1
|
Lorenc P, Dams-Kozlowska H, Guzniczak N, Florczak-Substyk A. Application of nanoparticles to target tumor blood vessels as a promising cancer treatment strategy. Biomed Pharmacother 2025; 186:118038. [PMID: 40215646 DOI: 10.1016/j.biopha.2025.118038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/31/2025] [Accepted: 04/03/2025] [Indexed: 04/25/2025] Open
Abstract
Cancer remains one of the leading causes of death worldwide and poses a significant challenge to effective treatment due to its complexity. Angiogenesis, the formation of new blood vessels, is a critical process in tumor growth and metastasis. The VEGF/VEGFR pathway plays a crucial role in regulating angiogenesis. Many anti-angiogenesis agents, including monoclonal antibodies and tyrosine kinase inhibitors, have been investigated for the treatment of various cancers. However, they face significant limitations such as limited bioavailability and drug resistance. Nanoparticles have emerged as a promising tool for effective drug delivery while minimizing systemic side effects. This review explores the application of nanoparticles dedicated to angiogenesis-targeted cancer therapy, particularly targeting the VEGF/VEGFR pathway. We describe drug delivery systems based on inorganic, lipid, and polymeric nanoparticles. Moreover, special attention is given to functionalized nanoparticles, which can precisely target numerous proteins that are significantly overexpressed on the surfaces of endothelial cells, tumors, or other cells in the tumor microenvironment. We summarize a series of nanoparticles designed for selective targeting of tumor vasculature, emphasizing the challenges faced by anti-angiogenic cancer therapies.
Collapse
Affiliation(s)
- Patryk Lorenc
- Chair of Medical Biotechnology, Department of Cancer Immunology, Poznan University of Medical Sciences, 8 Rokietnicka St, Poznan 60-806, Poland; Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 15 Garbary St, Poznan 61-866, Poland; Doctoral School, Poznan University of Medical Sciences, 70 Bukowska St, Poznan 60-812, Poland
| | - Hanna Dams-Kozlowska
- Chair of Medical Biotechnology, Department of Cancer Immunology, Poznan University of Medical Sciences, 8 Rokietnicka St, Poznan 60-806, Poland; Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 15 Garbary St, Poznan 61-866, Poland
| | - Natalia Guzniczak
- Chair of Medical Biotechnology, Department of Cancer Immunology, Poznan University of Medical Sciences, 8 Rokietnicka St, Poznan 60-806, Poland
| | - Anna Florczak-Substyk
- Chair of Medical Biotechnology, Department of Cancer Immunology, Poznan University of Medical Sciences, 8 Rokietnicka St, Poznan 60-806, Poland; Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 15 Garbary St, Poznan 61-866, Poland.
| |
Collapse
|
2
|
Rocha CV, Magalhães AP, Gonçalves V, Diego-González L, Bañobre-López M, Gallo J. Multifunctional PLGA nanocomposites to improve beta cell replacement therapy in Type 1 diabetes. J Mater Chem B 2025. [PMID: 40265214 DOI: 10.1039/d5tb00148j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
Diabetes Mellitus is a rapidly growing global health problem, with its prevalence having risen sharply in recent years. Type 1 diabetes (T1D) treatment options are limited, with most of them significantly compromising the quality of life of these patients. This study presents the development and characterization of a multifunctional hybrid nanoformulation (mHNFs) designed to enhance the efficacy of beta cell replacement therapy in T1D. By encapsulating rapamycin and two types of magnetic nanoparticles (MnO and Fe3O4) within PLGA, we aimed to address critical challenges in islet transplantation, including hypoxia and immunosuppression. The synthesized nanoparticles demonstrated dual imaging capabilities as MRI contrast agents, sustained drug release, and in situ oxygen generation, crucial for mitigating islet hypoxia and loss of function. In vitro studies confirmed the cytocompatibility of the system and its efficient internalization by rin-m cells. Additionally, O2 generation studies proved that mHNFs significantly reduced hypoxia levels. These results highlight the potential of these nanocarriers to improve the safety and efficacy of T1D islet transplantation treatments through a multifunctional approach.
Collapse
Affiliation(s)
- Cátia Vieira Rocha
- Advanced Magnetic Theranostic Nanostructures Lab, International Iberian Nanotechnology Laboratory, Braga, Portugal.
| | - Andreia Patrícia Magalhães
- Advanced Magnetic Theranostic Nanostructures Lab, International Iberian Nanotechnology Laboratory, Braga, Portugal.
| | - Victor Gonçalves
- Advanced Magnetic Theranostic Nanostructures Lab, International Iberian Nanotechnology Laboratory, Braga, Portugal.
| | - Lara Diego-González
- Advanced Magnetic Theranostic Nanostructures Lab, International Iberian Nanotechnology Laboratory, Braga, Portugal.
| | - Manuel Bañobre-López
- Advanced Magnetic Theranostic Nanostructures Lab, International Iberian Nanotechnology Laboratory, Braga, Portugal.
| | - Juan Gallo
- Advanced Magnetic Theranostic Nanostructures Lab, International Iberian Nanotechnology Laboratory, Braga, Portugal.
| |
Collapse
|
3
|
Zhou X, Zhu D, Wu D, Li G, Liang H, Zhang W, Wu Y, Xu H, Zhang Z, Tong B, Song Y, Wang K, Feng X, Lei J, Wang H, Zhang X, Ma L, Chen Y, Wei J, Ou Z, Peng S, Wu X, Tan L, Wang B, Yang C. Microneedle delivery of CAR-M-like engineered macrophages alleviates intervertebral disc degeneration through enhanced efferocytosis capacity. Cell Rep Med 2025; 6:102079. [PMID: 40199328 DOI: 10.1016/j.xcrm.2025.102079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 10/09/2024] [Accepted: 03/18/2025] [Indexed: 04/10/2025]
Abstract
Macrophages eliminate apoptotic cells produced daily in the body through efferocytosis. Restricted clearance can cause inflammation-related diseases. In intervertebral discs (IVDs), apoptotic nucleus pulposus cells (NPCs) are difficult to effectively remove, and their accumulation can cause changes in the inflammatory microenvironment, disrupt IVD homeostasis, and lead to IVD degeneration (IDD). Here, we present chimeric antigen receptor-M-like engineered macrophages (CAR-eMs) with enhanced efferocytosis capacity for IDD treatment. Macrophages undergo phenotypic transformation and a reduction in phagocytic ability after phagocyting apoptotic NPCs, but their efferocytosis capacity recovers with upregulated brain-specific angiogenesis inhibitor 1 (BAI1) expression. We develop a CAR-eM system with enhanced BAI1 expression and an IVD circular microneedle (MN) delivery system that utilizes arrays of MNs to deliver CAR-eMs into the deep IVD layers, thereby clearing apoptotic NPCs, ameliorating the inflammatory microenvironment, and repairing damaged IVDs. Our study explores the therapeutic potential of CAR-eM efferocytosis for IDD treatment.
Collapse
Affiliation(s)
- Xingyu Zhou
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Dingchao Zhu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Di Wu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Gaocai Li
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Huaizhen Liang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Weifeng Zhang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yali Wu
- Hubei Province Key Laboratory of Biological Targeted Therapy, MOE Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Hanpeng Xu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhengdong Zhang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Department of Orthopedics, The First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, China
| | - Bide Tong
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yu Song
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Kun Wang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiaobo Feng
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jie Lei
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Hongchuan Wang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiaoguang Zhang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Liang Ma
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yuhang Chen
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Junyu Wei
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zixuan Ou
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shuchang Peng
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xinghuo Wu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Lei Tan
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Bingjin Wang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Cao Yang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen 518057, China.
| |
Collapse
|
4
|
Shi D, Li Y, Tian M, Xue M, Wang J, An H. Nanomaterials-Based Drug Delivery Systems for Therapeutic Applications in Osteoporosis. Adv Biol (Weinh) 2025:e2400721. [PMID: 40195930 DOI: 10.1002/adbi.202400721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 03/04/2025] [Indexed: 04/09/2025]
Abstract
The etiology of osteoporosis is rooted in the disruption of the intricate equilibrium between bone formation and bone resorption processes. Nevertheless, the conventional anti-osteoporotic medications and hormonal therapeutic regimens currently employed in clinical practice are associated with a multitude of adverse effects, thereby constraining their overall therapeutic efficacy and potential. Recently, nanomaterials have emerged as a promising alternative due to their minimal side effects, efficient drug delivery, and ability to enhance bone formation, aiding in restoring bone balance. This review delves into the fundamental principles of bone remodeling and the bone microenvironment, as well as current clinical treatment approaches for osteoporosis. It subsequently explores the research status of nanomaterial-based drug delivery systems for osteoporosis treatment, encompassing inorganic nanomaterials, organic nanomaterials, cell-mimicking carriers and exosomes mimics and emerging therapies targeting the osteoporosis microenvironment. Finally, the review discusses the potential of nanomedicine in treating osteoporosis and outlines the future trajectory of this burgeoning field. The aim is to provide a comprehensive reference for the application of nanomaterial-based drug delivery strategies in osteoporosis therapy, thereby fostering further advancements and innovations in this critical area of medical research.
Collapse
Affiliation(s)
- Donghong Shi
- Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, School of Health Sciences and Biomedical Engineering, Innovation and Research Institute of Hebei University of Technology in Shijiazhuang, Hebei University of Technology, Tianjin, 300401, P. R. China
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Electrical Engineering, Hebei University of Technology, Tianjin, 300130, P. R. China
| | - Yuling Li
- Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, School of Health Sciences and Biomedical Engineering, Innovation and Research Institute of Hebei University of Technology in Shijiazhuang, Hebei University of Technology, Tianjin, 300401, P. R. China
| | - Meng Tian
- Hebei Tourism College, Hebei, Chengde, 067000, P. R. China
| | - Mengge Xue
- Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, School of Health Sciences and Biomedical Engineering, Innovation and Research Institute of Hebei University of Technology in Shijiazhuang, Hebei University of Technology, Tianjin, 300401, P. R. China
| | - Jinping Wang
- Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, School of Health Sciences and Biomedical Engineering, Innovation and Research Institute of Hebei University of Technology in Shijiazhuang, Hebei University of Technology, Tianjin, 300401, P. R. China
| | - Hailong An
- Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, School of Health Sciences and Biomedical Engineering, Innovation and Research Institute of Hebei University of Technology in Shijiazhuang, Hebei University of Technology, Tianjin, 300401, P. R. China
| |
Collapse
|
5
|
Gutiérrez Coronado O, Sandoval Salazar C, Muñoz Carrillo JL, Gutiérrez Villalobos OA, Miranda Beltrán MDLL, Soriano Hernández AD, Beltrán Campos V, Villalobos Gutiérrez PT. Functionalized Nanomaterials in Cancer Treatment: A Review. Int J Mol Sci 2025; 26:2633. [PMID: 40141274 PMCID: PMC11942109 DOI: 10.3390/ijms26062633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 03/04/2025] [Accepted: 03/07/2025] [Indexed: 03/28/2025] Open
Abstract
Cancer is one of the main causes of death worldwide. Chemotherapy, radiotherapy and surgery are currently the treatments of choice for cancer. However, conventional therapies have their limitations, such as non-specificity, tumor recurrence and toxicity to the target cells. Recently, nanomaterials have been considered as therapeutic agents against cancer. This is mainly due to their unique optical properties, biocompatibility, large surface area and nanoscale size. These properties are crucial as they can affect biocompatibility and uptake by the cell, reducing efficacy. However, because nanoparticles can be functionalized with biomolecules, they become more biocompatible, which improves uptake, and they can be specifically targeted against cancer cells, which improves their anticancer activity. In this review, we summarize some of the recent studies in which nanomaterials have been functionalized with the aim of increasing therapeutic efficacy in cancer treatment.
Collapse
Affiliation(s)
- Oscar Gutiérrez Coronado
- Centro Universitario de los Lagos, Universidad de Guadalajara, Lagos de Moreno 47460, Mexico; (O.G.C.); (M.d.l.L.M.B.); (A.D.S.H.)
| | - Cuauhtémoc Sandoval Salazar
- División de Ciencias de la Salud e Ingenierías, Campus Celaya-Salvatierra, Universidad de Guanajuato, Celaya 38060, Mexico; (C.S.S.); (V.B.C.)
| | - José Luis Muñoz Carrillo
- Centro Universitario de los Lagos, Universidad de Guadalajara, Lagos de Moreno 47460, Mexico; (O.G.C.); (M.d.l.L.M.B.); (A.D.S.H.)
| | | | - María de la Luz Miranda Beltrán
- Centro Universitario de los Lagos, Universidad de Guadalajara, Lagos de Moreno 47460, Mexico; (O.G.C.); (M.d.l.L.M.B.); (A.D.S.H.)
| | | | - Vicente Beltrán Campos
- División de Ciencias de la Salud e Ingenierías, Campus Celaya-Salvatierra, Universidad de Guanajuato, Celaya 38060, Mexico; (C.S.S.); (V.B.C.)
| | | |
Collapse
|
6
|
Chen S, Wu A, Shen X, Kong J, Huang Y. Disrupting the dangerous alliance: Dual anti-inflammatory and anticoagulant strategy targets platelet-neutrophil crosstalk in sepsis. J Control Release 2025; 379:814-831. [PMID: 39848591 DOI: 10.1016/j.jconrel.2025.01.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/13/2025] [Accepted: 01/17/2025] [Indexed: 01/25/2025]
Abstract
Sepsis is a life-threatening disease characterized by excessive systemic inflammation and coagulopathy. Platelets and neutrophils form a "dangerous alliance" through crosstalk, promoting the inflammatory cytokine storm and coagulation disorders during sepsis. Platelet-neutrophil crosstalk leads to the formation of platelet-neutrophil complexes (PNCs), which are the central "protagonists" of this "dangerous alliance." These PNCs further enhance the crosstalk between platelets and neutrophils, amplifying immune and coagulation responses through positive feedback loops. Although some targeted therapies have been reported recently, they primarily focus on inducing neutrophil apoptosis or degrading existing neutrophil extracellular traps (NETs). Limited strategies are available for targeting platelets and suppressing sepsis-associated PNCs. Herein, we propose a two-pronged approach to intercept platelet-neutrophil crosstalk by simultaneously targeting drugs to both platelets and neutrophils of the "dangerous alliance." This strategy not only effectively alleviates inflammation induced by platelet-neutrophil crosstalk but also reduces PNC formation, thereby dismantling the structural scaffold of microthrombi. In a sepsis mouse model, this approach significantly decreased markers of platelet-neutrophil crosstalk, reduced the cytokine storm, and lowered the risk of thrombosis. Moreover, it alleviated organ damage caused by PNC infiltration and prolonged the survival of septic mice. Overall, this work combines anti-inflammatory and anticoagulant therapies to effectively disrupt the "dangerous alliance" between platelets and neutrophils, offering a promising strategy for treating sepsis.
Collapse
Affiliation(s)
- Sa Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Aijia Wu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xinran Shen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Jinxia Kong
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yuan Huang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China..
| |
Collapse
|
7
|
Shafqat SS, Ammen B, Masood SA, Mukhtar A, Nazar MF, Khan MA, Almehizia AA, Siddique MY, Nosheen M, Zafar MN. Formation of alginate gel stabilized silica nanoparticles for encapsulation and topical delivery of minoxidil. Colloids Surf B Biointerfaces 2025; 247:114432. [PMID: 39689592 DOI: 10.1016/j.colsurfb.2024.114432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/22/2024] [Accepted: 12/03/2024] [Indexed: 12/19/2024]
Abstract
Silica nanoparticles-embedded smart-gels are efficient drug carrier systems due to their structural flexibility, high porosity, and ease of formulation development. Herein, the extent of interaction of minoxidil (MXD), a potent vasodilator prodrug, with silica nanoparticles (SiNPs) and alginate (ALG) was investigated. The SiNPs were prepared by extracting silica from rice husk ash, and these SiNPs were further used to prepare MXD-loaded-SiNPs (MXD-SiNPs) by loading them with an appropriate amount of MXD. The as-prepared MXD-SiNPs were encapsulated in ALG polymer by freeze-gelation method and evaluated by various characterization techniques. The amorphous nature of the SiNPs was confirmed by XRD examination, while the nature of physical interaction and encapsulation of the drug in the SiNPs and ALG gel was examined by FTIR analysis. TEM analysis revealed that the MXD-SiNPs had a monodisperse collection of spherical nanoparticles, while the particle size (∼150 nm) of as-prepared formulation was determined from DLS studies. The drug entrapment efficiency was 86 % and the loading efficiency was 22 %. The as-developed MXD-SiNPs@ALG gel formulation exhibited sustained release over 12 h compared to pure MXD and MXD-SiNPs. These results suggest that the newly developed formulation has several advantageous properties that make it suitable for cutaneous administration of the drug.
Collapse
Affiliation(s)
- Syed Salman Shafqat
- Department of Chemistry, Division of Science and Technology, University of Education, Lahore 54770, Pakistan.
| | - Breia Ammen
- Department of Chemistry, Division of Science and Technology, University of Education, Lahore 54770, Pakistan
| | - Syeda Amna Masood
- Department of Pharmaceutics, College of Pharmacy, University of Sargodha, Sargodha 40100, Pakistan
| | - Asma Mukhtar
- School of Chemistry, University of the Punjab, Lahore 54590, Pakistan
| | - Muhammad Faizan Nazar
- Department of Chemistry, Division of Science and Technology, University of Education, Lahore 54770, Pakistan; Department of Chemistry, University of Education, Lahore, Multan Campus, Multan, Pakistan
| | - Muhammad Asim Khan
- School of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, PR China
| | - Abdulrahman A Almehizia
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | | | - Maria Nosheen
- School of Chemistry, University of the Punjab, Lahore 54590, Pakistan
| | - Muhammad Nadeem Zafar
- Department of Chemistry, University of Gujrat, Gujrat 50700, Pakistan; State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, PR China.
| |
Collapse
|
8
|
Zhang X, Zhang L, Tian J, Li Y, Wu M, Zhang L, Qin X, Gong L. The application and prospects of drug delivery systems in idiopathic pulmonary fibrosis. BIOMATERIALS ADVANCES 2025; 168:214123. [PMID: 39615374 DOI: 10.1016/j.bioadv.2024.214123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 11/06/2024] [Accepted: 11/25/2024] [Indexed: 12/13/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is an interstitial lung disease primarily affecting elderly individuals aged >65 years and has a poor prognosis. No effective treatment is currently available for IPF. The two antipulmonary fibrosis drugs nintedanib and pirfenidone approved by the FDA in the United States have somewhat decelerated IPF progression. However, the side effects of these drugs can lead to poor patient tolerance and compliance with the medications. Researchers have recently developed various methods for IPF treatment, such as gene silencing and pathway inhibitors, which hold great promise in IPF treatment. Nevertheless, the nonselectivity and nonspecificity of drugs often affect their efficacies. Drug delivery systems (DDS) are crucial for delivering drugs to specific target tissues or cells, thereby minimizing potential side effects, enhancing drug bioavailability, and reducing lung deposition. This review comprehensively summarizes the current state of DDS and various delivery strategies for IPF treatment (e.g., nano-delivery, hydrogel delivery, and biological carrier delivery) to completely expound the delivery mechanisms of different drug delivery carriers. Subsequently, the advantages and disadvantages of different DDS are fully discussed. Finally, the challenges and difficulties associated with the use of different DDS are addressed so as to accelerate their rapid clinical translation.
Collapse
Affiliation(s)
- Xi Zhang
- School of Biological Engineering, Zunyi Medical University, Guangdong 519000, China; Department of Clinical Medicine, The Fifth Clinical Institution, Zhuhai Campus of Zunyi Medical University, Guangdong 519000, China
| | - Ling Zhang
- Department of Respiratory and Critical Care Medicine, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), GuiZhou 563000, China
| | - Jiahua Tian
- Department of Clinical Medicine, Zunyi Medical University, Zunyi 563000, China
| | - Yunfei Li
- Department of Respiratory and Critical Care Medicine, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), GuiZhou 563000, China
| | - Manli Wu
- Department of Respiratory and Critical Care Medicine, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), GuiZhou 563000, China
| | - Longju Zhang
- Department of Respiratory and Critical Care Medicine, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), GuiZhou 563000, China
| | - Xiaofei Qin
- School of Biological Engineering, Zunyi Medical University, Guangdong 519000, China.
| | - Ling Gong
- Department of Respiratory and Critical Care Medicine, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), GuiZhou 563000, China.
| |
Collapse
|
9
|
Jia L, Wang W, Zhao H, Ding X, Zheng M, Cai D, Wang Y, Wang Z, Liu H. Innovative Nano Delivery Systems for Astaxanthin: Enhancing Stability, Bioavailability, and Targeted Therapeutic Applications. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:3286-3304. [PMID: 39886831 DOI: 10.1021/acs.jafc.4c09415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2025]
Abstract
Astaxanthin (AST), as a natural antioxidant, has broad application prospects in medicine and health products. However, its highly unsaturated structure and significant lipophilic characteristics limit its dispersibility and bioavailability, thereby restricting its application in food, medicines, and nutraceuticals. To overcome these limitations, researchers have proposed the use of nano delivery systems. This review summarizes various nanocarriers, including liposomes, nanostructured lipid carriers, nanoparticles, and others, and analyzes their advantages in enhancing the solubility, stability, and bioavailability of AST. Furthermore, the study focuses on targeted delivery systems achieved through biomolecular modifications, which enable precise delivery of AST to specific cells or tissues, enhancing therapeutic effects. Additionally, smart-responsive delivery systems, such as pH-responsive and light-sensitive systems, are also discussed, showing their immense potential in precise release and targeted therapy. These findings provide new perspectives for the precise nutrition and clinical applications of AST. Future research should further optimize the design of nanocarriers to enable broader applications.
Collapse
Affiliation(s)
- Lei Jia
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China
- National Engineering Research Center for Wheat and Corn Deep Processing, Jilin Agricultural University, Changchun, Jilin 130118, China
| | - Wei Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China
- National Engineering Research Center for Wheat and Corn Deep Processing, Jilin Agricultural University, Changchun, Jilin 130118, China
| | - Hongyu Zhao
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China
| | - Xiaoyu Ding
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China
- National Engineering Research Center for Wheat and Corn Deep Processing, Jilin Agricultural University, Changchun, Jilin 130118, China
| | - Mingzhu Zheng
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China
- National Engineering Research Center for Wheat and Corn Deep Processing, Jilin Agricultural University, Changchun, Jilin 130118, China
| | - Dan Cai
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China
- National Engineering Research Center for Wheat and Corn Deep Processing, Jilin Agricultural University, Changchun, Jilin 130118, China
| | - Yuhua Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China
| | - Zhitong Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China
| | - Huimin Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China
- National Engineering Research Center for Wheat and Corn Deep Processing, Jilin Agricultural University, Changchun, Jilin 130118, China
| |
Collapse
|
10
|
Mohapatra SR, Rama E, Werner MP, Call T, Loewenberg T, Loewen A, Apel C, Kiessling F, Jockenhoevel S. Novel Bioreactor Design for Non-invasive Longitudinal Monitoring of Tissue-Engineered Heart Valves in 7T MRI and Ultrasound. Ann Biomed Eng 2025; 53:383-397. [PMID: 39438348 PMCID: PMC11805768 DOI: 10.1007/s10439-024-03632-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 10/02/2024] [Indexed: 10/25/2024]
Abstract
The development of cardiovascular implants is abundant, yet their clinical adoption remains a significant challenge in the treatment of valvular diseases. Tissue-engineered heart valves (TEHV) have emerged as a promising solution due to their remodeling capabilities, which have been extensively studied in recent years. However, ensuring reproducible production and clinical translation of TEHV requires robust longitudinal monitoring methods.Cardiovascular magnetic resonance imaging (MRI) is a non-invasive, radiation-free technique providing detailed valvular imaging and functional assessment. To facilitate this, we designed a state-of-the-art metal-free bioreactor enabling dynamic MRI and ultrasound imaging. Our compact bioreactor, tailored to fit a 72 mm bore 7 T MRI coil, features an integrated backflow design ensuring MRI compatibility. A pneumatic drive system operates the bioreactor, minimizing potential MRI interference. The bioreactor was digitally designed and constructed using polymethyl methacrylate, utilizing only polyether ether ketone screws for secure fastening. Our biohybrid TEHV incorporates a non-degradable polyethylene terephthalate textile scaffold with fibrin matrix hydrogel and human arterial smooth muscle cells.As a result, the bioreactor was successfully proven to be MRI compatible, with no blooming artifacts detected. The dynamic movement of the TEHVs was observed using gated MRI motion artifact compensation and ultrasound imaging techniques. In addition, the conditioning of TEHVs in the bioreactor enhanced ECM production. Immunohistology demonstrated abundant collagen, α-smooth muscle actin, and a monolayer of endothelial cells throughout the valve cusp. Our innovative methodology provides a physiologically relevant environment for TEHV conditioning and development, enabling accurate monitoring and assessment of functionality, thus accelerating clinical acceptance.
Collapse
Affiliation(s)
- Saurav Ranjan Mohapatra
- Department of Biohybrid & Medical Textile (BioTex), Center for Biohybrid Medical Systems (CBMS), Institute for Applied Medical Engineering, RWTH Aachen University, Forckenbeckstr. 55, 52074, Aachen, Germany
| | - Elena Rama
- Institute for Experimental Molecular Imaging, RWTH Aachen University, Forckenbeckstr. 55, 52074, Aachen, Germany
| | - Maximillian P Werner
- Department of Biohybrid & Medical Textile (BioTex), Center for Biohybrid Medical Systems (CBMS), Institute for Applied Medical Engineering, RWTH Aachen University, Forckenbeckstr. 55, 52074, Aachen, Germany
| | - Tobias Call
- Department of Biohybrid & Medical Textile (BioTex), Center for Biohybrid Medical Systems (CBMS), Institute for Applied Medical Engineering, RWTH Aachen University, Forckenbeckstr. 55, 52074, Aachen, Germany
| | - Tanja Loewenberg
- Department of Biohybrid & Medical Textile (BioTex), Center for Biohybrid Medical Systems (CBMS), Institute for Applied Medical Engineering, RWTH Aachen University, Forckenbeckstr. 55, 52074, Aachen, Germany
| | - Alexander Loewen
- Department of Biohybrid & Medical Textile (BioTex), Center for Biohybrid Medical Systems (CBMS), Institute for Applied Medical Engineering, RWTH Aachen University, Forckenbeckstr. 55, 52074, Aachen, Germany
| | - Christian Apel
- Department of Biohybrid & Medical Textile (BioTex), Center for Biohybrid Medical Systems (CBMS), Institute for Applied Medical Engineering, RWTH Aachen University, Forckenbeckstr. 55, 52074, Aachen, Germany
| | - Fabian Kiessling
- Institute for Experimental Molecular Imaging, RWTH Aachen University, Forckenbeckstr. 55, 52074, Aachen, Germany
| | - Stefan Jockenhoevel
- Department of Biohybrid & Medical Textile (BioTex), Center for Biohybrid Medical Systems (CBMS), Institute for Applied Medical Engineering, RWTH Aachen University, Forckenbeckstr. 55, 52074, Aachen, Germany.
| |
Collapse
|
11
|
Alvarez-Sandoval J, Guillen Melendez GA, Pérez-Hernández RA, Elizondo-Luevano JH, Castro-Ríos R, Kačániová M, Montes de Oca-Saucedo CR, Soto-Domínguez A, Chávez-Montes A. Antiproliferative Effect of Methanolic Extract of Vernonia greggii (Asteraceae) on Human Tumoral HeLa Cells Nanoencapsulated into PLGA-Nanoparticles. MATERIALS (BASEL, SWITZERLAND) 2025; 18:580. [PMID: 39942246 PMCID: PMC11818646 DOI: 10.3390/ma18030580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 01/08/2025] [Accepted: 01/21/2025] [Indexed: 02/16/2025]
Abstract
Vernonia greggii belongs to the Asteraceae family, and some members of this family have been reported to possess anticancer properties. This study evaluated the antiproliferative effect of V. greggii methanol extract (ME), both in its free form and encapsulated into poly(lactic-co-glycolide) (PLGA) nanoparticles (NPs), on human cervical cancer cells (HeLa) and human epidermal keratinocytes (HaCaT). The extract was subsequently sub-fractionated into n-hexane (F-He), methanol (F-Me), and distilled water (F-Ac) fractions, and their antiproliferative effects were assessed. Time-dependent toxicity on HeLa cells was observed for the free-form fractions, with the F-Me fraction showing the highest efficacy compared to the others. Additionally, an NP formulation based on PLGA and F-Me (NPs F-Me) was developed, achieving 64.21% encapsulation efficiency and 11.38% drug loading. The NPs had an average size of 146.9 nm, a polydispersity index (PDI) of 0.103, and a ζ-potential of 23.3 mV. NPs F-Me were tested on HeLa and HaCaT cells, with toxicity observed at concentrations of 300 and 500 μg/mL, affecting tumor cell morphology. Furthermore, the hemolytic activity of F-Me and NPs F-Me was evaluated. The major bioactive compounds in the F-Me fraction were identified using Liquid Chromatography-Mass Spectrometry (LC-MS). These findings suggest that the F-Me fraction of V. greggii exerts an antineoplastic effect both in its free form and when encapsulated in nanoparticles.
Collapse
Affiliation(s)
- Jissell Alvarez-Sandoval
- Departamento de Química, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza C.P. 64455, NL, Mexico; (J.A.-S.); (R.A.P.-H.); (J.H.E.-L.)
| | - Gloria A. Guillen Melendez
- Departamento de Histología, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey C.P. 64460, NL, Mexico; (G.A.G.M.); (C.R.M.d.O.-S.)
| | - Raymundo A. Pérez-Hernández
- Departamento de Química, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza C.P. 64455, NL, Mexico; (J.A.-S.); (R.A.P.-H.); (J.H.E.-L.)
| | - Joel H. Elizondo-Luevano
- Departamento de Química, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza C.P. 64455, NL, Mexico; (J.A.-S.); (R.A.P.-H.); (J.H.E.-L.)
- Laboratorio de Ciencias Naturales, Facultad de Agronomía, Universidad Autónoma de Nuevo León, General Escobedo C.P. 66050, NL, Mexico
| | - Rocío Castro-Ríos
- Departamento de Química Analítica, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey C.P. 64460, NL, Mexico;
| | - Miroslava Kačániová
- School of Medical & Health Sciences, University of Economics and Human Sciences in Warsaw, Okopowa 59, 01 043 Warszawa, Poland;
- Institute of Horticulture, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976 Nitra, Slovakia
| | - Carlos R. Montes de Oca-Saucedo
- Departamento de Histología, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey C.P. 64460, NL, Mexico; (G.A.G.M.); (C.R.M.d.O.-S.)
| | - Adolfo Soto-Domínguez
- Departamento de Histología, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey C.P. 64460, NL, Mexico; (G.A.G.M.); (C.R.M.d.O.-S.)
| | - Abelardo Chávez-Montes
- Departamento de Química, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza C.P. 64455, NL, Mexico; (J.A.-S.); (R.A.P.-H.); (J.H.E.-L.)
| |
Collapse
|
12
|
Cong H, Hu J, Wang J, Chang B, Li R, Cui X, Zhang C, Ji H, Lin C, Tang J, Liu J. Bromocriptine mesylate-loaded nanoparticles co-modified with low molecular weight protamine and lactoferrin for enhanced nose-to-brain delivery in Parkinson's disease treatment. Int J Pharm 2025; 669:125054. [PMID: 39667592 DOI: 10.1016/j.ijpharm.2024.125054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/01/2024] [Accepted: 12/05/2024] [Indexed: 12/14/2024]
Abstract
Parkinson's disease confronts challenges in drug delivery due to the blood-brain barrier. Intranasal delivery bypasses the blood-brain barrier for improved drug bioavailability, yet narrow nasal space and brief retention time hinder clinical applicability. We conducted a Bromocriptine Mesylate-loaded PLGA nanoparticles co-modified with low molecular weight protamine (LMWP) and lactoferrin (Lf) (LMWP/Lf-BCM-NPs) for nose-to-brain delivery. The resulting LMWP/Lf-BCM-NPs were uniform spheres with an average size of 248.53 ± 16.25 nm and zeta potential of -2.63 ± 0.74 mV. Fourier transform infrared spectroscopy confirmed LMWP and Lf attachment. The co-modified nanoparticles showed improving cellular transport and good viability. The LMWP/Lf-BCM-NPs showed increased brain targeting efficiency in mice. In haloperidol-induced Parkinson mouse models, the LMWP/Lf-BCM-NPs showed increased brain targeting efficiency, enhanced behavioral regulatory effects, enhanced antioxidant effects and neuroprotection effects. This study paves the way for a novel, non-invasive brain-targeted therapy, offering a promising avenue for Parkinson's disease clinical treatment.
Collapse
Affiliation(s)
- Huijing Cong
- Department of Pharmaceutics, School of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Jing Hu
- Department of Pharmaceutics, School of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Jing Wang
- Department of Pharmaceutics, School of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Baiyu Chang
- Department of Pharmaceutics, School of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Rongtao Li
- Department of Pharmaceutics, School of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Xinran Cui
- Department of Pharmaceutics, School of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Chenghao Zhang
- Department of Pharmaceutics, School of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Hongyu Ji
- Department of Pharmaceutics, School of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Congcong Lin
- Department of Pharmaceutics, School of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Jingling Tang
- Department of Pharmaceutics, School of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150086, China.
| | - Jiaxin Liu
- Department of Pharmaceutics, School of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150086, China.
| |
Collapse
|
13
|
Yan Y, Duan T, Xue X, Yang X, Liu M, Ma B, Duan X, Su C. LBP-CD155 Liposome Nanovaccine Efficiently Resist Colorectal Cancer and Enhance ICB Therapy. Int J Nanomedicine 2025; 20:1047-1063. [PMID: 39877587 PMCID: PMC11773180 DOI: 10.2147/ijn.s492734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 12/25/2024] [Indexed: 01/31/2025] Open
Abstract
Background Colorectal cancer (CRC) is a highly malignant and aggressive gastrointestinal tumor. Due to its weak immunogenicity and limited immune, cell infiltration lead to ineffective clinical outcomes. Therefore, to improve the current prophylaxis and treatment scheme, offering a favorable strategy efficient against CRC is urgently needed. Methods Here, we developed a nanovaccine (LBP-CD155L NVs) loaded with CD155 gene in liposome, which was modified by Lycium barbarum polysaccharides (LBP) through electrostatic interaction. The nanovaccine was characterized by transmission electron microscopy and Zetasizer. It was evaluated in vitro, where NVs facilitated the endocytosis and maturation of DCs, and in vivo, where NVs improved the efficacy of prophylaxis and therapy. In addition, further confirmed the mechanisms by how TLR4 and MGL synergistic pathway endow the nanovaccines towards dendritic cells (DCs). Finally, the safety and tumor immunosuppressive microenvironment were evaluated in the CRC tumor-bearing mouse model. Results We successfully developed a nanovaccine that facilitates the endocytosis and maturation of DCs via a synergistic pathway involving TLR4 and MGL, which endow the nanovaccines towards dendritic cells (DCs) and promote the differentiation, thereby enhancing the cytotoxicity of CD8+T cells. Consequently, LBP-CD155L NVs can potentiate the efficacy of prophylactic and therapeutic administration in a mouse CRC model, as evidenced by decreased infiltration of myeloid-derived suppressor cells (MDSCs) and Tregs, reprogrammed the macrophage phenotypes, which promoted polarization from M2-like macrophages to M1-like macrophages, increased infiltration of effector T cells. Prophylactic and therapeutic combination regimens with anti-PD-1 treatment demonstrate synergism that stimulates T-cell infiltration into tumors and counteracts immunosuppression, leading to remarkable tumor remission and enhancing the efficacy of immune checkpoint therapy in solid tumors. Conclusion Our work provided that LBP-CD155L NVs may serve as a promising tool for reversing tumor immunosuppressive microenvironment and enhancing ICB therapy in CRC.
Collapse
Affiliation(s)
- Yajuan Yan
- School of Basic Medicine, Ningxia Medical University, Yinchuan, People’s Republic of China
| | - Ting Duan
- School of Basic Medicine, Ningxia Medical University, Yinchuan, People’s Republic of China
| | - Xiaonan Xue
- School of Basic Medicine, Ningxia Medical University, Yinchuan, People’s Republic of China
| | - Xiaojuan Yang
- School of Inspection, Ningxia Medical University, Yinchuan, People’s Republic of China
| | - Miao Liu
- School of Inspection, Ningxia Medical University, Yinchuan, People’s Republic of China
| | - Bin Ma
- Department of Surgery, The First People’s Hospital of Yinchuan, Yinchuan, Ningxia, People’s Republic of China
- The Second School of Clinical Medicine, Ningxia Medical University, Yinchuan, 750004, People’s Republic of China
| | - Xiangguo Duan
- School of Inspection, Ningxia Medical University, Yinchuan, People’s Republic of China
| | - Chunxia Su
- School of Basic Medicine, Ningxia Medical University, Yinchuan, People’s Republic of China
| |
Collapse
|
14
|
Grimaldi MC, Bozzer S, Sjöström DJ, Andersson LI, Mollnes TE, Nilsson PH, De Maso L, Riccardi F, Dal Bo M, Sblattero D, Macor P. DNA-loaded targeted nanoparticles as a safe platform to produce exogenous proteins in tumor B cells. Front Immunol 2025; 15:1509322. [PMID: 39911576 PMCID: PMC11794205 DOI: 10.3389/fimmu.2024.1509322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 12/20/2024] [Indexed: 02/07/2025] Open
Abstract
Introduction The functionalization of nanoparticles (NPs) with an antiCD19 targeting mechanism represents a promising approach for the selective delivery of drugs and nucleic acids into normal and tumor B cells. This strategy has the advantage of minimizing off-target effects by restricting gene delivery to the desired cell population. However, the nanoplatform must guarantee both the local production of the protein and the safety of the treatment to allow an effective therapy with reduced systemic toxicity. Methods In order to ensure a selective delivery of nucleic acids, we developed poly(lactic-co-glycolic acid) (PLGA)-poly(vinyl alcohol) (PVA) NPs loaded with an Enhanced Green Fluorescent Protein (EGFP)-coding plasmid and covalently coated with antiCD19 recombinant antibody as a targeting mechanism. To assess the functionality of the NPs, physicochemical characterization, safety tests, and transfection assay were employed to evaluate the NPs' behavior in vitro and in vivo, in a human/zebrafish lymphoma xenograft model. Results The results demonstrated that the PLGA-PVA nanoplatform was capable of efficiently encapsulating and releasing the payload. These nanostructures demonstrated a favorable safety profile, as evidenced by the absence of significant cell cytotoxicity, coagulation activation, complement system activation, and the slight activation of endothelial cells and leukocytes. The targeting mechanism facilitated the interaction of NPs with target cells, thereby enhancing their internalization and subsequent exogenous plasmid DNA (pDNA) translation and protein expression. In the human/zebrafish lymphoma xenograft model, no evidence of toxicity was observed, and targeted NPs demonstrated the capacity to enhance exogenous pDNA expression. Conclusion Our findings provide a rationale for the use of targeted NPs as a DNA delivery system for the local expression of therapeutic proteins.
Collapse
Affiliation(s)
| | - Sara Bozzer
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | - Dick J. Sjöström
- Linnaeus Centre for Biomaterials Chemistry, Linnaeus University, Kalmar, Sweden
- Department of Chemistry and Biomedical Sciences, Linnaeus University, Kalmar, Sweden
| | - Linnea I. Andersson
- Linnaeus Centre for Biomaterials Chemistry, Linnaeus University, Kalmar, Sweden
| | - Tom Eirik Mollnes
- Department of Immunology, Oslo University Hospital and University of Oslo, Oslo, Norway
- Research Laboratory, Nordland Hospital, Bodo, Norway
| | - Per H. Nilsson
- Linnaeus Centre for Biomaterials Chemistry, Linnaeus University, Kalmar, Sweden
- Department of Chemistry and Biomedical Sciences, Linnaeus University, Kalmar, Sweden
| | - Luca De Maso
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Federico Riccardi
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | - Michele Dal Bo
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | | | - Paolo Macor
- Department of Life Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
15
|
Toruntay C, Poyraz FS, Susgun S, Yucesan E, Mansuroglu B. Anticancer Effects of MAPK6 siRNA-Loaded PLGA Nanoparticles in the Treatment of Breast Cancer. J Cell Mol Med 2025; 29:e70309. [PMID: 39823246 PMCID: PMC11740982 DOI: 10.1111/jcmm.70309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/22/2024] [Accepted: 12/10/2024] [Indexed: 01/19/2025] Open
Abstract
siRNA-loaded nanoparticles open new perspectives for cancer treatment. MAPK6 is upregulated in breast cancer and is involved in cell growth, differentiation and cell cycle regulation. Herein, we aimed to investigate the anticancer effects of MAPK6 knockdown by using MAPK6 siRNA-loaded PLGA nanoparticles (siMAPK6-PLGA-NPs) in MCF-7 breast cancer cells. After the synthesis and characterisation of nanoparticles, treatment concentrations were determined with cytotoxicity assay. Subsequently, MAPK6 knockdown and anticancer effects of siMAPK6-PLGA-NPs were evaluated by in vitro assays. siMAPK6-PLGA-NPs have been determined to suppress MAPK6 expression efficiently. In vitro studies revealed that siMAPK6-PLGA-NPs significantly reduced the migration, proliferation and colony-forming ability and enhanced the apoptosis in MCF-7 cells. Taken together, siMAPK6-PLGA-NPs exhibited robust and promising anticancer effects against MCF-7 cells. Our findings demonstrated that siRNA-loaded PLGA nanoparticles have great potential for breast cancer treatment and MAPK6 gene may be the therapeutic target in breast cancer.
Collapse
Affiliation(s)
- Ceyhun Toruntay
- Department of Molecular Biology and Genetics, Faculty of Science and LettersIstanbul Technical UniversityIstanbulTurkiye
- Department of Molecular Biology and Genetics, Graduate School of Science and EngineeringYildiz Technical UniversityIstanbulTurkiye
| | - Fatma Sayan Poyraz
- Department of Molecular Biology and Genetics, Faculty of Arts and SciencesYildiz Technical UniversityIstanbulTurkiye
| | - Seda Susgun
- Department of Genetics, Institute of Health SciencesIstanbul UniversityIstanbulTurkiye
- Department of Medical Biology, Faculty of MedicineBezmialem Vakif UniversityIstanbulTurkiye
| | - Emrah Yucesan
- Department of Neurogenetics, Institute of Neurological SciencesIstanbul University‐CerrahpasaIstanbulTurkiye
| | - Banu Mansuroglu
- Department of Molecular Biology and Genetics, Faculty of Arts and SciencesYildiz Technical UniversityIstanbulTurkiye
| |
Collapse
|
16
|
Mukhopadhyay B, Singh S, Singh A. Utilizing nanomaterials for cancer treatment and diagnosis: an overview. DISCOVER NANO 2024; 19:215. [PMID: 39718700 DOI: 10.1186/s11671-024-04128-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 10/14/2024] [Indexed: 12/25/2024]
Abstract
Cancer is a deadly disease with complex pathophysiological nature and is the leading cause of death worldwide. Traditional diagnosis methods often detect cancer at a considerably critical stage and the conventional methods of treatment like chemotherapy, radiation therapy, targeted therapy, and immunotherapy have several limitations, multidrug resistance, cytotoxicity, and lack of specificity are a few examples. These pose substantial challenge for effective and favourable cancer treatment. The advent of nanotechnology has revolutionized the face of cancer diagnosis and treatment. Nanoparticles, which have a size range of 1-100 nm, are biocompatible and have special optical, magnetic, and electrical capabilities, less toxic, more stable, exhibit permeability and retention effect, and are used for precise targeting. There are several classes of nanoparticles each having their own sets of unique properties. NPs have played an important role in the drug delivery system, overcoming the multi-drug resistance, reducing the side-effects as seen in conventional therapeutic methods and hence able to solve the limitations of conventional methods of diagnosis and treatment. This review discusses the four major classes of nanoparticles (Lipid based NPs, Carbon NPs and Metallic NPs and Polymeric NPs): their discovery and introduction in medical field, unique properties and characteristics, advantages and disadvantages, sub-categories and characteristics of these categories, major area of application in Cancer diagnosis and treatment, and latest methodologies where these are used in cancer treatment.
Collapse
Affiliation(s)
- Bageesha Mukhopadhyay
- Department of Biomedical Engineering, School of Bioengineering & Biosciences, Lovely Professional University, Phagwara, Punjab, 144001, India
| | - Sudhakar Singh
- Department of Biomedical Engineering, School of Bioengineering & Biosciences, Lovely Professional University, Phagwara, Punjab, 144001, India
| | - Avtar Singh
- School of Electrical Engineering and Computing (SoEEC), Adama Science and Technology University (AS-TU), 1888, Adama, Ethiopia.
| |
Collapse
|
17
|
Nagib M, Sayed AM, Korany AH, Abdelkader K, Shari FH, Mackay WG, Rateb ME. Human Defensins: Structure, Function, and Potential as Therapeutic Antimicrobial Agents with Highlights Against SARS CoV-2. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10436-8. [PMID: 39693007 DOI: 10.1007/s12602-024-10436-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2024] [Indexed: 12/19/2024]
Abstract
The human defensins are a group of cationic antimicrobial peptides that range in size from 2 to 5 kDa and share a common structural motif of six disulphide-linked cysteines. Several naturally occurring human α- and β-defensins have been identified over the past two decades. They have a wide variety of antimicrobial effects, and their potential to avoid the development of resistance to antimicrobial treatment makes them attractive as therapeutic agents. Human defensins have recently been the focus of medical and molecular biology studies due to their promising application in medicine and the pharmaceutical industry. This work aims to provide a comprehensive summary of the current developments of human defensins, including their identification, categorization, molecular features, expression, modes of action, and potential application in medical settings. Current obstacles and future opportunities for using human defensins are also covered. Furthermore, we shed light on the potential of this class as an antiviral agent, particularly against SARS CoV-2, by providing an in silico-based investigation of their plausible mechanisms of action.
Collapse
Affiliation(s)
- Maryam Nagib
- School of Computing Engineering and Physical Sciences, University of the West of Scotland, Paisley, Scotland, PA12BE, UK
| | - Ahmed M Sayed
- Department of Pharmacognosy, College of Pharmacy, Almaaqal University, Basrah, 61014, Iraq
| | - Ahmed H Korany
- Department of Microbiology and Immunology, Faculty of Pharmacy, Nahda University, Beni Suef, 62513, Egypt
| | - Karim Abdelkader
- Department of Microbiology and Immunology, Faculty of Pharmacy, Beni-Suef University, Beni Suef, 62511, Egypt
| | - Falah H Shari
- Department of Clinical Biochemistry, College of Pharmacy, Almaaqal University, Basrah, 61014, Iraq
| | - William G Mackay
- School of Health and Life Sciences, University of the West of Scotland, Blantyre, Glasgow, G72 0LH, UK
| | - Mostafa E Rateb
- School of Computing Engineering and Physical Sciences, University of the West of Scotland, Paisley, Scotland, PA12BE, UK.
| |
Collapse
|
18
|
Li DD, Jin JC, Liu XW, Liu SY, Ji FJ, Liu T. Nanoparticle delivery of si-Notch1 modulates metabolic reprogramming to affect 5-FU resistance and cell pyroptosis in colorectal cancer. Cancer Nanotechnol 2024; 15:23. [DOI: 10.1186/s12645-024-00259-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 03/29/2024] [Indexed: 01/05/2025] Open
Abstract
Abstract
Background
Nanocarrier delivery of small interfering RNAs (siRNAs) to silence cancer-associated genes is a promising method for cancer treatment. Here, we explored the role and mechanisms of PLAG NPs-delivered si-Notch1 in colorectal cancer (CRC).
Results
High Notch1 expression was observed in both sensitive and resistant CRC tissues and cells. Notch1 silencing repressed proliferation and facilitates apoptosis of resistant CRC cells, and suppressed glycolysis and promoted pyroptosis in resistant CRC cells. Notch1 directly interacts with PCAF. Notch1 knockdown’s suppressive effect on glycolysis was reversed by overexpression of PCAF. Moreover, a nanocarrier called PLAG NPs was built with a higher delivery efficiency compared with lipo2000. Si-Notch1 delivered by PLAG NPs efficiently overcame the CRC cells’ 5-FU resistance and facilitated pyroptosis in a CRC mouse model.
Conclusions
PLAG NPs carrying si-Notch1 had a great advantage in the extension of half-life circulation and targeting ability, providing a theoretical foundation for precise clinical treatment of CRC.
Collapse
|
19
|
Keshavarz Shahbaz S, Koushki K, Izadi O, Penson PE, Sukhorukov VN, Kesharwani P, Sahebkar A. Advancements in curcumin-loaded PLGA nanoparticle delivery systems: progressive strategies in cancer therapy. J Drug Target 2024; 32:1207-1232. [PMID: 39106154 DOI: 10.1080/1061186x.2024.2389892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/29/2024] [Accepted: 07/31/2024] [Indexed: 08/09/2024]
Abstract
Cancer is a leading cause of death worldwide, and imposes a substantial socioeconomic burden with little impact especially on aggressive types of cancer. Conventional therapies have many serious side effects including generalised systemic toxicity which limits their long-term use. Tumour resistance and recurrence is another main problem associated with conventional therapy. Purified or extracted natural products have been investigated as cost-effective cancer chemoprotective agents with the potential to reverse or delaying carcinogenesis. Curcumin (CUR) as a natural polyphenolic component, exhibits many pharmacological activities such as anti-cancer, anti-inflammatory, anti-microbial, activity against neurodegenerative diseases including Alzheimer, antidiabetic activities (type II diabetes), anticoagulant properties, wound healing effects in both preclinical and clinical studies. Despite these effective protective properties, CUR has several limitations, including poor aqueous solubility, low bioavailability, chemical instability, rapid metabolism and a short half-life time. To overcome the pharmaceutical problems associated with free CUR, novel nanomedicine strategies (including polymeric nanoparticles (NPs) such as poly (lactic-co-glycolic acid) (PLGA) NPs have been developed. These formulations have the potential to improve the therapeutic efficacy of curcuminoids. In this review, we comprehensively summarise and discuss recent in vitro and in vivo studies to explore the pharmaceutical significance and clinical benefits of PLGA-NPs delivery system to improve the efficacy of CUR in the treatment of cancer.
Collapse
Affiliation(s)
- Sanaz Keshavarz Shahbaz
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Communicable Disease, Qazvin University of Medical Sciences, Qazvin, Iran
- USERN Office, Qazvin University of Medical Science, Qazvin, Iran
| | - Khadijeh Koushki
- Department of Neurosurgery, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Omid Izadi
- Department of Industrial Engineering, ACECR Institute of Higher Education Kermanshah, Kermanshah, Iran
| | - Peter E Penson
- Clinical Pharmacy and Therapeutics Research Group, School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
- Liverpool Centre for Cardiovascular Science, Liverpool, UK
| | | | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- Biotechnology Research Centre, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
20
|
Pant A, Laliwala A, Holstein SA, Mohs AM. Recent advances in targeted drug delivery systems for multiple myeloma. J Control Release 2024; 376:215-230. [PMID: 39384153 PMCID: PMC11611669 DOI: 10.1016/j.jconrel.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/25/2024] [Accepted: 10/02/2024] [Indexed: 10/11/2024]
Abstract
Despite significant therapeutic advances, multiple myeloma (MM) remains a challenging, incurable, hematological malignancy. The efficacy of traditional chemotherapy and currently available anti-MM agents is in part limited by their adverse effects, which restrict their therapeutic potential. Nanotherapeutics is an emerging field of cancer therapy that can overcome the biological and chemical barriers of existing anticancer drugs. This review presents an overview of recent advancements in nanoparticle- and immunotherapy-based drug delivery systems for MM treatment. It further delves into the targeting strategies, mechanism of controlled drug release, and challenges associated with the development of drug delivery systems for the treatment of MM.
Collapse
Affiliation(s)
- Ashruti Pant
- Department of Pharmaceutical Sciences, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, 505 S 45 St, Omaha, NE 68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, 505 S 45 St, Omaha, NE 68198, USA.
| | - Aayushi Laliwala
- Department of Pharmaceutical Sciences, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, 505 S 45 St, Omaha, NE 68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, 505 S 45 St, Omaha, NE 68198, USA.
| | - Sarah A Holstein
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, 505 S 45 St, Omaha, NE 68198, USA; Department of Internal Medicine, University of Nebraska Medical Center, 505 S 45 St, Omaha, NE 68198, USA.
| | - Aaron M Mohs
- Department of Pharmaceutical Sciences, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, 505 S 45 St, Omaha, NE 68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, 505 S 45 St, Omaha, NE 68198, USA; Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, S 45th St, Omaha, NE 68198, USA.
| |
Collapse
|
21
|
Vikal A, Maurya R, Patel BB, Sharma R, Patel P, Patil UK, Das Kurmi B. Protacs in cancer therapy: mechanisms, design, clinical trials, and future directions. Drug Deliv Transl Res 2024:10.1007/s13346-024-01754-z. [PMID: 39614036 DOI: 10.1007/s13346-024-01754-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/20/2024] [Indexed: 12/01/2024]
Abstract
Cancer develops as a result of changes in both genetic and epigenetic mechanisms, which lead to the activation of oncogenes and the suppression of tumor suppressor genes. Despite advancements in cancer treatments, the primary approach still involves a combination of chemotherapy, radiotherapy, and surgery, typically providing a median survival of approximately five years for patients. Unfortunately, these therapeutic interventions often bring about substantial side effects and toxicities, significantly impacting the overall quality of life for individuals undergoing treatment. Therefore, urgent need of research required which comes up with effective treatment of cancer. This review explores the transformative role of Proteolysis-Targeting Chimeras (PROTACs) in cancer therapy. PROTACs, an innovative drug development strategy, utilize the cell's protein degradation machinery to selectively eliminate disease-causing proteins. The review covers the historical background, mechanism of action, design, and structure of PROTACs, emphasizing their precision in targeting oncogenic proteins. The discussion extends to the challenges, nanotechnology applications, and ongoing clinical trials, showcasing promising results and clinical progress. The review concludes with insights into patents, future directions, and the potential impact of PROTACs in addressing dysregulated protein expression across various diseases. Overall, it provides a concise yet comprehensive overview for researchers, clinicians, and industry professionals involved in developing targeted therapies.
Collapse
Affiliation(s)
- Akash Vikal
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga, 142001, Punjab, India
| | - Rashmi Maurya
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga, 142001, Punjab, India
| | - Brij Bihari Patel
- Department of Respiratory Medicine, School of Excellence in Pulmonary Medicines, Netaji Subhash Chandra Bose Medical College, Jabalpur, 482003, Madhya Pradesh, India
| | - Rajeev Sharma
- Department of Pharmacy, Amity University, Gwalior, 474005, Madhya Pradesh, India
| | - Preeti Patel
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Moga, 142001, Punjab, India
| | - Umesh K Patil
- Department of Pharmaceutical Sciences, Dr. Hari Singh Gour University, Sagar, 470003, India
| | - Balak Das Kurmi
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga, 142001, Punjab, India.
| |
Collapse
|
22
|
Sahin H, Yucel O, Holloway P, Yildirim E, Emik S, Gurdag G, Tanriverdi G, Erkanli Senturk G. Comparison of Drug Delivery Systems with Different Types of Nanoparticles in Terms of Cellular Uptake and Responses in Human Endothelial Cells, Pericytes, and Astrocytes. Pharmaceuticals (Basel) 2024; 17:1567. [PMID: 39770409 PMCID: PMC11679882 DOI: 10.3390/ph17121567] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/15/2024] [Accepted: 11/15/2024] [Indexed: 01/11/2025] Open
Abstract
Background/Objectives: The key components of the blood-brain barrier (BBB) are endothelial cells, pericytes, astrocytes, and the capillary basement membrane. The BBB serves as the main barrier for drug delivery to the brain and is the most restrictive endothelial barrier in the body. Nearly all large therapeutic molecules and over 90% of small-molecule drugs cannot cross the BBB. To overcome this challenge, nanotechnology, particularly drug delivery systems such as nanoparticles (NPs), have gained significant attention. Methods: Poly(lactide-co-glycolide) (PLGA) and albumin-based NPs (bovine/human), with or without transferrin (Tf) ligands (BSA, HSA, BSA-Tf, HSA-Tf), and nanolipid carriers (NLC) were synthesized. The interactions of these NPs with human brain microvascular endothelial cells (hBMECs), human brain vascular pericytes (hBVPs), and human astrocytes (hASTROs) were analyzed. Results: At doses of 15.62 µg/mL, 31.25 µg/mL, and 62.5 µg/mL, none of the NPs caused toxic effects on hBMECs, hBVPs, or hASTROs after 3 h of incubation. All NPs were internalized by the cells, but BSA-Tf and HSA-Tf showed significantly higher uptake in hBMECs in a dose-dependent manner. Ultrastructural analysis revealed notable differences between NP formulation and cell type. Conclusions: Our findings underscore the potential of ligand-targeted NPs to selectively interact with BBB endothelial cells. Ultrastructural analysis reveals distinct cellular processing pathways for various NP formulations across BBB-associated cell types, with autophagy emerging as a crucial mechanism for NP handling in pericytes and astrocytes. Changes in NP chemical properties upon biological exposure present significant challenges for nanomedicine design, emphasizing the need for further investigation into NP interactions at the cellular and subcellular levels.
Collapse
Affiliation(s)
- Hakan Sahin
- Department of Histology and Embryology, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul 34098, Turkey; (G.T.); (G.E.S.)
| | - Oguz Yucel
- Department of Chemical Engineering, Faculty of Engineering, Istanbul University-Cerrahpasa, Istanbul 34320, Turkey; (O.Y.); (E.Y.); (S.E.); (G.G.)
| | - Paul Holloway
- Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK;
| | - Eren Yildirim
- Department of Chemical Engineering, Faculty of Engineering, Istanbul University-Cerrahpasa, Istanbul 34320, Turkey; (O.Y.); (E.Y.); (S.E.); (G.G.)
| | - Serkan Emik
- Department of Chemical Engineering, Faculty of Engineering, Istanbul University-Cerrahpasa, Istanbul 34320, Turkey; (O.Y.); (E.Y.); (S.E.); (G.G.)
| | - Gulten Gurdag
- Department of Chemical Engineering, Faculty of Engineering, Istanbul University-Cerrahpasa, Istanbul 34320, Turkey; (O.Y.); (E.Y.); (S.E.); (G.G.)
| | - Gamze Tanriverdi
- Department of Histology and Embryology, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul 34098, Turkey; (G.T.); (G.E.S.)
| | - Gozde Erkanli Senturk
- Department of Histology and Embryology, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul 34098, Turkey; (G.T.); (G.E.S.)
| |
Collapse
|
23
|
Yang T, Guo L. Advancing gastric cancer treatment: nanotechnology innovations and future prospects. Cell Biol Toxicol 2024; 40:101. [PMID: 39565472 PMCID: PMC11579161 DOI: 10.1007/s10565-024-09943-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 11/04/2024] [Indexed: 11/21/2024]
Abstract
Gastric cancer (GC) is the fifth most common cancer worldwide, particularly prevalent in Asia, especially in China, where both its incidence and mortality rates are significantly high. Meanwhile, nanotechnology has demonstrated great potential in the treatment of GC. In particular, nanodrug delivery systems have improved therapeutic efficacy and targeting through various functional modifications, such as targeting peptides, tumor microenvironment responsiveness, and instrument-based methods. For instance, silica (SiO2) has excellent biocompatibility and can be used as a drug carrier, with its porous structure enhancing drug loading capacity. Polymer nanoparticles regulate drug release rates and mechanisms by altering material composition and preparation methods. Lipid nanoparticles efficiently encapsulate hydrophilic drugs and promote cellular uptake, while carbon-based nanoparticles can be used in biosensors and drug delivery. Targets such as integrins, HER2 receptors, and the tumor microenvironment have been used to improve drug efficacy in GC treatment. Nanodrug delivery techniques not only enhance drug efficacy and delivery capabilities but also selectively target tumor cells. Currently, there is a lack of systematic summarization and synthesis regarding the relationship between nanodrug delivery systems and GC treatment, which to some extent hinders researchers and clinicians from efficiently searching for and referencing related studies, thereby reducing work efficiency. This study aims to systematically summarize the existing research on the relationship between nanodrug delivery systems and GC treatment, making it easier for professionals to search and reference, and thereby promoting further research on the role of nanodrug delivery systems and their clinical applications in GC. This review discusses the applications of functionalized nanocarriers in the treatment of GC in recent years, including surface modifications with targeted markers, the combination of phototherapy, chemotherapy, and immunotherapy, along with their advantages and challenges. It also examines the future prospects of targeted nanomaterials in GC treatment. The review particularly focuses on the combined application of nanocarriers in multiple treatment modalities, such as phototherapy, chemotherapy, and immunotherapy, demonstrating their potential in multimodal treatments. Furthermore, it thoroughly explores the specific challenges that nanocarriers face in GC treatment, such as biocompatibility, drug release control, and clinical translation issues, while providing a systematic outlook on future developments. Additionally, this study emphasizes the potential value and feasibility of nanocarriers in clinical applications, contrasting with most reviews that focus on basic research. Through these innovations, we offer new perspectives and directions for the development of nanotechnology in the treatment of GC.
Collapse
Affiliation(s)
- Tengfei Yang
- Department of Health Management, Shengjing Hospital of China Medical University, Shenyang, 110004, P. R. China
| | - Lin Guo
- Department of General Surgery, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning Province, P. R. China.
| |
Collapse
|
24
|
Zhang S, Fang H, Tian H. Recent Advances in Degradable Biomedical Polymers for Prevention, Diagnosis and Treatment of Diseases. Biomacromolecules 2024; 25:7015-7057. [PMID: 39420482 DOI: 10.1021/acs.biomac.4c01193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Biomedical polymers play a key role in preventing, diagnosing, and treating diseases, showcasing a wide range of applications. Their unique advantages, such as rich source, good biocompatibility, and excellent modifiability, make them ideal biomaterials for drug delivery, biomedical imaging, and tissue engineering. However, conventional biomedical polymers suffer from poor degradation in vivo, increasing the risks of bioaccumulation and potential toxicity. To address these issues, degradable biomedical polymers can serve as an alternative strategy in biomedicine. Degradable biomedical polymers can efficiently relieve bioaccumulation in vivo and effectively reduce patient burden in disease management. This review comprehensively introduces the classification and properties of biomedical polymers and the recent research progress of degradable biomedical polymers in various diseases. Through an in-depth analysis of their classification, properties, and applications, we aim to provide strong guidance for promoting basic research and clinical translation of degradable biomedical polymers.
Collapse
Affiliation(s)
- Siting Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Huapan Fang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Shenzhen Research Institute of Xiamen University, Shenzhen 518000, China
| | - Huayu Tian
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
25
|
Soliman MG, Martinez-Serra A, Antonello G, Dobricic M, Wilkins T, Serchi T, Fenoglio I, Monopoli MP. Understanding the role of biomolecular coronas in human exposure to nanomaterials. ENVIRONMENTAL SCIENCE. NANO 2024; 11:4421-4448. [PMID: 39263008 PMCID: PMC11382216 DOI: 10.1039/d4en00488d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/17/2024] [Indexed: 09/13/2024]
Abstract
Nanomaterials (NMs) are increasingly used in medical treatments, electronics, and food additives. However, nanosafety-the possible adverse effects of NMs on human health-is an area of active research. This review provides an overview of the influence of biomolecular coronas on NM transformation following various exposure routes. We discuss potential exposure pathways, including inhalation and ingestion, describing the physiology of exposure routes and emphasising the relevance of coronas in these environments. Additionally, we review other routes to NM exposure, such as synovial fluid, blood (translocation and injection), dermal and ocular exposure, as well as the dose and medium impact on NM interactions. We emphasize the need for an in-depth characterisation of coronas in different biological media, highlighting the need and opportunity to study lung and gastric fluids to understand NM behaviour and potential toxicity. Future research aims to predict better in vivo outcomes and address the complexities of NM interactions with biological systems.
Collapse
Affiliation(s)
- Mahmoud G Soliman
- Chemistry Department, RCSI (Royal College of Surgeons in Ireland) 123 St Stephen Green Dublin 2 Ireland
- Physics Department, Faculty of Science, Al-Azhar University Cairo Egypt
| | - Alberto Martinez-Serra
- Chemistry Department, RCSI (Royal College of Surgeons in Ireland) 123 St Stephen Green Dublin 2 Ireland
| | - Giulia Antonello
- Department of Chemistry, University of Torino 10125 Torino Italy
| | - Marko Dobricic
- Chemistry Department, RCSI (Royal College of Surgeons in Ireland) 123 St Stephen Green Dublin 2 Ireland
| | - Terence Wilkins
- School of Chemical & Process Innovation, University of Leeds Engineering Building Leeds LS2 9JT UK
| | - Tommaso Serchi
- Environmental Research and Innovation Department (Luxembourg Institute of Science and Technology) 41, Rue du Brill L4422 Belvaux GD Luxembourg
| | - Ivana Fenoglio
- Department of Chemistry, University of Torino 10125 Torino Italy
| | - Marco P Monopoli
- Chemistry Department, RCSI (Royal College of Surgeons in Ireland) 123 St Stephen Green Dublin 2 Ireland
| |
Collapse
|
26
|
Bhat AA, Gupta G, Afzal M, Thapa R, Ali H, Alqahtani SM, almalki WH, Kazmi I, Alzarea SI, Saleem S, Subramaniyan V. Polyphenol-Loaded Nano-carriers for Breast Cancer Therapy: A Comprehensive Review. BIONANOSCIENCE 2024; 14:4219-4237. [DOI: 10.1007/s12668-023-01288-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2023] [Indexed: 11/22/2024]
|
27
|
Tonbul H, Şahin A, Öztürk SC, Ultav G, Tavukçuoğlu E, Akbaş S, Aktaş Y, Esendağlı G, Çapan Y. An all-in-one nanoparticle for overcoming drug resistance: doxorubicin and elacridar co-loaded folate receptor targeted PLGA/MSN hybrid nanoparticles. J Drug Target 2024; 32:1101-1110. [PMID: 38946465 DOI: 10.1080/1061186x.2024.2374034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/18/2024] [Accepted: 06/22/2024] [Indexed: 07/02/2024]
Abstract
Overexpression of permeability-glycoprotein (P-gp) transporter leads to multidrug resistance (MDR) through cellular exclusion of chemotherapeutics. Co-administration of P-gp inhibitors and chemotherapeutics is a promising approach for improving the efficacy of therapy. Nevertheless, problems in pharmacokinetics, toxicity and solubility limit the application of P-gp inhibitors. Herein, we developed a novel all-in-one hybrid nanoparticle system to overcome MDR in doxorubicin (DOX)-resistant breast cancer. First, folic acid-modified DOX-loaded mesoporous silica nanoparticles (MSNs) were prepared and then loaded into PEGylated poly(lactic-co-glycolic acid) (PLGA) nanoparticles along with a P-gp inhibitor, elacridar. This hybrid nanoparticle system had high drug loading capacity, enabled both passive and active targeting of tumour tissues, and exhibited sequential and pH-triggered release of drugs. In vitro and in vivo studies in DOX-resistant breast cancer demonstrated the ability of the hybrid nanoparticles to reverse P-gp-mediated drug resistance. The nanoparticles were efficiently taken up by the breast cancer cells and delivered elacridar, in vitro. Biodistribution studies demonstrated substantial accumulation of the folate receptor-targeted PLGA/MSN hybrid nanoparticles in tumour-bearing mice. Moreover, deceleration of the tumour growth was remarkable in the animals administered with the DOX and elacridar co-loaded hybrid nanoparticles when compared to those treated with the marketed liposomal DOX (Caelyx®) or its combination with elacridar.
Collapse
MESH Headings
- Doxorubicin/administration & dosage
- Doxorubicin/pharmacology
- Doxorubicin/pharmacokinetics
- Drug Resistance, Neoplasm/drug effects
- Polylactic Acid-Polyglycolic Acid Copolymer/chemistry
- Animals
- Humans
- Nanoparticles/chemistry
- Female
- Mice
- Tetrahydroisoquinolines/pharmacology
- Tetrahydroisoquinolines/administration & dosage
- Tetrahydroisoquinolines/pharmacokinetics
- Lactic Acid/chemistry
- Acridines/pharmacology
- Acridines/administration & dosage
- Acridines/chemistry
- Cell Line, Tumor
- Folic Acid/chemistry
- Drug Resistance, Multiple/drug effects
- Silicon Dioxide/chemistry
- Breast Neoplasms/drug therapy
- Breast Neoplasms/pathology
- Drug Carriers/chemistry
- Polyglycolic Acid/chemistry
- Mice, Nude
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- Antibiotics, Antineoplastic/administration & dosage
- Antibiotics, Antineoplastic/pharmacokinetics
- Antibiotics, Antineoplastic/pharmacology
- Mice, Inbred BALB C
- Folic Acid Transporters/metabolism
Collapse
Affiliation(s)
- Hayrettin Tonbul
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Inonu University, Malatya, Turkey
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Adem Şahin
- Department of Pharmacy Service, Vocational School of Health Services, Bilecik Seyh Edebali University, Bilecik, Turkey
| | - Süleyman Can Öztürk
- Laboratory Animals Research and Application Center (HUDHAM), Hacettepe University, Ankara, Turkey
| | - Gözde Ultav
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Inonu University, Malatya, Turkey
| | - Ece Tavukçuoğlu
- Department of Basic Oncology, Hacettepe University Cancer Institute, Ankara, Turkey
| | - Sedenay Akbaş
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Yeşim Aktaş
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey
| | - Güneş Esendağlı
- Department of Basic Oncology, Hacettepe University Cancer Institute, Ankara, Turkey
| | - Yılmaz Çapan
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Lokman Hekim University, Ankara, Turkey
| |
Collapse
|
28
|
Wang F, Qi L, Zhang Z, Duan H, Wang Y, Zhang K, Li J. The Mechanism and Latest Research Progress of Blood-Brain Barrier Breakthrough. Biomedicines 2024; 12:2302. [PMID: 39457617 PMCID: PMC11504064 DOI: 10.3390/biomedicines12102302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/19/2024] [Accepted: 10/01/2024] [Indexed: 10/28/2024] Open
Abstract
The bloodstream and the central nervous system (CNS) are separated by the blood-brain barrier (BBB), an intricate network of blood vessels. Its main role is to regulate the environment within the brain. The primary obstacle for drugs to enter the CNS is the low permeability of the BBB, presenting a significant hurdle in treating brain disorders. In recent years, significant advancements have been made in researching methods to breach the BBB. However, understanding how to penetrate the BBB is essential for researching drug delivery techniques. Therefore, this article reviews the methods and mechanisms for breaking through the BBB, as well as the current research progress on this mechanism.
Collapse
Affiliation(s)
- Fei Wang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China; (F.W.); (L.Q.); (Z.Z.); (H.D.); (Y.W.)
| | - Liujie Qi
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China; (F.W.); (L.Q.); (Z.Z.); (H.D.); (Y.W.)
| | - Zhongna Zhang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China; (F.W.); (L.Q.); (Z.Z.); (H.D.); (Y.W.)
| | - Huimin Duan
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China; (F.W.); (L.Q.); (Z.Z.); (H.D.); (Y.W.)
| | - Yanchao Wang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China; (F.W.); (L.Q.); (Z.Z.); (H.D.); (Y.W.)
| | - Kun Zhang
- School of Life Science, Zhengzhou University, Zhengzhou 450001, China
| | - Jingan Li
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China; (F.W.); (L.Q.); (Z.Z.); (H.D.); (Y.W.)
| |
Collapse
|
29
|
Yang F, Stahnke R, Lawal K, Mahnen C, Duffy P, Xu S, Durig T. Development of poly (lactic-co-glycolic acid) (PLGA) based implants using hot melt extrusion (HME) for sustained release of drugs: The impacts of PLGA's material characteristics. Int J Pharm 2024; 663:124556. [PMID: 39122196 DOI: 10.1016/j.ijpharm.2024.124556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/26/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024]
Abstract
Hot melt extrusion (HME) processed Poly (lactic-co-glycolic acid) (PLGA) implant is one of the commercialized drug delivery products, which has solid, well-designed shape and rigid structures that afford efficient locoregional drug delivery on the spot of interest for months. In general, there are a variety of material, processing, and physiological factors that impact the degradation rates of PLGA-based implants and concurrent drug release kinetics. The objective of this study was to investigate the impacts of PLGA's material characteristics on PLGA degradation and subsequent drug release behavior from the implants. Three model drugs (Dexamethasone, Carbamazepine, and Metformin hydrochloride) with different water solubility and property were formulated with different grades of PLGAs possessing distinct co-polymer ratios, molecular weights, end groups, and levels of residual monomer (high/ViatelTM and low/ ViatelTM Ultrapure). Physicochemical characterizations revealed that the plasticity of PLGA was inversely proportional to its molecular weight; moreover, the residual monomer could impose a plasticizing effect on PLGA, which increased its thermal plasticity and enhanced its thermal processability. Although the morphology and microstructure of the implants were affected by many factors, such as processing parameters, polymer and drug particle size and distribution, polymer properties and polymer-drug interactions, implants prepared with ViatelTM PLGA showed a smoother surface and a stronger PLGA-drug intimacy than the implants with ViatelTM Ultrapure PLGA, due to the higher plasticity of the ViatelTM PLGA. Subsequently, the implants with ViatelTM PLGA exhibited less burst release than implants with ViatelTM Ultrapure PLGA, however, their onset and progress of the lag and substantial release phases were shorter and faster than the ViatelTM Ultrapure PLGA-based implants, owing to the residual monomer accelerated the water diffusion and autocatalyzed PLGA hydrolysis. Even though the drug release profiles were also influenced by other factors, such as composition, drug properties and polymer-drug interaction, all three cases revealed that the residual monomer accelerated the swelling and degradation of PLGA and impaired the implant's integrity, which could negatively affect the subsequent drug release behavior and performance of the implants. These results provided insights to formulators on rational PLGA implant design and polymer selection.
Collapse
Affiliation(s)
| | - Ryan Stahnke
- Ashland Specialty Ingredients, Wilmington, DE, USA
| | - Kamaru Lawal
- Ashland Specialty Ingredients, Wilmington, DE, USA
| | - Cory Mahnen
- Ashland Specialty Ingredients, Wilmington, DE, USA
| | | | - Shuyu Xu
- Ashland Specialty Ingredients, Wilmington, DE, USA
| | - Thomas Durig
- Ashland Specialty Ingredients, Wilmington, DE, USA
| |
Collapse
|
30
|
López-Espinosa J, Park P, Holcomb M, Godin B, Villapol S. Nanotechnology-driven therapies for neurodegenerative diseases: a comprehensive review. Ther Deliv 2024; 15:997-1024. [PMID: 39297726 PMCID: PMC11583628 DOI: 10.1080/20415990.2024.2401307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 09/03/2024] [Indexed: 11/22/2024] Open
Abstract
Neurological diseases, characterized by neuroinflammation and neurodegeneration, impose a significant global burden, contributing to substantial morbidity, disability and mortality. A common feature of these disorders, including stroke, traumatic brain injury and Alzheimer's disease, is the impairment of the blood-brain barrier (BBB), a critical structure for maintaining brain homeostasis. The compromised BBB in neurodegenerative conditions poses a significant challenge for effective treatment, as it allows harmful substances to accumulate in the brain. Nanomedicine offers a promising approach to overcoming this barrier, with nanoparticles (NPs) engineered to deliver therapeutic agents directly to affected brain regions. This review explores the classification and design of NPs, divided into organic and inorganic categories and further categorized based on their chemical and physical properties. These characteristics influence the ability of NPs to carry and release therapeutic agents, target specific tissues and ensure appropriate clearance from the body. The review emphasizes the potential of NPs to enhance the diagnosis and treatment of neurodegenerative diseases through targeted delivery, improved drug bioavailability and real-time therapeutic efficacy monitoring. By addressing the challenges of the compromised BBB and targeting inflammatory biomarkers, NPs represent a cutting-edge strategy in managing neurological disorders, promising better patient outcomes.
Collapse
Affiliation(s)
- Jessica López-Espinosa
- Department of Neurosurgery & Center for Neuroregeneration, Houston, TX USA
- School of Medicine and Health Sciences of Tecnológico de Monterrey, Guadalajara, México
| | - Peter Park
- Department of Neurosurgery & Center for Neuroregeneration, Houston, TX USA
| | - Morgan Holcomb
- Department of Neurosurgery & Center for Neuroregeneration, Houston, TX USA
| | - Biana Godin
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TXUSA
- Department of Obstetrics & Gynecology, Houston Methodist Hospital, Houston, TXUSA
- Department of Obstetrics & Gynecology, Weill Cornell Medicine College, New York, NYUSA
- Department of Biomedical Engineering, Texas A&M University, College Station, TXUSA
| | - Sonia Villapol
- Department of Neurosurgery & Center for Neuroregeneration, Houston, TX USA
- Department of Neuroscience in Neurological Surgery, Weill Cornell Medical College, New York, NY USA
| |
Collapse
|
31
|
Zhang Y, Tian J. Strategies, Challenges, and Prospects of Nanoparticles in Gynecological Malignancies. ACS OMEGA 2024; 9:37459-37504. [PMID: 39281920 PMCID: PMC11391544 DOI: 10.1021/acsomega.4c04573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/07/2024] [Accepted: 08/09/2024] [Indexed: 09/18/2024]
Abstract
Gynecologic cancers are a significant health issue for women globally. Early detection and successful treatment of these tumors are crucial for the survival of female patients. Conventional therapies are often ineffective and harsh, particularly in advanced stages, necessitating the exploration of new therapy options. Nanotechnology offers a novel approach to biomedicine. A novel biosensor utilizing bionanotechnology can be employed for early tumor identification and therapy due to the distinctive physical and chemical characteristics of nanoparticles. Nanoparticles have been rapidly applied in the field of gynecologic malignancies, leading to significant advancements in recent years. This study highlights the significance of nanoparticles in treating gynecological cancers. It focuses on using nanoparticles for precise diagnosis and continuous monitoring of the disease, innovative imaging, and analytic methods, as well as multifunctional drug delivery systems and targeted therapies. This review examines several nanocarrier systems, such as dendrimers, liposomes, nanocapsules, and nanomicelles, for gynecological malignancies. The review also examines the enhanced therapeutic potential and targeted delivery of ligand-functionalized nanoformulations for gynecological cancers compared to nonfunctionalized anoformulations. In conclusion, the text also discusses the constraints and future exploration prospects of nanoparticles in chemotherapeutics. Nanotechnology will offer precise methods for diagnosing and treating gynecological cancers.
Collapse
Affiliation(s)
- Yingfeng Zhang
- University-Town Hospital of Chongqing Medical University, Chongqing 401331, China
| | - Jing Tian
- University-Town Hospital of Chongqing Medical University, Chongqing 401331, China
| |
Collapse
|
32
|
Ma CS, Ma YP, Han B, Duan WL, Meng SC, Bai M, Dong H, Zhang LY, Duan MY, Liu J, Deng AJ, He MT. Apelin-13-Loaded Macrophage Membrane-Encapsulated Nanoparticles for Targeted Ischemic Stroke Therapy via Inhibiting NLRP3 Inflammasome-Mediated Pyroptosis. Int J Nanomedicine 2024; 19:9175-9193. [PMID: 39263632 PMCID: PMC11389709 DOI: 10.2147/ijn.s475915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 09/03/2024] [Indexed: 09/13/2024] Open
Abstract
Purpose Ischemic stroke is a refractory disease wherein the reperfusion injury caused by sudden restoration of blood supply is the main cause of increased mortality and disability. However, current therapeutic strategies for the inflammatory response induced by cerebral ischemia-reperfusion (I/R) injury are unsatisfactory. This study aimed to develop a functional nanoparticle (MM/ANPs) comprising apelin-13 (APNs) encapsulated in macrophage membranes (MM) modified with distearoyl phosphatidylethanolamine-polyethylene glycol-RVG29 (DSPE-PEG-RVG29) to achieve targeted therapy against ischemic stroke. Methods MM were extracted from RAW264.7. PLGA was dissolved in dichloromethane, while Apelin-13 was dissolved in water, and CY5.5 was dissolved in dichloromethane. The precipitate was washed twice with ultrapure water and then resuspended in 10 mL to obtain an aqueous solution of PLGA nanoparticles. Subsequently, the cell membrane was evenly dispersed homogeneously and mixed with PLGA-COOH at a mass ratio of 1:1 for the hybrid ultrasound. DSPE-PEG-RVG29 was added and incubated for 1 h to obtain MM/ANPs. Results In this study, we developed a functional nanoparticle delivery system (MM/ANPs) that utilizes macrophage membranes coated with DSPE-PEG-RVG29 peptide to efficiently deliver Apelin-13 to inflammatory areas using ischemic stroke therapy. MM/ANPs effectively cross the blood-brain barrier and selectively accumulate in ischemic and inflamed areas. In a mouse I/R injury model, these nanoparticles significantly improved neurological scores and reduced infarct volume. Apelin-13 is gradually released from the MM/ANPs, inhibiting NLRP3 inflammasome assembly by enhancing sirtuin 3 (SIRT3) activity, which suppresses the inflammatory response and pyroptosis. The positive regulation of SIRT3 further inhibits the NLRP3-mediated inflammation, showing the clinical potential of these nanoparticles for ischemic stroke treatment. The biocompatibility and safety of MM/ANPs were confirmed through in vitro cytotoxicity tests, blood-brain barrier permeability tests, biosafety evaluations, and blood compatibility studies. Conclusion MM/ANPs offer a highly promising approach to achieve ischemic stroke-targeted therapy inhibiting NLRP3 inflammasome-mediated pyroptosis.
Collapse
Affiliation(s)
- Chang-Sheng Ma
- Department of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong, People’s Republic of China
- Department of Ophthalmology, Affiliated Hospital of Shandong Second Medical University, Weifang, People’s Republic of China
| | - Ya-Ping Ma
- Department of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong, People’s Republic of China
- Department of Pathology, The 942Hospital of the People’s Liberation Army Joint Logistic Support Force, Yinchuan, People’s Republic of China
| | - Bo Han
- Department of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong, People’s Republic of China
- Department of Ophthalmology, Affiliated Hospital of Shandong Second Medical University, Weifang, People’s Republic of China
| | - Wan-Li Duan
- Department of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong, People’s Republic of China
| | - Shu-Chen Meng
- Department of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong, People’s Republic of China
| | - Min Bai
- Department of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong, People’s Republic of China
| | - Hao Dong
- Department of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong, People’s Republic of China
| | - Li-Ying Zhang
- Department of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong, People’s Republic of China
| | - Meng-Yuan Duan
- Department of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong, People’s Republic of China
- Department of Ophthalmology, Affiliated Hospital of Shandong Second Medical University, Weifang, People’s Republic of China
| | - Jing Liu
- Department of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong, People’s Republic of China
| | - Ai-Jun Deng
- Department of Ophthalmology, Affiliated Hospital of Shandong Second Medical University, Weifang, People’s Republic of China
| | - Mao-Tao He
- Department of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong, People’s Republic of China
- Department of Ophthalmology, Affiliated Hospital of Shandong Second Medical University, Weifang, People’s Republic of China
| |
Collapse
|
33
|
Mehata AK, Bonlawar J, Tamang R, Malik AK, Setia A, Kumar S, Challa RR, Vallamkonda B, Koch B, Muthu MS. PLGA Nanoplatform for the Hypoxic Tumor Delivery: Folate Targeting, Therapy, and Ultrasound/Photoacoustic Imaging. ACS APPLIED BIO MATERIALS 2024; 7:5754-5770. [PMID: 39115968 DOI: 10.1021/acsabm.4c00853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Effective targeting of breast tumors is critical for improving therapeutic outcomes in breast cancer treatment. Additionally, hypoxic breast cancers are difficult to treat due to resistance toward chemotherapeutics, poor vascularity, and enhanced angiogenesis, which complicate effective drug delivery and therapeutic response. Addressing this formidable challenge requires designing a drug delivery system capable of targeted delivery of the anticancer agent, inhibition of efflux pump, and suppression of the tumor angiogenesis. Here, we have introduced Palbociclib (PCB)-loaded PLGA nanoparticles (NPs) consisting of chitosan-folate (CS-FOL) for folate receptor-targeted breast cancer therapy. The developed NPs were below 219 nm with a smooth, spherical surface shape. The entrapment efficiencies of NPs were achieved up to 85.78 ± 1.8%. Targeted NPs demonstrated faster drug release at pH 5.5, which potentiated the therapeutic efficacy of NPs due to the acidic microenvironment of breast cancer. In vitro cellular uptake study in MCF-7 cells confirmed the receptor-mediated endocytosis of targeted NPs. In vivo ultrasound and photoacoustic imaging studies on rats with hypoxic breast cancer showed that targeted NPs significantly reduced tumor growth and hypoxic tumor volume, and suppressed angiogenesis.
Collapse
Affiliation(s)
- Abhishesh Kumar Mehata
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, U.P., India
| | - Jyoti Bonlawar
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, U.P., India
| | - Rupen Tamang
- Genotoxicology and Cancer Biology Lab, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, U.P., India
| | - Ankit Kumar Malik
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, U.P., India
| | - Aseem Setia
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, U.P., India
| | - Shailendra Kumar
- SATHI, Central Discovery Centre, Banaras Hindu University, Varanasi 221005, U.P., India
| | - Ranadheer Reddy Challa
- Department of Pharmaceutical Science, School of Applied Sciences and Humanities, VIGNAN's Foundation for Science, Technology & Research, Vadlamudi 522213, Andhra Pradesh, India
| | - Bhaskar Vallamkonda
- Department of Pharmaceutical Science, School of Applied Sciences and Humanities, VIGNAN's Foundation for Science, Technology & Research, Vadlamudi 522213, Andhra Pradesh, India
| | - Biplob Koch
- Genotoxicology and Cancer Biology Lab, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, U.P., India
| | - Madaswamy S Muthu
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, U.P., India
| |
Collapse
|
34
|
Subramanian G, Kalidasan K, Quah S, Han QCG, Chan J, Wacker MG, Sampath P. Breaking barriers: Innovative approaches for skin delivery of RNA therapeutics. Int J Pharm 2024; 661:124435. [PMID: 38986965 DOI: 10.1016/j.ijpharm.2024.124435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 06/30/2024] [Accepted: 07/04/2024] [Indexed: 07/12/2024]
Abstract
RNA therapeutics represent a rapidly expanding platform with game-changing prospects in personalized medicine. The disruptive potential of this technology will overhaul the standard of care with reference to both primary and specialty care. To date, RNA therapeutics have mostly been delivered parenterally via injection, but topical administration followed by intradermal or transdermal delivery represents an attractive method that is convenient to patients and minimally invasive. The skin barrier, particularly the lipid-rich stratum corneum, presents a significant hurdle to the uptake of large, charged oligonucleotide drugs. Therapeutic oligonucleotides need to be engineered for stability and specificity and formulated with state-of-the-art delivery strategies for efficient uptake. This review will cover various passive and active strategies deployed to enhance permeation through the stratum corneum and achieve effective delivery of RNA therapeutics to treat both local skin disorders and systemic diseases. Some strategies to achieve selectivity between local and systemic administration will also be discussed.
Collapse
Affiliation(s)
- Gowtham Subramanian
- A*STAR Skin Research Labs (A*SRL), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove #06-06 Immunos, Singapore 138648, Singapore
| | - Kamaladasan Kalidasan
- A*STAR Skin Research Labs (A*SRL), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove #06-06 Immunos, Singapore 138648, Singapore
| | - Shan Quah
- A*STAR Skin Research Labs (A*SRL), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove #06-06 Immunos, Singapore 138648, Singapore
| | - Qi Chou Gavin Han
- Department of Pharmacy and Pharmaceutical Sciences, Faculty of Science, National University of Singapore (NUS), 4 Science Drive 2, Singapore 117544, Singapore
| | - Justin Chan
- A*STAR Skin Research Labs (A*SRL), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove #06-06 Immunos, Singapore 138648, Singapore
| | - Matthias G Wacker
- Department of Pharmacy and Pharmaceutical Sciences, Faculty of Science, National University of Singapore (NUS), 4 Science Drive 2, Singapore 117544, Singapore.
| | - Prabha Sampath
- A*STAR Skin Research Labs (A*SRL), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove #06-06 Immunos, Singapore 138648, Singapore; Skin Research Institute of Singapore (SRIS), 11 Mandalay Road #17-01 Clinical Sciences Building, Singapore 308232, Singapore; Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, #02-01 Genome, Singapore 138672, Singapore; Program in Cancer & Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore.
| |
Collapse
|
35
|
Zhuo Y, Zeng H, Su C, Lv Q, Cheng T, Lei L. Tailoring biomaterials for vaccine delivery. J Nanobiotechnology 2024; 22:480. [PMID: 39135073 PMCID: PMC11321069 DOI: 10.1186/s12951-024-02758-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 08/06/2024] [Indexed: 08/15/2024] Open
Abstract
Biomaterials are substances that can be injected, implanted, or applied to the surface of tissues in biomedical applications and have the ability to interact with biological systems to initiate therapeutic responses. Biomaterial-based vaccine delivery systems possess robust packaging capabilities, enabling sustained and localized drug release at the target site. Throughout the vaccine delivery process, they can contribute to protecting, stabilizing, and guiding the immunogen while also serving as adjuvants to enhance vaccine efficacy. In this article, we provide a comprehensive review of the contributions of biomaterials to the advancement of vaccine development. We begin by categorizing biomaterial types and properties, detailing their reprocessing strategies, and exploring several common delivery systems, such as polymeric nanoparticles, lipid nanoparticles, hydrogels, and microneedles. Additionally, we investigated how the physicochemical properties and delivery routes of biomaterials influence immune responses. Notably, we delve into the design considerations of biomaterials as vaccine adjuvants, showcasing their application in vaccine development for cancer, acquired immunodeficiency syndrome, influenza, corona virus disease 2019 (COVID-19), tuberculosis, malaria, and hepatitis B. Throughout this review, we highlight successful instances where biomaterials have enhanced vaccine efficacy and discuss the limitations and future directions of biomaterials in vaccine delivery and immunotherapy. This review aims to offer researchers a comprehensive understanding of the application of biomaterials in vaccine development and stimulate further progress in related fields.
Collapse
Affiliation(s)
- Yanling Zhuo
- College of Intelligent Agriculture, Yulin Normal University, Yulin, 537000, China
| | - Huanxuan Zeng
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China
| | - Chunyu Su
- College of Intelligent Agriculture, Yulin Normal University, Yulin, 537000, China
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, 310015, China
| | - Qizhuang Lv
- College of Intelligent Agriculture, Yulin Normal University, Yulin, 537000, China.
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China.
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Yulin, 537000, China.
| | - Tianyin Cheng
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China.
| | - Lanjie Lei
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, 310015, China.
| |
Collapse
|
36
|
Liu C, Yang QQ, Zhou YL. Peptides and Wound Healing: From Monomer to Combination. Int J Pept Res Ther 2024; 30:46. [DOI: 10.1007/s10989-024-10627-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/29/2024] [Indexed: 01/02/2025]
|
37
|
Wang D, Li Q, Xiao C, Wang H, Dong S. Nanoparticles in Periodontitis Therapy: A Review of the Current Situation. Int J Nanomedicine 2024; 19:6857-6893. [PMID: 39005956 PMCID: PMC11246087 DOI: 10.2147/ijn.s465089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 06/10/2024] [Indexed: 07/16/2024] Open
Abstract
Periodontitis is a disease of inflammation that affects the tissues supporting the periodontium. It is triggered by an immunological reaction of the gums to plaque, which leads to the destruction of periodontal attachment structures. Periodontitis is one of the most commonly recognized dental disorders in the world and a major factor in the loss of adult teeth. Scaling and root planing remain crucial for managing patients with persistent periodontitis. Nevertheless, exclusive reliance on mechanical interventions like periodontal surgery, extractions, and root planning is insufficient to halt the progression of periodontitis. In response to the problem of bacterial resistance, some researchers are committed to finding alternative therapies to antibiotics. In addition, some scholars focus on finding new materials to provide a powerful microenvironment for periodontal tissue regeneration and promote osteogenic repair. Nanoparticles possess distinct therapeutic qualities, including exceptional antibacterial, anti-inflammatory, and antioxidant properties, immunomodulatory capacities, and the promotion of bone regeneration ability, which made them can be used for the treatment of periodontitis. However, there are many problems that limit the clinical translation of nanoparticles, such as toxic accumulation in cells, poor correlation between in vitro and in vivo, and poor animal-to-human transmissibility. In this paper, we review the present researches on nanoparticles in periodontitis treatment from the perspective of three main categories: inorganic nanoparticles, organic nanoparticles, and nanocomposites (including nanofibers, hydrogels, and membranes). The aim of this review is to provide a comprehensive and recent update on nanoparticles-based therapies for periodontitis. The conclusion section summarizes the opportunities and challenges in the design and clinical translation of nanoparticles for the treatment of periodontitis.
Collapse
Affiliation(s)
- Di Wang
- The First Outpatient Department, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, People’s Republic of China
| | - Qiqi Li
- The First Outpatient Department, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, People’s Republic of China
| | - Chunsheng Xiao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, People’s Republic of China
| | - Hao Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, People’s Republic of China
| | - Shujun Dong
- The First Outpatient Department, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
| |
Collapse
|
38
|
Roig X, Halbaut L, Elmsmari F, Pareja R, Arrien A, Duran-Sindreu F, Delgado LM, Espina M, García ML, Sánchez JAG, Sánchez-López E. Calcium hydroxide-loaded nanoparticles dispersed in thermosensitive gel as a novel intracanal medicament. Int Endod J 2024; 57:907-921. [PMID: 38374518 DOI: 10.1111/iej.14041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/13/2024] [Accepted: 01/27/2024] [Indexed: 02/21/2024]
Abstract
AIM Design, produce and assess the viability of a novel nanotechnological antibacterial thermo-sensible intracanal medicament This involves encapsulating calcium hydroxide (Ca(OH)2) within polylactic-co-glycolic acid (PLGA) nanoparticles (NPs) and dispersing them in a thermosensitive gel (Ca(OH)2-NPs-gel). In addition, perform in vitro and ex vivo assessments to evaluate tissue irritation and penetration capacity into dentinal tubules in comparison to free Ca(OH)2. METHODOLOGY Reproducibility of Ca(OH)₂-NPs was confirmed by obtaining the average size of the NPs, their polydispersity index, zeta potential and entrapment efficiency. Moreover, rheological studies of Ca(OH)2-NPs-gel were carried out with a rheometer, studying the oscillatory stress sweep, the mean viscosity value, frequency and temperature sweeps. Tolerance was assessed using the membrane of an embryonated chicken egg. In vitro Ca(OH)2 release was studied by direct dialysis in an aqueous media monitoring the amount of Ca(OH)2 released. Six extracted human teeth were used to study the depth of penetration of fluorescently labelled Ca(OH)2-NPs-gel into the dentinal tubules and significant differences against free Ca(OH)2 were calculated using one-way anova. RESULTS Ca(OH)2-NPs-gel demonstrated to be highly reproducible with an average size below 200 nm, a homogeneous NPs population, negative surface charge and high entrapment efficiency. The analysis of the thermosensitive gel allowed us to determine its rheological characteristics, showing that at 10°C gels owned a fluid-like behaviour meanwhile at 37°C they owned an elastic-like behaviour. Ca(OH)2-NPs-gel showed a prolonged drug release and the depth of penetration inside the dentinal tubules increased in the most apical areas. In addition, it was found that this drug did not produce irritation when applied to tissues such as eggs' chorialantoidonic membrane. CONCLUSION Calcium hydroxide-loaded PLGA NPs dispersed in a thermosensitive gel may constitute a suitable alternative as an intracanal antibacterial medicament.
Collapse
Affiliation(s)
- Xavier Roig
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Lyda Halbaut
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Firas Elmsmari
- Department of Clinical Sciences, College of Dentistry, Ajman University, Ajman, United Arab Emirates
- Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Rubén Pareja
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, University of Helsinki, Helsinki, Finland
| | - Aizea Arrien
- Department of Endodontics, Faculty of Dentistry, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Fernando Duran-Sindreu
- Department of Endodontics, Faculty of Dentistry, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Luis María Delgado
- Bioengineering Institute of Technology, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Marta Espina
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain
| | - María Luisa García
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain
| | | | - Elena Sánchez-López
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain
- Unit of Synthesis and Biomedical Applications of Peptides, IQAC-CSIC, Barcelona, Spain
| |
Collapse
|
39
|
Rahimnia SM, Saeedi M, Akbari J, Morteza-Semnani K, Hedayatizadeh-Omran A, Yazdian-Robati R. Development, Optimization, and in vitro Evaluation of Silybin-loaded PLGA Nanoparticles and Decoration with 5TR1 Aptamer for Targeted Delivery to Colorectal Cancer Cells. AAPS PharmSciTech 2024; 25:141. [PMID: 38898204 DOI: 10.1208/s12249-024-02858-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
Chemotherapeutic agents often lack specificity, intratumoral accumulation, and face drug resistance. Targeted drug delivery systems based on nanoparticles (NPs) mitigate these issues. Poly (lactic-co-glycolic acid) (PLGA) is a well-studied polymer, commonly modified with aptamers (Apts) for cancer diagnosis and therapy. In this study, silybin (SBN), a natural agent with established anticancer properties, was encapsulated into PLGA NPs to control delivery and improve its poor solubility. The field-emission scanning electron microscopy (FE-SEM) showed spherical and uniform morphology of optimum SBN-PLGA NPs with 138.57±1.30nm diameter, 0.202±0.004 polydispersity index (PDI), -16.93±0.45mV zeta potential (ZP), and 70.19±1.63% entrapment efficiency (EE). The results of attenuated total reflectance-Fourier transform infrared (ATR-FTIR) showed no chemical interaction between formulation components, and differential scanning calorimetry (DSC) thermograms confirmed efficient SBN entrapment in the carrier. Then, the optimum formulation was functionalized with 5TR1 Apt for active targeted delivery of SBN to colorectal cancer (CRC) cells in vitro. The SBN-PLGA-5TR1 nanocomplex released SBN at a sustained and constant rate (zero-order kinetic), favoring passive delivery to acidic CRC environments. The MTT assay demonstrated the highest cytotoxicity of the SBN-PLGA-5TR1 nanocomplex in C26 and HT29 cells and no significant cytotoxicity in normal cells. Apoptosis analysis supported these results, showing early apoptosis induction with SBN-PLGA-5TR1 nanocomplex which indicated this agent could cause programmed death more than necrosis. This study presents the first targeted delivery of SBN to cancer cells using Apts. The SBN-PLGA-5TR1 nanocomplex effectively targeted and suppressed CRC cell proliferation, providing valuable insights into CRC treatment without harmful effects on healthy tissues.
Collapse
Affiliation(s)
- Seyyed Mobin Rahimnia
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
- Student Research Committee, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Majid Saeedi
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran.
- Pharmaceutical Sciences Research Centre, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Jafar Akbari
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Katayoun Morteza-Semnani
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Akbar Hedayatizadeh-Omran
- Gastrointestinal Cancer Research Center, Non-Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Rezvan Yazdian-Robati
- Pharmaceutical Sciences Research Centre, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
40
|
Xu L, Zhou Y, Li N, Yang A, Qi H. Platelet membrane encapsulated curcumin nanomaterial-mediated specific thrombolysis and anti-thrombotic treatment among pregnant women. Biomater Sci 2024; 12:3163-3174. [PMID: 38726643 DOI: 10.1039/d4bm00149d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
The current treatment for venous thrombosis during pregnancy is ineffective, primarily, due to the unique physiology of pregnant women. Most clinical medications have fetal side effects when they circulate in the body. We first synthesized nanomaterials (Cur-PFP@PC) using poly lactic-co-glycolic acid (PLGA) as the base material, with curcumin (Cur) and perfluoropentane (PFP) as core components. Subsequently, we encapsulated Cur-PFP@PC into the platelet membrane to synthesize P-Cur-PFP@PC. Under ultrasound guidance, in combination with low-intensity focused ultrasound (LIFU), PFP underwent a phase change, resulting in thrombolysis. The generated microbubbles enhanced the signal impact of ultrasound, and P-Cur-PFP@PC showed better performance than Cur-PFP@PC. P-Cur-PFP@PC can target thrombosis treatment, achieve visually and precisely controlled drug release, and repair damaged blood vessels, thus avoiding the adverse effects associated with traditional long-term drug administration.
Collapse
Affiliation(s)
- Lin Xu
- The Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing 400016, China
- Institute of Ultrasound Imaging, the Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
- Guiyang Maternal and Child Health Care Hospital, Guiyang 550002, Guizhou, China
| | - Yijie Zhou
- The Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing 400016, China
- Institute of Ultrasound Imaging, the Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
- Guiyang Maternal and Child Health Care Hospital, Guiyang 550002, Guizhou, China
| | - Na Li
- The Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing 400016, China
- Institute of Ultrasound Imaging, the Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Anyu Yang
- Institute of Ultrasound Imaging, the Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Hongbo Qi
- Women and Children's Hospital of Chongqing Medical University, Chongqing 401147, China.
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing 400016, China
- Joint International Research Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
41
|
Saleh SR, Abd-Elmegied A, Aly Madhy S, Khattab SN, Sheta E, Elnozahy FY, Mehanna RA, Ghareeb DA, Abd-Elmonem NM. Brain-targeted Tet-1 peptide-PLGA nanoparticles for berberine delivery against STZ-induced Alzheimer's disease in a rat model: Alleviation of hippocampal synaptic dysfunction, Tau pathology, and amyloidogenesis. Int J Pharm 2024; 658:124218. [PMID: 38734273 DOI: 10.1016/j.ijpharm.2024.124218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/06/2024] [Accepted: 05/08/2024] [Indexed: 05/13/2024]
Abstract
Alzheimer's disease (AD) is an age-related neurodegenerative disorder that causes severe dementia and memory loss. Surface functionalized poly(lactic-co-glycolic acid) nanoparticles have been reported for better transport through the blood-brain barrier for AD therapy. This study investigated the improved therapeutic potential of berberine-loaded poly(lactic-co-glycolic acid)/Tet-1 peptide nanoparticles (BBR/PLGA-Tet NPs) in a rat model of sporadic AD. BBR was loaded into the PLGA-Tet conjugate. BBR/PLGA-Tet NPs were physicochemically and morphologically characterized. AD was achieved by bilateral intracerebroventricular (ICV) injection of streptozotocin (STZ). Cognitively impaired rats were divided into STZ, STZ + BBR, STZ + BBR/PLGA-Tet NPs, and STZ + PLGA-Tet NPs groups. Cognitive improvement was assessed using the Morris Water Maze. Brain acetylcholinesterase and monoamine oxidase activities, amyloid β42 (Aβ42), and brain glycemic markers were estimated. Further, hippocampal neuroplasticity (BDNF, pCREB, and pERK/ERK), Tau pathogenesis (pGSK3β/GSK3β, Cdk5, and pTau), inflammatory, and apoptotic markers were evaluated. Finally, histopathological changes were monitored. ICV-STZ injection produces AD-like pathologies evidenced by Aβ42 deposition, Tau hyperphosphorylation, impaired insulin signaling and neuroplasticity, and neuroinflammation. BBR and BBR/PLGA-Tet NPs attenuated STZ-induced hippocampal damage, enhanced cognitive performance, and reduced Aβ42, Tau phosphorylation, and proinflammatory responses. BBR/PLGA-Tet NPs restored neuroplasticity, cholinergic, and monoaminergic function, which are critical for cognition and brain function. BBR/PLGA-Tet NPs may have superior therapeutic potential in alleviating sporadic AD than free BBR due to their bioavailability, absorption, and brain uptake.
Collapse
Affiliation(s)
- Samar R Saleh
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt; Bio-Screening and Preclinical Trial Lab, Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt.
| | - Aml Abd-Elmegied
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt; Bio-Screening and Preclinical Trial Lab, Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Somaya Aly Madhy
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt.
| | - Sherine N Khattab
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt.
| | - Eman Sheta
- Pathology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt.
| | - Fatma Y Elnozahy
- Medical Physiology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt.
| | - Radwa A Mehanna
- Medical Physiology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt; Center of Excellence for Research in Regenerative Medicine and Applications (CERRMA), Faculty of Medicine, Alexandria University, Alexandria, Egypt.
| | - Doaa A Ghareeb
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt; Bio-Screening and Preclinical Trial Lab, Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt.
| | - Nihad M Abd-Elmonem
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| |
Collapse
|
42
|
Gohari S, Hosseini SM, Nouri F, Yousefimashouf R, Arabestani MR, Taheri M. Co-delivery of doxycycline and rifampicin using CdTe-labeled poly (lactic-co-glycolic) acid for treatment of Brucella melitensis infection. BMC Chem 2024; 18:100. [PMID: 38750589 PMCID: PMC11097527 DOI: 10.1186/s13065-024-01200-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 04/22/2024] [Indexed: 05/18/2024] Open
Abstract
Brucellosis poses a significant challenge in the medical field as a systemic infection with a propensity for relapse. This study presented a novel approach to brucellosis treatment, enhancing the efficacy of doxycycline and rifampicin through the use of poly (lactic-co-glycolic) acid coupled with cadmium-telluride quantum dots (Dox-Rif-PLGA@CdTe). The double emulsion solvent evaporation method was employed to prepare Dox-Rif-PLGA@CdTe. The study scrutinized the physicochemical attributes of these nanoparticles. The impact of antibiotic-loaded nanoparticles on Brucella melitensis was evaluated through well diffusion, minimum inhibitory concentration (MIC), and cell culture. The chemical analysis results demonstrated a possibility of chemical reactions occurring among the constituents of nanoparticles. Assessments using the well diffusion and MIC methods indicated that the impact of free drugs and nanoparticles on bacteria was equivalent. However, the drug-loaded nanoparticles significantly decreased the colony-forming units (CFUs) within the cell lines compared to free drugs. In conclusion, the synthesis of nanoparticles adhered to environmentally friendly practices and demonstrated safety. The sustained drug release over 100 h facilitated drug accumulation at the bacterial site, resulting in a heightened therapeutic effect on B. melitensis and improved outcomes in brucellosis treatment. The application of these synthesized nanodrugs exhibited promising therapeutic potential.
Collapse
Affiliation(s)
- Saeideh Gohari
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Seyed Mostafa Hosseini
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Infectious Disease Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Fatemeh Nouri
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Rasoul Yousefimashouf
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Reza Arabestani
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Taheri
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
43
|
Rezaei N, Zarkesh I, Fotouhi A, Alikhani HK, Hassan M, Vosough M. Chitosan-coated nanoparticles in innovative cancer bio-medicine. Drug Dev Res 2024; 85:e22189. [PMID: 38678548 DOI: 10.1002/ddr.22189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/13/2024] [Accepted: 03/20/2024] [Indexed: 05/01/2024]
Abstract
In the recent decade, nanoparticles (NPs) have had enormous implications in cancer biomedicine, including research, diagnosis, and therapy. However, their broad application still faces obstacles due to some practical limitations and requires further development. Recently, there has been more interest in the coated class of nanoparticles to address those challenges. Chitosan-coated NPs are simple to produce, biodegradable, biocompatible, exhibit antibacterial activity, and have less cytotoxicity. This study provides an updated and comprehensive overview of the application of chitosan-coated NPs as a promising class of NPs in cancer biomedicine. Additionally, we discussed chitosan-coated lipid, metal, and polymer-based nanoparticles in biomedical applications. Furthermore, different coating methods and production/characterization procedures were reviewed. Moreover, the biological and physicochemical advantages of chitosan-coated NPs, including facilitated controlled release, greater physicochemical stability, improved cell/tissue interaction, and enhanced bioavailability of medications, were highlighted. Finally, the prospects of chitosan-coated NPs in cancer biomedicine were discussed.
Collapse
Affiliation(s)
- Niloufar Rezaei
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Ibrahim Zarkesh
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Alireza Fotouhi
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnique), Tehran, Iran
| | - Hani Keshavarz Alikhani
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Moustapha Hassan
- Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
44
|
Cen H, Sun M, Zheng B, Peng W, Wen Q, Lin Z, Zhang X, Zhou N, Zhu G, Yu X, Zhang L, Liang L. Hyaluronic acid modified nanocarriers for aerosolized delivery of verteporfin in the treatment of acute lung injury. Int J Biol Macromol 2024; 267:131386. [PMID: 38582458 DOI: 10.1016/j.ijbiomac.2024.131386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/02/2024] [Accepted: 04/03/2024] [Indexed: 04/08/2024]
Abstract
Verteporfin (VER), a photosensitizer used in macular degeneration therapy, has shown promise in controlling macrophage polarization and alleviating inflammation in acute lung injury (ALI)/acute respiratory distress syndrome (ARDS). However, its hydrophobicity, limited bioavailability, and side effects hinder its therapeutic potential. In this study, we aimed to enhance the therapeutic potential of VER through pulmonary nebulized drug delivery for ALI/ARDS treatment. We combined hydrophilic hyaluronic acid (HA) with an oil-in-water system containing a poly(lactic acid-co-glycolic acid) (PLGA) copolymer of VER to synthesize HA@PLGA-VER (PHV) nanoparticles with favorable surface characteristics to improve the bioavailability and targeting ability of VER. PHV possesses suitable electrical properties, a narrow size distribution (approximately 200 nm), and favorable stability. In vitro and in vivo studies demonstrated the excellent biocompatibility, safety, and anti-inflammatory responses of the PHV by suppressing M1 macrophage polarization while inducing M2 polarization. The in vivo experiments indicated that the treatment with aerosolized nano-VER (PHV) allowed more drugs to accumulate and penetrate into the lungs, improved the pulmonary function and attenuated lung injury, and mortality of ALI mice, achieving improved therapeutic outcomes. These findings highlight the potential of PHV as a promising delivery system via nebulization for enhancing the therapeutic effects of VER in ALI/ARDS.
Collapse
Affiliation(s)
- Huiyu Cen
- The Fifth Affiliated Hospital, Guangdong Province, NMPA and State Key Laboratory, The School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Mingna Sun
- The Fifth Affiliated Hospital, Guangdong Province, NMPA and State Key Laboratory, The School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Bingyu Zheng
- The Fifth Affiliated Hospital, Guangdong Province, NMPA and State Key Laboratory, The School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Weijie Peng
- The Fifth Affiliated Hospital, Guangdong Province, NMPA and State Key Laboratory, The School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Qiqi Wen
- The Fifth Affiliated Hospital, Guangdong Province, NMPA and State Key Laboratory, The School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Zhongxiao Lin
- The Fifth Affiliated Hospital, Guangdong Province, NMPA and State Key Laboratory, The School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, PR China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wailong, Taipa, Macau
| | - Xin Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wailong, Taipa, Macau
| | - Na Zhou
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wailong, Taipa, Macau
| | - Guanxiong Zhu
- The Fifth Affiliated Hospital, Guangdong Province, NMPA and State Key Laboratory, The School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, PR China; Department of Preventive Dentistry, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou 510182, PR China
| | - Xiyong Yu
- The Fifth Affiliated Hospital, Guangdong Province, NMPA and State Key Laboratory, The School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, PR China.
| | - Lingmin Zhang
- The Fifth Affiliated Hospital, Guangdong Province, NMPA and State Key Laboratory, The School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, PR China.
| | - Lu Liang
- The Fifth Affiliated Hospital, Guangdong Province, NMPA and State Key Laboratory, The School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, PR China.
| |
Collapse
|
45
|
Gao F, Rafiq M, Cong H, Yu B, Shen Y. Current research status and development prospects of embolic microspheres containing biological macromolecules and others. Int J Biol Macromol 2024; 267:131494. [PMID: 38608974 DOI: 10.1016/j.ijbiomac.2024.131494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/27/2024] [Accepted: 04/08/2024] [Indexed: 04/14/2024]
Abstract
Transcatheter arterial embolization (TACE) has been used in the treatment of malignant tumors, sudden hemorrhage, uterine fibroids, and other diseases, and with advances in imaging techniques and devices, materials science, and drug release technology, more and more embolic agents that are drug-carrying, self-imaging, or have multiple functions are being developed. Microspheres provide safer and more effective therapeutic results as embolic agents, with their unique spherical appearance and good embolic properties. Embolic microspheres are the key to arterial embolization, blocking blood flow and nutrient supply to the tumor target. This review summarizes some of the currently published embolic microspheres, classifies embolic microspheres according to matrix, and summarizes the characteristics of the microsphere materials, the current status of research, directions, and the value of existing and potential applications. It provides a direction to promote the development of embolic microspheres towards multifunctionalization, and provides a reference to promote the research and application of embolic microspheres in the treatment of tumors.
Collapse
Affiliation(s)
- Fengyuan Gao
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
| | - Muhammad Rafiq
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
| | - Hailin Cong
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China; State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China; School of Materials Science and Engineering, Shandong University of Technology, Zibo 255000, China.
| | - Bing Yu
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China; State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China.
| | - Youqing Shen
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China; Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bionanoengineering, and Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| |
Collapse
|
46
|
Park H, Patil TV, Dutta SD, Lee J, Ganguly K, Randhawa A, Kim H, Lim KT. Extracellular Matrix-Bioinspired Anisotropic Topographical Cues of Electrospun Nanofibers: A Strategy of Wound Healing through Macrophage Polarization. Adv Healthc Mater 2024; 13:e2304114. [PMID: 38295299 DOI: 10.1002/adhm.202304114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/16/2024] [Indexed: 02/02/2024]
Abstract
The skin serves as the body's outermost barrier and is the largest organ, providing protection not only to the body but also to various internal organs. Owing to continuous exposure to various external factors, it is susceptible to damage that can range from simple to severe, including serious types of wounds such as burns or chronic wounds. Macrophages play a crucial role in the entire wound-healing process and contribute significantly to skin regeneration. Initially, M1 macrophages infiltrate to phagocytose bacteria, debris, and dead cells in fresh wounds. As tissue repair is activated, M2 macrophages are promoted, reducing inflammation and facilitating restoration of the dermis and epidermis to regenerate the tissue. This suggests that extracellular matrix (ECM) promotes cell adhesion, proliferation, migrationand macrophage polarization. Among the numerous strategies, electrospinning is a versatile technique for obtaining ECM-mimicking structures with anisotropic and isotropic topologies of micro/nanofibers. Various electrospun biomaterials influence macrophage polarization based on their isotropic or anisotropic topologies. Moreover, these fibers possess a high surface-area-to-volume ratio, promoting the effective exchange of vital nutrients and oxygen, which are crucial for cell viability and tissue regeneration. Micro/nanofibers with diverse physical and chemical properties can be tailored to polarize macrophages toward skin regeneration and wound healing, depending on specific requirements. This review describes the significance of micro/nanostructures for activating macrophages and promoting wound healing.
Collapse
Affiliation(s)
- Hyeonseo Park
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Tejal V Patil
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Sayan Deb Dutta
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Institute of Forest Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Jieun Lee
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Keya Ganguly
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Aayushi Randhawa
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Hojin Kim
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Ki-Taek Lim
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Institute of Forest Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
| |
Collapse
|
47
|
Wu J, Wang X, Wang Y, Xun Z, Li S. Application of PLGA in Tumor Immunotherapy. Polymers (Basel) 2024; 16:1253. [PMID: 38732722 PMCID: PMC11085488 DOI: 10.3390/polym16091253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/24/2024] [Accepted: 04/28/2024] [Indexed: 05/13/2024] Open
Abstract
Biodegradable polymers have been extensively researched in the field of biomedicine. Polylactic-co-glycolic acid (PLGA), a biodegradable polymer material, has been widely used in drug delivery systems and has shown great potential in various medical fields, including vaccines, tissue engineering such as bone regeneration and wound healing, and 3D printing. Cancer, a group of diseases with high mortality rates worldwide, has recently garnered significant attention in the field of immune therapy research. In recent years, there has been growing interest in the delivery function of PLGA in tumor immunotherapy. In tumor immunotherapy, PLGA can serve as a carrier to load antigens on its surface, thereby enhancing the immune system's ability to attack tumor cells. Additionally, PLGA can be used to formulate tumor vaccines and immunoadjuvants, thereby enhancing the efficacy of tumor immunotherapy. PLGA nanoparticles (NPs) can also enhance the effectiveness of tumor immunotherapy by regulating the activity and differentiation of immune cells, and by improving the expression and presentation of tumor antigens. Furthermore, due to the diverse physical properties and surface modifications of PLGA, it has a wider range of potential applications in tumor immunotherapy through the loading of various types of drugs or other innovative substances. We aim to highlight the recent advances and challenges of plga in the field of oncology therapy to stimulate further research and development of innovative PLGA-based approaches, and more effective and personalized cancer therapies.
Collapse
Affiliation(s)
- Jiashuai Wu
- Innovation Institute, China Medical University, Shenyang 110122, China; (J.W.); (X.W.)
| | - Xiaopeng Wang
- Innovation Institute, China Medical University, Shenyang 110122, China; (J.W.); (X.W.)
| | - Yunduan Wang
- School of Intelligent Medicine, China Medical University, Shenyang 110122, China;
| | - Zhe Xun
- Liaoning Key Laboratory of Obesity and Glucose/Lipid Associated Metabolic Diseases, Health Science Institute, China Medical University, Shenyang 110122, China
| | - Shuo Li
- Department of Biochemistry & Molecular Biology, School of Life Sciences, China Medical University, Shenyang 110122, China
| |
Collapse
|
48
|
Teymouri F, Karimi E. Development of chitosan-folate modified PLGA nanoparticles for targeted delivery of diosgenin as an anticancer agent. Discov Oncol 2024; 15:100. [PMID: 38568336 PMCID: PMC10992453 DOI: 10.1007/s12672-024-00957-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 03/28/2024] [Indexed: 04/06/2024] Open
Abstract
Diosgenin as a potential phytoconstituent and steroidal saponin manifested significant anticancer agents against various cancers. To enhance its solubility and bioavailability in cancer treatment, we loaded diosgenin (PubChem CID: 99474) in poly(lactic-co-glycolide) (PLGA) nanoparticle coated with folic acid-chitosan (Da-PFC-NPs). The diosgenin nano-formulation was characterized and its antioxidant and anticancer properties were surveyed respectively. The obtained results illustrated that the Da-PFC-NPs were spherical and stable with a size of 218 nm and a polydispersity index of 0.41. The Da-PFC-NPs indicated potential free radical scavenging using ABTS and DPPH assay. Meanwhile, it demonstrated selective toxicity against the TUBO breast cancer cell with IC50 values of 104.45 μg/ml and did not show toxicity on normal cells (I929 cell line). The invivo funding exhibited that Da-PFC-NPs notably altered the liver enzymes (AST, ALT, ALP) and immunoglobulins (IgA, IgG, IgM). Besides that, different doses of Da-PFC-NPs (50 and 100 mg/kg) remarkedly enhance the expression of caspase 3 and decrease HER2 genes. In light of this experiment, we can conclude that Da-PFC-NPs have promise as novel carrier for improving the delivery of diosgenin in cancer therapy.
Collapse
Affiliation(s)
- Fatemeh Teymouri
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Ehsan Karimi
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran.
| |
Collapse
|
49
|
Sobel D, Ramasubramanian B, Sawhney P, Parmar K. Preparation of PLGA Microspheres Using the Non-Toxic Glycofurol as Polymer Solvent by a Modified Phase Inversion Methodology. Polymers (Basel) 2024; 16:434. [PMID: 38337323 DOI: 10.3390/polym16030434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/25/2024] [Accepted: 01/27/2024] [Indexed: 02/12/2024] Open
Abstract
Poly(D,L-lactide-co-glycolide is a biodegradable copolymer that can release pharmaceuticals. These pharmaceuticals can provide local therapy and also avert the clinical issues that occur when a drug must be given continuously and/or automatically. However, the drawbacks of using poly(D,L-lactide-co-glycolide include the kinetics and duration of time of poly(D,L-lactide-co-glycolide drug release, the denaturing of the drug loaded drug, and the potential clinical side effects. These drawbacks are mainly caused by the volatile organic solvents needed to prepare poly(D,L-lactide-co-glycolide spheres. Using the non-toxic solvent glycofurol solvent instead of volatile organic solvents to construct poly(D,L-lactide-co-glycolide microspheres may deter the issues of using volatile organic solvents. Up to now, preparation of such glycofurol spheres has previously met with limited success. We constructed dexamethasone laden poly(D,L-lactide-co-glycolide microspheres utilizing glycofurol as the solvent within a modified phase inversion methodology. These prepared microspheres have a higher drug load and a lower rate of water diffusion. This prolongs drug release compared to dichloromethane constructed spheres. The glycofurol-generated spheres are also not toxic to target cells as is the case for dichloromethane-constructed spheres. Further, glycofurol-constructed spheres do not denature the dexamethasone molecule and have kinetics of drug release that are more clinically advantageous, including a lower drug burst and a prolonged drug release.
Collapse
Affiliation(s)
- Douglas Sobel
- Medical School, Georgetown University, Washington, DC 20057, USA
| | | | - Puja Sawhney
- Medical School, Georgetown University, Washington, DC 20057, USA
| | - Keerat Parmar
- Medical School, Georgetown University, Washington, DC 20057, USA
| |
Collapse
|
50
|
Thalappil MA, Singh P, Carcereri de Prati A, Sahoo SK, Mariotto S, Butturini E. Essential oils and their nanoformulations for breast cancer therapy. Phytother Res 2024; 38:556-591. [PMID: 37919622 DOI: 10.1002/ptr.8054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/22/2023] [Accepted: 10/08/2023] [Indexed: 11/04/2023]
Abstract
Breast Cancer (BC) is the most prevalent type of cancer in the world. Current treatments include surgery, radiation, and chemotherapy but often are associated with high toxicity to normal tissues, chemoresistance, and relapse. Thus, developing novel therapies which could combat these limitations is essential for effective treatment. In this context, phytochemicals are increasingly getting popular due to their safety profile, ability to efficiently target tumors, and circumvent limitations of existing treatments. Essential Oils (EOs) are mixtures of various phytochemicals which have shown potential anticancer activity in preclinical BC models. However, their clinical translation is limited by factors such as high volatility, low stability, and poor solubility. Nanotechnology has facilitated their encapsulation in a variety of nanostructures and proven to overcome these limitations. In this review, we have efficiently summarized the current knowledge on the anticancer effect of EOs and constituents in both in in vitro and in in vivo BC models. Further, we also provide a descriptive account on the potential of nanotechnology in enhancing the anti-BC activity of EOs and their constituents. The papers discussed in this review were selected using the keywords "antiproliferative Essential Oils in breast cancer," "anticancer activity of Essential Oil in breast cancer," and "cytotoxicity of Essential Oils in breast cancer" performed in PubMed and ScienceDirect databases.
Collapse
Affiliation(s)
- Muhammed Ashiq Thalappil
- Department of Neuroscience, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, Verona, Italy
| | - Priya Singh
- Nanomedicine Laboratory, Institute of Life Sciences, Bhubaneswar, India
| | - Alessandra Carcereri de Prati
- Department of Neuroscience, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, Verona, Italy
| | | | - Sofia Mariotto
- Department of Neuroscience, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, Verona, Italy
| | - Elena Butturini
- Department of Neuroscience, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, Verona, Italy
| |
Collapse
|