1
|
Takao S, Fukushima H, Furusawa A, Kato T, Okuyama S, Kano M, Yamamoto H, Suzuki M, Kano M, Choyke PL, Kobayashi H. Tissue factor targeted near-infrared photoimmunotherapy: a versatile therapeutic approach for malignancies. Cancer Immunol Immunother 2025; 74:48. [PMID: 39751657 PMCID: PMC11699179 DOI: 10.1007/s00262-024-03903-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 11/20/2024] [Indexed: 01/04/2025]
Abstract
Tissue factor (TF) is a cell surface protein that plays a role in blood clotting but is also commonly expressed in many cancers. Recent research implicated TF in cancer proliferation, metastasis, angiogenesis, and immune escape. Therefore, TF can be considered a viable therapeutic target against cancer. Herein, we developed and tested a TF-targeted near-infrared photoimmunotherapy (NIR-PIT) as a potential treatment for several types of cancer. Tisotumab, a TF antibody, was conjugated to IR700. The efficacy of TF-targeted NIR-PIT was investigated using multiple cancer cell lines (A431; epidermoid carcinoma, HPAF-II; pancreatic adenocarcinoma, HSC-2; oral carcinoma, HT1376-luc; bladder carcinoma, MDAMB231; breast adenocarcinoma, and SKOV3-luc; ovarian serous cystadenocarcinoma) in vitro. In vivo, the efficacy of TF-targeted NIR-PIT was evaluated in HPAF-II and A431 xenograft mouse models. Pathologic changes in these tumors after NIR-PIT were evaluated in these tumor models. All cancer lines demonstrated TF expression in vitro and in vivo. Additionally, TF expression was documented to localize to cancer cells in tumors. In vitro, TF-targeted NIR-PIT caused cell death in a light dose-dependent manner. In vivo, TF-targeted NIR-PIT suppressed tumor growth and improved survival rates compared to controls. Furthermore, in vivo NIR-PIT showed histological signs of cancer cell damage, such as cytoplasmic vacuolation, nuclear dysmorphism, and extracellular leakage of LDHA consistent with cell death. In conclusion, TF-targeted NIR-PIT holds promise as a treatment for multiple cancer models expressing TF, spanning multiple cancer types.
Collapse
Affiliation(s)
- Seiichiro Takao
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Hiroshi Fukushima
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Aki Furusawa
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Takuya Kato
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Shuhei Okuyama
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Makoto Kano
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Hiroshi Yamamoto
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Motofumi Suzuki
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Miyu Kano
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Peter L Choyke
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Hisataka Kobayashi
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, 10 Center Drive, Bethesda, MD, 20892, USA.
| |
Collapse
|
2
|
Allen D, Szoo MJ, van Bergen TD, Seppelin A, Oh J, Saad MA. Near-infrared photoimmunotherapy: mechanisms, applications, and future perspectives in cancer research. Antib Ther 2025; 8:68-85. [PMID: 39958565 PMCID: PMC11826922 DOI: 10.1093/abt/tbaf001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/01/2024] [Accepted: 01/16/2025] [Indexed: 02/18/2025] Open
Abstract
Photoimmunotherapy (PIT) involves the targeted delivery of a photosensitizer through antibody conjugation, which, upon binding to its cellular target and activation by external irradiation, induces localized toxicity. This approach addresses several limitations of conventional cancer therapies, such as chemo- and radiotherapies, which result in off-target effects that significantly reduce patient quality of life. Furthermore, PIT improves on the challenges encountered with photodynamic therapy (PDT), such as nonspecific localization of the photosensitizer, which often results in unintended toxicities. Although PIT was first proposed in the early 1980s, its clinical applications have been constrained by limitations in antibody engineering, conjugation chemistries, and optical technologies. However, recent advances in antibody-drug conjugate (ADC) research and the emergence of sophisticated laser technologies have greatly benefited the broader applicability of PIT. Notably, the first near-infrared photoimmunotherapy (NIR-PIT) treatment for head and neck cancer has been approved in Japan and is currently in phase III clinical trials in the USA. A significant advantage of PIT over traditional ADCs in cancer management is the agnostic nature of PDT, making it more adaptable to different tumor types. Specifically, PIT can act on cancer stem cells and cancer cells displaying treatment resistance and aggressive phenotypes-a capability beyond the scope of ADCs alone. This review provides an overview of the mechanism of action of NIR-PIT, highlighting its adaptability and application in cancer therapeutics, and concludes by exploring the potential of PIT in advancing cancer treatments.
Collapse
Affiliation(s)
- Derek Allen
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States
| | - Madeline JoAnna Szoo
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, United States
- Department of Biochemistry, Northeastern University, Boston, MA 02115, United States
| | - Tessa D van Bergen
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States
| | - Ani Seppelin
- Department of Biochemistry, Northeastern University, Boston, MA 02115, United States
| | - Jeonghyun Oh
- Department of Physics, Northeastern University, Boston, MA 02115, United States
| | - Mohammad A Saad
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States
| |
Collapse
|
3
|
Yang JK, Kwon H, Kim S. Recent advances in light-triggered cancer immunotherapy. J Mater Chem B 2024; 12:2650-2669. [PMID: 38353138 DOI: 10.1039/d3tb02842a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Light-triggered phototherapies, such as photodynamic therapy (PDT) and photothermal therapy (PTT), have shown strong therapeutic efficacy with minimal invasiveness and systemic toxicity, offering opportunities for tumor-specific therapies. Phototherapies not only induce direct tumor cell killing, but also trigger anti-tumor immune responses by releasing various immune-stimulating factors. In recent years, conventional phototherapies have been combined with cancer immunotherapy as synergistic therapeutic modalities to eradicate cancer by exploiting the innate and adaptive immunity. These combined photoimmunotherapies have demonstrated excellent therapeutic efficacy in preventing tumor recurrence and metastasis compared to phototherapy alone. This review covers recent advancements in combined photoimmunotherapy, including photoimmunotherapy (PIT), PDT-combined immunotherapy, and PTT-combined immunotherapy, along with their underlying anti-tumor immune response mechanisms. In addition, the challenges and future research directions for light-triggered cancer immunotherapy are discussed.
Collapse
Affiliation(s)
- Jin-Kyoung Yang
- Department of Chemical Engineering, Dong-eui University, Busan, 47340, Republic of Korea.
| | - Hayoon Kwon
- Chemical & Biological integrative Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea.
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Sehoon Kim
- Chemical & Biological integrative Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea.
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| |
Collapse
|
4
|
Cui Y, Xu Y, Li Y, Sun Y, Hu J, Jia J, Li X. Antibody Drug Conjugates of Near-Infrared Photoimmunotherapy (NIR-PIT) in Breast Cancers. Technol Cancer Res Treat 2023; 22:15330338221145992. [PMID: 36734039 PMCID: PMC9903039 DOI: 10.1177/15330338221145992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Worldwide, the incidence rate of breast cancer is the highest in women. Approximately 2.3 million people were newly diagnosed and 0.685 million were dead of breast cancer in 2020, which continues to grow. Triple-negative breast cancer (TNBC) is the most aggressive breast cancer subtype with a higher risk of recurrence and metastasis, but disappointly, there are no effective and specific therapies clinically, especially for patients presenting with metastatic diseases. Therefore, it is urgent to develop a new type of cancer therapy for survival improvisation and adverse effects alleviation of breast cancers. Near-infrared photoimmunotherapy (NIR-PIT) is a newly developed, photochemistry-based cancer therapy. It was drive by an antibody-photoabsorber conjugate (APC) which is triggered by near-infrared light. The key part of APC is a cancer-targeting monoclonal antibody (mAb) that can bind to receptors or antigens on the surface of tumor cells. Because of this targeted conjugate accumulation, subsequent deployment of focal NIR-light results in functional damage on the targeted cell membranes without harming the immediately adjacent receptor-negative cells and evokes a kind of photochemical, speedy, and highly specific immunogenic cell death (ICD) of cancer cells with corresponding antigens. Subsequently, immature dendritic cells adjacent to dying cancer cells will become mature, further inducing a host-oriented anti-cancer immune response, complicatedly and comprehensively. Currently, NIR-PIT has progressed into phase 3 clinical trial for recurrent head and neck cancer. And preclinical studies have illustrated strong therapeutic efficacy of NIR-PIT targeting various molecular receptors overexpressed in breast cancer cells, including EGFR, HER2, CD44c, CD206, ICAM-1 and FAP-α. Thereby, NIR-PIT is in early trials, but appears to be a promising breast cancer therapy and moving into the future. Here, we present the specific advantages and discuss the most recent preclinical studies against several transmembrane proteins of NIR-PIT in breast cancers.
Collapse
Affiliation(s)
- Yingshu Cui
- Department of Oncology, the Fifth Medical Center, Chinese PLA General Hospital, Beijing, China,Medical School of Chinese PLA, Beijing, China
| | - Yuanyuan Xu
- Department of Oncology, the Fifth Medical Center, Chinese PLA General Hospital, Beijing, China,Department of Laser, the First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yi Li
- Medical School of Chinese PLA, Beijing, China,Department of Laser, the First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yuanyuan Sun
- Department of Oncology, the Fifth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Jia Hu
- Department of Oncology, the Fifth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Jia Jia
- Department of Oncology, the Seventh Medical Center, Chinese PLA General Hospital, Beijing, China,Jia Jia, Department of Oncology, the Seventh Medical Centre, Chinese PLA General Hospital, Beijing 100700, China.
| | - Xiaosong Li
- Department of Oncology, the Fifth Medical Center, Chinese PLA General Hospital, Beijing, China,Xiaosong Li, Department of Oncology, the Fifth Medical Center, Chinese PLA General Hospital, Beijing 100071, China.
| |
Collapse
|
5
|
Mohiuddin TM, Zhang C, Sheng W, Al-Rawe M, Zeppernick F, Meinhold-Heerlein I, Hussain AF. Near Infrared Photoimmunotherapy: A Review of Recent Progress and Their Target Molecules for Cancer Therapy. Int J Mol Sci 2023; 24:2655. [PMID: 36768976 PMCID: PMC9916513 DOI: 10.3390/ijms24032655] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/26/2023] [Accepted: 01/28/2023] [Indexed: 02/01/2023] Open
Abstract
Near infrared photoimmunotherapy (NIR-PIT) is a newly developed molecular targeted cancer treatment, which selectively kills cancer cells or immune-regulatory cells and induces therapeutic host immune responses by administrating a cancer targeting moiety conjugated with IRdye700. The local exposure to near-infrared (NIR) light causes a photo-induced ligand release reaction, which causes damage to the target cell, resulting in immunogenic cell death (ICD) with little or no side effect to the surrounding normal cells. Moreover, NIR-PIT can generate an immune response in distant metastases and inhibit further cancer attack by combing cancer cells targeting NIR-PIT and immune regulatory cells targeting NIR-PIT or other cancer treatment modalities. Several recent improvements in NIR-PIT have been explored such as catheter-driven NIR light delivery, real-time monitoring of cancer, and the development of new target molecule, leading to NIR-PIT being considered as a promising cancer therapy. In this review, we discuss the progress of NIR-PIT, their mechanism and design strategies for cancer treatment. Furthermore, the overall possible targeting molecules for NIR-PIT with their application for cancer treatment are briefly summarised.
Collapse
|
6
|
Huis in ‘t Veld RV, Heuts J, Ma S, Cruz LJ, Ossendorp FA, Jager MJ. Current Challenges and Opportunities of Photodynamic Therapy against Cancer. Pharmaceutics 2023; 15:pharmaceutics15020330. [PMID: 36839652 PMCID: PMC9965442 DOI: 10.3390/pharmaceutics15020330] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/06/2023] [Accepted: 01/12/2023] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Photodynamic therapy (PDT) is an established, minimally invasive treatment for specific types of cancer. During PDT, reactive oxygen species (ROS) are generated that ultimately induce cell death and disruption of the tumor area. Moreover, PDT can result in damage to the tumor vasculature and induce the release and/or exposure of damage-associated molecular patterns (DAMPs) that may initiate an antitumor immune response. However, there are currently several challenges of PDT that limit its widespread application for certain indications in the clinic. METHODS A literature study was conducted to comprehensively discuss these challenges and to identify opportunities for improvement. RESULTS The most notable challenges of PDT and opportunities to improve them have been identified and discussed. CONCLUSIONS The recent efforts to improve the current challenges of PDT are promising, most notably those that focus on enhancing immune responses initiated by the treatment. The application of these improvements has the potential to enhance the antitumor efficacy of PDT, thereby broadening its potential application in the clinic.
Collapse
Affiliation(s)
- Ruben V. Huis in ‘t Veld
- Department of Ophthalmology, Leiden University Medical Centre (LUMC), 2333 ZA Leiden, Zuid-Holland, The Netherlands
- Department of Radiology, Leiden University Medical Centre (LUMC), 2333 ZA Leiden, Zuid-Holland, The Netherlands
- Correspondence:
| | - Jeroen Heuts
- Department of Immunology, Leiden University Medical Centre (LUMC), 2333 ZA Leiden, Zuid-Holland, The Netherlands
| | - Sen Ma
- Department of Ophthalmology, Leiden University Medical Centre (LUMC), 2333 ZA Leiden, Zuid-Holland, The Netherlands
| | - Luis J. Cruz
- Department of Radiology, Leiden University Medical Centre (LUMC), 2333 ZA Leiden, Zuid-Holland, The Netherlands
| | - Ferry A. Ossendorp
- Department of Immunology, Leiden University Medical Centre (LUMC), 2333 ZA Leiden, Zuid-Holland, The Netherlands
| | - Martine J. Jager
- Department of Ophthalmology, Leiden University Medical Centre (LUMC), 2333 ZA Leiden, Zuid-Holland, The Netherlands
| |
Collapse
|
7
|
Dual-targeted near-infrared photoimmunotherapy for esophageal cancer and cancer-associated fibroblasts in the tumor microenvironment. Sci Rep 2022; 12:20152. [PMID: 36418422 PMCID: PMC9684531 DOI: 10.1038/s41598-022-24313-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 11/14/2022] [Indexed: 11/25/2022] Open
Abstract
Cancer-associated fibroblasts (CAFs) play a significant role in tumor progression within the tumor microenvironment. Previously, we used near-infrared photoimmunotherapy (NIR-PIT), a next-generation cancer cell-targeted phototherapy, to establish CAF-targeted NIR-PIT. In this study, we investigated whether dual-targeted NIR-PIT, targeting cancer cells and CAFs, could be a therapeutic strategy. A total of 132 cases of esophageal cancer were analyzed for epidermal growth factor receptor (EGFR), human epidermal growth factor 2 (HER2), and fibroblast activation protein (FAP) expression using immunohistochemistry. Human esophageal cancer cells and CAFs were co-cultured and treated with single- or dual-targeted NIR-PIT in vitro. These cells were co-inoculated into BALB/c-nu/nu mice and the tumors were treated with single-targeted NIR-PIT or dual-targeted NIR-PIT in vivo. Survival analysis showed FAP- or EGFR-high patients had worse survival than patients with low expression of FAP or EGFR (log-rank, P < 0.001 and P = 0.074, respectively), while no difference was observed in HER2 status. In vitro, dual (EGFR/FAP)-targeted NIR-PIT induced specific therapeutic effects in cancer cells and CAFs along with suppressing tumor growth in vivo, whereas single-targeted NIR-PIT did not show any significance. Moreover, these experiments demonstrated that dual-targeted NIR-PIT could treat cancer cells and CAFs simultaneously with a single NIR light irradiation. We demonstrated the relationship between EGFR/FAP expression and prognosis of patients with esophageal cancer and the stronger therapeutic effect of dual-targeted NIR-PIT than single-targeted NIR-PIT in experimental models. Thus, dual-targeted NIR-PIT might be a promising therapeutic strategy for cancer treatment.
Collapse
|
8
|
Wei D, Qi J, Hamblin MR, Wen X, Jiang X, Yang H. Near-infrared photoimmunotherapy: design and potential applications for cancer treatment and beyond. Am J Cancer Res 2022; 12:7108-7131. [PMID: 36276636 PMCID: PMC9576624 DOI: 10.7150/thno.74820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 09/28/2022] [Indexed: 11/22/2022] Open
Abstract
Near-infrared photoimmunotherapy (NIR-PIT) is a newly developed cancer treatment modality based on a target-specific photosensitizer conjugate (TSPC) composed of an NIR phthalocyanine photosensitizer and an antigen-specific recognition system. NIR-PIT has predominantly been used for targeted therapy of tumors via local irradiation with NIR light, following binding of TSPC to antigen-expressing cells. Physical stress-induced membrane damage is thought to be a major mechanism underlying NIR-PIT-triggered photokilling. Notably, NIR-PIT can rapidly induce immunogenic cell death and activate the adaptive immune response, thereby enabling its combination with immune checkpoint inhibitors. Furthermore, NIR-PIT-triggered “super-enhanced permeability and retention” effects can enhance drug delivery into tumors. Supported by its potential efficacy and safety, NIR-PIT is a rapidly developing therapeutic option for various cancers. Hence, this review seeks to provide an update on the (i) broad range of target molecules suitable for NIR-PIT, (ii) various types of receptor-selective ligands for designing the TSPC “magic bullet,” (iii) NIR light parameters, and (iv) strategies for enhancing the efficacy of NIR-PIT. Moreover, we review the potential application of NIR-PIT, including the specific design and efficacy in 19 different cancer types, and its clinical studies. Finally, we summarize possible NIR-PIT applications in noncancerous conditions, including infection, pain, itching, metabolic disease, autoimmune disease, and tissue engineering.
Collapse
Affiliation(s)
- Danfeng Wei
- Department of Dermatology and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China.,Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network West China Hospital, Sichuan University, Chengdu 610041, China.,NHC Key Lab of Transplant Engineering and Immunology, Organ Transplant Center, West China Hospital, Sichuan University, Chengdu, Chengdu 610041, China
| | - Jinxin Qi
- Department of Dermatology and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China.,Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network West China Hospital, Sichuan University, Chengdu 610041, China
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
| | - Xiang Wen
- Department of Dermatology and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xian Jiang
- Department of Dermatology and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China.,Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hao Yang
- NHC Key Lab of Transplant Engineering and Immunology, Organ Transplant Center, West China Hospital, Sichuan University, Chengdu, Chengdu 610041, China.,Sichuan Provincial Engineering Laboratory of Pathology in Clinical Application, West China Hospital, Sichuan University
| |
Collapse
|
9
|
Peng Z, Lv X, Huang S. Photoimmunotherapy: A New Paradigm in Solid Tumor Immunotherapy. Cancer Control 2022. [PMCID: PMC9016614 DOI: 10.1177/10732748221088825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In recent years, the incidence of cancer has been increasing worldwide. Conventional cancer treatments include surgery, chemotherapy, and radiation, which mostly kill tumor cells at the expense of normal and immune cells. Although immunotherapy is an accurate, rapid, efficient tumor immune treatment, it causes serious adverse reactions, such as cytokine release syndrome (CRS) and neurotoxicity. Therefore, there is an urgent need to develop an effective and nontoxic procedure for immunotherapy. The clinical combination of phototherapy and immunoadjuvant therapy can induce immunogenic cell death and enhance antigen presentation synergy. It also causes a systemic antitumor immune response to manage residual tumors and distant metastases. Photoimmunotherapy (PIT) is a tumor treatment combining phototherapy with immunotherapy based on injecting a conjugate photosensitizer (IR700) and a monoclonal antibody (mAb) to target an expressed antigen on the tumor surface. This combination can enhance the immune response ability, thus having a good effect on the treatment of residual tumor and metastatic cancer. In this review, we summarize the recent progress in photoimmunotherapy, including photoimmunoconjugate (PIC), the activation mechanism of immunogenic cell death (ICD), the combination therapy model, opportunities and prospects. Specifically, we aim to provide a promising clinical therapy for solid tumor clinical transformation.
Collapse
Affiliation(s)
- Zheng Peng
- Faculty of Health Sciences, University of Macau, Taipa, China
| | - Xiaolan Lv
- Department of Laboratory Medicine, Liuzhou Maternity and Child Healthcare Hospital, Liu Zhou, China
| | - Shigao Huang
- Department of Radiation Oncology, Xijing Hospital, Air Force Medical University, Xi’an, China
| |
Collapse
|
10
|
Mussini A, Uriati E, Bianchini P, Diaspro A, Cavanna L, Abbruzzetti S, Viappiani C. Targeted photoimmunotherapy for cancer. Biomol Concepts 2022; 13:126-147. [PMID: 35304984 DOI: 10.1515/bmc-2022-0010] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 02/24/2022] [Indexed: 12/12/2022] Open
Abstract
Photodynamic therapy (PDT) is a clinically approved procedure that can exert a curative action against malignant cells. The treatment implies the administration of a photoactive molecular species that, upon absorption of visible or near infrared light, sensitizes the formation of reactive oxygen species. These species are cytotoxic and lead to tumor cell death, damage vasculature, and induce inflammation. Clinical investigations demonstrated that PDT is curative and does not compromise other treatment options. One of the major limitations of the original method was the low selectivity of the photoactive compounds for malignant over healthy tissues. The development of conjugates with antibodies has endowed photosensitizing molecules with targeting capability, so that the compounds are delivered with unprecedented precision to the site of action. Given their fluorescence emission capability, these supramolecular species are intrinsically theranostic agents.
Collapse
Affiliation(s)
- Andrea Mussini
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università Degli Studi di Parma, Parma, Italy
| | - Eleonora Uriati
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università Degli Studi di Parma, Parma, Italy.,Department of Nanophysics, Nanoscopy, Istituto Italiano di Tecnologia, Genova, Italy
| | - Paolo Bianchini
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università Degli Studi di Parma, Parma, Italy.,Department of Nanophysics, Nanoscopy, Istituto Italiano di Tecnologia, Genova, Italy.,DIFILAB, Dipartimento di Fisica, Università Degli Studi di Genova, Genova, Italy
| | - Alberto Diaspro
- Department of Nanophysics, Nanoscopy, Istituto Italiano di Tecnologia, Genova, Italy.,DIFILAB, Dipartimento di Fisica, Università Degli Studi di Genova, Genova, Italy
| | - Luigi Cavanna
- Dipartimento di Oncologia-Ematologia, Azienda USL di Piacenza, Piacenza, Italy
| | - Stefania Abbruzzetti
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università Degli Studi di Parma, Parma, Italy
| | - Cristiano Viappiani
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università Degli Studi di Parma, Parma, Italy
| |
Collapse
|
11
|
Yamaguchi H, On J, Morita T, Suzuki T, Okada Y, Ono J, Evdokiou A. Combination of Near-Infrared Photoimmunotherapy Using Trastuzumab and Small Protein Mimetic for HER2-Positive Breast Cancer. Int J Mol Sci 2021; 22:ijms222212213. [PMID: 34830099 PMCID: PMC8618566 DOI: 10.3390/ijms222212213] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/09/2021] [Accepted: 11/09/2021] [Indexed: 02/07/2023] Open
Abstract
Near-infrared photoimmunotherapy (NIR-PIT) is a promising cancer therapy based on a monoclonal antibody conjugated to a photosensitizer (IR700Dye) that is activated by near-infrared light irradiation. We previously reported on the use of NIR-PIT with a small protein mimetic, the Affibody molecule (6–7 kDa), instead of a monoclonal antibody. In this study, we investigated a combination of NIR-PIT for HER2-positive breast cancer cells (SK-BR3, MDA-MB361, and JIMT1) with HER2 Affibody-IR700Dye conjugate and trastuzumab-IR700Dye conjugate. HER2 Affibody and trastuzumab target different epitopes of the HER2 protein and do not compete. In vitro, the combination of NIR-PIT using both HER2 Affibody-IR700Dye conjugate and trastuzumab-IR700Dye conjugate induced necrotic cell death of HER2-positive breast cancer cells without damage to HER2-negative breast cancer cells (MCF7). It was more efficient than NIR-PIT using either the HER2 Affibody-IR700Dye conjugate alone or the trastuzumab-IR700Dye conjugate alone. Additionally, this combination of NIR-PIT was significantly effective against HER2 low-expressing cancer cells, trastuzumab-resistant cells (JIMT1), and brain metastatic cells of breast cancer (MDA-MB361). Furthermore, in vivo imaging exhibited the strong fluorescence intensity of both HER2 Affibody-IR700Dye conjugates and trastuzumab-Alexa488 conjugates in HER2-positive tumor, indicating that both HER2 Affibody and trastuzumab specifically bind to HER2-positive tumors without competing with each other. In conclusion, the combination of NIR-PIT using both HER2 Affibody and trastuzumab expands the targeting scope of NIR-PIT for HER2-positive breast cancer.
Collapse
Affiliation(s)
- Haruka Yamaguchi
- Department of Biochemistry, School of Life Dentistry at Niigata, The Nippon Dental University, Niigata 951-8580, Japan; (H.Y.); (T.M.)
- Discipline of Surgery, Breast Cancer Research Unit, Basil Hetzel Institute, University of Adelaide, Adelaide, SA 5011, Australia
| | - Jotaro On
- Department of Neurosurgery, Brain Research Institute, Niigata University, Niigata 951-8122, Japan;
| | - Takao Morita
- Department of Biochemistry, School of Life Dentistry at Niigata, The Nippon Dental University, Niigata 951-8580, Japan; (H.Y.); (T.M.)
| | - Takamasa Suzuki
- Faculty of Engineering, Niigata University, Niigata 950-2181, Japan;
| | - Yasuo Okada
- Department of Pathology, School of Life Dentistry at Niigata, The Nippon Dental University, Niigata 951-8580, Japan; (Y.O.); (J.O.)
| | - Junya Ono
- Department of Pathology, School of Life Dentistry at Niigata, The Nippon Dental University, Niigata 951-8580, Japan; (Y.O.); (J.O.)
| | - Andreas Evdokiou
- Discipline of Surgery, Breast Cancer Research Unit, Basil Hetzel Institute, University of Adelaide, Adelaide, SA 5011, Australia
- Correspondence: ; Tel.: +61-8-8222-7451
| |
Collapse
|
12
|
Paraboschi I, Turnock S, Kramer-Marek G, Musleh L, Barisa M, Anderson J, Giuliani S. Near-InfraRed PhotoImmunoTherapy (NIR-PIT) for the local control of solid cancers: Challenges and potentials for human applications. Crit Rev Oncol Hematol 2021; 161:103325. [PMID: 33836238 PMCID: PMC8177002 DOI: 10.1016/j.critrevonc.2021.103325] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/29/2021] [Accepted: 03/26/2021] [Indexed: 01/10/2023] Open
Abstract
Near-InfraRed PhotoImmunoTherapy (NIR-PIT) is a novel cancer-targeted treatment effected by a chemical conjugation between a photosensitiser (e.g. the NIR phthalocyanine dye IRDye700DX) and a cancer-targeting moiety (e.g. a monoclonal antibody, moAb). Delivery of a conjugate in vivo leads to accumulation at the tumour cell surface by binding to cell surface receptors or antigens. Upon deployment of focal NIR-light, irradiation of the conjugate results in a rapid, targeted cell death. However, the mechanisms of action to produce the cytotoxic effects have yet to be fully understood. Herein, we bring together the current knowledge of NIR-PIT from preclinical and clinical studies in a variety of cancers highlighting the key unanswered research questions. Furthermore, we discuss how to enhance the local control of solid cancers using this novel treatment regimen.
Collapse
Affiliation(s)
- Irene Paraboschi
- Wellcome/EPSRC Centre for Interventional & Surgical Sciences, University College London, London, UK
| | - Stephen Turnock
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, UK
| | | | - Layla Musleh
- Department of Specialist Neonatal and Pediatric Surgery, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Marta Barisa
- Cancer Section, Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child Health, London, UK
| | - John Anderson
- Cancer Section, Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child Health, London, UK; Department of Oncology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, England, UK
| | - Stefano Giuliani
- Wellcome/EPSRC Centre for Interventional & Surgical Sciences, University College London, London, UK; Department of Specialist Neonatal and Pediatric Surgery, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK.
| |
Collapse
|
13
|
Paus C, van der Voort R, Cambi A. Nanomedicine in cancer therapy: promises and hurdles of polymeric nanoparticles. EXPLORATION OF MEDICINE 2021. [DOI: 10.37349/emed.2021.00040] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The limitations of current cancer treatments have stimulated the application of nanotechnology to develop more effective and safer cancer therapies. Remarkable progress has been made in the development of nanomedicine to overcome issues associated with conventional cancer treatment, including low drug solubility, insufficient targeting, and drug resistance. The modulation of nanoparticles allows the improvement of drug pharmacokinetics, leading to improved targeting and reduced side effects. In addition, nanoparticles can be conjugated to ligands that specifically target cancer cells. Furthermore, strategies that exploit tumor characteristics to locally trigger drug release have shown to increase targeted drug delivery. However, although some clinical successes have been achieved, most nanomedicines fail to reach the clinic. Factors that hinder clinical translation vary from the complexity of design, incomplete understanding of biological mechanisms, and high demands during the manufacturing process. Clinical translation might be improved by combining knowledge from different disciplines such as cell biology, chemistry, and tumor pathophysiology. An increased understanding on how nanoparticle modifications affect biological systems is pivotal to improve design, eventually aiding development of more effective nanomedicines. This review summarizes the key successes that have been made in nanomedicine, including improved drug delivery and release by polymeric nanoparticles as well as the introduction of strategies that overcome drug resistance. In addition, the application of nanomedicine in immunotherapy is discussed, and several remaining challenges addressed.
Collapse
|
14
|
De Silva P, Saad MA, Thomsen HC, Bano S, Ashraf S, Hasan T. Photodynamic therapy, priming and optical imaging: Potential co-conspirators in treatment design and optimization - a Thomas Dougherty Award for Excellence in PDT paper. J PORPHYR PHTHALOCYA 2020; 24:1320-1360. [PMID: 37425217 PMCID: PMC10327884 DOI: 10.1142/s1088424620300098] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Photodynamic therapy is a photochemistry-based approach, approved for the treatment of several malignant and non-malignant pathologies. It relies on the use of a non-toxic, light activatable chemical, photosensitizer, which preferentially accumulates in tissues/cells and, upon irradiation with the appropriate wavelength of light, confers cytotoxicity by generation of reactive molecular species. The preferential accumulation however is not universal and, depending on the anatomical site, the ratio of tumor to normal tissue may be reversed in favor of normal tissue. Under such circumstances, control of the volume of light illumination provides a second handle of selectivity. Singlet oxygen is the putative favorite reactive molecular species although other entities such as nitric oxide have been credibly implicated. Typically, most photosensitizers in current clinical use have a finite quantum yield of fluorescence which is exploited for surgery guidance and can also be incorporated for monitoring and treatment design. In addition, the photodynamic process alters the cellular, stromal, and/or vascular microenvironment transiently in a process termed photodynamic priming, making it more receptive to subsequent additional therapies including chemo- and immunotherapy. Thus, photodynamic priming may be considered as an enabling technology for the more commonly used frontline treatments. Recently, there has been an increase in the exploitation of the theranostic potential of photodynamic therapy in different preclinical and clinical settings with the use of new photosensitizer formulations and combinatorial therapeutic options. The emergence of nanomedicine has further added to the repertoire of photodynamic therapy's potential and the convergence and co-evolution of these two exciting tools is expected to push the barriers of smart therapies, where such optical approaches might have a special niche. This review provides a perspective on current status of photodynamic therapy in anti-cancer and anti-microbial therapies and it suggests how evolving technologies combined with photochemically-initiated molecular processes may be exploited to become co-conspirators in optimization of treatment outcomes. We also project, at least for the short term, the direction that this modality may be taking in the near future.
Collapse
Affiliation(s)
- Pushpamali De Silva
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Mohammad A. Saad
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Hanna C. Thomsen
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Shazia Bano
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Shoaib Ashraf
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Tayyaba Hasan
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Division of Health Sciences and Technology, Harvard University and Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
15
|
Polikarpov DM, Campbell DH, Lund ME, Lu Y, Lu Y, Wu J, Walsh BJ, Zvyagin AV, Gillatt DA. The feasibility of Miltuximab®-IRDye700DX-mediated photoimmunotherapy of solid tumors. Photodiagnosis Photodyn Ther 2020; 32:102064. [PMID: 33069874 DOI: 10.1016/j.pdpdt.2020.102064] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 09/28/2020] [Accepted: 10/02/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Photoimmunotherapy (PIT) is an emerging method of cancer treatment based on the use of a photosensitizer near-infrared dye IRDye700DX (IR700) conjugated to a monoclonal antibody. The antibody selectively delivers IR700 to cancer cells, which can then be killed after photoexcitation. Glypican-1 (GPC-1) is a novel target expressed specifically in malignant tumors. We aimed to investigate whether anti-GPC-1 antibody Miltuximab® (Glytherix Ltd., Sydney, Australia) can be conjugated with IR700 for PIT of solid tumors. METHODS The dye IR700 was conjugated with Miltuximab® and characterized by spectrophotometry and flow cytometry. Miltuximab®-IR700-mediated PIT was tested in prostate (DU-145), bladder (C3 and T-24), brain (U-87 and U-251) and ovarian (SKOV-3) cancer cell lines. After 1 h incubation with Miltuximab®-IR700, the cells were washed by PBS and illuminated using a 690-nm light-emitting diode. The viability of the cells was assessed by a CCK-8 viability kit 24 h later. RESULTS Miltuximab®-IR700-mediated PIT caused 67.3-92.3% reduction in viability of cells with medium-high GPC-1 expression and did not affect the viability of GPC-1-low cells. Cytotoxicity was attributed to the targeted binding of the conjugate with subsequent photoactivation, as the conjugate or light exposure alone had no effect on the cell viability. Miltuximab®-IR700 did not induce cytotoxicity in cells blocked by unconjugated Miltuximab®. CONCLUSIONS PIT with Miltuximab®-IR700 appears to be highly specific and effective against GPC-1-expressing cancer cells, indicating that it holds promise for an effective and safe treatment of early stage solid tumors or as adjuvant therapy following surgical resection. These findings necessitate further investigation of PIT with Miltuximab®-IR700 in other GPC-1-expressing cancer cell lines in vitro and in vivo in xenograft tumor models.
Collapse
Affiliation(s)
- Dmitry M Polikarpov
- Department of Clinical Medicine, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, 2109, Australia.
| | | | | | - Yanling Lu
- Glytherix Ltd., Sydney, NSW, 2113, Australia
| | - Yiqing Lu
- ARC Centre of Excellence for Nanoscale BioPhotonics, Macquarie University, Sydney, NSW, 2109, Australia
| | - Jiehua Wu
- Glytherix Ltd., Sydney, NSW, 2113, Australia
| | | | - Andrei V Zvyagin
- ARC Centre of Excellence for Nanoscale BioPhotonics, Macquarie University, Sydney, NSW, 2109, Australia; Institute of Molecular Medicine, Sechenov University, 119991, Moscow, Russia.
| | - David A Gillatt
- Department of Clinical Medicine, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| |
Collapse
|
16
|
Lum YL, Luk JM, Staunton DE, Ng DKP, Fong WP. Cadherin-17 Targeted Near-Infrared Photoimmunotherapy for Treatment of Gastrointestinal Cancer. Mol Pharm 2020; 17:3941-3951. [PMID: 32931292 DOI: 10.1021/acs.molpharmaceut.0c00700] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
In cancer photodynamic therapy (PDT), a photosensitizer taken up by cancer cells can generate reactive oxygen species upon near-infrared light activation to induce cancer cell death. To increase PDT potency and decrease its adverse effect, one approach is to conjugate the photosensitizer with an antibody that specifically targets cancer cells. In the present study, IR700, a hydrophilic phthalocyanine photosensitizer, was conjugated to the humanized monoclonal antibody ARB102, which binds specifically cadherin-17 (CDH17 aka CA17), a cell surface marker highly expressed in gastrointestinal cancer to produce ARB102-IR700. Photoimmunotherapy (PIT) of gastrointestinal cancer cell lines was conducted by ARB102-IR700 treatment and near-infrared light irradiation. The results showed that ARB102-IR700 PIT could induce cell death in CDH17-positive cancer cells with high potency. In a co-culture model, CDH17-negative and CDH17-overexpressing SW480 cells were labeled with distinct fluorescent dyes and cultured together prior to PIT treatment. The results confirmed that ARB102-IR700 PIT could kill CDH17-positive cells specifically, while leaving the adjacent CDH17-negative cells unaffected. An in vivo efficacy study was conducted using a pancreatic adenocarcinoma AsPC-1 xenograft tumor model in nude mice. Fluorescence scanning indicated that ARB102-IR700 accumulated specifically in the tumor sites. To perform PIT, at 24 and 48 h postinjection, mice were irradiated with a 680 nm laser at the tumor site to activate the photosensitizer. It was shown that ARB102-IR700 PIT could inhibit tumor growth significantly. In summary, this study demonstrated that the novel ARB102-IR700 is a promising agent for PIT in gastrointestinal cancers.
Collapse
Affiliation(s)
- Yick-Liang Lum
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - John M Luk
- Arbele Limited, Shatin N.T., Hong Kong, China
| | | | - Dennis K P Ng
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Wing-Ping Fong
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| |
Collapse
|
17
|
Biteghe FAN, Mungra N, Chalomie NET, Ndong JDLC, Engohang-Ndong J, Vignaux G, Padayachee E, Naran K, Barth S. Advances in epidermal growth factor receptor specific immunotherapy: lessons to be learned from armed antibodies. Oncotarget 2020; 11:3531-3557. [PMID: 33014289 PMCID: PMC7517958 DOI: 10.18632/oncotarget.27730] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 08/11/2020] [Indexed: 12/12/2022] Open
Abstract
The epidermal growth factor receptor (EGFR) has been recognized as an important therapeutic target in oncology. It is commonly overexpressed in a variety of solid tumors and is critically involved in cell survival, proliferation, metastasis, and angiogenesis. This multi-dimensional role of EGFR in the progression and aggressiveness of cancer, has evolved from conventional to more targeted therapeutic approaches. With the advent of hybridoma technology and phage display techniques, the first anti-EGFR monoclonal antibodies (mAbs) (Cetuximab and Panitumumab) were developed. Due to major limitations including host immune reactions and poor tumor penetration, these antibodies were modified and used as guiding mechanisms for the specific delivery of readily available chemotherapeutic agents or plants/bacterial toxins, giving rise to antibody-drug conjugates (ADCs) and immunotoxins (ITs), respectively. Continued refinement of ITs led to deimmunization strategies based on depletion of B and T-cell epitopes or substitution of non-human toxins leading to a growing repertoire of human enzymes capable of inducing cell death. Similarly, the modification of classical ADCs has resulted in the first, fully recombinant versions. In this review, we discuss significant advancements in EGFR-targeting immunoconjugates, including ITs and recombinant photoactivable ADCs, which serve as a blueprint for further developments in the evolving domain of cancer immunotherapy.
Collapse
Affiliation(s)
- Fleury Augustin Nsole Biteghe
- Department of Radiation Oncology and Biomedical Sciences, Cedars-Sinai Medical, Los Angeles, CA, USA
- These authors contributed equally to this work
| | - Neelakshi Mungra
- Medical Biotechnology & Immunotherapy Research Unit, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- These authors contributed equally to this work
| | | | - Jean De La Croix Ndong
- Department of Orthopedic Surgery, New York University School of Medicine, New York, NY, USA
| | - Jean Engohang-Ndong
- Department of Biological Sciences, Kent State University at Tuscarawas, New Philadelphia, OH, USA
| | | | - Eden Padayachee
- Department of Physiology, University of Kentucky, Lexington, KY, USA
| | - Krupa Naran
- Medical Biotechnology & Immunotherapy Research Unit, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- These authors contributed equally to this work
| | - Stefan Barth
- Medical Biotechnology & Immunotherapy Research Unit, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- South African Research Chair in Cancer Biotechnology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- These authors contributed equally to this work
| |
Collapse
|
18
|
Antibody-Based Immunotherapy: Alternative Approaches for the Treatment of Metastatic Melanoma. Biomedicines 2020; 8:biomedicines8090327. [PMID: 32899183 PMCID: PMC7555584 DOI: 10.3390/biomedicines8090327] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/28/2020] [Accepted: 09/01/2020] [Indexed: 12/13/2022] Open
Abstract
Melanoma is the least common form of skin cancer and is associated with the highest mortality. Where melanoma is mostly unresponsive to conventional therapies (e.g., chemotherapy), BRAF inhibitor treatment has shown improved therapeutic outcomes. Photodynamic therapy (PDT) relies on a light-activated compound to produce death-inducing amounts of reactive oxygen species (ROS). Their capacity to selectively accumulate in tumor cells has been confirmed in melanoma treatment with some encouraging results. However, this treatment approach has not reached clinical fruition for melanoma due to major limitations associated with the development of resistance and subsequent side effects. These adverse effects might be bypassed by immunotherapy in the form of antibody–drug conjugates (ADCs) relying on the ability of monoclonal antibodies (mAbs) to target specific tumor-associated antigens (TAAs) and to be used as carriers to specifically deliver cytotoxic warheads into corresponding tumor cells. Of late, the continued refinement of ADC therapeutic efficacy has given rise to photoimmunotherapy (PIT) (a light-sensitive compound conjugated to mAbs), which by virtue of requiring light activation only exerts its toxic effect on light-irradiated cells. As such, this review aims to highlight the potential clinical benefits of various armed antibody-based immunotherapies, including PDT, as alternative approaches for the treatment of metastatic melanoma.
Collapse
|
19
|
Kim EH, Park S, Kim YK, Moon M, Park J, Lee KJ, Lee S, Kim YP. Self-luminescent photodynamic therapy using breast cancer targeted proteins. SCIENCE ADVANCES 2020; 6:eaba3009. [PMID: 32917700 PMCID: PMC7486108 DOI: 10.1126/sciadv.aba3009] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Accepted: 07/23/2020] [Indexed: 05/10/2023]
Abstract
Despite the potential of photodynamic therapy (PDT), its comprehensive use in cancer treatment has not been achieved because of the nondegradable risks of photosensitizing drugs and limits of light penetration and instrumentation. Here, we present bioluminescence (BL)-induced proteinaceous PDT (BLiP-PDT), through the combination of luciferase and a reactive oxygen species (ROS)-generating protein (Luc-RGP), which is self-luminescent and degradable. After exposure to coelenterazine-h as a substrate for luciferase without external light irradiation, Luc-RGP fused with a small lead peptide-induced breast cancer cell death through the generation of BL-sensitive ROS in the plasma membrane. Even with extremely low light energy, BLiP-PDT exhibited targeted effects in primary breast cancer cells from patients and in in vivo tumor xenograft mouse models. These findings suggest that BLiP-PDT is immediately useful as a promising theranostic approach against various cancers.
Collapse
Affiliation(s)
- Eun Hye Kim
- Department of Life Science, Hanyang University, Seoul 04763, Korea
| | - Sangwoo Park
- Gwangju Center, Korea Basic Science Institute (KBSI), Gwangju 61186, Korea
| | - Yun Kyu Kim
- Department of Convergence Medicine, Asan Institute for Life Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea
| | - Minwoo Moon
- Department of Life Science, Hanyang University, Seoul 04763, Korea
| | - Jeongwon Park
- Gwangju Center, Korea Basic Science Institute (KBSI), Gwangju 61186, Korea
| | - Kyung Jin Lee
- Department of Convergence Medicine, Asan Institute for Life Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea.
- Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Seongsoo Lee
- Gwangju Center, Korea Basic Science Institute (KBSI), Gwangju 61186, Korea.
| | - Young-Pil Kim
- Department of Life Science, Hanyang University, Seoul 04763, Korea.
- Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Korea
- Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul 04763, Korea
- Institute of Nano Science and Technology, Hanyang University, Seoul 04763, Korea
| |
Collapse
|
20
|
Wang S, Tang Q, Ya H, Fan Y, Feng W, Du J, Fang S, Shi C. Study on the optical and biological properties in vitro ofIR808‐PEG‐FA. J Biomed Mater Res A 2020; 108:1816-1823. [DOI: 10.1002/jbm.a.36946] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 03/14/2020] [Accepted: 03/17/2020] [Indexed: 11/06/2022]
Affiliation(s)
- Sujun Wang
- College of Food and Drug, Luoyang Normal University Luoyang China
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive MedicineThird Military Medical University Chongqing China
| | - Qianqian Tang
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function‐Oriented Porous MaterialsLuoyang Normal University Luoyang China
| | - Huiyuan Ya
- College of Food and Drug, Luoyang Normal University Luoyang China
| | - Yanli Fan
- College of Food and Drug, Luoyang Normal University Luoyang China
| | - Wenjing Feng
- College of Food and Drug, Luoyang Normal University Luoyang China
| | - Jie Du
- College of Food and Drug, Luoyang Normal University Luoyang China
| | - Shengtao Fang
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive MedicineThird Military Medical University Chongqing China
| | - Chunmeng Shi
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive MedicineThird Military Medical University Chongqing China
| |
Collapse
|
21
|
Qi S, Lu L, Zhou F, Chen Y, Xu M, Chen L, Yu X, Chen WR, Zhang Z. Neutrophil infiltration and whole-cell vaccine elicited by N-dihydrogalactochitosan combined with NIR phototherapy to enhance antitumor immune response and T cell immune memory. Am J Cancer Res 2020; 10:1814-1832. [PMID: 32042338 PMCID: PMC6993227 DOI: 10.7150/thno.38515] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 10/01/2019] [Indexed: 12/21/2022] Open
Abstract
Melanoma is one of the deadliest malignancies with a high risk of relapse and metastasis. Long-term, tumor-specific, and systemic immunity induced by local intervention is ideal for personalized cancer therapy. Laser immunotherapy (LIT), a combination of local irradiation of laser and local administration of an immunostimulant, was developed to achieve such an immunity. Although LIT showed promising efficacy on tumors, its immunological mechanism is still not understood, especially its spatio-temporal dynamics. Methods: In this study, we investigated LIT-induced immunological responses using a 980-nm laser and a novel immunostimulant, N-dihydrogalactochitosan (GC). Then we followed the functions of key immune cells spatially and temporally using intravital imaging and immunological assays. Results: Immediately after LIT, GC induced a rapid infiltration of neutrophils which ingested most GC in tumors. The cytokines released to the serum peaked at 12 h after LIT. Laser irradiations produced photothermal effects to ablate the tumor, release damage-associated molecular patterns, and generate whole-cell tumor vaccines. LIT-treated tumor-bearing mice efficiently resisted the rechallenged tumor and prevented lung metastasis. Intravital imaging of tumor at rechallenging sites in LIT-treated mice revealed that the infiltration of tumor-infiltrating lymphocytes (TILs) increased with highly active motility. Half of TILs with arrest and confined movements indicated that they had long-time interactions with tumor cells. Furthermore, LIT has synergistic effect with checkpoint blockade to improve antitumor efficacy. Conclusion: Our research revealed the important role of LIT-induced neutrophil infiltration on the in situ whole-cell vaccine-elicited antitumor immune response and long-term T cell immune memory.
Collapse
|
22
|
Shirasu N, Shibaguchi H, Yamada H, Kuroki M, Yasunaga S. Highly versatile cancer photoimmunotherapy using photosensitizer-conjugated avidin and biotin-conjugated targeting antibodies. Cancer Cell Int 2019; 19:299. [PMID: 31787847 PMCID: PMC6858743 DOI: 10.1186/s12935-019-1034-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 11/12/2019] [Indexed: 01/19/2023] Open
Abstract
Background Photoimmunotherapy (PIT) employing antibody-photosensitizer conjugates is a promising treatment for cancer. However, the fixed antigen specificity severely limits the efficacy and the applicability. Here we describe a universal strategy for PIT of cancer by using a near-infrared (NIR) photosensitizer IRDye700DX-conjugated NeutrAvidin, designated as AvIR, together with various biotinylated antibodies (BioAbs) for cellular targeting. Methods Cytotoxicity of AvIR-mediated PIT was evaluated by fluorescence imaging and cell viability assay. Phototoxic effect on tumorigenicity was assessed by tumorsphere-formation assay and Matrigel invasion assay. Cancer stem cell-like side-population (SP) cells were identified by flow cytometry. Results CHO cells stably expressing carcinoembryonic antigen or EpCAM were pre-labeled with each BioAb for the corresponding antigen, followed by AvIR administration. NIR light irradiation specifically killed the targeted cells, but not off-targets, demonstrating that the AvIR-mediated PIT does work as expected. CSC-like subpopulation of MCF-7 cells (CD24low/CD44high) and SP of HuH-7 cells (CD133+/EpCAM+) were effectively targeted and photokilled by AvIR-PIT with anti-CD44 BioAb or anti-CD133/anti-EpCAM BioAbs, respectively. As results, the neoplastic features of the cell lines were sufficiently suppressed. Cancer-associated fibroblast (CAF)-targeted AvIR-PIT by using anti-fibroblast activation protein BioAb showed an abolishment of CAF-enhanced clonogenicity of MCF-7 cells. Conclusions Collectively, our results demonstrate that AvIR-mediated PIT can greatly broaden the applicable range of target specificity, with feasibility of efficacious and integrative control of CSC and its microenvironment.
Collapse
Affiliation(s)
- Naoto Shirasu
- Department of Biochemistry, Faculty of Medicine, Fukuoka University, 7-45-1 Jonan-ku, Fukuoka, 814-0180 Japan
| | - Hirotomo Shibaguchi
- Department of Biochemistry, Faculty of Medicine, Fukuoka University, 7-45-1 Jonan-ku, Fukuoka, 814-0180 Japan
| | - Hiromi Yamada
- Department of Biochemistry, Faculty of Medicine, Fukuoka University, 7-45-1 Jonan-ku, Fukuoka, 814-0180 Japan
| | - Masahide Kuroki
- Department of Biochemistry, Faculty of Medicine, Fukuoka University, 7-45-1 Jonan-ku, Fukuoka, 814-0180 Japan
| | - Shin'ichiro Yasunaga
- Department of Biochemistry, Faculty of Medicine, Fukuoka University, 7-45-1 Jonan-ku, Fukuoka, 814-0180 Japan
| |
Collapse
|
23
|
Nishimura T, Mitsunaga M, Sawada R, Saruta M, Kobayashi H, Matsumoto N, Kanke T, Yanai H, Nakamura K. Photoimmunotherapy targeting biliary-pancreatic cancer with humanized anti-TROP2 antibody. Cancer Med 2019; 8:7781-7792. [PMID: 31674732 PMCID: PMC6912056 DOI: 10.1002/cam4.2658] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 09/30/2019] [Accepted: 10/13/2019] [Indexed: 11/15/2022] Open
Abstract
Photoimmunotherapy (PIT) is a new type of tumor‐specific treatment utilizing monoclonal antibody (mAb)‐photosensitizer conjugates and near‐infrared (NIR) light irradiation. One potential PIT target, the type I transmembrane protein TROP2, is expressed at high levels in many cancers, including pancreatic carcinoma (PC) and cholangiocarcinoma (CC), in which its expression is correlated with poor prognosis and tumor aggressiveness. In this study, we assessed the efficacy of PIT utilizing newly developed humanized anti‐TROP2 mAb conjugated to the photosensitizer IR700 (TROP2‐IR700) for PC and CC. Immunohistochemistry on PC and CC tissue microarrays confirmed that TROP2 is overexpressed in about half of PC and CC specimens. Using cultured PC and CC cells, TROP2‐IR700 localized TROP2‐specific and target‐specific cell killing was observed after NIR light irradiation. In addition, TROP2‐IR700 was localized to mouse xenograft tumors expressing TROP2 after intravenous injection. PC and CC xenograft tumor growth was significantly inhibited by TROP2‐targeted PIT relative to controls. The efficacy of TROP2‐targeted PIT in vitro and against xenografted tumors in vivo suggests promise as a therapy for human PC and CC, both of which currently have dismal prognoses and limited therapeutic options.
Collapse
Affiliation(s)
- Takashi Nishimura
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Makoto Mitsunaga
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Ryoichi Sawada
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Masayuki Saruta
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Hisataka Kobayashi
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | | | - Toru Kanke
- Drug Discovery Laboratories, Chiome Bioscience, Kawasaki, Japan
| | - Hiroyuki Yanai
- Drug Discovery Laboratories, Chiome Bioscience, Kawasaki, Japan
| | - Koji Nakamura
- Drug Discovery Laboratories, Chiome Bioscience, Kawasaki, Japan
| |
Collapse
|
24
|
Yu L, Sa S, Wang L, Dulmage K, Bhagwat N, Yee SS, Sen M, Pletcher CH, Moore JS, Saksena S, Dixon EP, Carpenter EL. An integrated enrichment system to facilitate isolation and molecular characterization of single cancer cells from whole blood. Cytometry A 2019; 93:1226-1233. [PMID: 30549400 DOI: 10.1002/cyto.a.23599] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 08/01/2018] [Accepted: 08/13/2018] [Indexed: 01/11/2023]
Abstract
Circulating tumor cells (CTCs) carry valuable biological information. While enumeration of CTCs in peripheral blood is an FDA-approved prognostic indicator of survival in metastatic prostate and other cancers, analysis of CTC phenotypic and genomic markers is needed to identify cancer origin and elucidate pathways that can guide therapeutic selection for personalized medicine. Given the emergence of single-cell mRNA sequencing technologies, a method is needed to isolate CTCs with high sensitivity and specificity as well as compatibility with downstream genomic analysis. Flow cytometry is a powerful tool to analyze and sort single cells, but pre-enrichment is required prior to flow sorting for efficient isolation of CTCs due to the extreme low frequency of CTCs in blood (one in billions of blood cells). While current enrichment technologies often require many steps and result in poor recovery, we demonstrate a magnetic separator and acoustic microfluidic focusing chip integrated system that enriches rare cells in-line with FACS™ (fluorescent activated cell sorting) and single-cell sequencing. This system analyzes, isolates, and index sorts single cells directly into 96-well plates containing reagents for Molecular Indexing (MI) and transcriptional profiling of single cells. With an optimized workflow using the integrated enrichment-FACS system, we performed a proof-of-concept experiment with spiked prostate cancer cells in peripheral blood and achieved: (i) a rapid one-step process to isolate rare cancer cells from lysed whole blood; (ii) an average of 92% post-enrichment cancer cell recovery (R2 = 0.9998) as compared with 55% recovery for a traditional benchtop workflow; and (iii) detection of differentially expressed genes at a single cell level that are consistent with reported cell-type dependent expression signatures for prostate cancer cells. These model system results lay the groundwork for applying our approach to human blood samples from prostate and other cancer patients, and support the enrichment-FACS system as a flexible solution for isolation and characterization of CTCs for cancer diagnosis. © 2018 International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Liping Yu
- BD Biosciences, San Jose, California
| | - Silin Sa
- BD Biosciences, San Jose, California
| | - Ling Wang
- BD Technologies and Innovation, Durham, North Carolina
| | - Keely Dulmage
- BD Technologies and Innovation, Durham, North Carolina
| | - Neha Bhagwat
- Division of Gastroenterology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Stephanie S Yee
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Moen Sen
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Charles H Pletcher
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jonni S Moore
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | | | - Eric P Dixon
- BD Technologies and Innovation, Durham, North Carolina
| | - Erica L Carpenter
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
25
|
Abstract
This Account is the first comprehensive review article on the newly developed, photochemistry-based cancer therapy near-infrared (NIR) photoimmunotherapy (PIT). NIR-PIT is a molecularly targeted phototherapy for cancer that is based on injecting a conjugate of a near-infrared, water-soluble, silicon-phthalocyanine derivative, IRdye700DX (IR700), and a monoclonal antibody (mAb) that targets an expressed antigen on the cancer cell surface. Subsequent local exposure to NIR light turns on this photochemical "death" switch, resulting in the rapid and highly selective immunogenic cell death (ICD) of targeted cancer cells. ICD occurs as early as 1 min after exposure to NIR light and results in irreversible morphologic changes only in target-expressing cells based on the newly discovered photoinduced ligand release reaction that induces physical changes on conjugated antibody/antigen complex resulting in functional damage on cell membrane. Meanwhile, immediately adjacent receptor-negative cells are totally unharmed. Because of its highly targeted nature, NIR-PIT carries few side effects and healing is rapid. Evaluation of the tumor microenvironment reveals that ICD induced by NIR-PIT results in rapid maturation of immature dendritic cells adjacent to dying cancer cells initiating a host anticancer immune response, resulting in repriming of polyclonal CD8+T cells against various released cancer antigens, which amplifies the therapeutic effect of NIR-PIT. NIR-PIT can target and treat virtually any cell surface antigens including cancer stem cell markers, that is, CD44 and CD133. A first-in-human phase 1/2 clinical trial of NIR-PIT using cetuximab-IR700 (RM1929) targeting EGFR in inoperable recurrent head and neck cancer patients successfully concluded in 2017 and led to "fast tracking" by the FDA and a phase 3 trial ( https://clinicaltrials.gov/ct2/show/NCT03769506 ) that is currently underway in 3 countries in Asia, US/Canada, and 4 countries in EU. The next step for NIR-PIT is to further exploit the immune response. Preclinical research in animals with intact immune systems has shown that NIT-PIT targeting of immunosuppressor cells within the tumor, such as regulatory T-cells, can further enhance tumor-cell-selective systemic host-immunity leading to significant responses in distant metastatic tumors, which are not treated with light. By combining cancer-targeting NIR-PIT and immune-activating NIR-PIT or other cancer immunotherapies, NIR-PIT of a local tumor, could lead to responses in distant metastases and may also inhibit recurrences due to activation of systemic anticancer immunity and long-term immune memory without the systemic autoimmune adverse effects often associated with immune checkpoint inhibitors. Furthermore, NIR-PIT also enhances nanodrug delivery into tumors up to 24-fold superior to untreated tumors with conventional EPR effects by intensively damaging cancer cells behind tumor vessels. We conclude by describing future advances in this novel photochemical cancer therapy that are likely to further enhance the efficacy of NIR-PIT.
Collapse
Affiliation(s)
- Hisataka Kobayashi
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Building 10, Room B3B69, MSC1088, Bethesda, Maryland 20892-1088, United States
| | - Peter L. Choyke
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Building 10, Room B3B69, MSC1088, Bethesda, Maryland 20892-1088, United States
| |
Collapse
|
26
|
Zhuang W, Yang L, Ma B, Kong Q, Li G, Wang Y, Tang BZ. Multifunctional Two-Photon AIE Luminogens for Highly Mitochondria-Specific Bioimaging and Efficient Photodynamic Therapy. ACS APPLIED MATERIALS & INTERFACES 2019; 11:20715-20724. [PMID: 31144501 DOI: 10.1021/acsami.9b04813] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In recent years, photodynamic therapy (PDT) has drawn much attention as a noninvasive and safe cancer therapy method due to its fine controllability, good selectivity, low systemic toxicity, and minimal drug resistance in contrast to the conventional methods (for example, chemotherapy, radiotherapy, and surgery). However, some drawbacks still remain for the current organic photosensitizers such as low singlet oxygen (1O2) quantum yield, poor photostability, inability of absorption in the near-infrared (NIR) region, short excitation wavelength, and limited action radius of singlet oxygen, which will strongly limit the PDT treatment efficiency. As a consequence, the development of efficient photosensitizers with high singlet oxygen quantum yield, strong fluorescent emission in the aggregated state, excellent photostability, NIR excitation wavelength ranging in the biological transparency window, and highly specific targeting to mitochondria is still in great demand for the enhancement of PDT treatment efficiency. In this study, two new two-photon AIEgens TPPM and TTPM based on a rigid D-π-A skeleton have been designed and synthesized. Both AIEgens TPPM and TTPM show strong aggregation-induced emission (AIE) with the emission enhancement up to 290-folds, large two-photon absorption with the two-photon absorption cross section up to 477 MG, and highly specific targeting to mitochondria in living cells with good biocompatibility. They can serve as two-photon bioprobes for the cell and deep tissue bioimaging with a penetration depth up to 150 μm. Furthermore, high 1O2 generation efficiency with high 1O2 quantum yield under white light irradiation has been found for both TPPM and TTPM and high PDT efficiency to HeLa cells under white light irradiation has also been proven. To the best of our knowledge, AIEgens in this work constitute one of the strongest emission enhancements and one of the highest 1O2 generation efficiencies in the reported organic AIEgens so far. The great AIE feature, large two-photon absorption, high specificity to mitochondria in living cells, and high PDT efficiency to living cells as well as excellent photostability and biocompatibility of these novel AIEgens TPPM and TTPM reveal great potential in clinical applications of two-photon cell and tissue bioimaging and image-guided and mitochondria-targeted photodynamic cancer therapy.
Collapse
Affiliation(s)
- Weihua Zhuang
- National Engineering Research Center for Biomaterials , Sichuan University , 29 Wangjiang Road , Chengdu 610064 , China
| | - Li Yang
- National Engineering Research Center for Biomaterials , Sichuan University , 29 Wangjiang Road , Chengdu 610064 , China
| | - Boxuan Ma
- National Engineering Research Center for Biomaterials , Sichuan University , 29 Wangjiang Road , Chengdu 610064 , China
| | - Qunshou Kong
- National Engineering Research Center for Biomaterials , Sichuan University , 29 Wangjiang Road , Chengdu 610064 , China
| | - Gaocan Li
- National Engineering Research Center for Biomaterials , Sichuan University , 29 Wangjiang Road , Chengdu 610064 , China
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials , Sichuan University , 29 Wangjiang Road , Chengdu 610064 , China
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, Department of Chemical and Biological Engineering and Division of Life Science , The Hong Kong University of Science and Technology (HKUST) , Clear Water Bay , Kowloon , Hong Kong , China
| |
Collapse
|
27
|
Heukers R, Mashayekhi V, Ramirez-Escudero M, de Haard H, Verrips TC, van Bergen En Henegouwen PMP, Oliveira S. VHH-Photosensitizer Conjugates for Targeted Photodynamic Therapy of Met-Overexpressing Tumor Cells. Antibodies (Basel) 2019; 8:antib8020026. [PMID: 31544832 PMCID: PMC6640711 DOI: 10.3390/antib8020026] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 03/09/2019] [Accepted: 03/28/2019] [Indexed: 01/10/2023] Open
Abstract
Photodynamic therapy (PDT) is an approach that kills (cancer) cells by the local production of toxic reactive oxygen species upon the local illumination of a photosensitizer (PS). The specificity of PDT has been further enhanced by the development of a new water-soluble PS and by the specific delivery of PS via conjugation to tumor-targeting antibodies. To improve tissue penetration and shorten photosensitivity, we have recently introduced nanobodies, also known as VHH (variable domains from the heavy chain of llama heavy chain antibodies), for targeted PDT of cancer cells overexpressing the epidermal growth factor receptor (EGFR). Overexpression and activation of another cancer-related receptor, the hepatocyte growth factor receptor (HGFR, c-Met or Met) is also involved in the progression and metastasis of a large variety of malignancies. In this study we evaluate whether anti-Met VHHs conjugated to PS can also serve as a biopharmaceutical for targeted PDT. VHHs targeting the SEMA (semaphorin-like) subdomain of Met were provided with a C-terminal tag that allowed both straightforward purification from yeast supernatant and directional conjugation to the PS IRDye700DX using maleimide chemistry. The generated anti-Met VHH-PS showed nanomolar binding affinity and, upon illumination, specifically killed MKN45 cells with nanomolar potency. This study shows that Met can also serve as a membrane target for targeted PDT.
Collapse
Affiliation(s)
- Raimond Heukers
- QVQ Holding BV, Yalelaan 1, 3584 CL Utrecht, The Netherlands.
| | - Vida Mashayekhi
- Cell Biology Division, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.
| | - Mercedes Ramirez-Escudero
- Crystal & Structural Chemistry, Bijvoet Center for Biomolecular Research, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.
| | - Hans de Haard
- Argenx BVBA, Industriepark-Zwijnaarde 7, 9052 Gent, Belgium.
| | - Theo C Verrips
- QVQ Holding BV, Yalelaan 1, 3584 CL Utrecht, The Netherlands.
| | - Paul M P van Bergen En Henegouwen
- Cell Biology Division, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.
| | - Sabrina Oliveira
- Cell Biology Division, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.
- Pharmaceutics Division, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands.
| |
Collapse
|
28
|
Sandland J, Boyle RW. Photosensitizer Antibody–Drug Conjugates: Past, Present, and Future. Bioconjug Chem 2019; 30:975-993. [DOI: 10.1021/acs.bioconjchem.9b00055] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
29
|
Siddiqui MR, Railkar R, Sanford T, Crooks DR, Eckhaus MA, Haines D, Choyke PL, Kobayashi H, Agarwal PK. Targeting Epidermal Growth Factor Receptor (EGFR) and Human Epidermal Growth Factor Receptor 2 (HER2) Expressing Bladder Cancer Using Combination Photoimmunotherapy (PIT). Sci Rep 2019; 9:2084. [PMID: 30765854 PMCID: PMC6375935 DOI: 10.1038/s41598-019-38575-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 12/28/2018] [Indexed: 12/30/2022] Open
Abstract
Bladder cancer (BC) is heterogeneous and expresses various cell surface targets. Photoimmunotherapy (PIT) involves monoclonal antibodies (MAbs) conjugated to a photoabsorber (PA), IR Dye 700Dx, and then activated by near infra-red light (NIR) to specifically target tumors. We have demonstrated that tumors expressing EGFR can be targeted with PIT. However, PIT may be less effective when a tumor lacks "overwhelming" expression of a single target such as EGFR. We present a combinatorial PIT approach for targeting BC expressing EGFR and HER2, using PA- labeled panitumumab (pan) and trastuzumab (tra), respectively. Human BC tissues and cell lines were analyzed for EGFR and HER2 expression. Efficacy of PA-labeled MAbs singly and in combination was analyzed. About 45% of BC tissues stain for both EGFR and HER2. In vitro, the combination of pan IR700 and tra IR700 with NIR was more efficacious than either agent alone. Tumor xenografts treated with combination PIT showed significant tumor growth retardation. Combination PIT is a promising approach for treating BC with low/moderate expression of surface receptors. In addition, given the molecular heterogeneity of bladder cancer, targeting more than one surface receptor may allow for more effective cell death across different bladder tumors.
Collapse
Affiliation(s)
- Mohammad R Siddiqui
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD - 20892, USA
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Reema Railkar
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD - 20892, USA
| | - Thomas Sanford
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD - 20892, USA
| | - Daniel R Crooks
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD - 20892, USA
| | - Michael A Eckhaus
- Diagnostic and Research Services Branch, Office of the Director, National Institutes of Health, Bethesda, MD - 20892, USA
| | - Diana Haines
- Pathology Section, Pathology/Histotechnology Laboratory, Leidos Biomedical Research, Inc. Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Peter L Choyke
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, Bethesda, MD - 20892, USA
| | - Hisataka Kobayashi
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, Bethesda, MD - 20892, USA
| | - Piyush K Agarwal
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD - 20892, USA.
| |
Collapse
|
30
|
Aung W, Tsuji AB, Sugyo A, Takashima H, Yasunaga M, Matsumura Y, Higashi T. Near-infrared photoimmunotherapy of pancreatic cancer using an indocyanine green-labeled anti-tissue factor antibody. World J Gastroenterol 2018; 24:5491-5504. [PMID: 30622378 PMCID: PMC6319132 DOI: 10.3748/wjg.v24.i48.5491] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 11/07/2018] [Accepted: 11/16/2018] [Indexed: 02/07/2023] Open
Abstract
AIM To investigate near-infrared photoimmunotherapeutic effect mediated by an anti-tissue factor (TF) antibody conjugated to indocyanine green (ICG) in a pancreatic cancer model. METHODS Near-infrared photoimmunotherapy (NIR-PIT) is a highly selective tumor treatment that utilizes an antibody-photosensitizer conjugate administration, followed by NIR light exposure. Anti-TF antibody 1849-ICG conjugate was synthesized by labeling of rat IgG2b anti-TF monoclonal antibody 1849 (anti-TF 1849) to a NIR photosensitizer, ICG. The expression levels of TF in two human pancreatic cancer cell lines were examined by western blotting. Specific binding of the 1849-ICG to TF-expressing BxPC-3 cells was examined by fluorescence microscopy. NIR-PIT-induced cell death was determined by cell viability imaging assay. In vivo longitudinal fluorescence imaging was used to explore the accumulation of 1849-ICG conjugate in xenograft tumors. To examine the effect of NIR-PIT, tumor-bearing mice were separated into 5 groups: (1) 100 μg of 1849-ICG i.v. administration followed by NIR light exposure (50 J/cm2) on two consecutive days (Days 1 and 2); (2) NIR light exposure (50 J/cm2) only on two consecutive days (Days 1 and 2); (3) 100 μg of 1849-ICG i.v. administration; (4) 100 μg of unlabeled anti-TF 1849 i.v. administration; and (5) the untreated control. Semiweekly tumor volume measurements, accompanied with histological and immunohistochemical (IHC) analyses of tumors, were performed 3 d after the 2nd irradiation with NIR light to monitor the effect of treatments. RESULTS High TF expression in BxPC-3 cells was observed via western blot analysis, concordant with the observed preferential binding with intracellular localization of 1849-ICG via fluorescence microscopy. NIR-PIT-induced cell death was observed by performing cell viability imaging assay. In contrast to the other test groups, tumor growth was significantly inhibited by NIR-PIT with a statistically significant difference in relative tumor volumes for 27 d after the treatment start date [2.83 ± 0.38 (NIR-PIT) vs 5.42 ± 1.61 (Untreated), vs 4.90 ± 0.87 (NIR), vs 4.28 ± 1.87 (1849-ICG), vs 4.35 ± 1.42 (anti-TF 1849), at Day 27, P < 0.05]. Tumors that received NIR-PIT showed evidence of necrotic cell death-associated features upon hematoxylin-eosin staining accompanied by a decrease in Ki-67-positive cells (a cell proliferation marker) by IHC examination. CONCLUSION The TF-targeted NIR-PIT with the 1849-ICG conjugate can potentially open a new platform for treatment of TF-expressing pancreatic cancer.
Collapse
Affiliation(s)
- Winn Aung
- Department of Molecular Imaging and Theranostics, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology (QST-NIRS), Chiba 263-8555, Japan
| | - Atsushi B Tsuji
- Department of Molecular Imaging and Theranostics, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology (QST-NIRS), Chiba 263-8555, Japan
| | - Aya Sugyo
- Department of Molecular Imaging and Theranostics, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology (QST-NIRS), Chiba 263-8555, Japan
| | - Hiroki Takashima
- Division of Developmental Therapeutics, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Chiba 277-8577, Japan
| | - Masahiro Yasunaga
- Division of Developmental Therapeutics, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Chiba 277-8577, Japan
| | - Yasuhiro Matsumura
- Division of Developmental Therapeutics, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Chiba 277-8577, Japan
| | - Tatsuya Higashi
- Department of Molecular Imaging and Theranostics, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology (QST-NIRS), Chiba 263-8555, Japan
| |
Collapse
|
31
|
Phung CD, Nguyen HT, Tran TH, Choi HG, Yong CS, Kim JO. Rational combination immunotherapeutic approaches for effective cancer treatment. J Control Release 2018; 294:114-130. [PMID: 30553850 DOI: 10.1016/j.jconrel.2018.12.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 12/12/2018] [Accepted: 12/12/2018] [Indexed: 12/18/2022]
Abstract
Immunotherapy is an important mode of cancer treatment. Over the past decades, immunotherapy has improved the clinical outcome for cancer patients. However, in many cases, mutations in cancer cells, lack of selectivity, insufficiency of tumor-reactive T cells, and host immunosuppression limit the clinical benefit of immunotherapy. Combination approaches in immunotherapy may overcome these obstacles. Accumulating evidence demonstrates that combination immunotherapy is the future of cancer treatment. However, designing safe and rational combinations of immunotherapy with other treatment modalities is critical. This review will discuss the optimal immunotherapy-based combinations mainly with respect to the mechanisms of action of individual therapeutic agents that target multiple steps in evasion and progression of tumor.
Collapse
Affiliation(s)
- Cao Dai Phung
- College of Pharmacy, Yeungnam University, 280 Deahak-ro, Gyeongsan 38541, Republic of Korea
| | - Hanh Thuy Nguyen
- College of Pharmacy, Yeungnam University, 280 Deahak-ro, Gyeongsan 38541, Republic of Korea
| | - Tuan Hiep Tran
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Viet Nam; Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Viet Nam
| | - Han-Gon Choi
- College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, 55, Hanyangdaehak-ro, Sangnok-gu, Ansan 426-791, Republic of Korea
| | - Chul Soon Yong
- College of Pharmacy, Yeungnam University, 280 Deahak-ro, Gyeongsan 38541, Republic of Korea
| | - Jong Oh Kim
- College of Pharmacy, Yeungnam University, 280 Deahak-ro, Gyeongsan 38541, Republic of Korea.
| |
Collapse
|
32
|
Fujimoto S, Muguruma N, Okamoto K, Kurihara T, Sato Y, Miyamoto Y, Kitamura S, Miyamoto H, Taguchi T, Tsuneyama K, Takayama T. A Novel Theranostic Combination of Near-infrared Fluorescence Imaging and Laser Irradiation Targeting c-KIT for Gastrointestinal Stromal Tumors. Theranostics 2018; 8:2313-2328. [PMID: 29721082 PMCID: PMC5928892 DOI: 10.7150/thno.22027] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 02/27/2018] [Indexed: 01/13/2023] Open
Abstract
It is difficult to distinguish gastrointestinal stromal tumors (GISTs) from other types of submucosal tumors under conventional gastrointestinal endoscopy. We aimed to detect GISTs by molecular fluorescence imaging using a near-infrared (NIR) photosensitizer (IR700)-conjugated anti-c-KIT antibody and to treat GISTs by photoimmunotherapy with NIR irradiation as a non-invasive theranostic procedure. We also investigated the therapeutic mechanisms. Methods: Human GIST cell lines GIST-T1 and GIST-882M were incubated with IR700-conjugated anti-c-KIT antibody, IR700-12A8, and observed by confocal laser microscopy. Mice with GIST-T1 xenografts or rats with orthotopic xenografts were injected with IR700-12A8 or AF488-conjugated antibody, and observed under IVIS or autofluorescence imaging (AFI) endoscopy. GIST cells were treated with IR700-12A8 and NIR light in vitro and vivo, and cell viability, histology and apoptosis were evaluated. Results: Strong red fluorescence of IR700-12A8 was observed on the cell membrane of GIST cells and was gradually internalized into the cytoplasm. Tumor-specific accumulation of IR700-12A8 was observed in GIST-T1 xenografts in mice. Under AFI endoscopy, a strong fluorescence signal was observed in orthotopic GIST xenografts in rats through the normal mucosa covering the tumor. The percentage of dead cells significantly increased in a light-dose-dependent manner and both acute necrotic and late apoptotic cell death was observed with annexin/PI staining. Cleaved PARP expression was significantly increased after IR700-12A8-mediated NIR irradiation, which was almost completely reversed by NaN3. All xenograft tumors (7/7) immediately regressed and 4/7 tumors completely disappeared after IR700-12A8-mediated NIR irradiation. Histologic assessment and TUNEL staining revealed apoptosis in the tumors. Conclusion: NIR fluorescence imaging using IR700-12A8 and subsequent NIR irradiation could be a very effective theranostic technology for GIST, the underlying mechanism of which appears to involve acute necrosis and supposedly late apoptosis induced by singlet oxygen.
Collapse
Affiliation(s)
- Shota Fujimoto
- Department of Gastroenterology and Oncology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Naoki Muguruma
- Department of Gastroenterology and Oncology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Koichi Okamoto
- Department of Gastroenterology and Oncology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Takeshi Kurihara
- Department of Gastroenterology and Oncology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Yasushi Sato
- Department of Gastroenterology and Oncology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Yoshihiko Miyamoto
- Department of Gastroenterology and Oncology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Shinji Kitamura
- Department of Gastroenterology and Oncology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Hiroshi Miyamoto
- Department of Gastroenterology and Oncology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Takahiro Taguchi
- Division of Human Health & Medical Science, Graduate School of Kuroshio Science, Kochi University, Nankoku, Kochi, Japan
| | - Koichi Tsuneyama
- Department of Pathology and Laboratory Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Tetsuji Takayama
- Department of Gastroenterology and Oncology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| |
Collapse
|
33
|
Near-infrared photoimmunotherapy with galactosyl serum albumin in a model of diffuse peritoneal disseminated ovarian cancer. Oncotarget 2018; 7:79408-79416. [PMID: 27765903 PMCID: PMC5340234 DOI: 10.18632/oncotarget.12710] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 09/30/2016] [Indexed: 01/16/2023] Open
Abstract
Near-infrared photoimmunotherapy (NIR-PIT) is a highly cell-selective cancer therapy based on an armed antibody conjugated with a phthalocyanine-based photo-absorber, IRDye700DX (IR700). NIR-PIT can quickly kill target cells that express specific proteins on the cellular membrane but only when the antibody-IR700 conjugate binds to the cell membrane and is then exposed to NIR light. NIR-PIT is highly selective based on the specificity of the antibody. Galactosyl serum albumin (GSA) is composed of albumin decorated with galactose molecules conjugated to the carboxyl groups of albumin. GSA binds to beta-D-galactose receptors, a surface lectin, which are overexpressed on the cell surface of many cancers, including ovarian cancers and is quickly internalized after binding. Here, we demonstrate the feasibility of NIR-PIT in a model of disseminated peritoneal ovarian cancer (SHIN3 cells) using GSA-IR700 that binds to beta-D-galactose receptors. GSA-IR700 bound quickly to SHIN3 cells, then accumulated in the endo-lysosomes. Cell-specific killing was observed in vitro, yet a relatively large dose of NIR light exposure was required for cell killing compared to antibody-IR700 conjugates. To evaluate in vivo therapeutic effects of GSA-IR700 NIR-PIT, peritoneal disseminated SHIN3 tumor-bearing mice were separated into four groups: no treatment; NIR light only; GSA-IR700 only; and GSA-IR700 NIR-PIT. Repeated NIR-PIT showed significant suppression of tumor based on bioluminescence compared to the other groups (p < 0.05). Thus, repeated NIR-PIT using GSA-IR700 can achieve efficient antitumor effects, although GSA-IR700 NIR-PIT was less effective than antibody-IR700 NIR-PIT conjugates likely due to the rapid internalization of GSA-IR700.
Collapse
|
34
|
Near infrared photoimmunotherapy with avelumab, an anti-programmed death-ligand 1 (PD-L1) antibody. Oncotarget 2018; 8:8807-8817. [PMID: 27716622 PMCID: PMC5341755 DOI: 10.18632/oncotarget.12410] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Accepted: 09/20/2016] [Indexed: 12/18/2022] Open
Abstract
Near Infrared-Photoimmunotherapy (NIR-PIT) is a highly selective tumor treatment that employs an antibody-photo-absorber conjugate (APC). Programmed cell death protein-1 ligand (PD-L1) is emerging as a molecular target. Here, we describe the efficacy of NIR-PIT, using fully human IgG1 anti-PD-L1 monoclonal antibody (mAb), avelumab, conjugated to the photo-absorber, IR700DX, in a PD-L1 expressing H441 cell line, papillary adenocarcinoma of lung. Avelumab-IR700 showed specific binding and cell-specific killing was observed after exposure of the cells to NIR in vitro. In the in vivo study, avelumab-IR700 showed high tumor accumulation and high tumor-background ratio. Tumor-bearing mice were separated into 4 groups: (1) no treatment; (2) 100 μg of avelumab-IR700 i.v.; (3) NIR light exposure only, NIR light was administered; (4) 100 μg of avelumab-IR700 i.v., NIR light was administered. Tumor growth was significantly inhibited by NIR-PIT treatment compared with the other groups (p < 0.001), and significantly prolonged survival was achieved (p < 0.01 vs other groups). In conclusion, the anti-PD-L1 antibody, avelumab, is suitable as an APC for NIR-PIT. Furthermore, NIR-PIT with avelumab-IR700 is a promising candidate of the treatment of PD-L1-expressing tumors that could be readily translated to humans.
Collapse
|
35
|
Nagaya T, Nakamura Y, Sato K, Zhang YF, Ni M, Choyke PL, Ho M, Kobayashi H. Near infrared photoimmunotherapy with an anti-mesothelin antibody. Oncotarget 2018; 7:23361-9. [PMID: 26981775 PMCID: PMC5029632 DOI: 10.18632/oncotarget.8025] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 02/28/2016] [Indexed: 12/22/2022] Open
Abstract
Near Infrared-Photoimmunotherapy (NIR-PIT) is a new, highly selective tumor treatment that employs an antibody-photon absorber conjugate (APC). When the APC attaches to its target cell and is exposed to NIR light, highly selective cell killing is observed. NIR-PIT has been demonstrated with a limited number of antibodies. Mesothelin is overexpressed in several malignancies and is emerging as a therapeutic target. A recently humanized antibody (hYP218) has been generated against mesothelin that demonstrates high affinity binding. Here, we describe the efficacy of NIR-PIT, using hYP218 as the antibody within the APC to target a mesothelin expressing A431/H9 cell. The hYP218 antibody was conjugated to a photo-absorber, IR700 and incubated with the cells. The hYP218-IR700 showed specific binding to cells and cell-specific killing was observed in vitro. After implanting A431/H9 cells in an athymic nude mouse, tumor-bearing mice were treated with the following regimen of NIR-PIT; 100 μg of hYP218-IR700 i.v., NIR light was administered at 50 J/cm2 on day 1 after injection and 100 J/cm2 of light on day 2 after injection. The hYP218-IR700 showed high tumor accumulation and a high tumor-background ratio (TBR). Tumor growth was significantly inhibited by NIR-PIT treatment compared with the other control groups (p < 0.001), and significantly prolonged survival (p < 0.0001 vs other groups). Thus, the new anti-mesothelin antibody, hYP218, is suitable as an antibody-drug conjugate for NIR-PIT. Furthermore, NIR-PIT with hYP218-IR700 is a promising candidate for the treatment of mesothelin-expressing tumors that could be readily translated to humans.
Collapse
Affiliation(s)
- Tadanobu Nagaya
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Yuko Nakamura
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Kazuhide Sato
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Yi-Fan Zhang
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Min Ni
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Peter L Choyke
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Mitchell Ho
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Hisataka Kobayashi
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, 20892, USA
| |
Collapse
|
36
|
Ito K, Mitsunaga M, Nishimura T, Kobayashi H, Tajiri H. Combination photoimmunotherapy with monoclonal antibodies recognizing different epitopes of human epidermal growth factor receptor 2: an assessment of phototherapeutic effect based on fluorescence molecular imaging. Oncotarget 2017; 7:14143-52. [PMID: 26909859 PMCID: PMC4924703 DOI: 10.18632/oncotarget.7490] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 01/31/2016] [Indexed: 01/22/2023] Open
Abstract
Photoimmunotherapy is a new class of molecular targeted cancer therapy based on a monoclonal antibody (mAb) conjugated to a photosensitizer and irradiation with near-infrared (NIR) light for both imaging and therapy. Here, we sought to determine the feasibility of combining photoimmunotherapy using conjugates of human epidermal growth factor receptor 2 (HER2)-specific mAb-photosensitizer IR700, trastuzumab-IR700 and pertuzumab-IR700. HER2-expressing and non-expressing cells were treated with mAb-IR700 conjugates and irradiated with NIR light. Fluorescence imaging and cytotoxic effects were examined in cultured HER2-expressng cancer cell lines and in a mouse tumor xenograft model. Trastuzumab-IR700 and pertuzumab-IR700 could specifically bind to HER2 without competing, and the combination treatment of both agents yielded stronger HER2-specific IR700 fluorescence signals than with the treatment with either agent singly. A cytotoxicity assay showed that the combination treatment of both trastuzumab-IR700 and pertuzumab-IR700 followed by NIR light irradiation induced stronger cytotoxic effect than with treatment of either agent plus NIR light irradiation. Furthermore, the phototoxic and cytotoxic effects of mAb depended on HER2-specific IR700 signal intensities. Consistent with in vitro studies, in xenograft tumor models also, IR700 fluorescence imaging-guided NIR light irradiation after the combination treatment of trastuzumab-IR700 and pertuzumab-IR700 led to stronger antitumor effects than by treatment with either agent followed by NIR light irradiation. In conclusion, fluorescence molecular imaging can facilitate the assessment of treatment outcomes of molecular targeted photoimmunotherapy, which holds great potential in facilitating better outcomes in cancer patients.
Collapse
Affiliation(s)
- Kimihiro Ito
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University School of Medicine, Minato, Tokyo 105-8461, Japan
| | - Makoto Mitsunaga
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University School of Medicine, Minato, Tokyo 105-8461, Japan
| | - Takashi Nishimura
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University School of Medicine, Minato, Tokyo 105-8461, Japan
| | - Hisataka Kobayashi
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Hisao Tajiri
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University School of Medicine, Minato, Tokyo 105-8461, Japan
| |
Collapse
|
37
|
van Straten D, Mashayekhi V, de Bruijn HS, Oliveira S, Robinson DJ. Oncologic Photodynamic Therapy: Basic Principles, Current Clinical Status and Future Directions. Cancers (Basel) 2017; 9:cancers9020019. [PMID: 28218708 PMCID: PMC5332942 DOI: 10.3390/cancers9020019] [Citation(s) in RCA: 603] [Impact Index Per Article: 75.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 02/10/2017] [Accepted: 02/12/2017] [Indexed: 12/12/2022] Open
Abstract
Photodynamic therapy (PDT) is a clinically approved cancer therapy, based on a photochemical reaction between a light activatable molecule or photosensitizer, light, and molecular oxygen. When these three harmless components are present together, reactive oxygen species are formed. These can directly damage cells and/or vasculature, and induce inflammatory and immune responses. PDT is a two-stage procedure, which starts with photosensitizer administration followed by a locally directed light exposure, with the aim of confined tumor destruction. Since its regulatory approval, over 30 years ago, PDT has been the subject of numerous studies and has proven to be an effective form of cancer therapy. This review provides an overview of the clinical trials conducted over the last 10 years, illustrating how PDT is applied in the clinic today. Furthermore, examples from ongoing clinical trials and the most recent preclinical studies are presented, to show the directions, in which PDT is headed, in the near and distant future. Despite the clinical success reported, PDT is still currently underutilized in the clinic. We also discuss the factors that hamper the exploration of this effective therapy and what should be changed to render it a more effective and more widely available option for patients.
Collapse
Affiliation(s)
- Demian van Straten
- Cell Biology, Department of Biology, Science Faculty, Utrecht University, Utrecht 3584 CH, The Netherlands.
| | - Vida Mashayekhi
- Cell Biology, Department of Biology, Science Faculty, Utrecht University, Utrecht 3584 CH, The Netherlands.
| | - Henriette S de Bruijn
- Center for Optical Diagnostics and Therapy, Department of Otolaryngology-Head and Neck Surgery, Erasmus Medical Center, Postbox 204, Rotterdam 3000 CA, The Netherlands.
| | - Sabrina Oliveira
- Cell Biology, Department of Biology, Science Faculty, Utrecht University, Utrecht 3584 CH, The Netherlands.
- Pharmaceutics, Department of Pharmaceutical Sciences, Science Faculty, Utrecht University, Utrecht 3584 CG, The Netherlands.
| | - Dominic J Robinson
- Center for Optical Diagnostics and Therapy, Department of Otolaryngology-Head and Neck Surgery, Erasmus Medical Center, Postbox 204, Rotterdam 3000 CA, The Netherlands.
| |
Collapse
|
38
|
de Boer E, Samuel S, French DN, Warram JM, Schoeb TR, Rosenthal EL, Zinn KR. Biodistribution Study of Intravenously Injected Cetuximab-IRDye700DX in Cynomolgus Macaques. Mol Imaging Biol 2016; 18:232-42. [PMID: 26335283 DOI: 10.1007/s11307-015-0892-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
PURPOSE The use of receptor-targeted antibodies conjugated to photosensitizers is actively being explored to enhance treatment efficacy. To facilitate clinical testing, we evaluated cetuximab conjugated to IRDye700DX (IR700) in cynomolgus macaques. PROCEDURES Total IR700 and intact cetuximab-IR700 were measured in 51 tissues at 2 and 14 days after intravenous injection of 40 and 80 mg/kg cetuximab-IR700, respectively, and compared with an unlabeled cetuximab-dosed control group (two each per sex per time point per group). RESULTS The IR700 retrieved from all tissues at 2 and 14 days after dosing was estimated at 34.9 ± 1.8 and 2.53 ± 0.67% of the total dose, respectively. The tissues with the highest levels of intact cetuximab-IR700 at 2 days after dosing were the blood, lung, and skin. Formalin-fixed paraffin-embedded tissue sections at 2 days after dosing showed the highest IR700 signals in the axillary lymph node, mammary gland, and gall bladder. CONCLUSIONS Both IR700 and intact cetuximab-IR700 biodistributions were consistent with known epidermal growth factor receptor (EGFR) expression, and changes between 2 and 14 days were consistent with rapid metabolism and excretion of the cetuximab-IR700.
Collapse
Affiliation(s)
- E de Boer
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA.,Department of Surgery, University of Groningen, University Medical Centrum Groningen, Groningen, The Netherlands
| | - S Samuel
- Department of Radiology, University of Alabama at Birmingham, Volker Hall G082, 1670 University Boulevard, Birmingham, AL, 35294, USA
| | - D N French
- Department of Radiology, University of Alabama at Birmingham, Volker Hall G082, 1670 University Boulevard, Birmingham, AL, 35294, USA
| | - J M Warram
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - T R Schoeb
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - E L Rosenthal
- Department of Otolaryngology-Head and Neck Surgery, Stanford University, Stanford, CA, USA
| | - K R Zinn
- Department of Radiology, University of Alabama at Birmingham, Volker Hall G082, 1670 University Boulevard, Birmingham, AL, 35294, USA.
| |
Collapse
|
39
|
Phototheranostics of CD44-positive cell populations in triple negative breast cancer. Sci Rep 2016; 6:27871. [PMID: 27302409 PMCID: PMC4908597 DOI: 10.1038/srep27871] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Accepted: 05/26/2016] [Indexed: 02/07/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is one of the most lethal subtypes of breast cancer that has limited treatment options. Its high rates of recurrence and metastasis have been associated, in part, with a subpopulation of breast cancer stem-like cells that are resistant to conventional therapies. A compendium of markers such as CD44high/CD24low, and increased expression of the ABCG2 transporter and increased aldehyde dehydrogenase (ALDH1), have been associated with these cells. We developed a CD44-targeted monoclonal antibody photosensitizer conjugate for combined fluorescent detection and photoimmunotherapy (PIT) of CD44 expressing cells in TNBC. The CD44-targeted conjugate demonstrated acute cell killing of breast cancer cells with high CD44 expression. This cell death process was dependent upon CD44-specific cell membrane binding combined with near-infrared irradiation. The conjugate selectively accumulated in CD44-positive tumors and caused dramatic tumor shrinkage and efficient elimination of CD44-positive cell populations following irradiation. This novel phototheranostic strategy provides a promising opportunity for the destruction of CD44-positive populations that include cancer stem-like cells, in locally advanced primary and metastatic TNBC.
Collapse
|
40
|
Wang X, Tsui B, Ramamurthy G, Zhang P, Meyers J, Kenney ME, Kiechle J, Ponsky L, Basilion JP. Theranostic Agents for Photodynamic Therapy of Prostate Cancer by Targeting Prostate-Specific Membrane Antigen. Mol Cancer Ther 2016; 15:1834-44. [PMID: 27297866 DOI: 10.1158/1535-7163.mct-15-0722] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 05/25/2016] [Indexed: 11/16/2022]
Abstract
Prostatectomy has been the mainstay treatment for men with localized prostate cancer. Surgery, however, often can result in major side effects, which are caused from damage and removal of nerves and muscles surrounding the prostate. A technology that can help surgeons more precisely identify and remove prostate cancer resulting in a more complete prostatectomy is needed. Prostate-specific membrane antigen (PSMA), a type II membrane antigen highly expressed in prostate cancer, has been an attractive target for imaging and therapy. The objective of this study is to develop low molecular weight PSMA-targeted photodynamic therapy (PDT) agents, which would provide image guidance for prostate tumor resection and allow for subsequent PDT to eliminate unresectable or remaining cancer cells. On the basis of our highly negatively charged, urea-based PSMA ligand PSMA-1, we synthesized two PSMA-targeting PDT conjugates named PSMA-1-Pc413 and PSMA-1-IR700. In in vitro cellular uptake experiments and in vivo animal imaging experiments, the two conjugates demonstrated selective and specific uptake in PSMA-positive PC3pip cells/tumors, but not in PSMA-negative PC3flu cells/tumors. Further in vivo photodynamic treatment proved that the two PSMA-1-PDT conjugates can effectively inhibit PC3pip tumor progression. The two PSMA-1-PDT conjugates reported here may have the potential to aid in the detection and resection of prostate cancers. It may also allow for the identification of unresectable cancer tissue and PDT ablation of such tissue after surgical resection with potentially less damage to surrounding tissues. Mol Cancer Ther; 15(8); 1834-44. ©2016 AACR.
Collapse
Affiliation(s)
- Xinning Wang
- Department of Radiology and NFCR Center for Molecular Imaging, Case Western Reserve University, Cleveland, Ohio
| | - Brian Tsui
- School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Gopolakrishnan Ramamurthy
- Department of Radiology and NFCR Center for Molecular Imaging, Case Western Reserve University, Cleveland, Ohio
| | - Ping Zhang
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio
| | - Joseph Meyers
- Department of Radiology and NFCR Center for Molecular Imaging, Case Western Reserve University, Cleveland, Ohio
| | - Malcolm E Kenney
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio
| | - Jonathan Kiechle
- Urology Institute, University Hospitals Case Medical Center, Cleveland, Ohio
| | - Lee Ponsky
- Urology Institute, University Hospitals Case Medical Center, Cleveland, Ohio
| | - James P Basilion
- Department of Radiology and NFCR Center for Molecular Imaging, Case Western Reserve University, Cleveland, Ohio. Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio.
| |
Collapse
|
41
|
Moore LS, de Boer E, Warram JM, Tucker MD, Carroll WR, Korb ML, Brandwein-Gensler MS, van Dam GM, Rosenthal EL. Photoimmunotherapy of residual disease after incomplete surgical resection in head and neck cancer models. Cancer Med 2016; 5:1526-34. [PMID: 27167827 PMCID: PMC4867660 DOI: 10.1002/cam4.752] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Revised: 04/04/2016] [Accepted: 04/05/2016] [Indexed: 12/21/2022] Open
Abstract
Antibody‐based photodynamic therapy, or photoimmunotherapy (PIT), is a novel, targeted cancer therapy, which can serve as both a diagnostic and a therapeutic agent. The primary objective of this study was to evaluate the capacity of panitumumab‐IRDye700DX (Pan‐IR700) to eliminate microscopic tumor remnants in the postsurgical setting, which was accomplished using novel in vitro and in vivo models of residual disease after incomplete resection. Additionally, PIT was evaluated in fresh human‐derived cancer tissue. To determine a threshold for cellular regrowth after PIT, an in vitro assay was performed using a range of cells representing microscopic disease quantities. Long‐term growth inhibition was induced after treatment of 5 × 103 and 1 × 104 cells at 6 J. A novel in vivo mouse model of subtotal tumor resection was used to assess the effectiveness of Pan‐IR700 mediated PIT to eliminate residual disease and inhibit recurrence in the post‐surgical wound bed. Mice receiving surgical treatment plus adjuvant PIT showed a threefold and fourfold reduction in tumor regrowth at 30 days post PIT in the 50% and 90% subtotal resection groups, respectively (as measured by bioluminescence imaging), demonstrating a significant (P < 0.001) reduction in tumor regrowth. To determine the translatability of epidermal growth factor receptor (EGFR)‐targeted PIT, SCCHN human tissues (n = 12) were treated with Pan‐IR700. A significant reduction (P < 0.001) in ATP levels was observed after treatment with Pan‐IR700 and 100 J cm−2 (48% ± 5%) and 150 J cm−2 (49% ± 7%) when compared to baseline. Targeting EGFR with Pan‐IR700 has robust potential to provide a tumor‐specific mechanism for eliminating residual disease in the surgical setting, thereby increasing therapeutic efficacy, prolonging progression‐free survival, and decreasing morbidity.
Collapse
Affiliation(s)
- Lindsay S Moore
- Department of Otolaryngology-Head and Neck Surgery, University of Alabama at Birmingham, Birmingham, Alabama
| | - Esther de Boer
- Department of Otolaryngology-Head and Neck Surgery, University of Alabama at Birmingham, Birmingham, Alabama.,Department of Surgery, University Medical Center Groningen University of Groningen, Groningen, The Netherlands
| | - Jason M Warram
- Department of Otolaryngology-Head and Neck Surgery, University of Alabama at Birmingham, Birmingham, Alabama
| | - Matthew D Tucker
- Department of Otolaryngology-Head and Neck Surgery, University of Alabama at Birmingham, Birmingham, Alabama
| | - William R Carroll
- Department of Otolaryngology-Head and Neck Surgery, University of Alabama at Birmingham, Birmingham, Alabama
| | - Melissa L Korb
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama
| | | | - Gooitzen M van Dam
- Department of Surgery, University Medical Center Groningen University of Groningen, Groningen, The Netherlands
| | - Eben L Rosenthal
- Department of Otolaryngology-Head and Neck Surgery, Stanford University, Stanford, California
| |
Collapse
|
42
|
Jing H, Weidensteiner C, Reichardt W, Gaedicke S, Zhu X, Grosu AL, Kobayashi H, Niedermann G. Imaging and Selective Elimination of Glioblastoma Stem Cells with Theranostic Near-Infrared-Labeled CD133-Specific Antibodies. Am J Cancer Res 2016; 6:862-74. [PMID: 27162556 PMCID: PMC4860894 DOI: 10.7150/thno.12890] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 02/12/2016] [Indexed: 12/14/2022] Open
Abstract
Near-infrared photoimmunotherapy (NIR-PIT), which employs monoclonal antibody (mAb)-phototoxic phthalocyanine dye IR700 conjugates, permits the specific, image-guided and spatiotemporally controlled elimination of tumor cells. Here, we report the highly efficient NIR-PIT of human tumor xenografts initiated from patient-derived cancer stem cells (CSCs). Using glioblastoma stem cells (GBM-SCs) expressing the prototypic CSC marker AC133/CD133, we also demonstrate here for the first time that NIR-PIT is highly effective against brain tumors. The intravenously injected theranostic AC133 mAb conjugate enabled the non-invasive detection of orthotopic gliomas by NIR fluorescence imaging, and reached AC133+ GBM-SCs at the invasive tumor front. AC133-targeted NIR-PIT induced the rapid cell death of AC133+ GBM-SCs and thereby strong shrinkage of both subcutaneous and invasively growing brain tumors. A single round of NIR-PIT extended the overall survival of mice with established orthotopic gliomas by more than a factor of two, even though the harmless NIR light was applied through the intact skull. Humanised versions of this theranostic agent may facilitate intraoperative imaging and histopathological evaluation of tumor borders and enable the highly specific and efficient eradication of CSCs.
Collapse
|
43
|
Sato K, Choyke PL, Hisataka K. Selective Cell Elimination from Mixed 3D Culture Using a Near Infrared Photoimmunotherapy Technique. J Vis Exp 2016. [PMID: 27022757 DOI: 10.3791/53633] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Recent developments in tissue engineering offer innovative solutions for many diseases. For example, tissue engineering using induced pluripotent stem cell (iPS) emerged as a new method in regenerative medicine. Although this tissue regeneration is promising, contamination with unwanted cells during tissue cultures is a major concern. Moreover, there is a safety concern regarding tumorigenicity after transplantation. Therefore, there is an urgent need for eliminating specific cells without damaging other cells that need to be protected, especially in established tissue. Here, we present a method for specific cell elimination from a mixed 3D cell culture in vitro with near infrared photoimmunotherapy (NIR-PIT) without damaging non-targeted cells. This technique enables the elimination of specific cells from mixed cell cultures or tissues.
Collapse
Affiliation(s)
- Kazuhide Sato
- Molecular Imaging Program, National Cancer Institute
| | | | | |
Collapse
|
44
|
Gao L, Zhang C, Gao D, Liu H, Yu X, Lai J, Wang F, Lin J, Liu Z. Enhanced Anti-Tumor Efficacy through a Combination of Integrin αvβ6-Targeted Photodynamic Therapy and Immune Checkpoint Inhibition. Theranostics 2016; 6:627-37. [PMID: 27022411 PMCID: PMC4805658 DOI: 10.7150/thno.14792] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 01/27/2016] [Indexed: 02/06/2023] Open
Abstract
“Training” the host immune system to recognize and systemically eliminate residual tumor lesions and micrometastases is a promising strategy for cancer therapy. In this study, we investigated whether integrin αvβ6-targeted photodynamic therapy (PDT) of tumors using a phthalocyanine dye-labeled probe (termed DSAB-HK) could trigger the host immune response, and whether PDT in combination with anti-PD-1 immune checkpoint inhibition could be used for the effective therapy of primary tumors and metastases. By near-infrared fluorescence imaging, DSAB-HK was demonstrated to specifically target either subcutaneous tumors in a 4T1 mouse breast cancer model or firefly luciferase stably transfected 4T1 (4T1-fLuc) lung metastatic tumors. Upon light irradiation, PDT by DSAB-HK significantly inhibited the growth of subcutaneous 4T1 tumors, and in addition promoted the maturation of dendritic cells and their production of cytokines, which subsequently stimulated the tumor recruitment of CD8+ cytotoxic T lymphocytes. Furthermore, DSAB-HK PDT of the first tumor followed by PD-1 blockade markedly suppressed the growth of a second subcutaneous tumor, and also slowed the growth of 4T1-fLuc lung metastasis as demonstrated by serial bioluminescence imaging. Together, our results demonstrated the synergistic effect of tumor-targeted PDT and immune checkpoint inhibition for improving anti-tumor immunity and suppressing tumor growth/metastasis.
Collapse
|
45
|
Feng G, Qin W, Hu Q, Tang BZ, Liu B. Cellular and Mitochondrial Dual-Targeted Organic Dots with Aggregation-Induced Emission Characteristics for Image-Guided Photodynamic Therapy. Adv Healthc Mater 2015; 4:2667-76. [PMID: 26479020 DOI: 10.1002/adhm.201500431] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 06/18/2015] [Indexed: 01/09/2023]
Abstract
Targeted delivery of drugs toward mitochondria of specific cancer cells dramatically improves therapy efficiencies especially for photodynamic therapy (PDT), as reactive oxygen species (ROS) are short in lifetime and small in radius of action. Different from chemical modification, nanotechnology has been serving as a simple and nonchemical approach to deliver drugs to cells of interest or specific organelles, such as mitochondria, but there have been limited examples of dual-targeted delivery for both cells and mitochondria. Here, cellular and mitochondrial dual-targeted organic dots for image-guided PDT are reported based on a fluorogen with aggregation-induced emission (AIEgen) characteristics. The AIEgen possesses enhanced red fluorescence and efficient ROS production in aggregated states. The AIE dot surfaces are functionalized with folate and triphenylphosphine, which can selectively internalize into folate-receptor (FR) positive cancer cells, and subsequently accumulate at mitochondria. The direct ROS generation at mitochondria sites is found to depolarize mitochondrial membrane, affect cell migration, and lead to cell apoptosis and death with enhanced PDT effects as compared to ROS generated randomly in cytoplasm. This report demonstrates a simple and general nanocarrier approach for cellular and mitochondrial dual-targeted PDT, which opens new opportunities for dual-targeted delivery and therapy.
Collapse
Affiliation(s)
- Guangxue Feng
- Department of Chemical and Biomolecular Engineering; National University of Singapore; Singapore 117585 Singapore
- Environmental Research Institute; National University of Singapore; Singapore 117411 Singapore
| | - Wei Qin
- Department of Chemistry and Division of Biomedical Engineering; Hong Kong University of Science and Technology; Clear Water Bay Kowloon Hong Kong
| | - Qinglian Hu
- Department of Chemical and Biomolecular Engineering; National University of Singapore; Singapore 117585 Singapore
| | - Ben Zhong Tang
- Department of Chemistry and Division of Biomedical Engineering; Hong Kong University of Science and Technology; Clear Water Bay Kowloon Hong Kong
- SCUT-HKUST Joint Research Laboratory; Guangdong Innovative Research Team; State Key Laboratory of Luminescent Materials and Devices; South China University of Technology; Guangzhou 510640 China
| | - Bin Liu
- Department of Chemical and Biomolecular Engineering; National University of Singapore; Singapore 117585 Singapore
- Institute of Materials Research and Engineering; Agency for Science; Technology and Research (A*STAR); Singapore 117602 Singapore
| |
Collapse
|
46
|
Freise AC, Wu AM. In vivo imaging with antibodies and engineered fragments. Mol Immunol 2015; 67:142-52. [PMID: 25934435 PMCID: PMC4529772 DOI: 10.1016/j.molimm.2015.04.001] [Citation(s) in RCA: 165] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 03/31/2015] [Accepted: 04/02/2015] [Indexed: 12/20/2022]
Abstract
Antibodies have clearly demonstrated their utility as therapeutics, providing highly selective and effective drugs to treat diseases in oncology, hematology, cardiology, immunology and autoimmunity, and infectious diseases. More recently, a pressing need for equally specific and targeted imaging agents for assessing disease in vivo, in preclinical models and patients, has emerged. This review summarizes strategies for developing and optimizing antibodies as targeted probes for use in non-invasive imaging using radioactive, optical, magnetic resonance, and ultrasound approaches. Recent advances in engineered antibody fragments and scaffolds, conjugation and labeling methods, and multimodality probes are highlighted. Importantly, antibody-based imaging probes are seeing new applications in detection and quantitation of cell surface biomarkers, imaging specific responses to targeted therapies, and monitoring immune responses in oncology and other diseases. Antibody-based imaging will provide essential tools to facilitate the transition to truly precision medicine.
Collapse
Affiliation(s)
- Amanda C Freise
- Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, USA
| | - Anna M Wu
- Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, USA.
| |
Collapse
|
47
|
Al-Abd AM, Aljehani ZK, Gazzaz RW, Fakhri SH, Jabbad AH, Alahdal AM, Torchilin VP. Pharmacokinetic strategies to improve drug penetration and entrapment within solid tumors. J Control Release 2015; 219:269-277. [PMID: 26342660 DOI: 10.1016/j.jconrel.2015.08.055] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Revised: 08/09/2015] [Accepted: 08/28/2015] [Indexed: 02/08/2023]
Abstract
Despite the discovery of a large number of anticancer agents, cancer still remains among the leading causes of death since the middle of the twentieth century. Solid tumors possess a high degree of genetic instability and emergence of treatment resistance. Tumor resistance has emerged for almost all approved anticancer drugs and will most probably emerge for newly discovered anticancer agents as well. The use of pharmacokinetic approaches to increase anticancer drug concentrations within the solid tumor compartment and prolong its entrapment might diminish the possibility of resistance emergence at the molecular pharmacodynamic level and might even reverse tumor resistance. Several novel treatment modalities such as metronomic therapy, angiogenesis inhibitors, vascular disrupting agents and tumor priming have been introduced to improve solid tumor treatment outcomes. In the current review we will discuss the pharmacokinetic aspect of these treatment modalities in addition to other older treatment modalities, such as extracellular matrix dissolving agents, extracellular matrix synthesis inhibitors, chemoembolization and cellular efflux pump inhibition. Many of these strategies showed variable degrees of success/failure; however, reallocating these modalities based on their influence on the intratumoral pharmacokinetics might improve their understanding and treatment outcomes.
Collapse
Affiliation(s)
- Ahmed M Al-Abd
- Department of Pharmacology, Medical Division, National Research Centre, Dokki, Giza, Egypt; Center for Pharmaceutical Biotechnology and Nanomedicine (CPBN), Bouvé College of Health Sciences, Northeastern University, Boston, MA, USA; Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Zekra K Aljehani
- Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Rana W Gazzaz
- Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sarah H Fakhri
- Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Aisha H Jabbad
- Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - Vladimir P Torchilin
- Center for Pharmaceutical Biotechnology and Nanomedicine (CPBN), Bouvé College of Health Sciences, Northeastern University, Boston, MA, USA; Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
48
|
Nagaya T, Sato K, Harada T, Nakamura Y, Choyke PL, Kobayashi H. Near Infrared Photoimmunotherapy Targeting EGFR Positive Triple Negative Breast Cancer: Optimizing the Conjugate-Light Regimen. PLoS One 2015; 10:e0136829. [PMID: 26313651 PMCID: PMC4552472 DOI: 10.1371/journal.pone.0136829] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 08/10/2015] [Indexed: 01/22/2023] Open
Abstract
Aim Triple-negative breast cancer (TNBC) is considered one of the most aggressive subtypes of breast cancer. Near infrared photoimmunotherapy (NIR-PIT) is a cancer treatment that employs an antibody-photosensitizer conjugate (APC) followed by exposure of NIR light for activating selective cytotoxicity on targeted cancer cells and may have application to TNBC. In order to minimize the dose of APC while maximizing the therapeutic effects, dosing of the APC and NIR light need to be optimized. In this study, we investigate in vitro and in vivo efficacy of cetuximab (cet)-IR700 NIR-PIT on two breast cancer models MDAMB231 (TNBC, EGFR moderate) and MDAMB468 (TNBC, EGFR high) cell lines, and demonstrate a method to optimize the dosing APC and NIR light. Method After validating in vitro cell-specific cytotoxicity, NIR-PIT therapeutic effects were investigated in mouse models using cell lines derived from TNBC tumors. Tumor-bearing mice were separated into 4 groups for the following treatments: (1) no treatment (control); (2) 300 μg of cet-IR700 i.v., (APC i.v. only); (3) NIR light exposure only, NIR light was administered at 50 J/cm2 on day 1 and 100 J/cm2 on day 2 (NIR light only); (4) 300 μg of cet-IR700 i.v., NIR light was administered at 50 J/cm2 on day 1 after injection and 100 J/cm2 of light on day 2 after injection (one shot NIR-PIT). To compare different treatment regimens with a fixed dose of APC, we added the following treatments (5) 100 μg of cet-IR700 i.v., NIR light administered at 50 J/cm2 on day 1 and 50 μg of cet-IR700 i.v. immediately after NIR-PIT, then NIR light was administered at 100 J/cm2 on day 2, which were performed two times every week (“two split” NIR-PIT) and (6) 100 μg of cet-IR700 i.v., NIR light was administered at 50 J/cm2 on day 1 and 100 J/cm2 on day 2, which were performed three times per week (“three split” NIR-PIT). Result Both specific binding and NIR-PIT effects were greater with MDAMB468 than MDAMB231 cells in vitro. Tumor accumulation of cet-IR700 in MDAMB468 tumors was significantly higher (p < 0.05) than in MDAMB231 tumors in vivo. Tumor growth and survival of MDAMB231 tumor bearing mice was significantly lower in the NIR-PIT treatment group (p < 0.05). In MDAMB468 bearing mice, tumor growth and survival was significantly improved in the NIR-PIT treatment groups in all treatment regimens (one shot NIR-PIT; p < 0.05, “two split” NIR-PIT; p < 0.01, “three split” NIR-PIT; p < 0.001) compared with control groups. Conclusion NIR-PIT for TNBC was effective regardless of expression of EGFR, however, greater cell killing was shown with higher EGFR expression tumor in vitro. In all treatment regimens, NIR-PIT suppressed tumor growth, resulting in significantly prolonged survival that further improved by splitting the APC dose and using repeated light exposures.
Collapse
Affiliation(s)
- Tadanobu Nagaya
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Kazuhide Sato
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Toshiko Harada
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Yuko Nakamura
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Peter L Choyke
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Hisataka Kobayashi
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| |
Collapse
|
49
|
Sato K, Nagaya T, Nakamura Y, Harada T, Choyke PL, Kobayashi H. Near infrared photoimmunotherapy prevents lung cancer metastases in a murine model. Oncotarget 2015; 6:19747-58. [PMID: 25992770 PMCID: PMC4637318 DOI: 10.18632/oncotarget.3850] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 04/30/2015] [Indexed: 11/25/2022] Open
Abstract
Near infrared photoimmunotherapy (NIR-PIT) is a new cancer treatment that combines the specificity of intravenously injected antibodies with the acute toxicity induced by photosensitizers after exposure to NIR-light. Herein, we evaluate the efficacy of NIR-PIT in preventing lung metastases in a mouse model. Lung is one of the most common sites for developing metastases, but it also has the deepest tissue light penetration. Thus, lung is the ideal site for treating early metastases by using a light-based strategy. In vitro NIR-PIT cytotoxicity was assessed with dead cell staining, luciferase activity, and a decrease in cytoplasmic GFP fluorescence in 3T3/HER2-luc-GFP cells incubated with an anti-HER2 antibody photosensitizer conjugate. Cell-specific killing was demonstrated in mixed 2D/3D cell cultures of 3T3/HER2-luc-GFP (target) and 3T3-RFP (non-target) cells. In vivo NIR-PIT was performed in the left lung in a mouse model of lung metastases, and the number of metastasis nodules, tumor fluorescence, and luciferase activity were all evaluated. All three evaluations demonstrated that the NIR-PIT-treated lung had significant reductions in metastatic disease (*p < 0.0001, Mann-Whitney U-test) and that NIR-PIT did not damage non-target tumors or normal lung tissue. Thus, NIR-PIT can specifically prevent early metastases and is a promising anti-metastatic therapy.
Collapse
Affiliation(s)
- Kazuhide Sato
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892-1088, USA
| | - Tadanobu Nagaya
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892-1088, USA
| | - Yuko Nakamura
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892-1088, USA
| | - Toshiko Harada
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892-1088, USA
| | - Peter L. Choyke
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892-1088, USA
| | - Hisataka Kobayashi
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892-1088, USA
| |
Collapse
|
50
|
Gao D, Gao L, Zhang C, Liu H, Jia B, Zhu Z, Wang F, Liu Z. A near-infrared phthalocyanine dye-labeled agent for integrin αvβ6-targeted theranostics of pancreatic cancer. Biomaterials 2015; 53:229-238. [PMID: 25890722 DOI: 10.1016/j.biomaterials.2015.02.093] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 02/17/2015] [Accepted: 02/21/2015] [Indexed: 02/05/2023]
Abstract
Integrin αvβ6 is widely upregulated in variant malignant cancers but is undetectable in normal organs, making it a promising target for cancer diagnostic imaging and therapy. Using streptavidin-biotin chemistry, we synthesized an integrin αvβ6-targeted near-infrared phthalocyanine dye-labeled agent, termed Dye-SA-B-HK, and investigated whether it could be used for cancer imaging, optical imaging-guided surgery, and phototherapy in pancreatic cancer mouse models. Dye-SA-B-HK specifically bound to integrin αvβ6 in vitro and in vivo with high receptor binding affinity. Using small-animal optical imaging, we detected subcutaneous and orthotopic BxPC-3 human pancreatic cancer xenografts in vivo. Upon optical image-guidance, the orthotopically growing pancreatic cancer lesions could be successfully removed by surgery. Using light irradiation, Dye-SA-B-HK manifested remarkable antitumor effects both in vitro and in vivo. (18)F-FDG positron emission tomography (PET) imaging and ex vivo fluorescence staining validated the observed decrease in proliferation of treated tumors by Dye-DA-B-HK phototherapy. Tissue microarray results revealed overexpression of integrin αvβ6 in over 95% cases of human pancreatic cancer, indicating that theranostic application of Dye-DA-B-HK has clear translational potential. Overall, the results of this study demonstrated that integrin αvβ6-specific Dye-SA-B-HK is a promising theranostic agent for the management of pancreatic cancer.
Collapse
Affiliation(s)
- Duo Gao
- Medical Isotopes Research Center and Department of Radiation Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Liquan Gao
- Medical Isotopes Research Center and Department of Radiation Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Chenran Zhang
- Medical Isotopes Research Center and Department of Radiation Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Hao Liu
- Medical Isotopes Research Center and Department of Radiation Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Bing Jia
- Medical Isotopes Research Center and Department of Radiation Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Zhaohui Zhu
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Beijing 100857, China
| | - Fan Wang
- Medical Isotopes Research Center and Department of Radiation Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China; Interdisciplinary Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhaofei Liu
- Medical Isotopes Research Center and Department of Radiation Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China.
| |
Collapse
|