1
|
Liu S, Yang X, Zheng S, Chen C, Qi L, Xu X, Zhang D. Research progress on the use of traditional Chinese medicine to treat diseases by regulating ferroptosis. Genes Dis 2025; 12:101451. [PMID: 40070365 PMCID: PMC11894312 DOI: 10.1016/j.gendis.2024.101451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 06/28/2024] [Accepted: 08/25/2024] [Indexed: 03/14/2025] Open
Abstract
Ferroptosis is an emerging form of programmed cell death triggered by iron-dependent lipid peroxidation. It is distinguished from other forms of cell death by its unique morphological changes and characteristic fine-tuned regulatory gene network. Since its pivotal involvement in the pathogenesis and therapeutic interventions of various diseases, such as malignant tumors, cardiovascular and cerebrovascular diseases, and traumatic disorders, has been well-established, ferroptosis has garnered significant attention in contemporary physiological and pathological research. For the advantage of alleviating the clinical symptoms and improving life quality, traditional Chinese medicine (TCM) holds a significant position in the treatment of these ailments. Moreover, increasing studies revealed that TCM compounds and monomers showed evident therapeutic efficacy by regulating ferroptosis via signaling pathways that tightly regulate redox reactions, iron ion homeostasis, lipid peroxidation, and glutathione metabolism. In this paper, we summarized the current knowledge of TCM compounds and monomers in regulating ferroptosis, aiming to provide a comprehensive review of disease management by TCM decoction, Chinese patent medicine, and natural products deriving from TCM through ferroptosis modulation. The formulation composition, chemical structure, and possible targets or mechanisms presented here offer valuable insights into the advancement of TCM exploration.
Collapse
Affiliation(s)
- Shuai Liu
- Central Laboratory, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250014, China
- Shandong Key Laboratory of Dominant Diseases of Traditional Chinese Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250014, China
| | - Xianzhen Yang
- Urinary Surgery, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250014, China
| | - Sanxia Zheng
- Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250014, China
| | - Changjing Chen
- Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250014, China
| | - Lei Qi
- Central Laboratory, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250014, China
- Shandong Key Laboratory of Dominant Diseases of Traditional Chinese Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250014, China
| | - Xiangdong Xu
- Central Laboratory, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250014, China
- Shandong Key Laboratory of Dominant Diseases of Traditional Chinese Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250014, China
| | - Denglu Zhang
- Central Laboratory, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250014, China
- Shandong Key Laboratory of Dominant Diseases of Traditional Chinese Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250014, China
| |
Collapse
|
2
|
Shahrokhi H, Asili J, Tayarani-Najaran Z, Boozari M. Signaling pathways behind the biological effects of tanshinone IIA for the prevention of cancer and cardiovascular diseases. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-03857-x. [PMID: 39937254 DOI: 10.1007/s00210-025-03857-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 01/24/2025] [Indexed: 02/13/2025]
Abstract
Tanshinone IIA (Tan IIA) is a well-known fat-soluble diterpenoid found in Salvia miltiorrhiza, recognized for its various biological effects. The molecular signaling pathways of Tan IIA have been investigated in different diseases, including the anti-inflammatory, hepatoprotective, renoprotective, neuroprotective effects, and fibrosis prevention. This article provides a brief overview of the signaling pathways related to anti-cancer and cardioprotective effects of Tan IIA. It shows that Tan IIAs anti-cancer ability has good expectation through multiplicity mechanisms affecting various aspects' tumor biology. The major pathways involved in its anti-cancer effects include inhibition of PI3/Akt, MAPK, and p53/p21 signaling which leads to enhancement of immune responses and increased radiation sensitivity. Some essential pathways responsible for cardioprotective effects induced by Tan IIA are PI3/AKT activation, MAPK, and SIRT1 promoting protection against ischemia/reperfusion injury in myocardial cells as well as inhibiting pathological remodeling processes. Finally, the article underscores the complex and specific signaling pathways influenced by Tan IIA. The PI3/Akt and MAPK pathways play critical roles in the anti-cancer and cardioprotective effects of Tan IIA. Particularly, Tan IIA suppresses the proliferation of malignancies in cancerous cells but stimulates protective mechanisms in normal cardiovascular cells. These findings highlight the importance of investigating molecular signaling pathways in evaluating the therapeutic potential of natural products. Studying about signaling pathways is vital in understanding the therapeutic aspects of Tan IIA and its derivatives as anti-cancer and cardio-protective agents. Further research is necessary to understand these complex mechanisms.
Collapse
Affiliation(s)
- Homa Shahrokhi
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Javad Asili
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Tayarani-Najaran
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Motahareh Boozari
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
3
|
Sultana S, Sultana S, Najib Ullah SNM, Zafar A. Novel Products as Promising Therapeutic Agents for Angiogenesis Inhibition. Curr Drug Deliv 2025; 22:181-194. [PMID: 38204254 DOI: 10.2174/0115672018277869231217165048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/13/2023] [Accepted: 10/31/2023] [Indexed: 01/12/2024]
Abstract
OBJECTIVE Angiogenesis is the process of forming new blood vessels from pre-existing vessels and occurs during development, wound healing, and tumor growth. In this review, we aimed to present a comprehensive view of various factors contributing to angiogenesis during carcinogenesis. Anti-angiogenesis agents prevent or slow down cancer growth by interrupting the nutrients and blood supply to the tumor cells, and thus can prove beneficial for treatment. METHOD The discovery of several novel angiogenic inhibitors has helped to reduce both morbidity and mortality from several life-threatening diseases, such as carcinomas. There is an urgent need for a new comprehensive treatment strategy combining novel anti-angiogenic agents for the control of cancer. The article contains details of various angiogenic inhibitors that have been adopted by scientists to formulate and optimize such systems in order to make them suitable for cancer. RESULTS The results of several researches have been summarized in the article and all of the data support the claim that anti-angiogenic agent is beneficial for cancer treatment. CONCLUSION This review focuses on novel antiangiogenic agents that play a crucial role in controlling carcinogenesis.
Collapse
Affiliation(s)
- Shaheen Sultana
- Department of Pharmaceutics, IIMT College of Pharmacy, Uttar Pradesh 201310, India
| | - Shahnaz Sultana
- Department of Pharmacognosy and Phytochemistry, Jazan University, Kingdom of Saudi Arabia
| | | | - Ameeduzzafar Zafar
- Department of Pharmaceutics, Jouf University, Al-Jouf, Kingdom of Saudi Arabia
| |
Collapse
|
4
|
Zhang P, Liu W, Wang Y. The mechanisms of tanshinone in the treatment of tumors. Front Pharmacol 2023; 14:1282203. [PMID: 37964867 PMCID: PMC10642231 DOI: 10.3389/fphar.2023.1282203] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 10/18/2023] [Indexed: 11/16/2023] Open
Abstract
Tanshinone is a lipophilic compound that is present in traditional Chinese medicine and is derived from the roots of Salvia miltiorrhiza (Danshen). It has been proven to be highly effective in combating tumors in various parts of the body, including liver carcinoma, gastric cancer, ovarian cancer, cervix carcinoma, breast cancer, colon cancer, and prostate cancer. Tanshinone can efficiently prevent the reproduction of cancerous cells, induce cell death, and inhibit the spread of cancerous cells, which are mainly involved in the PI3K/Akt signaling pathway, NF-κB pathway, Bcl-2 family, Caspase cascades, MicroRNA, MAPK signaling pathway, p21, STAT3 pathway, miR30b-P53-PTPN11/SHP2 axis, β-catenin, and Skp2. However, the properties and mechanisms of tanshinone's anti-tumor effects remain unclear currently. Thus, this study aims to review the research progress on tumor prevention and mechanisms of tanshinone to gain new perspectives for further development and clinical application of tanshinone.
Collapse
Affiliation(s)
- Pengyu Zhang
- The Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wendi Liu
- School of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yuan Wang
- Department of Histology and Embryology, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
5
|
Kim SK, Lee NH, Son CG. A Review of Herbal Resources Inducing Anti-Liver Metastasis Effects in Gastrointestinal Tumors via Modulation of Tumor Microenvironments in Animal Models. Cancers (Basel) 2023; 15:3415. [PMID: 37444525 PMCID: PMC10340630 DOI: 10.3390/cancers15133415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 06/22/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Liver metastases remain a major obstacle for the management of all types of tumors arising from digestive organs, and the tumor microenvironment has been regarded as an important factor in metastasis. To discover herbal candidates inhibiting the liver metastasis of tumors originating from the digestive system via the modulation of the tumor microenvironment and liver environment, we searched three representative public databases and conducted a systematic review. A total of 21 studies that employed experimental models for pancreatic (9), colon (8), and stomach cancers (4) were selected. The herbal agents included single-herb extracts (5), single compounds (12), and multiherbal decoctions (4). Curcuma longa Linn was most frequently studied for its anti-colon-liver metastatic effects, and its possible mechanisms involved the modulation of tumor microenvironment components such as vascular endothelial cells and immunity in both tumor tissues and circulating cells. The list of herbal agents and their mechanisms produced in this study is helpful for the development of anti-liver metastasis drugs in the future.
Collapse
Affiliation(s)
- Sul-Ki Kim
- Liver and Immunology Research Center, Collage of Korean Medicine, Daejeon University, Daejeon 35235, Republic of Korea;
| | - Nam-Hun Lee
- East-West Cancer Center, Cheonan Korean Medicine Hospital, Daejeon University, Cheonan 31099, Republic of Korea;
| | - Chang-Gue Son
- Liver and Immunology Research Center, Collage of Korean Medicine, Daejeon University, Daejeon 35235, Republic of Korea;
| |
Collapse
|
6
|
Li X, Zhou J, Wang X, Li C, Ma Z, Wan Q, Peng F. New advances in the research of clinical treatment and novel anticancer agents in tumor angiogenesis. Biomed Pharmacother 2023; 163:114806. [PMID: 37163782 DOI: 10.1016/j.biopha.2023.114806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/24/2023] [Accepted: 04/30/2023] [Indexed: 05/12/2023] Open
Abstract
In 1971, Folkman proposed that tumors could be limited to very small sizes by blocking angiogenesis. Angiogenesis is the generation of new blood vessels from pre-existing vessels, considered to be one of the important processes in tumor growth and metastasis. Angiogenesis is a complex process regulated by various factors and involves many secreted factors and signaling pathways. Angiogenesis is important in the transport of oxygen and nutrients to the tumor during tumor development. Therefore, inhibition of angiogenesis has become an important strategy in the clinical management of many solid tumors. Combination therapies of angiogenesis inhibitors with radiotherapy and chemotherapy are often used in clinical practice. In this article, we will review common targets against angiogenesis, the most common and up-to-date anti-angiogenic drugs and clinical treatments in recent years, including active ingredients from chemical and herbal medicines.
Collapse
Affiliation(s)
- Xin Li
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Jianbo Zhou
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xue Wang
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Chunxi Li
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Zifan Ma
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Qiaoling Wan
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Fu Peng
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
7
|
Li W, Huang T, Xu S, Che B, Yu Y, Zhang W, Tang K. Molecular Mechanism of Tanshinone against Prostate Cancer. Molecules 2022; 27:molecules27175594. [PMID: 36080361 PMCID: PMC9457553 DOI: 10.3390/molecules27175594] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/18/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
Prostate cancer (PCa) is the most common malignant tumor of the male urinary system in Europe and America. According to the data in the World Cancer Report 2020, the incidence rate of PCa ranks second in the prevalence of male malignant tumors and varies worldwide between regions and population groups. Although early PCa can achieve good therapeutic results after surgical treatment, due to advanced PCa, it can adapt and tolerate androgen castration-related drugs through a variety of mechanisms. For this reason, it is often difficult to achieve effective therapeutic results in the treatment of advanced PCa. Tanshinone is a new fat-soluble phenanthraquinone compound derived from Salvia miltiorrhiza that can play a therapeutic role in different cancers, including PCa. Several studies have shown that Tanshinone can target various molecular pathways of PCa, including the signal transducer and activator of transcription 3 (STAT3) pathway, androgen receptor (AR) pathway, phosphatidylinositol-3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) pathway, and mitogen-activated protein kinase (MAPK) pathway, which will affect the release of pro-inflammatory cytokines and affect cell proliferation, apoptosis, tumor metabolism, genomic stability, and tumor drug resistance. Thus, the occurrence and development of PCa cells are inhibited. In this review, we summarized the in vivo and in vitro evidence of Tanshinone against prostate cancer and discussed the effect of Tanshinone on nuclear factor kappa-B (NF-κB), AR, and mTOR. At the same time, we conducted a network pharmacology analysis on the four main components of Tanshinone to further screen the possible targets of Tanshinone against prostate cancer and provide ideas for future research.
Collapse
|
8
|
Zhou J, Wang L, Peng C, Peng F. Co-Targeting Tumor Angiogenesis and Immunosuppressive Tumor Microenvironment: A Perspective in Ethnopharmacology. Front Pharmacol 2022; 13:886198. [PMID: 35784750 PMCID: PMC9242535 DOI: 10.3389/fphar.2022.886198] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/04/2022] [Indexed: 11/13/2022] Open
Abstract
Tumor angiogenesis is one of the most important processes of cancer deterioration via nurturing an immunosuppressive tumor environment (TME). Targeting tumor angiogenesis has been widely accepted as a cancer intervention approach, which is also synergistically associated with immune therapy. However, drug resistance is the biggest challenge of anti-angiogenesis therapy, which affects the outcomes of anti-angiogeneic agents, and even combined with immunotherapy. Here, emerging targets and representative candidate molecules from ethnopharmacology (including traditional Chinese medicine, TCM) have been focused, and they have been proved to regulate tumor angiogenesis. Further investigations on derivatives and delivery systems of these molecules will provide a comprehensive landscape in preclinical studies. More importantly, the molecule library of ethnopharmacology meets the viability for targeting angiogenesis and TME simultaneously, which is attributed to the pleiotropy of pro-angiogenic factors (such as VEGF) toward cancer cells, endothelial cells, and immune cells. We primarily shed light on the potentiality of ethnopharmacology against tumor angiogenesis, particularly TCM. More research studies concerning the crosstalk between angiogenesis and TME remodeling from the perspective of botanical medicine are awaited.
Collapse
Affiliation(s)
- Jianbo Zhou
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Li Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Fu Peng, ; Cheng Peng,
| | - Fu Peng
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
- *Correspondence: Fu Peng, ; Cheng Peng,
| |
Collapse
|
9
|
Zhang W, Liu C, Li J, Lu Y, Li H, Zhuang J, Ren X, Wang M, Sun C. Tanshinone IIA: New Perspective on the Anti-Tumor Mechanism of A Traditional Natural Medicine. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2022; 50:209-239. [PMID: 34983327 DOI: 10.1142/s0192415x22500070] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The search for natural and efficacious antineoplastic drugs, with minimal toxicity and side effects, is an important part of antitumor drug research and development. Tanshinone IIA is the most evaluated lipophilic active component of Salvia miltiorrhiza. Tanshinone IIA is a path-breaking traditional drug applied in cardiovascular treatment. It has also been found that tanshinone IIA plays an important role in the digestive, respiratory and circulatory systems, as well as in other tumor diseases. Tanshinone IIA significantly inhibits the proliferation of several types of tumors, blocks the cell cycle, induces apoptosis and autophagic death, in addition to inhibiting cell migration and invasion. Among these, the regulation of tumor-cell apoptosis signaling pathways is the key breakthrough point in several modes of antitumor therapy. The PI3K/AKT/MTOR signaling pathway and the JNK pathway are the key pathways for tanshinone IIA to induce tumor cell apoptosis. In addition to glycolysis, reactive oxygen species and signal transduction all play an active role with the participation of tanshinone IIA. Endogenous apoptosis is considered the main mechanism of tumor apoptosis induced by tanshinone IIA. Multiple pathways and targets play a role in the process of endogenous apoptosis. Tanshinone IIA can protect chemotherapy drugs, which is mainly reflected in the protection of the side effects of chemotherapy drugs, such as neurotoxicity and inhibition of the hematopoietic system. Tanshinone IIA also has a certain regulatory effect on tumor angiogenesis, which is mainly manifested in the control of hypoxia. Our findings indicated that tanshinone IIA is an effective treatment agent in the cardiovascular field and plays a significant role in antitumor therapeutics. This paper reviews the pharmacological potential and inhibitory effect of tanshinone IIA on cancer. It is greatly anticipated that tanshinone IIA will be employed as an adjuvant in the treatment of various cancers.
Collapse
Affiliation(s)
- Wenfeng Zhang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250014, P. R. China.,School of Traditional Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, P. R. China
| | - Cun Liu
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250014, P. R. China
| | - Jie Li
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250014, P. R. China
| | - Yiping Lu
- Integrated Traditional Chinese and Western Medicine Center, Department of Medicine, Qingdao University, Qingdao Shandong 266000, P. R. China
| | - Huayao Li
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250014, P. R. China
| | - Jing Zhuang
- Department of Oncology, Weifang Traditional Chinese Medicine Hospital, Weifang, Shandong 261041, P. R. China
| | - Xin Ren
- Clinical Medical Colleges, Weifang Medical University, Weifang, Shandong 261000, P. R. China
| | - Mengmeng Wang
- Clinical Medical Colleges, Weifang Medical University, Weifang, Shandong 261000, P. R. China
| | - Changgang Sun
- Department of Oncology, Weifang Traditional Chinese Medicine Hospital, Weifang, Shandong 261041, P. R. China.,Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, P. R. China
| |
Collapse
|
10
|
Ni H, Ruan G, Sun C, Yang X, Miao Z, Li J, Chen Y, Qin H, Liu Y, Zheng L, Xing Y, Xi T, Li X. Tanshinone IIA inhibits gastric cancer cell stemness through inducing ferroptosis. ENVIRONMENTAL TOXICOLOGY 2022; 37:192-200. [PMID: 34661962 DOI: 10.1002/tox.23388] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 09/27/2021] [Accepted: 10/03/2021] [Indexed: 05/16/2023]
Abstract
Tanshinone IIA is the active constituent extracted from Salvia Miltiorrhza. Numerous studies have shown that Tanshinone IIA could inhibit tumor proliferation and metastasis, including gastric cancer. However, the effect of Tanshinone IIA on gastric cancer cell stemness stays unclear. Here, we found that Tanshinone IIA could reduce gastric cancer cell stemness through detecting spheroid-forming, flow cytometry analysis, and the expression of stemness markers (OCT3/4, ALDH1A1, and CD44). Mechanistically, Tanshinone IIA increased the level of lipid peroxides and decreased glutathione level in gastric cancer cells, both of which are the markers of ferroptosis. Similarly, ferroptosis inducers (erastin, sulfasalazine, and sorafenib) reduced gastric cancer cell stemness. Additionally, the inhibitory effects of Tanshinone IIA on GC cell stemness were reversed by ferroptosis inhibitor (Fer-1) or overexpression of SLC7A11, which is a critical ferroptosis inhibitor. Therefore, we revealed that Tanshinone IIA inhibited the stemness of gastric cancer cells partly through inducing ferroptosis.
Collapse
Affiliation(s)
- Haiwei Ni
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, China
| | - Guojing Ruan
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, China
| | - Cheng Sun
- Department of Pharmacy, the Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Xuan Yang
- Department of Pharmacy, Huai'an Third People's Hospital, Huai'an, China
| | - Zhenyan Miao
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, China
| | - Jifei Li
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, China
| | - Ying Chen
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, China
| | - Hai Qin
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, China
| | - Yichen Liu
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, China
| | - Lufeng Zheng
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, China
| | - Yingying Xing
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, China
| | - Tao Xi
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, China
| | - Xiaoman Li
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
11
|
Jin Z, Chenghao Y, Cheng P. Anticancer Effect of Tanshinones on Female Breast Cancer and Gynecological Cancer. Front Pharmacol 2022; 12:824531. [PMID: 35145409 PMCID: PMC8822147 DOI: 10.3389/fphar.2021.824531] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 12/30/2021] [Indexed: 12/16/2022] Open
Abstract
Female breast cancer, ovarian cancer, cervical cancer, and endometrial cancer are the most common tumors and the most common causes of cancer-related mortality worldwide in women. Drugs derived from natural plants play important roles in malignant tumor therapy. Salvia miltiorrhiza is a commonly used Chinese herb which has been used in the treatment of liver diseases and cardiovascular diseases because of its positive effect of promoting blood circulation, increasing oxidative stress, and removing blood stasis. Recently, studies have found that fat-soluble components of Salvia miltiorrhiza such as tanshinone II, tanshinone I, cryptotanshinone, and dihydrotanshinone I displayed good antitumor activity in vivo and in vitro for gynecological cancer by different molecular mechanisms. In this study, the latest research progress on the antitumor effect and mechanism of tanshinone compounds in breast cancer and gynecological cancer was reviewed to provide references for the research and clinical application of these compounds (tanshinone II, tanshinone I, cryptotanshinone, and dihydrotanshinone I).
Collapse
Affiliation(s)
- Zhou Jin
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Basic Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu Chenghao
- Basic Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Peng Cheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Basic Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Peng Cheng,
| |
Collapse
|
12
|
Tanshinone IIA Inhibits Osteosarcoma Growth through a Src Kinase-Dependent Mechanism. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:5563691. [PMID: 34422073 PMCID: PMC8376467 DOI: 10.1155/2021/5563691] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 06/04/2021] [Accepted: 06/21/2021] [Indexed: 01/01/2023]
Abstract
Introduction Osteosarcoma is a malignant tumor associated with high mortality rates due to the toxic side effects of current therapeutic methods. Tanshinone IIA can inhibit cell proliferation and promote apoptosis in vitro, but the exact mechanism is still unknown. The aims of this study are to explore the antiosteosarcoma effect of tanshinone IIA via Src kinase and demonstrate the mechanism of this effect. Materials and Methods Osteosarcoma MG-63 and U2-OS cell lines were stable transfections with Src-shRNA. Then, the antiosteosarcoma effect of tanshinone IIA was tested in vitro. The protein expression levels of Src, p-Src, p-ERK1/2, and p-AKt were detected by Western blot and RT-PCR. CCK-8 assay and BrdU immunofluorescence assay were used to detect cell proliferation. Transwell assay, cell scratch assay, and flow cytometry were used to detect cell invasion, migration, and cell cycle. Tumor-bearing nude mice with osteosarcoma were constructed. The effect of tanshinone IIA was detected by tumor HE staining, tumor inhibition rate, incidence of lung metastasis, and X-ray. Results The oncogene role of Src kinase in osteosarcoma is reflected in promoting cell proliferation, invasion, and migration and in inhibiting apoptosis. However, Src has different effects on cell proliferation, apoptosis, and cell cycle regulation among cell lines. At a cellular level, the antiosteosarcoma effect of tanshinone IIA is mediated by Src downstream of the MAPK/ERK and PI3K/AKt signaling pathways. At the animal level, tanshinone IIA played a role in resisting osteosarcoma formation by Src downstream of the MAPK/ERK and PI3K/AKt signaling pathways. Conclusion Tanshinone IIA plays an antiosteosarcoma role in vitro and in vivo and inhibits the progression of osteosarcoma mediated by Src downstream of the MAPK/ERK and PI3K/AKt signaling pathways.
Collapse
|
13
|
Tseng YJ, Hung YC, Kuo CE, Chung CJ, Hsu CY, Muo CH, Hsu SF, Hu WL. Prescription of Radix Salvia miltiorrhiza in Taiwan: A Population-Based Study Using the National Health Insurance Research Database. Front Pharmacol 2021; 12:719519. [PMID: 34393796 PMCID: PMC8358316 DOI: 10.3389/fphar.2021.719519] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 07/19/2021] [Indexed: 11/13/2022] Open
Abstract
Objective: While radix Salvia miltiorrhiza (Danshen; RSM) is commonly used in Chinese herbal medicine, its current usage has not yet been analyzed in a large-scale survey. This study aimed to investigate the conditions for which RSM is prescribed and the utilization of RSM in Taiwan. Methods: 1 million beneficiaries enrolled in the Taiwan National Health Insurance Research Database were sampled to identify patients who were prescribed RSM. Next, the diagnoses of these patients based on the International Classification of Diseases 9th Revision Clinical Modification code were analyzed. Logistic regression analysis was employed to estimate the odds ratio (OR) for RSM utilization. Results: Patients with disorders of menstruation and abnormal bleeding from the female genital tract due to other causes were the diagnostic group most commonly treated with RSM (9.48%), followed by those with general (9.46%) and cardiovascular symptoms (4.18%). Subjects treated with RSM were mostly aged 35–49 years (30.1%). The most common combination of diseases for which RSM was prescribed (0.17%) included menopausal disorders and general symptoms. Women were more likely to receive RSM than men (OR = 1.75, 95% confidence interval = 1.73–1.78). RSM was frequently combined with Yan-Hu-Suo and Jia-Wei-Xiao-Yao-San for clinical use. Conclusion: To date, this is the first study to identify the most common conditions for which RSM is used in modern Taiwan. The results indicate RSM as a key medicinal herb for the treatment of gynecological diseases, including menstrual disorders, female genital pain, menopausal disorders, etc. The most common combination for which RSM is prescribed is menopausal disorders and general symptoms. Further research is needed to elucidate the optimal dosage, efficacy, and safety of RSM.
Collapse
Affiliation(s)
- Ying-Jung Tseng
- Department of Chinese Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Department of Nursing, Meiho University, Pingtung, Taiwan
| | - Yu-Chiang Hung
- Department of Chinese Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chun-En Kuo
- Department of Chinese Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Department of Nursing, Meiho University, Pingtung, Taiwan
| | - Chia-Jung Chung
- Department of Chinese Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chung Y Hsu
- College of Medicine, Graduate Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan
| | - Chih-Hsin Muo
- Management Office for Health Data, China Medical University Hospital, Taichung, Taiwan.,College of Medicine, China Medical University, Taichung, Taiwan
| | - Sheng-Feng Hsu
- Graduate Institute of Acupuncture Science, China Medical University, Taichung, Taiwan.,Department of Chinese Medicine, China Medical University Hospital, Taipei, Taiwan
| | - Wen-Long Hu
- Department of Chinese Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan.,College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Fooyin University College of Nursing, Kaohsiung, Taiwan
| |
Collapse
|
14
|
Allegra A, Imbesi C, Bitto A, Ettari R. Drug Repositioning for the Treatment of Hematologic Disease: Limits, Challenges and Future Perspectives. Curr Med Chem 2021; 28:2195-2217. [PMID: 33138750 DOI: 10.2174/0929867327999200817102154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/21/2020] [Accepted: 07/21/2020] [Indexed: 11/22/2022]
Abstract
Drug repositioning is a strategy to identify new uses for approved or investigational drugs that are used off-label outside the scope of the original medical indication. In this review, we report the most relevant studies about drug repositioning in hematology, reporting the signalling pathways and molecular targets of these drugs, and describing the biological mechanisms which are responsible for their anticancer effects. Although the majority of studies on drug repositioning in hematology concern acute myeloid leukemia and multiple myeloma, numerous studies are present in the literature on the possibility of using these drugs also in other hematological diseases, such as acute lymphoblastic leukemia, chronic myeloid leukemia, and lymphomas. Numerous anti-infectious drugs and chemical entities used for the therapy of neurological or endocrine diseases, oral antidiabetics, statins and medications used to treat high blood pressure and heart failure, bisphosphonate and natural substance such as artemisin and curcumin, have found a place in the treatment of hematological diseases. Moreover, several molecules drastically reversed the resistance of the tumor cells to the chemotherapeutic drugs both in vitro and in vivo.
Collapse
Affiliation(s)
- Alessandro Allegra
- Department of Human Pathology in Adulthood and Childhood, University of Messina, Messina, Italy
| | - Chiara Imbesi
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Alessandra Bitto
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Roberta Ettari
- Department of Chemical, Biological, Pharmaceutical and Environmental Chemistry, University of Messina, Messina, Italy
| |
Collapse
|
15
|
Kasprzak A. Angiogenesis-Related Functions of Wnt Signaling in Colorectal Carcinogenesis. Cancers (Basel) 2020; 12:cancers12123601. [PMID: 33276489 PMCID: PMC7761462 DOI: 10.3390/cancers12123601] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/29/2020] [Accepted: 12/01/2020] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Angiogenesis belongs to the most clinical characteristics of colorectal cancer (CRC) and is strongly linked to the activation of Wnt/β-catenin signaling. The most prominent factors stimulating constitutive activation of this pathway, and in consequence angiogenesis, are genetic alterations (mainly mutations) concerning APC and the β-catenin encoding gene (CTNNB1), detected in a large majority of CRC patients. Wnt/β-catenin signaling is involved in the basic types of vascularization (sprouting and nonsprouting angiogenesis), vasculogenic mimicry as well as the formation of mosaic vessels. The number of known Wnt/β-catenin signaling components and other pathways interacting with Wnt signaling, regulating angiogenesis, and enabling CRC progression continuously increases. This review summarizes the current knowledge about the role of the Wnt/Fzd/β-catenin signaling pathway in the process of CRC angiogenesis, aiming to improve the understanding of the mechanisms of metastasis as well as improvements in the management of this cancer. Abstract Aberrant activation of the Wnt/Fzd/β-catenin signaling pathway is one of the major molecular mechanisms of colorectal cancer (CRC) development and progression. On the other hand, one of the most common clinical CRC characteristics include high levels of angiogenesis, which is a key event in cancer cell dissemination and distant metastasis. The canonical Wnt/β-catenin downstream signaling regulates the most important pro-angiogenic molecules including vascular endothelial growth factor (VEGF) family members, matrix metalloproteinases (MMPs), and chemokines. Furthermore, mutations of the β-catenin gene associated with nuclear localization of the protein have been mainly detected in microsatellite unstable CRC. Elevated nuclear β-catenin increases the expression of many genes involved in tumor angiogenesis. Factors regulating angiogenesis with the participation of Wnt/β-catenin signaling include different groups of biologically active molecules including Wnt pathway components (e.g., Wnt2, DKK, BCL9 proteins), and non-Wnt pathway factors (e.g., chemoattractant cytokines, enzymatic proteins, and bioactive compounds of plants). Several lines of evidence argue for the use of angiogenesis inhibition in the treatment of CRC. In the context of this paper, components of the Wnt pathway are among the most promising targets for CRC therapy. This review summarizes the current knowledge about the role of the Wnt/Fzd/β-catenin signaling pathway in the process of CRC angiogenesis, aiming to improve the understanding of the mechanisms of metastasis as well as improvements in the management of this cancer.
Collapse
Affiliation(s)
- Aldona Kasprzak
- Department of Histology and Embryology, Poznan University of Medical Sciences, Swiecicki Street 6, 60-781 Poznań, Poland
| |
Collapse
|
16
|
Qian J, Cao Y, Zhang J, Li L, Wu J, Wei G, Yu J, Huo J. Tanshinone IIA induces autophagy in colon cancer cells through MEK/ERK/mTOR pathway. Transl Cancer Res 2020; 9:6919-6928. [PMID: 35117300 PMCID: PMC8797932 DOI: 10.21037/tcr-20-1963] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 09/14/2020] [Indexed: 12/19/2022]
Abstract
Background Colon cancer is a common malignancy of the digestive tract. The search for effective drugs to treat colon cancer has become the focus of current researches. Tanshinone IIA (Tan IIA) is a fat-soluble component extracted from tanshinone, a traditional Chinese medicine. Tan IIA can modulate the occurrence and development of tumors, but its effect on autophagy in colon cancer cells has not been reported. Methods Two types of colon cancer cell lines were selected and different concentrations of Tan IIA were used to treat cells at different time points. Cell Counting Kit-8 assay (CCK-8) was used to detect the effect of Tan IIA on cell proliferation; transmission electron microscopy was used to observe the formation of autophagosomes; reverse transcription-polymerase chain reaction (RT-qPCR) and western blot were used to detect the expression of autophagy related genes and proteins. Cell transfection was used to interfere with MEK (mitogen-activated extracellular signal-regulated kinase) expression, and RT-qPCR and western blot were used to detect the expression of MEK/ERK/mTOR pathway-related proteins. Results Tan IIA resulted in a significant reduction in the viability of the two kinds of colon cancer cells. The number of autophagosomes increased significantly after the treatment of Tan IIA into these cells. Addition of autophagy inhibitor 3-MA (3-Methyladenine) improved the increase of autophagosomes in cells induced by Tan IIA. At the same time, Tan IIA induced the expression of autophagy-related proteins in the two colon cancer cell lines. When Tan IIA induced autophagy in colon cancer cells, the expression of MEK/ERK/mTOR pathway-related proteins increased significantly. After interfering with the expression of MEK, the expression of autophagy decreased significantly, indicating that Tan IIA promoted autophagy of colon cancer cells through MEK/ERK/mTOR pathway. Conclusions Tan IIA stimulates autophagy in colon cancer cells through MEK/ERK/mTOR pathway, hence inhibiting the growth of colon cancer cells.
Collapse
Affiliation(s)
- Jun Qian
- Department of Diagnostics of Chinese Medicine, School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yi Cao
- Research Office of Herbal Literature, Institute of Literature in Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Junfeng Zhang
- Department of Pathogen and Immunology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Lingchang Li
- Department of Oncology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Juan Wu
- Department of Public health, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Guoli Wei
- Department of Oncology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jialin Yu
- Department of Oncology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jiege Huo
- Department of Oncology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
17
|
Yin CF, Kao SC, Hsu CL, Chang YW, Cheung CHY, Huang HC, Juan HF. Phosphoproteome Analysis Reveals Dynamic Heat Shock Protein 27 Phosphorylation in Tanshinone IIA-Induced Cell Death. J Proteome Res 2020; 19:1620-1634. [DOI: 10.1021/acs.jproteome.9b00836] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Chieh-Fan Yin
- Department of Life Science and Institute of Molecular and Cellular Biology, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Shih-Chieh Kao
- Department of Life Science and Institute of Molecular and Cellular Biology, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Chia-Lang Hsu
- Department of Life Science and Institute of Molecular and Cellular Biology, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan
- Department of Medical Research, National Taiwan University Hospital, Taipei 10002, Taiwan
| | - Yi-Wen Chang
- Department of Life Science and Institute of Molecular and Cellular Biology, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Chantal Hoi Yin Cheung
- Department of Life Science and Institute of Molecular and Cellular Biology, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Hsuan-Cheng Huang
- Institute of Biomedical Informatics, National Yang-Ming University, No. 155, Section 2, Linong Street, Taipei 11221, Taiwan
| | - Hsueh-Fen Juan
- Department of Life Science and Institute of Molecular and Cellular Biology, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan
| |
Collapse
|
18
|
Zhou L, Sui H, Wang T, Jia R, Zhang Z, Fu J, Feng Y, Liu N, Ji Q, Wang Y, Zhang B, Li Q, Li Y. Tanshinone IIA reduces secretion of pro‑angiogenic factors and inhibits angiogenesis in human colorectal cancer. Oncol Rep 2020; 43:1159-1168. [PMID: 32323837 PMCID: PMC7057926 DOI: 10.3892/or.2020.7498] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 01/24/2020] [Indexed: 02/07/2023] Open
Abstract
Tumor angiogenesis is an important factor which precipitates recurrence and metastasis of colorectal cancer (CRC). Angiogenesis is also a significant feature which accompanies invasion and metastasis of CRC. Tumor hypoxia activates hypoxia inducible factor (HIF), which promotes angiogenesis in CRC. HIF significantly promotes cell proliferation and angiogenesis in CRC, facilitating invasion and metastasis. Tanshinone IIA (Tan IIA) has been revealed to effectively inhibit angiogenesis in CRC, although the underlying mechanism remains to be determined. The aim of the present study was to determine the effects of HIF-1α on hypoxia induced angiogenesis in CRC cells, the effects of Tan IIA on the expression of pro-angiogenic factors in CRC cells, and on human umbilical vein endothelial cell (HUVEC) tube formation in normal and hypoxic conditions. The results of the present study revealed that Tan IIA not only decreased HIF-1α expression and inhibited the secretion level of vascular endothelial growth factor and basic fibroblast growth factor, but also efficiently decreased proliferation, tube formation and metastasis of HUVECs. The results highlight the potential of Tan IIA-mediated targeting of HIF-1α as a potential therapeutic option for treatment of patients with CRC.
Collapse
Affiliation(s)
- Lihong Zhou
- Department of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P.R. China
| | - Hua Sui
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Ting Wang
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Ru Jia
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Zhaozhou Zhang
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Jie Fu
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Yuanyuan Feng
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Ningning Liu
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Qing Ji
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Yan Wang
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Bimeng Zhang
- Department of Acupuncture, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai 201620, P.R. China
| | - Qi Li
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Yan Li
- Department of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P.R. China
| |
Collapse
|
19
|
Teng Z, Xu S, Lei Q. Tanshinone IIA enhances the inhibitory effect of imatinib on proliferation and motility of acute leukemia cell line TIB‑152 in vivo and in vitro by inhibiting the PI3K/AKT/mTOR signaling pathway. Oncol Rep 2020; 43:503-515. [PMID: 31894340 PMCID: PMC6967082 DOI: 10.3892/or.2019.7453] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 09/06/2019] [Indexed: 02/07/2023] Open
Abstract
Acute lymphoblastic leukemia (ALL) is a malignant hematological disease. Tanshinone IIA (Tan IIA) has antitumor activity in vitro and in vivo. The aim of the present study was to investigate the effects of Tan IIA in combination with imatinib (IM) on the proliferation, apoptosis, migration and invasion of acute T lymphocytic leukemia TIB‑152 cells in vivo and in vitro, and analyze the potential underlying mechanism. Tan IIA and IM, alone and in combination, significantly inhibited proliferation, migration and invasion of TIB‑152 cells, and promoted apoptosis; the effect of co‑treatment with Tan IIA plus IM was enhanced. IGF‑1 promoted the proliferation, migration and invasion of TIB‑152 cells and inhibited apoptosis, while Tan IIA treatment significantly reversed these effects. In vivo experiments demonstrated that treatment with Tan IIA and IM, alone or in combination, significantly inhibited tumor growth in TIB‑152 xenograft mice; the growth inhibition of Tan IIA plus IM was the strongest observed. Western blot analysis revealed that the combination of Tan IIA and IM resulted in significantly lower levels of p‑PI3K, p‑AKT and p‑mTOR in cells and tissues compared with the IM and Tan alone treatment groups. In addition, the combination of Tan IIA and IM significantly decreased the levels of Ki67, cleaved caspase‑3, VEGF and MMP‑9 in cells and tissues, and the level of caspase‑3 was significantly increased. Taken together, the results revealed that Tan IIA enhanced the inhibitory effect of imatinib on TIB‑152 cell proliferation, migration and invasion, and induced apoptosis, which may be associated with inhibition of the PI3K/AKT/mTOR signaling pathway.
Collapse
Affiliation(s)
- Zhi Teng
- Department of Hematology, 215 Hospital of Shanxi Nuclear Industry, Xianyang, Shanxi 712000, P.R. China
| | - Shijuan Xu
- Department of Hematology, 215 Hospital of Shanxi Nuclear Industry, Xianyang, Shanxi 712000, P.R. China
| | - Qin Lei
- Department of Hematology, 215 Hospital of Shanxi Nuclear Industry, Xianyang, Shanxi 712000, P.R. China
| |
Collapse
|
20
|
Geng L, Liu W, Chen Y. Tanshinone IIA attenuates Aβ-induced neurotoxicity by down-regulating COX-2 expression and PGE2 synthesis via inactivation of NF-κB pathway in SH-SY5Y cells. JOURNAL OF BIOLOGICAL RESEARCH (THESSALONIKE, GREECE) 2019; 26:15. [PMID: 31754613 PMCID: PMC6852914 DOI: 10.1186/s40709-019-0102-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 10/12/2019] [Indexed: 12/15/2022]
Abstract
Amyloid-β (Aβ)-induced neurotoxicity is a major pathological mechanism of Alzheimer's disease (AD). Tanshinone IIA (Tan IIA), extracted from traditional Chinese herb Radix salvia miltiorrhiza, possesses anti-oxidant and anti-inflammatory actions, as well as neuroprotective effects. The present study aims to explore the possible mechanism by which Tan IIA attenuated Aβ-induced neurotoxicity. Exposure of SH-SY5Y cells to different concentrations of Aβ led to neurotoxicity by reducing cell viability, inducing cell apoptosis and increasing neuroinflammation in a dose-dependent manner. Moreover, Aβ treatment promoted cyclooxygenase-2 (COX-2) expression and Prostaglandin E2 (PGE2) secretion, and activated nuclear transcription factor kappa (NF-κB) pathway in SH-SY5Y cells. However, pretreatment of SH-SY5Y cells with Tan IIA prior to Aβ prevented these Aβ-induced cellular events noticeably. These data suggested that Tan IIA exerted its neuroprotective action by alleviating Aβ-induced increase in COX-2 expression and PGE2 secretion via inactivation of NF-κB pathway.
Collapse
Affiliation(s)
- Lijiao Geng
- Department of Neurology, Huaihe Hospital of Henan University, No. 357 Ximen Street, Kaifeng, 475000 China
| | - Wei Liu
- Department of Neurology, Huaihe Hospital of Henan University, No. 357 Ximen Street, Kaifeng, 475000 China
| | - Yong Chen
- Department of Neurology, Huaihe Hospital of Henan University, No. 357 Ximen Street, Kaifeng, 475000 China
| |
Collapse
|
21
|
Salvia mellifera-How Does It Alleviate Chronic Pain? MEDICINES (BASEL, SWITZERLAND) 2019; 6:medicines6010018. [PMID: 30678334 PMCID: PMC6473501 DOI: 10.3390/medicines6010018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/16/2019] [Accepted: 01/19/2019] [Indexed: 02/07/2023]
Abstract
Black sage, Salvia mellifera, can be made into a sun tea that is used as a foot soak to treat pain patients. The monoterpenoids and diterpenoids in the preparation penetrate the skin of the feet and stop the pain chemokine cycle, which may be the basis of chronic pain. Several chronic pain patients have reported long-term improvements in their pain after treatment with the preparation.
Collapse
|
22
|
Tang X, Liu C, Chen L, Yang Z, Belguise K, Wang X, Lu K, Yan H, Yi B. Cyclooxygenase-2 regulates HPS patient serum induced-directional collective HPMVEC migration via PKC/Rac signaling pathway. Gene 2019; 692:176-184. [PMID: 30660713 DOI: 10.1016/j.gene.2019.01.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 12/02/2018] [Accepted: 01/11/2019] [Indexed: 12/26/2022]
Abstract
Hepatopulmonary syndrome (HPS) is a serious complication in patients with advanced liver disease. The pathological pulmonary angiogenesis contributes to the progression of HPS. Importantly, directional collective migration of endothelial cells is a critical event for pathological angiogenesis. Previously, we have demonstrated that the over-expression of Cyclooxygenase-2 (COX-2) was an important factor in the experimental HPS. However, the role of COX-2 in the directional collective migration of human pulmonary microvascular endothelial cells (HPMVECs) is unclear. Our study aims to evaluate the potential effect of COX-2 in the directional collective migration of HPMVECs under the stimulation of HPS patient serum. In this study, 9 patients with stable liver cirrhosis were screened for presence of HPS. We confirmed that HPS patient serum dramatically promoted the directional collective migration and angiogenesis of HPMVECs, while the COX-2 selective antagonist parecoxib significantly inhibited the directional collective migration of HPMVEC under the stimulation of HPS patient serum. In addition, HPS patient serum significantly upregulated the phosphorylation of PKC and promoted the activation of Rac via COX-2/PGE2 signaling pathway. Notably, silencing PKC activation attenuated the directional collective migration of HPMVEC induced by HPS patient serum. In conclusion, these results indicate that PKC/Rac signaling induced by COX-2 modulates collective directional migration of HPMVEC during pathological pulmonary angiogenesis in HPS patients.
Collapse
Affiliation(s)
- Xi Tang
- Department of Anaesthesia, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Chang Liu
- Department of Anaesthesia, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430014, China
| | - Lin Chen
- Department of Anaesthesia, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Zhiyong Yang
- Department of Anaesthesia, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Karine Belguise
- LBCMCP, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Xiaobo Wang
- LBCMCP, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Kaizhi Lu
- Department of Anaesthesia, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Hong Yan
- Department of Anaesthesia, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430014, China.
| | - Bin Yi
- Department of Anaesthesia, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China.
| |
Collapse
|
23
|
Ying Z, Minghui T, Feng B, Ke W. Tanshinone II A improves distribution and anti-tumor efficacy of pegylated liposomal doxorubicin via normalizing the structure and function of tumor vasculature in hepa1-6 hepatoma mice model. J TRADIT CHIN MED 2018. [DOI: 10.1016/s0254-6272(18)30980-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
24
|
Tatmatsu-Rocha JC, Tim CR, Avo L, Bernardes-Filho R, Brassolatti P, Kido HW, Hamblin MR, Parizotto NA. Mitochondrial dynamics (fission and fusion) and collagen production in a rat model of diabetic wound healing treated by photobiomodulation: comparison of 904 nm laser and 850 nm light-emitting diode (LED). JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2018; 187:41-47. [PMID: 30098521 PMCID: PMC6131055 DOI: 10.1016/j.jphotobiol.2018.07.032] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 07/25/2018] [Accepted: 07/31/2018] [Indexed: 12/26/2022]
Abstract
OBJECTIVE Mitochondrial dysfunction has been associated with the development of diabetes mellitus which is characterized by disorders of collagen production and impaired wound healing. This study analyzed the effects of photobiomodulation (PBM) mediated by laser and light-emitting diode (LED) on the production and organization of collagen fibers in an excisional wound in an animal model of diabetes, and the correlation with inflammation and mitochondrial dynamics. METHODS Twenty Wistar rats were randomized into 4 groups of 5 animals. Groups: (SHAM) a control non-diabetic wounded group with no treatment; (DC) a diabetic wounded group with no treatment; (DLASER) a diabetic wounded group irradiated by 904 nm pulsed laser (40 mW, 9500 Hz, 1 min, 2.4 J); (DLED) a diabetic wounded group irradiated by continuous wave LED 850 nm (48 mW, 22 s, 1.0 J). Diabetes was induced by injection with streptozotocin (70 mg/kg). PBM was carried out daily for 5 days followed by sacrifice and tissue removal. RESULTS Collagen fibers in diabetic wounded skin were increased by DLASER but not by DLED. Both groups showed increased blood vessels by atomic force microscopy. Vascular endothelial growth factor (VEGF) was higher and cyclooxygenase (COX2) was lower in the DLED group. Mitochondrial fusion was higher and mitochondrial fusion was lower in DLED compared to DLASER. CONCLUSION Differences observed between DLASER and DLED may be due to the pulsed laser and CW LED, and to the higher dose of laser. Regulation of mitochondrial homeostasis may be an important mechanism for PBM effects in diabetes.
Collapse
Affiliation(s)
| | - Carla Roberta Tim
- Brasil University, Postgraduate program in Biomedical Engineering, Brazil
| | - Lucimar Avo
- Medicine Department, Federal University of São Carlos, São Paulo, Brazil
| | | | | | | | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA; Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA
| | | |
Collapse
|
25
|
Abstract
Epithelial ovarian cancer (EOC) is the fifth most common cause of cancer mortality among women. At present, EOC is treated with one or in a combination of treatments, commonly debulking surgery, combining a platinum-based and a taxane-based therapy; however, the patients have a risk of injury to the bowel, bladder, ureter, and vessels during surgery and many of them suffer from severe adverse effects caused by chemotherapy. Pharmaceutical inhibition of cyclooxygenase (COX) might be an important therapeutic tool in cancer treatment, as COX contributes to cancer progression by upregulating the levels of downstream metabolites. In this review article, we have discussed the role of COX in cancer progression and the therapeutic use of COX inhibitors in the treatment of EOC with subsequent clinical studies and future management. Usually, gonadotropins can promote prostaglandin E2 production in EOC cells via COX-1 and -2 upregulations through the PI3K/AKT signaling pathway. Several reports have shown that treatment of EOC cells with COX-1- and COX-2-specific inhibitors exhibits a therapeutic effect on EOC both in vitro and in vivo. However, more clinical investigations are needed to develop therapeutic COX inhibitors for the prevention and treatment of EOC without adverse effects.
Collapse
Affiliation(s)
- Xiangyang Zeng
- Department of Gynecology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | | |
Collapse
|
26
|
Tanshinone IIA inhibits β-catenin/VEGF-mediated angiogenesis by targeting TGF-β1 in normoxic and HIF-1α in hypoxic microenvironments in human colorectal cancer. Cancer Lett 2017; 403:86-97. [DOI: 10.1016/j.canlet.2017.05.013] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 05/16/2017] [Accepted: 05/17/2017] [Indexed: 02/02/2023]
|
27
|
Fahmidehkar MA, Shafiee SM, Eftekhar E, Mahbudi L, Seghatoleslam A. Induction of cell proliferation, clonogenicity and cell accumulation in S phase as a consequence of human UBE2Q1 overexpression. Oncol Lett 2016; 12:2169-2174. [PMID: 27602158 DOI: 10.3892/ol.2016.4860] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 06/17/2016] [Indexed: 02/07/2023] Open
Abstract
Ubiquitination is an important cellular mechanism with a pivotal role in the degradation of abnormal or short-lived proteins and the regulation of cell cycle and cell growth. The ubiquitin-proteasome pathway is altered in multiple types of human malignancies, including colorectal cancer (CRC). The alteration in the expression of the novel human gene ubiquitin-conjugating enzyme E2 Q1 (UBE2Q1), as a putative member of the E2 ubiquitin-conjugating enzyme family, has been reported in several malignancies, including carcinoma of the breast, hepatocellular and colorectal cancer, and pediatric acute lymphoblastic leukemia. In the present study, the effect of UBE2Q1 overexpression on cell growth, clonogenicity, motility and cell cycle was investigated in a CRC cell line. The UBE2Q1 gene was cloned in the pCMV6-AN-GFP expression vector. A series of stable transfectants of SW1116 cells overexpressing UBE2Q1 protein were established and confirmed by fluorescence microscopy and western blotting. Using these cells, MTT assay was performed to evaluate cell growth and proliferation, while crystal violet staining was used for clonogenicity assay. Cell cycle analysis was also performed to survey the ratio of cells accumulated in different phases of the cell cycle upon transfection. The motility of these cells was also studied using wound healing assay. UBE2Q1 transfectants exhibited a faster growth in cell culture, increased colony formation capacity and enhanced motility compared with control non-transfected cells and cells transfected with empty vector (mock-transfected cells). UBE2Q1 overexpression also resulted in a significant decrease in the number of cells accumulated in the G0/G1 phase of the cell cycle. The present findings suggest that UBE2Q1 may function as an oncogene that induces proliferation of cancer cells, and could be a novel diagnostic tool and a potential therapeutic target for CRC.
Collapse
Affiliation(s)
- Mohammad Ali Fahmidehkar
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz 71348-45794, Iran
| | - Sayed Mohammad Shafiee
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz 71348-45794, Iran
| | - Ebrahim Eftekhar
- Food and Cosmetic Health Research Center, Hormozgan University of Medical Sciences, Bandar Abbas 79158-73665, Iran
| | - Laleh Mahbudi
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz 71348-45794, Iran
| | - Atefeh Seghatoleslam
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz 71348-45794, Iran; Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz 71439-14693, Iran
| |
Collapse
|
28
|
Kensara OA, El-Shemi AG, Mohamed AM, Refaat B, Idris S, Ahmad J. Thymoquinone subdues tumor growth and potentiates the chemopreventive effect of 5-fluorouracil on the early stages of colorectal carcinogenesis in rats. DRUG DESIGN DEVELOPMENT AND THERAPY 2016; 10:2239-53. [PMID: 27468227 PMCID: PMC4946859 DOI: 10.2147/dddt.s109721] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Colorectal cancer (CRC) is one of the most prevalent cancers and has a high mortality rate. Insensitivity and the limited therapeutic efficacy of its standard chemotherapeutic drug, 5-fluorouracil (5-FU), represents an important challenge in CRC treatment. The robust antitumor properties of thymoquinone (TQ), the main bioactive constituent of Nigella sativa, have recently been demonstrated on different cancers. We investigated whether TQ could potentiate the chemopreventive effect of 5-FU to eradicate the early stages of CRC and elucidated its underlying mechanisms. An intermediate-term (15 weeks) model of colorectal tumorigenesis was induced in male Wistar rats by azoxymethane (AOM), and the animals were randomly and equally divided into five groups: control, AOM, AOM/5-FU, AOM/TQ, and AOM/5-FU/TQ. TQ (35 mg/kg/d; 3 d/wk) was given during the seventh and 15th weeks post-AOM injection, while 5-FU was given during the ninth and tenth weeks (12 mg/kg/d for 4 days; then 6 mg/kg every other day for another four doses). At week 15, the resected colons were subjected to macroscopic, histopathological, molecular, and immunohistochemical examinations. Interestingly, 5-FU/TQ combination therapy resulted in a more significant reduction on AOM-induced colorectal tumors and large aberrant crypts foci than treatment with the individual drugs. Mechanistically, 5-FU and TQ remarkably cooperated to repress the expression of procancerous Wnt, β-catenin, NF-κB, COX-2, iNOS, VEGF, and TBRAS and upregulate the expression of anti-tumorigenesis DKK-1, CDNK-1A, TGF-β1, TGF-βRII, Smad4, and GPx. Overall, our findings present the first report describing the in vivo enhancement effect of combined TQ and 5-FU against early stages of CRC; however, further studies are required to determine the value of this combination therapy in an advanced long-term model of CRC and also to realize its clinical potential.
Collapse
Affiliation(s)
- Osama Adnan Kensara
- Department of Clinical Nutrition, Faculty of Applied Medical Sciences, Umm Al-Qura University, Holy Makkah, Saudi Arabia
| | - Adel Galal El-Shemi
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, Holy Makkah, Saudi Arabia; Department of Pharmacology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Amr Mohamed Mohamed
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, Holy Makkah, Saudi Arabia; Department of Animal Medicine, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Bassem Refaat
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, Holy Makkah, Saudi Arabia
| | - Shakir Idris
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, Holy Makkah, Saudi Arabia
| | - Jawwad Ahmad
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, Holy Makkah, Saudi Arabia
| |
Collapse
|
29
|
Upregulation effects of Tanshinone IIA on the expressions of NeuN, Nissl body, and IκB and downregulation effects on the expressions of GFAP and NF-κB in the brain tissues of rat models of Alzheimer's disease. Neuroreport 2016; 26:758-66. [PMID: 26164608 DOI: 10.1097/wnr.0000000000000419] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
This study aimed to observe the effects of Tanshinone IIA(Tan IIA) treatment on the expression levels of brain tissue NeuN, Nissl body, IκB, GFAP and NF-κB in Alzheimer's disease (AD) rats to explore the possible anti-inflammatory and neuroprotective mechanisms of Tan IIA. Thirty healthy male Sprague-Dawley rats were randomized into three groups: Sham group, AD+vehicle control group, and AD+Tan IIA group. The models of AD were established by injecting Aβ1-42 into the hippocampus of rats. Tagged position and the expression levels of Aβ1-42 were observed by immunohistochemistry staining to prove the success of the model of AD. Brain tissues of all groups were collected after Tan IIA treatment and paraffin sections were prepared to assess pathological changes and expression levels of GFAP, IκB and NF-κB by both immunohistochemistry and western blotting. After Aβ1-42 injection, the expression levels of GFAP and NF-κB were significantly stronger in the AD+vehicle control group than those in the AD+Tan IIA group and the sham group (P<0.05), the IκB expression level and the number of neurons and Nissl bodies of AD+vehicle control group was reduced compared with the sham or the AD+Tan IIA group (P<0.05). In conclusion, Aβ induces a cerebral tissue inflammation reaction. Tan IIA treatment can suppress the proliferation of astrocytes in an AD model, lower the level of NF-κB, and increase the level of NeuN, Nissl body, IκB, thus exerting anti-inflammatory and neuroprotective effects.
Collapse
|
30
|
Tropisetron suppresses colitis-associated cancer in a mouse model in the remission stage. Int Immunopharmacol 2016; 36:9-16. [PMID: 27104313 DOI: 10.1016/j.intimp.2016.04.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 04/10/2016] [Accepted: 04/12/2016] [Indexed: 02/07/2023]
Abstract
Patients with inflammatory bowel disease (IBD) have a high risk for development of colitis-associated cancer (CAC). Serotonin is a neurotransmitter produced by enterochromaffin cells of the intestine. Serotonin and its receptors, mainly 5-HT3 receptor, are overexpressed in IBD and promote development of CAC through production of inflammatory cytokines. In the present study, we demonstrated the in vivo activity of tropisetron, a 5-HT3 receptor antagonist, against experimental CAC. CAC was induced by azoxymethane (AOM)/dextran sodium sulfate (DDS) in BALB/c mice. The histopathology of colon tissue was performed. Beta-catenin and Cox-2 expression was evaluated by immunohistochemistry as well as quantitative reverse transcription-PCR (qRT-PCR). Alterations in the expression of 5-HT3 receptor and inflammatory-associated genes such as Il-1β, Tnf-α, Tlr4 and Myd88 were determined by qRT-PCR. Our results showed that tumor development in tropisetron-treated CAC group was significantly lower than the controls. The qRT-PCR analysis demonstrated that the expression of 5-HT3 receptor was significantly increased following CAC induction. In addition, tropisetron reduced expression of β-catenin and Cox-2 in the CAC experimental group. The levels of Il-1β, Tnf-α, Tlr4 and Myd88 were significantly decreased upon tropisetron treatment in the AOM/DSS group. Taken together, our data show that tropisetron inhibits development of CAC probably by attenuation of inflammatory reactions in the colitis.
Collapse
|
31
|
El-Shemi AG, Refaat B, Kensara OA, Mohamed AM, Idris S, Ahmad J. Paricalcitol Enhances the Chemopreventive Efficacy of 5-Fluorouracil on an Intermediate-Term Model of Azoxymethane-Induced Colorectal Tumors in Rats. Cancer Prev Res (Phila) 2016; 9:491-501. [DOI: 10.1158/1940-6207.capr-15-0439] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 03/17/2016] [Indexed: 11/16/2022]
|
32
|
Liu R, Xu KP, Tan GS. Cyclooxygenase-2 inhibitors in lung cancer treatment: Bench to bed. Eur J Pharmacol 2015; 769:127-33. [DOI: 10.1016/j.ejphar.2015.11.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 10/27/2015] [Accepted: 11/04/2015] [Indexed: 01/09/2023]
|
33
|
Rama AR, Aguilera A, Melguizo C, Caba O, Prados J. Tissue Specific Promoters in Colorectal Cancer. DISEASE MARKERS 2015; 2015:390161. [PMID: 26648599 PMCID: PMC4662999 DOI: 10.1155/2015/390161] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Accepted: 10/26/2015] [Indexed: 01/29/2023]
Abstract
Colorectal carcinoma is the third most prevalent cancer in the world. In the most advanced stages, the use of chemotherapy induces a poor response and is usually accompanied by other tissue damage. Significant progress based on suicide gene therapy has demonstrated that it may potentiate the classical cytotoxic effects in colorectal cancer. The inconvenience still rests with the targeting and the specificity efficiency. The main target of gene therapy is to achieve an effective vehicle to hand over therapeutic genes safely into specific cells. One possibility is the use of tumor-specific promoters overexpressed in cancers. They could induce a specific expression of therapeutic genes in a given tumor, increasing their localized activity. Several promoters have been assayed into direct suicide genes to cancer cells. This review discusses the current status of specific tumor-promoters and their great potential in colorectal carcinoma treatment.
Collapse
Affiliation(s)
- A. R. Rama
- Department of Health Science, University of Jaen, Jaen, Spain
- Institute of Biopathology and Regenerative Medicine (IBIMER), University of Granada, Armilla, 18100 Granada, Spain
| | - A. Aguilera
- Institute of Biopathology and Regenerative Medicine (IBIMER), University of Granada, Armilla, 18100 Granada, Spain
| | - C. Melguizo
- Institute of Biopathology and Regenerative Medicine (IBIMER), University of Granada, Armilla, 18100 Granada, Spain
- Department of Human Anatomy and Embryology, School of Medicine, University of Granada, Granada, Spain
- Biosanitary Institute of Granada (ibs GRANADA), SAS-Universidad de Granada, Granada, Spain
| | - O. Caba
- Department of Health Science, University of Jaen, Jaen, Spain
- Institute of Biopathology and Regenerative Medicine (IBIMER), University of Granada, Armilla, 18100 Granada, Spain
| | - J. Prados
- Institute of Biopathology and Regenerative Medicine (IBIMER), University of Granada, Armilla, 18100 Granada, Spain
- Department of Human Anatomy and Embryology, School of Medicine, University of Granada, Granada, Spain
- Biosanitary Institute of Granada (ibs GRANADA), SAS-Universidad de Granada, Granada, Spain
| |
Collapse
|
34
|
Mahmoud AS, Umair A, Azzeghaiby SN, Alqahtani FH, Hanouneh S, Tarakji B. Expression of cyclooxygenase-2 (COX-2) in colorectal adenocarcinoma: an immunohistochemical and histopathological study. Asian Pac J Cancer Prev 2015; 15:6787-90. [PMID: 25169526 DOI: 10.7314/apjcp.2014.15.16.6787] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The aim of this study was to evaluate cyclooxygenase-2 (COX-2) immunoreactivity in colorectal adenocarcinomas and to find correlations with different pathological features. MATERIALS AND METHODS This study included 35 cases of colorectal carcinoma for which surgical colectomy specimens were collected. Immunohistochemical staining of COX-2 (cyclooxygenase-2) is done by using the Streptavidin-biotin technique. RESULTS This work reveals that COX-2 is positive in most cases of colorectal carcinoma and negative in normal colon tissue with statistically non significant relations between COX-2 immunostaining and different pathological features. CONCLUSIONS Our data suggest overexpression of COX-2 protein in colorectal carcinoma in contrast to normal mucosa, with a possible role in cell proliferation in carcinogenesis.
Collapse
Affiliation(s)
- Abla Sayed Mahmoud
- Department of Oral Maxillofacial Sciences, Alfarabi College of Dentistry Alfarabi, Kingdom of Saudi Arabia E-mail :
| | | | | | | | | | | |
Collapse
|
35
|
Chen SJ. A potential target of Tanshinone IIA for acute promyelocytic leukemia revealed by inverse docking and drug repurposing. Asian Pac J Cancer Prev 2015; 15:4301-5. [PMID: 24935388 DOI: 10.7314/apjcp.2014.15.10.4301] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Tanshinone IIA is a pharmacologically active ingredient extracted from Danshen, a Chinese traditional medicine. Its molecular mechanisms are still unclear. The present study utilized computational approaches to uncover the potential targets of this compound. In this research, PharmMapper server was used as the inverse docking tool and the results were verified by Autodock vina in PyRx 0.8, and by DRAR-CPI, a server for drug repositioning via the chemical-protein interactome. Results showed that the retinoic acid receptor alpha (RARα), a target protein in acute promyelocytic leukemia (APL), was in the top rank, with a pharmacophore model matching well the molecular features of Tanshinone IIA. Moreover, molecular docking and drug repurposing results showed that the complex was also matched in terms of structure and chemical-protein interactions. These results indicated that RARα may be a potential target of Tanshinone IIA for APL. The study can provide useful information for further biological and biochemical research on natural compounds.
Collapse
Affiliation(s)
- Shao-Jun Chen
- Division of Neurobiology and Physiology, Department of Basic Medical Sciences, School of Medicine, Zhejiang University, Hangzhou, China E-mail :
| |
Collapse
|
36
|
Hu J, Li T, Du S, Chen Y, Wang S, Xiong F, Wu Q. The MAPK signaling pathway mediates the GPR91-dependent release of VEGF from RGC-5 cells. Int J Mol Med 2015; 36:130-8. [PMID: 25936351 PMCID: PMC4494573 DOI: 10.3892/ijmm.2015.2195] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 04/13/2015] [Indexed: 12/16/2022] Open
Abstract
Vascular endothelial growth factor (VEGF) is one of the major regulatory molecules in diabetic retinopathy (DR). In our previous study, we demonstrated that succinate levels were elevated in the retinas of diabetic rats and that the knockdown of the succinate receptor, G-protein-coupled receptor 91 (GPR91), inhibited the release of VEGF and attenuated retinal vascular disorder in the early stages of DR. In the present study, we examined the signaling pathways involved in the GPR91-dependent release of VEGF in the retinal ganglion cell line, RGC-5. The cells were infected with a lentiviral small hairpin RNA (shRNA) expression vector targeting GPR91 (LV.shGPR91). Immunofluorescence staining revealed that GPR91 was predominantly localized in the cell bodies of the RGC-5 cells. RT-qPCR, western blot analysis and ELISA indicated that succinate exposure upregulated VEGF expression, activated the extracellular signal-regulated protein kinase (ERK)1/2, c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MAPK) signaling pathways and led to the release of cyclooxygenase-2 (COX-2) and prostaglandin E2 (PGE2). The knockdown of GPR91 inhibited ERK1/2 and JNK activity, but did not inhibit the activation of the p38 MAPK pathway. The increase in COX-2 expression and the release of PGE2 were inhibited by transduction with LV.shGPR91 and ERK1/2, JNK and COX-2 inhibitors. The expression and release of VEGF showed similar results. Cell Counting Kit-8 (CCK-8) assays revealed that the shRNA-mediated knockdown of GPR91 decreased the proliferation of RF/6A cells cultured in succinate-conditioned medium. Our data suggest that GPR91 modulates the succinate-induced release of VEGF through the MAPK/COX-2/PGE2 signaling pathway.
Collapse
Affiliation(s)
- Jianyan Hu
- Department of Ophthalmology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Tingting Li
- Department of Ophthalmology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Shanshan Du
- Department of Ophthalmology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Yongdong Chen
- Department of Ophthalmology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Shuai Wang
- Department of Ophthalmology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Fen Xiong
- Department of Ophthalmology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Qiang Wu
- Department of Ophthalmology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| |
Collapse
|
37
|
Morton JS, Andersson IJ, Cheung PY, Baker P, Davidge ST. The vascular effects of sodium tanshinone IIA sulphonate in rodent and human pregnancy. PLoS One 2015; 10:e0121897. [PMID: 25811628 PMCID: PMC4374693 DOI: 10.1371/journal.pone.0121897] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 02/09/2015] [Indexed: 12/17/2022] Open
Abstract
Danshen, in particular its derivative tanshinone IIA (TS), is a promising compound in the treatment of cardiovascular diseases and has been used for many years in traditional Chinese medicine. Although many actions of TS have been researched, its vasodilator effects in pregnancy remain unknown. There have been a few studies that have shown the ability of TS to reduce blood pressure in women with hypertensive pregnancies; however, there are no studies which have examined the vascular effects of TS in the pregnant state in either normal or complicated pregnancies. Our aim was to determine the vasoactive role of TS in multiple arteries during pregnancy including: rat resistance (mesenteric and uterine) and conduit (carotid) arteries. Further, we aimed to assess the ability of TS to improve uterine blood flow in a rodent model of intrauterine growth restriction. Wire myography was used to assess vascular responses to the water-soluble derivative, sodium tanshinone IIA sulphonate (STS) or to the endothelium-dependent vasodilator, methylcholine. At mid-pregnancy, STS caused direct vasodilation of rat resistance (pEC50 mesenteric: 4.47±0.05 and uterine: 3.65±0.10) but not conduit (carotid) arteries. In late pregnancy, human myometrial arteries responded with a similar sensitivity to STS (pEC50 myometrial: 3.26±0.13). STS treatment for the last third of pregnancy in eNOS-/- mice increased uterine artery responses to methylcholine (Emax eNOS-/-: 55.2±9.2% vs. eNOS-/- treated: 75.7±8.9%, p<0.0001). The promising vascular effects, however, did not lead to improved uterine or umbilical blood flow in vivo, nor to improved fetal biometrics; body weight and crown-rump length. Further, STS treatment increased the uterine artery resistance index and decreased offspring body weight in control mice. Further research would be required to determine the safety and efficacy of use of STS in pregnancy.
Collapse
Affiliation(s)
- Jude S. Morton
- Department of Obstetrics and Gynaecology, University of Alberta, Edmonton, AB, Canada
- Women and Children's Health Research Institute and the Cardiovascular Research Centre, Edmonton, AB, Canada
| | - Irene J. Andersson
- Women and Children's Health Research Institute and the Cardiovascular Research Centre, Edmonton, AB, Canada
- Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Po-Yin Cheung
- Women and Children's Health Research Institute and the Cardiovascular Research Centre, Edmonton, AB, Canada
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
| | - Philip Baker
- Gravida, National Research Centre for Growth and Development, Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Sandra T. Davidge
- Department of Obstetrics and Gynaecology, University of Alberta, Edmonton, AB, Canada
- Women and Children's Health Research Institute and the Cardiovascular Research Centre, Edmonton, AB, Canada
- Department of Physiology, University of Alberta, Edmonton, AB, Canada
- * E-mail:
| |
Collapse
|
38
|
Altun A, Turgut NH, Kaya TT. Anticancer effect of COX-2 inhibitor DuP-697 alone and in combination with tyrosine kinase inhibitor (E7080) on colon cancer cell lines. Asian Pac J Cancer Prev 2015; 15:3113-21. [PMID: 24815456 DOI: 10.7314/apjcp.2014.15.7.3113] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Colorectal cancer remains one of the most common types of cancer and a leading cause of cancer death worldwide. In this study, we aimed to investigate effects of DuP-697, an irreversible selective inhibitor of COX- 2 on colorectal cancer cells alone and in combination with a promising new multi-targeted kinase inhibitor E7080. The HT29 colorectal cancer cell line was used. Real time cell analysis (xCELLigence system) was conducted to determine effects on colorectal cell proliferation, angiogenesis was assessed with a chorioallantoic membrane model and apoptosis was determined with annexin V staining. We found that DuP-697 alone exerted antiproliferative, antiangiogenic and apoptotic effects on HT29 colorectal cancer cells. For the antiproliferative effect the half maximum inhibition concentration (IC50) was 4.28?10-8 mol/L. Antiangiogenic scores were 1.2, 0.8 and 0.5 for 100, 10 and 1 nmol/L DuP-697 concentrations, respectively. We detected apoptosis in 52% of HT29 colorectal cancer cells after administration of 100 nmol/L DuP-697. Also in combination with the thyrosine kinase inhibitor E7080 strong antiproliferative, antiangiogenic and apoptotic effects on HT29 colorectal cancer cells were observed. This study indicates that DuP-697 may be a promising agent in the treatment of colorectal cancer. Additionally the increased effects observed in the combination with thyrosine kinase inhibitor give the possibility to use lower doses of DuP-697 and E7080 which can avoid and/or minimize side effects.
Collapse
Affiliation(s)
- Ahmet Altun
- Department of Pharmacology, Faculty of Medicine, Cumhuriyet University, Sivas, Turkey E-mail :
| | | | | |
Collapse
|
39
|
Raluca BA, Cimpean AM, Cioca A, Cretu O, Mederle O, Ciolofan A, Gaje P, Raica M. Endothelial Cell Proliferation and Vascular Endothelial Growth Factor Expression in Primary Colorectal Cancer and Corresponding Liver Metastases. Asian Pac J Cancer Prev 2015; 16:4549-4553. [PMID: 26107202 DOI: 10.7314/apjcp.2015.16.11.4549] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND . Colorectal carcinoma (CRC) is one of the major causes of cancer death worldwide. Data from the literature indicate differences between the proliferation rate of endothelial cells relative to the morphology growth type, possibly due to origin of specimens (autopsy material, surgery fragments) or quantification methods. Vascular endothelial growth factor (VEGF) is a factor that stimulates the proliferation of endothelial cells. It is expressed in more than 90% of cases of metastatic CRC. AIM The aim of this study was to evaluate the endothelial cell proliferation and VEGF expression in primary tumors and corresponding liver metastases. MATERIALS AND METHODS Our study included 24 recent biopsies of primary tumors and corresponding liver metastases of CRC cases. CD34/ Ki67 double immunostaining and RNA scope assay for VEGF were performed. RESULTS In the primary tumors analysis of VEGFmRNA expression indicated no significant correlation with differentiation grade, proliferative and non-proliferative vessels in the intratumoral and peritumoral areas. In contrast, in the corresponding liver metastases, VEGFmRNA expression significantly correlated with the total number of non- proliferative vessels and total number of vessels. CD34/ Ki67 double immunostaining in the cases with poorly differentiated carcinoma indicated a high number of proliferating endothelial cells in the peritumoral area and a low number in the intratumoral area for the primary tumor. Moderately differentiated carcinomas of colon showed no proliferating endothelial cells in the intratumoral area in half of the cases included in the study, for both, primary tumor and liver metastasis. In well differentiated CRCs, in primary tumors, a high proliferation rate of endothelial cells in the intratumoral area and a lower proliferation rate in the peritumoral area were found. A low value was found in corresponding liver metastasis. CONCLUSIONS The absence of proliferative endothelial cells in half of the cases for the primary tumors and liver metastases in moderately differentiated carcinoma suggest a vascular mimicry phenomenon. The mismatch between the total number of vessels and endothelial proliferation in primary tumors indicate that a functional vascular network is already formed or the existence of some mechanisms influenced by other angiogenic factors.
Collapse
Affiliation(s)
- Balica Amalia Raluca
- Department of Histology, Angiogenesis Research Center, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania E-mail :
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Morton JS, Quon A, Cheung PY, Sawamura T, Davidge ST. Effect of sodium tanshinone IIA sulfonate treatment in a rat model of preeclampsia. Am J Physiol Regul Integr Comp Physiol 2014; 308:R163-72. [PMID: 25477421 DOI: 10.1152/ajpregu.00222.2014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Preeclampsia is a disorder of pregnancy with a significant impact on maternal and fetal health. The complexity of this multifactorial condition has precluded development of effective therapies and, although many potential pathways have been investigated, the etiology still requires clarification. Our group has investigated the scavenger lectin-like oxidized LDL (LOX-1) receptor, which may respond to factors released from the distressed placenta that contribute to the vascular pathologies observed in preeclampsia. Given the known beneficial effects of sodium tanshinone IIA sulfonate (STS; a component of Salvia miltiorrhiza) on vasodilation, reduction of oxidative stress, and lipid profiles, we have investigated its role as a potential treatment strategy. We hypothesized that STS would improve vascular endothelial function and, combined with a reduction in oxidative stress, would improve pregnancy outcomes in a rat model of preeclampsia (reduced uteroplacental perfusion pressure, RUPP). We further hypothesized this may occur via the action of STS on the LOX-1 and/or platelet-activating factor (PAF) receptor axes. The RUPP model increased maternal blood pressure, vascular oxidative stress, and involvement of the vascular PAF receptor. Treatment with STS during pregnancy decreased both oxidative stress and involvement of the PAF receptor; however, it also increased involvement of the LOX-1 receptor, which is in line with the concept that scavenger receptors, such as LOX-1 and PAF, are upregulated in response to ligand binding and/or under pathological conditions. In this model of preeclampsia, however, the vascular actions of STS did not lead to improvements in pregnancy outcome such as fetal biometrics or maternal blood pressure.
Collapse
Affiliation(s)
- Jude S Morton
- Department of Obstetrics and Gynaecology, University of Alberta, Edmonton, Canada; Women and Children's Health Research Institute and the Cardiovascular Research Centre, Edmonton, Canada
| | - Anita Quon
- Department of Obstetrics and Gynaecology, University of Alberta, Edmonton, Canada; Women and Children's Health Research Institute and the Cardiovascular Research Centre, Edmonton, Canada
| | - Po-Yin Cheung
- Women and Children's Health Research Institute and the Cardiovascular Research Centre, Edmonton, Canada; Department of Pediatrics, University of Alberta, Edmonton, Canada
| | - Tatsuya Sawamura
- Department of Vascular Physiology, National Cerebral and Cardiovascular Centre Research Institute, Suita, Osaka, Japan; and
| | - Sandra T Davidge
- Department of Obstetrics and Gynaecology, University of Alberta, Edmonton, Canada; Women and Children's Health Research Institute and the Cardiovascular Research Centre, Edmonton, Canada; Department of Physiology, University of Alberta, Edmonton, Canada
| |
Collapse
|
41
|
Zhang J, Li Y, Fang X, Zhou D, Wang Y, Chen M. TPGS-g-PLGA/Pluronic F68 mixed micelles for tanshinone IIA delivery in cancer therapy. Int J Pharm 2014; 476:185-98. [PMID: 25223472 DOI: 10.1016/j.ijpharm.2014.09.017] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 08/19/2014] [Accepted: 09/10/2014] [Indexed: 01/18/2023]
Abstract
Tanshinone IIA (TAN) has few clinical applications for anti-cancer therapy mainly due to its high lipophicity, low cellular uptake, and poor bioavailability. To improve the anti-cancer effect and bioavailability of TAN, we developed a mixed micelle system constituted with D-α-tocopheryl polyethylene glycol succinate-graft-poly(D,L-lactide-co-glycolide) (TPGS-g-PLGA) copolymer and Pluronic F68. TAN was encapsulated in the TPGS-g-PLGA/Pluronic F68 mixed micelles by using the thin film hydration technology optimized by the central composite design/response surface method (CCD/RSM). TAN-loaded mixed micelles were highly stable in the presence or absence of bovine serum albumin (BSA) and achieved sustained drug release in vitro. Compared with free TAN, TAN mixed micelles had higher cytotoxicity and pro-apoptotic effects against human hepatocellular carcinoma HepG2 cells. The significant enhancement on pro-apoptosis by TAN micelles was evidenced by increased chromosome condensation, mitochondria membrane potential loss, cell apoptosis, and cleavages of caspase-3 and PARP. Furthermore, pharmacokinetic studies revealed that TAN mixed micelles significantly prolonged the circulation time and improved bioavailability of TAN in rats. These results demonstrated that TAN-loaded TPGS-g-PLGA/F68 mixed micelles are an effective strategy to deliver TAN for cancer therapy.
Collapse
Affiliation(s)
- Jinming Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Yingbo Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China; State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xiefan Fang
- Department of Pediatrics, College of Medicine, University of FL, Gainesville, FL 32610, USA
| | - Demin Zhou
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yitao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China.
| | - Meiwan Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China.
| |
Collapse
|