1
|
Zeng S, Liu L, Cheng Q, Chen W, Wang M, Wu M, Wang Z, Du J, Xiang R, Qi Q, Jia T. Novel Mitochondria-Targeted Asymmetric Heptamethine Cyanine Dye for Cancer Targeted NIR Imaging and Potent Necrosis and Senescence Induction with Prolonged Retention. J Med Chem 2025; 68:8174-8189. [PMID: 40211757 DOI: 10.1021/acs.jmedchem.4c02879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
Developing small molecules that inherently integrate highly tumor-targeted near-infrared fluorescence (NIRF) imaging with potent therapeutic effects remains challenging in anticancer theranostics. Here, we synthesized and characterized a series of heptamethine cyanine PSs with symmetric and asymmetric structures. Among them, we first discovered that asymmetric structures significantly enhanced tumor targeting. Also, a novel mitochondria-targeted asymmetric compound 17 exhibited superior NIRF imaging capability, exceptional tumor selectivity (TNR = 8.54), and strong antitumor activity. Compound 17 selectively accumulates in mitochondria, driven by MMP, where it generates ROS, induces DNA damage, and triggers senescence, apoptosis, and necrosis. Its strong therapeutic efficacy was demonstrated across multiple models, including patient-derived xenograft (PDX), where it allowed precise tumor visualization, significantly suppressed tumor growth with a single administration, and showed no detectable toxicity. Notably, the single-dye small molecule 17 was retained in tumors for over 120 h, enabling prolonged imaging, targeted therapy, and drug delivery for integrated antitumor treatment.
Collapse
Affiliation(s)
- Siyi Zeng
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Linxia Liu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Qi Cheng
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Wanlei Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Maolin Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Mingxia Wu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Zhu Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Junrong Du
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Run Xiang
- Department of Thoracic Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu 610041, China
| | - Qingrong Qi
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Tao Jia
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
- NHC Key Laboratory of Nuclear Technology Medical Transformation (Mianyang Central Hospital), Mianyang 621000, China
- Sichuan Provincial Engineering Research Center of Nuclear Medical Equipment Translation and Application (Mianyang Central Hospital), Mianyang 621000, China
| |
Collapse
|
2
|
Hu D, Zha M, Zheng H, Gao D, Sheng Z. Recent Advances in Indocyanine Green-Based Probes for Second Near-Infrared Fluorescence Imaging and Therapy. RESEARCH (WASHINGTON, D.C.) 2025; 8:0583. [PMID: 39830366 PMCID: PMC11739436 DOI: 10.34133/research.0583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/11/2024] [Accepted: 12/22/2024] [Indexed: 01/22/2025]
Abstract
Fluorescence imaging, a highly sensitive molecular imaging modality, is being increasingly integrated into clinical practice. Imaging within the second near-infrared biological window (NIR-II; 1,000 to 1,700 nm), also referred to as shortwave infrared, has received substantial attention because of its markedly reduced autofluorescence, deeper tissue penetration, and enhanced spatiotemporal resolution as compared to traditional near-infrared (NIR) imaging. Indocyanine green (ICG), a US Food and Drug Administration-approved NIR fluorophore, has long been used in clinical applications, including blood vessel angiography, vascular perfusion monitoring, and tumor detection. Recent advancements in NIR-II imaging technology have revitalized interest in ICG, revealing its extended tail fluorescence beyond 1,000 nm and reaffirming its potential as a clinically translatable NIR-II fluorophore for in vivo imaging and theranostic applications for diagnosing various diseases. This review emphasizes the notable advances in the use of ICG and its derivatives for NIR-II imaging and image-guided therapy from both fundamental and clinical perspectives. We also provide a concise conclusion and discuss the challenges and future opportunities with NIR-II imaging using clinically approved fluorophores.
Collapse
Affiliation(s)
- Dehong Hu
- Research Center for Advanced Detection Materials and Medical Imaging Devices, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology,
Chinese Academy of Sciences, Shenzhen 518055, P. R. China
- State Key Laboratory of Biomedical lmaging Science and System, Shenzhen 518055, P. R. China
| | - Menglei Zha
- Dongguan Key Laboratory of Chronic Inflammatory Diseases, the First Dongguan Affiliated Hospital,
Guangdong Medical University, Dongguan 523710, P. R. China
| | - Hairong Zheng
- Research Center for Advanced Detection Materials and Medical Imaging Devices, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology,
Chinese Academy of Sciences, Shenzhen 518055, P. R. China
- State Key Laboratory of Biomedical lmaging Science and System, Shenzhen 518055, P. R. China
| | - Duyang Gao
- Research Center for Advanced Detection Materials and Medical Imaging Devices, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology,
Chinese Academy of Sciences, Shenzhen 518055, P. R. China
- State Key Laboratory of Biomedical lmaging Science and System, Shenzhen 518055, P. R. China
| | - Zonghai Sheng
- Research Center for Advanced Detection Materials and Medical Imaging Devices, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology,
Chinese Academy of Sciences, Shenzhen 518055, P. R. China
- State Key Laboratory of Biomedical lmaging Science and System, Shenzhen 518055, P. R. China
| |
Collapse
|
3
|
Sun K, Wang B, Li M, Ge Y, An L, Zeng D, Shen Y, Wang P, Li M, Hu X, Yu XA. A Novel Multi-Effect Photosensitizer for Tumor Destruction via Multimodal Imaging Guided Synergistic Cancer Phototherapy. Int J Nanomedicine 2024; 19:6377-6397. [PMID: 38952677 PMCID: PMC11215494 DOI: 10.2147/ijn.s461843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 06/12/2024] [Indexed: 07/03/2024] Open
Abstract
Background How to ingeniously design multi-effect photosensitizers (PSs), including multimodal imaging and multi-channel therapy, is of great significance for highly spatiotemporal controllable precise phototherapy of malignant tumors. Methods Herein, a novel multifunctional zinc(II) phthalocyanine-based planar micromolecule amphiphile (ZnPc 1) was successfully designed and synthesized, in which N atom with photoinduced electron transfer effect was introduced to enhance the near-infrared absorbance and nonradiative heat generation. After simple self-assembling into nanoparticles (NPs), ZnPc 1 NPs would exhibit enhanced multimodal imaging properties including fluorescence (FL) imaging (FLI) /photoacoustic (PA) imaging (PAI) /infrared (IR) thermal imaging, which was further used to guide the combined photodynamic therapy (PDT) and photothermal therapy (PTT). Results It was that under the self-guidance of the multimodal imaging, ZnPc 1 NPs could precisely pinpoint the tumor from the vertical and horizontal boundaries achieving highly efficient and accurate treatment of cancer. Conclusion Accordingly, the integration of FL/PA/IR multimodal imaging and PDT/PTT synergistic therapy pathway into one ZnPc 1 could provide a blueprint for the next generation of phototherapy, which offered a new paradigm for the integration of diagnosis and treatment in tumor and a promising prospect for precise cancer therapy.
Collapse
Affiliation(s)
- Kunhui Sun
- Key Laboratory for Green Chemical Engineering Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, People’s Republic of China
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, Shenzhen Institute for Drug Control, Shenzhen, People’s Republic of China
| | - Bing Wang
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, Shenzhen Institute for Drug Control, Shenzhen, People’s Republic of China
| | - Mengnan Li
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, Shenzhen Institute for Drug Control, Shenzhen, People’s Republic of China
| | - Yanli Ge
- Key Laboratory for Green Chemical Engineering Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, People’s Republic of China
| | - Lijun An
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, Shenzhen Institute for Drug Control, Shenzhen, People’s Republic of China
| | - Duanna Zeng
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, Shenzhen Institute for Drug Control, Shenzhen, People’s Republic of China
| | - Yuhan Shen
- Key Laboratory for Green Chemical Engineering Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, People’s Republic of China
| | - Ping Wang
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, Shenzhen Institute for Drug Control, Shenzhen, People’s Republic of China
| | - Meifang Li
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, Shenzhen Institute for Drug Control, Shenzhen, People’s Republic of China
| | - Xuelei Hu
- Key Laboratory for Green Chemical Engineering Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, People’s Republic of China
| | - Xie-An Yu
- Key Laboratory for Green Chemical Engineering Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, People’s Republic of China
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, Shenzhen Institute for Drug Control, Shenzhen, People’s Republic of China
| |
Collapse
|
4
|
Rainu SK, Ramachandran RG, Parameswaran S, Krishnakumar S, Singh N. Advancements in Intraoperative Near-Infrared Fluorescence Imaging for Accurate Tumor Resection: A Promising Technique for Improved Surgical Outcomes and Patient Survival. ACS Biomater Sci Eng 2023; 9:5504-5526. [PMID: 37661342 DOI: 10.1021/acsbiomaterials.3c00828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Clear surgical margins for solid tumor resection are essential for preventing cancer recurrence and improving overall patient survival. Complete resection of tumors is often limited by a surgeon's ability to accurately locate malignant tissues and differentiate them from healthy tissue. Therefore, techniques or imaging modalities are required that would ease the identification and resection of tumors by real-time intraoperative visualization of tumors. Although conventional imaging techniques such as positron emission tomography (PET), computed tomography (CT), magnetic resonance imaging (MRI), or radiography play an essential role in preoperative diagnostics, these cannot be utilized in intraoperative tumor detection due to their large size, high cost, long imaging time, and lack of cancer specificity. The inception of several imaging techniques has paved the way to intraoperative tumor margin detection with a high degree of sensitivity and specificity. Particularly, molecular imaging using near-infrared fluorescence (NIRF) based nanoprobes provides superior imaging quality due to high signal-to-noise ratio, deep penetration to tissues, and low autofluorescence, enabling accurate tumor resection and improved survival rates. In this review, we discuss the recent developments in imaging technologies, specifically focusing on NIRF nanoprobes that aid in highly specific intraoperative surgeries with real-time recognition of tumor margins.
Collapse
Affiliation(s)
- Simran Kaur Rainu
- Center for Biomedical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Remya Girija Ramachandran
- L&T Ocular Pathology Department, Vision Research Foundation, Kamalnayan Bajaj Institute for Research in Vision and Ophthalmology, Chennai 600006, India
| | - Sowmya Parameswaran
- L&T Ocular Pathology Department, Vision Research Foundation, Kamalnayan Bajaj Institute for Research in Vision and Ophthalmology, Chennai 600006, India
| | - Subramanian Krishnakumar
- L&T Ocular Pathology Department, Vision Research Foundation, Kamalnayan Bajaj Institute for Research in Vision and Ophthalmology, Chennai 600006, India
| | - Neetu Singh
- Center for Biomedical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
- Biomedical Engineering Unit, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| |
Collapse
|
5
|
Ju J, Xu D, Mo X, Miao J, Xu L, Ge G, Zhu X, Deng H. Multifunctional polysaccharide nanoprobes for biological imaging. Carbohydr Polym 2023; 317:121048. [PMID: 37364948 DOI: 10.1016/j.carbpol.2023.121048] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/19/2023] [Accepted: 05/20/2023] [Indexed: 06/28/2023]
Abstract
Imaging and tracking biological targets or processes play an important role in revealing molecular mechanisms and disease states. Bioimaging via optical, nuclear, or magnetic resonance techniques enables high resolution, high sensitivity, and high depth imaging from the whole animal down to single cells via advanced functional nanoprobes. To overcome the limitations of single-modality imaging, multimodality nanoprobes have been engineered with a variety of imaging modalities and functionalities. Polysaccharides are sugar-containing bioactive polymers with superior biocompatibility, biodegradability, and solubility. The combination of polysaccharides with single or multiple contrast agents facilitates the development of novel nanoprobes with enhanced functions for biological imaging. Nanoprobes constructed with clinically applicable polysaccharides and contrast agents hold great potential for clinical translations. This review briefly introduces the basics of different imaging modalities and polysaccharides, then summarizes the recent progress of polysaccharide-based nanoprobes for biological imaging in various diseases, emphasizing bioimaging with optical, nuclear, and magnetic resonance techniques. The current issues and future directions regarding the development and applications of polysaccharide nanoprobes are further discussed.
Collapse
Affiliation(s)
- Jingxuan Ju
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Danni Xu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xuan Mo
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jiaqian Miao
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Li Xu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Guangbo Ge
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Xinyuan Zhu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Hongping Deng
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
6
|
Li H, Cheng S, Zhai J, Lei K, Zhou P, Cai K, Li J. Platinum based theranostics nanoplatforms for antitumor applications. J Mater Chem B 2023; 11:8387-8403. [PMID: 37581251 DOI: 10.1039/d3tb01035j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
Platinum (Pt) based nanoplatforms are biocompatible nanoagents with photothermal antitumor performance, while exhibiting excellent radiotherapy sensitization properties. Pt-nanoplatforms have extensive research prospects in the realm of cancer treatment due to their highly selective and minimally invasive treatment mode with low damage, and integrated diagnosis and treatment with image monitoring and collaborative drug delivery. Platinum based anticancer chemotherapeutic drugs can kill tumor cells by damaging DNA through chemotherapy. Meanwhile, Pt-nanoplatforms also have good electrocatalytic activity, which can mediate novel electrodynamic therapy. Simultaneously, Pt(II) based compounds also have potential as photosensitizers in photodynamic therapy for malignant tumors. Pt-nanoplatforms can also modulate the immunosuppressive environment and synergistically ablate tumor cells in combination with immune checkpoint inhibitors. This article reviews the research progress of platinum based nanoplatforms in new technologies for cancer therapy, starting from widely representative examples of platinum based nanoplatforms in chemotherapy, electrodynamic therapy, photodynamic therapy, photothermal therapy, and immunotherapy. Finally, multimodal imaging techniques of platinum based nanoplatforms for biomedical diagnosis are briefly discussed.
Collapse
Affiliation(s)
- Heying Li
- College of Medical Technology and Engineering, The 1st Affiliated Hospital, Henan University of Science and Technology, Luoyang 471000, China.
| | - Shaowen Cheng
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Jingming Zhai
- College of Medical Technology and Engineering, The 1st Affiliated Hospital, Henan University of Science and Technology, Luoyang 471000, China.
| | - Kun Lei
- College of Medical Technology and Engineering, The 1st Affiliated Hospital, Henan University of Science and Technology, Luoyang 471000, China.
| | - Ping Zhou
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China.
| | - Jinghua Li
- College of Medical Technology and Engineering, The 1st Affiliated Hospital, Henan University of Science and Technology, Luoyang 471000, China.
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
7
|
Hogan KJ, Perez MR, Mikos AG. Extracellular matrix component-derived nanoparticles for drug delivery and tissue engineering. J Control Release 2023; 360:888-912. [PMID: 37482344 DOI: 10.1016/j.jconrel.2023.07.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/16/2023] [Accepted: 07/18/2023] [Indexed: 07/25/2023]
Abstract
The extracellular matrix (ECM) consists of a complex combination of proteins, proteoglycans, and other biomolecules. ECM-based materials have been demonstrated to have high biocompatibility and bioactivity, which may be harnessed for drug delivery and tissue engineering applications. Herein, nanoparticles incorporating ECM-based materials and their applications in drug delivery and tissue engineering are reviewed. Proteins such as gelatin, collagen, and fibrin as well as glycosaminoglycans including hyaluronic acid, chondroitin sulfate, and heparin have been employed for cancer therapeutic delivery, gene delivery, and wound healing and regenerative medicine. Strategies for modifying and functionalizing these materials with synthetic and natural polymers or to enable stimuli-responsive degradation and drug release have increased the efficacy of these materials and nano-systems. The incorporation and modification of ECM-based materials may be used to drive drug targeting and increase tissue-specific cell differentiation more effectively.
Collapse
Affiliation(s)
- Katie J Hogan
- Department of Bioengineering, Rice University, Houston, TX, USA; Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, USA
| | - Marissa R Perez
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Antonios G Mikos
- Department of Bioengineering, Rice University, Houston, TX, USA.
| |
Collapse
|
8
|
Bortot B, Mangogna A, Di Lorenzo G, Stabile G, Ricci G, Biffi S. Image-guided cancer surgery: a narrative review on imaging modalities and emerging nanotechnology strategies. J Nanobiotechnology 2023; 21:155. [PMID: 37202750 DOI: 10.1186/s12951-023-01926-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/11/2023] [Indexed: 05/20/2023] Open
Abstract
Surgical resection is the cornerstone of solid tumour treatment. Current techniques for evaluating margin statuses, such as frozen section, imprint cytology, and intraoperative ultrasound, are helpful. However, an intraoperative assessment of tumour margins that is accurate and safe is clinically necessary. Positive surgical margins (PSM) have a well-documented negative effect on treatment outcomes and survival. As a result, surgical tumour imaging methods are now a practical method for reducing PSM rates and improving the efficiency of debulking surgery. Because of their unique characteristics, nanoparticles can function as contrast agents in image-guided surgery. While most image-guided surgical applications utilizing nanotechnology are now in the preclinical stage, some are beginning to reach the clinical phase. Here, we list the various imaging techniques used in image-guided surgery, such as optical imaging, ultrasound, computed tomography, magnetic resonance imaging, nuclear medicine imaging, and the most current developments in the potential of nanotechnology to detect surgical malignancies. In the coming years, we will see the evolution of nanoparticles tailored to specific tumour types and the introduction of surgical equipment to improve resection accuracy. Although the promise of nanotechnology for producing exogenous molecular contrast agents has been clearly demonstrated, much work remains to be done to put it into practice.
Collapse
Affiliation(s)
- Barbara Bortot
- Obstetrics and Gynecology, Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| | - Alessandro Mangogna
- Obstetrics and Gynecology, Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| | - Giovanni Di Lorenzo
- Obstetrics and Gynecology, Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| | - Guglielmo Stabile
- Obstetrics and Gynecology, Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| | - Giuseppe Ricci
- Obstetrics and Gynecology, Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Stefania Biffi
- Obstetrics and Gynecology, Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy.
| |
Collapse
|
9
|
Muilenburg KM, Isder CC, Radhakrishnan P, Batra SK, Ly QP, Carlson MA, Bouvet M, Hollingsworth MA, Mohs AM. Mucins as contrast agent targets for fluorescence-guided surgery of pancreatic cancer. Cancer Lett 2023; 561:216150. [PMID: 36997106 PMCID: PMC10150776 DOI: 10.1016/j.canlet.2023.216150] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/16/2023] [Accepted: 03/26/2023] [Indexed: 03/31/2023]
Abstract
Pancreatic cancer is difficult to resect due to its unique challenges, often leading to incomplete tumor resections. Fluorescence-guided surgery (FGS), also known as intraoperative molecular imaging and optical surgical navigation, is an intraoperative tool that can aid surgeons in complete tumor resection through an increased ability to detect the tumor. To target the tumor, FGS contrast agents rely on biomarkers aberrantly expressed in malignant tissue compared to normal tissue. These biomarkers allow clinicians to identify the tumor and its stage before surgical resection and provide a contrast agent target for intraoperative imaging. Mucins, a family of glycoproteins, are upregulated in malignant tissue compared to normal tissue. Therefore, these proteins may serve as biomarkers for surgical resection. Intraoperative imaging of mucin expression in pancreatic cancer can potentially increase the number of complete resections. While some mucins have been studied for FGS, the potential ability to function as a biomarker target extends to the entire mucin family. Therefore, mucins are attractive proteins to investigate more broadly as FGS biomarkers. This review summarizes the biomarker traits of mucins and their potential use in FGS for pancreatic cancer.
Collapse
Affiliation(s)
- Kathryn M Muilenburg
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, 505 S 45th St, Omaha, NE, 68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, 505 S 45th St, Omaha, NE, 68198, USA.
| | - Carly C Isder
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, 505 S 45th St, Omaha, NE, 68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, 505 S 45th St, Omaha, NE, 68198, USA.
| | - Prakash Radhakrishnan
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, 505 S 45th St, Omaha, NE, 68198, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 505 S 45th St, Omaha, NE, 68198, USA.
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, S 45th St, Omaha, NE, 68198, USA.
| | - Quan P Ly
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, 505 S 45th St, Omaha, NE, 68198, USA; Department of Surgery, University of Nebraska Medical Center, 983280 Nebraska Medical Center, Omaha, NE, 68198-3280, USA.
| | - Mark A Carlson
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, 505 S 45th St, Omaha, NE, 68198, USA; Department of Surgery, University of Nebraska Medical Center, 983280 Nebraska Medical Center, Omaha, NE, 68198-3280, USA.
| | - Michael Bouvet
- Department of Surgery, University of California San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA; VA San Diego Healthcare System, 3350 La Jolla Village Dr, San Diego, CA, 92161, USA.
| | - Michael A Hollingsworth
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, 505 S 45th St, Omaha, NE, 68198, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 505 S 45th St, Omaha, NE, 68198, USA.
| | - Aaron M Mohs
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, 505 S 45th St, Omaha, NE, 68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, 505 S 45th St, Omaha, NE, 68198, USA; Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, S 45th St, Omaha, NE, 68198, USA.
| |
Collapse
|
10
|
Wu PH, Cheng PF, Kaveevivitchai W, Chen TH. MOF-based nanozyme grafted with cooperative Pt(IV) prodrug for synergistic anticancer therapy. Colloids Surf B Biointerfaces 2023; 225:113264. [PMID: 36921426 DOI: 10.1016/j.colsurfb.2023.113264] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/15/2023] [Accepted: 03/07/2023] [Indexed: 03/11/2023]
Abstract
Manipulating Fenton chemistry in tumor microenvironment (TME) for the generation of reactive oxygen species is an effective strategy for chemodynamic therapy. However, this is usually restricted by limited intracellular content of H2O2 and insufficient acidic environment at the tumor site. Herein, a ferric metal-organic framework (MOF) is covalently grafted with a prodrug of cisplatin (Pt(IV) prodrug) and loaded with a biocatalyst glucose oxidase (GOx) to afford a nanozyme MOF-Pt(IV)@GOx for cascade reactions. In this system, the attached Pt(IV) prodrug on MOF plays a significant role in the cooperative enhancement of GOx loading and chemotherapy. The high concentration of glutathione in TME reduces Fe(III) to Fe(II) for Fenton reaction, and converts Pt(IV) prodrug to cisplatin for DNA targeting and H2O2 production. Meanwhile, glucose oxidation catalyzed by GOx not only consumes glucose for starvation therapy, but also promotes the intracellular acidity and H2O2 supply in TME, which are in favor of Fenton reaction. Both in vitro and in vivo studies demonstrate that MOF-Pt(IV)@GOx enables remarkable anticancer efficacy due to the synergistic trimodal therapy consisting of ferroptosis, starvation therapy, and chemotherapy.
Collapse
Affiliation(s)
- Ping-Hsuan Wu
- Department of Chemical Engineering, Hierarchical Green-Energy Materials (Hi-GEM) Research Center, National Cheng Kung University, Tainan City 70101, Taiwan; School of Pharmacy, National Cheng Kung University, Tainan City 70101, Taiwan
| | - Pei-Fen Cheng
- Department of Chemical Engineering, Hierarchical Green-Energy Materials (Hi-GEM) Research Center, National Cheng Kung University, Tainan City 70101, Taiwan; School of Pharmacy, National Cheng Kung University, Tainan City 70101, Taiwan
| | - Watchareeya Kaveevivitchai
- Department of Chemical Engineering, Hierarchical Green-Energy Materials (Hi-GEM) Research Center, National Cheng Kung University, Tainan City 70101, Taiwan
| | - Teng-Hao Chen
- School of Pharmacy, National Cheng Kung University, Tainan City 70101, Taiwan.
| |
Collapse
|
11
|
A Simple and Sensitive LC-MS/MS for Quantitation of ICG in Rat Plasma: Application to a Pre-Clinical Pharmacokinetic Study. SEPARATIONS 2023. [DOI: 10.3390/separations10020066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
A selective, sensitive, and rapid liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) method was developed and validated for the quantitation of ICG in rat plasma. The chromatographic separation was achieved using an ACE excel C18 (3 µm, 50 × 3.0 mm) column, with a mobile phase composition of 0.1% formic acid and 0.1% formic acid in acetonitrile, using a gradient flow at a rate of 0.3 mL/min. The MS was operated at a unit resolution in the multiple reaction monitoring mode, using the precursor ion → product ion combinations of 753.3 → 330.2 m/z (ICG) and 747.45 → 717.50 (Cy7.5 amine) with a run time of 5 min. The assay was linear over a concentration range of 1–1000 ng/mL with a regression coefficient (r2) of 0.998 or better. The inter and intra-batch precision (% relative standard deviation, %RSD) was lower than 13.5%, with accuracy (%Bias) between −10.03% and 11.56%. The ICG was stable under laboratory storage and handling conditions. The validated method was successfully applied to preclinical pharmacokinetic (PK) studies of ICG at a dose of 0.39 mg/kg in rats. PK parameters suggested the highest plasma concentration within 2 min of intravenous dosing with restricted systemic distribution and rapid clearance.
Collapse
|
12
|
Wu J, Qiao H. Medical Imaging Technology and Imaging Agents. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1199:15-38. [PMID: 37460725 DOI: 10.1007/978-981-32-9902-3_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Medical imaging is a technology that studies the interaction between human body and irradiations of X-ray, ultrasound, magnetic field, etc. and represents anatomical structures of human organs/tissues with the implication of irradiation attenuation in the form of grayscales. With these medical images, detailed information on health status and disease diagnosis may be judged by clinical physicians to determine an appropriate therapy approach. This chapter will give a systematic introduction on the modalities, classifications, basic principles, and biomedical applications of traditional medical imaging along with the types, construction, and major features of the corresponding contrast agents or imaging probes.
Collapse
Affiliation(s)
- Jieting Wu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Huanhuan Qiao
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China.
| |
Collapse
|
13
|
Olson MT, Aguilar EN, Brooks CL, Isder CC, Muilenburg KM, Talmon GA, Ly QP, Carlson MA, Hollingsworth MA, Mohs AM. Preclinical Evaluation of a Humanized, Near-Infrared Fluorescent Antibody for Fluorescence-Guided Surgery of MUC16-Expressing Pancreatic Cancer. Mol Pharm 2022; 19:3586-3599. [PMID: 35640060 PMCID: PMC9864431 DOI: 10.1021/acs.molpharmaceut.2c00203] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Surgery remains the only potentially curative treatment option for pancreatic cancer, but resections are made more difficult by infiltrative disease, proximity of critical vasculature, peritumoral inflammation, and dense stroma. Surgeons are limited to tactile and visual cues to differentiate cancerous tissue from normal tissue. Furthermore, translating preoperative images to the intraoperative setting poses additional challenges for tumor detection, and can result in undetected and unresected lesions. Thus, pancreatic ductal adenocarcinoma (PDAC) has high rates of incomplete resections, and subsequently, disease recurrence. Fluorescence-guided surgery (FGS) has emerged as a method to improve intraoperative detection of cancer and ultimately improve surgical outcomes. Initial clinical trials have demonstrated feasibility of FGS for PDAC, but there are limited targeted probes under investigation for this disease, highlighting the need for development of additional novel biomarkers to reflect the PDAC heterogeneity. MUCIN16 (MUC16) is a glycoprotein that is overexpressed in 60-80% of PDAC. In our previous work, we developed a MUC16-targeted murine antibody near-infrared conjugate, termed AR9.6-IRDye800, that showed efficacy in detecting pancreatic cancer. To build on the translational potential of this imaging probe, a humanized variant of the AR9.6 fluorescent conjugate was developed and investigated herein. This conjugate, termed huAR9.6-IRDye800, showed equivalent binding properties to its murine counterpart. Using an optimized dye:protein ratio of 1:1, in vivo studies demonstrated high tumor to background ratios in MUC16-expressing tumor models, and delineation of tumors in a patient-derived xenograft model. Safety, biodistribution, and toxicity studies were conducted. These studies demonstrated that huAR9.6-IRDye800 was safe, did not yield evidence of histological toxicity, and was well tolerated in vivo. The results from this work suggest that AR9.6-IRDye800 is an efficacious and safe imaging agent for identifying pancreatic cancer intraoperatively through fluorescence-guided surgery.
Collapse
Affiliation(s)
- Madeline T. Olson
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198
| | - Eric N. Aguilar
- Department of Chemistry and Biochemistry, California State University Fresno, Fresno, CA 93740
| | - Cory L. Brooks
- Department of Chemistry and Biochemistry, California State University Fresno, Fresno, CA 93740
| | - Carly C. Isder
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198
| | - Kathtyn M. Muilenburg
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198
| | - Geoffrey A. Talmon
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198
| | - Quan P. Ly
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE 68198
| | - Mark A. Carlson
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE 68198
- Department of Surgery, VA Medical Center, Omaha, NE 68105
| | - Michael A. Hollingsworth
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198
| | - Aaron M. Mohs
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198
| |
Collapse
|
14
|
Liu K, Huang X. Synthesis of self-assembled hyaluronan based nanoparticles and their applications in targeted imaging and therapy. Carbohydr Res 2022; 511:108500. [PMID: 35026559 PMCID: PMC8792315 DOI: 10.1016/j.carres.2022.108500] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/29/2021] [Accepted: 01/03/2022] [Indexed: 02/08/2023]
Abstract
Hyaluronan (HA) is a polysaccharide consisting of repeating disaccharides of N-acetyl-d-glucosamine and d-glucuronic acid. There are increasing interests in utilizing self-assembled HA nanoparticles (HA-NPs) for targeted imaging and therapy. The principal endogenous receptor of HA, cluster of differentiation 44 (CD44), is overexpressed on many types of tumor cells as well as inflammatory cells in human bodies. Active targeting from HA-CD44 mediated interaction and passive targeting due to the enhanced permeability retention (EPR) effect could lead to selective accumulation of HA-NPs at targeted disease sites. This review focuses on the synthesis strategies of self-assembled HA-NPs, as well as their applications in therapy and biomedical imaging.
Collapse
Affiliation(s)
- Kunli Liu
- Department of Chemistry, Michigan State University, East Lansing, MI, 48824, USA; Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, 48824, USA
| | - Xuefei Huang
- Department of Chemistry, Michigan State University, East Lansing, MI, 48824, USA; Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, 48824, USA; Department of Biomedical Engineering, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
15
|
Bao J, Guo S, Zu X, Zhuang Y, Fan D, Zhang Y, Shi Y, Ji Z, Cheng J, Pang X. Polypyrrole-Coated Magnetite Vortex Nanoring for Hyperthermia-Boosted Photothermal/Magnetothermal Tumor Ablation Under Photoacoustic/Magnetic Resonance Guidance. Front Bioeng Biotechnol 2021; 9:721617. [PMID: 34395410 PMCID: PMC8363262 DOI: 10.3389/fbioe.2021.721617] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 06/29/2021] [Indexed: 11/13/2022] Open
Abstract
Photothermal/magnetothermal-based hyperthermia cancer therapy techniques have been widely investigated, and associated nanotechnology-assisted treatments have shown promising clinical potentials. However, each method has some limitations, which have impeded extensive applications. For example, the penetration ability of the photothermal is not satisfactory, while the heating efficiency of the magnetothermal is very poor. In this study, a novel magnetite vortex nanoring nanoparticle-coated with polypyrrole (denoted as nanoring Fe3O4@PPy-PEG) was first synthesized and well-characterized. By combining photothermal and magnetothermal effects, the performance of the dual-enhanced hyperthermia was significantly improved, and was thoroughly examined in this study. Benefiting from the magnetite vortex nanoring and polypyrrole, Fe3O4@PPy-PEG showed excellent hyperthermia effects (SAR = 1,648 Wg-1) when simultaneously exposed to the alternating magnetic field (300 kHz, 45 A) and near-infrared (808 nm, 1 W cm-2) laser. What is more, nanoring Fe3O4@PPy-PEG showed a much faster heating rate, which can further augment the antitumor effect by incurring vascular disorder. Besides, Fe3O4@PPy-PEG exhibited a high transverse relaxation rate [60.61 mM-1 S-1 (Fe)] at a very low B0 field (0.35 T) and good photoacoustic effect. We believe that the results obtained herein can significantly promote the development of multifunctional nanoparticle-mediated magnetic and photo induced efficient hyperthermia therapy.
Collapse
Affiliation(s)
- Jianfeng Bao
- Functional Magnetic Resonance and Molecular Imaging Key Laboratory of Henan Province, Department of Magnetic Resonance Imaging, First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Shuangshuang Guo
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Xiangyang Zu
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, China
| | - Yuchuan Zhuang
- Department of Imaging Sciences, University of Rochester Medical Center, Rochester, NY, United States
| | - Dandan Fan
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yong Zhang
- Functional Magnetic Resonance and Molecular Imaging Key Laboratory of Henan Province, Department of Magnetic Resonance Imaging, First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Yupeng Shi
- Functional Magnetic Resonance and Molecular Imaging Key Laboratory of Henan Province, Department of Magnetic Resonance Imaging, First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Zhenyu Ji
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Jingliang Cheng
- Functional Magnetic Resonance and Molecular Imaging Key Laboratory of Henan Province, Department of Magnetic Resonance Imaging, First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Xin Pang
- Functional Magnetic Resonance and Molecular Imaging Key Laboratory of Henan Province, Department of Magnetic Resonance Imaging, First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
16
|
Wojtynek NE, Olson MT, Bielecki TA, An W, Bhat AM, Band H, Lauer SR, Silva-Lopez E, Mohs AM. Nanoparticle Formulation of Indocyanine Green Improves Image-Guided Surgery in a Murine Model of Breast Cancer. Mol Imaging Biol 2020; 22:891-903. [PMID: 31820350 PMCID: PMC7280079 DOI: 10.1007/s11307-019-01462-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
PURPOSE Negative surgical margins (NSMs) have favorable prognostic implications in breast tumor resection surgery. Fluorescence image-guided surgery (FIGS) has the ability to delineate surgical margins in real time, potentially improving the completeness of tumor resection. We have recently developed indocyanine green (ICG)-loaded self-assembled hyaluronic acid (HA) nanoparticles (NanoICG) for solid tumor imaging, which were shown to enhance intraoperative contrast. PROCEDURES This study sought to assess the efficacy of NanoICG on completeness of breast tumor resection and post-surgical survival. BALB/c mice bearing iRFP+/luciferase+ 4T1 syngeneic breast tumors were administered NanoICG or ICG, underwent FIGS, and were compared to bright light surgery (BLS) and sham controls. RESULTS NanoICG increased the number of complete resections and improved tumor-free survival. This was a product of improved intraoperative contrast enhancement and the identification of a greater number of small, occult lesions than ICG and BLS. Additionally, NanoICG identified chest wall invasion and predicted recurrence in a model of late-stage breast cancer. CONCLUSIONS NanoICG is an efficacious intraoperative contrast agent and could potentially improve surgical outcomes in breast cancer.
Collapse
Affiliation(s)
- Nicholas E Wojtynek
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Madeline T Olson
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Timothy A Bielecki
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Wei An
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - Aaqib M Bhat
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Hamid Band
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
- Center for Drug Delivery and Nanomedicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Scott R Lauer
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Edibaldo Silva-Lopez
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE, USA
| | - Aaron M Mohs
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA.
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA.
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA.
- Center for Drug Delivery and Nanomedicine, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
17
|
Olson MT, Wojtynek NE, Talmon GA, Caffrey TC, Radhakrishnan P, Ly QP, Hollingsworth MA, Mohs AM. Development of a MUC16-Targeted Near-Infrared Fluorescent Antibody Conjugate for Intraoperative Imaging of Pancreatic Cancer. Mol Cancer Ther 2020; 19:1670-1681. [PMID: 32404409 PMCID: PMC8009292 DOI: 10.1158/1535-7163.mct-20-0033] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/18/2020] [Accepted: 05/07/2020] [Indexed: 01/11/2023]
Abstract
Surgical resection is currently the only potentially curative option for patients with pancreatic cancer. However, the 5-year survival rate after resection is only 25%, due in part to high rates of R1 resections, in which cells are left behind at the surgical margin, resulting in disease recurrence. Fluorescence-guided surgery (FGS) has emerged as a method to reduce incomplete resections and improve intraoperative assessment of cancer. Mucin-16 (MUC16), a protein biomarker highly overexpressed in pancreatic cancer, is a potential target for FGS. In this study, we developed a fluorescent MUC16-targeted antibody probe, AR9.6-IRDye800, for image-guided resection of pancreatic cancer. We demonstrated the efficacy of this probe to bind human pancreatic cancer cell lines in vitro and in vivo In an orthotopic xenograft model, AR9.6-IRDye800 exhibited superior fluorescence enhancement of tumors and lower signal in critical background organs in comparison to a nonspecific IgG control. The results of this study suggest that AR9.6-IRDye800 has potential for success as a probe for FGS in pancreatic cancer patients, and MUC16 is a feasible target for intraoperative imaging.
Collapse
Affiliation(s)
- Madeline T Olson
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska
| | - Nicholas E Wojtynek
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska
| | - Geoffrey A Talmon
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Thomas C Caffrey
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska
| | - Prakash Radhakrishnan
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Quan P Ly
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska
- Department of Surgery, University of Nebraska Medical Center, Omaha, Nebraska
| | - Michael A Hollingsworth
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Aaron M Mohs
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska.
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska
- Center for Drug Delivery and Nanomedicine, University of Nebraska Medical Center, Omaha, Nebraska
| |
Collapse
|
18
|
Wojtynek NE, Mohs AM. Image-guided tumor surgery: The emerging role of nanotechnology. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 12:e1624. [PMID: 32162485 PMCID: PMC9469762 DOI: 10.1002/wnan.1624] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/12/2020] [Accepted: 02/14/2020] [Indexed: 12/15/2022]
Abstract
Surgical resection is a mainstay treatment for solid tumors. Yet, methods to distinguish malignant from healthy tissue are primarily limited to tactile and visual cues as well as the surgeon's experience. As a result, there is a possibility that a positive surgical margin (PSM) or the presence of residual tumor left behind after resection may occur. It is well-documented that PSMs can negatively impact treatment outcomes and survival, as well as pose an economic burden. Therefore, surgical tumor imaging techniques have emerged as a promising method to decrease PSM rates. Nanoparticles (NPs) have unique characteristics to serve as optical contrast agents during image-guided surgery (IGS). Recently, there has been tremendous growth in the volume and types of NPs used for IGS, including clinical trials. Herein, we describe the most recent contributions of nanotechnology for surgical tumor identification. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Implantable Materials and Surgical Technologies > Nanoscale Tools and Techniques in Surgery Diagnostic Tools > in vivo Nanodiagnostics and Imaging.
Collapse
Affiliation(s)
- Nicholas E. Wojtynek
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska
| | - Aaron M. Mohs
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska
- Center for Drug Delivery and Nanomedicine, University of Nebraska Medical Center, Omaha, Nebraska
| |
Collapse
|
19
|
Bhattacharya DS, Svechkarev D, Bapat A, Patil P, Hollingsworth MA, Mohs AM. Sulfation modulates the targeting properties of hyaluronic acid to P-selectin and CD44. ACS Biomater Sci Eng 2020; 6:3585-3598. [PMID: 32617404 PMCID: PMC7331950 DOI: 10.1021/acsbiomaterials.0c00115] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Many targeting strategies can be employed to direct nanoparticles to tumors for imaging and therapy. However, tumors display a dynamic, heterogeneous microenvironment that undergoes spatiotemporal changes, including the expression of targetable cell-surface biomarkers. Here, we develop a nanoparticle system to effectively target two receptors overexpressed in the microenvironment of aggressive tumors. Hyaluronic acid (HA) was regioselectivity modified using a multi-step synthetic approach to alter binding specificities for CD44 and P-selectin to tumor cell interaction. The dual-targeting strategy utilizes sulfate modifications on HA that targets P-selectin, in addition to native targeting of CD44, which exploits spatiotemporal alterations in the expression patterns of these two receptors in cancer sites. Using biophysical characterization and in vitro studies, we demonstrate that modified HA nanoparticles effectively targets both P-selectin+ and CD44+ cells, which lays the groundwork for future in vivo biomedical applications.
Collapse
Affiliation(s)
- Deep S. Bhattacharya
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Denis Svechkarev
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Aishwarya Bapat
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Prathamesh Patil
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Michael A. Hollingsworth
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, United States
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Aaron M. Mohs
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, United States
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, United States
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198
| |
Collapse
|
20
|
Haider N, Fatima S, Taha M, Rizwanullah M, Firdous J, Ahmad R, Mazhar F, Khan MA. Nanomedicines in Diagnosis and Treatment of Cancer: An Update. Curr Pharm Des 2020; 26:1216-1231. [DOI: 10.2174/1381612826666200318170716] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 02/11/2020] [Indexed: 01/06/2023]
Abstract
:
Nanomedicine has revolutionized the field of cancer detection and treatment by enabling the delivery
of imaging agents and therapeutics into cancer cells. Cancer diagnostic and therapeutic agents can be either encapsulated
or conjugated to nanosystems and accessed to the tumor environment through the passive targeting
approach (EPR effect) of the designed nanomedicine. It may also actively target the tumor exploiting conjugation
of targeting moiety (like antibody, peptides, vitamins, and hormones) to the surface of the nanoparticulate system.
Different diagnostic agents (like contrast agents, radionuclide probes and fluorescent dyes) are conjugated with
the multifunctional nanoparticulate system to achieve simultaneous cancer detection along with targeted therapy.
Nowadays targeted drug delivery, as well as the early cancer diagnosis is a key research area where nanomedicine
is playing a crucial role. This review encompasses the significant recent advancements in drug delivery as well as
molecular imaging and diagnosis of cancer exploiting polymer-based, lipid-based and inorganic nanoparticulate
systems.
Collapse
Affiliation(s)
- Nafis Haider
- Prince Sultan Military College of Health Sciences, Dhahran 34313, Saudi Arabia
| | - Sana Fatima
- Department of Ilmul Saidla, National Institute of Unani Medicine, Bengaluru-560091, India
| | - Murtada Taha
- Prince Sultan Military College of Health Sciences, Dhahran 34313, Saudi Arabia
| | - Md. Rizwanullah
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, India
| | - Jamia Firdous
- Department of Pharmacy, Institute of Bio-Medical Education and Research, Mangalayatan University, Aligarh, India
| | - Rafeeque Ahmad
- The New York School of Medical and Dental Assistants, Long Island City, NY 11101, United States
| | - Faizan Mazhar
- Department of Bio-medical and Clinical Science, University of Milan, Italy
| | - Mohammad A. Khan
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, India
| |
Collapse
|
21
|
Xu D, Li L, Chu C, Zhang X, Liu G. Advances and perspectives in near-infrared fluorescent organic probes for surgical oncology. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 12:e1635. [PMID: 32297455 DOI: 10.1002/wnan.1635] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 02/25/2020] [Accepted: 03/19/2020] [Indexed: 12/11/2022]
Abstract
Surgical resection of solid tumors is currently the most efficient and preferred therapeutic strategy for treating cancer. Despite significant medical, technical, and scientific advances, the complete treatment of this lethal disease is still a challenging task. New imaging techniques and contrast agents are urgently needed to improve cytoreductive surgery and patient outcomes. Tumor-targeted probes are valuable for guiding a surgical resection of tumor from subjective judgments to visual inspection. Near-infrared (NIR) fluorescent imaging is a promising technology in preclinical and clinical tumor diagnosis and therapy. The rapid development in NIR fluorophores with improved optical properties, targeting strategies, and imaging devices has brought about prospective study of novel NIR nanomaterials for intraoperative tumor detection. In this review, we summarize the recent development in NIR-emitting organic fluorophores and cancer-targeting strategies that specifically target and accumulate in tumors for the molecular imaging of cancerous cells. We believe this technique utilizing new fluorescent probes with an intraoperative optical imaging capacity could provide a more sensitive and accurate method for cancer resection guidance, thereby resulting in better surgical outcomes. This article is categorized under: Diagnostic Tools > in vivo Nanodiagnostics and Imaging Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.
Collapse
Affiliation(s)
- Dazhuang Xu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, China.,Department of Chemistry, Nanchang University, Nanchang, China
| | - Lei Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, China
| | - Chengchao Chu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, China
| | - Xiaoyong Zhang
- Department of Chemistry, Nanchang University, Nanchang, China
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, China
| |
Collapse
|
22
|
Li C, Mei E, Chen C, Li Y, Nugasur B, Hou L, Ding X, Hu M, Zhang Y, Su Z, Lin J, Yang Y, Huang P, Li Z. Gold-Nanobipyramid-Based Nanotheranostics for Dual-Modality Imaging-Guided Phototherapy. ACS APPLIED MATERIALS & INTERFACES 2020; 12:12541-12548. [PMID: 32083461 DOI: 10.1021/acsami.0c00112] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Multimodality imaging-guided therapy can improve the diagnostics and therapeutics efficiency of cancer. Herein, we developed a light-responsive nanotheranostic agent based on the indocyanine green (ICG) conjugated mesoporous silica coated gold nanobipyramid (GNB@SiO2) (denoted as GNB@SiO2-ICG) for simultaneous fluorescence (FL)/photoacoustic (PA) imaging-guided photothermal therapy (PTT). The GNB@SiO2 with excellent photostability was used for PA imaging as well as PTT. The loaded ICG promised FL imaging and PTT. The feasibility of the cancer theranostic capability of GNB@SiO2-ICG was evaluated from cancer cells to mice. Under the guidance of FL/PA imaging, GNB@SiO2-ICG exhibited remarkably enhanced therapeutic efficacy, which could eliminate the tumor tissues completely without tumor recurrence. This well-defined nanotheranostic nanoplatform that intelligently integrates dual-modality imaging and phototherapy provides an efficient nanoplatform for cancer nanotheranostics.
Collapse
Affiliation(s)
- Chunxiao Li
- Department of Dermatology and Venereology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
- Institute of Photomedicine, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200092, China
| | - Enci Mei
- Department of Dermatology and Venereology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Cunguo Chen
- Department of Dermatology and Venereology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Yashi Li
- Department of Dermatology and Venereology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Bhawneeta Nugasur
- Department of Dermatology and Venereology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Liyue Hou
- Department of Dermatology and Venereology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Xiaoxia Ding
- Department of Dermatology and Venereology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Murong Hu
- Department of Dermatology and Venereology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Yifan Zhang
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, China
| | - Zhongqian Su
- Department of Dermatology and Venereology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Jing Lin
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, China
| | - Yun Yang
- Nanomaterials and Chemistry Key Laboratory, Wenzhou University, Wenzhou, Zhejiang 325027, China
| | - Peng Huang
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, China
| | - Zhiming Li
- Department of Dermatology and Venereology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| |
Collapse
|
23
|
Qi B, Crawford AJ, Wojtynek NE, Talmon GA, Hollingsworth MA, Ly QP, Mohs AM. Tuned near infrared fluorescent hyaluronic acid conjugates for delivery to pancreatic cancer for intraoperative imaging. Theranostics 2020; 10:3413-3429. [PMID: 32206099 PMCID: PMC7069077 DOI: 10.7150/thno.40688] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 01/23/2020] [Indexed: 02/06/2023] Open
Abstract
The prognosis of pancreatic cancer remains poor. Intraoperative fluorescence imaging of tumors could improve staging and surgical resection, thereby improving prognosis. However, imaging pancreatic cancer with macromolecular delivery systems, is often hampered by nonspecific organ accumulation. Methods: We describe the rational development of hyaluronic acid (HA) conjugates that vary in molecular weight and are conjugated to near infrared fluorescent (NIRF) dyes that have differences in hydrophilicity, serum protein binding affinity, and clearance mechanism. We systematically investigated the roles of each of these properties on tumor accumulation, relative biodistribution, and the impact of intraoperative imaging of orthotopic, syngeneic pancreatic cancer. Results: Each HA-NIRF conjugate displayed intrapancreatic tumor enhancement. Regardless of HA molecular weight, Cy7.5 conjugation directed biodistribution to the liver, spleen, and bowels. Conjugation of IRDye800 to 5 and 20 kDa HA resulted in low liver and spleen signal while enhancing the tumor up to 14-fold compared to healthy pancreas, while 100 kDa HA conjugated to IRDye800 resulting in liver and spleen accumulation. Conclusion: These studies demonstrate that by tuning HA molecular weight and the physicochemical properties of the conjugated moiety, in this case a NIRF probe, peritoneal biodistribution can be substantially altered to achieve optimized delivery to tumors intraoperative abdominal imaging.
Collapse
|
24
|
Li J, Liu C, Hu Y, Ji C, Li S, Yin M. pH-responsive perylenediimide nanoparticles for cancer trimodality imaging and photothermal therapy. Theranostics 2020; 10:166-178. [PMID: 31903113 PMCID: PMC6929613 DOI: 10.7150/thno.36999] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 08/29/2019] [Indexed: 01/05/2023] Open
Abstract
Organic chromophores have been well developed for multimodality imaging-guided photothermal therapy (PTT) due to their outstanding optical properties and excellent designability. However, the theranostic efficiencies of most currently available organic chromophores are restricted intrinsically, owing to their poor photostability or complex synthesis procedures. These drawbacks not only increase their cost of synthesis, but also cause side effects in PTT. Method: We presented a facile strategy for constructing a near-infrared (NIR)-absorbing perylenediimide structured with pH-responsive piperazine ring at the bay region. The chromophore was conjugated with carboxyl-end-capped PEG as side chains that can self-assemble into nanoparticles (NPs) in aqueous solution. The NIR optical properties and photothermal conversation ability of PPDI-NPs were investigated. We then studied the imaging-guided PTT of PPDI-NPs under NIR light illumination in 4T1 cells and mice respectively. Results: The excellent photostable PPDI-NPs had near-infrared fluorescence (NIRF) emission and high photothermal conversion efficiency in acidic microenvironment. Importantly, PPDI-NPs can be utilized for the precise detection of tumors by NIRF/photoacoustic/thermal trimodality imaging. Efficient PTT of PPDI-NPs was applied in vitro and in vivo with high biosafety. Conclusion: In summary, we developed pH-responsive perylenediimide nanoparticles as multifunctional phototheranostic agent with high stability and simple synthesis procedures. This study offers a promising organic chromophore for developing phototheranostics in cancer therapy.
Collapse
Affiliation(s)
| | | | | | - Chendong Ji
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, No. 15 the North Third Ring Road East, Chaoyang District, Beijing 100029, PR China
| | | | - Meizhen Yin
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, No. 15 the North Third Ring Road East, Chaoyang District, Beijing 100029, PR China
| |
Collapse
|
25
|
Wang C, Fan W, Zhang Z, Wen Y, Xiong L, Chen X. Advanced Nanotechnology Leading the Way to Multimodal Imaging-Guided Precision Surgical Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1904329. [PMID: 31538379 DOI: 10.1002/adma.201904329] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 08/18/2019] [Indexed: 06/10/2023]
Abstract
Surgical resection is the primary and most effective treatment for most patients with solid tumors. However, patients suffer from postoperative recurrence and metastasis. In the past years, emerging nanotechnology has led the way to minimally invasive, precision and intelligent oncological surgery after the rapid development of minimally invasive surgical technology. Advanced nanotechnology in the construction of nanomaterials (NMs) for precision imaging-guided surgery (IGS) as well as surgery-assisted synergistic therapy is summarized, thereby unlocking the advantages of nanotechnology in multimodal IGS-assisted precision synergistic cancer therapy. First, mechanisms and principles of NMs to surgical targets are briefly introduced. Multimodal imaging based on molecular imaging technologies provides a practical method to achieve intraoperative visualization with high resolution and deep tissue penetration. Moreover, multifunctional NMs synergize surgery with adjuvant therapy (e.g., chemotherapy, immunotherapy, phototherapy) to eliminate residual lesions. Finally, key issues in the development of ideal theranostic NMs associated with surgical applications and challenges of clinical transformation are discussed to push forward further development of NMs for multimodal IGS-assisted precision synergistic cancer therapy.
Collapse
Affiliation(s)
- Cong Wang
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Wenpei Fan
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Zijian Zhang
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Yu Wen
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Li Xiong
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
26
|
Liu X, Du C, Li H, Jiang T, Luo Z, Pang Z, Geng D, Zhang J. Engineered superparamagnetic iron oxide nanoparticles (SPIONs) for dual-modality imaging of intracranial glioblastoma via EGFRvIII targeting. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2019; 10:1860-1872. [PMID: 31579072 PMCID: PMC6753680 DOI: 10.3762/bjnano.10.181] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 08/16/2019] [Indexed: 06/10/2023]
Abstract
In this work, a peptide-modified, biodegradable, nontoxic, brain-tumor-targeting nanoprobe based on superparamagnetic iron oxide nanoparticles (SPIONs) (which have been commonly used as T 2-weighted magnetic resonance (MR) contrast agents) was successfully synthesized and applied for accurate molecular MR imaging and sensitive optical imaging. PEPHC1, a short peptide which can specifically bind to epidermal growth factor receptor variant III (EGFRvIII) that is overexpressed in glioblastoma, was conjugated with SPIONs to construct the nanoprobe. Both in vitro and in vivo MR and optical imaging demonstrated that the as-constructed nanoprobe was effective and sensitive for tumor targeting with desirable biosafety. Given its desirable properties such as a 100 nm diameter (capable of penetration of the blood-brain barrier) and bimodal imaging capability, this novel and versatile multimodal nanoprobe could bring a new perspective for elucidating intracranial glioblastoma preoperative diagnosis and the accuracy of tumor resection.
Collapse
Affiliation(s)
- Xianping Liu
- Department of Radiology, Huashan Hospital, Fudan University, 12 Wulumuqi Middle Road, Shanghai 200040, China
| | - Chengjuan Du
- Department of Radiology, Huashan Hospital, Fudan University, 12 Wulumuqi Middle Road, Shanghai 200040, China
| | - Haichun Li
- School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, 826 Zhangheng Road, Shanghai 201203, China
| | - Ting Jiang
- School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, 826 Zhangheng Road, Shanghai 201203, China
| | - Zimiao Luo
- School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, 826 Zhangheng Road, Shanghai 201203, China
| | - Zhiqing Pang
- School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, 826 Zhangheng Road, Shanghai 201203, China
| | - Daoying Geng
- Department of Radiology, Huashan Hospital, Fudan University, 12 Wulumuqi Middle Road, Shanghai 200040, China
| | - Jun Zhang
- Department of Radiology, Huashan Hospital, Fudan University, 12 Wulumuqi Middle Road, Shanghai 200040, China
| |
Collapse
|
27
|
Bhuiyan NH, Varney ML, Bhattacharya DS, Payne WM, Mohs AM, Holstein SA, Wiemer DF. ω-Hydroxy isoprenoid bisphosphonates as linkable GGDPS inhibitors. Bioorg Med Chem Lett 2019; 29:126633. [PMID: 31474482 DOI: 10.1016/j.bmcl.2019.126633] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 08/20/2019] [Indexed: 02/08/2023]
Abstract
The enzyme geranylgeranyl diphosphate synthase (GGDPS) is a potential therapeutic target for multiple myeloma. Malignant plasma cells produce and secrete large amounts of monoclonal protein, and inhibition of GGDPS results in disruption of protein geranylgeranylation which in turn impairs intracellular protein trafficking. Our previous work has demonstrated that some isoprenoid triazole bisphosphonates are potent and selective inhibitors of GGDPS. To explore the possibility of selective delivery of such compounds to plasma cells, new analogues with an ω-hydroxy group have been synthesized and examined for their enzymatic and cellular activity. These studies demonstrate that incorporation of the ω-hydroxy group minimally impairs GGDPS inhibitory activity. Furthermore conjugation of one of the novel ω-hydroxy GGDPS inhibitors to hyaluronic acid resulted in enhanced cellular activity. These results will allow future studies to focus on the in vivo biodistribution of HA-conjugated GGDPS inhibitors.
Collapse
Affiliation(s)
- Nazmul H Bhuiyan
- Department of Chemistry, University of Iowa, Iowa City, IA 52242-1294, United States
| | - Michelle L Varney
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Deep S Bhattacharya
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - William M Payne
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Aaron M Mohs
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, United States; Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, United States; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Sarah A Holstein
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, United States; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - David F Wiemer
- Department of Chemistry, University of Iowa, Iowa City, IA 52242-1294, United States; Department of Pharmacology, University of Iowa, Iowa City, IA 52242-1109, United States.
| |
Collapse
|
28
|
Sakurai Y, Harashima H. Hyaluronan-modified nanoparticles for tumor-targeting. Expert Opin Drug Deliv 2019; 16:915-936. [DOI: 10.1080/17425247.2019.1645115] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Yu Sakurai
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | | |
Collapse
|
29
|
Grodzinski P, Kircher M, Goldberg M, Gabizon A. Integrating Nanotechnology into Cancer Care. ACS NANO 2019; 13:7370-7376. [PMID: 31240914 DOI: 10.1021/acsnano.9b04266] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Research activity in medical and cancer nanotechnology has grown dramatically over the past 15 years. The field has become a cradle of multidisciplinary investigations bringing together physicists, chemists, and engineers working with clinicians and biologists to address paramount problems in cancer care and treatment. Some have argued that the explosion in the number of research papers has not been followed by sufficient clinical activity in nanomedicine. However, three new nanodrugs have now been approved by the U.S. Food and Drug Administration (FDA) in the past three years, confirming the validity of nanotechnology approaches in cancer. Excitingly, translational pipelines contain several additional intriguing candidates. In this Nano Focus article, we discuss potential barriers inhibiting further incorporation of nanomedicines into patient care, possible strategies to overcome these barriers, and promising new directions in cancer interventions based on nanotechnology. Insights presented herein are outcomes of discussions held at a recent strategic workshop hosted by the National Cancer Institute (NCI), which brought together research, clinical, and commercial leaders of the nanomedicine field.
Collapse
Affiliation(s)
- Piotr Grodzinski
- National Cancer Institute , National Institutes of Health , Rockville , Maryland 20814 , United States
| | - Moritz Kircher
- Dana Farber Cancer Institute , Harvard Medical School , Boston , Massachusetts 02215 , United States
| | - Michael Goldberg
- Dana Farber Cancer Institute , Harvard Medical School , Boston , Massachusetts 02215 , United States
| | - Alberto Gabizon
- Shaare Zedek Medical Center and Hebrew University-School of Medicine , Jerusalem , Israel
| |
Collapse
|
30
|
Rippe M, Stefanello TF, Kaplum V, Britta EA, Garcia FP, Poirot R, Companhoni MVP, Nakamura CV, Szarpak-Jankowska A, Auzély-Velty R. Heparosan as a potential alternative to hyaluronic acid for the design of biopolymer-based nanovectors for anticancer therapy. Biomater Sci 2019; 7:2850-2860. [PMID: 31070204 DOI: 10.1039/c9bm00443b] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Glycosaminoglycans (GAGs) are important components of the extracellular matrix that have attracted great interest for drug delivery and pharmaceutical applications due to their diverse biological functions. Among GAGs, heparosan (Hep), a biosynthetic precursor of heparin, has recently emerged as a promising building block for the design of nanoparticles with stealth properties. Though this non-sulfated polysaccharide has a chemical structure very close to that of hyaluronic acid (HA), it distinguishes from HA in that it is biologically inert in the extracellular spaces in the body. In this study, we designed Hep- and HA-based nanogels (NGs) that differ only in the chemical nature of the hydrophilic shell. The nanogels were prepared in a very straightforward way from Hep and HA modified with a thermoresponsive copolymer properly designed to induce self-assembly below room temperature. This versatile synthetic approach also enabled further shell-crosslinking allowing an increase in the colloidal stability. After careful characterization of the un-crosslinked and crosslinked Hep and HA NGs in terms of size (Z-average diameters of un-crosslinked and crosslinked NGs ∼110 and 150 nm) and morphology, they were injected intravenously into tumor-bearing mice for biodistribution experiments. Interestingly, these show that the liver uptake of Hep nanogels is remarkably reduced and tumor accumulation significantly improved as compared to HA nanogels (intensity ratios of tumor-to-liver of 2.2 and 1.4 for the un-crosslinked and crosslinked Hep NGs versus 0.11 for the un-crosslinked and crosslinked HA ones). These results highlight the key role played by the shell-forming GAGs on the in vivo fate of nanogels, which correlates with the specific biological properties of Hep and HA.
Collapse
Affiliation(s)
- Marlène Rippe
- Univ. Grenoble Alpes, Centre de Recherches sur les Macromolécules Végétales (CERMAV-CNRS), 601, rue de la Chimie, BP 53, 38041 Grenoble Cedex 9, France.
| | - Talitha F Stefanello
- Laboratory of technological innovation in the development of pharmaceuticals and cosmetics, State University of Maringa, Colombo Avenue, 5790, 87020-900, Maringa, Brazil
| | - Vanessa Kaplum
- Laboratory of technological innovation in the development of pharmaceuticals and cosmetics, State University of Maringa, Colombo Avenue, 5790, 87020-900, Maringa, Brazil
| | - Elizandra A Britta
- Laboratory of technological innovation in the development of pharmaceuticals and cosmetics, State University of Maringa, Colombo Avenue, 5790, 87020-900, Maringa, Brazil
| | - Francielle P Garcia
- Laboratory of technological innovation in the development of pharmaceuticals and cosmetics, State University of Maringa, Colombo Avenue, 5790, 87020-900, Maringa, Brazil
| | - Robin Poirot
- Univ. Grenoble Alpes, Centre de Recherches sur les Macromolécules Végétales (CERMAV-CNRS), 601, rue de la Chimie, BP 53, 38041 Grenoble Cedex 9, France.
| | - Mychelle V P Companhoni
- Laboratory of technological innovation in the development of pharmaceuticals and cosmetics, State University of Maringa, Colombo Avenue, 5790, 87020-900, Maringa, Brazil
| | - Celso V Nakamura
- Laboratory of technological innovation in the development of pharmaceuticals and cosmetics, State University of Maringa, Colombo Avenue, 5790, 87020-900, Maringa, Brazil
| | - Anna Szarpak-Jankowska
- Univ. Grenoble Alpes, Centre de Recherches sur les Macromolécules Végétales (CERMAV-CNRS), 601, rue de la Chimie, BP 53, 38041 Grenoble Cedex 9, France.
| | - Rachel Auzély-Velty
- Univ. Grenoble Alpes, Centre de Recherches sur les Macromolécules Végétales (CERMAV-CNRS), 601, rue de la Chimie, BP 53, 38041 Grenoble Cedex 9, France.
| |
Collapse
|
31
|
Philp L, Chan H, Rouzbahman M, Overchuk M, Chen J, Zheng G, Bernardini MQ. Use of Porphysomes to detect primary tumour, lymph node metastases, intra-abdominal metastases and as a tool for image-guided lymphadenectomy: proof of concept in endometrial cancer. Am J Cancer Res 2019; 9:2727-2738. [PMID: 31131064 PMCID: PMC6525988 DOI: 10.7150/thno.31225] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 02/14/2019] [Indexed: 12/12/2022] Open
Abstract
Objective: To investigate Porphysome fluorescence image-guided resection (PYRO-FGR) for detection of uterine tumour, metastatic lymph nodes and abdominal metastases in a model of endometrial cancer. Methods: White New Zealand rabbits were inoculated with VX2 cells via intra-myometrial injection. At 30 days, Porphysomes were administered intravenously. At 24 h the abdomen was imaged and fluorescent tissue identified (PYRO-FGR). After complete resection of fluorescent tissue, fluorescence-negative lymph nodes and peritoneal biopsies were removed. Histopathology including ultra-staging and analysis by a pathologist was used to detect tumour. Fluorescence signal to background ratio (SBR) was calculated and VX2 (+) tissue compared to VX2 (-) tissue. Biodistribution was calculated and Porphysome accumulation in fluorescent VX2 (+) tissue compared to fluorescent VX2 (-) and non-fluorescent VX2 (-) tissue. Results: Of 17 VX2 models, 10 received 4 mg/kg of Porphysomes and 7 received 1 mg/kg. Seventeen tumours (UT), 81 lymph nodes (LN) and 54 abdominal metastases (AM) were fluorescence-positive and resected. Of these, 17 UT, 60 LN and 45 AM were VX2 (+), while 16 LN and 5 AM were VX2 (-). Nine specimens were excluded from analysis. Thirty-one LN and 53 peritoneal biopsies were fluorescence-negative and resected. Of these, all LN and 51/53 biopsies were VX2 (-) with only 2 false-negative biopsies. Sensitivity and specificity of PYRO-FGR for VX2 (+) tissue was 98.4% / 80.0% overall, 100% / 100% for UT, 100% / 66.0 % for LN and 95.7% / 91.4% for AM. Increased SBR and biodistribution was observed in VX2 (+) tissue vs. VX2 (-) tissue. Conclusions: Porphysomes are a highly sensitive imaging agent for intra-operative detection and resection of uterine tumour, metastatic lymph nodes and abdominal metastases.
Collapse
|
32
|
Srinivasan SS, Seenivasan R, Condie A, Gerson SL, Wang Y, Burda C. Gold Nanoparticle-Based Fluorescent Theranostics for Real-Time Image-Guided Assessment of DNA Damage and Repair. Int J Mol Sci 2019; 20:E471. [PMID: 30678294 PMCID: PMC6387448 DOI: 10.3390/ijms20030471] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 01/09/2019] [Accepted: 01/15/2019] [Indexed: 12/11/2022] Open
Abstract
Chemotherapeutic dosing, is largely based on the tolerance levels of toxicity today. Molecular imaging strategies can be leveraged to quantify DNA cytotoxicity and thereby serve as a theranostic tool to improve the efficacy of treatments. Methoxyamine-modified cyanine-7 (Cy7MX) is a molecular probe which binds to apurinic/apyrimidinic (AP)-sites, inhibiting DNA-repair mechanisms implicated by cytotoxic chemotherapies. Herein, we loaded (Cy7MX) onto polyethylene glycol-coated gold nanoparticles (AuNP) to selectively and stably deliver the molecular probe intravenously to tumors. We optimized the properties of Cy7MX-loaded AuNPs using optical spectroscopy and tested the delivery mechanism and binding affinity using the DLD1 colon cancer cell line in vitro. A 10:1 ratio of Cy7MX-AuNPs demonstrated a strong AP site-specific binding and the cumulative release profile demonstrated 97% release within 12 min from a polar to a nonpolar environment. We further demonstrated targeted delivery using imaging and biodistribution studies in vivo in an xenografted mouse model. This work lays a foundation for the development of real-time molecular imaging techniques that are poised to yield quantitative measures of the efficacy and temporal profile of cytotoxic chemotherapies.
Collapse
Affiliation(s)
- Shriya S Srinivasan
- Center for Chemical Dynamics and Nanomaterials Research, Department of Chemistry, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA.
| | - Rajesh Seenivasan
- Center for Chemical Dynamics and Nanomaterials Research, Department of Chemistry, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA.
| | - Allison Condie
- Department of Radiology, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA.
| | - Stanton L Gerson
- Department of Hematology and Oncology, Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA.
| | - Yanming Wang
- Department of Radiology, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA.
| | - Clemens Burda
- Center for Chemical Dynamics and Nanomaterials Research, Department of Chemistry, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA.
| |
Collapse
|
33
|
Translational Nanodiagnostics for In Vivo Cancer Detection. Bioanalysis 2019. [DOI: 10.1007/978-3-030-01775-0_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
34
|
Svechkarev D, Mohs AM. Organic Fluorescent Dye-based Nanomaterials: Advances in the Rational Design for Imaging and Sensing Applications. Curr Med Chem 2019; 26:4042-4064. [PMID: 29484973 PMCID: PMC6703954 DOI: 10.2174/0929867325666180226111716] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 12/08/2017] [Accepted: 12/13/2017] [Indexed: 12/28/2022]
Abstract
Self-assembled fluorescent nanomaterials based on small-molecule organic dyes are gaining increasing popularity in imaging and sensing applications over the past decade. This is primarily due to their ability to combine spectral properties tunability and biocompatibility of small molecule organic fluorophores with brightness, chemical and colloidal stability of inorganic materials. Such a unique combination of features comes with rich versatility of dye-based nanomaterials: from aggregates of small molecules to sophisticated core-shell nanoarchitectures involving hyperbranched polymers. Along with the ongoing discovery of new materials and better ways of their synthesis, it is very important to continue systematic studies of fundamental factors that regulate the key properties of fluorescent nanomaterials: their size, polydispersity, colloidal stability, chemical stability, absorption and emission maxima, biocompatibility, and interactions with biological interfaces. In this review, we focus on the systematic description of various types of organic fluorescent nanomaterials, approaches to their synthesis, and ways to optimize and control their characteristics. The discussion is built on examples from reports on recent advances in the design and applications of such materials. Conclusions made from this analysis allow a perspective on future development of fluorescent nanomaterials design for biomedical and related applications.
Collapse
Affiliation(s)
- Denis Svechkarev
- University of Nebraska Medical Center, Department of Pharmaceutical Sciences, Fred and Pamela Buffett Cancer Center, Omaha, United States
| | - Aaron M. Mohs
- University of Nebraska Medical Center, Department of Pharmaceutical Sciences, Fred and Pamela Buffett Cancer Center, Omaha, United States
| |
Collapse
|
35
|
In vivo monitoring of tumor distribution of hyaluronan polymeric micelles labeled or loaded with near-infrared fluorescence dye. Carbohydr Polym 2018; 198:339-347. [DOI: 10.1016/j.carbpol.2018.06.082] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 06/11/2018] [Accepted: 06/18/2018] [Indexed: 12/26/2022]
|
36
|
Di Lorenzo G, Ricci G, Severini GM, Romano F, Biffi S. Imaging and therapy of ovarian cancer: clinical application of nanoparticles and future perspectives. Theranostics 2018; 8:4279-4294. [PMID: 30214620 PMCID: PMC6134923 DOI: 10.7150/thno.26345] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 06/08/2018] [Indexed: 12/16/2022] Open
Abstract
Despite significant advances in cancer diagnostics and treatment, ovarian cancers (OC) continue to kill more than 150,000 women every year worldwide. Due to the relatively asymptomatic nature and the advanced stage of the disease at the time of diagnosis, OC is the most lethal gynecologic malignancy. The current treatment for advanced OC relies on the synergistic effect of combining surgical cytoreduction and chemotherapy; however, beside the fact that chemotherapy resistance is a major challenge in OC management, new imaging strategies are needed to target microscopic lesions and improve both cytoreductive surgery and patient outcomes. In this context, nanostructured probes are emerging as a new class of medical tool that can simultaneously provide imaging contrast, target tumor cells, and carry a wide range of medicines resulting in better diagnosis and therapeutic precision. Herein we summarize several exemplary efforts in nanomedicine for addressing unmet clinical needs.
Collapse
Affiliation(s)
| | | | | | | | - Stefania Biffi
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| |
Collapse
|
37
|
Mac JT, Vankayala R, Patel DK, Wueste S, Anvari B. Erythrocyte-Derived Optical Nanoprobes Doped with Indocyanine Green-Bound Albumin: Material Characteristics and Evaluation for Cancer Cell Imaging. ACS Biomater Sci Eng 2018; 4:3055-3062. [PMID: 33435025 DOI: 10.1021/acsbiomaterials.8b00621] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nanosize structures activated by near-infrared (NIR) photoexcitation can provide an optical platform for the image-guided removal of small tumor nodules. We have engineered nanoparticles derived from erythrocytes that can be doped with NIR fluorophore indocyanine green (ICG). We refer to these constructs as NIR erythrocyte-derived transducers (NETs). The objective of this study was to determine if ICG-bound albumin (IbA), as the doping material, could enhance the fluorescence emission of NETs, and evaluate the capability of these nanoprobes in imaging cancer cells. Erythrocytes were isolated from bovine whole blood and depleted of hemoglobin to form erythrocyte ghosts (EGs). EGs were then extruded through nanosize porous membranes in the presence of 10-100 μm ICG or Iba (1:1 molar ratio) to form ICG- or IbA-doped NETs. The resulting nanosize constructs were characterized for their diameters, zeta-potentials, absorption, and fluorescence emission spectra. We used fluorescence microscopic imaging to evaluate the capability of the constructs in imaging SKOV3 ovarian cancer cells. Based on dynamic light-scattering measurements, ICG- and IbA-doped NETs had similar diameter distributions (Z-average diameter of 236 and 238 nm, respectively) in phosphate-buffered saline supplemented with 10% fetal bovine serum, which remained nearly constant over the course of 2 h at 37 °C. Despite a much-lower loading efficiency of IbA (∼0.7-8%) as compared to ICG (10-45%), the integrated normalized fluorescence emission of IbA-NETs was 2- to 6-fold higher than ICG-doped NETs. IbA-NETs also demonstrated an enhanced capability in fluorescence imaging of SKOV3 ovarian cancer cells, and can serve as potentially effective nanoprobes for the fluorescence imaging of cancerous cells.
Collapse
|
38
|
Hyaluronic acid formulation of near infrared fluorophores optimizes surgical imaging in a prostate tumor xenograft. Acta Biomater 2018; 75:323-333. [PMID: 29890268 DOI: 10.1016/j.actbio.2018.06.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 06/06/2018] [Accepted: 06/07/2018] [Indexed: 12/19/2022]
Abstract
The presence of positive surgical margins confers an increased risk of biochemical relapse and need for salvage therapy in men undergoing radical prostatectomy. Image-guided surgery using near-infrared (NIR) fluorescent contrast agents is a potential method to detect remaining cancerous tissue. The objective of this study was to evaluate three hyaluronic acid (HA) nanoparticle (NP) formulations loaded with NIR fluorophore for their ability to contrast-enhance prostate cancer. HA was modified by conjugation with the hydrophobic ligand, aminopropyl-1-pyrenebutanamide to drive nanoparticle self-assembly. Indocyanine green (ICG) was physicochemically entrapped in the HA-NP, termed NanoICG. Alternatively, Cy7.5 was directly conjugated to amphiphilic HA, termed NanoCy7.5. NanoCy7.5 was synthesized with two HA molecular weights to determine the HA size contribution to delivery to PC3 prostate tumor xenografts. Contrast-enhancement of the tumors and relative biodistribution were assessed by a series of fluorescence imaging, image-guided surgery with spectroscopy, and microscopic techniques. Intravenously administered NanoICG improved tumor signal-to-noise ratio (SNR) at 24 h over ICG by 2.9-fold. NanoCy7.5 with 10 kDa and 100 kDa HA improved tumor SNR by 6.6- and 3.1-fold over Cy7.5 alone, respectively. The PC3 xenograft was clearly identified with the image-guided system providing increased contrast enhancement compared to surrounding tissue for NanoICG and NanoCy7.5 with 10 kDa HA. NIR fluorescence microscopy showed that Cy7.5 in NPs with 10 kDa HA were distributed throughout the tumor, while NanoCy7.5 with 100 kDa HA or NanoICG delivered dye mainly to the edge of the tumor. CD31 staining suggested that PC3 tumors are poorly vascularized. These studies demonstrate the efficacy of a panel of HA-derived NPs in identifying prostate tumors in vivo, and suggest that by tuning the structural properties of these NPs, optimized delivery can be achieved to poorly vascularized tumors. STATEMENT OF SIGNIFICANCE We have demonstrated the potential of a panel of near-infrared fluorescent (NIRF) nanoparticles (NPs) for image-guided surgery in a prostate cancer xenograft model. Image-guided surgery and imaging of organs ex vivo showed greater tumor signal and contrast when mice were administered NIRF dyes that were covalently conjugated to (NanoCy7.510k-PBA) or physicochemically entrapped in (NanoICGPBA) hyaluronic acid (HA) NPs, compared to free dyes. These results show the potential to use these NPs as tools to detect the margins of tumors and to differentiate healthy and tumor tissue intraoperatively. Moreover, this project provides insight into selecting optimal formulation strategies for poorly vascularized tumors.
Collapse
|
39
|
Svechkarev D, Kyrychenko A, Payne WM, Mohs AM. Probing the self-assembly dynamics and internal structure of amphiphilic hyaluronic acid conjugates by fluorescence spectroscopy and molecular dynamics simulations. SOFT MATTER 2018; 14:4762-4771. [PMID: 29799600 PMCID: PMC5999590 DOI: 10.1039/c8sm00908b] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Polymeric nanoparticles are increasingly used as biocompatible carriers for drugs and imaging agents. Understanding their self-assembly dynamics and morphology is of ultimate importance to develop nanoformulations with optimal characteristics. To achieve better performance, it is vital to account for cargo-carrier interactions at the molecular level. The self-assembly dynamics were studied and the internal structure of nanoparticles derived from a series of hydrophobically modified hyaluronic acid was revealed. Environment-sensitive ratiometric fluorescent probes provide valuable information about the nanoparticle's interior morphology, and molecular dynamics simulations complement the overall picture with insights into intramolecular and intermolecular interactions of the polymer, as well as its interactions with the small-molecule load. van der Waals and π-π interactions of the hydrophobic side fragments play a leading role in self-assembly and loading of hydrophobic small molecules. Aliphatic substituents form more extensive hydrophobic domains, while aromatic moieties allow more interaction of the loaded small molecules with the surrounding solvent.
Collapse
Affiliation(s)
- Denis Svechkarev
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA.
| | | | | | | |
Collapse
|
40
|
Qi B, Crawford AJ, Wojtynek NE, Holmes MB, Souchek JJ, Almeida-Porada G, Ly QP, Cohen SM, Hollingsworth MA, Mohs AM. Indocyanine green loaded hyaluronan-derived nanoparticles for fluorescence-enhanced surgical imaging of pancreatic cancer. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2018; 14:769-780. [PMID: 29325740 PMCID: PMC5899013 DOI: 10.1016/j.nano.2017.12.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 11/20/2017] [Accepted: 12/19/2017] [Indexed: 01/14/2023]
Abstract
Pancreatic ductal adenocarcinoma is highly lethal and surgical resection is the only potential curative treatment for the disease. In this study, hyaluronic acid derived nanoparticles with physico-chemically entrapped indocyanine green, termed NanoICG, were utilized for intraoperative near infrared fluorescence detection of pancreatic cancer. NanoICG was not cytotoxic to healthy pancreatic epithelial cells and did not induce chemotaxis or phagocytosis, it accumulated significantly within the pancreas in an orthotopic pancreatic ductal adenocarcinoma model, and demonstrated contrast-enhancement for pancreatic lesions relative to non-diseased portions of the pancreas. Fluorescence microscopy showed higher fluorescence intensity in pancreatic lesions and splenic metastases due to NanoICG compared to ICG alone. The in vivo safety profile of NanoICG, including, biochemical, hematological, and pathological analysis of NanoICG-treated healthy mice, indicates negligible toxicity. These results suggest that NanoICG is a promising contrast agent for intraoperative detection of pancreatic tumors.
Collapse
Affiliation(s)
- Bowen Qi
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE
| | - Ayrianne J Crawford
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE
| | - Nicholas E Wojtynek
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE
| | - Megan B Holmes
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE
| | - Joshua J Souchek
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE
| | - Graca Almeida-Porada
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, NC
| | - Quan P Ly
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE
| | - Samuel M Cohen
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE; Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE; Havlik-Wall Professor of Oncology, University of Nebraska Medical Center, Omaha, NE
| | - Michael A Hollingsworth
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE
| | - Aaron M Mohs
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE; Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE.
| |
Collapse
|
41
|
Ehlerding EB, Grodzinski P, Cai W, Liu CH. Big Potential from Small Agents: Nanoparticles for Imaging-Based Companion Diagnostics. ACS NANO 2018; 12:2106-2121. [PMID: 29462554 PMCID: PMC5878691 DOI: 10.1021/acsnano.7b07252] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The importance of medical imaging in the diagnosis and monitoring of cancer cannot be overstated. As personalized cancer treatments are gaining popularity, a need for more advanced imaging techniques has grown significantly. Nanoparticles are uniquely suited to fill this void, not only as imaging contrast agents but also as companion diagnostics. This review provides an overview of many ways nanoparticle imaging agents have contributed to cancer imaging, both preclinically and in the clinic, as well as charting future directions in companion diagnostics. We conclude that, while nanoparticle-based imaging agents are not without considerable scientific and developmental challenges, they enable enhanced imaging in nearly every modality, hold potential as in vivo companion diagnostics, and offer precise cancer treatment and maximize intervention efficacy.
Collapse
Affiliation(s)
- Emily B. Ehlerding
- Office of Cancer Nanotechnology Research, National Cancer Institute, National Institutes of Health, Rockville, Maryland 20850, United States
- Department of Medical Physics, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Piotr Grodzinski
- Office of Cancer Nanotechnology Research, National Cancer Institute, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Weibo Cai
- Department of Medical Physics, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
- Department of Radiology, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
- Carbone Cancer Center, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Christina H. Liu
- Office of Cancer Nanotechnology Research, National Cancer Institute, National Institutes of Health, Rockville, Maryland 20850, United States
| |
Collapse
|
42
|
Svechkarev D, Sadykov MR, Bayles KW, Mohs AM. Ratiometric Fluorescent Sensor Array as a Versatile Tool for Bacterial Pathogen Identification and Analysis. ACS Sens 2018; 3:700-708. [PMID: 29504753 PMCID: PMC5938749 DOI: 10.1021/acssensors.8b00025] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Rapid and reliable identification of pathogenic microorganisms is of great importance for human and animal health. Most conventional approaches are time-consuming and require expensive reagents, sophisticated equipment, trained personnel, and special storage and handling conditions. Sensor arrays based on small molecules offer a chemically stable and cost-effective alternative. Here we present a ratiometric fluorescent sensor array based on the derivatives of 2-(4'- N, N-dimethylamino)-3-hydroxyflavone and investigate its ability to provide a dual-channel ratiometric response. We demonstrate that, by using discriminant analysis of the sensor array responses, it is possible to effectively distinguish between eight bacterial species and recognize their Gram status. Thus, multiple parameters can be derived from the same data set. Moreover, the predictive potential of this sensor array is discussed, and its ability to analyze unknown samples beyond the list of species used for the training matrix is demonstrated. The proposed sensor array and analysis strategies open new avenues for the development of advanced ratiometric sensors for multiparametric analysis.
Collapse
Affiliation(s)
- Denis Svechkarev
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198-6858, United States
| | - Marat R. Sadykov
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198-5900, United States
| | - Kenneth W. Bayles
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198-5900, United States
| | - Aaron M. Mohs
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198-6858, United States
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198-6858, United States
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-6858, United States
| |
Collapse
|
43
|
Indocyanine green fluorescence imaging in colorectal surgery: overview, applications, and future directions. Lancet Gastroenterol Hepatol 2017; 2:757-766. [DOI: 10.1016/s2468-1253(17)30216-9] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 06/23/2017] [Accepted: 06/26/2017] [Indexed: 02/07/2023]
|
44
|
Bhattacharya D, Svechkarev D, Souchek JJ, Hill TK, Taylor MA, Natarajan A, Mohs AM. Impact of structurally modifying hyaluronic acid on CD44 interaction. J Mater Chem B 2017; 5:8183-8192. [PMID: 29354263 PMCID: PMC5773055 DOI: 10.1039/c7tb01895a] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
CD44 is a widely-distributed type I transmembrane glycoprotein that binds hyaluronic acid (HA) in most cell types, including primary tumor cells and cancer-initiating cells and has roles in cell migration, cell-cell, and cell-matrix adhesion. HA-derived conjugates and nanoparticles that target the CD44 receptor on cells have been reported for targeted delivery of therapeutics and imaging agents. Altering crucial interactions of HA with CD44 active sites holds significant importance in modulating targeting ability of hyaluronic acid to other cancer types that do not express the CD44 receptor or minimizing the interaction with CD44+ cells that are not target cells. The approach adopted here was deacetylation of the N-acetyl group and selective sulfation on the C6-OH on the HA polymer, which form critical interactions with the CD44 active site. Major interactions identified by molecular modeling were confirmed to be hydrogen bonding of the C6-OH with Tyr109 and hydrophobic interaction of the N-acetyl group with Tyr46, 83 and Ile 92. Modified HA was synthesized and characterized and its interactions were assessed by in vitro and molecular modeling approaches. In vitro techniques included flow cytometry and fluorescence polarization, while in silico approaches included docking and binding calculations by a MM-PBSA approach. These studies indicated that while both deacetylation and sulfation of HA individually decrease CD44 interaction, both chemical modifications are required to minimize interaction with CD44+ cells. The results of this study represent the first step to effective retargeting of HA-derived NPs for imaging and drug delivery.
Collapse
Affiliation(s)
- D. Bhattacharya
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198-6858, USA
| | - D. Svechkarev
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198-6858, USA
| | - J. J. Souchek
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198-6858, USA
| | - T. K. Hill
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198-6858, USA
| | - M. A. Taylor
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198-6858, USA
| | - A. Natarajan
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198-6858, USA
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198-6858, USA
| | - A. M. Mohs
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198-6858, USA
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198-6858, USA
- Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-6858, USA
| |
Collapse
|
45
|
Multimodal Imaging Nanoparticles Derived from Hyaluronic Acid for Integrated Preoperative and Intraoperative Cancer Imaging. CONTRAST MEDIA & MOLECULAR IMAGING 2017; 2017:9616791. [PMID: 29097944 PMCID: PMC5612698 DOI: 10.1155/2017/9616791] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 07/30/2017] [Indexed: 12/31/2022]
Abstract
Surgical resection remains the most promising treatment strategy for many types of cancer. Residual malignant tissue after surgery, a consequence in part due to positive margins, contributes to high mortality and disease recurrence. In this study, multimodal contrast agents for integrated preoperative magnetic resonance imaging (MRI) and intraoperative fluorescence image-guided surgery (FIGS) are developed. Self-assembled multimodal imaging nanoparticles (SAMINs) were developed as a mixed micelle formulation using amphiphilic HA polymers functionalized with either GdDTPA for T1 contrast-enhanced MRI or Cy7.5, a near infrared fluorophore. To evaluate the relationship between MR and fluorescence signal from SAMINs, we employed simulated surgical phantoms that are routinely used to evaluate the depth at which near infrared (NIR) imaging agents can be detected by FIGS. Finally, imaging agent efficacy was evaluated in a human breast tumor xenograft model in nude mice, which demonstrated contrast in both fluorescence and magnetic resonance imaging.
Collapse
|
46
|
Gang H, Xie J. Light-Mediated Deep-Tissue Theranostics. Am J Cancer Res 2016; 6:2292-2294. [PMID: 27877234 PMCID: PMC5118594 DOI: 10.7150/thno.17634] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 09/20/2016] [Indexed: 12/29/2022] Open
Abstract
This theme issue provides an overview on recent developments of light-mediated imaging and therapy approaches, with an emphasis on those that transcend the shallow tissue penetration dogma.
Collapse
|