tharaux
- Paris Cardiovascular Research Center - PARCC, Inserm, Université Paris Cité, Paris, France.
| |
Collapse
|
11
|
Gu C, Zhang H, Li Q, Zhao S, Gao Y. MiR-192 attenuates high glucose-induced pyroptosis in retinal pigment epithelial cells via inflammasome modulation. Bioengineered 2022; 13:10362-10372. [PMID: 35441575 PMCID: PMC9161832 DOI: 10.1080/21655979.2022.2044734] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Diabetic retinopathy is one of the most characteristic complications of diabetes mellitus, and pyroptosis plays acrucial role in the onset and development of diabetic retinopathy. Although microRNA-192 (miR-192) has been demonstrated to be involved in diabetic retinopathy progression, to the best of our knowledge, its potential and mechanism in cell pyroptosis in diabetic retinopathy have not been studied. The present study demonstrated that high glucose (HG) contributes to the pyroptosis of retinal pigment epithelial (RPE) cells in a dose-dependent manner. The results revealed that miR-192 was weakly expressed in HG-induced RPE cells. Furthermore, overexpression of miR-192 abrogated the role of HG in RPE cell pyroptosis. Based on the bioinformatics analysis, a dual-luciferase reporter assay, and an RNA pull-down assay, FTO α-ketoglutarate-dependent dioxygenase (FTO) was demonstrated to be a direct target of miR-192. Additionally, upregulation of FTO abolished the effects of miR-192 on RPE cells treated with HG. Nucleotide-binding domain leucine-rich repeat family protein 3 (NLRP3) inflammasome activation is vital for cell pyroptosis, and FTO functions as a pivotal modulator in the N6-methyladenosine modifications of various genes. Mechanistically, FTO enhanced NLRP3 expression by facilitating demethylation of NLRP3. In conclusion, the present results demonstrate that miR-192 represses RPE cell pyroptosis triggered by HG via regulation of the FTO/NLRP3 signaling pathway.
Collapse
Affiliation(s)
- Cao Gu
- Department of Ophthalmology, Changhai Hospital, First Affiliated Hospital of Naval Medical University (Second Military Medical University), Shanghai, China
| | - Hongjun Zhang
- Department of Ophthalmology, Minhang Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Qing Li
- Department of Ophthalmology, Changhai Hospital, First Affiliated Hospital of Naval Medical University (Second Military Medical University), Shanghai, China
| | - Shaofei Zhao
- Department of Ophthalmology, Changhai Hospital, First Affiliated Hospital of Naval Medical University (Second Military Medical University), Shanghai, China
| | - Yu Gao
- Department of Ophthalmology, Changhai Hospital, First Affiliated Hospital of Naval Medical University (Second Military Medical University), Shanghai, China
| |
Collapse
|
12
|
La Sala L, Tagliabue E, Mrakic-Sposta S, Uccellatore AC, Senesi P, Terruzzi I, Trabucchi E, Rossi-Bernardi L, Luzi L. Lower miR-21/ROS/HNE levels associate with lower glycemia after habit-intervention: DIAPASON study 1-year later. Cardiovasc Diabetol 2022; 21:35. [PMID: 35246121 PMCID: PMC8895587 DOI: 10.1186/s12933-022-01465-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/08/2022] [Indexed: 12/27/2022] Open
Abstract
Background The prevalence of prediabetes is increasing in the global population and its metabolic derangements may expose to a higher risk to develop type 2 diabetes (T2D) and its cardiovascular burden. Lifestyle modifications might have considerable benefits on ameliorating metabolic status. Alternative biomarkers, such as circulating miR-21, has been recently discovered associated with dysglycemia. Here we evaluated, in a longitudinal cohort of dysglycemic population the relation between the circulating miR-21/ROS/HNE levels and the habit-intervention (HI) after 1 year of follow-up. Methods 1506 subjects from DIAPASON study were screened based on the Findrisc score. Of them, 531 subjects with Findrisc ≥ 9 were selected for dysglycemia (ADA criteria) and tested for circulating miR-21, ROS and HNE levels, as damaging-axis. 207 subjects with dysglycemia were re-evaluated after 1-year of habit intervention (HI). Repeated measures tests were used to evaluate changes from baseline to 1-year of follow-up. The associations between glycemic parameters and miR-21/ROS/HNE were implemented by linear regression and logistic regression models. Results After HI, we observed a significant reduction of miR-21/ROS/HNE axis in dysglycemic subjects, concomitantly with ameliorating of metabolic parameters, including insulin resistance, BMI, microalbuminuria, reactive hyperemia index and skin fluorescence. Significant positive interaction was observed between miR-21 axis with glycaemic parameters after HI. Lower miR-21 levels after HI, strongly associated with a reduction of glycemic damaging-axis, in particular, within-subjects with values of 2hPG < 200 mg/dL. Conclusions Our findings demonstrated that HI influenced the epigenetic changes related to miR-21 axis, and sustain the concept of reversibility from dysglycemia. These data support the usefulness of novel biological approaches for monitoring glycemia as well as provide a screening tool for preventive programmes. Supplementary Information The online version contains supplementary material available at 10.1186/s12933-022-01465-0.
Collapse
Affiliation(s)
- Lucia La Sala
- IRCCS, MultiMedica, PST-Via Fantoli 16/15, 20138, Milan, MI, Italy.
| | - Elena Tagliabue
- IRCCS, MultiMedica, PST-Via Fantoli 16/15, 20138, Milan, MI, Italy
| | - Simona Mrakic-Sposta
- Institute of Clinical Physiology, National Research Council (CNR), 20162, Milan, Italy
| | | | - Pamela Senesi
- IRCCS, MultiMedica, PST-Via Fantoli 16/15, 20138, Milan, MI, Italy.,Dept. of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Ileana Terruzzi
- IRCCS, MultiMedica, PST-Via Fantoli 16/15, 20138, Milan, MI, Italy.,Dept. of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Emilio Trabucchi
- IRCCS, MultiMedica, PST-Via Fantoli 16/15, 20138, Milan, MI, Italy
| | | | - Livio Luzi
- IRCCS, MultiMedica, PST-Via Fantoli 16/15, 20138, Milan, MI, Italy.,Dept. of Biomedical Sciences for Health, University of Milan, Milan, Italy
| |
Collapse
|
13
|
Keyhanmanesh R, Hamidian G, Lotfi H, Zavari Z, Seyfollahzadeh M, Ghadiri A, Ahmadi M, Bahari F, Mirzaei Bavil F. Troxerutin affects nephropathy signaling events in the kidney of type-1 diabetic male rats. AVICENNA JOURNAL OF PHYTOMEDICINE 2022; 12:109-115. [PMID: 35614883 PMCID: PMC9090315 DOI: 10.22038/ajp.2021.18875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 05/25/2021] [Accepted: 07/28/2021] [Indexed: 11/06/2022]
Abstract
Objective Nephropathy is known to be the leading cause of kidney failure in diabetic patients. Troxerutin, as a flavonoid component, could provide a novel protective strategy in the prevention of diabetic nephropathy. A large number of reports on the salutary effects of troxerutin inspired us to investigate its effect on the nephropathy signaling events (i.e., expression of TGF-β, miRNA192, and SIP1) in type-1 induced diabetic rats. Materials and Methods 50 male Wistar rats were divided into 5 groups including control group, sham group treated with troxerutin for 4 weeks, diabetic group induced by streptozotocin (STZ) injection, DI group including insulin-treated diabetic animals and DT group treated with troxerutin. Ultimately, rat kidneys were extracted, and the level of miR-192 (using qPCR), transforming growth factor-beta (TGF-β), and smad interacting protein 1 (SIP1) using an ELISA kit, was measured. Results The level of TGF-β and miRNA192 significantly increased in the diabetic group. However, their expression levels decreased following the administration of troxerutin and insulin (p<0.05) compared to control group. SIP1 was down-regulated in the diabetic group, whereas a spike in the expression levels was observed after troxerutin administration compared to control and troxerutin groups (p<0.05). However, no significant difference was found in the effects of insulin and troxerutin on the level of miR-192, SIP1, and TGF- β. Conclusion According to the previous literatures, during the progression of nephropathy, TGF-β represses SIP1 (the repression region in the collagen gene) by increasing the expression of miR-192. Ultimately, in this study, diabetes led to up-regulation of TGF-β while troxerutin proved to have a protective effect on the kidney by increasing SIP and lowering miR-192 levels.
Collapse
Affiliation(s)
- Rana Keyhanmanesh
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Emergency Medicine Research Group, Tabriz University of medical sciences, Tabriz, Iran
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Gholamreza Hamidian
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Hajie Lotfi
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zohre Zavari
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Afsane Ghadiri
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Ahmadi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farzad Bahari
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fariba Mirzaei Bavil
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
14
|
Zahari Sham SY, Ng CT, Azwar S, Yip WK, Abdullah M, Thevandran K, Osman M, Seow HF. Circulating miRNAs in Type 2 Diabetic Patients with and without Albuminuria in Malaysia. Kidney Blood Press Res 2022; 47:81-93. [PMID: 35158353 DOI: 10.1159/000518866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 08/03/2021] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Diabetic kidney disease (DKD) remains the leading cause of chronic kidney disease. Dysregulation of circulating miRNAs has been reported, suggesting their pathological roles in DKD. This study aimed to investigate differentially expressed miRNAs in the sera of type 2 diabetes mellitus (T2DM) patients with and without albuminuria in a selected Malaysian population. METHOD Forty-one T2DM patients on follow-up at a community clinic were divided into normo-(NA), micro-(MIC), and macroalbuminuria (MAC) groups. Differential levels of miRNAs in 12 samples were determined using the pathway-focused (human fibrosis) miScript miRNA qPCR array and was validated in 33 samples, using the miScript custom qPCR array (CMIHS02742) (Qiagen GmbH, Hilden, Germany). RESULTS Trends of upregulation of 3 miRNAs in the serum, namely, miR-874-3p, miR-101-3p, and miR-145-5p of T2DM patients with MAC compared to those with NA. Statistically significant upregulation of miR-874-3p (p = 0.04) and miR-101-3p (p = 0.01) was seen in validation cohort. Significant negative correlations between the estimated glomerular filtration rate (eGFR) and miR-874-3p (p = 0.05), miR-101-3p (p = 0.03), and miR-145-5p (p = 0.05) as well as positive correlation between miR-874-3p and age (p = 0.03) were shown by Pearson's correlation coefficient analysis. CONCLUSION Upregulation of previously known miRNA, namely, miR-145-5p, and possibly novel ones, namely, miR-874-3p and miR-101-3p in the serum of T2DM patients, was found in this study. There was a significant correlation between the eGFR and these miRNAs. The findings of this study have provided encouraging evidence to further investigate the putative roles of these differentially expressed miRNAs in DKD.
Collapse
Affiliation(s)
- Siti Yazmin Zahari Sham
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Chin Tat Ng
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Shamin Azwar
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Wai Kien Yip
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Maha Abdullah
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Kalaiselvam Thevandran
- Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Malina Osman
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Heng Fong Seow
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
15
|
Peng L, Chen Y, Shi S, Wen H. Stem cell-derived and circulating exosomal microRNAs as new potential tools for diabetic nephropathy management. Stem Cell Res Ther 2022; 13:25. [PMID: 35073973 PMCID: PMC8785577 DOI: 10.1186/s13287-021-02696-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/20/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Despite major advances in the treatment of diabetic nephropathy (DN) in recent years, it remains the most common cause of end-stage renal disease. An early diagnosis and therapy may slow down the DN progression. Numerous potential biomarkers are currently being researched. Circulating levels of the kidney-released exosomes and biological molecules, which reflect the DN pathology including glomerular and tubular dysfunction as well as mesangial expansion and fibrosis, have shown the potential for predicting the occurrence and progression of DN. Moreover, many experimental therapies are currently being investigated, including stem cell therapy and medications targeting inflammatory, oxidant, or pro-fibrotic pathways activated during the DN progression. The therapeutic potential of stem cells is partly depending on their secretory capacity, particularly exosomal microRNAs (Exo-miRs). In recent years, a growing line of research has shown the participation of Exo-miRs in the pathophysiological processes of DN, which may provide effective therapeutic and biomarker tools for DN treatment. METHODS A systematic literature search was performed in MEDLINE, Scopus, and Google Scholar to collect published findings regarding therapeutic stem cell-derived Exo-miRs for DN treatment as well as circulating Exo-miRs as potential DN-associated biomarkers. FINDINGS Glomerular mesangial cells and podocytes are the most important culprits in the pathogenesis of DN and, thus, can be considered valuable therapeutic targets. Preclinical investigations have shown that stem cell-derived exosomes can exert beneficial effects in DN by transferring renoprotective miRs to the injured mesangial cells and podocytes. Of note, renoprotective Exo-miR-125a secreted by adipose-derived mesenchymal stem cells can improve the injured mesangial cells, while renoprotective Exo-miRs secreted by adipose-derived stem cells (Exo-miR-486 and Exo-miR-215-5p), human urine-derived stem cells (Exo-miR-16-5p), and bone marrow-derived mesenchymal stem cells (Exo-miR-let-7a) can improve the injured podocytes. On the other hand, clinical investigations have indicated that circulating Exo-miRs isolated from urine or serum hold great potential as promising biomarkers in DN.
Collapse
Affiliation(s)
- Lei Peng
- Department of Nephrology, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Chengdu, 610072, China
| | - Yu Chen
- Department of Cardiology, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Chengdu, 610072, China
| | - Shaoqing Shi
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China.
| | - Heling Wen
- Department of Cardiology, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Chengdu, 610072, China.
| |
Collapse
|
16
|
Liu S, Wu W, Liao J, Tang F, Gao G, Peng J, Fu X, Zhan Y, Chen Z, Xu W, Zhao S. MicroRNA-21: A Critical Pathogenic Factor of Diabetic Nephropathy. Front Endocrinol (Lausanne) 2022; 13:895010. [PMID: 35865316 PMCID: PMC9294636 DOI: 10.3389/fendo.2022.895010] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 05/27/2022] [Indexed: 01/08/2023] Open
Abstract
Diabetic nephropathy (DN), one of the most common and intractable microvascular complications of diabetes, is the main cause of terminal renal disease globally. MicroRNA-21 (miR-21) is a kind of miRNA early identified in human circulation and tissues. Mounting studies have demonstrated that miR-21 plays an important role in the development and progression of DN. This collaborative review aimed to present a first attempt to capture the current evidence on the relationship between miR-21 and DN. After a systematic search, 29 relevant studies were included for comprehensively and thoroughly reviewing. All these eligible studies reported that miR-21 was up-regulated in DN, whether in serum or renal tissues of human or animal models. MiR-21 exhibited its pathogenic roles in DN by forming a complex network with targeted genes (e.g. MMP-9, Smad7, TIMP3, Cdk6, FOXO1, IMP3, and MMP2) and the signaling cascades (e.g. Akt/TORC1 signaling axis, TGF-β/NF-κB signaling pathways, TGF-β/SMAD pathway, CADM1/STAT3 signaling, and AGE-RAGE regulatory cascade), which resulted in epithelial-to-mesenchymal transition, extracellular matrix deposition, cytoskeletal remodeling, inflammation, and fibrosis. This review highlights that miR-21 is a pivotal pathogenic factor in the development of DN. It may serve as an attractive potential diagnostic, prognostic, and predictive biomarker for DN in clinical practice after further confirmation of the clinicopathological features and molecular mechanisms of miR-21-mediated DN.
Collapse
Affiliation(s)
- Shuijiao Liu
- Department of Endocrinology & Department of Gastroenterology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| | - Weizhou Wu
- Department of Urology, Maoming People’s Hospital, Maoming, China
| | - Jian Liao
- Department of Nephrology, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing, China
| | - Fuqin Tang
- Nursing Department, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| | - Ge Gao
- Department of Clinical Medical School, Taizhou University, Taizhou, China
| | - Jing Peng
- Department of Clinical Medical School, Taizhou University, Taizhou, China
| | - Xiujing Fu
- Department of Clinical Medical School, Taizhou University, Taizhou, China
| | - Yuqin Zhan
- Department of Clinical Medical School, Taizhou University, Taizhou, China
| | - Zhihui Chen
- Department of Clinical Medical School, Taizhou University, Taizhou, China
| | - Weifang Xu
- Department of Orthopedics, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
- *Correspondence: Weifang Xu, ; Shankun Zhao,
| | - Shankun Zhao
- Department of Urology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
- *Correspondence: Weifang Xu, ; Shankun Zhao,
| |
Collapse
|
17
|
Liu Q, Wang M, Xu T, Liang W, Yang F. Significance of serum miR-29a in the occurrence and progression of diabetic nephropathy: A cross-sectional study. J Clin Lab Anal 2021; 36:e24210. [PMID: 34964177 PMCID: PMC8842137 DOI: 10.1002/jcla.24210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/09/2021] [Accepted: 12/17/2021] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Diabetic nephropathy (DN), a common microvascular complication of type 2 diabetes mellitus (T2DM), is an important factor causing chronic kidney disease. However, the relationship between miR-29a and DN remains unknown. Therefore, a cross-sectional study was conducted to identify a potential molecular biomarker for DN prevention and management by detecting the serum miR-29a levels. METHODS The serum miR-29a levels were measured in 360 subjects (180 T2DM patients and 180 healthy controls) using quantitative reverse transcription PCR (qRT-PCR), and other conventional indicators were measured and analysed. A binary logistic regression was used to evaluate the DN risk factors; a receiver operating characteristic (ROC) curve was applied to analyse the diagnostic efficacy of miR-29a for DN, and a Spearman's rank correlation analysis was used to evaluate the correlation between serum miR-29a and cystatin C. RESULTS The serum miR-29 levels in the T2DM patients were higher than those in the healthy subjects and significantly increased with the progression of DN (p < 0.05). Serum miR-29a and cystatin C are independent predictors of the occurrence of DN. Compared with a single indicator, the combination of serum miR-29a and cystatin C has better DN diagnostic performance. In addition, the serum miR-29a levels were positively correlated with cystatin C in the patients with DN (r = 0.521, p < 0.001). CONCLUSION The expression of serum miR-29a was significantly associated with the occurrence and progression of DN and is expected to become a potential biomarker for the diagnosis of DN.
Collapse
Affiliation(s)
- Qian Liu
- Department of Laboratory Medicine, The Second People's Hospital of Lianyungang, Lianyungang, China.,Department of Laboratory Medicine, Lianyungang Hospital Affiliated to Jiangsu University, Lianyungang, China
| | - Menglin Wang
- Department of Laboratory Medicine, Suqian First Hospital, Suqian, China
| | - Tongdao Xu
- Department of Endocrinology, The Second People's Hospital of Lianyungang, Lianyungang, China
| | - Wei Liang
- Department of Laboratory Medicine, The Second People's Hospital of Lianyungang, Lianyungang, China.,Department of Laboratory Medicine, Lianyungang Hospital Affiliated to Jiangsu University, Lianyungang, China
| | - Fumeng Yang
- Department of Laboratory Medicine, The Second People's Hospital of Lianyungang, Lianyungang, China.,Department of Laboratory Medicine, Lianyungang Hospital Affiliated to Jiangsu University, Lianyungang, China
| |
Collapse
|
18
|
Ghosh S, Mahalanobish S, Sil PC. Diabetes: discovery of insulin, genetic, epigenetic and viral infection mediated regulation. THE NUCLEUS : AN INTERNATIONAL JOURNAL OF CYTOLOGY AND ALLIED TOPICS 2021; 65:283-297. [PMID: 34629548 PMCID: PMC8491600 DOI: 10.1007/s13237-021-00376-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/23/2021] [Indexed: 01/11/2023]
Abstract
Diabetes mellitus, commonly referred to as diabetes, is a combination of many metabolic diseases. Insulin deficiency in our body is the main cause of diabetes. Insulin is one of the most well studied proteins, yet the genesis of its discovery was not getting much attention so far. Nevertheless, the history of the discovery of insulin is an exemplary of solving observational and scientific riddles, drudgery, patience and even professional turmoil. It is an inspiration for all medical personnel and scientists who are practising in the field of molecular medicine. Additionally, the genetic and epigenetic regulation of different types of diabetes needs to be addressed because of the widespread nature of the disease. Diabetes not only involves genetic predisposition but environmental factors, lifestyle etc. can be the major contributor for its inception. Nonetheless, viral infections at an early age are also found to trigger the onset of type I diabetes. In this review article, the history of the discovery of insulin is detailed along with the justification for the genetic and epigenetic regulatory mechanisms of diabetes and explained how viral infections can also trigger the onset of diabetes.
Collapse
Affiliation(s)
- Sumit Ghosh
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata, West Bengal 700054 India
| | - Sushweta Mahalanobish
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata, West Bengal 700054 India
| | - Parames C. Sil
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata, West Bengal 700054 India
| |
Collapse
|
19
|
Olivieri F, Prattichizzo F, Giuliani A, Matacchione G, Rippo MR, Sabbatinelli J, Bonafè M. miR-21 and miR-146a: The microRNAs of inflammaging and age-related diseases. Ageing Res Rev 2021; 70:101374. [PMID: 34082077 DOI: 10.1016/j.arr.2021.101374] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 05/14/2021] [Accepted: 05/20/2021] [Indexed: 02/06/2023]
Abstract
The first paper on "inflammaging" published in 2001 paved the way for a unifying theory on how and why aging turns out to be the main risk factor for the development of the most common age-related diseases (ARDs). The most exciting challenge on this topic was explaining how systemic inflammation steeps up with age and why it shows different rates among individuals of the same chronological age. The "epigenetic revolution" in the past twenty years conveyed that the assessment of the individual genetic make-up is not enough to depict the trajectories of age-related inflammation. Accordingly, others and we have been focusing on the role of non-coding RNA, i.e. microRNAs (miRNAs), in inflammaging. The results obtained in the latest 10 years underpinned the key role of a miRNA subset that we have called inflammamiRs, owing to their ability to master (NF-κB)-driven inflammatory pathways. In this review, we will focus on two inflammamiRs, i.e. miR-21-5p and miR-146a-5p, which target a variety of molecules belonging to the NF-κB/NLRP3 pathways. The interplay between miR-146a-5p and IL-6 in the context of aging and ARDs will also be highlighted. We will also provide the most relevant evidence suggesting that circulating inflammamiRs, along with IL-6, can measure the degree of inflammaging.
Collapse
|
20
|
Tayel SI, Saleh AA, El-Hefnawy SM, Elzorkany KM, Elgarawany GE, Noreldin RI. Simultaneous Assessment of MicroRNAs 126 and 192 in Diabetic Nephropathy Patients and the Relation of these MicroRNAs with Urinary Albumin. Curr Mol Med 2021; 20:361-371. [PMID: 31629394 DOI: 10.2174/1566524019666191019103918] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 10/04/2019] [Accepted: 10/08/2019] [Indexed: 12/16/2022]
Abstract
BACKGROUND AND OBJECTIVE Diabetic nephropathy (DN) is a major determinant of end-stage renal disease (ESRD). Altered microRNA levels lead to serious chronic diseases, such as diabetes. We aimed to measure the expression levels of two microRNAs, microRNA126 and 192 in DN and investigate their connection with albuminuria levels. METHODS This study included 229 subjects (134 DN patients and 95 controls). Serum lipid profiles, glucose levels, glycated haemoglobin (HbA1c) levels, and renal functions were assayed. The microRNA126 and microRNA192 expression levels were determined by real-time PCR. RESULTS Patients with DN had higher weights, BMI values, glucose levels (P<0.001), HbA1c levels (P<0.001), urinary albumin-creatinine ratio (ACR) values (P<0.001), urea levels (P=0.002), and creatinine levels (P=0.004) and lower expression levels of both microRNA192 (P<0.001) and microRNA126 (P<0.001) than controls. MicroRNA126 expression was positively correlated with age, estimated glomerular filtration rate (eGFR) and microRNA192 expression but negatively correlated with blood sugar, HbA1c, urea, creatinine and ACR. MicroRNA192 had higher sensitivity (91%), specificity (94%), and area under the curve (AUC) (0.967) values than microRNA126 (sensitivity, 90%; specificity, 68%; AUC, 0.897) and thus can precisely diagnose DN. CONCLUSION Both MicroRNA126 and microRNA192 expression were obviously associated with DN and might determine the progression of the disease owing to prominent relation with macroalbuminuria.
Collapse
Affiliation(s)
- Safaa I Tayel
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Menoufia University, Egypt
| | - Amany A Saleh
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Menoufia University, Egypt
| | - Sally M El-Hefnawy
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Menoufia University, Egypt
| | - Khaled Ma Elzorkany
- Internal Medicine Department, Faculty of Medicine, Menoufia University, Egypt
| | | | - Rasha I Noreldin
- Clinical Pathology Department, Faculty of Medicine, Menoufia University, Egypt
| |
Collapse
|
21
|
Shao BY, Zhang SF, Li HD, Meng XM, Chen HY. Epigenetics and Inflammation in Diabetic Nephropathy. Front Physiol 2021; 12:649587. [PMID: 34025445 PMCID: PMC8131683 DOI: 10.3389/fphys.2021.649587] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 04/12/2021] [Indexed: 12/11/2022] Open
Abstract
Diabetic nephropathy (DN) leads to high morbidity and disability. Inflammation plays a critical role in the pathogenesis of DN, which involves renal cells and immune cells, the microenvironment, as well as extrinsic factors, such as hyperglycemia, chemokines, cytokines, and growth factors. Epigenetic modifications usually regulate gene expression via DNA methylation, histone modification, and non-coding RNAs without altering the DNA sequence. During the past years, numerous studies have been published to reveal the mechanisms of epigenetic modifications that regulate inflammation in DN. This review aimed to summarize the latest evidence on the interplay of epigenetics and inflammation in DN, and highlight the potential targets for treatment and diagnosis of DN.
Collapse
Affiliation(s)
- Bao-Yi Shao
- Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Shao-Fei Zhang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Hai-Di Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Xiao-Ming Meng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Hai-Yong Chen
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, China
- Department of Chinese Medicine, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
22
|
Marttila S, Rovio S, Mishra PP, Seppälä I, Lyytikäinen LP, Juonala M, Waldenberger M, Oksala N, Ala-Korpela M, Harville E, Hutri-Kähönen N, Kähönen M, Raitakari O, Lehtimäki T, Raitoharju E. Adulthood blood levels of hsa-miR-29b-3p associate with preterm birth and adult metabolic and cognitive health. Sci Rep 2021; 11:9203. [PMID: 33911114 PMCID: PMC8080838 DOI: 10.1038/s41598-021-88465-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 04/13/2021] [Indexed: 02/02/2023] Open
Abstract
Preterm birth (PTB) is associated with increased risk of type 2 diabetes and neurocognitive impairment later in life. We analyzed for the first time the associations of PTB with blood miRNA levels in adulthood. We also investigated the relationship of PTB associated miRNAs and adulthood phenotypes previously linked with premature birth. Blood MicroRNA profiling, genome-wide gene expression analysis, computer-based cognitive testing battery (CANTAB) and serum NMR metabolomics were performed for Young Finns Study subjects (aged 34-49 years, full-term n = 682, preterm n = 84). Preterm birth (vs. full-term) was associated with adulthood levels of hsa-miR-29b-3p in a fully adjusted regression model (p = 1.90 × 10-4, FDR = 0.046). The levels of hsa-miR-29b-3p were down-regulated in subjects with PTB with appropriate birthweight for gestational age (p = 0.002, fold change [FC] = - 1.20) and specifically in PTB subjects with small birthweight for gestational age (p = 0.095, FC = - 1.39) in comparison to individuals born full term. Hsa-miR-29b-3p levels correlated with the expressions of its target-mRNAs BCL11A and CS and the gene set analysis results indicated a target-mRNA driven association between hsa-miR-29b-3p levels and Alzheimer's disease, Parkinson's disease, Insulin signaling and Regulation of Actin Cytoskeleton pathway expression. The level of hsa-miR-29b-3p was directly associated with visual processing and sustained attention in CANTAB test and inversely associated with serum levels of VLDL subclass component and triglyceride levels. In conlcusion, adult blood levels of hsa-miR-29b-3p were lower in subjects born preterm. Hsa-miR-29b-3p associated with cognitive function and may be linked with adulthood morbidities in subjects born preterm, possibly through regulation of gene sets related to neurodegenerative diseases and insulin signaling as well as VLDL and triglyceride metabolism.
Collapse
Affiliation(s)
- Saara Marttila
- Department of Clinical Chemistry, Pirkanmaa Hospital District, Fimlab Laboratories, and Finnish Cardiovascular Research Center, Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Gerontology Research Center, Tampere University, Tampere, Finland
| | - Suvi Rovio
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
| | - Pashupati P Mishra
- Department of Clinical Chemistry, Pirkanmaa Hospital District, Fimlab Laboratories, and Finnish Cardiovascular Research Center, Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Ilkka Seppälä
- Department of Clinical Chemistry, Pirkanmaa Hospital District, Fimlab Laboratories, and Finnish Cardiovascular Research Center, Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Leo-Pekka Lyytikäinen
- Department of Clinical Chemistry, Pirkanmaa Hospital District, Fimlab Laboratories, and Finnish Cardiovascular Research Center, Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Markus Juonala
- Division of Medicine, Turku University Hospital and Department of Medicine, University of Turku, Turku, Finland
| | - Melanie Waldenberger
- Research Unit Molecular Epidemiology, Helmholtz Zentrum Munich, German Research Center for Environmental Health, Munich, Germany
| | - Niku Oksala
- Department of Clinical Chemistry, Pirkanmaa Hospital District, Fimlab Laboratories, and Finnish Cardiovascular Research Center, Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Vascular Centre, Tampere University Hospital, Tampere, Finland
| | - Mika Ala-Korpela
- Computational Medicine, Faculty of Medicine, University of Oulu, Oulu, Finland
- Center for Life Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
- NMR Metabolomics Laboratory, School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Emily Harville
- Department of Clinical Chemistry, Pirkanmaa Hospital District, Fimlab Laboratories, and Finnish Cardiovascular Research Center, Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA
| | - Nina Hutri-Kähönen
- Department of Pediatrics, Tampere University and Tampere University Hospital, Tampere, Finland
| | - Mika Kähönen
- Department of Clinical Physiology, Tampere University Hospital, and Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Olli Raitakari
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
- Department of Clinical Physiology and Nuclear Medicine, University of Turku and Turku University Hospital, Turku, Finland
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Pirkanmaa Hospital District, Fimlab Laboratories, and Finnish Cardiovascular Research Center, Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Emma Raitoharju
- Department of Clinical Chemistry, Pirkanmaa Hospital District, Fimlab Laboratories, and Finnish Cardiovascular Research Center, Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland.
| |
Collapse
|
23
|
La Sala L, Crestani M, Garavelli S, de Candia P, Pontiroli AE. Does microRNA Perturbation Control the Mechanisms Linking Obesity and Diabetes? Implications for Cardiovascular Risk. Int J Mol Sci 2020; 22:ijms22010143. [PMID: 33375647 PMCID: PMC7795227 DOI: 10.3390/ijms22010143] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/18/2020] [Accepted: 12/23/2020] [Indexed: 02/06/2023] Open
Abstract
Metabolic disorders such as obesity and type 2 diabetes (T2D) are considered the major risk factors for the development of cardiovascular diseases (CVD). Although the pathological mechanisms underlying the mutual development of obesity and T2D are difficult to define, a better understanding of the molecular aspects is of utmost importance to identify novel therapeutic targets. Recently, a class of non-coding RNAs, called microRNAs (miRNAs), are emerging as key modulators of metabolic abnormalities. There is increasing evidence supporting the role of intra- and extracellular miRNAs as determinants of the crosstalk between adipose tissues, liver, skeletal muscle and other organs, triggering the paracrine communication among different tissues. miRNAs may be considered as risk factors for CVD due to their correlation with cardiovascular events, and in particular, may be related to the most prominent risk factors. In this review, we describe the associations observed between miRNAs expression levels and the most common cardiovascular risk factors. Furthermore, we sought to depict the molecular aspect of the interplay between obesity and diabetes, investigating the role of microRNAs in the interorgan crosstalk. Finally, we discussed the fascinating hypothesis of the loss of protective factors, such as antioxidant defense systems regulated by such miRNAs.
Collapse
Affiliation(s)
- Lucia La Sala
- Laboratory of Cardiovascular and Dysmetabolic Disease, IRCCS MultiMedica, 20138 Milan, Italy;
- Correspondence:
| | - Maurizio Crestani
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133 Milan, Italy;
| | - Silvia Garavelli
- Laboratorio di Immunologia, Istituto per l’Endocrinologia e l’Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (IEOS-CNR), 80131 Napoli, Italy;
| | - Paola de Candia
- Laboratory of Cardiovascular and Dysmetabolic Disease, IRCCS MultiMedica, 20138 Milan, Italy;
| | - Antonio E. Pontiroli
- Dipartimento di Scienze della Salute, Università degli Studi di Milano, 20142 Milan, Italy;
| |
Collapse
|
24
|
Fan B, Chopp M, Zhang ZG, Liu XS. Emerging Roles of microRNAs as Biomarkers and Therapeutic Targets for Diabetic Neuropathy. Front Neurol 2020; 11:558758. [PMID: 33192992 PMCID: PMC7642849 DOI: 10.3389/fneur.2020.558758] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 09/16/2020] [Indexed: 12/12/2022] Open
Abstract
Diabetic neuropathy (DN) is the most prevalent chronic complication of diabetes mellitus. The exact pathophysiological mechanisms of DN are unclear; however, communication network dysfunction among axons, Schwann cells, and the microvascular endothelium likely play an important role in the development of DN. Mounting evidence suggests that microRNAs (miRNAs) act as messengers that facilitate intercellular communication and may contribute to the pathogenesis of DN. Deregulation of miRNAs is among the initial molecular alterations observed in diabetics. As such, miRNAs hold promise as biomarkers and therapeutic targets. In preclinical studies, miRNA-based treatment of DN has shown evidence of therapeutic potential. But this therapy has been hampered by miRNA instability, targeting specificity, and potential toxicities. Recent findings reveal that when packaged within extracellular vesicles, miRNAs are resistant to degradation, and their delivery efficiency and therapeutic potential is markedly enhanced. Here, we review the latest research progress on the roles of miRNAs as biomarkers and as potential clinical therapeutic targets in DN. We also discuss the promise of exosomal miRNAs as therapeutics and provide recommendations for future research on miRNA-based medicine.
Collapse
Affiliation(s)
- Baoyan Fan
- Department of Neurology, Henry Ford Health System, Detroit, MI, United States
| | - Michael Chopp
- Department of Neurology, Henry Ford Health System, Detroit, MI, United States.,Department of Physics, Oakland University, Rochester, MI, United States
| | - Zheng Gang Zhang
- Department of Neurology, Henry Ford Health System, Detroit, MI, United States
| | - Xian Shuang Liu
- Department of Neurology, Henry Ford Health System, Detroit, MI, United States
| |
Collapse
|
25
|
Tavano F, Fontana A, Mazza T, Gioffreda D, Biagini T, Palumbo O, Carella M, Andriulli A. Early-Onset Diabetes as Risk Factor for Pancreatic Cancer: miRNA Expression Profiling in Plasma Uncovers a Role for miR-20b-5p, miR-29a, and miR-18a-5p in Diabetes of Recent Diagnosis. Front Oncol 2020; 10:1567. [PMID: 33072549 PMCID: PMC7533599 DOI: 10.3389/fonc.2020.01567] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 07/20/2020] [Indexed: 12/13/2022] Open
Abstract
The high prevalence of early-diabetes in patients with pancreatic cancer (PanC) implies that its recognition could help identify people at high risk of developing PanC. Candidate microRNAs (miRNAs) associated with recent diabetes were screened from our previous miRNA expression profiling on 10 pools of plasma from PanC patients and non-PanC controls, both including also subjects with early- and late-diabetes. The droplet digital PCR (ddPCR) was used to re-test candidate miRNAs in a new independent cohort of 69 subjects (40 PanC, 29 non-PanC) with early- (17 PanC, 13 non-PanC) or late-diabetes (23 PanC, 16 non-PanC), and in 100 non-diabetic healthy subjects (HS). miRNA levels were evaluated for differences between subjects enrolled into the study and for their diagnostic performance, also compared to the CA 19-9 determinations. MiR-20b-5p, miR-29a, and miR-18a-5p were selected from the previous miRNA expression profiling. The ddPCR confirmed the increase of miR-20b-5p and miR-29a levels in PanC with early- compared to those with late-diabetes. Conversely, miR-20b-5p, miR-29a, and miR-18a-5p were over-expressed in both PanC and non-PanC with recent diabetes compared to HS, and each miRNA achieved a similar diagnostic performance in distinguishing either PanC or non-PanC with early-diabetes from HS (miR-20b-5p: AUC = 0.877 vs. AUC = 0.873; miR-29a: AUC = 0.838 vs. AUC = 0.810; miR-18a-5p: AUC = 0.824 vs. AUC = 0.875). Despite miR-20b-5p and miR-29a expressions were also higher both in PanC and non-PanC with late-diabetes with respect to HS, the diagnostic accuracy in PanC with late-diabetes vs. HS reached by each miRNA (miR-20b-5p: AUC = 0.760; miR-29a: AUC = 0.630) was lower than the ones achieved in PanC with early-diabetes vs. HS. Furthermore, miR-20b-5p achieved a higher diagnostic accuracy to discriminate non-PanC with early-diabetes from HS (AUC = 0.868; SP = 81%; PPV = 32.1%) compared to the CA 19-9 (AUC = 0.700; SP = 40.0%; PPV = 15.5%), and the joint (miR-20b-5p and CA 19-9) discrimination ability was higher than the one achieved by the CA 19-9 tested alone (AUC = 0.900, p = 0.003). Our data highlighted the association between miR-18a-5p and early-diabetes, and suggested for miR-20b-5p and miR-29 a role in identifying early diabetes in PanC, albeit not as an early manifestation of cancer. MiR-20b-5p as more informative marker than CA 19-9 in distinguishing non-PanC with recent diabetes from HS was also uncovered.
Collapse
Affiliation(s)
- Francesca Tavano
- Division of Gastroenterology and Research Laboratory, Fondazione IRCCS Casa Sollievo della Sofferenza, Foggia, Italy
| | - Andrea Fontana
- Unit of Biostatistics, Fondazione IRCCS Casa Sollievo della Sofferenza, Foggia, Italy
| | - Tommaso Mazza
- Unit of Bioinformatics, Fondazione IRCCS Casa Sollievo della Sofferenza, Foggia, Italy
| | - Domenica Gioffreda
- Division of Gastroenterology and Research Laboratory, Fondazione IRCCS Casa Sollievo della Sofferenza, Foggia, Italy
| | - Tommaso Biagini
- Unit of Bioinformatics, Fondazione IRCCS Casa Sollievo della Sofferenza, Foggia, Italy
| | - Orazio Palumbo
- Division of Medical Genetics, Fondazione IRCCS Casa Sollievo della Sofferenza, Foggia, Italy
| | - Massimo Carella
- Division of Medical Genetics, Fondazione IRCCS Casa Sollievo della Sofferenza, Foggia, Italy
| | - Angelo Andriulli
- Division of Gastroenterology and Research Laboratory, Fondazione IRCCS Casa Sollievo della Sofferenza, Foggia, Italy
| |
Collapse
|
26
|
Ramanathan K, Padmanabhan G. MiRNAs as potential biomarker of kidney diseases: A review. Cell Biochem Funct 2020; 38:990-1005. [PMID: 32500596 DOI: 10.1002/cbf.3555] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 03/15/2020] [Accepted: 05/03/2020] [Indexed: 12/17/2022]
Abstract
MicroRNAs (miRNAs) are 22 nucleotides short, non-coding and tissue-specific single-stranded RNA which modulates target gene expression. Presently, shreds of evidence confirmed that miRNAs play a key role in kidney pathophysiology. The objectives of the present review are to summarize new research data towards the latest developments in the potential use of miRNAs as a diagnostic biomarker for kidney diseases. This holistic information will update the existing knowledge of kidney disease biomarkers. "miRNA profile for Diabetic Kidney disease, Acute kidney injury, Renal fibrosis, hemodialysis, transplants, FSGS, IgAN, etc." are the search keywords which have been used in this review. The search outcome gave an exciting insightful perception of miRNAs competence as a biomarker. Also it is observed that various samples as plasma, urine and biopsies were used for profiling the miRNA expression. The miRNAs were not only used for diagnostic biomarkers but also for therapeutic targets. Each kidney disease showed different miRNAs expression profile and few miRNAs quite common with some kidney diseases. miRNAs are simple and efficient diagnostic biomarkers for kidney diseases.
Collapse
Affiliation(s)
- Kumaresan Ramanathan
- Department of Medical Biochemistry, Division of Biomedical Sciences, School of Medicine, College of Health Sciences, Mekelle University (Ayder Campus), Mekelle, Ethiopia
| | | |
Collapse
|
27
|
Ezaz G, Trivedi HD, Connelly MA, Filozof C, Howard K, L.Parrish M, Kim M, Herman MA, Nasser I, Afdhal NH, Jiang ZG, Lai M. Differential Associations of Circulating MicroRNAs With Pathogenic Factors in NAFLD. Hepatol Commun 2020; 4:670-680. [PMID: 32363318 PMCID: PMC7193128 DOI: 10.1002/hep4.1501] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 02/02/2020] [Accepted: 02/10/2020] [Indexed: 12/11/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a heterogeneous disease driven by genetic and environmental factors. MicroRNAs (miRNAs) serve as pleiotropic post-transcriptional regulators of cellular pathways. Although several miRNAs have been associated with NAFLD and fibrosis, there are limited studies in humans examining their differential association with pathogenic factors or histological features of NAFLD. We examined the differential relationships of five of the best-described circulating microRNAs (miR-34a, miR-122, miR-191, miR-192, and miR-200a) with histological features and pathogenic factors of NAFLD. A cross-sectional study was conducted to examine the relationship between relative levels of circulating microRNAs standardized by z-scores and histological features of NAFLD, common NAFLD genetic polymorphisms, and insulin resistance measured by the enhanced lipoprotein insulin resistance index in 132 subjects with biopsy-proven NAFLD. We found that miR-34a, miR-122, miR-192, miR-200a, but not miR-191, strongly correlate with fibrosis in NAFLD by increases of 0.20 to 0.40 SD (P < 0.005) with each stage of fibrosis. In multivariate analysis, miR-34a, miR-122, and miR-192 levels are independently associated with hepatic steatosis and fibrosis, but not lobular inflammation or ballooning degeneration, whereas miR-200a is only associated with fibrosis. Among the four miRNAs, miR-34a, miR-122, and miR-192 are associated with pathogenic factors of NAFLD, including insulin resistance measured by eLP-IR, patatin-like phospholipase domain containing 3 I148M, and transmembrane 6 superfamily 2 (TM6SF2) E167K polymorphisms. In contrast, miR-200a is only associated with the TM6SF2 E167K variant. Finally, miR-34a has the strongest predictive value for various stages of fibrosis, with C-statistic approximates-combined predictive score for miRNAs. Conclusion: miR-34a, miR-122, miR-192, and miR-200a demonstrate strong associations with NAFLD severity by histology, but differential associations with pathogenic factors.
Collapse
Affiliation(s)
- Ghideon Ezaz
- Division of HepatologyIcahn School of Medicine at Mount SinaiNew YorkNY
| | - Hirsh D. Trivedi
- Division of Gastroenterology & HepatologyBeth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMA
| | | | | | | | | | - Misung Kim
- Division of EndocrinologyBeth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMA
| | - Mark A. Herman
- Division of EndocrinologyDuke University Medical CenterDurhamNC
| | - Imad Nasser
- Department of PathologyBeth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMA
| | - Nezam H. Afdhal
- Division of Gastroenterology & HepatologyBeth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMA
| | - Z. Gordon Jiang
- Division of Gastroenterology & HepatologyBeth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMA
| | - Michelle Lai
- Division of Gastroenterology & HepatologyBeth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMA
| |
Collapse
|
28
|
Aghaei Zarch SM, Dehghan Tezerjani M, Talebi M, Vahidi Mehrjardi MY. Molecular biomarkers in diabetes mellitus (DM). Med J Islam Repub Iran 2020; 34:28. [PMID: 32617267 PMCID: PMC7320976 DOI: 10.34171/mjiri.34.28] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Indexed: 12/14/2022] Open
Abstract
Background: Diabetes mellitus (DM) is a growing epidemic metabolic syndrome, which affects near 5.6% of the world's population. Almost 12% of health expenditure is dedicated to this disorder. Discovering and developing biomarkers as a practical guideline with high specificity and sensitivity for the diagnosis, prognosis, and clinical management of DM is one of the subjects of great interest among DM researchers due to the long-lasting asymptomatic clinical manifestation of DM. In this study, we described a recently identified molecular biomarker involved in DM. Methods: This review study was done at the Diabetes Research Center affiliated to Shahid Sadoughi University of Medical Sciences. PubMed, Scopus, Google Scholar, and Web of Science were searched using the following keywords: "diabetes mellitus", "biomarker", "microRNA", "diagnostic tool" and "clinical manifestation." Results: A total of 107 studies were finally included in this review. After evaluating numerous articles, including original, metaanalysis, and review studies, we focused on molecular biomarkers involved in DM diagnosis and management. Conclusion: Increasing interest in biomarkers associated with DM goes back to its role in decreasing diabetes-related morbidity and mortality. This review focused on major molecular biomarkers such as proteomic and microRNA (miRNAs) as novel and interesting DM biomarkers that can help achieve timely diagnosis of DM.
Collapse
Affiliation(s)
| | - Masoud Dehghan Tezerjani
- Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mehrdad Talebi
- Department of Medical Genetics, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | | |
Collapse
|
29
|
Petrica L, Pusztai AM, Vlad M, Vlad A, Gadalean F, Dumitrascu V, Vlad D, Velciov S, Gluhovschi C, Bob F, Ursoniu S, Petrica M, Matusz P, Cretu O, Radu D, Milas O, Secara A, Simulescu A, Popescu R, Jianu DC. MiRNA Expression is Associated with Clinical Variables Related to Vascular Remodeling in the Kidney and the Brain in Type 2 Diabetes Mellitus Patients. Endocr Res 2020; 45:119-130. [PMID: 31724439 DOI: 10.1080/07435800.2019.1690505] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Background: The association of vascular remodeling in the kidney and the brain with a particular microRNAs (miRNA) profile is not well studied.Methods: Seventy-six patients with Type 2 diabetes and 11 healthy subjects were assessed concerning urine albumin: creatinine ratio (UACR), biomarkers of podocyte injury and of proximal tubule (PT) dysfunction. MiRNA were quantified in blood and urine by a real-time PCR System. Cerebrovascular ultrasound measurements were performed in the carotid and middle cerebral arteries.Results: MiRNA21 and miRNA124 correlated positively with nephrin, podocalyxin, synaptopodin, urinary N-acetyl-D-glucosaminidase (NAG), urinary kidney-injury molecule-1 (KIM-1), UACR, and negatively with eGFR; miRNA125a, 126, 146a, 192 correlated negatively with nephrin, podocalyxin, synaptopodin, urinary NAG, urinary KIM-1, UACR, and directly with eGFR. Plasma miRNA-21 and miRNA192 correlated directly with cerebral hemodynamics parameters of atherosclerosis and arteriosclerosis. MiRNA-124, 125a, 126, 146a showed negative correlations with the same parameters.Conclusions: In Type 2 diabetes patients there is an association of vascular remodeling in the brain and the kidney with a specific miRNAs pattern. Cerebrovascular changes occur even in normoalbuminuric patients, with 'high-to-normal' levels of podocyte injury and PT dysfunction biomarkers. These phenomena may be explained by the variability of miRNA expression within the two organs in early DKD.
Collapse
Affiliation(s)
- Ligia Petrica
- Dept. of Nephrology, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania
- "Victor Babes" University of Medicine and Pharmacy, Centre of Translational and Systems Medicine, Timisoara, Romania
| | - Agneta-Maria Pusztai
- Dept. of Anatomy and Embryology, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania
| | - Mihaela Vlad
- Dept. of Endocrinology, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania
| | - Adrian Vlad
- Dept. of Diabetes and Metabolic Diseases, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania
| | - Florica Gadalean
- Dept. of Nephrology, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania
| | - Victor Dumitrascu
- Dept. of Pharmacology, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania
| | - Daliborca Vlad
- Dept. of Pharmacology, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania
| | - Silvia Velciov
- Dept. of Nephrology, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania
| | - Cristina Gluhovschi
- Dept. of Nephrology, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania
| | - Flaviu Bob
- Dept. of Nephrology, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania
| | - Sorin Ursoniu
- Dept. of Public Health Medicine, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania
| | - Maxim Petrica
- Dept. of Neurology, "Pius Brinzeu" County Emergency Hospital, Timisoara, Romania
| | - Petru Matusz
- Dept. of Anatomy and Embryology, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania
| | - Octavian Cretu
- Dept. of Surgery I, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania
| | - Daniela Radu
- Dept. of Surgery II, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania
| | - Oana Milas
- Dept. of Nephrology, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania
| | - Alina Secara
- Dept. of Nephrology, "Pius Brinzeu" County Emergency Hospital, Timisoara, Romania
| | - Anca Simulescu
- Dept. of Nephrology, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania
| | - Roxana Popescu
- Dept. of Cellular and Molecular Biology, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania
| | - Dragos Catalin Jianu
- Dept. of Neurology, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania
| |
Collapse
|
30
|
Lv J, Wu Y, Mai Y, Bu S. Noncoding RNAs in Diabetic Nephropathy: Pathogenesis, Biomarkers, and Therapy. J Diabetes Res 2020; 2020:3960857. [PMID: 32656264 PMCID: PMC7327582 DOI: 10.1155/2020/3960857] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 04/27/2020] [Accepted: 05/20/2020] [Indexed: 12/14/2022] Open
Abstract
The correlation between diabetes and systematic well-being on human life has long established. As a common complication of diabetes, the prevalence of diabetic nephropathy (DN) has been increasing globally. DN is known to be a major cause of end-stage kidney disease (ESKD). Till now, the molecular mechanisms for DN have not been fully explored and the effective therapies are still lacking. Noncoding RNAs are a class of RNAs produced by genome transcription that cannot be translated into proteins. It has been documented that ncRNAs participate in the pathogenesis of DN by regulating inflammation, apoptosis, autophagy, cell proliferation, and other pathological processes. In this review, the pathological roles and diagnostic and therapeutic potential of three types of ncRNAs (microRNA, long noncoding RNA, and circular RNA) in the progression of DN are summarized and illustrated.
Collapse
Affiliation(s)
- Jiarong Lv
- Diabetes Research Center, Medical School of Ningbo University, Ningbo, 315000 Zhejiang, China
| | - Yu Wu
- Diabetes Research Center, Medical School of Ningbo University, Ningbo, 315000 Zhejiang, China
| | - Yifeng Mai
- The Affiliated Hospital of Medical School of Ningbo University, Ningbo, 315000 Zhejiang, China
| | - Shizhong Bu
- Diabetes Research Center, Medical School of Ningbo University, Ningbo, 315000 Zhejiang, China
| |
Collapse
|
31
|
Ji H, Yi Q, Chen L, Wong L, Liu Y, Xu G, Zhao J, Huang T, Li B, Yang Y, Li W, Han L, Duan S. Circulating miR-3197 and miR-2116-5p as novel biomarkers for diabetic retinopathy. Clin Chim Acta 2019; 501:147-153. [PMID: 31678272 DOI: 10.1016/j.cca.2019.10.036] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 10/21/2019] [Accepted: 10/24/2019] [Indexed: 12/13/2022]
Abstract
Diabetic retinopathy (DR) is the leading cause of vision loss among older adults. The goal of this case-control study was to identify circulating miRNAs for the diagnosis of DR. The miRNeasy Serum/Plasma Kit was used to extract serum miRNAs. The μParaflo™ MicroRNA microarray was used to detect the expression levels of the miRNAs. The miRWalk algorithm was applied to predict the target genes of the miRNAs, which were further confirmed by the dual luciferase reporter gene system in HEK293T cells. A microarray was performed between 5 DR cases and 5 age-, sex-, body mass index-, and duration of diabetes-matched type 2 diabetic (T2DM) controls. The quantitative reverse transcription polymerase chain reaction technique was used to validate the differentially expressed circulating miRNAs in 45 DR cases and 45 well-matched controls. Receiver operating characteristic (ROC) curve analysis was used to evaluate the performance of the circulating miRNAs as diagnostic biomarkers for DR. Our microarray analysis screened out miR-2116-5p and miR-3197 as significantly up-regulated in DR cases compared with the controls. Furthermore, two miRNAs were validated in the 45 DR cases and 45 controls. The ROC analysis suggested that both miR-3197 and miR-2116-5p distinguished DR cases from controls. An additional dual-luciferase reporter gene assay confirmed that notch homolog 2 (NOTCH2) was the target gene of miR-2116-5p. Both miR-3197 and miR-2116-5p were identified as promising diagnostic biomarkers for DR. Future research is still needed to explore the molecular mechanisms of miR-3197 and miR-2116-5p in the pathogenesis of DR.
Collapse
Affiliation(s)
- Huihui Ji
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang, China; Departmant of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Quanyong Yi
- Ningbo Eye Hospital, Minan Road 855, Ningbo, Zhejiang, China
| | - Lishuang Chen
- Ningbo Eye Hospital, Minan Road 855, Ningbo, Zhejiang, China
| | - Liping Wong
- Department of Social and Preventive Medicine, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Yanfen Liu
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Guodong Xu
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Jun Zhao
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Tianyi Huang
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Bin Li
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Yong Yang
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Wenxia Li
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Liyuan Han
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang, China.
| | - Shiwei Duan
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang, China.
| |
Collapse
|
32
|
Petrica L, Milas O, Vlad M, Vlad A, Gadalean F, Dumitrascu V, Velciov S, Gluhovschi C, Bob F, Ursoniu S, Jianu DC, Matusz P, Pusztai AM, Cretu O, Radu D, Secara A, Simulescu A, Stefan M, Popescu R, Vlad D. Interleukins and miRNAs intervene in the early stages of diabetic kidney disease in Type 2 diabetes mellitus patients. Biomark Med 2019; 13:1577-1588. [PMID: 31663375 DOI: 10.2217/bmm-2019-0124] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Aim: The involvement of proinflammatory interleukins (IL) in diabetic kidney disease of Type 2 diabetes mellitus (DM) patients was studied in relation to a particular miRNA profile. Materials & methods: A total of 117 patients with Type 2 DM and 11 controls were enrolled in a case series study. Serum and urinary ILs and miRNAs were assessed. Results: IL-1α correlated with miRNA21, 124, estimated glomerular filtration rate (eGFR) and negatively with miRNA125a and 192; IL-8 with miRNA21, 124, eGFR and negatively with miRNA125a, 126 and 146a; IL-18 with miRNA21, 124 and negatively with miRNA146a, 192, eGFR. Conclusion: There is an association between specific serum and urinary ILs and serum and urinary miRNAs profiles in the inflammatory response in Type 2 DM patients with diabetic kidney disease.
Collapse
Affiliation(s)
- Ligia Petrica
- Department of Nephrology, 'Victor Babes' University of Medicine & Pharmacy, Romania.,Centre of Translational Research & Systems Medicine, 'Victor Babes' University of Medicine & Pharmacy, 300041 Timisoara, Romania
| | - Oana Milas
- Department of Nephrology, 'Victor Babes' University of Medicine & Pharmacy, Romania
| | - Mihaela Vlad
- Department of Endocrinology, 'Victor Babes' University of Medicine & Pharmacy, 300041 Timisoara, Romania
| | - Adrian Vlad
- Department of Diabetes & Metabolic Diseases, 'Victor Babes' University of Medicine & Pharmacy, 300041 Timisoara, Romania
| | - Florica Gadalean
- Department of Nephrology, 'Victor Babes' University of Medicine & Pharmacy, Romania
| | - Victor Dumitrascu
- Department of Pharmacology, 'Victor Babes' University of Medicine & Pharmacy, 300041 Timisoara, Romania
| | - Silvia Velciov
- Department of Nephrology, 'Victor Babes' University of Medicine & Pharmacy, Romania
| | - Cristina Gluhovschi
- Department of Nephrology, 'Victor Babes' University of Medicine & Pharmacy, Romania
| | - Flaviu Bob
- Department of Nephrology, 'Victor Babes' University of Medicine & Pharmacy, Romania
| | - Sorin Ursoniu
- Centre of Translational Research & Systems Medicine, 'Victor Babes' University of Medicine & Pharmacy, 300041 Timisoara, Romania.,Department of Public Health Medicine, 'Victor Babes' University of Medicine & Pharmacy, 300041 Timisoara, Romania
| | - Dragos C Jianu
- Department of Neurology, 'Victor Babes' University of Medicine & Pharmacy, 300041 Timisoara, Romania
| | - Petru Matusz
- Department of Anatomy & Embryology, 'Victor Babes' University of Medicine & Pharmacy, 300041 Timisoara, Romania
| | - Agneta-Maria Pusztai
- Department of Anatomy & Embryology, 'Victor Babes' University of Medicine & Pharmacy, 300041 Timisoara, Romania
| | - Octavian Cretu
- Department of Surgery I, 'Victor Babes' University of Medicine & Pharmacy, 300041 Timisoara, Romania
| | - Daniela Radu
- Department of Surgery II, 'Victor Babes' University of Medicine & Pharmacy, 300041 Timisoara, Romania
| | - Alina Secara
- Department of Nephrology, 'Victor Babes' University of Medicine & Pharmacy, Romania
| | - Anca Simulescu
- Department of Nephrology, 'Victor Babes' University of Medicine & Pharmacy, Romania
| | - Maria Stefan
- Department of Nephrology, 'Victor Babes' University of Medicine & Pharmacy, Romania
| | - Roxana Popescu
- Department of Cellular & Molecular Biology, 'Victor Babes' University of Medicine & Pharmacy, 300041 Timisoara, Romania
| | - Daliborca Vlad
- Department of Pharmacology, 'Victor Babes' University of Medicine & Pharmacy, 300041 Timisoara, Romania
| |
Collapse
|
33
|
Chang CC, Chiu PF, Wu CL, Kuo CL, Huang CS, Liu CS, Huang CH. Urinary cell-free mitochondrial and nuclear deoxyribonucleic acid correlates with the prognosis of chronic kidney diseases. BMC Nephrol 2019; 20:391. [PMID: 31660901 PMCID: PMC6816217 DOI: 10.1186/s12882-019-1549-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 09/04/2019] [Indexed: 01/16/2023] Open
Abstract
Introduction Cell-free deoxyribonucleic acid DNA (cf-DNA) in urine is promising due to the advantage of urine as an easily obtained and non-invasive sample source over tissue and blood. In clinical practice, it is important to identify non-invasive biomarkers of chronic kidney disease (CKD) in monitoring and surveillance of disease progression. Information is limited, however, regarding the relationship between urine and plasma cf-DNA and the renal outcome in CKD patients. Methods One hundred and thirty-one CKD patients were enrolled between January 2016 and September 2018. Baseline urine and plasma cell-free mitochondrial DNA (cf-mtDNA) and cell-free nuclear DNA (cf-nDNA) were isolated using quantitative real-time PCR. Estimated glomerular filtration rate (eGFR) measurement was performed at baseline and 6-month follow-up. Favorable renal outcome was defined as eGFR at 6 months minus baseline eGFR> = 0. Receiver operator characteristics (ROC) curve analysis was performed to assess different samples of cf-DNA to predict favorable renal outcomes at 6 months. A multivariate linear regression model was used to evaluate independent associations between possible predictors and different samples of cf-DNA. Results Patients with an advanced stage of CKD has significantly low plasma cf-nDNA and high plasma neutrophil gelatinase-associated lipocalin (NGAL) levels. Low urine cf-mtDNA, cf-nDNA levels and low plasma NGAL were significantly correlated with favorable renal outcomes at 6 months. The urine albumin-creatinine ratio (ACR) or urine protein-creatinine ratio (PCR) level is a robust predictor of cf-mtDNA and cf-nDNA in CKD patients. Baseline urine levels of cf-mtDNA and cf-nDNA could predict renal outcomes at 6 months. Conclusions Urinary cf-mtDNA and cf-nDNA may provide novel prognostic biomarkers for renal outcome in CKD patients. The levels of plasma cf-nDNA and plasma NGAL are significantly correlated with the severity of CKD. Electronic supplementary material The online version of this article (10.1186/s12882-019-1549-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chia-Chu Chang
- Department of Internal Medicine, Kuang Tien General Hospital, Taichung, Taiwan.,Department of Nutrition, Hungkuang University, Taichung, Taiwan.,School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Ping-Fang Chiu
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Nephrology Division, Department of Internal Medicine, Changhua Christian Hospital, Changhua, Taiwan.,Vascular & Genomic Research Center, Changhua Christian Hospital, Changhua, Taiwan.,Center of General Education Tunghai University, Taichung, Taiwan
| | - Chia-Lin Wu
- Nephrology Division, Department of Internal Medicine, Changhua Christian Hospital, Changhua, Taiwan.,Internal Medicine Research Center, Changhua Christian Hospital, Changhua, Taiwan
| | - Cheng-Ling Kuo
- Vascular & Genomic Research Center, Changhua Christian Hospital, Changhua, Taiwan
| | - Ching-Shan Huang
- Vascular & Genomic Research Center, Changhua Christian Hospital, Changhua, Taiwan
| | - Chin-San Liu
- Vascular & Genomic Research Center, Changhua Christian Hospital, Changhua, Taiwan.,Department of Neurology, Changhua Christian Hospital, Changhua, Taiwan
| | - Ching-Hui Huang
- Vascular & Genomic Research Center, Changhua Christian Hospital, Changhua, Taiwan. .,Department of Cardiology, Changhua Christian Hospital, Changhua, Taiwan. .,Institute of Statistics and Information Science, National Changhua University of Education, Changhua, Taiwan. .,School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan. .,Department of Beauty Science and Graduate Institute of Beauty Science Technology, Chienkuo Technology University, Changhua, Taiwan.
| |
Collapse
|
34
|
Ibrahim AA, Soliman HM, El-Lebedy D, Hassan M, Helmy NA, Abdel Hamid TA, Abdelhamid N. Expression of exosomal miR-21 and miR-29 in serum of children and adolescents with T1DM and persistent microalbuminuria. GENE REPORTS 2019. [DOI: 10.1016/j.genrep.2019.100461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
35
|
Abdelsalam L, Ibrahim AA, Shalaby A, Osman N, Hashad A, Badawy D, Elghobary H, Amer E. Expression of miRNAs-122, -192 and -499 in end stage renal disease associated with acute myocardial infarction. Arch Med Sci 2019; 15:1247-1253. [PMID: 31572470 PMCID: PMC6764293 DOI: 10.5114/aoms.2019.87095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 05/16/2017] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION New diagnostic tools are needed to accurately detect acute myocardial infarction (AMI) in patients with end stage renal disease (ESRD) presenting with ischemic chest pain. We aimed in this study to investigate circulating miR-122, -192 and -499 expression levels in patients with AMI on top of ESRD and evaluate the potential of these miRNAs as blood-based biomarkers for AMI in patients with ESRD. MATERIAL AND METHODS The study included 80 ESRD patients without AMI, 80 patients with ESRD associated with AMI and 60 healthy subjects. Assessment of microRNAs was done using SYBR Green based real-time PCR. RESULTS Levels of miR-122 were 28-fold and 20-fold higher in controls than in ESRD patients with or without AMI respectively (p < 0.001), while no differences were detected between the two patient groups (p = 0.9). Levels of miR-192 showed a marked increase in ESRD patients with and without AMI compared to the control group (> 500-fold, > 8000-fold respectively, p ≤ 0.001). Patients who developed AMI had lower expression than ESRD patients without AMI (p < 0.001). Non-significant miR-499 elevation was found in ESRD patients without cardiac disease compared to the control group, while highly significant elevation of miR- 499 was demonstrated in ESRD patients who developed AMI compared to other ESRD patients and the control group (> 100-fold, > 350-fold respectively, p = 0.001). CONCLUSIONS Altered expression of miR-122 and -192 may contribute in pathogenesis of ESRD. MiR-192 and -499 may serve as potential biomarkers for AMI in ESRD. Further studies are needed to correlate these miRNAs with disease progression and outcome.
Collapse
Affiliation(s)
- Lobna Abdelsalam
- Clinical and Chemical Pathology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Alshaymaa A. Ibrahim
- Clinical and Chemical Pathology Department, National Research Centre, Cairo, Egypt
| | - Aliaa Shalaby
- Clinical and Chemical Pathology Department, National Research Centre, Cairo, Egypt
| | - Noha Osman
- Nephrology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Assem Hashad
- Cardiology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Dina Badawy
- Clinical and Chemical Pathology department, Alzahraa University hospital, Al-azhar University, Cairo, Egypt
| | - Hany Elghobary
- Clinical and Chemical Pathology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Eman Amer
- Biochemistry Department, Faculty of Pharmacy, Ahram Canadian University, Cairo, Egypt
| |
Collapse
|
36
|
Cheng Y, Li J, Wang C, Yang H, Wang Y, Zhan T, Guo S, Liang J, Bai Y, Yu J, Liu G. Inhibition of long non-coding RNA metastasis-associated lung adenocarcinoma transcript 1 attenuates high glucose-induced cardiomyocyte apoptosis via regulation of miR-181a-5p. Exp Anim 2019; 69:34-44. [PMID: 31353329 PMCID: PMC7004813 DOI: 10.1538/expanim.19-0058] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Diabetic cardiomyopathy (DCM) is one of the cardiovascular complications of diabetes
mellitus independent of hypertension, coronary disease, and other heart diseases. The
development of DCM is multifactorial and hard to detect at an early stage. Long non-coding
RNA metastasis-associated lung adenocarcinoma transcript 1 (Malat1) is
emerging as a regulator of DCM, the underlying mechanism of its role in DCM has not been
elaborated yet. In this study, we established a mouse DCM model via streptozocin injection
as evidenced by cell hypertrophy and cell apoptosis of myocardial tissue, and found that
Malat1 expression was upregulated in the myocardium in DCM mice.
Meanwhile, elevated expression of pro-apoptotic factors p53, p21, cleaved caspase 3,
cleaved caspase 9 and BAX, and down-regulation of anti-apoptotic BCL-2 were observed in
DCM myocardium. We further investigated the effect of Malat1 on
cardiomyocytes under high glucose condition by silencing Malat1 with its
specific short-hairpin RNA. Like in vivo, expression of
Malat1 in cardiomyocytes was notably raised, remarkable cell apoptosis
and changes in apoptosis-related factors were also observed following high glucose
treatment. Besides, we validated that Malat1 acted as a sponge of
miR-181a-5p. Inhibition of miR-181a-5p could, at least partially, abolish
Malat1 knockdown-induced alteration in cardiomyocytes. In addition,
p53, a critical regulator of apoptosis, was validated to be a downstream target of
miR-181a-5p. In summary, our findings reveal that Malat1 knockdown
attenuates high glucose-induced cardiomyocyte apoptosis via releasing miR-181a-5p, and
this mechanism may provide us with new diagnosis target of DCM.
Collapse
Affiliation(s)
- Yongxia Cheng
- Pathology Diagnosis Center, The First Clinical Medical School of Mudanjiang Medical College, No. 3 Tongxiang Street, Aimin District, Mudanjiang, Heilongjiang 157011, P.R.China.,Key Laboratory of Cancer Prevention and Treatment of Heilongjiang Province, Mudanjiang Medical College, No. 3 Tongxiang Street, Aimin District, Mudanjiang, Heilongjiang 157011, P.R.China.,Institute of Stem Cells, Mudanjiang Medical College, No. 3 Tongxiang Street, Aimin District, Mudanjiang, Heilongjiang 157011, P.R.China
| | - Jingchao Li
- Department of Neurology, Hongqi Hospital of Mudanjiang Medical College, No. 3 Tongxiang Street, Aimin District, Mudanjiang, Heilongjiang 157011, P.R.China
| | - Chong Wang
- Pathology Diagnosis Center, The First Clinical Medical School of Mudanjiang Medical College, No. 3 Tongxiang Street, Aimin District, Mudanjiang, Heilongjiang 157011, P.R.China
| | - Heran Yang
- Department of Laboratory Medicine, Hongqi Hospital of Mudanjiang Medical College, No. 3 Tongxiang Street, Aimin District, Mudanjiang, Heilongjiang 157011, P.R.China
| | - Ying Wang
- Department of Anatomy, School of Basic Medical Sciences, Mudanjiang Medical College, No. 3 Tongxiang Street, Aimin District, Mudanjiang, Heilongjiang 157011, P.R.China.,Institute of Neural Tissue Engineering, Mudanjiang Medical College, No. 3 Tongxiang Street, Aimin District, Mudanjiang, Heilongjiang 157011, P.R.China
| | - Tao Zhan
- Pathology Diagnosis Center, The First Clinical Medical School of Mudanjiang Medical College, No. 3 Tongxiang Street, Aimin District, Mudanjiang, Heilongjiang 157011, P.R.China
| | - Sufen Guo
- Pathology Diagnosis Center, The First Clinical Medical School of Mudanjiang Medical College, No. 3 Tongxiang Street, Aimin District, Mudanjiang, Heilongjiang 157011, P.R.China
| | - Jun Liang
- Institute of Stem Cells, Mudanjiang Medical College, No. 3 Tongxiang Street, Aimin District, Mudanjiang, Heilongjiang 157011, P.R.China.,Department of Histology and Embryology, School of Basic Medical Sciences, Mudanjiang Medical College, No. 3 Tongxiang Street, Aimin District, Mudanjiang, Heilongjiang 157011, P.R.China
| | - Yuxin Bai
- Pathology Diagnosis Center, The First Clinical Medical School of Mudanjiang Medical College, No. 3 Tongxiang Street, Aimin District, Mudanjiang, Heilongjiang 157011, P.R.China
| | - Jianbo Yu
- Pathology Diagnosis Center, The First Clinical Medical School of Mudanjiang Medical College, No. 3 Tongxiang Street, Aimin District, Mudanjiang, Heilongjiang 157011, P.R.China.,Key Laboratory of Cancer Prevention and Treatment of Heilongjiang Province, Mudanjiang Medical College, No. 3 Tongxiang Street, Aimin District, Mudanjiang, Heilongjiang 157011, P.R.China
| | - Guibo Liu
- Department of Anatomy, School of Basic Medical Sciences, Mudanjiang Medical College, No. 3 Tongxiang Street, Aimin District, Mudanjiang, Heilongjiang 157011, P.R.China.,Institute of Neural Tissue Engineering, Mudanjiang Medical College, No. 3 Tongxiang Street, Aimin District, Mudanjiang, Heilongjiang 157011, P.R.China
| |
Collapse
|
37
|
Kim H, Bae YU, Jeon JS, Noh H, Park HK, Byun DW, Han DC, Ryu S, Kwon SH. The circulating exosomal microRNAs related to albuminuria in patients with diabetic nephropathy. J Transl Med 2019; 17:236. [PMID: 31331349 PMCID: PMC6647278 DOI: 10.1186/s12967-019-1983-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 07/12/2019] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Diabetic nephropathy (DN) is associated with high risk of cardiovascular disease and mortality. Exosomal microRNAs (miRNAs) regulate gene expression in a variety of tissues and play important roles in the pathology of various diseases. We hypothesized that the exosomal miRNA profile would differ between DN patients and patients without nephropathy. METHODS We prospectively enrolled 74 participants, including healthy volunteers (HVs), diabetic patients without nephropathy, and those with DN. The serum exosomal miRNA profiles of participants were examined using RNA sequencing. RESULTS The expression levels of 107 miRNAs differed between HVs and patients without DN, whereas the expression levels of 95 miRNAs differed between HVs and patients with DN. Among these miRNAs, we found 7 miRNAs (miR-1246, miR-642a-3p, let-7c-5p, miR-1255b-5p, let-7i-3p, miR-5010-5p, miR-150-3p) that were uniquely up-regulated in DN patients compared to HVs, and miR-4449 that was highly expressed in DN patients compared to patients without DN. A pathway analysis revealed that these eight miRNAs are likely involved in MAPK signaling, integrin function in angiogenesis, and regulation of the AP-1 transcription factor. Moreover, they were all significantly correlated with the degree of albuminuria. CONCLUSIONS Patients with DN have a different serum exosomal miRNA profile compared to HVs. These miRNAs may be promising candidates for the diagnosis and treatment of DN and cardiovascular disease.
Collapse
Affiliation(s)
- Hyoungnae Kim
- Department of Internal Medicine, Soonchunhyang University Seoul Hospital, Seoul, South Korea.,Hyonam Kidney Laboratory, Soonchunhyang University Seoul Hospital, 59 Daesagwan-ro, Youngsan-gu, Seoul, South Korea
| | - Yun-Ui Bae
- Soonchunhyang Institute of Med-bio Science (SIMS), Soonchunhyang University, Chonan, South Korea
| | - Jin Seok Jeon
- Department of Internal Medicine, Soonchunhyang University Seoul Hospital, Seoul, South Korea.,Hyonam Kidney Laboratory, Soonchunhyang University Seoul Hospital, 59 Daesagwan-ro, Youngsan-gu, Seoul, South Korea
| | - Hyunjin Noh
- Department of Internal Medicine, Soonchunhyang University Seoul Hospital, Seoul, South Korea.,Hyonam Kidney Laboratory, Soonchunhyang University Seoul Hospital, 59 Daesagwan-ro, Youngsan-gu, Seoul, South Korea
| | - Hyeong Kyu Park
- Department of Internal Medicine, Soonchunhyang University Seoul Hospital, Seoul, South Korea
| | - Dong Won Byun
- Department of Internal Medicine, Soonchunhyang University Seoul Hospital, Seoul, South Korea
| | - Dong Cheol Han
- Department of Internal Medicine, Soonchunhyang University Seoul Hospital, Seoul, South Korea.,Hyonam Kidney Laboratory, Soonchunhyang University Seoul Hospital, 59 Daesagwan-ro, Youngsan-gu, Seoul, South Korea
| | - Seongho Ryu
- Soonchunhyang Institute of Med-bio Science (SIMS), Soonchunhyang University, Chonan, South Korea. .,Soonchunhyang Institute of Med-bio Sciences (SIMS) and Laboratory of Pathology, Department of Medicine, Soonchunhyang University, Chonan, 336-745, South Korea.
| | - Soon Hyo Kwon
- Department of Internal Medicine, Soonchunhyang University Seoul Hospital, Seoul, South Korea. .,Hyonam Kidney Laboratory, Soonchunhyang University Seoul Hospital, 59 Daesagwan-ro, Youngsan-gu, Seoul, South Korea.
| |
Collapse
|
38
|
Saadi G, El Meligi A, El-Ansary M, Alkemary A, Ahmed G. Evaluation of microRNA-192 in patients with diabetic nephropathy. THE EGYPTIAN JOURNAL OF INTERNAL MEDICINE 2019. [DOI: 10.4103/ejim.ejim_89_18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
39
|
A therapeutic approach towards microRNA29 family in vascular diabetic complications: A boon or curse? J Diabetes Metab Disord 2019; 18:243-254. [PMID: 31275895 DOI: 10.1007/s40200-019-00409-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 05/02/2019] [Indexed: 02/06/2023]
Abstract
Diabetes Mellitus (DM) is one of the major metabolic disorders and its severity leads to death. Enhancement in hyperglycaemic conditions of DM gives rise to endothelial impairment in small and large blood vessels contributing towards microvascular and macrovascular complications respectively. The pathogenesis of diabetic complications is associated with interruption of various signal transduction pathways due to epigenetic modifications such as aberrant histone modifications, DNA methylation and expression of miRNAs along with the long non-coding RNAs (lncRNAs). Amongst these epigenetic alterations, modulated expressions of miRNAs confer to apoptosis and endothelial dysfunction of organs that gives rise to vascular complications. In this review, we principally focussed on physiological role of miR29 family in DM and have discussed crosstalk between miR29 family and numerous genes involved in signal transduction pathways of Diabetic vascular complications. Incidences of diabetic retinopathy exploiting the role of miR29 in regulation of EMT process, differential expression patterns of miR29 and promising therapeutic role of miR29 have been discussed. We have summarised the therapeutic role of miR29 in podocyte impairment and how miR29 regulates the expressions of profibrotic, inflammatory and ECM encoding genes in renal fibrosis under diabetic conditions. We have also highlighted impact of miR29 expression patterns in cardiac angiopathy, cardiomyocyte's apoptosis and cardiac fibrosis. Additionally, we have also presented the contradictory actions of miR29 family in amelioration as well as in enhancement of diabetic complications.
Collapse
|
40
|
La Sala L, Mrakic-Sposta S, Tagliabue E, Prattichizzo F, Micheloni S, Sangalli E, Specchia C, Uccellatore AC, Lupini S, Spinetti G, de Candia P, Ceriello A. Circulating microRNA-21 is an early predictor of ROS-mediated damage in subjects with high risk of developing diabetes and in drug-naïve T2D. Cardiovasc Diabetol 2019; 18:18. [PMID: 30803440 PMCID: PMC6388471 DOI: 10.1186/s12933-019-0824-2] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 02/08/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Impaired glucose tolerance (IGT) is a risk factor for the development of diabetes and related complications that ensue. Early identification of at-risk individuals might be beneficial to reduce or delay the progression of diabetes and its related complications. Recently, microRNAs emerged as potential biomarkers of diseases. The aim of the present study was to evaluate microRNA-21 as a potential biomarker for the risk of developing diabetes in adults with IGT and to investigate its downstream effects as the generation of reactive oxygen species (ROS), the induction of manganese-superoxide dismutase-2 (SOD2), and the circulating levels of 4-HNE (4-hydroxynonenal). METHODS To evaluate the prognostic and predictive values of plasmatic microRNA-21 in identifying metabolic derangements, we tested a selected cohort (n = 115) of subjects enrolled in the DIAPASON Study, whom were selected on ADA criteria for 2hPG. Statistical analysis was performed using ANOVA or the Kruskal-Wallis test as appropriate. ROC curves were drawn for diagnostic accuracy of the tests; positive and negative predictive values were performed, and Youden's index was used to seek the cut-off optimum truncation point. ROS, SOD2 and 4-HNE were also evaluated. RESULTS We observed significant upregulation of microRNA-21 in IGT and in T2D subjects, and microRNA-21 was positively correlated with glycaemic parameters. Diagnostic performance of microRNA-21 was high and accurate. We detected significant overproduction of ROS by electron paramagnetic resonance (EPR), significant accumulation of the lipid peroxidation marker 4-HNE, and defective SOD2 antioxidant response in IGT and newly diagnosed, drug-naïve T2D subjects. In addition, ROC curves demonstrated the diagnostic accuracy of markers used. CONCLUSIONS our data demonstrate that microRNA-21 is associated with prediabetic status and exhibits predictive value for early detection of glucose imbalances. These data could provide novel clues for miR-based biomarkers to evaluate diabetes.
Collapse
Affiliation(s)
- Lucia La Sala
- Department of Cardiovascular and Dysmetabolic Diseases, IRCCS MultiMedica, Via Fantoli 16/15, 20138 Milan, Italy
| | - Simona Mrakic-Sposta
- Institute of Molecular Bioimaging and Physiology, National Research Council, Segrate, Italy
| | | | - Francesco Prattichizzo
- Department of Cardiovascular and Dysmetabolic Diseases, IRCCS MultiMedica, Via Fantoli 16/15, 20138 Milan, Italy
| | - Stefano Micheloni
- Department of Cardiovascular and Dysmetabolic Diseases, IRCCS MultiMedica, Via Fantoli 16/15, 20138 Milan, Italy
| | - Elena Sangalli
- Department of Cardiovascular and Dysmetabolic Diseases, IRCCS MultiMedica, Via Fantoli 16/15, 20138 Milan, Italy
| | - Claudia Specchia
- Department of Translational Biomedicine, University of Brescia, Brescia, Italy
| | | | | | - Gaia Spinetti
- Department of Cardiovascular and Dysmetabolic Diseases, IRCCS MultiMedica, Via Fantoli 16/15, 20138 Milan, Italy
| | - Paola de Candia
- Department of Cardiovascular and Dysmetabolic Diseases, IRCCS MultiMedica, Via Fantoli 16/15, 20138 Milan, Italy
| | - Antonio Ceriello
- Department of Cardiovascular and Dysmetabolic Diseases, IRCCS MultiMedica, Via Fantoli 16/15, 20138 Milan, Italy
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) and Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain
| |
Collapse
|
41
|
Zhang X, Yang Z, Heng Y, Miao C. MicroRNA‑181 exerts an inhibitory role during renal fibrosis by targeting early growth response factor‑1 and attenuating the expression of profibrotic markers. Mol Med Rep 2019; 19:3305-3313. [PMID: 30816527 DOI: 10.3892/mmr.2019.9964] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 02/07/2019] [Indexed: 11/06/2022] Open
Abstract
Progressive renal fibrosis is a common complication of chronic kidney disease that results in end‑stage renal disorder. It is well established that several microRNAs (miRs) function as critical regulators implicated in fibrotic diseases. However, the role of miR‑181 in the development and progression of renal fibrosis remains unclear, and the precise mechanism has not yet been fully defined. The present study identified the functional implications of miR‑181 expression during renal fibrosis. miR‑181 exhibited significantly reduced expression in the serum of renal fibrosis patients and in the kidneys of mice with unilateral ureteral obstruction (UUO). In addition, miR‑181 downregulated the expression of human α‑smooth muscle actin (α‑SMA) in response to angiotensin II stimulation. Transfection with miR‑181 mimics significantly suppressed the expression levels of α‑SMA, connective tissue growth factor, collagen type I α1 (COL1A1) and collagen type III α1 (COL3A1) in NRK49F cells. Notably, early growth response factor‑1 (Egr1) was identified as a direct target gene of miR‑181. Furthermore, in vivo experiments revealed that treatment with miR‑181 agonist strongly rescued kidney impairment induced by UUO, as supported by Masson's trichrome staining of kidney tissues and reverse transcription‑quantitative polymerase chain reaction analysis of COL1A1 and COL3A1 mRNA levels. Therefore, miR‑181 may be regarded as an important mediator in the control of profibrotic markers during renal fibrosis via binding to Egr1, and may be a promising new target in the diagnosis and therapy of renal fibrosis.
Collapse
Affiliation(s)
- Xiaoyan Zhang
- Department of Nephrology, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi 046000, P.R. China
| | - Zhenning Yang
- School of Clinical Medicine, Norman Bethune Health Science Center of Jilin University, Changchun, Jilin 130022, P.R. China
| | - Yanyan Heng
- Department of Nephrology, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi 046000, P.R. China
| | - Congxiu Miao
- Department of Scientific Research, Changzhi Medical College, Changzhi, Shanxi 046000, P.R. China
| |
Collapse
|
42
|
Wang Y, Zhang R, Zhang J, Liu F. MicroRNA-326-3p ameliorates high glucose and ox-LDL-IC- induced fibrotic injury in renal mesangial cells by targeting FcγRIII. Nephrology (Carlton) 2019; 23:1031-1038. [PMID: 28921768 DOI: 10.1111/nep.13168] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2017] [Indexed: 02/05/2023]
Abstract
AIM The aim of the present study was to identify the regulatory relationship between miR-326-3p and FcγRIII, and to explore the involvement of miR-326-3p/FcγRIII/TGF-β/Smad signalling pathway in fibrotic injury, which was induced by the high glucose (HG) and oxidized low density lipoprotein immune complex (ox-LDL-IC) in mouse glomerular mesangial cells (GMCs). METHODS Dual-luciferase reporter system and real time PCR (RT-PCR) were used to identify FcγRIII as a target gene of miR-326-3p. Lentiviral transduction was used to construct different expression of miR-326-3p in GMCs, which were divided into three groups: miR-326-3p mimics group (miR-326-3p group), miR-326-3p inhibitor group (miR-326-3p-inhibit group) and scramble control group (control group). Then, each group was stimulated by normal glucose (NG), HG, ox-LDL-IC and HG + ox-LDL-IC, respectively. RT-PCR and western blot were used to measure the expressions of Col-I, CTGF, α-SMA, TGF-β, Smad2/3 and pSmad2/3. RESULTS FcγRIII was regulated negatively by miR-326-3p in GMCs under the condition of HG and ox-LDL-IC, which implied FcγRIII as a target gene of miR-326-3p. Furthermore, compared with normal glucose group, the expressions of Col-I, CTGF, α-SMA, TGF-β and pSmad2/3 were higher under the condition of HG, ox-LDL-IC and HG + ox-LDL-IC (P < 0.05). In particular, miR-326-3p-inhibit groups exhibited the most significant increase (P < 0.05), while miR-326-3p could attenuate the increase (P < 0.05). CONCLUSION FcγRIII was identified as a target gene of miR-326-3p. MiR-326-3p/FcγRIII/TGF-β/Smad signaling pathway was investigated to be involved in the pathophysiology of renal fibrosis of DKD.
Collapse
Affiliation(s)
- Yiting Wang
- Division of Nephrology, West China Hospital of Sichuan University, Chengdu, China
| | - Rui Zhang
- Division of Nephrology, West China Hospital of Sichuan University, Chengdu, China
| | - Junlin Zhang
- Division of Nephrology, West China Hospital of Sichuan University, Chengdu, China
| | - Fang Liu
- Division of Nephrology, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
43
|
Assmann TS, Recamonde-Mendoza M, de Souza BM, Bauer AC, Crispim D. MicroRNAs and diabetic kidney disease: Systematic review and bioinformatic analysis. Mol Cell Endocrinol 2018; 477:90-102. [PMID: 29902497 DOI: 10.1016/j.mce.2018.06.005] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 06/07/2018] [Accepted: 06/10/2018] [Indexed: 12/14/2022]
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression. Emerging evidence has suggested a role for miRNAs in the development of diabetic kidney disease (DKD), indicating that miRNAs may represent potential biomarkers of this disease. However, results are still inconclusive. Therefore, we performed a systematic review of the literature on the subject, followed by bioinformatic analysis. PubMed and EMBASE were searched to identify all studies that compared miRNA expressions between patients with DKD and diabetic patients without this complication or healthy subjects. MiRNA expressions were analyzed in kidney biopsies, urine/urinary exosomes or total blood/plasma/serum. MiRNAs consistently dysregulated in DKD patients were submitted to bioinformatic analysis to retrieve their putative target genes and identify potentially affected pathways under their regulation. As result, twenty-seven studies were included in the systematic review. Among 151 dysregulated miRNAs reported in these studies, 6 miRNAs were consistently dysregulated in DKD patients compared to controls: miR-21-5p, miR-29a-3p, miR-126-3p, miR-192-5p, miR-214-3p, and miR-342-3p. Bioinformatic analysis indicated that these 6 miRNAs are involved in pathways related to DKD pathogenesis, such as apoptosis, fibrosis, and extracellular matrix accumulation. In conclusion, six miRNAs seem to be dysregulated in patients with different stages of DKD, constituting potential biomarkers of this disease.
Collapse
Affiliation(s)
- Taís S Assmann
- Endocrine Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil; Postgraduation Program in Medical Sciences: Endocrinology, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Mariana Recamonde-Mendoza
- Institute of Informatics, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil; Bioinformatics Core, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Bianca M de Souza
- Endocrine Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil; Postgraduation Program in Medical Sciences: Endocrinology, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Andrea C Bauer
- Endocrine Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil; Postgraduation Program in Medical Sciences: Endocrinology, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Daisy Crispim
- Endocrine Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil; Postgraduation Program in Medical Sciences: Endocrinology, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.
| |
Collapse
|
44
|
Zhang HN, Xu QQ, Thakur A, Alfred MO, Chakraborty M, Ghosh A, Yu XB. Endothelial dysfunction in diabetes and hypertension: Role of microRNAs and long non-coding RNAs. Life Sci 2018; 213:258-268. [PMID: 30342074 DOI: 10.1016/j.lfs.2018.10.028] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 10/13/2018] [Accepted: 10/15/2018] [Indexed: 12/11/2022]
Abstract
The vascular endothelium acts as a barrier between the blood flow and the inner lining of the vessel wall, and it functions as a filtering machinery to filter out any unwanted transfer of materials from both sides (i.e. the blood and the surrounding tissues). It is evident that diseases such as diabetes, obesity, and hypertension disturb the normal endothelial functions in humans and lead to endothelial dysfunction, which may further precede to the development of atherosclerosis. Long non-coding RNAs and micro RNAs both are types of non-coding RNAs which, in the recent years, have increasingly been studied in the pathophysiology of many diseases including diabetes, obesity, cardiovascular diseases, neurological diseases, and others. Recent findings have pointed out important aspects on their relevance to endothelial function as well as dysfunction of the system which may arise from presence of diseases such as diabetes and hypertension. Diabetes or hypertension-mediated endothelial dysfunction show characteristics such as reduced nitric oxide synthesis through suppression of endothelial nitric oxide synthase activity in endothelial cells, reduced sensitivity of nitric oxide in smooth muscle cells, and inflammation - all of which have been either shown to be directly caused by gene regulatory mechanisms of non-coding RNAs or shown to be having a correlation with them. In this review, we aim to discuss such findings on the role of these non-coding RNAs in diabetes or hypertension-associated endothelial dysfunction and the related mechanisms that may pave the way for alleviating endothelial dysfunction and its related complications such as atherosclerosis.
Collapse
Affiliation(s)
- Hai-Na Zhang
- Department of Pharmacy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qiao-Qiao Xu
- Department of Pharmacy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Abhimanyu Thakur
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology Mesra, Ranchi, India
| | - Martin Omondi Alfred
- Institute of Primate Research, Nairobi, Kenya; School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Manas Chakraborty
- Department of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan, ROC
| | - Arunima Ghosh
- Department of Medical Coding Analysis - Emblem Health, Cognizant Technology Solutions India Pvt Ltd., Bangalore, India
| | - Xu-Ben Yu
- Department of Pharmacy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
45
|
Jaeger A, Zollinger L, Saely CH, Muendlein A, Evangelakos I, Nasias D, Charizopoulou N, Schofield JD, Othman A, Soran H, Kardassis D, Drexel H, Eckardstein AV. Circulating microRNAs -192 and -194 are associated with the presence and incidence of diabetes mellitus. Sci Rep 2018; 8:14274. [PMID: 30250222 PMCID: PMC6155281 DOI: 10.1038/s41598-018-32274-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 08/31/2018] [Indexed: 01/19/2023] Open
Abstract
We sought to identify circulating microRNAs as biomarkers of prevalent or incident diabetes. In a pilot study of 18 sex- and age-matched patients with metabolic syndrome, nine of whom developed diabetes during 6 years of follow-up, an array of 372 microRNAs discovered significantly elevated serum levels of microRNAs -122, -192, -194, and -215 in patients who developed diabetes mellitus type 2 (T2DM). In two cross-sectional validation studies, one encompassing sex- and age-matched groups of patients with T2DM, impaired fasting glucose (IFG) and euglycemic controls (n = 43 each) and the other 53 patients with type 1 diabetes and 54 age- and BMI-matched euglycemic controls, serum levels of miR-192, miR-194, and mi215 were significantly higher in diabetic subjects than in probands with euglycemia or IFG. In a longitudinal study of 213 initially diabetes-free patients of whom 35 developed diabetes during 6 years of follow-up, elevated serum levels of microRNAs 192 and 194 were associated with incident T2DM, independently of fasting glucose, HbA1c and other risk factors. Serum levels of miR-192 and miR-194 were also elevated in diabetic Akt2 knockout mice compared to wild type mice. In conclusion, circulating microRNAs -192 and -194 are potential biomarkers for risk of diabetes.
Collapse
Affiliation(s)
- Andrea Jaeger
- Institute for Clinical Chemistry, University Hospital Zurich, Zurich, Switzerland
- Centre for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Lukas Zollinger
- Institute for Clinical Chemistry, University Hospital Zurich, Zurich, Switzerland
- Centre for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Christoph H Saely
- Vorarlberg Institute for Vascular Investigation and Treatment (VIVIT), Feldkirch, Austria
- Department of Medicine and Cardiology, Academic Teaching Hospital Feldkirch, Feldkirch, Austria
- Private University of the Principality of Liechtenstein, Triesen, Liechtenstein
| | - Axel Muendlein
- Vorarlberg Institute for Vascular Investigation and Treatment (VIVIT), Feldkirch, Austria
- Department of Medicine and Cardiology, Academic Teaching Hospital Feldkirch, Feldkirch, Austria
- Private University of the Principality of Liechtenstein, Triesen, Liechtenstein
| | - Ioannis Evangelakos
- University of Crete Medical School and Institute of Molecular Biology and Biotechnology-FORTH, Heraklion, Greece
| | - Dimitris Nasias
- University of Crete Medical School and Institute of Molecular Biology and Biotechnology-FORTH, Heraklion, Greece
| | - Nikoleta Charizopoulou
- University of Crete Medical School and Institute of Molecular Biology and Biotechnology-FORTH, Heraklion, Greece
| | - Jonathan D Schofield
- Cardiovascular Trials Unit, The Old St Mary's Hospital, Central Manchester University Hospitals, Manchester, United Kingdom
- Division of Cardiovascular Sciences, Cardiovascular Research Group, School of Medical Sciences, University of Manchester, Manchester, United Kingdom
| | - Alaa Othman
- Institute for Clinical Chemistry, University Hospital Zurich, Zurich, Switzerland
- Centre for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Handrean Soran
- Cardiovascular Trials Unit, The Old St Mary's Hospital, Central Manchester University Hospitals, Manchester, United Kingdom
- Division of Cardiovascular Sciences, Cardiovascular Research Group, School of Medical Sciences, University of Manchester, Manchester, United Kingdom
| | - Dimitris Kardassis
- University of Crete Medical School and Institute of Molecular Biology and Biotechnology-FORTH, Heraklion, Greece
| | - Heinz Drexel
- Vorarlberg Institute for Vascular Investigation and Treatment (VIVIT), Feldkirch, Austria
- Department of Medicine and Cardiology, Academic Teaching Hospital Feldkirch, Feldkirch, Austria
- Private University of the Principality of Liechtenstein, Triesen, Liechtenstein
- Drexel University College of Medicine, Philadelphia, PA, USA
| | - Arnold von Eckardstein
- Institute for Clinical Chemistry, University Hospital Zurich, Zurich, Switzerland.
- Centre for Integrative Human Physiology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
46
|
MicroRNAs from urinary extracellular vesicles are non-invasive early biomarkers of diabetic nephropathy in type 2 diabetes patients with the 'Asian Indian phenotype'. DIABETES & METABOLISM 2018; 45:276-285. [PMID: 30165157 DOI: 10.1016/j.diabet.2018.08.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 06/27/2018] [Accepted: 08/11/2018] [Indexed: 12/13/2022]
Abstract
AIMS MicroRNAs (miRNAs) from extracellular vesicles (EVs) have been proposed as promising biomarkers for a number of diseases. In this study, their potential as urine-based biomarkers of diabetic nephropathy (DN) was assessed. METHODS MiRNAs were profiled in urinary EVs from 160 fasting subjects with normal glucose tolerance (NGT) and in T2DM patients with either microalbumininuria (MIC) or macroalbuminuria (MAC). RESULTS A total of 73 miRNAs detected in urinary EVs (NGT) were predicted to target important functions for kidney homoeostasis, thereby validating their use as indicators of kidney dysfunction. Indeed, a urinary EV miRNA signature was found to comprise increased levels of let-7i-3p, miR-24-3p and miR-27b-3p, and decreased levels of miR-15b-5p, to identify patients with MIC. ROC curve analysis confirmed this ability to identify MIC in normo-albuminuria T2DM (T2DM-NA) patients and to differentiate between MAC and T2DM patients. These miRNAs were also predicted to target protein networks involved in the Wnt/β-catenin signalling cascade, activin receptor signalling and cell differentiation/proliferation, and correlated with eGRF, HbA1c, serum creatinine, urea, albumin and blood pressure. Concentrations of miR-30a-5p were specifically modified in urinary EVs from patients with MAC, but not MIC, suggesting that miR-30a-5p could be related to severe kidney damage. CONCLUSION Urinary EV miRNAs correlate with the degree of MIC. As they are also thought to regulate pathways that are targets of pharmacological agents to prevent DN (reticulum stress, activin receptors), they may also serve as non-invasive 'liquid biopsies' to stratify patients at risk of developing MAC and to monitor treatment efficacy.
Collapse
|
47
|
Al-Kafaji G, Al-Muhtaresh HA. Expression of microRNA‑377 and microRNA‑192 and their potential as blood‑based biomarkers for early detection of type 2 diabetic nephropathy. Mol Med Rep 2018; 18:1171-1180. [PMID: 29845236 DOI: 10.3892/mmr.2018.9040] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Accepted: 03/08/2018] [Indexed: 11/06/2022] Open
Abstract
The increased incidence of diabetic nephropathy (DN) in type 2 diabetes (T2D) requires novel markers for the early detection of DN. Previously, microRNAs (miRs) have been demonstrated to be promising disease biomarkers. The present study evaluated the biomarker potential of DN‑associated miR‑377 and miR‑192 in the early stages of DN. The study included 85 participants: 55 patients with T2D (30 without DN and 25 with DN) and 30 healthy controls. The patients with T2D were classified according to albumin‑to‑creatinine ratio and were split into three groups: Normoalbuminuric group (n=30), microalbuminuric group (n=15) and macroalbuminuric group (n=10). Reverse transcription‑quantitative polymerase chain reaction analysis was used to evaluate blood miR expression. It was observed that there was higher miR‑377 expression and lower miR‑192 expression in T2D patients with and without DN compared with healthy controls (P<0.05). miR‑377 was higher in the normoalbuminuric group and gradually increased in the microalbuminuric and macroalbuminuric groups (P<0.05), whereas miR‑192 was lower in the macroalbuminuric group compared with the normoalbuminuric group (P<0.05). Regression analysis revealed direct associations between the two miRs and albuminuria (P<0.05). miR‑377 was independently associated with DN risk, even following multivariable adjustment, and albuminuria was the only predictor of miR‑377 (P<0.001). In discriminating overall patients from healthy subjects, ROC analysis revealed areas under the curve (AUCs) of 0.851 for miR377 and 0.774 for miR‑192 (P<0.001). In discriminating the normoalbuminuric group from the microalbuminuric/macroalbuminuric groups, the AUCs were 0.711 (P=0.008) and 0.70 (P=0.049) for miR‑377 and miR‑192, respectively. In patients with microalbuminuria and macroalbuminuria, miR‑377 correlated positively with albuminuria and negatively with renal function, whereas miR‑192 correlated negatively with albuminuria and positively with renal function (P=0.001), and the two miRs were correlated with known risk factors of DN (P<0.05). The results suggested that blood‑based miR‑377 and miR‑192 may serve as potential biomarkers for early detection of DN. Further validation studies are required with larger sample sizes.
Collapse
Affiliation(s)
- Ghada Al-Kafaji
- Department of Molecular Medicine and Al‑Jawhara Centre for Molecular Medicine, Genetics and Inherited Disorders, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Kingdom of Bahrain
| | - Haifa Abdulla Al-Muhtaresh
- Department of Molecular Medicine and Al‑Jawhara Centre for Molecular Medicine, Genetics and Inherited Disorders, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Kingdom of Bahrain
| |
Collapse
|
48
|
Zhang J, Wu L, Chen J, Lin S, Cai D, Chen C, Chen Z. Downregulation of MicroRNA 29a/b exacerbated diabetic retinopathy by impairing the function of Müller cells via Forkhead box protein O4. Diab Vasc Dis Res 2018; 15:214-222. [PMID: 29409329 DOI: 10.1177/1479164118756239] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Diabetic retinopathy is a neurological disease, which can lead to blindness in severe cases. The pathogenesis underlying diabetic retinopathy is unclear. The aim of this study was to explore the role of dysregulated microRNA 29a/b in the onset and progression of diabetic retinopathy. METHODS Diabetes mellitus was induced in rats using 60 mg/kg of streptozotocin. Glucose (5.5 and 25 mM) was used to stimulate rat retinal Müller cells. Real-time polymerase chain reaction and Western blot analyses were used to determine gene expression. A luciferase reporter assay was conducted to validate the relationship of microRNA 29a/b with glioma-associated oncogene homolog 1 and Forkhead box protein O4. RESULTS The expression of microRNA 29a/b and glutamine synthetase decreased in both diabetes mellitus rats and rat retinal Müller cells stimulated with high glucose, whereas the expression of sonic hedgehog, glioma-associated oncogene homolog 1, glial fibrillary acidic protein, and vascular endothelial growth factor, as well as the content of glutamate, increased. Dysregulated microRNA 29a/b was directly regulated by the sonic hedgehog-glioma-associated oncogene homolog 1 signalling pathway, and microRNA 29a and microRNA 29b targeted Forkhead box protein O4 and regulated its expression. CONCLUSION Downregulation of microRNA 29a/b, mediated by the sonic hedgehog-glioma-associated oncogene homolog 1 signalling pathway, exacerbated diabetic retinopathy by upregulating Forkhead box protein O4.
Collapse
Affiliation(s)
- Jiayu Zhang
- Department of Ophthalmology, The Third Affiliated Hospital of Wenzhou Medical University, Rui'an, China
| | - Liang Wu
- Department of Ophthalmology, The Third Affiliated Hospital of Wenzhou Medical University, Rui'an, China
| | - Jiawei Chen
- Department of Ophthalmology, The Third Affiliated Hospital of Wenzhou Medical University, Rui'an, China
| | - Sisi Lin
- Department of Ophthalmology, The Third Affiliated Hospital of Wenzhou Medical University, Rui'an, China
| | - Daqiu Cai
- Department of Ophthalmology, The Third Affiliated Hospital of Wenzhou Medical University, Rui'an, China
| | - Chengwei Chen
- Department of Ophthalmology, The Third Affiliated Hospital of Wenzhou Medical University, Rui'an, China
| | - Zhenguo Chen
- Department of Ophthalmology, The Third Affiliated Hospital of Wenzhou Medical University, Rui'an, China
| |
Collapse
|
49
|
Barutta F, Bellini S, Mastrocola R, Bruno G, Gruden G. MicroRNA and Microvascular Complications of Diabetes. Int J Endocrinol 2018; 2018:6890501. [PMID: 29707000 PMCID: PMC5863305 DOI: 10.1155/2018/6890501] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 12/28/2017] [Accepted: 01/11/2018] [Indexed: 12/11/2022] Open
Abstract
In the last decade, miRNAs have received substantial attention as potential players of diabetes microvascular complications, affecting the kidney, the retina, and the peripheral neurons. Compelling evidence indicates that abnormally expressed miRNAs have pivotal roles in key pathogenic processes of microvascular complications, such as fibrosis, apoptosis, inflammation, and angiogenesis. Moreover, clinical research into innovative both diagnostic and prognostic tools suggests circulating miRNAs as possible novel noninvasive markers of diabetes microvascular complications. In this review, we summarize current knowledge and understanding of the role of miRNAs in the injury to the microvascular bed in diabetes and discuss the potential of miRNAs as clinical biomarkers of diabetes microvascular complications.
Collapse
Affiliation(s)
- F. Barutta
- Laboratory of Diabetic Nephropathy, Department of Medical Sciences, University of Turin, Turin, Italy
| | - S. Bellini
- Laboratory of Diabetic Nephropathy, Department of Medical Sciences, University of Turin, Turin, Italy
| | - R. Mastrocola
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - G. Bruno
- Laboratory of Diabetic Nephropathy, Department of Medical Sciences, University of Turin, Turin, Italy
| | - G. Gruden
- Laboratory of Diabetic Nephropathy, Department of Medical Sciences, University of Turin, Turin, Italy
| |
Collapse
|
50
|
Genome-wide Profiling of Urinary Extracellular Vesicle microRNAs Associated With Diabetic Nephropathy in Type 1 Diabetes. Kidney Int Rep 2017; 3:555-572. [PMID: 29854963 PMCID: PMC5976846 DOI: 10.1016/j.ekir.2017.11.019] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 11/15/2017] [Accepted: 11/27/2017] [Indexed: 01/01/2023] Open
Abstract
Introduction Diabetic nephropathy (DN) is a form of progressive kidney disease that often leads to end-stage renal disease (ESRD). It is initiated by microvascular complications due to diabetes. Although microalbuminuria (MA) is the earliest clinical indication of DN among patients with type 1 diabetes (T1D), it lacks the sensitivity and specificity to detect the early onset of DN. Recently, microRNAs (miRNAs) have emerged as critical regulators in diabetes as well as various forms of kidney disease, including renal fibrosis, acute kidney injury, and progressive kidney disease. Additionally, circulating extracellular miRNAs, especially miRNAs packaged in extracellular vesicles (EVs), have garnered significant attention as potential noninvasive biomarkers for various diseases and health conditions. Methods As part of the University of Pittsburgh Epidemiology of Diabetes Complications (EDC) study, urine was collected from individuals with T1D with various grades of DN or MA (normal, overt, intermittent, and persistent) over a decade at prespecified intervals. We isolated EVs from urine and analyzed the small-RNA using NextGen sequencing. Results We identified a set of miRNAs that are enriched in urinary EVs compared with EV-depleted samples, and identified a number of miRNAs showing concentration changes associated with DN occurrence, MA status, and other variables, such as hemoglobin A1c levels. Conclusion Many of the miRNAs associated with DN occurrence or MA status directly target pathways associated with renal fibrosis (including transforming growth factor-β and phosphatase and tensin homolog), which is one of the major contributors to the pathology of DN. These miRNAs are potential biomarkers for DN and MA.
Collapse
|