1
|
Dagher M, Ongo G, Robichaud N, Kong J, Rho W, Teahulos I, Tavakoli A, Bovaird S, Merjaneh S, Tan A, Edwardson K, Scheepers C, Ng A, Hajjar A, Sow B, Vrouvides M, Lee A, DeCorwin-Martin P, Rasool S, Huang J, Erps T, Coffin S, Han Y, Chandrasekaran SN, Miller L, Kost-Alimova M, Skepner A, Singh S, Carpenter AE, Munzar J, Juncker D. nELISA: A high-throughput, high-plex platform enables quantitative profiling of the inflammatory secretome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2023.04.17.535914. [PMID: 37131604 PMCID: PMC10153206 DOI: 10.1101/2023.04.17.535914] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
We present the nELISA, a high-throughput, high-fidelity, and high-plex protein profiling platform. DNA oligonucleotides are used to pre-assemble antibody pairs on spectrally encoded microparticles and perform displacement-mediated detection. Spatial separation between non-cognate antibodies prevents the rise of reagent-driven cross-reactivity, while read-out is performed cost-efficiently and at high-throughput using flow cytometry. nELISA can measure both protein concentration and their post-translational modifications. We assembled an inflammatory panel of 191 targets that were multiplexed without cross-reactivity nor impact on performance vs 1-plex signals, with sensitivities as low as 0.1 pg/mL and measurements spanning 7 orders of magnitude. We then performed a large-scale inflammatory-secretome perturbation screen of peripheral blood mononuclear cells (PBMCs), with cytokines as both perturbagens and readouts, measuring 7,392 samples and generating ~1.4M protein data points in under a week; a significant advance in throughput compared to other highly multiplexed immunoassays. We uncovered 447 significant cytokine responses, including multiple putatively novel ones, that were conserved across donors and stimulation conditions. We validate nELISA for phenotypic screening, where its capacity to faithfully report hundreds of proteins make it a powerful tool across multiple stages of drug discovery.
Collapse
Affiliation(s)
- Milad Dagher
- Nomic Bio, Montreal, QC, Canada
- Victor Phillip Dahdaleh Institute of Genomic Medicine, Montreal, QC, Canada
- Biomedical Engineering Department, McGill University, Montreal, QC, Canada
| | | | | | - Jinglin Kong
- Nomic Bio, Montreal, QC, Canada
- Victor Phillip Dahdaleh Institute of Genomic Medicine, Montreal, QC, Canada
- Biomedical Engineering Department, McGill University, Montreal, QC, Canada
| | - Woojong Rho
- Nomic Bio, Montreal, QC, Canada
- Victor Phillip Dahdaleh Institute of Genomic Medicine, Montreal, QC, Canada
- Biomedical Engineering Department, McGill University, Montreal, QC, Canada
| | - Ivan Teahulos
- Nomic Bio, Montreal, QC, Canada
- Victor Phillip Dahdaleh Institute of Genomic Medicine, Montreal, QC, Canada
- Biomedical Engineering Department, McGill University, Montreal, QC, Canada
| | | | | | | | | | | | | | - Andy Ng
- Victor Phillip Dahdaleh Institute of Genomic Medicine, Montreal, QC, Canada
- Biomedical Engineering Department, McGill University, Montreal, QC, Canada
| | | | | | | | | | | | | | | | | | | | - Yu Han
- Broad Institute of MIT and Harvard, Imaging Platform, Cambridge, MA, USA
| | | | - Lisa Miller
- Broad Institute of MIT and Harvard, Center for the Development of Therapeutics, Cambridge, MA, USA
| | - Maria Kost-Alimova
- Broad Institute of MIT and Harvard, Center for the Development of Therapeutics, Cambridge, MA, USA
| | - Adam Skepner
- Broad Institute of MIT and Harvard, Center for the Development of Therapeutics, Cambridge, MA, USA
| | - Shantanu Singh
- Broad Institute of MIT and Harvard, Imaging Platform, Cambridge, MA, USA
| | - Anne E. Carpenter
- Broad Institute of MIT and Harvard, Imaging Platform, Cambridge, MA, USA
| | - Jeffrey Munzar
- Nomic Bio, Montreal, QC, Canada
- Victor Phillip Dahdaleh Institute of Genomic Medicine, Montreal, QC, Canada
- Biomedical Engineering Department, McGill University, Montreal, QC, Canada
| | - David Juncker
- Victor Phillip Dahdaleh Institute of Genomic Medicine, Montreal, QC, Canada
- Biomedical Engineering Department, McGill University, Montreal, QC, Canada
| |
Collapse
|
2
|
Schuster L, Zaradzki M, Janssen H, Gallenstein N, Etheredge M, Hofmann I, Weigand MA, Immenschuh S, Larmann J. Heme oxygenase-1 modulates CD62E-dependent endothelial cell-monocyte interactions and mitigates HLA-I-induced transplant vasculopathy in mice. Front Immunol 2025; 16:1447319. [PMID: 40124367 PMCID: PMC11925954 DOI: 10.3389/fimmu.2025.1447319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 02/11/2025] [Indexed: 03/25/2025] Open
Abstract
The main risk factor for developing transplant vasculopathy (TV) after solid organ transplantation is de-novo production of donor-specific antibodies (DSAs) binding to endothelial cells (ECs) within the graft's vasculature. Diverse leukocyte populations recruited into the vessel wall via activated ECs contribute to vascular inflammation. Subsequent smooth muscle cell proliferation results in intima hyperplasia, the pathophysiological correlate of TV. We demonstrated that incubating aortic EC with anti-HLA-I antibodies led to increased monocyte adhesion to and transmigration across an EC monolayer. Both occurred in a CD62E-dependent fashion and were sensitive toward the anti-inflammatory enzyme heme oxygenase (HO)-1 modulation. Using a murine heterotopic aortic transplantation model, we demonstrated that anti-MHC I antibody-induced TV is ameliorated by pharmacologically induced HO-1 and the application of anti-CD62E antibodies results in a deceleration of developing TV. HO-1 modulation is a promising therapeutic approach to prevent leukocyte recruitment and subsequent intima hyperplasia in TV and thus precludes organ failure.
Collapse
Affiliation(s)
- Laura Schuster
- Department of Anesthesiology, Heidelberg University Hospital, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Marcin Zaradzki
- Department of Cardiac Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Henrike Janssen
- Department of Anesthesiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Nadia Gallenstein
- Department of Anesthesiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Melanie Etheredge
- Department of Anesthesiology, Heidelberg University Hospital, Heidelberg, Germany
- Department of Anesthesiology, University Hospital Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen, Aachen, Germany
| | - Ilse Hofmann
- Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Markus A. Weigand
- Department of Anesthesiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Stephan Immenschuh
- Department of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| | - Jan Larmann
- Department of Anesthesiology, Heidelberg University Hospital, Heidelberg, Germany
- Department of Anesthesiology, University Hospital Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen, Aachen, Germany
| |
Collapse
|
3
|
von Bernhardi R, Eugenín J. Ageing-related changes in the regulation of microglia and their interaction with neurons. Neuropharmacology 2025; 265:110241. [PMID: 39617175 DOI: 10.1016/j.neuropharm.2024.110241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/24/2024] [Accepted: 11/26/2024] [Indexed: 12/12/2024]
Abstract
Ageing is one of the most important risk factors for chronic health conditions, including neurodegenerative diseases. Inflammation is a feature of ageing, as well as a key pathophysiological mechanism for degenerative diseases. Microglia play multiple roles in the central nervous system; their states entail a complex assemblage of responses reflecting the multiplicity of functions they fulfil both under homeostatic basal conditions and in response to stimuli. Whereas glial cells can promote neuronal homeostasis and limit neurodegeneration, age-related inflammation (i.e. inflammaging) leads to the functional impairment of microglia and astrocytes, exacerbating their response to stimuli. Thus, microglia are key mediators for age-dependent changes of the nervous system, participating in the generation of a less supportive or even hostile environment for neurons. Whereas multiple changes of ageing microglia have been described, here we will focus on the neuron-microglia regulatory crosstalk through fractalkine (CX3CL1) and CD200, and the regulatory cytokine Transforming Growth Factor β1 (TGFβ1), which is involved in immunomodulation and neuroprotection. Ageing results in a dysregulated activation of microglia, affecting neuronal survival, and function. The apparent unresponsiveness of aged microglia to regulatory signals could reflect a restriction in the mechanisms underlying their homeostatic and reactive states. The spectrum of functions, required to respond to life-long needs for brain maintenance and in response to disease, would progressively narrow, preventing microglia from maintaining their protective functions. This article is part of the Special Issue on "Microglia".
Collapse
Affiliation(s)
- Rommy von Bernhardi
- Universidad San Sebastian, Faculty for Odontology and Rehabilitation Sciences. Lota 2465, Providencia, Santiago, PO. 7510602, Chile.
| | - Jaime Eugenín
- Universidad de Santiago de Chile, Faculty of Chemistry and Biology, Av. Libertador Bernardo O'Higgins 3363, Santiago, PO. 7510602, Chile.
| |
Collapse
|
4
|
Vu TH, Kim C, Truong AD, Lillehoj HS, Hong YH. Unveiling the immunomodulatory role of soluble chicken fractalkine: Insights from functional characterization and pathway activation analyses. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2025; 162:105279. [PMID: 39396691 DOI: 10.1016/j.dci.2024.105279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 10/10/2024] [Accepted: 10/10/2024] [Indexed: 10/15/2024]
Abstract
This study describes the first successful cloning and functional characterization of chicken CX3CL1, a chemokine involved in immune cell migration and inflammatory responses. Evolutionary analyses revealed its close relation to CX3CL1 from other avian species, particularly duck, turkey, and quail. Structurally, chicken CX3CL1 includes a signal peptide and a chemokine interleukin-8-like domain characterized by unique alpha-helices and disulfide bonds. Additionally, we produced and purified recombinant CX3CL1 protein and assessed its endotoxin levels. Chemotaxis assays revealed that CX3CL1 significantly enhances the migration of HD11 macrophages and CU91 T cells. Furthermore, recombinant CX3CL1 induced the expression of pro-inflammatory cytokines (TNF-α, IFN-β, IFN-γ, IL-6, and CCL20) in a time-dependent manner, while exerting differential effects on anti-inflammatory cytokines (IL-4, IL-10). Conversely, transfection with siCX3CL1 or siCX3CR1 led to the downregulation of these responses. We also observed activation of the MAPK, NF-κB, and JAK/STAT pathways, evidenced by increased phosphorylation of key signaling molecules. These findings underscore the crucial role of chicken CX3CL1 in regulating immune responses, cell migration, and the activation of key signaling pathways. This study provides valuable insights into the immunomodulatory functions of soluble CX3CL1, highlighting its potential as a therapeutic target for inflammatory conditions and enhancing our understanding of immune cell dynamics.
Collapse
Affiliation(s)
- Thi Hao Vu
- Department of Animal Science and Technology, Chung-Ang University, 17546, Anseong, Republic of Korea.
| | - Chaeeun Kim
- Department of Animal Science and Technology, Chung-Ang University, 17546, Anseong, Republic of Korea.
| | - Anh Duc Truong
- Department of Biochemistry and Immunology, National Institute of Veterinary Research, 100000, Hanoi, Viet Nam.
| | - Hyun S Lillehoj
- Animal Biosciences and Biotechnology Laboratory, Agricultural Research Services, United States Department of Agriculture, 20705, Beltsville, MD, USA.
| | - Yeong Ho Hong
- Department of Animal Science and Technology, Chung-Ang University, 17546, Anseong, Republic of Korea.
| |
Collapse
|
5
|
Xiang X, Wang K, Zhang H, Mou H, Shi Z, Tao Y, Song H, Lian Z, Wang S, Lu D, Wei X, Xie H, Zheng S, Wang J, Xu X. Blocking CX3CR1+ Tumor-Associated Macrophages Enhances the Efficacy of Anti-PD1 Therapy in Hepatocellular Carcinoma. Cancer Immunol Res 2024; 12:1603-1620. [PMID: 39115356 DOI: 10.1158/2326-6066.cir-23-0627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 04/08/2024] [Accepted: 08/07/2024] [Indexed: 11/05/2024]
Abstract
The efficacy of immune checkpoint inhibitors in the treatment of hepatocellular carcinoma (HCC) remains limited, highlighting the need for further investigation into the mechanisms underlying treatment resistance. Accumulating evidence indicates that tumor-associated macrophages (TAM) within the tumor microenvironment demonstrate a key role in immune evasion and treatment resistance. This study explored the role of TAMs in the HCC tumor microenvironment. Our findings reveal that TAMs expressing CX3C motif chemokine receptor 1 (CX3CR1) induced T-cell exhaustion through IL27 secretion in orthotopic models of HCC following treatment with anti-PD1. Moreover, we identified prostaglandin E2 (PGE2), released by immune-attacked tumor cells, as a key regulator of TAM transition to a CX3CR1+ phenotype. To augment the therapeutic response to anti-PD1 therapy, we propose targeting CX3CR1+ TAMs in addition to anti-PD1 therapy. Our study contributes to the understanding of the role of TAMs in cancer immunotherapy and highlights potential clinical implications for HCC treatment. The combination of targeting CX3CR1+ TAMs with anti-PD1 therapy holds promise for enhancing the efficacy of immunotherapeutic interventions in patients with HCC.
Collapse
Affiliation(s)
- Xiaonan Xiang
- Zhejiang University School of Medicine, Hangzhou, China
| | - Kai Wang
- School of Clinical Medicine, Hangzhou Medical College, Hangzhou, China
| | - Hui Zhang
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, China
| | - Haibo Mou
- Department of Medical Oncology, Shulan (Hangzhou) Hospital, Hangzhou, China
| | - Zhixiong Shi
- Zhejiang University School of Medicine, Hangzhou, China
| | - Yaoye Tao
- Zhejiang University School of Medicine, Hangzhou, China
| | - Hongliang Song
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, China
| | - Zhengxing Lian
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, China
| | - Shuai Wang
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, China
| | - Di Lu
- School of Clinical Medicine, Hangzhou Medical College, Hangzhou, China
| | - Xuyong Wei
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, China
| | - Haiyang Xie
- Department of Hepatobiliary & Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, China
| | - Shusen Zheng
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, China
- Department of Hepatobiliary & Pancreatic Surgery, Shulan (Hangzhou) Hospital, Hangzhou, China
| | - Jianguo Wang
- Department of Hepatobiliary and Pancreatic Surgery, Minimally Invasive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, China
| | - Xiao Xu
- School of Clinical Medicine, Hangzhou Medical College, Hangzhou, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
6
|
Hachiya K, Masuya M, Kuroda N, Yoneda M, Nishimura K, Shiotani T, Tawara I, Katayama N. Pravastatin prevents colitis-associated carcinogenesis by reducing CX3CR1 high M2-like fibrocyte counts in the inflamed colon. Sci Rep 2024; 14:23021. [PMID: 39362935 PMCID: PMC11449942 DOI: 10.1038/s41598-024-74215-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 09/24/2024] [Indexed: 10/05/2024] Open
Abstract
Colorectal cancer (CRC) resulting from chronic inflammation is a crucial issue in patients with inflammatory bowel disease (IBD). Although many reports established that intestinal resident CX3CR1high macrophages play an essential role in suppressing intestinal inflammation, their function in colitis-related CRC remains unclear. In this study, we found that colonic CX3CR1high macrophages, which were positive for MHC-II, F4/80 and CD319, promoted colitis-associated CRC. They highly expressed Col1a1, Tgfb, II10, and II4, and were considered to be fibrocytes with an immunosuppressive M2-like phenotype. CX3CR1 deficiency led to reductions in the absolute numbers of CX3CR1high fibrocytes through increased apoptosis, thereby preventing the development of colitis-associated CRC. We next focused statins as drugs targeting CX3CR1high fibrocytes. Statins have been actively discussed for patients with IBD and reported to suppress the CX3CL1/CX3CR1 axis. Statin treatment after azoxymethane/dextran sulfate sodium-induced inflammation reduced CX3CR1high fibrocyte counts and suppressed colitis-associated CRC. Therefore, CX3CR1high fibrocytes represent a potential target for carcinogenesis-preventing therapy, and statins could be safe therapeutic candidates for IBD.
Collapse
Affiliation(s)
- Kensuke Hachiya
- Department of Hematology and Oncology, Mie University Graduate School of Medicine, Tsu, 514-8507, Mie, Japan
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, Japan
| | - Masahiro Masuya
- Department of Hematology and Oncology, Mie University Graduate School of Medicine, Tsu, 514-8507, Mie, Japan.
- Course of Nursing Science, Mie University Graduate School of Medicine, Tsu, 514-8507, Mie, Japan.
| | - Naoki Kuroda
- Department of Gastroenterology, Saiseikai Matsusaka General Hospital, Matsusaka, 515- 8557, Mie, Japan
| | - Misao Yoneda
- Department of Clinical Nutrition Medical Technology Course, Suzuka University of Medical Science, Suzuka, 510-0293, Mie, Japan
| | - Komei Nishimura
- Department of Hematology and Oncology, Mie University Graduate School of Medicine, Tsu, 514-8507, Mie, Japan
| | - Takuya Shiotani
- Department of Hematology and Oncology, Mie University Graduate School of Medicine, Tsu, 514-8507, Mie, Japan
| | - Isao Tawara
- Department of Hematology and Oncology, Mie University Graduate School of Medicine, Tsu, 514-8507, Mie, Japan
| | - Naoyuki Katayama
- Department of Hematology and Oncology, Mie University Graduate School of Medicine, Tsu, 514-8507, Mie, Japan
| |
Collapse
|
7
|
Nelson RB, Rose KN, Menniti FS, Zorn SH. Hiding in plain sight: Do recruited dendritic cells surround amyloid plaques in Alzheimer's disease? Biochem Pharmacol 2024; 228:116258. [PMID: 38705533 DOI: 10.1016/j.bcp.2024.116258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/18/2024] [Accepted: 05/02/2024] [Indexed: 05/07/2024]
Abstract
Over the past decade, human genome-wide association and expression studies have strongly implicated dysregulation of the innate immune system in the pathogenesis of Alzheimer's disease (AD). Single cell mRNA sequencing studies have identified innate immune cell subtypes that are minimally present in normal healthy brain, but whose numbers greatly increase in association with AD pathology. These AD pathology-associated immune cells are putatively the locus for the immune-related AD risk. While the prevailing view is that these immune cells arise from transformation of resident brain microglia, studies across several decades and using multiple techniques and strategies suggest instead that the pathology-associated immune cells are bone-marrow derived hematopoietic cells that are recruited into brain. We critically review this translational literature, emphasizing the strengths and limitations of techniques used to address recruitment and the experimental designs employed. We conclude that the aggregate evidence points toward recruitment into brain of innate immune cells of the myeloid dendritic cell lineage. Recruitment of dendritic cells and their role in AD pathogenesis has broad implications for our understanding of the etiology and pathobiology of AD that impact the strategies to develop new, immune system-targeted therapeutics for this devastating disease.
Collapse
Affiliation(s)
- Robert B Nelson
- MindImmune Therapeutics, Inc., Kingston, RI; George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI; Dept of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI.
| | - Kenneth N Rose
- MindImmune Therapeutics, Inc., Kingston, RI; Dept of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI
| | - Frank S Menniti
- MindImmune Therapeutics, Inc., Kingston, RI; George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI; Dept of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI
| | - Stevin H Zorn
- MindImmune Therapeutics, Inc., Kingston, RI; George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI; Dept of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI
| |
Collapse
|
8
|
Rivas-Fuentes S, Salgado-Aguayo A, Santos-Mendoza T, Sevilla-Reyes E. The Role of the CX3CR1-CX3CL1 Axis in Respiratory Syncytial Virus Infection and the Triggered Immune Response. Int J Mol Sci 2024; 25:9800. [PMID: 39337288 PMCID: PMC11432029 DOI: 10.3390/ijms25189800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/02/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
Respiratory syncytial virus (RSV) is a common respiratory pathogen that causes respiratory illnesses, ranging from mild symptoms to severe lower respiratory tract infections in infants and older adults. This virus is responsible for one-third of pneumonia deaths in the pediatric population; however, there are currently only a few effective vaccines. A better understanding of the RSV-host relationship at the molecular level may lead to a more effective management of RSV-related symptoms. The fractalkine (CX3CL1) receptor (CX3CR1) is a co-receptor for RSV expressed by airway epithelial cells and diverse immune cells. RSV G protein binds to the CX3CR1 receptor via a highly conserved amino acid motif (CX3C motif), which is also present in CX3CL1. The CX3CL1-CX3CR1 axis is involved in the activation and infiltration of immune cells into the infected lung. The presence of the RSV G protein alters the natural functions of the CX3CR1-CX3CL1 axis and modifies the host's immune response, an aspects that need to be considered in the development of an efficient vaccine and specific pharmacological treatment.
Collapse
Affiliation(s)
- Selma Rivas-Fuentes
- Laboratory of Transcriptomics and Molecular Immunology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico
| | - Alfonso Salgado-Aguayo
- Laboratory of Research on Rheumatic Diseases, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico
| | - Teresa Santos-Mendoza
- Laboratory of Transcriptomics and Molecular Immunology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico
| | - Edgar Sevilla-Reyes
- Laboratory of Transcriptomics and Molecular Immunology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico
| |
Collapse
|
9
|
Zheng X, Zhang X, Zhang Y, Chen C, Ji E. Identification of significant biomarkers for predicting the risk of bipolar disorder with arteriosclerosis based on integrative bioinformatics and machine learning. Front Psychiatry 2024; 15:1392437. [PMID: 39290304 PMCID: PMC11405317 DOI: 10.3389/fpsyt.2024.1392437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 08/19/2024] [Indexed: 09/19/2024] Open
Abstract
Introduction Increasing evidence has indicated a connection between bipolar disorder (BD) and arteriosclerosis (AS), yet the specific molecular mechanisms remain unclear. This study aims to investigate the hub genes and molecular pathways for BD with AS. Methods BD-related dataset GSE12649 were downloaded from the Gene Expression Omnibus database and differentially expressed genes (DEGs) and key module genes derived from Limma and weighted gene co-expression network analyses (WGCNA) were identified. AS-related genes were sourced from the DisGeNET database, and the overlapping genes between DEGs and AS-related genes were characterized as differentially expressed arteriosclerosis-related genes (DE-ASRGs). The functional enrichment analysis, protein-protein interaction (PPI) network and three machine learning algorithms were performed to explore the hub genes, which were validated with two external validation sets. Additionally, immune infiltration was performed in BD. Results Overall, 67 DE-ASRGs were found to be overlapping between the DEGs and AS-related genes. Functional enrichment analysis highlighted the cancer pathways between BD and AS. We identified seven candidate hub genes (CTSD, IRF3, NPEPPS, ST6GAL1, HIF1A, SOX9 and CX3CR1). Eventually, two hub genes (CX3CR1 and ST6GAL1) were identified as BD and AS co-biomarkers by using machine learning algorithms. Immune infiltration had revealed the disorder of immunocytes. Discussion This study identified the hub genes CX3CR1 and ST6GAL1 in BD and AS, providing new insights for further research on the bioinformatic mechanisms of BD with AS and contributing to the diagnosis and prevention of AS in psychiatric clinical practice.
Collapse
Affiliation(s)
- Xiabing Zheng
- Department of Bipolar Disorder, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen, Guangdong, China
| | - Xiaozhe Zhang
- Department of Cardiology, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangzhou, China
| | - Yaqi Zhang
- Department of Geriatrics, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen, Guangdong, China
| | - Cai Chen
- Department of Drug Dependence, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen, Guangdong, China
| | - Erni Ji
- Department of Bipolar Disorder, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen, Guangdong, China
| |
Collapse
|
10
|
Tian W, Wei W, Qin G, Bao X, Tong X, Zhou M, Xue Y, Zhang Y, Shao Q. Lymphocyte homing and recirculation with tumor tertiary lymphoid structure formation: predictions for successful cancer immunotherapy. Front Immunol 2024; 15:1403578. [PMID: 39076974 PMCID: PMC11284035 DOI: 10.3389/fimmu.2024.1403578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 07/01/2024] [Indexed: 07/31/2024] Open
Abstract
The capacity of lymphocytes continuously home to lymphoid structures is remarkable for cancer immunosurveillance and immunotherapy. Lymphocyte homing and recirculation within the tumor microenvironment (TME) are now understood to be adaptive processes that are regulated by specialized cytokines and adhesion molecule signaling cascades. Restricted lymphocyte infiltration and recirculation have emerged as key mechanisms contributing to poor responses in cancer immunotherapies like chimeric antigen receptor (CAR)-T cell therapy and immune checkpoint blockades (ICBs). Uncovering the kinetics of lymphocytes in tumor infiltration and circulation is crucial for improving immunotherapies. In this review, we discuss the current insights into the adhesive and migrative molecules involved in lymphocyte homing and transmigration. The potential mechanisms within the TME that restrain lymphocyte infiltration are also summarized. Advanced on these, we outline the determinates for tertiary lymphoid structures (TLSs) formation within tumors, placing high expectations on the prognostic values of TLSs as therapeutic targets in malignancies.
Collapse
Affiliation(s)
- Weihong Tian
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
- Life Science Institute, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Wangzhi Wei
- Life Science Institute, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Gaofeng Qin
- Life Science Institute, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Xuanwen Bao
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University & Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Hangzhou, Zhejiang, China
| | - Xuecheng Tong
- Changzhou Third People’s Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, Jiangsu, China
| | - Min Zhou
- Changzhou Third People’s Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, Jiangsu, China
| | - Yuan Xue
- Changzhou Third People’s Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, Jiangsu, China
| | - Yu Zhang
- Life Science Institute, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Qixiang Shao
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
- Institute of Medical Genetics and Reproductive Immunity, School of Medical Science and Laboratory Medicine, Jiangsu College of Nursing, Huai’an, Jiangsu, China
| |
Collapse
|
11
|
Ishigaki H, Yamauchi T, Long MD, Hoki T, Yamamoto Y, Oba T, Ito F. Generation, Transcriptomic States, and Clinical Relevance of CX3CR1+ CD8 T Cells in Melanoma. CANCER RESEARCH COMMUNICATIONS 2024; 4:1802-1814. [PMID: 38881188 PMCID: PMC11267618 DOI: 10.1158/2767-9764.crc-24-0199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/28/2024] [Accepted: 06/12/2024] [Indexed: 06/18/2024]
Abstract
Recent progress in single-cell profiling technologies has revealed significant phenotypic and transcriptional heterogeneity in tumor-infiltrating CD8+ T cells. However, the transition between the different states of intratumoral antigen-specific CD8+ T cells remains elusive. Here, we sought to examine the generation, transcriptomic states, and the clinical relevance of melanoma-infiltrating CD8+ T cells expressing a chemokine receptor and T-cell differentiation marker, CX3C chemokine receptor 1 (CX3CR1). Analysis of single-cell datasets revealed distinct human melanoma-infiltrating CD8+ T-cell clusters expressing genes associated with effector T-cell function but with distinguishing expression of CX3CR1 or PDCD1. No obvious impact of CX3CR1 expression in melanoma on the response to immune checkpoint inhibitor therapy was observed while increased pretreatment and on-treatment frequency of a CD8+ T-cell cluster expressing high levels of exhaustion markers was associated with poor response to the treatment. Adoptively transferred antigen-specific CX3CR1- CD8+ T cells differentiated into the CX3CR1+ subset in mice treated with FTY720, which inhibits lymphocyte egress from secondary lymphoid tissues, suggesting the intratumoral generation of CX3CR1+ CD8+ T cells rather than their trafficking from secondary lymphoid organs. Furthermore, analysis of adoptively transferred antigen-specific CD8+ T cells, in which the Cx3cr1 gene was replaced with a marker gene confirmed that CX3CR1+ CD8+ T cells could directly differentiate from the intratumoral CX3CR1- subset. These findings highlight that tumor antigen-specific CX3CR1- CD8+ T cells can fully differentiate outside the secondary lymphoid organs and generate CX3CR1+ CD8+ T cells in the tumor microenvironment, which are distinct from CD8+ T cells that express markers of exhaustion. SIGNIFICANCE Intratumoral T cells are composed of heterogeneous subpopulations with various phenotypic and transcriptional states. This study illustrates the intratumoral generation of antigen-specific CX3CR1+ CD8+ T cells that exhibit distinct transcriptomic signatures and clinical relevance from CD8+ T cells expressing markers of exhaustion.
Collapse
Affiliation(s)
- Hirohito Ishigaki
- Department of Surgery, University of Southern California, Norris Comprehensive Cancer Center, Los Angeles, California.
- Division of Pathogenesis and Disease Regulation, Department of Pathology, Shiga University of Medical Science, Otsu, Japan.
| | - Takayoshi Yamauchi
- Department of Surgery, University of Southern California, Norris Comprehensive Cancer Center, Los Angeles, California.
- Center for Immunotherapy, Roswell Park Comprehensive Cancer Center, Buffalo, New York.
| | - Mark D. Long
- Department of Biostatistics & Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York.
| | - Toshifumi Hoki
- Center for Immunotherapy, Roswell Park Comprehensive Cancer Center, Buffalo, New York.
- Oncology Science Unit, MSD Japan, Tokyo, Japan.
| | - Yuta Yamamoto
- Department of Surgery, University of Southern California, Norris Comprehensive Cancer Center, Los Angeles, California.
- Department of Surgery, Shinshu University School of Medicine, Matsumoto, Japan.
| | - Takaaki Oba
- Center for Immunotherapy, Roswell Park Comprehensive Cancer Center, Buffalo, New York.
- Department of Surgery, Shinshu University School of Medicine, Matsumoto, Japan.
| | - Fumito Ito
- Department of Surgery, University of Southern California, Norris Comprehensive Cancer Center, Los Angeles, California.
- Center for Immunotherapy, Roswell Park Comprehensive Cancer Center, Buffalo, New York.
| |
Collapse
|
12
|
Yan T, Pang X, Liang B, Meng Q, Wei H, Li W, Liu D, Hu Y. Comprehensive bioinformatics analysis of human cytomegalovirus pathway genes in pan-cancer. Hum Genomics 2024; 18:65. [PMID: 38886862 PMCID: PMC11181644 DOI: 10.1186/s40246-024-00633-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 06/05/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND Human cytomegalovirus (HCMV) is a herpesvirus that can infect various cell types and modulate host gene expression and immune response. It has been associated with the pathogenesis of various cancers, but its molecular mechanisms remain elusive. METHODS We comprehensively analyzed the expression of HCMV pathway genes across 26 cancer types using the Cancer Genome Atlas (TCGA) and The Genotype-Tissue Expression (GTEx) databases. We also used bioinformatics tools to study immune invasion and tumor microenvironment in pan-cancer. Cox regression and machine learning were used to analyze prognostic genes and their relationship with drug sensitivity. RESULTS We found that HCMV pathway genes are widely expressed in various cancers. Immune infiltration and the tumor microenvironment revealed that HCMV is involved in complex immune processes. We obtained prognostic genes for 25 cancers and significantly found 23 key genes in the HCMV pathway, which are significantly enriched in cellular chemotaxis and synaptic function and may be involved in disease progression. Notably, CaM family genes were up-regulated and AC family genes were down-regulated in most tumors. These hub genes correlate with sensitivity or resistance to various drugs, suggesting their potential as therapeutic targets. CONCLUSIONS Our study has revealed the role of the HCMV pathway in various cancers and provided insights into its molecular mechanism and therapeutic significance. It is worth noting that the key genes of the HCMV pathway may open up new doors for cancer prevention and treatment.
Collapse
Affiliation(s)
- Tengyue Yan
- Collaborative Innovation Centre of Regenerative Medicine and Medical Bioresource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Xianwu Pang
- Guangxi Zhuang Autonomous Region Center for Disease Control and Prevention, Nanning, 530028, China
| | - Boying Liang
- Department of Immunology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, China
| | - Qiuxia Meng
- School of Information and Managent, Guangxi Medical University, Nanning, China
| | - Huilin Wei
- School of Institute of Life Sciences, Guangxi Medical University, Nanning, China
| | - Wen Li
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Guangxi Medical University, Nanning, China
| | - Dahai Liu
- School of Medicine, Foshan University, Foshan, Guangdong, 528000, People's Republic of China.
| | - Yanling Hu
- Collaborative Innovation Centre of Regenerative Medicine and Medical Bioresource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning, Guangxi, 530021, China.
- School of Institute of Life Sciences, Guangxi Medical University, Nanning, China.
| |
Collapse
|
13
|
Dhruba SR, Sahni S, Wang B, Wu D, Rajagopal PS, Schmidt Y, Shulman ED, Sinha S, Sammut SJ, Caldas C, Wang K, Ruppin E. The expression patterns of different cell types and their interactions in the tumor microenvironment are predictive of breast cancer patient response to neoadjuvant chemotherapy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.14.598770. [PMID: 39372749 PMCID: PMC11451622 DOI: 10.1101/2024.06.14.598770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
The tumor microenvironment (TME) is a complex ecosystem of diverse cell types whose interactions govern tumor growth and clinical outcome. While the TME's impact on immunotherapy has been extensively studied, its role in chemotherapy response remains less explored. To address this, we developed DECODEM (DEcoupling Cell-type-specific Outcomes using DEconvolution and Machine learning), a generic computational framework leveraging cellular deconvolution of bulk transcriptomics to associate the gene expression of individual cell types in the TME with clinical response. Employing DECODEM to analyze the gene expression of breast cancer (BC) patients treated with neoadjuvant chemotherapy, we find that the gene expression of specific immune cells (myeloid, plasmablasts, B-cells) and stromal cells (endothelial, normal epithelial, CAFs) are highly predictive of chemotherapy response, going beyond that of the malignant cells. These findings are further tested and validated in a single-cell cohort of triple negative breast cancer. To investigate the possible role of immune cell-cell interactions (CCIs) in mediating chemotherapy response, we extended DECODEM to DECODEMi to identify such CCIs, validated in single-cell data. Our findings highlight the importance of active pre-treatment immune infiltration for chemotherapy success. The tools developed here are made publicly available and are applicable for studying the role of the TME in mediating response from readily available bulk tumor expression in a wide range of cancer treatments and indications.
Collapse
Affiliation(s)
- Saugato Rahman Dhruba
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sahil Sahni
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Binbin Wang
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Di Wu
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Padma Sheila Rajagopal
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Women’s Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yael Schmidt
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Eldad D. Shulman
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sanju Sinha
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, San Diego, CA, USA
| | - Stephen-John Sammut
- Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
- The Royal Marsden Hospital NHS Foundation Trust, London, UK
| | - Carlos Caldas
- Institute of Metabolic Science, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- Department of Clinical Biochemistry, University of Cambridge, Cambridge, UK
| | - Kun Wang
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Eytan Ruppin
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
14
|
He C, Wu Y, Nan X, Zhang W, Luo Y, Wang H, Li M, Liu C, Liu J, Mou X, Liu Y. Induction of CX3CL1 expression by LPS and its impact on invasion and migration in oral squamous cell carcinoma. Front Cell Dev Biol 2024; 12:1371323. [PMID: 38915444 PMCID: PMC11195639 DOI: 10.3389/fcell.2024.1371323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 05/15/2024] [Indexed: 06/26/2024] Open
Abstract
Purpose: This study aimed to explore the expression of CX3CL1 induced by lipopolysaccharide (LPS) in oral squamous cell carcinoma (OSCC) and its impact on biological characteristics such as invasion and migration, taking the foundation for new targets for the treatment and prognosis of OSCC. Methods: This study utilized a variety of techniques, including bioinformatics, molecular biology, and cell experiments, to investigate the expression of CX3CL1 and its receptor CX3CR1 in OSCC patients' cancer tissues or OSCC cell lines. Extracting, organizing, and analyzing the TCGA database on the expression of CX3CL1 and its receptor CX3CR1 in cancer tissues and corresponding paracancerous normal tissues of OSCC patients by bioinformatics methods. The expression of CX3CL1 in cancerous and normal tissues of OSCC patients was verified by IHC, and the changes in mRNA and protein expression of CX3CL1 and its receptor CX3CR1 in OSCC cell lines were detected before and after lipopolysaccharide LPS stimulation by RT-PCR, ELISA, and WB. Changes in cell biological behavior by overexpression of CX3CL1 in OSCC cell lines were detected by CCK-8, Transwell, scratch healing assay, and cloning assay. The effects of overexpressing cell lines on the AKT pathway and Epithelial-mesenchymal Transition (EMT)-related protein expression before and after LPS stimulation were detected by Western Blot. Results: (1) CX3CL1 and its receptor CX3CR1 were found to be downregulated in OSCC tissues of patients or OSCC cell lines. (2) After LPS stimulation, CX3CL1 gene expression increased in both OSCC cell lines, while CX3CR1 expression remained unchanged. (3) OSCC cell lines overexpressing CX3CL1 showed changes in cell biological characteristics, including decreased proliferation, invasion, migration, and stemness, which were more pronounced after LPS stimulation. (4) Overexpression of CX3CL1 in OSCC cell lines decreased EMT-related protein expression and AKT phosphorylation. On the contrary were promoted by LPS stimulation. Conclusion: CX3CL1 and CX3CR1 are downregulated in OSCC cancer tissues and cell lines compared to adjacent normal tissues and cells. LPS stimulation increases CX3CL1 expression in OSCC cell lines, suggesting that inflammation may induce CX3CL1 expression and that the CX3CL1 gene may play an important role in OSCC progression. Overexpression of CX3CL1 inhibits OSCC cell proliferation, migration, invasion, and stemness, suggesting that CX3CL1 plays a critical role in suppressing OSCC development. CX3CL1 suppresses OSCC invasion and migration by affecting EMT progression and AKT phosphorylation, and partially reverse the process that LPS causes and affects the development of OSCC.
Collapse
Affiliation(s)
- Chanjuan He
- Department of Stomatology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Changsha Stomatological Hospital, Changsha, China
| | - Yuehan Wu
- Department of Stomatology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Department of Stomatology, North Sichuan Medical College, Nanchong, China
| | - Xiaoxu Nan
- Department of Stomatology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Department of Stomatology, North Sichuan Medical College, Nanchong, China
| | - Weifang Zhang
- Hunan Prevention and Treatment Institute for Occupational Diseases, Changsha, China
| | - Yu Luo
- Department of Stomatology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Department of Stomatology, North Sichuan Medical College, Nanchong, China
| | - Honglan Wang
- Department of Stomatology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Department of Stomatology, North Sichuan Medical College, Nanchong, China
| | - Mengqi Li
- Department of Stomatology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Department of Stomatology, North Sichuan Medical College, Nanchong, China
| | - Changyue Liu
- Department of Stomatology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Department of Stomatology, North Sichuan Medical College, Nanchong, China
| | - Jiaming Liu
- Department of Stomatology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Department of Stomatology, North Sichuan Medical College, Nanchong, China
| | - Xuelin Mou
- Department of Stomatology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Department of Stomatology, North Sichuan Medical College, Nanchong, China
| | - Ying Liu
- Department of Stomatology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Department of Stomatology, North Sichuan Medical College, Nanchong, China
| |
Collapse
|
15
|
Eain HS, Kawai H, Nakayama M, Oo MW, Ohara T, Fukuhara Y, Takabatake K, Shan Q, Soe Y, Ono K, Nakano K, Mizukawa N, Iida S, Nagatsuka H. Double-faced CX3CL1 enhances lymphangiogenesis-dependent metastasis in an aggressive subclone of oral squamous cell carcinoma. JCI Insight 2024; 9:e174618. [PMID: 38775151 PMCID: PMC11141908 DOI: 10.1172/jci.insight.174618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 04/05/2024] [Indexed: 06/02/2024] Open
Abstract
Because cancer cells have a genetically unstable nature, they give rise to genetically different variant subclones inside a single tumor. Understanding cancer heterogeneity and subclone characteristics is crucial for developing more efficacious therapies. Oral squamous cell carcinoma (OSCC) is characterized by high heterogeneity and plasticity. On the other hand, CX3C motif ligand 1 (CX3CL1) is a double-faced chemokine with anti- and pro-tumor functions. Our study reported that CX3CL1 functioned differently in tumors with different cancer phenotypes, both in vivo and in vitro. Mouse OSCC 1 (MOC1) and MOC2 cells responded similarly to CX3CL1 in vitro. However, in vivo, CX3CL1 increased keratinization in indolent MOC1 cancer, while CX3CL1 promoted cervical lymphatic metastasis in aggressive MOC2 cancer. These outcomes were due to double-faced CX3CL1 effects on different immune microenvironments indolent and aggressive cancer created. Furthermore, we established that CX3CL1 promoted cancer metastasis via the lymphatic pathway by stimulating lymphangiogenesis and transendothelial migration of lymph-circulating tumor cells. CX3CL1 enrichment in lymphatic metastasis tissues was observed in aggressive murine and human cell lines. OSCC patient samples with CX3CL1 enrichment exhibited a strong correlation with lower overall survival rates and higher recurrence and distant metastasis rates. In conclusion, CX3CL1 is a pivotal factor that stimulates the metastasis of aggressive cancer subclones within the heterogeneous tumors to metastasize, and our study demonstrates the prognostic value of CX3CL1 enrichment in long-term monitoring in OSCC.
Collapse
Affiliation(s)
- Htoo Shwe Eain
- Department of Oral Pathology and Medicine
- Department of Oral and Maxillofacial Reconstructive Surgery, and
| | | | - Masaaki Nakayama
- Department of Oral Microbiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - May Wathone Oo
- Department of Oral Pathology and Medicine
- Office of Innovative Medicine, Organization for Research Strategy and Development, Okayama University, Okayama, Japan
| | | | | | | | | | - Yamin Soe
- Department of Oral Pathology and Medicine
| | - Kisho Ono
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | | | | | - Seiji Iida
- Department of Oral and Maxillofacial Reconstructive Surgery, and
| | | |
Collapse
|
16
|
Sommer K, Garibagaoglu H, Paap EM, Wiendl M, Müller TM, Atreya I, Krönke G, Neurath MF, Zundler S. Discrepant Phenotyping of Monocytes Based on CX3CR1 and CCR2 Using Fluorescent Reporters and Antibodies. Cells 2024; 13:819. [PMID: 38786041 PMCID: PMC11119841 DOI: 10.3390/cells13100819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024] Open
Abstract
Monocytes, as well as downstream macrophages and dendritic cells, are essential players in the immune system, fulfilling key roles in homeostasis as well as in inflammatory conditions. Conventionally, driven by studies on reporter models, mouse monocytes are categorized into a classical and a non-classical subset based on their inversely correlated surface expression of Ly6C/CCR2 and CX3CR1. Here, we aimed to challenge this concept by antibody staining and reporter mouse models. Therefore, we took advantage of Cx3cr1GFP and Ccr2RFP reporter mice, in which the respective gene was replaced by a fluorescent reporter protein gene. We analyzed the expression of CX3CR1 and CCR2 by flow cytometry using several validated fluorochrome-coupled antibodies and compared them with the reporter gene signal in these reporter mouse strains. Although we were able to validate the specificity of the fluorochrome-coupled flow cytometry antibodies, mouse Ly6Chigh classical and Ly6Clow non-classical monocytes showed no differences in CX3CR1 expression levels in the peripheral blood and spleen when stained with these antibodies. On the contrary, in Cx3cr1GFP reporter mice, we were able to reproduce the inverse correlation of the CX3CR1 reporter gene signal and Ly6C surface expression. Furthermore, differential CCR2 surface expression correlating with the expression of Ly6C was observed by antibody staining, but not in Ccr2RFP reporter mice. In conclusion, our data suggest that phenotyping strategies for mouse monocyte subsets should be carefully selected. In accordance with the literature, the suitability of CX3CR1 antibody staining is limited, whereas for CCR2, caution should be applied when using reporter mice.
Collapse
Affiliation(s)
- Katrin Sommer
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (K.S.); (E.-M.P.); (T.M.M.); (I.A.); (G.K.); (M.F.N.)
| | - Hilal Garibagaoglu
- Department of Medicine 3, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany;
| | - Eva-Maria Paap
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (K.S.); (E.-M.P.); (T.M.M.); (I.A.); (G.K.); (M.F.N.)
| | - Maximilian Wiendl
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (K.S.); (E.-M.P.); (T.M.M.); (I.A.); (G.K.); (M.F.N.)
| | - Tanja M. Müller
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (K.S.); (E.-M.P.); (T.M.M.); (I.A.); (G.K.); (M.F.N.)
- Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, 91054 Erlangen, Germany
| | - Imke Atreya
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (K.S.); (E.-M.P.); (T.M.M.); (I.A.); (G.K.); (M.F.N.)
- Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, 91054 Erlangen, Germany
| | - Gerhard Krönke
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (K.S.); (E.-M.P.); (T.M.M.); (I.A.); (G.K.); (M.F.N.)
- Medical Department of Rheumatology and Clinical Immunology, Charité—Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Markus F. Neurath
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (K.S.); (E.-M.P.); (T.M.M.); (I.A.); (G.K.); (M.F.N.)
- Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, 91054 Erlangen, Germany
| | - Sebastian Zundler
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (K.S.); (E.-M.P.); (T.M.M.); (I.A.); (G.K.); (M.F.N.)
- Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, 91054 Erlangen, Germany
| |
Collapse
|
17
|
Guan M, Liu S, Yang YG, Song Y, Zhang Y, Sun T. Chemokine systems in oncology: From microenvironment modulation to nanocarrier innovations. Int J Biol Macromol 2024; 268:131679. [PMID: 38641274 DOI: 10.1016/j.ijbiomac.2024.131679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 04/16/2024] [Accepted: 04/16/2024] [Indexed: 04/21/2024]
Abstract
Over the past few decades, significant strides have been made in understanding the pivotal roles that chemokine networks play in tumor biology. These networks, comprising chemokines and their receptors, wield substantial influence over cancer immune regulation and therapeutic outcomes. As a result, targeting these chemokine systems has emerged as a promising avenue for cancer immunotherapy. However, therapies targeting chemokines face significant challenges in solid tumor treatment, due to the complex and fragile of the chemokine networks. A nuanced comprehension of the complicacy and functions of chemokine networks, and their impact on the tumor microenvironment, is essential for optimizing their therapeutic utility in oncology. This review elucidates the ways in which chemokine networks interact with cancer immunity and tumorigenesis. We particularly elaborate on recent innovations in manipulating these networks for cancer treatment. The review also highlights future challenges and explores potential biomaterial strategies for clinical applications.
Collapse
Affiliation(s)
- Meng Guan
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital of Jilin University, Changchun, Jilin 130021, China; National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin 130021, China; Cancer Center, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Shuhan Liu
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital of Jilin University, Changchun, Jilin 130021, China; National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin 130021, China; Cancer Center, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Yong-Guang Yang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital of Jilin University, Changchun, Jilin 130021, China; National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin 130021, China; International Center of Future Science, Jilin University, Changchun, Jilin 130021, China
| | - Yanqiu Song
- Cancer Center, The First Hospital of Jilin University, Changchun, Jilin 130021, China.
| | - Yuning Zhang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital of Jilin University, Changchun, Jilin 130021, China; National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin 130021, China.
| | - Tianmeng Sun
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital of Jilin University, Changchun, Jilin 130021, China; National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin 130021, China; International Center of Future Science, Jilin University, Changchun, Jilin 130021, China; State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, Jilin 130021, China.
| |
Collapse
|
18
|
Szukiewicz D. CX3CL1 (Fractalkine)-CX3CR1 Axis in Inflammation-Induced Angiogenesis and Tumorigenesis. Int J Mol Sci 2024; 25:4679. [PMID: 38731899 PMCID: PMC11083509 DOI: 10.3390/ijms25094679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/19/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
The chemotactic cytokine fractalkine (FKN, chemokine CX3CL1) has unique properties resulting from the combination of chemoattractants and adhesion molecules. The soluble form (sFKN) has chemotactic properties and strongly attracts T cells and monocytes. The membrane-bound form (mFKN) facilitates diapedesis and is responsible for cell-to-cell adhesion, especially by promoting the strong adhesion of leukocytes (monocytes) to activated endothelial cells with the subsequent formation of an extracellular matrix and angiogenesis. FKN signaling occurs via CX3CR1, which is the only known member of the CX3C chemokine receptor subfamily. Signaling within the FKN-CX3CR1 axis plays an important role in many processes related to inflammation and the immune response, which often occur simultaneously and overlap. FKN is strongly upregulated by hypoxia and/or inflammation-induced inflammatory cytokine release, and it may act locally as a key angiogenic factor in the highly hypoxic tumor microenvironment. The importance of the FKN/CX3CR1 signaling pathway in tumorigenesis and cancer metastasis results from its influence on cell adhesion, apoptosis, and cell migration. This review presents the role of the FKN signaling pathway in the context of angiogenesis in inflammation and cancer. The mechanisms determining the pro- or anti-tumor effects are presented, which are the cause of the seemingly contradictory results that create confusion regarding the therapeutic goals.
Collapse
Affiliation(s)
- Dariusz Szukiewicz
- Department of Biophysics, Physiology & Pathophysiology, Faculty of Health Sciences, Medical University of Warsaw, 02-004 Warsaw, Poland
| |
Collapse
|
19
|
Wolf MM, Madden MZ, Arner EN, Bader JE, Ye X, Vlach L, Tigue ML, Landis MD, Jonker PB, Hatem Z, Steiner KK, Gaines DK, Reinfeld BI, Hathaway ES, Xin F, Tantawy MN, Haake SM, Jonasch E, Muir A, Weiss VL, Beckermann KE, Rathmell WK, Rathmell JC. VHL loss reprograms the immune landscape to promote an inflammatory myeloid microenvironment in renal tumorigenesis. J Clin Invest 2024; 134:e173934. [PMID: 38618956 PMCID: PMC11014672 DOI: 10.1172/jci173934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 02/24/2024] [Indexed: 04/16/2024] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is characterized by dysregulated hypoxia signaling and a tumor microenvironment (TME) highly enriched in myeloid and lymphoid cells. Loss of the von Hippel Lindau (VHL) gene is a critical early event in ccRCC pathogenesis and promotes stabilization of HIF. Whether VHL loss in cancer cells affects immune cells in the TME remains unclear. Using Vhl WT and Vhl-KO in vivo murine kidney cancer Renca models, we found that Vhl-KO tumors were more infiltrated by immune cells. Tumor-associated macrophages (TAMs) from Vhl-deficient tumors demonstrated enhanced in vivo glucose consumption, phagocytosis, and inflammatory transcriptional signatures, whereas lymphocytes from Vhl-KO tumors showed reduced activation and a lower response to anti-programmed cell death 1 (anti-PD-1) therapy in vivo. The chemokine CX3CL1 was highly expressed in human ccRCC tumors and was associated with Vhl deficiency. Deletion of Cx3cl1 in cancer cells decreased myeloid cell infiltration associated with Vhl loss to provide a mechanism by which Vhl loss may have contributed to the altered immune landscape. Here, we identify cancer cell-specific genetic features that drove environmental reprogramming and shaped the tumor immune landscape, with therapeutic implications for the treatment of ccRCC.
Collapse
Affiliation(s)
- Melissa M. Wolf
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville (VUMC), Tennessee, USA
- Graduate Program in Cancer Biology and
| | - Matthew Z. Madden
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville (VUMC), Tennessee, USA
- Medical Scientist Training Program, Vanderbilt University, Nashville, Tennessee, USA
| | - Emily N. Arner
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville (VUMC), Tennessee, USA
| | - Jackie E. Bader
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville (VUMC), Tennessee, USA
| | - Xiang Ye
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville (VUMC), Tennessee, USA
| | - Logan Vlach
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville (VUMC), Tennessee, USA
- Graduate Program in Cancer Biology and
| | - Megan L. Tigue
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville (VUMC), Tennessee, USA
- Graduate Program in Cancer Biology and
- Medical Scientist Training Program, Vanderbilt University, Nashville, Tennessee, USA
| | | | - Patrick B. Jonker
- Ben May Department for Cancer Research, University of Chicago, Chicago, Illinois, USA
| | - Zaid Hatem
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville (VUMC), Tennessee, USA
| | - KayLee K. Steiner
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville (VUMC), Tennessee, USA
- Graduate Program in Cancer Biology and
| | - Dakim K. Gaines
- Department of Radiation Oncology
- Vanderbilt-Ingram Cancer Center
| | - Bradley I. Reinfeld
- Graduate Program in Cancer Biology and
- Medical Scientist Training Program, Vanderbilt University, Nashville, Tennessee, USA
- Department of Medicine, VUMC, Nashville, Tennessee, USA
| | - Emma S. Hathaway
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville (VUMC), Tennessee, USA
- Graduate Program in Cancer Biology and
| | - Fuxue Xin
- Department of Radiology and Radiological Sciences, and
- Vanderbilt University Institute of Imaging Science, VUMC, Nashville, Tennessee, USA
| | - M. Noor Tantawy
- Department of Radiology and Radiological Sciences, and
- Vanderbilt University Institute of Imaging Science, VUMC, Nashville, Tennessee, USA
| | - Scott M. Haake
- Department of Medicine, VUMC, Nashville, Tennessee, USA
- Vanderbilt-Ingram Cancer Center
| | - Eric Jonasch
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Alexander Muir
- Ben May Department for Cancer Research, University of Chicago, Chicago, Illinois, USA
| | - Vivian L. Weiss
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville (VUMC), Tennessee, USA
- Vanderbilt-Ingram Cancer Center
| | - Kathryn E. Beckermann
- Department of Medicine, VUMC, Nashville, Tennessee, USA
- Vanderbilt-Ingram Cancer Center
| | - W. Kimryn Rathmell
- Department of Medicine, VUMC, Nashville, Tennessee, USA
- Vanderbilt-Ingram Cancer Center
- Vanderbilt Center for Immunobiology, VUMC, Nashville, Tennessee, USA
| | - Jeffrey C. Rathmell
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville (VUMC), Tennessee, USA
- Vanderbilt-Ingram Cancer Center
- Vanderbilt Center for Immunobiology, VUMC, Nashville, Tennessee, USA
| |
Collapse
|
20
|
Lee JE, Yoon T, Lee SW, Ahn SS. Chemokine expression in sera of patients with microscopic polyangiitis and granulomatosis with polyangiitis. Sci Rep 2024; 14:8680. [PMID: 38622321 PMCID: PMC11018871 DOI: 10.1038/s41598-024-59484-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 04/11/2024] [Indexed: 04/17/2024] Open
Abstract
We evaluated chemokine expression and its correlation with disease activity in patients with microscopic polyangiitis (MPA) and granulomatosis with polyangiitis (GPA) (MPA/GPA). Serum CCL2, CCL4, CCL19, CXCL1, CXCL2, and CX3CL1 level in 80 patients were analysed using multiple enzyme-linked immunosorbent assays. Correlations between variables were investigated using Pearson's correlation analysis, and receiver operator curve analysis was performed to identify optimal CX3CL1 values in determining active disease. Multivariate logistic regression analysis was done to evaluate predictors of active disease. CCL4 (r = 0.251, p = 0.025), CXCL1 (r = 0.270, p = 0.015), and CX3CL1 (r = 0.295, p = 0.008) significantly correlated with BVAS, while CX3CL1 was associated with five-factor score (r = - 0.290, p = 0.009). Correlations were revealed between CCL2 and CCL4 (r = 0.267, p = 0.017), CCL4 and CXCL1 (r = 0.368, p < 0.001), CCL4 and CXCL2 (r = 0.436, p < 0.001), and CXCL1 and CXCL2 (r = 0.518, p < 0.001). Multivariate analysis revealed serum CX3CL1 levels > 2408.92 pg/mL could predict active disease (odds ratio, 27.401, p < 0.001). Serum chemokine levels of CCL4, CXCL1, and CX3CL1 showed association with disease activity and especially, CX3CL1 > 2408.92 pg/mL showed potential in predicting active MPA/GPA.
Collapse
Affiliation(s)
- Ji Eun Lee
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Taejun Yoon
- Department of Medical Science, College of Medicine, BK21 Plus Project, Yonsei University, Seoul, Republic of Korea
| | - Sang-Won Lee
- Division of Rheumatology, Department of Internal Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
- Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, Republic of Korea.
| | - Sung Soo Ahn
- Division of Rheumatology, Department of Internal Medicine, Yonsei University College of Medicine, Yongin Severance Hospital, 363 Dongbaekjukjeon-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 16995, Republic of Korea.
| |
Collapse
|
21
|
Liu X, Yu Z, Li Y, Huang J. CX3CL1 and its receptor CX3CR1 interact with RhoA signaling to induce paclitaxel resistance in gastric cancer. Heliyon 2024; 10:e29100. [PMID: 38601629 PMCID: PMC11004636 DOI: 10.1016/j.heliyon.2024.e29100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 03/29/2024] [Accepted: 03/31/2024] [Indexed: 04/12/2024] Open
Abstract
C-X3-C motif chemokine ligand 1 (CX3CL1) is a transmembrane protein, and the membranal and soluble forms of CX3CL1 exhibit different functions, although both bind to the CX3CR1 chemokine receptor. The CX3CL1/CX3CR1 axis induces many cellular responses relevant to cancer, such as proliferation, migration, invasion, and apoptosis resistance. Here we attempt to elucidate whether CX3CL1/CX3CR1 is associated with paclitaxel (PTX) resistance in gastric cancer (GC). The Gene Expression Omnibus database was queried to screen for differentially expressed genes in GC cells caused by drug resistance, and CX3CL1 was selected as a candidate. CX3CL1 was overexpressed in PTX-resistant cells and tissues. CX3CL1 loss sensitized GC cells to PTX, promoted apoptosis and DNA damage, and inhibited cell proliferation, migration, and invasion. CX3CR1 reversed the ameliorative effect of CX3CL1 silencing on PTX sensitivity in GC cells. The promotion of PTX resistance by CX3CL1/CX3CR1 was inhibited by impairment of the small GTPase Ras homolog gene family member A (RhoA) pathway in vitro and in vivo. These findings indicate that the CX3CL1/CX3CR1 expedites PTX resistance through the RhoA signaling in GC cells.
Collapse
Affiliation(s)
| | | | - Yun Li
- Department of Pharmaceutics, Second Affiliated Hospital of Dalian Medical University, Dalian 116027, Liaoning, PR China
| | - Junzi Huang
- Department of Pharmaceutics, Second Affiliated Hospital of Dalian Medical University, Dalian 116027, Liaoning, PR China
| |
Collapse
|
22
|
Adamu A, Li S, Gao F, Xue G. The role of neuroinflammation in neurodegenerative diseases: current understanding and future therapeutic targets. Front Aging Neurosci 2024; 16:1347987. [PMID: 38681666 PMCID: PMC11045904 DOI: 10.3389/fnagi.2024.1347987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/25/2024] [Indexed: 05/01/2024] Open
Abstract
Neuroinflammation refers to a highly complicated reaction of the central nervous system (CNS) to certain stimuli such as trauma, infection, and neurodegenerative diseases. This is a cellular immune response whereby glial cells are activated, inflammatory mediators are liberated and reactive oxygen and nitrogen species are synthesized. Neuroinflammation is a key process that helps protect the brain from pathogens, but inappropriate, or protracted inflammation yields pathological states such as Parkinson's disease, Alzheimer's, Multiple Sclerosis, and other neurodegenerative disorders that showcase various pathways of neurodegeneration distributed in various parts of the CNS. This review reveals the major neuroinflammatory signaling pathways associated with neurodegeneration. Additionally, it explores promising therapeutic avenues, such as stem cell therapy, genetic intervention, and nanoparticles, aiming to regulate neuroinflammation and potentially impede or decelerate the advancement of these conditions. A comprehensive understanding of the intricate connection between neuroinflammation and these diseases is pivotal for the development of future treatment strategies that can alleviate the burden imposed by these devastating disorders.
Collapse
Affiliation(s)
| | | | | | - Guofang Xue
- Department of Neurology, The Second Affiliated Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
23
|
Sánchez JM, Rabaglino MB, Bagés-Arnal S, McDonald M, Behura SK, Spencer TE, Lonergan P, Fernandez-Fuertes B. Sperm exposure to accessory gland secretions alters the transcriptomic response of the endometrium in cattle. Theriogenology 2024; 218:26-34. [PMID: 38295677 DOI: 10.1016/j.theriogenology.2024.01.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 01/25/2024] [Accepted: 01/28/2024] [Indexed: 03/01/2024]
Abstract
In cattle, mating to intact, but not vasectomised, bulls has been shown to modify the endometrial transcriptome, suggesting an important role of sperm in the modulation of the uterine environment in this species. However, it is not clear whether these changes are driven by intrinsic sperm factors, or by factors of accessory gland (AG) origin that bind to sperm at ejaculation. Therefore, the aim of the present study was to determine whether ejaculated sperm, which are suspended in the secretions of the AGs, elicit a different endometrial transcriptomic response than epididymal sperm, which have never been exposed to AG factors. To this end, bovine endometrial explants collected from heifers in oestrus were (co-)incubated for 6 h alone (control), or with epididymal sperm or ejaculated sperm, following which transcriptomic changes in the endometrium were evaluated. Epididymal sperm elicited a more dramatic endometrial response than ejaculated sperm, in terms of the number of differentially expressed genes (DEGs). Indeed, RNA-sequencing data analysis revealed 1912 DEGs in endometrial explants exposed to epididymal sperm compared with control explants, whereas 115 DEGs were detected between endometrial explants exposed to ejaculated sperm in comparison to control explants. The top pathways associated with genes upregulated by epididymal sperm included T cell regulation and TNF, NF-KB and IL17 signalling. Interestingly, ejaculated sperm induced downregulation of genes associated with T cell immunity and Th17 differentiation, and upregulation of genes involved in NF-KB signalling, in comparison to epididymal sperm. These data indicate that factors of AG origin modulate the interaction between sperm and the endometrium in cattle.
Collapse
Affiliation(s)
- José María Sánchez
- Department of Animal Reproduction, National Institute for Agriculture and Food Research and Technology (INIA), Spanish National Research Council (CSIC), Madrid, Spain
| | - María Belén Rabaglino
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Sandra Bagés-Arnal
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Michael McDonald
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Susanta K Behura
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| | - Thomas E Spencer
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| | - Pat Lonergan
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Beatriz Fernandez-Fuertes
- Department of Animal Reproduction, National Institute for Agriculture and Food Research and Technology (INIA), Spanish National Research Council (CSIC), Madrid, Spain.
| |
Collapse
|
24
|
Singh S, Urs AB, Kumar P. Expression and analysis of CX3CL1 chemokine and CD57+ lymphocytes in oral squamous cell carcinoma and their correlation with clinicopathologic features. J Cancer Res Ther 2024; 20:770-775. [PMID: 39023581 DOI: 10.4103/jcrt.jcrt_79_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 10/23/2022] [Indexed: 07/20/2024]
Abstract
INTRODUCTION CX3CL1 exhibits chemoattraction for T-cells, monocytes, and CD57+ natural killer cells mediating antitumor immunity. The role of CX3CL1 has been studied in tumors of the breast, lung, colon, pancreas, prostate, etc. The current study was undertaken to understand the importance of CX3CL1 and its correlation with CD57+ cells in oral squamous cell carcinoma (OSCC). MATERIAL AND METHODS Seventy-five primary OSCC were staged and histopathologically graded, followed by immunohistochemistry for CX3CL1 and CD57. Mann-Whitney U-test, Kruskal-Wallis test, Post hoc Bonferroni test, and Pearson's correlation coefficient were applied. RESULTS CX3CL1 assessment within the tumor cells was high in 62.66% of cases, and the CD57 Labeling Index (LI) varied over a wide range of 8.2-111.6. A statistically significant reduction in expression of both CX3CL1 and CD57 was observed with an increase in histologic grade (p = 0.021 and 0.038, respectively). DISCUSSION It is concluded that CX3CL1 and CD57 may be important players in the immune surveillance of OSCC. Further studies with detailed follow-up for the overall survival of patients will help in studying the diagnostic, prognostic, and therapeutic roles of CX3CL1 in OSCC.
Collapse
Affiliation(s)
- Shivani Singh
- Department of Radiation Oncology, Maulana Azad Medical College, New Delhi, India
| | - Aadithya B Urs
- Department of Oral Pathology and Microbiology, Maulana Azad Medical College, New Delhi, India
| | - Priya Kumar
- Department of Oral Pathology and Microbiology, Maulana Azad Medical College, New Delhi, India
| |
Collapse
|
25
|
Bian J, Yan J, Chen C, Yin L, Liu P, Zhou Q, Yu J, Liang Q, He Q. Development of an immune-related diagnostic predictive model for oral lichen planus. Medicine (Baltimore) 2024; 103:e37469. [PMID: 38489725 PMCID: PMC10939522 DOI: 10.1097/md.0000000000037469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/10/2024] [Accepted: 02/12/2024] [Indexed: 03/17/2024] Open
Abstract
Oral lichen planus (OLP) was a chronic inflammatory disease of unknown etiology with a 1.4% chance of progressing to malignancy. However, it has been suggested in several studies that immune system disorders played a dominant role in the onset and progression of OLP. Therefore, this experiment aimed to develop a diagnostic prediction model for OLP based on immunopathogenesis to achieve early diagnosis and treatment and prevent cancer. In this study, 2 publicly available OLP datasets from the gene expression omnibus database were filtered. In the experimental group (GSE52130), the level of immune cell infiltration was assessed using MCPcounter and ssGSEA algorithms. Subsequently, differential expression analysis and gene set enrichment analysis were performed between the OLP and control groups. The resulting differentially expressed genes were intersected with immunologically relevant genes provided on the immunology database and analysis portal database (ImmPort) website to obtain differentially expressed immunologically relevant genes (DEIRGs). Furthermore, the gene ontology and kyoto encyclopedia of genes and genomes analyses were carried out. Finally, protein-protein interaction network and least absolute shrinkage and selection operator regression analyses constructed a model for OLP. Receiver operating characteristic curves for the experimental and validation datasets (GSE38616) were plotted separately to validate the model's credibility. In addition, real-time quantitative PCR experiment was performed to verify the expression level of the diagnostic genes. Immune cell infiltration analysis revealed a more significant degree of inflammatory infiltration in the OLP group compared to the control group. In addition, the gene set enrichment analysis results were mainly associated with keratinization, antibacterial and immune responses, etc. A total of 774 differentially expressed genes was obtained according to the screening criteria, of which 65 were differentially expressed immunologically relevant genes. Ultimately, an immune-related diagnostic prediction model for OLP, which was composed of 5 hub genes (BST2, RNASEL, PI3, DEFB4A, CX3CL1), was identified. The verification results showed that the model has good diagnostic ability. There was a significant correlation between the 5 hub diagnostic biomarkers and immune infiltrating cells. The development of this model gave a novel insight into the early diagnosis of OLP.
Collapse
Affiliation(s)
- Jiamin Bian
- School of Stomatology, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Jiayu Yan
- School of Stomatology, North Sichuan Medical College, Nanchong, Sichuan, China
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Department of Stomatology, Sichuan Integrated Traditional and Western Medicine Hospital, Chengdu, Sichuan, China
| | - Chu Chen
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Li Yin
- Department of Stomatology, Sichuan Integrated Traditional and Western Medicine Hospital, Chengdu, Sichuan, China
| | - Panpan Liu
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Qi Zhou
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Jianfeng Yu
- Department of Stomatology, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Qin Liang
- Department of Stomatology, Pengzhou Hospital of Traditional Chinese Medicine, Pengzhou, Sichuan, China
| | - Qingmei He
- Department of Neurological, Chongqing Shi Yong Chuan Hospital of Traditional Chinese Medicine, Chongqing, China
| |
Collapse
|
26
|
Yang M, Mao X, Li L, Yang J, Xing H, Jiang C. High TPX2 expression results in poor prognosis, and Sp1 mediates the coupling of the CX3CR1/CXCL10 chemokine pathway to the PI3K/Akt pathway through targeted inhibition of TPX2 in endometrial cancer. Cancer Med 2024; 13:e6958. [PMID: 38466034 PMCID: PMC10926884 DOI: 10.1002/cam4.6958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/19/2023] [Accepted: 07/25/2023] [Indexed: 03/12/2024] Open
Abstract
INTRODUCTION Approximately 30% of individuals with advanced EC have unsatisfactory prognosis. Evidence suggests that TPX2 is frequently upregulated in malignancies and related to cancer progression. Its role and pathological mechanism in EC need further research. METHODS GSEA and TPX2 expression, GO, KEGG, and prognostic analyses were performed with TCGA data by bioinformatic approaches. Relationships between TPX2 expression and clinicopathological parameters were investigated immunohistochemically and statistically. shRNA and overexpression plasmids were constructed and transfected into AN3CA and Ishikawa cells to evaluate phenotypic changes and injected into nude mouse axillae. Coimmunoprecipitation and chromatin immunoprecipitation were used to identify interacting proteins and promoter-binding sequences. Changes in TPX2 expression were identified by Western blotting and RT-qPCR. RESULTS TPX2 expression was significantly higher in EC tissues than in normal tissues in TCGA and in-house specimens (all p < 0.001). In survival analysis, high TPX2 expression was associated with poor prognosis (p = 0.003). TPX2 overexpression stimulated cancer cell proliferation, promoted the G0-G1-to-G2/M transition, enhanced invasion and migration, and accelerated tumor growth in nude mice. TPX2 regulated the CX3CR1/CXCL10 chemokine pathway and activated the PI3K/Akt signaling pathway. Sp1 negatively regulated TPX2 expression, affecting the malignant progression of endometrial cancer cells by coupling the CX3CR1/CXCL10 chemokine pathway to the PI3K/Akt signaling pathway. CONCLUSION TPX2 could be a prognostic biomarker for EC and play an important role in the CX3CR1/CXCL10 chemokine pathway and PI3K/Akt pathway via Sp1.
Collapse
Affiliation(s)
- Mei Yang
- Department of Obstetrics and GynecologyXiangyang Central Hospital, Affiliated Hospital of Hubei, University of Arts and ScienceXiangyangChina
- Institute of Maternity DiseaseXiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and ScienceXiangyangChina
| | - Xiaogang Mao
- Department of Obstetrics and GynecologyXiangyang Central Hospital, Affiliated Hospital of Hubei, University of Arts and ScienceXiangyangChina
| | - Lin Li
- Department of Obstetrics and GynecologyXiangyang Central Hospital, Affiliated Hospital of Hubei, University of Arts and ScienceXiangyangChina
| | - Jiang Yang
- Department of Obstetrics and GynecologyXiangyang Central Hospital, Affiliated Hospital of Hubei, University of Arts and ScienceXiangyangChina
| | - Hui Xing
- Department of Obstetrics and GynecologyXiangyang Central Hospital, Affiliated Hospital of Hubei, University of Arts and ScienceXiangyangChina
- Institute of Maternity DiseaseXiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and ScienceXiangyangChina
| | - Chunfan Jiang
- Institute of Maternity DiseaseXiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and ScienceXiangyangChina
- Department of PathologyXiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and ScienceXiangyangHubeiChina
| |
Collapse
|
27
|
Yi H, Qin L, Ye X, Song J, Ji J, Ye T, Li J, Li L. Progression of radio-labeled molecular imaging probes targeting chemokine receptors. Crit Rev Oncol Hematol 2024; 195:104266. [PMID: 38232861 DOI: 10.1016/j.critrevonc.2024.104266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 12/31/2023] [Accepted: 01/11/2024] [Indexed: 01/19/2024] Open
Abstract
Chemokine receptors are significantly expressed in the surface of most inflammatory cells and tumor cells. Guided by chemokines, inflammatory cells which express the relevant chemokine receptors migrate to inflammatory lesions and participate in the evolution of inflammation diseases. Similarly, driven by chemokines, immune cells infiltrate into tumor lesions not only induces alterations in the tumor microenvironment, disrupting the efficacy of tumor therapies, but also has the potential to selectively target tumoral cells and diminish tumor progression. Chemokine receptors, which are significantly expressed on the surface of tumor cell membranes, are regulated by chemokines and initiate tumor-associated signaling pathways within tumor cells, playing a complex role in tumor progression. Based on the antagonists targeting chemokine receptors, radionuclide-labeled molecular imaging probes have been developed for the emerging application of molecular imaging in diseases such as tumors and inflammation. The value and limitations of molecular probes in disease imaging are worth reviewing.
Collapse
Affiliation(s)
- Heqing Yi
- Department of Nuclear Medicine, Zhejiang Cancer Hospital, Banshan Street 1, Hangzhou, Zhejiang 310022, China; Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou 310022, China
| | - Lilin Qin
- Second Clinical Medical College of Zhejiang Chinese Medical University, Banshan Street 1, Hangzhou, Zhejiang 310022, China
| | - Xuemei Ye
- Department of Nuclear Medicine, Zhejiang Cancer Hospital, Banshan Street 1, Hangzhou, Zhejiang 310022, China
| | - Jinling Song
- Department of Nuclear Medicine, Zhejiang Cancer Hospital, Banshan Street 1, Hangzhou, Zhejiang 310022, China
| | - Jianfeng Ji
- Department of Nuclear Medicine, Zhejiang Cancer Hospital, Banshan Street 1, Hangzhou, Zhejiang 310022, China
| | - Ting Ye
- Department of Nuclear Medicine, Zhejiang Cancer Hospital, Banshan Street 1, Hangzhou, Zhejiang 310022, China
| | - Juan Li
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Dongfang Street 150, Hangzhou, Zhejiang 310022, China.
| | - Linfa Li
- Department of Nuclear Medicine, Zhejiang Cancer Hospital, Banshan Street 1, Hangzhou, Zhejiang 310022, China.
| |
Collapse
|
28
|
Alarcón‐Sánchez MA, Becerra‐Ruiz JS, Guerrero‐Velázquez C, Mosaddad SA, Heboyan A. The role of the CX3CL1/CX3CR1 axis as potential inflammatory biomarkers in subjects with periodontitis and rheumatoid arthritis: A systematic review. Immun Inflamm Dis 2024; 12:e1181. [PMID: 38415821 PMCID: PMC10845211 DOI: 10.1002/iid3.1181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/11/2024] [Accepted: 01/23/2024] [Indexed: 02/29/2024] Open
Abstract
OBJECTIVE This systematic review aimed to investigate the role of the C-X3-C motif ligand 1/chemokine receptor 1 C-X3-C motif (CX3CL1/CX3CR1) axis in the pathogenesis of periodontitis. Furthermore, as a secondary objective, we determine whether the CX3CL1/CX3CR1 axis could be considered complementary to clinical parameters to distinguish between periodontitis and rheumatoid arthritis (RA) and/or systemically healthy subjects. METHODS The protocol used for this review was registered in OSF (10.17605/OSF.IO/KU8FJ). This study was designed following Preferred Reporting Items for Systematic Review and Meta-Analysis guidelines. Records were identified using different search engines (PubMed/MEDLINE, Scopus, Science Direct, and Web of Science) from August 10, 2006, to September 15, 2023. The observational studies on human subjects diagnosed with periodontitis and RA and/or systemically healthy were selected to analyze CX3CL1 and CX3CR1 biomarkers. The methodological validity of the selected articles was assessed using NIH. RESULTS Six articles were included. Biological samples (gingival crevicular fluid [GCF], saliva, gingival tissue biopsies, serum) from 379 subjects (n = 275 exposure group and n = 104 control group) were analyzed. Higher CX3CL1 and CX3CR1 chemokine levels were found in subjects with periodontitis and RA compared with periodontal and systemically healthy subjects. CONCLUSION Very few studies highlight the role of the CX3CL1/CX3CR1 axis in the pathogenesis of periodontitis; however, increased levels of these chemokines are observed in different biological samples (GCF, gingival tissue, saliva, and serum) from subjects with periodontitis and RA compared with their healthy controls. Future studies should focus on long-term follow-up of subjects and monitoring changes in cytokine levels before and after periodontal therapy to deduce an appropriate interval in health and disease conditions.
Collapse
Affiliation(s)
- Mario A. Alarcón‐Sánchez
- Biomedical Science, Faculty of Chemical‐Biological SciencesAutonomous University of GuerreroGuerreroMexico
| | - Julieta S. Becerra‐Ruiz
- Institute of Research of Bioscience, University Center of Los AltosUniversity of GuadalajaraGuadalajaraMexico
| | - Celia Guerrero‐Velázquez
- Research Center in Molecular Biology of Chronic Diseases, Southern University CenterUniversity of GuadalajaraGuadalajaraMexico
| | - Seyed A. Mosaddad
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical SciencesSaveetha UniversityChennaiIndia
- Student Research Committee, School of DentistryShiraz University of Medical SciencesShirazIran
| | - Artak Heboyan
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical SciencesSaveetha UniversityChennaiIndia
- Department of Prosthodontics, Faculty of StomatologyYerevan State Medical University after Mkhitar HeratsiYerevanArmenia
- Department of ProsthodonticsTehran University of Medical SciencesTehranIran
| |
Collapse
|
29
|
Behrouzian Fard G, Ahmadi MH, Gholamin M, Amirfakhrian R, Saberi Teimourian E, Karimi MA, Hosseini Bafghi M. CRISPR-Cas9 technology: As an efficient genome modification tool in the cancer diagnosis and treatment. Biotechnol Bioeng 2024; 121:472-488. [PMID: 37986642 DOI: 10.1002/bit.28603] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/30/2023] [Accepted: 11/06/2023] [Indexed: 11/22/2023]
Abstract
Cancer is the second most common cause of death globally and is a major public health concern. Managing this disease is difficult due to its multiple stages and numerous genetic and epigenetic changes. Traditional cancer diagnosis and treatment methods have limitations, making it crucial to develop new modalities to combat the increasing burden of cancer. The clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9) system has transformed genetic engineering due to its simplicity, specificity, low cytotoxicity, and cost-effectiveness. It has been proposed as an effective technology to enhance cancer diagnosis and treatment strategies. This article presents the most recent discoveries regarding the structure, mechanism, and delivery methods of the highly powerful genome editing tool, CRISPR-Cas9. In terms of diagnosis, the article examines the role of CRISPR-Cas9 in detecting microRNAs and DNA methylation, and discusses two popular gene detection techniques that utilize the CRISPR-Cas system: DNA endonuclease-targeted CRISPR trans reporter and specific high sensitivity enzymatic reporter unlocking. Regarding treatment, the article explores several genes that have been identified and modified by CRISPR-Cas9 for effective tumorigenesis of common cancers such as breast, lung, and colorectal cancer. The present review also addresses the challenges and ethical issues associated with using CRISPR-Cas9 as a diagnostic and therapeutic tool. Despite some limitations, CRISPR-Cas9-based cancer diagnosis has the potential to become the next generation of cancer diagnostic tools, and the continuous progress of CRISPR-Cas9 can greatly aid in cancer treatment.
Collapse
Affiliation(s)
- Ghazaleh Behrouzian Fard
- Department of Laboratory Sciences, Faculty of Paramedical and Rehabilitation Sciences, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Hossein Ahmadi
- Department of Laboratory Sciences, Faculty of Paramedical and Rehabilitation Sciences, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehran Gholamin
- Department of Laboratory Sciences, Faculty of Paramedical and Rehabilitation Sciences, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Razieh Amirfakhrian
- Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elahe Saberi Teimourian
- Department of Laboratory Sciences, Faculty of Paramedical and Rehabilitation Sciences, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Ali Karimi
- Department of Laboratory Sciences, Faculty of Paramedical and Rehabilitation Sciences, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahdi Hosseini Bafghi
- Department of Laboratory Sciences, Faculty of Paramedical and Rehabilitation Sciences, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
30
|
Shao D, Zhou H, Yu H, Zhu X. CX3CR1 is a potential biomarker of immune microenvironment and prognosis in epithelial ovarian cancer. Medicine (Baltimore) 2024; 103:e36891. [PMID: 38241595 PMCID: PMC10798769 DOI: 10.1097/md.0000000000036891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 12/18/2023] [Indexed: 01/21/2024] Open
Abstract
Immunotherapy is less efficient for epithelial ovarian cancer and lacks ideal biomarkers to select the best beneficiaries for immunotherapy. CX3CR1 as chemokine receptor mainly expressed on immune cell membranes, and combined with its unique ligand CX3CL1, mediates tissue chemotaxis and adhesion of immune cells. However, the immune functional and prognostic value of CX3CR1 in epithelial ovarian cancer has not been clarified. A comprehensive retrospective analysis was performed by using the online database to identify the underlying immunological mechanisms and prognostic value of CX3CR1. The Human Protein Atlas, gene expression profiling interactive analysis, and TISIDB (an integrated repository portal for tumor-immune system interactions) database showed that CX3CR1 expressed higher in epithelial ovarian cancer than that in normal ovarian tissue. Four hundred twenty-two cases from Gene Expression Profiling Interactive Analysis and 1656 cases from Kaplan-Meier plotter database showed higher expression of CX3CR1 (above median) was associated with unfavorable overall survival. TIMER, UALCAN, and TISIDB database were applied to validate CX3CR1 negative impact on overall survival. In addition, correlation analysis showed that the expression level of CX3CR1 was positive association with infiltrating levels of B cells (R = 0.31, P = 3.10e-12), CD8+ T cells (R = 0.26, P = 7.93e-09), CD4+ T cells (R = 0.11, P = 1.41e-02), macrophages (R = 0.32, P = 4.29e-13), dendritic cells (R = 0.27, P = 2.98e-09), and neutrophil (R = 0.25, P = 3.25e-08) in epithelial ovarian cancer. Therefore, CX3CR1 involved in reshaping the immune microenvironment for epithelial ovarian cancer and maybe a potential immunotherapy target and prognostic marker for ovarian cancer.
Collapse
Affiliation(s)
- Danfeng Shao
- Department of Gynecology, Hangzhou Fuyang First People’s Hospital, Hangzhou, China
| | - Honger Zhou
- Department of Gynecology, Hangzhou Fuyang First People’s Hospital, Hangzhou, China
| | - Huaiying Yu
- Department of Gynecology, Hangzhou Fuyang First People’s Hospital, Hangzhou, China
| | - Xiaoqing Zhu
- Department of Gynecology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
31
|
Li Q, Yuan Z, Bahabayi A, Zhang Z, Zeng X, Kang R, Xu Q, Guan Z, Wang P, Liu C. Upregulation of CX3CR1 expression in circulating T cells of systemic lupus erythematosus patients as a reflection of autoimmune status through characterization of cytotoxic capacity. Int Immunopharmacol 2024; 126:111231. [PMID: 38016349 DOI: 10.1016/j.intimp.2023.111231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/11/2023] [Accepted: 11/12/2023] [Indexed: 11/30/2023]
Abstract
OBJECTIVE This study investigated CX3CR1 expression in human peripheral blood T lymphocytes and their subsets, exploring changes in SLE patients and its diagnostic potential. METHODS Peripheral blood samples from 31 healthy controls and 50 SLE patients were collected. RNA-Seq data from SLE patient PBMCs were used to analyze CX3CR1 expression in T cells. Flow cytometry determined CX3CR1-expressing T lymphocyte subset proportions in SLE patients and healthy controls. Subset composition and presence of GZMB, GPR56, and perforin in CX3CR1+ T lymphocytes were analyzed. T cell-clinical indicator correlations were assessed. ROC curves explored CX3CR1's diagnostic potential for SLE. RESULTS CX3CR1+CD8+ T cells exhibited higher GPR56, perforin, and GZMB expression than other T cell subsets. The proportion of CX3CR1+ was higher in TEMRA and lower in Tn and TCM. PMA activation reduced CX3CR1+ T cell proportions. Both RNA-Seq and flow cytometry revealed elevated CX3CR1+ T cell proportions in SLE patients. Significantly lower perforin+ and GPR56+ proportions were observed in CX3CR1+CD8+ T cells in SLE patients. CX3CR1+ T cells correlated with clinical indicators. CONCLUSION CX3CR1+ T cells display cytotoxic features, with heightened expression in CD8+ T cells, particularly in adult SLE patients. Increased CX3CR1 expression in SLE patient T cells suggests its potential as an adjunctive diagnostic marker for SLE.
Collapse
Affiliation(s)
- Qi Li
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Zihang Yuan
- School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Ayibaota Bahabayi
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Zhonghui Zhang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Xingyue Zeng
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Rui Kang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Qinzhu Xu
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Zhao Guan
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Pingzhang Wang
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China; Peking University Center for Human Disease Genomics, Peking University Health Science Center, Beijing, China
| | - Chen Liu
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China.
| |
Collapse
|
32
|
Dang BTN, Kwon TK, Lee S, Jeong JH, Yook S. Nanoparticle-based immunoengineering strategies for enhancing cancer immunotherapy. J Control Release 2024; 365:773-800. [PMID: 38081328 DOI: 10.1016/j.jconrel.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/27/2023] [Accepted: 12/03/2023] [Indexed: 12/17/2023]
Abstract
Cancer immunotherapy is a groundbreaking strategy that has revolutionized the field of oncology compared to other therapeutic strategies, such as surgery, chemotherapy, or radiotherapy. However, cancer complexity, tumor heterogeneity, and immune escape have become the main hurdles to the clinical application of immunotherapy. Moreover, conventional immunotherapies cause many harmful side effects owing to hyperreactivity in patients, long treatment durations and expensive cost. Nanotechnology is considered a transformative approach that enhances the potency of immunotherapy by capitalizing on the superior physicochemical properties of nanocarriers, creating highly targeted tissue delivery systems. These advantageous features include a substantial specific surface area, which enhances the interaction with the immune system. In addition, the capability to finely modify surface chemistry enables the achievement of controlled and sustained release properties. These advances have significantly increased the potential of immunotherapy, making it more powerful than ever before. In this review, we introduce recent nanocarriers for application in cancer immunotherapy based on strategies that target different main immune cells, including T cells, dendritic cells, natural killer cells, and tumor-associated macrophages. We also provide an overview of the role and significance of nanotechnology in cancer immunotherapy.
Collapse
Affiliation(s)
| | - Taeg Kyu Kwon
- Department of Immunology, School of Medicine, Keimyung University, Daegu 42601, Republic of Korea
| | - Sooyeun Lee
- College of Pharmacy, Keimyung University, Daegu 42601, Republic of Korea
| | - Jee-Heon Jeong
- Department of Precision Medicine, School of Medicine, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Simmyung Yook
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea; School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
33
|
von Bernhardi R, Eugenín J. Aging Microglia and Their Impact in the Nervous System. ADVANCES IN NEUROBIOLOGY 2024; 37:379-395. [PMID: 39207703 DOI: 10.1007/978-3-031-55529-9_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Aging is the greatest risk factor for neurodegenerative diseases. Microglia are the resident immune cells in the central nervous system (CNS), playing key roles in its normal functioning, and as mediators for age-dependent changes of the CNS, condition at which they generate a hostile environment for neurons. Transforming Growth Factor β1 (TGFβ1) is a regulatory cytokine involved in immuneregulation and neuroprotection, affecting glial cell inflammatory activation, neuronal survival, and function. TGFβ1 signaling undergoes age-dependent changes affecting the regulation of microglial cells and can contribute to the pathophysiology of neurodegenerative diseases. This chapter focuses on assessing the role of age-related changes on the regulation of microglial cells and their impact on neuroinflammation and neuronal function, for understanding age-dependent changes of the nervous system.
Collapse
Affiliation(s)
- Rommy von Bernhardi
- Faculty of Odontology and Rehabilitation Sciences, Universidad San Sebastian, Santiago, Chile.
| | - Jaime Eugenín
- Faculty of Chemistry and Biology, Universidad de Santiago de Chile, Santiago, Chile
| |
Collapse
|
34
|
Kim JD, Copperi F, Diano S. Microglia in Central Control of Metabolism. Physiology (Bethesda) 2024; 39:0. [PMID: 37962895 PMCID: PMC11283896 DOI: 10.1152/physiol.00021.2023] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/12/2023] [Accepted: 11/12/2023] [Indexed: 11/15/2023] Open
Abstract
Beyond their role as brain immune cells, microglia act as metabolic sensors in response to changes in nutrient availability, thus playing a role in energy homeostasis. This review highlights the evidence and challenges of studying the role of microglia in metabolism regulation.
Collapse
Affiliation(s)
- Jung Dae Kim
- Institute of Human Nutrition, Columbia University Irving Medical Center, New York, New York, United States
| | - Francesca Copperi
- Institute of Human Nutrition, Columbia University Irving Medical Center, New York, New York, United States
| | - Sabrina Diano
- Institute of Human Nutrition, Columbia University Irving Medical Center, New York, New York, United States
- Department of Molecular Pharmacology and Therapeutics, Columbia University Irving Medical Center, New York, New York, United States
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, New York, United States
| |
Collapse
|
35
|
Abstract
For our immune system to contain or eliminate malignant solid tumours, both myeloid and lymphoid haematopoietic cells must not only extravasate from the bloodstream into the tumour tissue but also further migrate to various specialized niches of the tumour microenvironment to functionally interact with each other, with non-haematopoietic stromal cells and, ultimately, with cancer cells. These interactions regulate local immune cell survival, proliferative expansion, differentiation and their execution of pro-tumour or antitumour effector functions, which collectively determine the outcome of spontaneous or therapeutically induced antitumour immune responses. None of these interactions occur randomly but are orchestrated and critically depend on migratory guidance cues provided by chemokines, a large family of chemotactic cytokines, and their receptors. Understanding the functional organization of the tumour immune microenvironment inevitably requires knowledge of the multifaceted roles of chemokines in the recruitment and positioning of its cellular constituents. Gaining such knowledge will not only generate new insights into the mechanisms underlying antitumour immunity or immune tolerance but also inform the development of biomarkers (or 'biopatterns') based on spatial tumour tissue analyses, as well as novel strategies to therapeutically engineer immune responses in patients with cancer. Here we will discuss recent observations on the role of chemokines in the tumour microenvironment in the context of our knowledge of their physiological functions in development, homeostasis and antimicrobial responses.
Collapse
Affiliation(s)
- Thorsten R Mempel
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| | - Julia K Lill
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Lukas M Altenburger
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
36
|
Eugenín J, Eugenín-von Bernhardi L, von Bernhardi R. Age-dependent changes on fractalkine forms and their contribution to neurodegenerative diseases. Front Mol Neurosci 2023; 16:1249320. [PMID: 37818457 PMCID: PMC10561274 DOI: 10.3389/fnmol.2023.1249320] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/06/2023] [Indexed: 10/12/2023] Open
Abstract
The chemokine fractalkine (FKN, CX3CL1), a member of the CX3C subfamily, contributes to neuron-glia interaction and the regulation of microglial cell activation. Fractalkine is expressed by neurons as a membrane-bound protein (mCX3CL1) that can be cleaved by extracellular proteases generating several sCX3CL1 forms. sCX3CL1, containing the chemokine domain, and mCX3CL1 have high affinity by their unique receptor (CX3CR1) which, physiologically, is only found in microglia, a resident immune cell of the CNS. The activation of CX3CR1contributes to survival and maturation of the neural network during development, glutamatergic synaptic transmission, synaptic plasticity, cognition, neuropathic pain, and inflammatory regulation in the adult brain. Indeed, the various CX3CL1 forms appear in some cases to serve an anti-inflammatory role of microglia, whereas in others, they have a pro-inflammatory role, aggravating neurological disorders. In the last decade, evidence points to the fact that sCX3CL1 and mCX3CL1 exhibit selective and differential effects on their targets. Thus, the balance in their level and activity will impact on neuron-microglia interaction. This review is focused on the description of factors determining the emergence of distinct fractalkine forms, their age-dependent changes, and how they contribute to neuroinflammation and neurodegenerative diseases. Changes in the balance among various fractalkine forms may be one of the mechanisms on which converge aging, chronic CNS inflammation, and neurodegeneration.
Collapse
Affiliation(s)
- Jaime Eugenín
- Facultad de Química y Biología, Departamento de Biología, Universidad de Santiago de Chile, USACH, Santiago, Chile
| | | | - Rommy von Bernhardi
- Facultad de Ciencias para el Cuidado de la Salud, Universidad San Sebastián, Santiago, Chile
| |
Collapse
|
37
|
Chaudhri A, Bu X, Wang Y, Gomez M, Torchia JA, Hua P, Hung SH, Davies MA, Lizee GA, von Andrian U, Hwu P, Freeman GJ. The CX3CL1-CX3CR1 chemokine axis can contribute to tumor immune evasion and blockade with a novel CX3CR1 monoclonal antibody enhances response to anti-PD-1 immunotherapy. Front Immunol 2023; 14:1237715. [PMID: 37771579 PMCID: PMC10524267 DOI: 10.3389/fimmu.2023.1237715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/28/2023] [Indexed: 09/30/2023] Open
Abstract
CX3CL1 secreted in the tumor microenvironment serves as a chemoattractant playing a critical role in metastasis of CX3CR1 expressing cancer cells. CX3CR1 can be expressed in both cancer and immune-inhibitory myeloid cells to facilitate their migration. We generated a novel monoclonal antibody against mouse CX3CR1 that binds to CX3CR1 and blocks the CX3CL1-CX3CR1 interaction. We next explored the immune evasion strategies implemented by the CX3CL1-CX3CR1 axis and find that it initiates a resistance program in cancer cells that results in 1) facilitation of tumor cell migration, 2) secretion of soluble mediators to generate a pro-metastatic niche, 3) secretion of soluble mediators to attract myeloid populations, and 4) generation of tumor-inflammasome. The CX3CR1 monoclonal antibody reduces migration of tumor cells and decreases secretion of immune suppressive soluble mediators by tumor cells. In combination with anti-PD-1 immunotherapy, this CX3CR1 monoclonal antibody enhances survival in an immunocompetent mouse colon carcinoma model through a decrease in tumor-promoting myeloid populations. Thus, this axis is involved in the mechanisms of resistance to anti-PD-1 immunotherapy and the combination therapy can overcome a portion of the resistance mechanisms to anti-PD-1.
Collapse
Affiliation(s)
- Apoorvi Chaudhri
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
- Department of Melanoma Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States
- Department of Medicine, Harvard Medical School, Boston, MA, United States
| | - Xia Bu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
- Department of Medicine, Harvard Medical School, Boston, MA, United States
| | - Yunfei Wang
- Department of Clinical Science, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
| | - Michael Gomez
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
- Department of Medicine, Harvard Medical School, Boston, MA, United States
| | - James A. Torchia
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
- Department of Medicine, Harvard Medical School, Boston, MA, United States
| | - Ping Hua
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
- Department of Medicine, Harvard Medical School, Boston, MA, United States
| | - Shao-Hsi Hung
- Department of Melanoma Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States
| | - Michael A. Davies
- Department of Melanoma Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Gregory A. Lizee
- Department of Melanoma Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Ulrich von Andrian
- Department of Medicine, Harvard Medical School, Boston, MA, United States
- Department of Immunology & HMS Center for Immune Imaging, Harvard Medical School, Boston, MA, United States
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, United States
| | - Patrick Hwu
- Department of Clinical Science, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
| | - Gordon J. Freeman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
- Department of Medicine, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
38
|
Zhang S, Peng W, Wang H, Xiang X, Ye L, Wei X, Wang Z, Xue Q, Chen L, Su Y, Zhou Q. C1q + tumor-associated macrophages contribute to immunosuppression through fatty acid metabolic reprogramming in malignant pleural effusion. J Immunother Cancer 2023; 11:e007441. [PMID: 37604643 PMCID: PMC10445384 DOI: 10.1136/jitc-2023-007441] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2023] [Indexed: 08/23/2023] Open
Abstract
BACKGROUND Although immune checkpoint blockade (ICB) therapy has shown remarkable benefits in cancers, a subset of patients with cancer exhibits unresponsiveness or develop acquired resistance due to the existence of abundant immunosuppressive cells. Tumor-associated macrophages (TAMs), as the dominant immunosuppressive population, impede the antitumor immune response; however, the underlying mechanisms have not been fully elucidated yet. METHODS Single-cell RNA sequencing analysis was performed to portray macrophage landscape and revealed the underlying mechanism of component 1q (C1q)+ TAMs. Malignant pleural effusion (MPE) of human and mouse was used to explore the phenotypes and functions of C1q+ TAMs. RESULTS C1q+ TAMs highly expressed multiple inhibitory molecules and their high infiltration was significantly correlated with poor prognosis. C1q+ TAMs promote MPE immunosuppression through impairing the antitumor effects of CD8+ T cells. Mechanistically, C1q+ TAMs enhance fatty acid binding protein 5 (FABP5)-mediated fatty acid metabolism, which activate transcription factor peroxisome proliferator-activated receptor-gamma, increasing the gene expression of inhibitory molecules. A high-fat diet increases the expression of inhibitory molecules in C1q+ TAMs and the immunosuppression of MPE microenvironment, whereas a low-fat diet ameliorates these effects. Moreover, FABP5 inhibition represses the expression of inhibitory molecules in TAMs and tumor progression, while enhancing the efficacy of ICB therapy in MPE and lung cancer. CONCLUSIONS C1q+ TAMs impede antitumor effects of CD8+ T cells promoting MPE immunosuppression. Targeting C1q+ TAMs effectively alleviates the immunosuppression and enhances the efficacy of ICB therapy. C1q+ TAMs subset has great potential to be a therapeutic target for cancer immunotherapy.
Collapse
Affiliation(s)
- Siyu Zhang
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenbei Peng
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haolei Wang
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xuan Xiang
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Linlin Ye
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoshan Wei
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zihao Wang
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qianqian Xue
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Long Chen
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan Su
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiong Zhou
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
39
|
Manukonda R, Jakati S, Attem J, Mishra DK, Mocherla TR, Reddy MM, Gulati K, Poluri KM, Vemuganti GK, Kaliki S. Identifying Treatment Resistance Related Pathways by Analyzing Serum Extracellular Vesicles of Patients With Resistant Versus Regressed Retinoblastoma. Invest Ophthalmol Vis Sci 2023; 64:26. [PMID: 37603355 PMCID: PMC10445180 DOI: 10.1167/iovs.64.11.26] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 07/30/2023] [Indexed: 08/22/2023] Open
Abstract
Purpose To identify the genes and pathways responsible for treatment resistance (TR) in retinoblastoma (RB) by analyzing serum small extracellular vesicles (sEVs) of patients with TR active RB (TR-RB) and completely regressed RB (CR-RB). Methods Serum-derived sEVs were characterized by transmission electron microscopy and nanoparticle tracking analysis. sEV transcriptome profiles of two TR-RB and one CR-RB with good response (>20 years tumor free) were compared to their age-matched controls (n = 3). Gene expression data were analyzed by the R Bioconductor package. The CD9 protein and mRNA expression of CD9, CD63, and CD81 were studied in five RB tumors and two control retinae by immunohistochemistry and quantitative reverse transcription-polymerase chain reaction. Results The isolated serum sEVs were round shaped and within the expected size (30-150 nm), and they had zeta potentials ranging from -10.8 to 15.9 mV. The mean ± SD concentrations of sEVs for two adults and four children were 1.1 × 1012 ± 0.1 and 5.8 × 1011 ± 1.7 particles/mL. Based on log2 fold change of ±2 and P < 0.05 criteria, there were 492 dysregulated genes in TR-RB and 184 in CR-RB. KAT2B, VWA1, CX3CL1, MLYCD, NR2F2, USP46-AS1, miR6724-4, and LINC01257 genes were specifically dysregulated in TR-RB. Negative regulation of apoptotic signaling, cell growth, and proton transport genes were greater than fivefold expressed only in TR-RB. CD9, CD63, and CD81 mRNA levels were high in RB tumors versus control retina, with increased and variable CD9 immunoreactivity in the invasive areas of the tumor. Conclusions Serum sEVs could serve as a potential liquid biopsy source for understanding TR mechanisms in RB.
Collapse
Affiliation(s)
- Radhika Manukonda
- The Operation Eyesight Universal Institute for Eye Cancer, L V Prasad Eye Institute, Hyderabad, Telangana, India
- Brien Holden Eye Research Center, L V Prasad Eye Institute, Hyderabad, Telangana, India
| | - Saumya Jakati
- Ophthalmic Pathology Laboratory, L V Prasad Eye Institute, Hyderabad, Telangana, India
- Prof. Krothapalli Ravindranath Ophthalmic Research Biorepository, L V Prasad Eye Institute, Hyderabad, Telangana, India
| | - Jyothi Attem
- School of Medical Sciences, Science Complex, University of Hyderabad, Hyderabad, Telangana, India
| | - Dilip K. Mishra
- Ophthalmic Pathology Laboratory, L V Prasad Eye Institute, Hyderabad, Telangana, India
| | - Tirupathi Rao Mocherla
- Prof. Krothapalli Ravindranath Ophthalmic Research Biorepository, L V Prasad Eye Institute, Hyderabad, Telangana, India
| | - Mamatha M. Reddy
- The Operation Eyesight Universal Institute for Eye Cancer, L V Prasad Eye Institute, Bhubaneswar, Odisha, India
| | - Khushboo Gulati
- The Operation Eyesight Universal Institute for Eye Cancer, L V Prasad Eye Institute, Hyderabad, Telangana, India
- Brien Holden Eye Research Center, L V Prasad Eye Institute, Hyderabad, Telangana, India
| | - Krishna Mohan Poluri
- Department of Biosciences and Bioengineering and Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Geeta K. Vemuganti
- School of Medical Sciences, Science Complex, University of Hyderabad, Hyderabad, Telangana, India
| | - Swathi Kaliki
- The Operation Eyesight Universal Institute for Eye Cancer, L V Prasad Eye Institute, Hyderabad, Telangana, India
| |
Collapse
|
40
|
Wu CY, Peng PW, Renn TY, Lee CJ, Chang TM, Wei AIC, Liu JF. CX3CL1 induces cell migration and invasion through ICAM-1 expression in oral squamous cell carcinoma cells. J Cell Mol Med 2023. [PMID: 37082943 DOI: 10.1111/jcmm.17750] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 02/23/2023] [Accepted: 04/05/2023] [Indexed: 04/22/2023] Open
Abstract
Human oral squamous cell carcinoma (OSCC) has been associated with a relatively low survival rate over the years and is characterized by a poor prognosis. C-X3-C motif chemokine ligand 1 (CX3CL1) has been involved in advanced migratory cells. Overexpressed CX3CL1 promotes several cellular responses related to cancer metastasis, including cell movement, migration and invasion in tumour cells. However, CX3CL1 controls the migration ability, and its molecular mechanism in OSCC remains unknown. The present study confirmed that CX3CL1 increased cell movement, migration and invasion. The CX3CL1-induced cell motility is upregulated through intercellular adhesion molecule-1 (ICAM-1) expression in OSCC cells. These effects were significantly suppressed when OSCC cells were pre-treated with CX3CR1 monoclonal antibody (mAb) and small-interfering RNA (siRNA). The CX3CL1-CX3CR1 axis activates promoted PLCβ/PKCα/c-Src phosphorylation. Furthermore, CX3CL1 enhanced activator protein-1 (AP-1) activity. The CX3CR1 mAb and PLCβ, PKCα, c-Src inhibitors reduced CX3CL1-induced c-Jun phosphorylation, c-Jun translocation into the nucleus and c-Jun binding to the ICAM-1 promoter. The present results reveal that CX3CL1 induces the migration of OSCC cells by promoting ICAM-1 expression through the CX3CR1 and the PLCβ/PKCα/c-Src signal pathway, suggesting that CX3CL1-CX3CR1-mediated signalling is correlated with tumour motility and appealed to be a precursor for prognosis in human OSCC.
Collapse
Affiliation(s)
- Chia-Yu Wu
- School of Dental Technology, College of Oral Medicine, Taipei Medical University, Taipei City, Taiwan
- Division of Oral and Maxillofacial Surgery, Department of Dentistry, Taipei Medical University Hospital, Taipei City, Taiwan
| | - Pei-Wen Peng
- School of Dental Technology, College of Oral Medicine, Taipei Medical University, Taipei City, Taiwan
| | - Ting-Yi Renn
- Department of Oral and Maxillofacial Pathobiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Chia-Jung Lee
- Department of Otolaryngology Head and Neck Surgery, Shin-Kong Wu-Ho-Su Memorial Hospital, Taipei City, Taiwan
- School of Medicine, Fu-Jen Catholic University, Taipei City, Taiwan
| | - Tsung-Ming Chang
- Institute of Physiology, School of Medicine, National Yang Ming Chiao Tung University, Taipei City, Taiwan
| | - Augusta I-Chin Wei
- Translational Medicine Center, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei City, Taiwan
| | - Ju-Fang Liu
- Translational Medicine Center, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei City, Taiwan
- School of Oral Hygiene, College of Oral Medicine, Taipei Medical University, Taipei City, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung City, Taiwan
| |
Collapse
|
41
|
Wu XT, Wan BW, Feng XM, Tao YP, Wang YX, Sun HH. Nucleus Pulposus Cells Induce M2 Polarization of RAW264.7 via CX3CL1/CX3CR1 Pathway and M2 Macrophages Promote Proliferation and Anabolism of Nucleus Pulposus Cells. Stem Cells Int 2023; 2023:6400162. [PMID: 37274023 PMCID: PMC10234370 DOI: 10.1155/2023/6400162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/18/2022] [Accepted: 11/24/2022] [Indexed: 02/02/2024] Open
Abstract
Background The mechanisms underlying M2 macrophage polarization induced by nucleus pulposus (NP) cells are unclear. The effects that M2-polarized macrophages have on NP cells are also controversial. Methods Transcriptome sequencing was performed to detect the gene change profiles between NP cells from ruptured intervertebral disc (IVD) and normal IVD. The main difference on biological activities between the two cell groups were analyzed by GO analysis and KEGG analysis. Virus transduction, flow cytometry, immunofluorescence, RT-PCR, western blot, CCK-8, TUNEL staining, and AO/EB staining were performed to explore the interactions between NP cells and RAW264.7 macrophages. Statistics were performed using SPSS26. Results 801 upregulated and 276 downregulated genes were identified in NP cells from ruptured IVD in mouse models. According to GO and KEGG analysis, we found that the differentially expressed genes (DEG) were dominantly enriched in inflammatory response, extracellular matrix degradation, blood vessel morphogenesis, immune effector process, ossification, chemokine signaling pathway, macrophage activation, etc. CX3CL1 was one of the top 20% DEG, and we confirmed that both NP tissue and cells expressed remarkably higher level of CX3CL1 in mouse models (p < 0.001∗). Besides, we further revealed that both the recombinant CX3CL1 and NP cells remarkably induced M2 polarization of RAW264.7 (p < 0.001∗), respectively, while this effect was significantly reversed by si-CX3CL1 or JMS-17-2 (p < 0.001∗). Furthermore, we found that M2 macrophages significantly decreased the apoptosis rate (p < 0.001∗) and the catabolic gene levels (p < 0.001∗) of NP cells, while increased the viability, proliferation as well as the anabolic gene levels of NP cells (p < 0.01∗). Conclusions Via regulating CX3CL1/CX3CR1 pathway, NP cells can induce the M2 macrophage polarization. M2 polarized macrophages can further promote NP cell viability, proliferation, and anabolism, while inhibit NP cell apoptosis and catabolism.
Collapse
Affiliation(s)
- Xiao-Tao Wu
- Spine Department, Northern Jiangsu People's Hospital, Yangzhou 225001, China
- Spine Department, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Bo-Wen Wan
- Spine Department, Northern Jiangsu People's Hospital, Yangzhou 225001, China
| | - Xin-Min Feng
- Spine Department, Northern Jiangsu People's Hospital, Yangzhou 225001, China
| | - Yu-Ping Tao
- Spine Department, Northern Jiangsu People's Hospital, Yangzhou 225001, China
| | - Yong-Xiang Wang
- Spine Department, Northern Jiangsu People's Hospital, Yangzhou 225001, China
| | - Hui-Hui Sun
- Spine Department, Northern Jiangsu People's Hospital, Yangzhou 225001, China
| |
Collapse
|
42
|
Lu Z, Zhang A, Dai Y. CX3CL1 deficiency ameliorates inflammation, apoptosis and accelerates osteogenic differentiation, mineralization in LPS-treated MC3T3-E1 cells via its receptor CX3CR1. Ann Anat 2023; 246:152036. [PMID: 36436718 DOI: 10.1016/j.aanat.2022.152036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/24/2022] [Accepted: 11/16/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND Osteoporosis is a devastating skeletal disease responsible for bone fragility and fracture. CX3C chemokine ligand 1 (CX3CL1) is an inflammatory chemokine which has been identified to possess increased expression in the serum of postmenopausal osteoporotic patients. This paper was to illuminate the impacts of CX3CL1 on inflammation, apoptosis and osteogenic differentiation, mineralization in LPS-treated osteoblasts and investigate the regulatory mechanism. METHODS The viability of MC3T3-E1 cells exposed to elevating doses of LPS was detected by CCK-8 assay. CX3CL1 and C-X3-C motif chemokine receptor 1 (CX3CR1) expression were detected by RT-qPCR and western blot. CX3CR1 expression was examined again following CX3CL1 depletion. The binding of CX3CL1 with CX3CR1 was testified through Co-IP assay. In MC3T3-E1 cells co-transduced with CX3CL1 interference and CX3CR1 overexpression plasmids following LPS exposure, cell activity and inflammation were separately estimated via CCK-8 assay and RT-qPCR. Apoptosis was measured by TUNEL assay and western blot. Osteoblast differentiation was evaluated by ALP activity assay, RT-qPCR and western blot. Osteoblast mineralization was assessed by ARS staining, RT-qPCR and western blot. Results The experimental data presented that LPS attenuated the viability and enhanced CX3CL1 and CX3CR1 expression in MC3T3-E1 cells in a dose-dependent manner. CX3CR1 interacted with CX3CL1 and was positively modulated by CX3CL1. The suppressive role of CX3CL1 absence in LPS-evoked viability decrease, inflammation and apoptosis in MC3T3-E1 cells was reversed by CX3CR1 elevation. Besides, CX3CR1 reversed the promoted osteoblast differentiation and mineralization imposed by CX3CL1 interference. CONCLUSIONS CX3CL1 knockdown eased inflammation, apoptosis and promoted osteogenic differentiation, mineralization in MC3T3-E1 cells upon LPS exposure through down-regulating CX3CR1.
Collapse
Affiliation(s)
- Zhihua Lu
- Medical school, Yangzhou Polytechnic College, Yangzhou, Jiangsu 225009, China
| | - Aihua Zhang
- Department of Rehabilitation, Northern Jiangsu People's Hospital, Yangzhou, Jiangsu 225001, China; Clinical Medical College of Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Yan Dai
- Medical research center, Northern Jiangsu People's Hospital, Yangzhou, Jiangsu 225001, China; Clinical Medical College of Yangzhou University, Yangzhou, Jiangsu 225009, China.
| |
Collapse
|
43
|
Mei N, Su H, Gong S, Du H, Zhang X, Wang L, Wang H. High CX3CR1 expression predicts poor prognosis in paediatric acute myeloid leukaemia undergoing hyperleukocytosis. Int J Lab Hematol 2023; 45:53-63. [PMID: 36064206 PMCID: PMC10087374 DOI: 10.1111/ijlh.13963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/16/2022] [Indexed: 01/18/2023]
Abstract
INTRODUCTION Paediatric AML patients with hyperleukocytosis have a poor prognosis and higher early mortality. Therefore, more studies are needed to explore relevant prognostic indicators and develop effective prevention strategies for this type of childhood AML. METHODS All original data were obtained from the TARGET database. First, we explored meaningful differentially expressed genes (DEGs) between the hyperleukocytosis group and the non-hyperleukocytosis group. Next, we screened and identified valuable target genes using univariate Cox regression, Cytoscape software, and Kaplan-Meier survival curves. Finally, the coexpressed genes, functional networks, and immune-related activities associated with the target gene were deeply analysed by the GeneMANIA, LinkedOmics, GEPIA2021, TISIDB, and GSCA databases. RESULTS We selected 1229 DEGs between the hyperleukocytosis group and the non-hyperleukocytosis group in paediatric AML patients. Among them, 495 DEGs were significantly linked with the overall survival of paediatric AML patients. Further, we discovered that CX3CR1 was a promising target gene. Meanwhile, we identified CX3CR1 as an independent prognostic predictor. Besides, we showed that CX3CR1 had strong physical interactions with CX3CL1. Additionally, functional network analysis suggested that CX3CR1 and its coexpressed genes modulated immune response pathways. Subsequent analysis found that immune cells with a high median value of CX3CR1 were monocytes, resting NK cells and CD8 T cells. Finally, we observed that CX3CR1 expression correlated with infiltrating levels of immune cells and immune signatures. CONCLUSION Elevated CX3CR1 expression may be an adverse prognostic indicator in paediatric AML patients undergoing hyperleukocytosis. Moreover, CX3CR1 may serve as an immunotherapeutic target for AML with hyperleukocytosis in children.
Collapse
Affiliation(s)
- Nan Mei
- Department of Hematology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Hong Su
- Data Science and Technology, The Hong Kong University of Science and Technology, Hong Kong, People's Republic of China
| | - Sha Gong
- Department of Hematology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Hanzhi Du
- Department of Hematology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Xiaojuan Zhang
- Department of Hematology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Lu Wang
- Department of Hematology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Huaiyu Wang
- Department of Hematology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| |
Collapse
|
44
|
Wang XC, Zhou H, Jiang WJ, Jiang P, Sun YC, Ni WJ. Effect of CX3CL1/CX3CR1 gene polymorphisms on the clinical efficacy of carboplatin therapy in Han patients with ovarian cancer. Front Genet 2023; 13:1065213. [PMID: 36685881 PMCID: PMC9852718 DOI: 10.3389/fgene.2022.1065213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 11/28/2022] [Indexed: 01/07/2023] Open
Abstract
Gene polymorphisms have a close relationship with the clinical effects of carboplatin for ovarian cancer. Here, we investigated the relationship between CX3CL1 and CX3CR1 genotypes and the clinical efficacy of carboplatin in ovarian cancer, thereby clarifying the unidentified genetic factors that influence the efficacy of carboplatin in ovarian cancer. Based on the above purposes, we used Sequenom Mass ARRAY technology to detect CX3CL1 and CX3CR1 gene polymorphisms in 127 patients with carboplatin-treated ovarian cancer. We performed various statistical analyses to evaluate the effects of CX3CL1 and CX3CR1 genetic variants, demographic data, and clinical characteristics on the effect of carboplatin therapy. The results show that the CX3CL1 genotypes rs223815 (G>C) and rs682082 (G>A) will significantly affect the clinical efficacy of carboplatin for ovarian cancer (p < 0.05), while the other six genotypes and all CX3CR1 genotypes have no significant effect (p > 0.05). In addition, only one population factor, age, had a significant effect on the clinical efficacy of carboplatin-treated ovarian cancer (p < 0.05). Based on the above research results, we concluded that the clinical efficacy of carboplatin in ovarian cancer patients was significantly correlated with age and CX3CL1 polymorphism factors; however, more in-depth effects and mechanisms need to be explored by large-scale, multicenter studies.
Collapse
Affiliation(s)
- Xin-Chen Wang
- Department of Pharmacy, Anhui Provincial Cancer Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Hong Zhou
- Department of Pharmacy, Anhui Provincial Cancer Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Wen-Jing Jiang
- Department of Gynecological Oncology, Anhui Provincial Cancer Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Peng Jiang
- Department of Pharmacy, Anhui Provincial Cancer Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Yan-Cai Sun
- Department of Pharmacy, Anhui Provincial Cancer Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Wei-Jian Ni
- Department of Pharmacy, Anhui Provincial Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui, China,*Correspondence: Wei-Jian Ni,
| |
Collapse
|
45
|
Murugan D, Murugesan V, Panchapakesan B, Rangasamy L. Nanoparticle Enhancement of Natural Killer (NK) Cell-Based Immunotherapy. Cancers (Basel) 2022; 14:cancers14215438. [PMID: 36358857 PMCID: PMC9653801 DOI: 10.3390/cancers14215438] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022] Open
Abstract
Simple Summary Natural killer cells are a part of the native immune response to cancer. NK cell-based immunotherapies are an emerging strategy to kill tumor cells. This paper reviews the role of NK cells, their mechanism of action for killing tumor cells, and the receptors which could serve as potential targets for signaling. In this review, the role of nanoparticles in NK cell activation and increased cytotoxicity of NK cells against cancer are highlighted. Abstract Natural killer (NK) cells are one of the first lines of defense against infections and malignancies. NK cell-based immunotherapies are emerging as an alternative to T cell-based immunotherapies. Preclinical and clinical studies of NK cell-based immunotherapies have given promising results in the past few decades for hematologic malignancies. Despite these achievements, NK cell-based immunotherapies have limitations, such as limited performance/low therapeutic efficiency in solid tumors, the short lifespan of NK cells, limited specificity of adoptive transfer and genetic modification, NK cell rejection by the patient’s immune system, insignificant infiltration of NK cells into the tumor microenvironment (TME), and the expensive nature of the treatment. Nanotechnology could potentially assist with the activation, proliferation, near-real time imaging, and enhancement of NK cell cytotoxic activity by guiding their function, analyzing their performance in near-real time, and improving immunotherapeutic efficiency. This paper reviews the role of NK cells, their mechanism of action in killing tumor cells, and the receptors which could serve as potential targets for signaling. Specifically, we have reviewed five different areas of nanotechnology that could enhance immunotherapy efficiency: nanoparticle-assisted immunomodulation to enhance NK cell activity, nanoparticles enhancing homing of NK cells, nanoparticle delivery of RNAi to enhance NK cell activity, genetic modulation of NK cells based on nanoparticles, and nanoparticle activation of NKG2D, which is the master regulator of all NK cell responses.
Collapse
Affiliation(s)
- Dhanashree Murugan
- School of Biosciences & Technology (SBST), Vellore Institute of Technology (VIT), Vellore 632014, India
- Drug Discovery Unit (DDU), Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore 632014, India
| | - Vasanth Murugesan
- Drug Discovery Unit (DDU), Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore 632014, India
- School of Advanced Sciences (SAS), Vellore Institute of Technology (VIT), Vellore 632014, India
| | - Balaji Panchapakesan
- Small Systems Laboratory, Department of Mechanical Engineering, Worcester Polytechnic Institute, Worcester, MA 01609, USA
- Correspondence: (B.P.); (L.R.)
| | - Loganathan Rangasamy
- Drug Discovery Unit (DDU), Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore 632014, India
- Correspondence: (B.P.); (L.R.)
| |
Collapse
|
46
|
Intestinal fatty acid binding protein (I-FABP) and CXC3L1 evaluation as biomarkers for patients at high-risk for coeliac disease in Johannesburg, South Africa. Cytokine 2022; 157:155945. [PMID: 35841826 DOI: 10.1016/j.cyto.2022.155945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 06/03/2022] [Accepted: 06/13/2022] [Indexed: 12/15/2022]
Abstract
Coeliac disease (CD) is an autoimmune disorder and one of the few gastroenteropathies with accurate serological testing. CD serology has decreased accuracy for patients on a gluten-free diet and for monitoring mucosal healing. New ancillary tests would, therefore, be useful. Intestinal Fatty Acid Binding Protein (I-FABP) and CX3CL1 (Fractalkine) are two promising biomarkers for CD but haven't been examined in patients who are at a high-risk for CD such as patients with type one diabetes (TID). This study, therefore, aimed to investigate serum levels of I-FABP and CX3CL1 in a cohort of South African patients with TID at a high-risk of developing CD. The serum I-FABP levels were significantly higher in CD-positive patients compared to CD-negative individuals (p = 0.03). No significant differences in the serum CX3CL1 levels were detected although this may reflect the impact of the comorbid autoimmune diseases had on the serum CX3CL1 levels. In conclusion, this study is the first to assess the levels of these biomarkers in a multiethnic population with comorbid autoimmune disease and determined I-FABP to be the more promising biomarker in such clinical contexts. Future research should focus on a diverse biomarker panel and longitudinal follow-up of patients at a high-risk for CD.
Collapse
|
47
|
Rath M, Schwefel K, Malinverno M, Skowronek D, Leopoldi A, Pilz RA, Biedenweg D, Bekeschus S, Penninger JM, Dejana E, Felbor U. Contact-dependent signaling triggers tumor-like proliferation of CCM3 knockout endothelial cells in co-culture with wild-type cells. Cell Mol Life Sci 2022; 79:340. [PMID: 35661927 PMCID: PMC9166869 DOI: 10.1007/s00018-022-04355-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 04/21/2022] [Accepted: 05/05/2022] [Indexed: 12/18/2022]
Abstract
Cerebral cavernous malformations (CCM) are low-flow vascular lesions prone to cause severe hemorrhage-associated neurological complications. Pathogenic germline variants in CCM1, CCM2, or CCM3 can be identified in nearly 100% of CCM patients with a positive family history. In line with the concept that tumor-like mechanisms are involved in CCM formation and growth, we here demonstrate an abnormally increased proliferation rate of CCM3-deficient endothelial cells in co-culture with wild-type cells and in mosaic human iPSC-derived vascular organoids. The observation that NSC59984, an anticancer drug, blocked the abnormal proliferation of mutant endothelial cells further supports this intriguing concept. Fluorescence-activated cell sorting and RNA sequencing revealed that co-culture induces upregulation of proangiogenic chemokine genes in wild-type endothelial cells. Furthermore, genes known to be significantly downregulated in CCM3−/− endothelial cell mono-cultures were upregulated back to normal levels in co-culture with wild-type cells. These results support the hypothesis that wild-type ECs facilitate the formation of a niche that promotes abnormal proliferation of mutant ECs. Thus, targeting the cancer-like features of CCMs is a promising new direction for drug development.
Collapse
|
48
|
Nakamura M, Magara T, Kano S, Matsubara A, Kato H, Morita A. Tertiary Lymphoid Structures and Chemokine Landscape in Virus-Positive and Virus-Negative Merkel Cell Carcinoma. Front Oncol 2022; 12:811586. [PMID: 35223493 PMCID: PMC8867579 DOI: 10.3389/fonc.2022.811586] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/17/2022] [Indexed: 12/05/2022] Open
Abstract
Tertiary lymphoid structures (TLSs) are used as biomarkers in many cancers for predicting the prognosis and assessing the response to immunotherapy. In Merkel cell carcinoma (MCC), TLSs have only been examined in MCPyV-positive cases. Here, we examined the prognostic value of the presence or absence of TLSs in 61 patients with MCC, including MCPyV-positive and MCPyV-negative cases. TLS-positive samples had a significantly better prognosis than TLS-negative samples. MCPyV-positive samples had a good prognosis with or without TLSs, and MCPyV-negative/TLS-positive samples had a similarly good prognosis as MCPyV-positive samples. Only MCPyV-negative/TLS-negative samples had a significantly poor prognosis. All cases with spontaneous regression were MCPyV-positive/TLS-positive. We also performed a comprehensive analysis of the chemokines associated with TLS formation using next-generation sequencing (NGS). The RNA sequencing results revealed 5 chemokine genes, CCL5, CCR2, CCR7, CXCL9, and CXCL13, with significantly high expression in TLS-positive samples compared with TLS-negative samples in both MCPyV-positive and MCPyV-negative samples. Only 2 chemokine genes, CXCL10 and CX3CR1, had significantly different expression levels in the presence or absence of MCPyV infection in TLS-negative samples. Patients with high CXCL13 or CCL5 expression have a significantly better prognosis than those with low expression. In conclusion, the presence of TLSs can be a potential prognostic marker even in cohorts that include MCPyV-negative cases. Chemokine profiles may help us understand the tumor microenvironment in patients with MCPyV-positive or MCPyV-negative MCC and may be a useful prognostic marker in their own right.
Collapse
Affiliation(s)
- Motoki Nakamura
- Department of Geriatric and Environmental Dermatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Tetsuya Magara
- Department of Geriatric and Environmental Dermatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Shinji Kano
- Department of Geriatric and Environmental Dermatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Akihiro Matsubara
- Department of Geriatric and Environmental Dermatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Hiroshi Kato
- Department of Geriatric and Environmental Dermatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Akimichi Morita
- Department of Geriatric and Environmental Dermatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| |
Collapse
|
49
|
Modulatory Effects of Fractalkine on Inflammatory Response and Iron Metabolism of Lipopolysaccharide and Lipoteichoic Acid-Activated THP-1 Macrophages. Int J Mol Sci 2022; 23:ijms23052629. [PMID: 35269771 PMCID: PMC8910483 DOI: 10.3390/ijms23052629] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 11/16/2022] Open
Abstract
Fractalkine (CX3CL1) acts as a chemokine as well as a regulator of iron metabolism. Fractalkine binds CX3CR1, the fractalkine receptor on the surface of monocytes/macrophages regulating different intracellular signalling pathways such as mitogen-activated protein kinase (MAPK), phospholipase C (PLC) and NFκB contributing to the production of pro-inflammatory cytokine synthesis, and the regulation of cell growth, differentiation, proliferation and metabolism. In this study, we focused on the modulatory effects of fractalkine on the immune response and on the iron metabolism of Escherichia coli and Pseudomonas aeruginosa lipopolysaccharides (LPS) and Staphylococcus aureus lipoteichoic acid (LTA) activated THP-1 cells to get a deeper insight into the role of soluble fractalkine in the regulation of the innate immune system. Pro-inflammatory cytokine secretions of the fractalkine-treated, LPS/LTA-treated, and co-treated THP-1 cells were determined using ELISArray and ELISA measurements. We analysed the protein expression levels of signalling molecules regulated by CX3CR1 as well as hepcidin, the major iron regulatory hormone, the iron transporters, the iron storage proteins and mitochondrial iron utilization. The results showed that fractalkine treatment alone did not affect the pro-inflammatory cytokine secretion, but it was proposed to act as a regulator of the iron metabolism of THP-1 cells. In the case of two different LPS and one type of LTA with fractalkine co-treatments, fractalkine was able to alter the levels of signalling proteins (NFκB, PSTAT3, Nrf2/Keap-1) regulating the expression of pro-inflammatory cytokines as well as hepcidin, and the iron storage and utilization of the THP-1 cells.
Collapse
|
50
|
Li J, Shi H, Yuan Z, Wu Z, Li H, Liu Y, Lu M, Lu M. The role of SPI1-TYROBP-FCER1G network in oncogenesis and prognosis of osteosarcoma, and its association with immune infiltration. BMC Cancer 2022; 22:108. [PMID: 35078433 PMCID: PMC8790913 DOI: 10.1186/s12885-022-09216-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/20/2022] [Indexed: 12/27/2022] Open
Abstract
Osteosarcoma is an aggressive malignant bone sarcoma worldwide. A causal gene network with specific functions underlying both the development and progression of OS was still unclear. Here we firstly identified the differentially expressed genes (DEGs) between control and OS samples, and then defined the hub genes and top clusters in the protein–protein interaction (PPI) network of these DEGs. By focusing on the hub gene TYROBP in the top 1 cluster, a conserved TYROBP co-expression network was identified. Then the effect of the network on OS overall survival was analyzed. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses and Gene Set Enrichment Analysis (GSEA) were used to explore the functions of the network. XCell platform and ssGSEA algorithm were conducted to estimate the status of immune infiltration. ChEA3 platform, GSEA enrichment analysis, and Drug Pair Seeker (DPS) were used to predict the key transcription factor and its upstream signal. We identified the downregulated SPI1-TYROBP-FCER1G network in OS, which were significantly enriched in immune-related functions. We also defined a two-gene signature (SPI1/FCER1G) that can predict poorer OS overall survival and the attenuated immune infiltration when downregulated. The SPI1-TYROBP-FCER1G network were potentially initiated by transcription factor SPI1 and would lead to the upregulated CD86, MHC-II, CCL4/CXCL10/CX3CL1 and hence increased immune infiltrations. With this study, we could better explore the mechanism of OS oncogenesis and metastasis for developing new therapies.
Collapse
|