1
|
Russell DG, Simwela NV, Mattila JT, Flynn J, Mwandumba HC, Pisu D. How macrophage heterogeneity affects tuberculosis disease and therapy. Nat Rev Immunol 2025; 25:370-384. [PMID: 39774813 DOI: 10.1038/s41577-024-01124-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2024] [Indexed: 01/11/2025]
Abstract
Macrophages are the primary host cell type for infection by Mycobacterium tuberculosis in vivo. Macrophages are also key immune effector cells that mediate the control of bacterial growth. However, the specific macrophage phenotypes that are required for optimal immune control of M. tuberculosis infection in vivo remain poorly defined. There are two distinct macrophage lineages in the lung, comprising embryonically derived, tissue-resident alveolar macrophages and recruited, blood monocyte-derived interstitial macrophages. Recent studies have shown that these lineages respond divergently to similar immune environments within the tuberculosis granuloma. Here, we discuss how the differing responses of macrophage lineages might affect the control or progression of tuberculosis disease. We suggest that the ability to reprogramme macrophage responses appropriately, through immunological or chemotherapeutic routes, could help to optimize vaccines and drug regimens for tuberculosis.
Collapse
Affiliation(s)
- David G Russell
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA.
| | - Nelson V Simwela
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Joshua T Mattila
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - JoAnne Flynn
- Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Henry C Mwandumba
- Malawi Liverpool Wellcome Research Programme, Kamuzu University of Health Sciences, Blantyre, Malawi
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Davide Pisu
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
- Department of Microbial Pathogenesis and Immunology, Texas A&M School of Medicine, Bryan, TX, USA
| |
Collapse
|
2
|
Bosma DMT, Busselaar J, Staal MD, Frijlink E, Mack M, Salerno F, Borst J. CD4 + T-cell help delivery to monocyte-derived dendritic cells promotes effector differentiation of helper and cytotoxic T cells. Immunol Lett 2025; 275:107022. [PMID: 40239818 DOI: 10.1016/j.imlet.2025.107022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 04/10/2025] [Accepted: 04/10/2025] [Indexed: 04/18/2025]
Abstract
Delivery of CD4+ T-cell help optimizes CD8+ T-cell effector and memory responses via CD40-mediated licensing of conventional dendritic cells (DCs). Using comparative vaccination settings that prime CD8+ T cells in presence or absence of CD4+ T-cell help, we observed that CD4+ T-cell activation promoted influx of monocytes into the vaccine-draining lymph nodes (dLNs), where they differentiated into monocyte-derived (Mo)DCs, as defined by the most recent standards. Abrogation of these responses by CCR2-targeted depletion indicated that monocyte-derived cells in the dLN promoted T-helper 1 (Th1) type effector differentiation of CD4+ T cells, as well as effector differentiation of CD8+ T cells. Monocyte-derived cells in dLNs upregulated CD40, CD80 and PD-L1 as a result of CD4+ T-cell help. The response of monocyte-derived cells to CD4+ T-cell help was independent of natural killer (NK) cells and proceeded via CD40 ligand (L)-CD40 interactions and IFNγ signaling. Our data argue for a scenario wherein activated CD4+ T cells in dLNs crosstalk via CD40L and IFNγ signals to monocytes, promoting their local differentiation into MoDCs. This event enhances formation of CD4+ Th1 and CD8+ cytotoxic effector T cell pool, most likely by virtue of their improved costimulatory status and cytokine production.
Collapse
Affiliation(s)
- Douwe M T Bosma
- Department of Immunology, Leiden University Medical Center, Leiden, the Netherlands
| | - Julia Busselaar
- Department of Immunology, Leiden University Medical Center, Leiden, the Netherlands
| | - Mo D Staal
- Department of Immunology, Leiden University Medical Center, Leiden, the Netherlands
| | - Elselien Frijlink
- Department of Immunology, Leiden University Medical Center, Leiden, the Netherlands
| | - Matthias Mack
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - Fiamma Salerno
- Department of Immunology, Leiden University Medical Center, Leiden, the Netherlands
| | - Jannie Borst
- Department of Immunology, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
3
|
Gong Z, Xu H, Zhang Q, Wang G, Fan L, Wang Z, Fan L, Liu C, Yu Y, Liu Z, Zhou Q, Xiao H, Hou R, Zhao Y, Chen Y, Xie J. Unveiling the immunological landscape of disseminated tuberculosis: a single-cell transcriptome perspective. Front Immunol 2025; 16:1527592. [PMID: 40092995 PMCID: PMC11906432 DOI: 10.3389/fimmu.2025.1527592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 02/05/2025] [Indexed: 03/19/2025] Open
Abstract
Introduction Hematogenous disseminated tuberculosis (DTB) has an unclear etiology that likely involves multiple factors. Understanding the underlying immunological characteristics of DTB is crucial for elucidating its pathogenesis. Methods We conducted single-cell RNA transcriptome and T cell receptor (TCR) sequencing on samples from seven DTB patients. Additionally, we integrated and analyzed data from two published profiles of latent TB infection, three active TB cases, and two healthy controls. Results Our analysis revealed a significantly higher proportion of inflammatory immune cells (e.g., monocytes and macrophages) in DTB patients, along with a notably lower abundance of various lymphocytes (including T cells, B cells, and plasma cells), suggesting that lymphopenia is a prominent feature of the disease. T cell pseudotime analysis indicated a decrease in the expression of most hypervariable genes over time, pointing to T cell functional exhaustion. Furthermore, a marked absence of mucosal-associated invariant T (MAIT) cells was observed in the peripheral blood of DTB patients. In the TCR repertoire, specific polymorphisms (TRAV9-2, TRAV13-1, TRBV20-1, and TRBV5-1) and dominant clones (TRAJ49, TRBJ2-7, and TRBJ2-1) were identified. Analysis of the complementarity determining region 3 (CDR3) showed that the most frequent combination was TRAV1-2/TRAJ33, with the motif "CAAMD" being significantly reduced in DTB patients. Discussion These findings suggest that lymphopenia and T cell exhaustion, along with unique TCR signatures, may play critical roles in DTB pathogenesis. The reduced "CAAMD" motif and altered TCR clonotypes provide novel insights into the complex cellular dynamics associated with the disease, potentially offering new avenues for targeted immunological interventions.
Collapse
Affiliation(s)
- Zhen Gong
- Institute of Modern Biopharmaceuticals, School of Life Sciences, Southwest University, Chongqing, China
- Department of Clinical Laboratory, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Hongxiang Xu
- Institute of Modern Biopharmaceuticals, School of Life Sciences, Southwest University, Chongqing, China
| | - Qiao Zhang
- Institute of Modern Biopharmaceuticals, School of Life Sciences, Southwest University, Chongqing, China
| | - Guirong Wang
- Department of Clinical Laboratory, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing, China
| | - Lin Fan
- Shanghai Clinical Research Center for Tuberculosis, Shanghai Key Lab of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zilu Wang
- Institute of Modern Biopharmaceuticals, School of Life Sciences, Southwest University, Chongqing, China
| | - Lichao Fan
- Shenyang Tenth People’s Hospital, Shenyang Chest Hospital, Shenyang, Liaoning, China
| | - Chang Liu
- Shenyang Tenth People’s Hospital, Shenyang Chest Hospital, Shenyang, Liaoning, China
| | - Yanhong Yu
- Shenyang Tenth People’s Hospital, Shenyang Chest Hospital, Shenyang, Liaoning, China
| | - Zhou Liu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Qiang Zhou
- Department of Clinical Laboratory, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | | | - Rui Hou
- Shanghai Biotechnology Corporation, Shanghai, China
| | - Ying Zhao
- Shanghai Biotechnology Corporation, Shanghai, China
| | - Yu Chen
- Shenyang Tenth People’s Hospital, Shenyang Chest Hospital, Shenyang, Liaoning, China
| | - Jianping Xie
- Institute of Modern Biopharmaceuticals, School of Life Sciences, Southwest University, Chongqing, China
| |
Collapse
|
4
|
Stetsenko V, Gail DP, Reba S, Suzart VG, Sandhu AK, Sette A, Dezfulian MH, Arlehamn CSL, Carpenter SM. Human memory CD4 + T-cells recognize Mycobacterium tuberculosis-infected macrophages amid broader pathogen-specific responses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.23.639515. [PMID: 40060660 PMCID: PMC11888249 DOI: 10.1101/2025.02.23.639515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Recognition of macrophages infected with Mycobacterium tuberculosis (Mtb) is essential for CD4+ T cells to prevent tuberculosis (TB). Yet not all antigen-specific T cells recognize infected macrophages in human and murine models. Using monocyte-derived macrophages (MDMs) and autologous memory CD4+ T cells from individuals with latent Mtb infection (LTBI), we quantify T cell activation in response to infected macrophages. T cell antigen receptor (TCR) sequencing revealed >70% of unique and >90% of total Mtb-specific TCR clonotypes in stable LTBI are linked to recognition of infected macrophages, while a subset required exogenous antigen exposure, suggesting incomplete recognition. Clonotypes specific for multiple Mtb antigens and other pathogens were identified, indicating Mtb-specific and non-specific activation. Single-cell transcriptomics demonstrates Mtb-specific T cells express signature effector functions dominated by IFNγ, TNF, IL-2, and GM-CSF or chemokine production and signaling. We propose TB vaccines that elicit T cells capable of recognizing infected macrophages and expressing these canonical effector functions will offer protection against TB.
Collapse
Affiliation(s)
- Volodymyr Stetsenko
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, University Hospitals Cleveland Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Daniel P Gail
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, University Hospitals Cleveland Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Scott Reba
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, University Hospitals Cleveland Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Vinicius G Suzart
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, University Hospitals Cleveland Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Biomedical Sciences Training Program, Department of Pathology, University Hospitals Cleveland Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Avinaash K Sandhu
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, University Hospitals Cleveland Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Biomedical Sciences Training Program, Department of Pathology, University Hospitals Cleveland Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Alessandro Sette
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, California, USA
| | - Mohammad Haj Dezfulian
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Cecilia S Lindestam Arlehamn
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, California, USA
- Center for Vaccine Research, Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark
| | - Stephen M Carpenter
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, University Hospitals Cleveland Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Biomedical Sciences Training Program, Department of Pathology, University Hospitals Cleveland Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| |
Collapse
|
5
|
Mohapatra A, Howard Z, Ernst JD. CCR2 recruits monocytes to the lung, while CX3CR1 modulates positioning of monocyte-derived CD11c pos cells in the lymph node during pulmonary tuberculosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.07.637199. [PMID: 39974908 PMCID: PMC11839135 DOI: 10.1101/2025.02.07.637199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Infection by Mycobacterium tuberculosis (Mtb) continues to cause more than 1 million deaths annually, due to pathogen persistence in lung macrophages and dendritic cells derived from blood monocytes. While accumulation of monocyte-derived cells in the Mtb-infected lung partially depends on the chemokine receptor CCR2, the other chemoattractant receptors regulating trafficking remain undefined. We used mice expressing knock-in/knockout reporter alleles of Ccr2 and Cx3cr1 to interrogate their expression and function in monocyte-derived populations of the lungs and draining mediastinal lymph nodes during Mtb infection. CCR2 and CX3CR1 expression varied across monocyte-derived subsets stratified by cell surface Ly6C expression in both organs. We found that expression of CCR2 predicted dependence of monocyte-derived cells on the receptor for lung and lymph node accumulation. CCR2-deficient mice were also observed to have worsened lung and lymph node Mtb burden. While CX3CR1 deficiency, alone or in combination with CCR2 deficiency, did not affect cell frequencies or lung Mtb control, its absence was associated with altered positioning of monocyte-derived dendritic cells in mediastinal lymph nodes. We found that combined loss of Ccr2 and Cx3cr1 also worsened Mtb control in the mediastinal lymph node, suggesting a rationale for the persistent expression of CX3CR1 among monocyte-derived cells in pulmonary tuberculosis. IMPORTANCE Mycobacterium tuberculosis is the respiratory pathogen responsible for the deadliest infectious disease worldwide. Susceptible humans exhibit ineffective immune responses, in which infected phagocytes are not able to eliminate the pathogen. Since recruited monocyte-derived cells serve as reservoirs for persistent infection, understanding how these phagocytes accumulate in the lung and why they are unable to eliminate Mtb can inform development of therapies that can synergize with antimicrobials to achieve faster and more durable Mtb elimination. Monocyte-derived cells express the chemokine receptors CCR2 and CX3CR1, but the role of the latter in Mtb infection remains poorly defined. The significance of our study is in elucidating the roles of these receptors in the trafficking of monocyte-derived cells in the infected lung and mediastinal lymph node. These data shed light on the host response in tuberculosis and in other pulmonary infections.
Collapse
|
6
|
Munke K, Wulff L, Lienard J, Carlsson F, Agace WW. In vivo regulation of the monocyte phenotype by Mycobacterium marinum and the ESX-1 type VII secretion system. Sci Rep 2025; 15:4545. [PMID: 39915532 PMCID: PMC11802795 DOI: 10.1038/s41598-025-88212-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 01/25/2025] [Indexed: 02/09/2025] Open
Abstract
Pathogenic mycobacteria require the conserved ESX-1 type VII secretion system to cause disease. In a murine Mycobacterium marinum infection model we previously demonstrated that infiltrating monocytes and neutrophils represent the major bacteria-harbouring cell populations in infected tissue. In the current study we use this model, in combination with scRNA sequencing, to assess the impact of M. marinum infection on the transcriptional profile of infiltrating Ly6C⁺MHCII⁺ monocytes in vivo. Our findings demonstrate that infection of infiltrating monocytes with M. marinum alters their cytokine expression profile, induces glycolytic metabolism, hypoxia-mediated signaling, nitric oxide synthesis, tissue remodeling, and suppresses responsiveness to IFNγ. We further show that the transcriptional response of bystander monocytes is influenced by ESX-1-dependent mechanisms, including a reduced responsiveness to IFNγ. These findings suggest that mycobacterial infection has pleiotropic effects on monocyte phenotype, with potential implications in bacterial growth restriction and granuloma formation.
Collapse
Affiliation(s)
- Kristina Munke
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Line Wulff
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| | - Julia Lienard
- Department of Biology, Lund University, Lund, Sweden
| | | | - William W Agace
- Department of Experimental Medical Science, Lund University, Lund, Sweden.
- Department of Immunology and Microbiology, LEO Foundation Skin Immunology Research Centre, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
7
|
Gupta VK, Vaishnavi VV, Arrieta-Ortiz ML, Abhirami P, Jyothsna K, Jeyasankar S, Raghunathan V, Baliga NS, Agarwal R. 3D Hydrogel Culture System Recapitulates Key Tuberculosis Phenotypes and Demonstrates Pyrazinamide Efficacy. Adv Healthc Mater 2025; 14:e2304299. [PMID: 38655817 PMCID: PMC7616495 DOI: 10.1002/adhm.202304299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/29/2024] [Indexed: 04/26/2024]
Abstract
The mortality caused by tuberculosis (TB) infections is a global concern, and there is a need to improve understanding of the disease. Current in vitro infection models to study the disease have limitations such as short investigation durations and divergent transcriptional signatures. This study aims to overcome these limitations by developing a 3D collagen culture system that mimics the biomechanical and extracellular matrix (ECM) of lung microenvironment (collagen fibers, stiffness comparable to in vivo conditions) as the infection primarily manifests in the lungs. The system incorporates Mycobacterium tuberculosis (Mtb) infected human THP-1 or primary monocytes/macrophages. Dual RNA sequencing reveals higher mammalian gene expression similarity with patient samples than 2D macrophage infections. Similarly, bacterial gene expression more accurately recapitulates in vivo gene expression patterns compared to bacteria in 2D infection models. Key phenotypes observed in humans, such as foamy macrophages and mycobacterial cords, are reproduced in the model. This biomaterial system overcomes challenges associated with traditional platforms by modulating immune cells and closely mimicking in vivo infection conditions, including showing efficacy with clinically relevant concentrations of anti-TB drug pyrazinamide, not seen in any other in vitro infection model, making it reliable and readily adoptable for tuberculosis studies and drug screening.
Collapse
Affiliation(s)
- Vishal K. Gupta
- Department of Bioengineering, Indian Institute of Science, Bengaluru, India
| | | | | | - P.S. Abhirami
- Department of Bioengineering, Indian Institute of Science, Bengaluru, India
| | - K.M. Jyothsna
- Department of Electrical Communication Engineering, Indian Institute of Science, Bengaluru, India
| | | | - Varun Raghunathan
- Department of Electrical Communication Engineering, Indian Institute of Science, Bengaluru, India
| | | | - Rachit Agarwal
- Department of Bioengineering, Indian Institute of Science, Bengaluru, India
| |
Collapse
|
8
|
Shukla S, Bhardwaj N, Singh A. Drug resistance in Mycobacterium tuberculosis: An evolutionary perspective and its adaptation to the lung microenvironment. THE MICROBE 2024; 5:100189. [DOI: 10.1016/j.microb.2024.100189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
|
9
|
Guo S, Ouyang J, Hu Z, Cao T, Huang C, Mou J, Gu X, Liu J. Intranasal vaccination with engineered BCG expressing CCL2 induces a stronger immune barrier against Mycobacterium tuberculosis than BCG. Mol Ther 2024; 32:3990-4005. [PMID: 39295146 PMCID: PMC11573603 DOI: 10.1016/j.ymthe.2024.09.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 07/14/2024] [Accepted: 09/13/2024] [Indexed: 09/21/2024] Open
Abstract
Intradermal Mycobacterium bovis Bacillus Calmette-Guérin (BCG) vaccination is currently the only licensed strategy for preventing tuberculosis (TB). It provides limited protection against pulmonary TB. To enhance the efficacy of BCG, we developed a recombinant BCG expressing exogenous monocyte chemoattractant CC chemokine ligand 2 (CCL2) called rBCG-CCL2. Co-culturing macrophages with rBCG-CCL2 enhances their abilities in migration, phagocytosis, and effector molecule expression. In the mouse model, intranasal vaccination with rBCG-CCL2 induced greater immune cell infiltration and a more extensive innate immune response in lung compared to vaccination with parental BCG, as determined by multiparameter flow cytometry, transcriptomic analysis, and pathological assessments. Moreover, rBCG-CCL2 induced a high frequency of activated macrophages and antigen-specific T helper 1 (Th1) and Th17 T cells in lungs. The enhanced immune microenvironment responded more effectively to intravenous challenge with Mycobacterium tuberculosis (Mtb) H37Ra, leading to significant reductions in H37Ra burden and pathological damage to the lungs and spleen. Intranasal rBCG-CCL2-vaccinated mice rapidly initiated pro-inflammatory Th1 cytokine release and reduced pathological damage to the lungs and spleen during the early stage of H37Ra challenge. The finding that co-expression of CCL2 synergistically enhances the immune barrier induced by BCG provides a model for defining immune correlates and mechanisms of vaccine-elicited protection against TB.
Collapse
Affiliation(s)
- Shaohua Guo
- Center for Infectious Disease and Vaccine, West China Hospital, Sichuan University, Chengdu 610041, P.R. China
| | - Jiangshan Ouyang
- Center for Infectious Disease and Vaccine, West China Hospital, Sichuan University, Chengdu 610041, P.R. China
| | - Zhiming Hu
- Center for Infectious Disease and Vaccine, West China Hospital, Sichuan University, Chengdu 610041, P.R. China
| | - Ting Cao
- Center for Infectious Disease and Vaccine, West China Hospital, Sichuan University, Chengdu 610041, P.R. China
| | - Chunxu Huang
- Center for Infectious Disease and Vaccine, West China Hospital, Sichuan University, Chengdu 610041, P.R. China
| | - Jun Mou
- Center for Infectious Disease and Vaccine, West China Hospital, Sichuan University, Chengdu 610041, P.R. China
| | - Xinxia Gu
- Center for Infectious Disease and Vaccine, West China Hospital, Sichuan University, Chengdu 610041, P.R. China
| | - Jie Liu
- Center for Infectious Disease and Vaccine, West China Hospital, Sichuan University, Chengdu 610041, P.R. China.
| |
Collapse
|
10
|
Naik SK, McNehlan ME, Mreyoud Y, Kinsella RL, Smirnov A, Sur Chowdhury C, McKee SR, Dubey N, Woodson R, Kreamalmeyer D, Stallings CL. Type I IFN signaling in the absence of IRGM1 promotes M. tuberculosis replication in immune cells by suppressing T cell responses. Mucosal Immunol 2024; 17:1114-1127. [PMID: 39038752 DOI: 10.1016/j.mucimm.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 07/09/2024] [Accepted: 07/15/2024] [Indexed: 07/24/2024]
Abstract
Polymorphisms in the IRGM gene are associated with susceptibility to tuberculosis in humans. A murine ortholog of Irgm, Irgm1, is also essential for controlling Mycobacterium tuberculosis (Mtb) infection in mice. Multiple processes have been associated with IRGM1 activity that could impact the host response to Mtb infection, including roles in autophagy-mediated pathogen clearance and expansion of activated T cells. However, what IRGM1-mediated pathway is necessary to control Mtb infection in vivo and the mechanistic basis for this control remains unknown. We dissected the contribution of IRGM1 to immune control of Mtb pathogenesis in vivo and found that Irgm1 deletion leads to higher levels of IRGM3-dependent type I interferon signaling. The increased type I interferon signaling precludes T cell expansion during Mtb infection. The absence of Mtb-specific T cell expansion in Irgm1-/- mice results in uncontrolled Mtb infection in neutrophils and alveolar macrophages, which directly contributes to susceptibility to infection. Together, our studies reveal that IRGM1 is required to promote T cell-mediated control of Mtb infection in neutrophils, which is essential for the survival of Mtb-infected mice. These studies also uncover new ways type I interferon signaling can impact TH1 immune responses.
Collapse
Affiliation(s)
- Sumanta K Naik
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | - Michael E McNehlan
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Yassin Mreyoud
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Rachel L Kinsella
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Asya Smirnov
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Chanchal Sur Chowdhury
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Samuel R McKee
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Neha Dubey
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Reilly Woodson
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Darren Kreamalmeyer
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Christina L Stallings
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
11
|
Becker SH, Ronayne CE, Bold TD, Jenkins MK. CD4 + T cells recruit, then engage macrophages in cognate interactions to clear Mycobacterium tuberculosis from the lungs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.22.609198. [PMID: 39229103 PMCID: PMC11370583 DOI: 10.1101/2024.08.22.609198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
IFN-γ-producing CD4 + T cells are required for protection against lethal Mycobacterium tuberculosis ( Mtb ) infections. However, the ability of CD4 + T cells to suppress Mtb growth cannot be fully explained by IFN-γ or other known T cell products. In this study, we show that CD4 + T cell-derived IFN-γ promoted the recruitment of monocyte-derived macrophages (MDMs) to the lungs of Mtb -infected mice. Although the recruited MDMs became quickly and preferentially infected with Mtb , CD4 + T cells rapidly disinfected the MDMs. Clearance of Mtb from MDMs was not explained by IFN-γ, but rather by MHCII-mediated cognate interactions with CD4 + T cells. These interactions promoted MDM expression of glycolysis genes essential for Mtb control. Thus, by recruiting MDMs, CD4 + T cells initiate a cycle of bacterial phagocytosis, Mtb antigen presentation and disinfection in an attempt to clear the bacteria from the lungs.
Collapse
|
12
|
Patel RR, Arun PP, Singh SK, Singh M. Mycobacterial biofilms: Understanding the genetic factors playing significant role in pathogenesis, resistance and diagnosis. Life Sci 2024; 351:122778. [PMID: 38879157 DOI: 10.1016/j.lfs.2024.122778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 05/25/2024] [Accepted: 06/04/2024] [Indexed: 07/03/2024]
Abstract
Even though the genus Mycobacterium is a diverse group consisting of a majority of environmental bacteria known as non-tuberculous mycobacteria (NTM), it also contains some of the deadliest pathogens (Mycobacterium tuberculosis) in history associated with chronic disease called tuberculosis (TB). Formation of biofilm is one of the unique strategies employed by mycobacteria to enhance their ability to survive in hostile conditions. Biofilm formation by Mycobacterium species is an emerging area of research with significant implications for understanding its pathogenesis and treatment of related infections, specifically TB. This review provides an overview of the biofilm-forming abilities of different species of Mycobacterium and the genetic factors influencing biofilm formation with a detailed focus on M. tuberculosis. Biofilm-mediated resistance is a significant challenge as it can limit antibiotic penetration and promote the survival of dormant mycobacterial cells. Key genetic factors promoting biofilm formation have been explored such as the mmpL genes involved in lipid transport and cell wall integrity as well as the groEL gene essential for mature biofilm formation. Additionally, biofilm-mediated antibiotic resistance and pathogenesis highlighting the specific niches, sites of infection along with the possible mechanisms of biofilm dissemination have been discussed. Furthermore, drug targets within mycobacterial biofilm and their role as potential biomarkers in the development of rapid diagnostic tools have been highlighted. The review summarises the current understanding of the complex nature of Mycobacterium biofilm and its clinical implications, paving the way for advancements in the field of disease diagnosis, management and treatment against its multi-drug resistant species.
Collapse
Affiliation(s)
- Ritu Raj Patel
- Department of Medicinal Chemistry, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Pandey Priya Arun
- Department of Medicinal Chemistry, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Sudhir Kumar Singh
- Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Meenakshi Singh
- Department of Medicinal Chemistry, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
13
|
Ferrell KC, Stewart EL, Counoupas C, Triccas JA. Colony morphotype governs innate and adaptive pulmonary immune responses to Mycobacterium abscessus infection in C3HeB/FeJ mice. Eur J Immunol 2024; 54:e2350610. [PMID: 38576227 DOI: 10.1002/eji.202350610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 03/25/2024] [Accepted: 03/25/2024] [Indexed: 04/06/2024]
Abstract
Mycobacterium abscessus is an emerging pathogen that causes chronic pulmonary infection. Treatment is challenging owing in part to our incomplete understanding of M. abscessus virulence mechanisms that enable pathogen persistence, such as the differing pathogenicity of M. abscessus smooth (S) and rough (R) colony morphotype. While R M. abscessus is associated with chronic infection and worse patient outcomes, it is unknown how immune responses to S and R M. abscessus differ in an acute pulmonary infection setting. In this study, immunological outcomes of M. abscessus infection with S and R morphotypes were examined in an immune-competent C3HeB/FeJ murine model. R M. abscessus infection was associated with the rapid production of inflammatory chemokines and recruitment of activated, MHC-II+ Ly6C+ macrophages to lungs and mediastinal LN (mLN). While both S and R M. abscessus increased T helper 1 (Th1) phenotype T cells in the lung, this was markedly delayed in mice infected with S M. abscessus. However, histopathological involvement and bacterial clearance were similar regardless of colony morphotype. These results demonstrate the importance of M. abscessus colony morphotype in shaping the development of pulmonary immune responses to M. abscessus, which further informs our understanding of M. abscessus host-pathogen interactions.
Collapse
Affiliation(s)
- Kia C Ferrell
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
- Tuberculosis Research Program, Centenary Institute, Sydney, NSW, Australia
| | - Erica L Stewart
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
- Tuberculosis Research Program, Centenary Institute, Sydney, NSW, Australia
| | - Claudio Counoupas
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
- Tuberculosis Research Program, Centenary Institute, Sydney, NSW, Australia
- Sydney Institute for Infectious Diseases and the Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
| | - James A Triccas
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
- Sydney Institute for Infectious Diseases and the Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
| |
Collapse
|
14
|
Maio M, Barros J, Joly M, Vahlas Z, Marín Franco JL, Genoula M, Monard SC, Vecchione MB, Fuentes F, Gonzalez Polo V, Quiroga MF, Vermeulen M, Vu Manh TP, Argüello RJ, Inwentarz S, Musella R, Ciallella L, González Montaner P, Palmero D, Lugo Villarino G, Sasiain MDC, Neyrolles O, Vérollet C, Balboa L. Elevated glycolytic metabolism of monocytes limits the generation of HIF1A-driven migratory dendritic cells in tuberculosis. eLife 2024; 12:RP89319. [PMID: 38922679 PMCID: PMC11208050 DOI: 10.7554/elife.89319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024] Open
Abstract
During tuberculosis (TB), migration of dendritic cells (DCs) from the site of infection to the draining lymph nodes is known to be impaired, hindering the rapid development of protective T-cell-mediated immunity. However, the mechanisms involved in the delayed migration of DCs during TB are still poorly defined. Here, we found that infection of DCs with Mycobacterium tuberculosis (Mtb) triggers HIF1A-mediated aerobic glycolysis in a TLR2-dependent manner, and that this metabolic profile is essential for DC migration. In particular, the lactate dehydrogenase inhibitor oxamate and the HIF1A inhibitor PX-478 abrogated Mtb-induced DC migration in vitro to the lymphoid tissue-specific chemokine CCL21, and in vivo to lymph nodes in mice. Strikingly, we found that although monocytes from TB patients are inherently biased toward glycolysis metabolism, they differentiate into poorly glycolytic and poorly migratory DCs compared with healthy subjects. Taken together, these data suggest that because of their preexisting glycolytic state, circulating monocytes from TB patients are refractory to differentiation into migratory DCs, which may explain the delayed migration of these cells during the disease and opens avenues for host-directed therapies for TB.
Collapse
Grants
- PICT-2019-01044 Agencia Nacional de Promoción de la Investigación, el Desarrollo Tecnológico y la Innovación
- PICT-2020-00501 Agencia Nacional de Promoción Científica y Tecnológica
- 11220200100299CO Consejo Nacional de Investigaciones Científicas y Técnicas
- ANRS2018-02 Agence Nationale de Recherches sur le Sida et les Hépatites Virales
- ECTZ 118551/118554 Agence Nationale de Recherches sur le Sida et les Hépatites Virales
- ECTZ 205320/305352 Agence Nationale de Recherches sur le Sida et les Hépatites Virales
- ECTZ103104 Agence Nationale de Recherches sur le Sida et les Hépatites Virales
- ECTZ101971 Agence Nationale de Recherches sur le Sida et les Hépatites Virales
- ANR-20-CE14-0028 Agence Nationale de la Recherche
- MAT-PI-17493-A-04 Inserm Transfert
- CONICET The Argentinean National Council of Scientific and Technical Investigations
- PIP 11220200100299CO The Argentinean National Council of Scientific and Technical Investigations
- ANRS2018-02 The Centre National de la Recherche Scientifique, Université Paul Sabatier, the Agence Nationale de Recherche sur le Sida et les hépatites virales (ANRS)
- ECTZ 118551/118554 The Centre National de la Recherche Scientifique, Université Paul Sabatier, the Agence Nationale de Recherche sur le Sida et les hépatites virales (ANRS)
- ECTZ 205320/305352 The Centre National de la Recherche Scientifique, Université Paul Sabatier, the Agence Nationale de Recherche sur le Sida et les hépatites virales (ANRS)
- ANRS ECTZ103104 The Centre National de la Recherche Scientifique, Université Paul Sabatier, the Agence Nationale de Recherche sur le Sida et les hépatites virales (ANRS)
- ECTZ101971 The Centre National de la Recherche Scientifique, Université Paul Sabatier, the Agence Nationale de Recherche sur le Sida et les hépatites virales (ANRS)
- ANR-20-CE14-0028 The French ANR JCJC-Epic-SCENITH
- MAT-PI-17493-A-04 CoPoC Inserm-transfert
Collapse
Affiliation(s)
- Mariano Maio
- Instituto de Medicina Experimental (IMEX)-CONICET, Academia Nacional de MedicinaBuenos AiresArgentina
- International Associated Laboratory (LIA) CNRS IM-TB/HIV (1167), Buenos Aires, Argentina / International Research Project ToulouseToulouseFrance
- Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Universidad de Buenos AiresBuenos AiresArgentina
| | - Joaquina Barros
- Instituto de Medicina Experimental (IMEX)-CONICET, Academia Nacional de MedicinaBuenos AiresArgentina
- International Associated Laboratory (LIA) CNRS IM-TB/HIV (1167), Buenos Aires, Argentina / International Research Project ToulouseToulouseFrance
- Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Universidad de Buenos AiresBuenos AiresArgentina
| | - Marine Joly
- International Associated Laboratory (LIA) CNRS IM-TB/HIV (1167), Buenos Aires, Argentina / International Research Project ToulouseToulouseFrance
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPSToulouseFrance
| | - Zoi Vahlas
- International Associated Laboratory (LIA) CNRS IM-TB/HIV (1167), Buenos Aires, Argentina / International Research Project ToulouseToulouseFrance
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPSToulouseFrance
| | - José Luis Marín Franco
- Instituto de Medicina Experimental (IMEX)-CONICET, Academia Nacional de MedicinaBuenos AiresArgentina
- International Associated Laboratory (LIA) CNRS IM-TB/HIV (1167), Buenos Aires, Argentina / International Research Project ToulouseToulouseFrance
| | - Melanie Genoula
- Instituto de Medicina Experimental (IMEX)-CONICET, Academia Nacional de MedicinaBuenos AiresArgentina
- International Associated Laboratory (LIA) CNRS IM-TB/HIV (1167), Buenos Aires, Argentina / International Research Project ToulouseToulouseFrance
| | - Sarah C Monard
- International Associated Laboratory (LIA) CNRS IM-TB/HIV (1167), Buenos Aires, Argentina / International Research Project ToulouseToulouseFrance
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPSToulouseFrance
| | - María Belén Vecchione
- Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Universidad de Buenos AiresBuenos AiresArgentina
| | - Federico Fuentes
- Instituto de Medicina Experimental (IMEX)-CONICET, Academia Nacional de MedicinaBuenos AiresArgentina
| | - Virginia Gonzalez Polo
- Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Universidad de Buenos AiresBuenos AiresArgentina
| | - María Florencia Quiroga
- Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Universidad de Buenos AiresBuenos AiresArgentina
| | - Mónica Vermeulen
- Instituto de Medicina Experimental (IMEX)-CONICET, Academia Nacional de MedicinaBuenos AiresArgentina
| | - Thien-Phong Vu Manh
- Aix Marseille University, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-LuminyMarseilleFrance
| | - Rafael J Argüello
- Aix Marseille University, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-LuminyMarseilleFrance
| | - Sandra Inwentarz
- Instituto Prof. Dr. Raúl Vaccarezza and Hospital de Infecciosas Dr. F.J. MuñizBuenos AiresArgentina
| | - Rosa Musella
- Instituto Prof. Dr. Raúl Vaccarezza and Hospital de Infecciosas Dr. F.J. MuñizBuenos AiresArgentina
| | - Lorena Ciallella
- Instituto Prof. Dr. Raúl Vaccarezza and Hospital de Infecciosas Dr. F.J. MuñizBuenos AiresArgentina
| | - Pablo González Montaner
- Instituto Prof. Dr. Raúl Vaccarezza and Hospital de Infecciosas Dr. F.J. MuñizBuenos AiresArgentina
| | - Domingo Palmero
- Instituto Prof. Dr. Raúl Vaccarezza and Hospital de Infecciosas Dr. F.J. MuñizBuenos AiresArgentina
| | - Geanncarlo Lugo Villarino
- International Associated Laboratory (LIA) CNRS IM-TB/HIV (1167), Buenos Aires, Argentina / International Research Project ToulouseToulouseFrance
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPSToulouseFrance
| | - María del Carmen Sasiain
- Instituto de Medicina Experimental (IMEX)-CONICET, Academia Nacional de MedicinaBuenos AiresArgentina
- International Associated Laboratory (LIA) CNRS IM-TB/HIV (1167), Buenos Aires, Argentina / International Research Project ToulouseToulouseFrance
| | - Olivier Neyrolles
- International Associated Laboratory (LIA) CNRS IM-TB/HIV (1167), Buenos Aires, Argentina / International Research Project ToulouseToulouseFrance
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPSToulouseFrance
| | - Christel Vérollet
- International Associated Laboratory (LIA) CNRS IM-TB/HIV (1167), Buenos Aires, Argentina / International Research Project ToulouseToulouseFrance
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPSToulouseFrance
| | - Luciana Balboa
- Instituto de Medicina Experimental (IMEX)-CONICET, Academia Nacional de MedicinaBuenos AiresArgentina
- International Associated Laboratory (LIA) CNRS IM-TB/HIV (1167), Buenos Aires, Argentina / International Research Project ToulouseToulouseFrance
- Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Universidad de Buenos AiresBuenos AiresArgentina
| |
Collapse
|
15
|
Zheng W, Chang IC, Limberis J, Budzik JM, Zha BS, Howard Z, Chen L, Ernst JD. Mycobacterium tuberculosis resides in lysosome-poor monocyte-derived lung cells during chronic infection. PLoS Pathog 2024; 20:e1012205. [PMID: 38701094 PMCID: PMC11095722 DOI: 10.1371/journal.ppat.1012205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 05/15/2024] [Accepted: 04/19/2024] [Indexed: 05/05/2024] Open
Abstract
Mycobacterium tuberculosis (Mtb) infects lung myeloid cells, but the specific Mtb-permissive cells and host mechanisms supporting Mtb persistence during chronic infection are incompletely characterized. We report that after the development of T cell responses, CD11clo monocyte-derived cells harbor more live Mtb than alveolar macrophages (AM), neutrophils, and CD11chi monocyte-derived cells. Transcriptomic and functional studies revealed that the lysosome pathway is underexpressed in this highly permissive subset, characterized by less lysosome content, acidification, and proteolytic activity than AM, along with less nuclear TFEB, a regulator of lysosome biogenesis. Mtb infection does not drive lysosome deficiency in CD11clo monocyte-derived cells but promotes recruitment of monocytes that develop into permissive lung cells, mediated by the Mtb ESX-1 secretion system. The c-Abl tyrosine kinase inhibitor nilotinib activates TFEB and enhances lysosome functions of macrophages in vitro and in vivo, improving control of Mtb infection. Our results suggest that Mtb exploits lysosome-poor lung cells for persistence and targeting lysosome biogenesis is a potential host-directed therapy for tuberculosis.
Collapse
Affiliation(s)
- Weihao Zheng
- Division of Experimental Medicine, Department of Medicine, University of California, San Francisco, California, United States of America
| | - I-Chang Chang
- Division of Experimental Medicine, Department of Medicine, University of California, San Francisco, California, United States of America
| | - Jason Limberis
- Division of Experimental Medicine, Department of Medicine, University of California, San Francisco, California, United States of America
| | - Jonathan M. Budzik
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine, University of California, San Francisco, California, United States of America
| | - Beth Shoshana Zha
- Division of Experimental Medicine, Department of Medicine, University of California, San Francisco, California, United States of America
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine, University of California, San Francisco, California, United States of America
| | - Zachary Howard
- Division of Experimental Medicine, Department of Medicine, University of California, San Francisco, California, United States of America
| | - Lucas Chen
- Division of Experimental Medicine, Department of Medicine, University of California, San Francisco, California, United States of America
| | - Joel D. Ernst
- Division of Experimental Medicine, Department of Medicine, University of California, San Francisco, California, United States of America
| |
Collapse
|
16
|
Feng S, McNehlan ME, Kinsella RL, Sur Chowdhury C, Chavez SM, Naik SK, McKee SR, Van Winkle JA, Dubey N, Samuels A, Swain A, Cui X, Hendrix SV, Woodson R, Kreamalmeyer D, Smirnov A, Artyomov MN, Virgin HW, Wang YT, Stallings CL. Autophagy promotes efficient T cell responses to restrict high-dose Mycobacterium tuberculosis infection in mice. Nat Microbiol 2024; 9:684-697. [PMID: 38413834 DOI: 10.1038/s41564-024-01608-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 01/16/2024] [Indexed: 02/29/2024]
Abstract
Although autophagy sequesters Mycobacterium tuberculosis (Mtb) in in vitro cultured macrophages, loss of autophagy in macrophages in vivo does not result in susceptibility to a standard low-dose Mtb infection until late during infection, leaving open questions regarding the protective role of autophagy during Mtb infection. Here we report that loss of autophagy in lung macrophages and dendritic cells results in acute susceptibility of mice to high-dose Mtb infection, a model mimicking active tuberculosis. Rather than observing a role for autophagy in controlling Mtb replication in macrophages, we find that autophagy suppresses macrophage responses to Mtb that otherwise result in accumulation of myeloid-derived suppressor cells and subsequent defects in T cell responses. Our finding that the pathogen-plus-susceptibility gene interaction is dependent on dose has important implications both for understanding how Mtb infections in humans lead to a spectrum of outcomes and for the potential use of autophagy modulators in clinical medicine.
Collapse
Affiliation(s)
- Siwei Feng
- Center for Infectious Disease Research, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Michael E McNehlan
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Rachel L Kinsella
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Chanchal Sur Chowdhury
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Sthefany M Chavez
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Sumanta K Naik
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Samuel R McKee
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Jacob A Van Winkle
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Neha Dubey
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Amanda Samuels
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Amanda Swain
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Xiaoyan Cui
- Center for Infectious Disease Research, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Skyler V Hendrix
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Reilly Woodson
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Darren Kreamalmeyer
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Asya Smirnov
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Maxim N Artyomov
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Herbert W Virgin
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ya-Ting Wang
- Center for Infectious Disease Research, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China.
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO, USA.
- SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Shanxi Medical University, Taiyuan, Shanxi, China.
| | - Christina L Stallings
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
17
|
Chakraborty D, Batabyal S, Ganusov VV. A brief overview of mathematical modeling of the within-host dynamics of Mycobacterium tuberculosis. FRONTIERS IN APPLIED MATHEMATICS AND STATISTICS 2024; 10:1355373. [PMID: 39906541 PMCID: PMC11793202 DOI: 10.3389/fams.2024.1355373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
Tuberculosis (TB), a disease caused by bacteria Mycobacterium tuberculosis (Mtb), remains one of the major infectious diseases of humans with 10 million TB cases and 1.5 million deaths due to TB worldwide yearly. Upon exposure of a new host to Mtb, bacteria typically infect one local site in the lung, but over time, Mtb disseminates in the lung and in some cases to extrapulmonary sites. The contribution of various host components such as immune cells to Mtb dynamics in the lung, its dissemination in the lung and outside of the lung, remains incompletely understood. Here we overview different types of mathematical models used to gain insights in within-host dynamics of Mtb; these include models based on ordinary or partial differential equations (ODEs and PDEs), stochastic simulation models based on ODEs, agent-based models (ABMs), and hybrid models (ODE-based models linked to ABMs). We illustrate results from several of such models and identify areas for future resesarch.
Collapse
Affiliation(s)
- Dipanjan Chakraborty
- Host-Pathogen Interactions program, Texas Biomedical Research Institute, San Antonio, TX 78277, USA
| | - Saikat Batabyal
- Host-Pathogen Interactions program, Texas Biomedical Research Institute, San Antonio, TX 78277, USA
| | - Vitaly V. Ganusov
- Host-Pathogen Interactions program, Texas Biomedical Research Institute, San Antonio, TX 78277, USA
- Department of Microbiology, University of Tennessee, Knoxville, TN37996, USA
| |
Collapse
|
18
|
Grigsby SJ, Prasad GVRK, Wallach JB, Mittal E, Hsu FF, Schnappinger D, Philips JA. CpsA mediates infection of recruited lung myeloid cells by Mycobacterium tuberculosis. Cell Rep 2024; 43:113607. [PMID: 38127624 PMCID: PMC10900767 DOI: 10.1016/j.celrep.2023.113607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 10/27/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb) possesses an arsenal of virulence factors to evade host immunity. Previously, we showed that the Mtb protein CpsA, which protects Mtb against the host NADPH oxidase, is required in mice during the first 3 weeks of infection but is thereafter dispensable for full virulence. Using flow cytometry, we find that ΔcpsA Mtb is retained in alveolar macrophages, impaired in recruiting and disseminating into monocyte-derived cells, and more likely to be localized in airway cells than wild-type Mtb. The lungs of ΔcpsA-infected mice also have markedly fewer antigen-specific T cells, indicating a delay in adaptive immunity. Thus, we conclude that CpsA promotes dissemination of Mtb from alveolar macrophages and the airways and generation of an adaptive immune response. Our studies of ΔcpsA Mtb show that a more effective innate immune response against Mtb can be undermined by a corresponding delay in the adaptive immune response.
Collapse
Affiliation(s)
- Steven J Grigsby
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA; Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - G V R Krishna Prasad
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA; Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Joshua B Wallach
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York City, NY, USA
| | - Ekansh Mittal
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA; Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Fong-Fu Hsu
- Division of Endocrinology, Metabolism, & Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Dirk Schnappinger
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York City, NY, USA
| | - Jennifer A Philips
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA; Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
19
|
Kumari R, Muni S, Kumar R, Kumar R, Kumar A, Kumar S, Kumari N. Comparison of Cytokines Profiles and Monocyte Response Among Tuberculosis Patients Versus Patients Coinfected With Intestinal Helminth and Tuberculosis. Cureus 2024; 16:e51726. [PMID: 38318585 PMCID: PMC10839430 DOI: 10.7759/cureus.51726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2024] [Indexed: 02/07/2024] Open
Abstract
Background Tuberculosis (TB) and intestinal helminth infections often coexist, posing a significant health challenge. TB, caused by Mycobacterium tuberculosis, and helminths elicit distinct immune responses - Th1 for TB and Th2 for helminths. Co-infection introduces a complex immunological challenge, potentially compromising TB control. This study addresses the research gap by comparing cytokine profiles and monocyte responses in TB patients, helminth-infected individuals, and those with both. Insights gained may enhance diagnosis, treatment, and disease control strategies where TB and helminths prevail. Methods A cross-sectional observational study conducted at Indira Gandhi Institute of Medical Sciences, Patna, Bihar, aimed to compare cytokine profiles and monocyte responses in TB patients and those coinfected with TB and helminths. The study included 150 newly diagnosed active TB individuals aged 18 to 65 years. TB diagnosis was confirmed through clinical assessment, sputum microscopy, and GeneXpert (Cepheid, Sunnyvale, CA, USA) testing. Stool examination employed various methods, including the Kato-Katz technique and formalin-ether concentration. Blood samples were collected for hematological analysis, cytokine profiling, and monocyte isolation. Statistical analysis, using SPSS version 20.0 (IBM Corp., Armonk, NY, USA), included descriptive statistics, and t-test analyses. Results In our study of 150 participants, half (50.0%) showed positive helminth status. The sociodemographic analysis revealed no significant differences in age, gender, education, occupation, marital status, smoking, alcohol, BMI, diabetes, and hypertension between TB patients (n=75) and TB+Helminth patients (n=75), ensuring baseline matching. The prevalence of specific helminth infections in TB+Helminth patients included Ascaris lumbricoides (24.0%), Trichuris trichiura (18.7%), and others. Hematological parameters showed significant differences, with TB+Helminth patients exhibiting higher RBC count, hemoglobin, hematocrit, neutrophil count, and monocyte count; also eosinophil count was more raised in TB+Helminth patients (0.36 x 103/μL) when compared to TB patients (0.25 x 103/μL). Cytokine profiles and monocyte responses varied significantly between the groups, with TB patients having higher IL-4, IL-6, IFN-γ, TNF-α, and IL-1β levels, while TB+Helminth patients had elevated IL-10. Monocyte response time did not differ significantly. Conclusion The observed differences in hematological parameters and cytokine profiles emphasize the need for tailored approaches to diagnosis and treatment in co-infected individuals. These findings suggest that the management of TB patients should consider the potential influence of helminth co-infections.
Collapse
Affiliation(s)
- Ritu Kumari
- Microbiology, Indira Gandhi Institute of Medical Sciences, Patna, IND
| | - Sweta Muni
- Microbiology, Indira Gandhi Institute of Medical Sciences, Patna, IND
| | - Randhir Kumar
- Microbiology, Indira Gandhi Institute of Medical Sciences, Patna, IND
| | - Rakesh Kumar
- Microbiology, Indira Gandhi Institute of Medical Sciences, Patna, IND
| | - Abay Kumar
- Microbiology, Indira Gandhi Institute of Medical Sciences, Patna, IND
| | - Shailesh Kumar
- Microbiology, Indira Gandhi Institute of Medical Sciences, Patna, IND
| | - Namrata Kumari
- Microbiology, Indira Gandhi Institute of Medical Sciences, Patna, IND
| |
Collapse
|
20
|
Jain A, Kumar R, Mothsra P, Sharma AK, Singh AK, Kumar Y. Recent Biochemical Advances in Antitubercular Drugs: Challenges and Future. Curr Top Med Chem 2024; 24:1829-1855. [PMID: 38919089 DOI: 10.2174/0115680266286294240610102911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/29/2024] [Accepted: 04/29/2024] [Indexed: 06/27/2024]
Abstract
Tuberculosis (TB) is one of the leading causes of death world-wide after AIDS. It infects around one-third of global population and approximately two million people die annually from this disease because it is a very contagious disease spread by Mycobacterium tuberculosis. The increasing number of drug-resistant strains and the failure of conventional treatments against this strain are the challenges of the coming decades. New therapeutic techniques aim to confirm cure without deterioration, to reduce deaths, contagions and the formation of drug-resistant strains. A plethora of new diagnostic tests are available to diagnose the active tuberculosis, screen latent M. tuberculosis infection, and to identify drug-resistant strains of M. tuberculosis. When effective prevention strategies do not prevail, high rates of early case detection and successive cures to control TB emergence would not be possible. In this review, we discussed the structural features of M. tuberculosis, Multi drug resistance tuberculosis (MDR-TB), extremely drug-resistant tuberculosis (XDR-TB), the mechanism of M. tuberculosis infection, the mode of action of first and second-line antitubercular drugs, the mechanism of resistance to the existing drugs, compounds in preclinical and clinical trial and drugs presently available for the treatment of tuberculosis. Moreover, the new diagnostic techniques to detect M. tuberculosis are also discussed in this review.
Collapse
Affiliation(s)
- Akanksha Jain
- Department of Food and Nutrition, Bhagini Nivedita College, University of Delhi, Kair Near Najafgarh, Delhi, 110043, India
| | - Rajesh Kumar
- P.G. Department of Chemistry, R.D.S. College, B.R.A. Bihar University, Muzaffarpur, 842002, India
| | - Poonam Mothsra
- Department of Chemistry, Bhagini Nivedita College, University of Delhi, Kair Near Najafgarh, Delhi, 110043, India
| | - Atul Kumar Sharma
- Department of Chemistry, Deshbandhu College, University of Delhi, 110019, India
| | - Anil Kumar Singh
- Department of Chemistry, School of Physical Sciences, Mahatma Gandhi Central University, Motihari, Bihar, 845401, India
| | - Yogesh Kumar
- Department of Chemistry, Bhagini Nivedita College, University of Delhi, Kair Near Najafgarh, Delhi, 110043, India
| |
Collapse
|
21
|
Sankar P, Mishra BB. Early innate cell interactions with Mycobacterium tuberculosis in protection and pathology of tuberculosis. Front Immunol 2023; 14:1260859. [PMID: 37965344 PMCID: PMC10641450 DOI: 10.3389/fimmu.2023.1260859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/26/2023] [Indexed: 11/16/2023] Open
Abstract
Tuberculosis (TB) remains a significant global health challenge, claiming the lives of up to 1.5 million individuals annually. TB is caused by the human pathogen Mycobacterium tuberculosis (Mtb), which primarily infects innate immune cells in the lungs. These immune cells play a critical role in the host defense against Mtb infection, influencing the inflammatory environment in the lungs, and facilitating the development of adaptive immunity. However, Mtb exploits and manipulates innate immune cells, using them as favorable niche for replication. Unfortunately, our understanding of the early interactions between Mtb and innate effector cells remains limited. This review underscores the interactions between Mtb and various innate immune cells, such as macrophages, dendritic cells, granulocytes, NK cells, innate lymphocytes-iNKT and ILCs. In addition, the contribution of alveolar epithelial cell and endothelial cells that constitutes the mucosal barrier in TB immunity will be discussed. Gaining insights into the early cellular basis of immune reactions to Mtb infection is crucial for our understanding of Mtb resistance and disease tolerance mechanisms. We argue that a better understanding of the early host-pathogen interactions could inform on future vaccination approaches and devise intervention strategies.
Collapse
Affiliation(s)
| | - Bibhuti Bhusan Mishra
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, United States
| |
Collapse
|
22
|
Naik SK, McNehlan ME, Mreyoud Y, Kinsella RL, Smirnov A, Chowdhury CS, McKee SR, Dubey N, Woodson R, Kreamalmeyer D, Stallings CL. Type I IFN signaling in the absence of IRGM1 promotes M. tuberculosis replication in immune cells by suppressing T cell responses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.03.560720. [PMID: 37873329 PMCID: PMC10592944 DOI: 10.1101/2023.10.03.560720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Polymorphisms in the IRGM gene are associated with susceptibility to tuberculosis in humans. A murine ortholog of Irgm, Irgm1, is also essential for controlling Mycobacterium tuberculosis (Mtb) infection in mice. Multiple processes have been associated with IRGM1 activity that could impact the host response to Mtb infection, including roles in autophagy-mediated pathogen clearance and expansion of activated T cells. However, what IRGM1-mediated pathway is necessary to control Mtb infection in vivo and the mechanistic basis for this control remains unknown. We dissected the contribution of IRGM1 to immune control of Mtb pathogenesis in vivo and found that Irgm1 deletion leads to higher levels of IRGM3-dependent type I interferon signaling. The increased type I interferon signaling precludes T cell expansion during Mtb infection. The absence of Mtb-specific T cell expansion in Irgm1-/- mice results in uncontrolled Mtb infection in neutrophils and alveolar macrophages, which directly contributes to susceptibility to infection. Together, our studies reveal that IRGM1 is required to promote T cell-mediated control of Mtb infection in neutrophils, which is essential for the survival of Mtb-infected mice. These studies also uncover new ways type I interferon signaling can impact TH1 immune responses.
Collapse
Affiliation(s)
- Sumanta K. Naik
- Department of Molecular Microbiology, Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Michael E. McNehlan
- Department of Molecular Microbiology, Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Yassin Mreyoud
- Department of Molecular Microbiology, Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Rachel L. Kinsella
- Department of Molecular Microbiology, Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Asya Smirnov
- Department of Molecular Microbiology, Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Chanchal Sur Chowdhury
- Department of Molecular Microbiology, Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Samuel R. McKee
- Department of Molecular Microbiology, Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Neha Dubey
- Department of Molecular Microbiology, Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Reilly Woodson
- Department of Molecular Microbiology, Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Darren Kreamalmeyer
- Department of Molecular Microbiology, Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Christina L. Stallings
- Department of Molecular Microbiology, Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
23
|
Gail DP, Suzart VG, Du W, Kaur Sandhu A, Jarvela J, Nantongo M, Mwebaza I, Panigrahi S, Freeman ML, Canaday DH, Boom WH, Silver RF, Carpenter SM. Mycobacterium tuberculosis impairs human memory CD4 + T cell recognition of M2 but not M1-like macrophages. iScience 2023; 26:107706. [PMID: 37694142 PMCID: PMC10485162 DOI: 10.1016/j.isci.2023.107706] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 05/24/2023] [Accepted: 08/21/2023] [Indexed: 09/12/2023] Open
Abstract
Direct recognition of Mycobacterium tuberculosis (Mtb)-infected cells is required for protection by CD4+ T cells. While impaired T cell recognition of Mtb-infected macrophages was demonstrated in mice, data are lacking for humans. Using T cells and monocyte-derived macrophages (MDMs) from individuals with latent Mtb infection (LTBI), we quantified the frequency of memory CD4+ T cell activation in response to autologous MDMs infected with virulent Mtb. We observed robust T cell activation in response to Mtb infection of M1-like macrophages differentiated using GM-CSF, while M2-like macrophages differentiated using M-CSF were poorly recognized. However, non-infected GM-CSF and M-CSF MDMs loaded with exogenous antigens elicited similar CD4+ T cell activation. IL-10 was preferentially secreted by infected M-CSF MDMs, and neutralization improved T cell activation. These results suggest that preferential infection of macrophages with an M2-like phenotype limits T cell-mediated protection against Mtb. Vaccine development should focus on T cell recognition of Mtb-infected macrophages.
Collapse
Affiliation(s)
- Daniel P. Gail
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Vinicius G. Suzart
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Biomedical Sciences Training Program, Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Weinan Du
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Avinaash Kaur Sandhu
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Biomedical Sciences Training Program, Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Jessica Jarvela
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Department of Medicine, The Louis Stokes Cleveland V.A. Medical Center, Cleveland, OH 44106, USA
| | - Mary Nantongo
- Biomedical Sciences Training Program, Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Ivan Mwebaza
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Biomedical Sciences Training Program, Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Soumya Panigrahi
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Michael L. Freeman
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Biomedical Sciences Training Program, Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - David H. Canaday
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Department of Medicine, The Louis Stokes Cleveland V.A. Medical Center, Cleveland, OH 44106, USA
| | - W. Henry Boom
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Biomedical Sciences Training Program, Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, University Hospitals Cleveland Medical Center, Cleveland, OH 44139, USA
| | - Richard F. Silver
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Department of Medicine, The Louis Stokes Cleveland V.A. Medical Center, Cleveland, OH 44106, USA
| | - Stephen M. Carpenter
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Biomedical Sciences Training Program, Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, University Hospitals Cleveland Medical Center, Cleveland, OH 44139, USA
| |
Collapse
|
24
|
Aiello A, Najafi-Fard S, Goletti D. Initial immune response after exposure to Mycobacterium tuberculosis or to SARS-COV-2: similarities and differences. Front Immunol 2023; 14:1244556. [PMID: 37662901 PMCID: PMC10470049 DOI: 10.3389/fimmu.2023.1244556] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 07/31/2023] [Indexed: 09/05/2023] Open
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb) and Coronavirus disease-2019 (COVID-19), whose etiologic agent is severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), are currently the two deadliest infectious diseases in humans, which together have caused about more than 11 million deaths worldwide in the past 3 years. TB and COVID-19 share several aspects including the droplet- and aerosol-borne transmissibility, the lungs as primary target, some symptoms, and diagnostic tools. However, these two infectious diseases differ in other aspects as their incubation period, immune cells involved, persistence and the immunopathological response. In this review, we highlight the similarities and differences between TB and COVID-19 focusing on the innate and adaptive immune response induced after the exposure to Mtb and SARS-CoV-2 and the pathological pathways linking the two infections. Moreover, we provide a brief overview of the immune response in case of TB-COVID-19 co-infection highlighting the similarities and differences of each individual infection. A comprehensive understanding of the immune response involved in TB and COVID-19 is of utmost importance for the design of effective therapeutic strategies and vaccines for both diseases.
Collapse
Affiliation(s)
| | | | - Delia Goletti
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| |
Collapse
|
25
|
Zheng W, Chang IC, Limberis J, Budzik J, Zha BS, Howard Z, Chen L, Ernst J. Mycobacterium tuberculosis resides in lysosome-poor monocyte-derived lung cells during chronic infection. RESEARCH SQUARE 2023:rs.3.rs-3049913. [PMID: 37398178 PMCID: PMC10312915 DOI: 10.21203/rs.3.rs-3049913/v1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Mycobacterium tuberculosis (Mtb) persists in lung myeloid cells during chronic infection. However, the mechanisms allowing Mtb to evade elimination are not fully understood. Here, we determined that in chronic phase, CD11clo monocyte-derived lung cells termed MNC1 (mononuclear cell subset 1), harbor more live Mtb than alveolar macrophages (AM), neutrophils, and less permissive CD11chi MNC2. Transcriptomic and functional studies of sorted cells revealed that the lysosome biogenesis pathway is underexpressed in MNC1, which have less lysosome content, acidification, and proteolytic activity than AM, and less nuclear TFEB, a master regulator of lysosome biogenesis. Mtb infection does not drive lysosome deficiency in MNC1. Instead, Mtb recruits MNC1 and MNC2 to the lungs for its spread from AM to these cells via its ESX-1 secretion system. The c-Abl tyrosine kinase inhibitor nilotinib activates TFEB and enhances lysosome function of primary macrophages and MNC1 and MNC2 in vivo, improving control of Mtb infection. Our results indicate that Mtb exploits lysosome-poor monocyte-derived cells for in vivo persistence, suggesting a potential target for host-directed tuberculosis therapy.
Collapse
|
26
|
Zheng W, Chang IC, Limberis J, Budzik JM, Zha BS, Howard Z, Chen L, Ernst JD. Mycobacterium tuberculosis resides in lysosome-poor monocyte-derived lung cells during chronic infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.19.524758. [PMID: 36711606 PMCID: PMC9882350 DOI: 10.1101/2023.01.19.524758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Mycobacterium tuberculosis (Mtb) infects cells in multiple lung myeloid cell subsets and causes chronic infection despite innate and adaptive immune responses. However, the mechanisms allowing Mtb to evade elimination are not fully understood. Here, using new methods, we determined that after T cell responses have developed, CD11clo monocyte-derived lung cells termed MNC1 (mononuclear cell subset 1), harbor more live Mtb compared to alveolar macrophages (AM), neutrophils, and less permissive CD11chi MNC2. Bulk RNA sequencing of sorted cells revealed that the lysosome biogenesis pathway is underexpressed in MNC1. Functional assays confirmed that Mtb-permissive MNC1 have less lysosome content, acidification, and proteolytic activity than AM, and less nuclear TFEB, a master regulator of lysosome biogenesis. Mtb infection does not drive lysosome deficiency in MNC1 in vivo. Instead, Mtb recruits MNC1 and MNC2 to the lungs for its spread from AM to these cell subsets as a virulence mechanism that requires the Mtb ESX-1 secretion system. The c-Abl tyrosine kinase inhibitor nilotinib activates TFEB and enhances lysosome function of primary macrophages in vitro and MNC1 and MNC2 in vivo, improving control of Mtb infection. Our results indicate that Mtb exploits lysosome-poor monocyte-derived cells for in vivo persistence, suggesting a potential target for host-directed tuberculosis therapy.
Collapse
Affiliation(s)
- Weihao Zheng
- Division of Experimental Medicine, Department of Medicine, University of California, San Francisco, California, USA
| | - I-Chang Chang
- Division of Experimental Medicine, Department of Medicine, University of California, San Francisco, California, USA
| | - Jason Limberis
- Division of Experimental Medicine, Department of Medicine, University of California, San Francisco, California, USA
| | - Jonathan M. Budzik
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine, University of California, San Francisco, California, USA
| | - B. Shoshana Zha
- Division of Experimental Medicine, Department of Medicine, University of California, San Francisco, California, USA
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine, University of California, San Francisco, California, USA
| | - Zach Howard
- Division of Experimental Medicine, Department of Medicine, University of California, San Francisco, California, USA
| | - Lucas Chen
- Division of Experimental Medicine, Department of Medicine, University of California, San Francisco, California, USA
| | - Joel D. Ernst
- Division of Experimental Medicine, Department of Medicine, University of California, San Francisco, California, USA
| |
Collapse
|
27
|
T'Jonck W, Bain CC. The role of monocyte-derived macrophages in the lung: it's all about context. Int J Biochem Cell Biol 2023; 159:106421. [PMID: 37127181 DOI: 10.1016/j.biocel.2023.106421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/24/2023] [Accepted: 04/28/2023] [Indexed: 05/03/2023]
Abstract
Macrophages are present in every tissue of the body where they play crucial roles in maintaining tissue homeostasis and providing front line defence against pathogens. Arguably, this is most important at mucosal barrier tissues, such as the lung and gut, which are major ports of entry for pathogens. However, a common feature of inflammation, infection or injury is the loss of tissue resident macrophages and accumulation of monocytes from the circulation, which differentiate, to different extents, into macrophages. The exact fate and function of these elicited, monocyte-derived macrophages in infection, injury and inflammation remains contentious. While some studies have documented the indispensable nature of monocytes and their macrophage derivatives in combatting infection and restoration of lung homeostasis following insult, observations from clinical studies and preclinical models of lung infection/injury shows that monocytes and their progeny can become dysregulated in severe pathology, often perpetuating rather than resolving the insult. In this Mini Review, we aim to bring together these somewhat contradictory reports by discussing how the plasticity of monocytes allow them to assume distinct functions in different contexts in the lung, from health to infection, and effective tissue repair to fibrotic disease.
Collapse
Affiliation(s)
- Wouter T'Jonck
- University of Edinburgh Centre for Inflammation Research, Queen's Medical Research Institute, Edinburgh BioQuarter, EH16 4TJ, U.K; Institute for Regeneration and Repair, University of Edinburgh, Edinburgh BioQuarter
| | - Calum C Bain
- University of Edinburgh Centre for Inflammation Research, Queen's Medical Research Institute, Edinburgh BioQuarter, EH16 4TJ, U.K; Institute for Regeneration and Repair, University of Edinburgh, Edinburgh BioQuarter
| |
Collapse
|
28
|
Azevedo-Pereira JM, Pires D, Calado M, Mandal M, Santos-Costa Q, Anes E. HIV/Mtb Co-Infection: From the Amplification of Disease Pathogenesis to an “Emerging Syndemic”. Microorganisms 2023; 11:microorganisms11040853. [PMID: 37110276 PMCID: PMC10142195 DOI: 10.3390/microorganisms11040853] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
Human immunodeficiency virus (HIV) and Mycobacterium tuberculosis (Mtb) are pathogens responsible for millions of new infections each year; together, they cause high morbidity and mortality worldwide. In addition, late-stage HIV infection increases the risk of developing tuberculosis (TB) by a factor of 20 in latently infected people, and even patients with controlled HIV infection on antiretroviral therapy (ART) have a fourfold increased risk of developing TB. Conversely, Mtb infection exacerbates HIV pathogenesis and increases the rate of AIDS progression. In this review, we discuss this reciprocal amplification of HIV/Mtb coinfection and how they influence each other’s pathogenesis. Elucidating the infectious cofactors that impact on pathogenesis may open doors for the design of new potential therapeutic strategies to control disease progression, especially in contexts where vaccines or the sterile clearance of pathogens are not effectively available.
Collapse
Affiliation(s)
- José Miguel Azevedo-Pereira
- Host-Pathogen Interactions Unit, Research Institute for Medicines, iMed-ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
- Correspondence: (J.M.A.-P.); (E.A.)
| | - David Pires
- Host-Pathogen Interactions Unit, Research Institute for Medicines, iMed-ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
- Center for Interdisciplinary Research in Health, Católica Medical School, Universidade Católica Portuguesa, Estrada Octávio Pato, 2635-631 Rio de Mouro, Portugal
| | - Marta Calado
- Host-Pathogen Interactions Unit, Research Institute for Medicines, iMed-ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Manoj Mandal
- Host-Pathogen Interactions Unit, Research Institute for Medicines, iMed-ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Quirina Santos-Costa
- Host-Pathogen Interactions Unit, Research Institute for Medicines, iMed-ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Elsa Anes
- Host-Pathogen Interactions Unit, Research Institute for Medicines, iMed-ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
- Correspondence: (J.M.A.-P.); (E.A.)
| |
Collapse
|
29
|
Backer RA, Probst HC, Clausen BE. Classical DC2 subsets and monocyte-derived DC: Delineating the developmental and functional relationship. Eur J Immunol 2023; 53:e2149548. [PMID: 36642930 DOI: 10.1002/eji.202149548] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 11/08/2023] [Accepted: 01/13/2023] [Indexed: 01/17/2023]
Abstract
To specifically tailor immune responses to a given pathogenic threat, dendritic cells (DC) are highly heterogeneous and comprise many specialized subtypes, including conventional DC (cDC) and monocyte-derived DC (MoDC), each with distinct developmental and functional characteristics. However, the functional relationship between cDC and MoDC is not fully understood, as the overlapping phenotypes of certain type 2 cDC (cDC2) subsets and MoDC do not allow satisfactory distinction of these cells in the tissue, particularly during inflammation. However, precise cDC2 and MoDC classification is required for studies addressing how these diverse cell types control immune responses and is therefore currently one of the major interests in the field of cDC research. This review will revise murine cDC2 and MoDC biology in the steady state and under inflammatory conditions and discusses the commonalities and differences between ESAMlo cDC2, inflammatory cDC2, and MoDC and their relative contribution to the initiation, propagation, and regulation of immune responses.
Collapse
Affiliation(s)
- Ronald A Backer
- Institute for Molecular Medicine, Paul Klein Center for Immune Intervention, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Hans Christian Probst
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Institute for Immunology, Paul Klein Center for Immune Intervention, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Björn E Clausen
- Institute for Molecular Medicine, Paul Klein Center for Immune Intervention, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| |
Collapse
|
30
|
Abbasnia S, Hajimiri S, Jafari Rad M, Ariaee N, Mosavat A, Hashem Asnaashari AM, Derakhshan M, Amel Jamehdar S, Ghazvini K, Mohammadi FS, Rezaee SA. Gene Expression Study of Host and Mycobacterium tuberculosis Interactions in the Manifestation of Acute Tuberculosis. Appl Biochem Biotechnol 2023; 195:3641-3652. [PMID: 36652092 DOI: 10.1007/s12010-023-04329-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2023] [Indexed: 01/19/2023]
Abstract
Mycobacterium tuberculosis (M.tb) could induce type IV hypersensitivity. The chemotaxis of the leukocytes toward the site of infection and producing matrix metalloproteinases (MMPs) are key factors in the immune pathogenesis of tuberculosis (TB). Mononuclear cells were isolated from bronchoalveolar lavage (BAL) specimens, and the target from genomic DNA was used for qPCR TB diagnosis and cDNA for specific RT-qPCR gene expression. The subjects were then classified into TB+ and TB- groups, and the expression levels of CFP-10, ESAT-6, CCR1, CCR12 and MMP3,9 were evaluated. The mean level of CCR1 expression in TB+ and TB- patients' BAL was 1.71 ± 0.78 and 0.5 ± 0.22, respectively, which was statistically different (p = 0.01). The CCR2 level, in TB+ (2.07 ± 1.4), was higher than in TB- patients (1.42 ± 0.89, p = 0.01). The MMP9 expression in TB+ was 2.56 ± 0.68, also higher than in TB- patients (1.13 ± 0.35), while MMP3 was lower in TB+ (0.22 ± 0.09) than in TB- (0.64 ± 0.230, p = 0.05). The CCR2/CCR1 and MMP3/MMP9 balance in TB+ were reduced, compared to the TB-. The CFP-10 and ESAT-6 were highly expressed in TB+ patients. The CFP-10 expression had a strong negative correlation with albumin (r = - 0.93, p = 0.001), and a negative correlation with neutrophil (r = - 0.444, p = 0.1 with 90% CI). The MMP-9 expression showed a positive correlation with WBC count (r = 0.61, p = 0.02), in TB+, and had a negative correlation with BMI (r = 0.59, p = 0.02) in TB-. The M.tb CFP-10 might be implicated in lowering CCR2 and MMP3 expression in favour of M.tb dissemination. Moreover, the balance of CCR2/CCR1 and MMP3/MMP9 can be used as prognostic factors in the severity of TB.
Collapse
Affiliation(s)
- Shadi Abbasnia
- Immunology Research Center, Inflammation and Inflammatory Diseases Division, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sara Hajimiri
- Antimicrobial Resistance Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Microbiology and Virology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mozhdeh Jafari Rad
- Immunology Research Center, Inflammation and Inflammatory Diseases Division, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Nazila Ariaee
- Immunology Research Center, Inflammation and Inflammatory Diseases Division, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arman Mosavat
- Blood Borne Infections Research Center, Academic Center for Education, Culture and Research (ACECR), Razavi Khorasan, Mashhad, Iran
| | | | - Mohammad Derakhshan
- Antimicrobial Resistance Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Microbiology and Virology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saeid Amel Jamehdar
- Antimicrobial Resistance Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Microbiology and Virology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Kiarash Ghazvini
- Antimicrobial Resistance Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Microbiology and Virology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Sadat Mohammadi
- Immunology Research Center, Inflammation and Inflammatory Diseases Division, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Abdolrahim Rezaee
- Immunology Research Center, Inflammation and Inflammatory Diseases Division, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
31
|
Chandra P, Grigsby SJ, Philips JA. Immune evasion and provocation by Mycobacterium tuberculosis. Nat Rev Microbiol 2022; 20:750-766. [PMID: 35879556 PMCID: PMC9310001 DOI: 10.1038/s41579-022-00763-4] [Citation(s) in RCA: 228] [Impact Index Per Article: 76.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2022] [Indexed: 02/07/2023]
Abstract
Mycobacterium tuberculosis, the causative agent of tuberculosis, has infected humans for millennia. M. tuberculosis is well adapted to establish infection, persist in the face of the host immune response and be transmitted to uninfected individuals. Its ability to complete this infection cycle depends on it both evading and taking advantage of host immune responses. The outcome of M. tuberculosis infection is often a state of equilibrium characterized by immunological control and bacterial persistence. Recent data have highlighted the diverse cell populations that respond to M. tuberculosis infection and the dynamic changes in the cellular and intracellular niches of M. tuberculosis during the course of infection. M. tuberculosis possesses an arsenal of protein and lipid effectors that influence macrophage functions and inflammatory responses; however, our understanding of the role that specific bacterial virulence factors play in the context of diverse cellular reservoirs and distinct infection stages is limited. In this Review, we discuss immune evasion and provocation by M. tuberculosis during its infection cycle and describe how a more detailed molecular understanding is crucial to enable the development of novel host-directed therapies, disease biomarkers and effective vaccines.
Collapse
Affiliation(s)
- Pallavi Chandra
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA
| | - Steven J Grigsby
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA
| | - Jennifer A Philips
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St Louis, MO, USA.
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA.
| |
Collapse
|
32
|
Venkatasubramanian S, Pryor R, Plumlee C, Cohen SB, Simmons JD, Warr AJ, Graustein AD, Saha A, Hawn TR, Urdahl KB, Shah JA. TOLLIP Optimizes Dendritic Cell Maturation to Lipopolysaccharide and Mycobacterium tuberculosis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:435-445. [PMID: 35803695 PMCID: PMC9339496 DOI: 10.4049/jimmunol.2200030] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
TOLLIP is a central regulator of multiple innate immune signaling pathways, including TLR2, TLR4, IL-1R, and STING. Human TOLLIP deficiency, regulated by single-nucleotide polymorphism rs5743854, is associated with increased tuberculosis risk and diminished frequency of bacillus Calmette-Guérin vaccine-specific CD4+ T cells in infants. How TOLLIP influences adaptive immune responses remains poorly understood. To understand the mechanistic relationship between TOLLIP and adaptive immune responses, we used human genetic and murine models to evaluate the role of TOLLIP in dendritic cell (DC) function. In healthy volunteers, TOLLIP single-nucleotide polymorphism rs5743854 G allele was associated with decreased TOLLIP mRNA and protein expression in DCs, along with LPS-induced IL-12 secretion in peripheral blood DCs. As in human cells, LPS-stimulated Tollip -/- bone marrow-derived murine DCs secreted less IL-12 and expressed less CD40. Tollip was required in lung and lymph node-resident DCs for optimal induction of MHC class II and CD40 expression during the first 28 d of Mycobacterium tuberculosis infection in mixed bone marrow chimeric mice. Tollip -/- mice developed fewer M. tuberculosis-specific CD4+ T cells after 28 d of infection and diminished responses to bacillus Calmette-Guérin vaccination. Furthermore, Tollip -/- DCs were unable to optimally induce T cell proliferation. Taken together, these data support a model where TOLLIP-deficient DCs undergo suboptimal maturation after M. tuberculosis infection, impairing T cell activation and contributing to tuberculosis susceptibility.
Collapse
Affiliation(s)
| | | | | | | | | | - Alexander J Warr
- University of Washington, Seattle, WA
- Baylor School of Medicine, Houston, TX; and
| | - Andrew D Graustein
- University of Washington, Seattle, WA
- VA Puget Sound Healthcare System, Seattle, WA
| | | | | | | | - Javeed A Shah
- University of Washington, Seattle, WA;
- VA Puget Sound Healthcare System, Seattle, WA
| |
Collapse
|
33
|
Zha BS, Desvignes L, Fergus TJ, Cornelius A, Cheng TY, Moody DB, Ernst JD. Bacterial Strain-Dependent Dissociation of Cell Recruitment and Cell-to-Cell Spread in Early M. tuberculosis Infection. mBio 2022; 13:e0133222. [PMID: 35695454 PMCID: PMC9239178 DOI: 10.1128/mbio.01332-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 05/16/2022] [Indexed: 11/20/2022] Open
Abstract
In the initial stage of respiratory infection, Mycobacterium tuberculosis traverses from alveolar macrophages to phenotypically diverse monocyte-derived phagocytes and neutrophils in the lung parenchyma. Here, we compare the in vivo kinetics of early bacterial growth and cell-to-cell spread of two strains of M. tuberculosis: a lineage 2 strain, 4334, and the widely studied lineage 4 strain H37Rv. Using flow cytometry, live cell sorting of phenotypic subsets, and quantitation of bacteria in cells of the distinct subsets, we found that 4334 induces less leukocyte influx into the lungs but demonstrates earlier population expansion and cell-to-cell spread. The earlier spread of 4334 to recruited cells, including monocyte-derived dendritic cells, is accompanied by earlier and greater magnitude of CD4+ T cell activation. The results provide evidence that strain-specific differences in interactions with lung leukocytes can shape adaptive immune responses in vivo. IMPORTANCE Tuberculosis is a leading infectious disease killer worldwide and is caused by Mycobacterium tuberculosis. After exposure to M. tuberculosis, outcomes range from apparent elimination to active disease. Early innate immune responses may contribute to differences in outcomes, yet it is not known how bacterial strains alter the early dynamics of innate immune and T cell responses. We infected mice with distinct strains of M. tuberculosis and discovered striking differences in innate cellular recruitment, cell-to-cell spread of bacteria in the lungs, and kinetics of initiation of antigen-specific CD4 T cell responses. We also found that M. tuberculosis can spread beyond alveolar macrophages even before a large influx of inflammatory cells. These results provide evidence that distinct strains of M. tuberculosis can exhibit differential kinetics in cell-to-cell spread which is not directly linked to early recruitment of phagocytes but is subsequently linked to adaptive immune responses.
Collapse
Affiliation(s)
- B. Shoshana Zha
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine, University of California, San Francisco, California, USA
- Division of Experimental Medicine, Department of Medicine, University of California, San Francisco, California, USA
| | - Ludovic Desvignes
- Department of Medicine, New York University School of Medicine, New York, New York, USA
| | - Tawania J. Fergus
- Department of Medicine, New York University School of Medicine, New York, New York, USA
| | - Amber Cornelius
- Department of Medicine, New York University School of Medicine, New York, New York, USA
| | - Tan-Yun Cheng
- Division of Rheumatology, Immunity and Inflammation, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - D. Branch Moody
- Division of Rheumatology, Immunity and Inflammation, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Joel D. Ernst
- Division of Experimental Medicine, Department of Medicine, University of California, San Francisco, California, USA
| |
Collapse
|
34
|
Desel C, Murray PJ, Lehmann CHK, Heger L, Christensen D, Andersen P, Mack M, Dudziak D, Lang R. Monocytes Elicit a Neutrophil-Independent Th1/Th17 Response Upon Immunization With a Mincle-Dependent Glycolipid Adjuvant. Front Immunol 2022; 13:880474. [PMID: 35585969 PMCID: PMC9108773 DOI: 10.3389/fimmu.2022.880474] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/01/2022] [Indexed: 12/24/2022] Open
Abstract
Successful subunit vaccination with recombinant proteins requires adjuvants. The glycolipid trehalose-dibehenate (TDB), a synthetic analog of the mycobacterial cord factor, potently induces Th1 and Th17 immune responses and is a candidate adjuvant for human immunization. TDB binds to the C-type lectin receptor Mincle and triggers Syk-Card9-dependent APC activation. In addition, interleukin (IL)-1 receptor/MyD88-dependent signaling is required for TDB adjuvanticity. The role of different innate immune cell types in adjuvant-stimulated Th1/Th17 responses is not well characterized. We investigated cell recruitment to the site of injection (SOI) and to the draining lymph nodes (dLNs) after immunization with the TDB containing adjuvant CAF01 in a protein-based vaccine. Recruitment of monocytes and neutrophils to the SOI and the dramatic increase in lymph node cellularity was partially dependent on both Mincle and MyD88. Despite their large numbers at the SOI, neutrophils were dispensable for the induction of Th1/Th17 responses. In contrast, CCR2-dependent monocyte recruitment was essential for the induction of Th1/Th17 cells. Transport of adjuvant to the dLN did not require Mincle, MyD88, or CCR2. Together, adjuvanticity conferred by monocytes can be separated at the cellular level from potential tissue damage by neutrophils.
Collapse
Affiliation(s)
- Christiane Desel
- Institute of Clinical Microbiology, Immunology and Hygiene, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- *Correspondence: Christiane Desel, ; Roland Lang,
| | - Peter J. Murray
- Department of Infectious Disease, St. Jude Children’s Research Hospital, Memphis, TN, United States
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Christian H. K. Lehmann
- Department of Dermatology, Laboratory of Dendritic Cell Biology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Lukas Heger
- Department of Dermatology, Laboratory of Dendritic Cell Biology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Dennis Christensen
- Department of Infectious Disease Immunology, Statens Serum Institute, Copenhagen, Denmark
| | - Peter Andersen
- Department of Infectious Disease Immunology, Statens Serum Institute, Copenhagen, Denmark
| | - Matthias Mack
- Department of Nephrology, University Hospital Regensburg, Regensburg, Germany
| | - Diana Dudziak
- Department of Dermatology, Laboratory of Dendritic Cell Biology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Roland Lang
- Institute of Clinical Microbiology, Immunology and Hygiene, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- *Correspondence: Christiane Desel, ; Roland Lang,
| |
Collapse
|
35
|
Carpenter SM, Lu LL. Leveraging Antibody, B Cell and Fc Receptor Interactions to Understand Heterogeneous Immune Responses in Tuberculosis. Front Immunol 2022; 13:830482. [PMID: 35371092 PMCID: PMC8968866 DOI: 10.3389/fimmu.2022.830482] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/07/2022] [Indexed: 12/25/2022] Open
Abstract
Despite over a century of research, Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), continues to kill 1.5 million people annually. Though less than 10% of infected individuals develop active disease, the specific host immune responses that lead to Mtb transmission and death, as well as those that are protective, are not yet fully defined. Recent immune correlative studies demonstrate that the spectrum of infection and disease is more heterogenous than has been classically defined. Moreover, emerging translational and animal model data attribute a diverse immune repertoire to TB outcomes. Thus, protective and detrimental immune responses to Mtb likely encompass a framework that is broader than T helper type 1 (Th1) immunity. Antibodies, Fc receptor interactions and B cells are underexplored host responses to Mtb. Poised at the interface of initial bacterial host interactions and in granulomatous lesions, antibodies and Fc receptors expressed on macrophages, neutrophils, dendritic cells, natural killer cells, T and B cells have the potential to influence local and systemic adaptive immune responses. Broadening the paradigm of protective immunity will offer new paths to improve diagnostics and vaccines to reduce the morbidity and mortality of TB.
Collapse
Affiliation(s)
- Stephen M. Carpenter
- Division of Infectious Disease and HIV Medicine, Department of Medicine, Case Western Reserve University, Cleveland, OH, United States
- Cleveland Medical Center, University Hospitals Cleveland Medical Center, Cleveland, OH, United States
| | - Lenette L. Lu
- Division of Geographic Medicine and Infectious Diseases, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, United States
- Department of Immunology, UT Southwestern Medical Center, Dallas, TX, United States
- Parkland Health and Hospital System, Dallas, TX, United States
| |
Collapse
|
36
|
Arenas-Hernandez M, Romero R, Gershater M, Tao L, Xu Y, Garcia-Flores V, Pusod E, Miller D, Galaz J, Motomura K, Schwenkel G, Para R, Gomez-Lopez N. Specific innate immune cells uptake fetal antigen and display homeostatic phenotypes in the maternal circulation. J Leukoc Biol 2022; 111:519-538. [PMID: 34889468 PMCID: PMC8881318 DOI: 10.1002/jlb.5hi0321-179rr] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 10/25/2021] [Accepted: 10/29/2021] [Indexed: 12/22/2022] Open
Abstract
Pregnancy represents a period when the mother undergoes significant immunological changes to promote tolerance of the fetal semi-allograft. Such tolerance results from the exposure of the maternal immune system to fetal antigens (Ags), a process that has been widely investigated at the maternal-fetal interface and in the adjacent draining lymph nodes. However, the peripheral mechanisms of maternal-fetal crosstalk are poorly understood. Herein, we hypothesized that specific innate immune cells interact with fetal Ags in the maternal circulation. To test this hypothesis, a mouse model was utilized in which transgenic male mice expressing the chicken ovalbumin (OVA) Ag under the beta-actin promoter were allogeneically mated with wild-type females to allow for tracking of the fetal Ag. Fetal Ag-carrying Ly6G+ and F4/80+ cells were identified in the maternal circulation, where they were more abundant in the second half of pregnancy. Such innate immune cells displayed unique phenotypes: while Ly6G+ cells expressed high levels of MHC-II and CD80 together with low levels of pro-inflammatory cytokines, F4/80+ cells up-regulated the expression of CD86 as well as the anti-inflammatory cytokines IL-10 and TGF-β. In vitro studies using allogeneic GFP+ placental particles revealed that maternal peripheral Ly6G+ and F4/80+ cells phagocytose fetal Ags in mid and late murine pregnancy. Importantly, cytotrophoblast-derived particles were also engulfed in vitro by CD15+ and CD14+ cells from women in the second and third trimester, providing translational evidence that this process also occurs in humans. Collectively, this study demonstrates novel interactions between specific maternal circulating innate immune cells and fetal Ags, thereby shedding light on the systemic mechanisms of maternal-fetal crosstalk.
Collapse
Affiliation(s)
- Marcia Arenas-Hernandez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Roberto Romero
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA
- Detroit Medical Center, Detroit, MI, USA
- Department of Obstetrics and Gynecology, Florida International University, Miami, FL, USA
| | - Meyer Gershater
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Li Tao
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Yi Xu
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Valeria Garcia-Flores
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Errile Pusod
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Derek Miller
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Jose Galaz
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Kenichiro Motomura
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - George Schwenkel
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Robert Para
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Nardhy Gomez-Lopez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
37
|
Li G, Zhang Q, Han Z, Zhu Y, Shen H, Liu Z, Zhou Z, Ding W, Han S, He J, Yin Z, Zhou J, Ou R, Luo M, Liu S. IL-7 and CCR2b Co-Expression-Mediated Enhanced CAR-T Survival and Infiltration in Solid Tumors. Front Oncol 2021; 11:734593. [PMID: 34778046 PMCID: PMC8579717 DOI: 10.3389/fonc.2021.734593] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 10/06/2021] [Indexed: 01/06/2023] Open
Abstract
Chimeric antigen receptor T (CAR-T) cells are not effective in solid tumor treatment due to reduced invasion and expansion, and short survival time. This study aimed to explore whether interleukin (IL)-7 and CCR2b expression could improve GD2-CAR-T cell survival and infiltration in neuroblastoma and melanoma treatment. IL-7 and CCR2b were inserted into the classical second-generation CAR structure to construct 7×2b CAR. The 7×2b CAR-T cell phenotypes were evaluated by flow cytometry and the chemokine levels by ELISA. The 7×2b CAR-T cell migration and anti-tumor abilities were detected by Transwell assay and animal experiments in vivo. We report that compared with that of CAR-T cells, 7×2b CAR-T cell IL-7 secretion and CCR2b expression did not affect the T cell surface expression of CAR or CAR-T specificity and efficacy against tumor cells. The 7×2b CAR-T cells could induce IFN-γ secretion in GD2-positive tumor cells, killing them as well as conventional CAR-T cells. Moreover, IL-7 and CCR2b co-expression enhanced the 7×2b CAR-T cell survival and migration. Similar to conventional CAR-T, 7×2b CAR-T cells could also inhibit tumor growth and increase IFN-γ, Gzms-B, and IL-2 expression. Finally, unlike in mice injected with CAR-T cells, CD3 expression was the most abundant in the spleen and tumor tissues in mice injected with 7×2b CAR-T cells. Our study demonstrates that IL-7 and CCR2b co-expression in GD2-CAR-T cells exhibit stronger anti-tumor activity than classical second-generation CAR-T cells, shedding light on the potential novel GD2-positive neuroblastoma and melanoma treatment approach.
Collapse
Affiliation(s)
- Guangchao Li
- Department of Hematology, Guangdong Second Provincial General Hospital, Guangzhou, China.,Department of Research and Development, Guangzhou Bio-gene Technology Co., Ltd, Guangzhou, China
| | - Qing Zhang
- Department of Hematology, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Zeping Han
- Department of Laboratory, Central Hospital of Panyu District, Guangzhou, China
| | - Yangmin Zhu
- Department of Hematology, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Huijuan Shen
- Department of Hematology, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Zhi Liu
- Department of Hematology, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Zhao Zhou
- Department of Research and Development, Guangzhou Bio-gene Technology Co., Ltd, Guangzhou, China
| | - Wen Ding
- Department of Research and Development, Guangzhou Bio-gene Technology Co., Ltd, Guangzhou, China
| | - Siqi Han
- Department of Medical Oncology, Jinling Hospital, Nanjing Clinical School of Southern Medical University, Nanjing, China
| | - Jinhua He
- Department of Laboratory, Central Hospital of Panyu District, Guangzhou, China
| | - Zhao Yin
- Department of Hematology, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Jie Zhou
- Department of Hematology, People's Hospital of Deyang City, Deyang, China
| | - Ruiming Ou
- Department of Hematology, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Min Luo
- Department of Hematology, Guangdong Second Provincial General Hospital, Guangzhou, China.,Department of Research and Development, Guangzhou Bio-gene Technology Co., Ltd, Guangzhou, China
| | - Shuang Liu
- Department of Hematology, Guangdong Second Provincial General Hospital, Guangzhou, China
| |
Collapse
|
38
|
Piergallini TJ, Scordo JM, Pino PA, Schlesinger LS, Torrelles JB, Turner J. Acute Inflammation Confers Enhanced Protection against Mycobacterium tuberculosis Infection in Mice. Microbiol Spectr 2021; 9:e0001621. [PMID: 34232086 PMCID: PMC8552513 DOI: 10.1128/spectrum.00016-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/02/2021] [Indexed: 01/02/2023] Open
Abstract
Inflammation plays a crucial role in the control of Mycobacterium tuberculosis infection. In this study, we demonstrate that an inflammatory pulmonary environment at the time of infection mediated by lipopolysaccharide treatment in mice confers enhanced protection against M. tuberculosis for up to 6 months postinfection. This early and transient inflammatory environment was associated with a neutrophil and CD11b+ cell influx and increased inflammatory cytokines. In vitro infection demonstrated that neutrophils from lipopolysaccharide-treated mice exhibited increased association with M. tuberculosis and had a greater innate capacity for killing M. tuberculosis. Finally, partial depletion of neutrophils in lipopolysaccharide-treated mice showed an increase in M. tuberculosis burden, suggesting neutrophils played a part in the protection observed in lipopolysaccharide-treated mice. These results indicate a positive role for an inflammatory environment in the initial stages of M. tuberculosis infection and suggest that acute inflammation at the time of M. tuberculosis infection can positively alter disease outcome. IMPORTANCE Mycobacterium tuberculosis, the causative agent of tuberculosis disease, is estimated to infect one-fourth of the world's population and is one of the leading causes of death due to an infectious disease worldwide. The high-level variability in tuberculosis disease responses in the human populace may be linked to immune processes related to inflammation. In many cases, inflammation appears to exasperate tuberculosis responses; however, some evidence suggests inflammatory processes improve control of M. tuberculosis infection. Here, we show an acute inflammatory stimulus in mice provides protection against M. tuberculosis for up to 6 months, suggesting acute inflammation can positively affect M. tuberculosis infection outcome.
Collapse
Affiliation(s)
- Tucker J. Piergallini
- Host-Pathogen Interactions Program, Texas Biomedical Research Institute, San Antonio, Texas, USA
- Biomedical Sciences Graduate Program, The Ohio State University, Columbus, Ohio, USA
| | - Julia M. Scordo
- Host-Pathogen Interactions Program, Texas Biomedical Research Institute, San Antonio, Texas, USA
- The Barshop Institute, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Paula A. Pino
- Population Health Program, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Larry S. Schlesinger
- Host-Pathogen Interactions Program, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Jordi B. Torrelles
- Population Health Program, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Joanne Turner
- Host-Pathogen Interactions Program, Texas Biomedical Research Institute, San Antonio, Texas, USA
| |
Collapse
|
39
|
Barbieri N, Salva S, Herrera M, Villena J, Alvarez S. Nasal Priming with Lactobacillus rhamnosus CRL1505 Stimulates Mononuclear Phagocytes of Immunocompromised Malnourished Mice: Improvement of Respiratory Immune Response. Probiotics Antimicrob Proteins 2021; 12:494-504. [PMID: 31030404 DOI: 10.1007/s12602-019-09551-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The effect of Lactobacillus rhamnosus CRL1505 (Lr) on macrophages (Ma) and dendritic cells (DC) in the orchestration of anti-pneumococcal immunity was studied using malnutrition and pneumococcal infection mouse models. Monocytes (Mo), Ma, and DC in two groups of malnourished mice fed with balanced diet (BCD) were studied through flow cytometry; one group was nasally administered with Lr (BCD+Lr group), and the other group was not (BCD group). Well-nourished (WNC) and malnourished (MNC) mice were used as controls.Malnutrition affected the number of respiratory and splenic mononuclear phagocytes. The BCD+Lr treatment, unlike BCD, was able to increase and normalize lung Mo and Ma. The BCD+Lr mice were also able to upregulate the expression of the activation marker MHC II in lung DC and to improve this population showing a more significant effect on CD11b+ DC subpopulation. At post-infection, lung Mo values were higher in BCD+Lr mice than in BCD mice and similar to those obtained in WNC group. Although both repletion treatments showed similar values of lung Ma post-infection, the Ma activation state in BCD+Lr mice was higher than that in BCD mice. Furthermore, BCD+Lr treatment was able to normalize the number and activation of splenic Ma and DC after the challenge.Lr administration stimulates respiratory and systemic mononuclear phagocytes. Stimulation of Ma and DC populations would increase the microbicide activity and improve the adaptive immunity through its antigen-presenting capacity. Thus, Lr contributes to improved outcomes of pneumococcal infection in immunocompromised hosts.
Collapse
Affiliation(s)
- Natalia Barbieri
- Laboratorio de Inmunobiotecnología, Centro de Referencia para Lactobacilos (CERELA-CONICET), Chacabuco 145, T4000ILC, San Miguel deTucumán, Tucumán, Argentina.,Departamento de Ciencias Básicas y Tecnológicas, Universidad Nacional de Chilecito (UNdeC), CONICET, 9 de Julio 22, F5360CKB, Chilecito, La Rioja, Argentina
| | - Susana Salva
- Laboratorio de Inmunobiotecnología, Centro de Referencia para Lactobacilos (CERELA-CONICET), Chacabuco 145, T4000ILC, San Miguel deTucumán, Tucumán, Argentina
| | - Matías Herrera
- Laboratorio de Inmunobiotecnología, Centro de Referencia para Lactobacilos (CERELA-CONICET), Chacabuco 145, T4000ILC, San Miguel deTucumán, Tucumán, Argentina.,Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), Av. Belgrano y Pje. Caseros, T4001MVB, San Miguel deTucumán, Tucumán, Argentina
| | - Julio Villena
- Laboratorio de Inmunobiotecnología, Centro de Referencia para Lactobacilos (CERELA-CONICET), Chacabuco 145, T4000ILC, San Miguel deTucumán, Tucumán, Argentina
| | - Susana Alvarez
- Laboratorio de Inmunobiotecnología, Centro de Referencia para Lactobacilos (CERELA-CONICET), Chacabuco 145, T4000ILC, San Miguel deTucumán, Tucumán, Argentina. .,Instituto de Bioquímica Aplicada, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Balcarce 747, 4000, San Miguel deTucumán, Tucumán, Argentina.
| |
Collapse
|
40
|
Stoycheva D, Sandu I, Gräbnitz F, Amorim A, Borsa M, Weber S, Becher B, Oxenius A. Non-neutralizing antibodies protect against chronic LCMV infection by promoting infection of inflammatory monocytes in mice. Eur J Immunol 2021; 51:1423-1435. [PMID: 33547634 PMCID: PMC8247883 DOI: 10.1002/eji.202049068] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/18/2020] [Accepted: 02/04/2021] [Indexed: 12/18/2022]
Abstract
Antibodies play an important role in host defense against microorganisms. Besides direct microbicidal activities, antibodies can also provide indirect protection via crosstalk to constituents of the adaptive immune system. Similar to many human chronic viral infections, persistence of Lymphocytic choriomeningitis virus (LCMV) is associated with compromised T- and B-cell responses. The administration of virus-specific non-neutralizing antibodies (nnAbs) prior to LCMV infection protects against the establishment of chronic infection. Here, we show that LCMV-specific nnAbs bind preferentially Ly6Chi inflammatory monocytes (IMs), promote their infection in an Fc-receptor independent way, and support acquisition of APC properties. By constituting additional T-cell priming opportunities, IMs promote early activation of virus-specific CD8 T cells, eventually tipping the balance between T-cell exhaustion and effector cell differentiation, preventing establishment of viral persistence without causing lethal immunopathology. These results document a beneficial role of IMs in avoiding T-cell exhaustion and an Fc-receptor independent protective mechanism provided by LCMV-specific nnAbs against the establishment of chronic infection.
Collapse
Affiliation(s)
| | - Ioana Sandu
- Institute of MicrobiologyETH ZürichZurichSwitzerland
| | | | - Ana Amorim
- Institute of Experimental ImmunologyUniversity of ZurichZurichSwitzerland
| | - Mariana Borsa
- Institute of MicrobiologyETH ZürichZurichSwitzerland
| | - Stefan Weber
- Institute of MicrobiologyETH ZürichZurichSwitzerland
| | - Burkhard Becher
- Institute of Experimental ImmunologyUniversity of ZurichZurichSwitzerland
| | | |
Collapse
|
41
|
Abstract
Mycobacterium tuberculosis infections claim more than a million lives each year, and better treatments or vaccines are required. A crucial pathogenicity factor is translocation from phagolysosomes to the cytosol upon phagocytosis by macrophages. Translocation from the phagolysosome to the cytosol is an ESX-1-dependent process, as previously shown in vitro Here, we show that in vivo, mycobacteria also translocate to the cytosol but mainly when host immunity is compromised. We observed only low numbers of cytosolic bacilli in mice, armadillos, zebrafish, and patient material infected with M. tuberculosis, M. marinum, or M. leprae In contrast, when innate or adaptive immunity was compromised, as in severe combined immunodeficiency (SCID) or interleukin-1 receptor 1 (IL-1R1)-deficient mice, significant numbers of cytosolic M. tuberculosis bacilli were detected in the lungs of infected mice. Taken together, in vivo, translocation to the cytosol of M. tuberculosis is controlled by adaptive immune responses as well as IL-1R1-mediated signals.IMPORTANCE For decades, Mycobacterium tuberculosis has been one of the deadliest pathogens known. Despite infecting approximately one-third of the human population, no effective treatment or vaccine is available. A crucial pathogenicity factor is subcellular localization, as M. tuberculosis can translocate from phagolysosome to the cytosol in macrophages. The situation in vivo is more complicated. In this study, we establish that high-level cytosolic escape of mycobacteria can indeed occur in vivo but mainly when host resistance is compromised. The IL-1 pathway is crucial for the control of the number of cytosolic mycobacteria. The establishment that immune signals result in the clearance of cells containing cytosolic mycobacteria connects two important fields, cell biology and immunology, which is vital for the understanding of the pathology of M. tuberculosis.
Collapse
|
42
|
Antimicrobial Peptides as Potential Anti-Tubercular Leads: A Concise Review. Pharmaceuticals (Basel) 2021; 14:ph14040323. [PMID: 33918182 PMCID: PMC8065624 DOI: 10.3390/ph14040323] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 12/11/2022] Open
Abstract
Despite being considered a public health emergency for the last 25 years, tuberculosis (TB) is still one of the deadliest infectious diseases, responsible for over a million deaths every year. The length and toxicity of available treatments and the increasing emergence of multidrug-resistant strains of Mycobacterium tuberculosis renders standard regimens increasingly inefficient and emphasizes the urgency to develop new approaches that are not only cost- and time-effective but also less toxic. Antimicrobial peptides (AMP) are small cationic and amphipathic molecules that play a vital role in the host immune system by acting as a first barrier against invading pathogens. The broad spectrum of properties that peptides possess make them one of the best possible alternatives for a new “post-antibiotic” era. In this context, research into AMP as potential anti-tubercular agents has been driven by the increasing danger revolving around the emergence of extremely-resistant strains, the innate resistance that mycobacteria possess and the low compliance of patients towards the toxic anti-TB treatments. In this review, we will focus on AMP from various sources, such as animal, non-animal and synthetic, with reported inhibitory activity towards Mycobacterium tuberculosis.
Collapse
|
43
|
Lösslein AK, Lohrmann F, Scheuermann L, Gharun K, Neuber J, Kolter J, Forde AJ, Kleimeyer C, Poh YY, Mack M, Triantafyllopoulou A, Dunlap MD, Khader SA, Seidl M, Hölscher A, Hölscher C, Guan XL, Dorhoi A, Henneke P. Monocyte progenitors give rise to multinucleated giant cells. Nat Commun 2021; 12:2027. [PMID: 33795674 PMCID: PMC8016882 DOI: 10.1038/s41467-021-22103-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 02/23/2021] [Indexed: 01/12/2023] Open
Abstract
The immune response to mycobacteria is characterized by granuloma formation, which features multinucleated giant cells as a unique macrophage type. We previously found that multinucleated giant cells result from Toll-like receptor-induced DNA damage and cell autonomous cell cycle modifications. However, the giant cell progenitor identity remained unclear. Here, we show that the giant cell-forming potential is a particular trait of monocyte progenitors. Common monocyte progenitors potently produce cytokines in response to mycobacteria and their immune-active molecules. In addition, common monocyte progenitors accumulate cholesterol and lipids, which are prerequisites for giant cell transformation. Inducible monocyte progenitors are so far undescribed circulating common monocyte progenitor descendants with high giant cell-forming potential. Monocyte progenitors are induced in mycobacterial infections and localize to granulomas. Accordingly, they exhibit important immunological functions in mycobacterial infections. Moreover, their signature trait of high cholesterol metabolism may be piggy-backed by mycobacteria to create a permissive niche.
Collapse
Affiliation(s)
- Anne Kathrin Lösslein
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
- MOTI-VATE Graduate School, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Florens Lohrmann
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Pediatrics and Adolescent Medicine, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Spemann Graduate School for Biology and Medicine (SGBM) and IMM-PACT Clinician Scientist Program, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | | | - Kourosh Gharun
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Jana Neuber
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Julia Kolter
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Aaron James Forde
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Christian Kleimeyer
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ying Yee Poh
- Nanyang Technological University, Lee Kong Chian School of Medicine, Singapore, Singapore
| | - Matthias Mack
- University Hospital Regensburg, Internal Medicine II, Nephrology, Regensburg, Germany
| | - Antigoni Triantafyllopoulou
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Rheumatism Research Centre Berlin, Leibniz Association, Berlin, Germany
| | - Micah D Dunlap
- Department of Molecular Microbiology, Washington University in St. Louis School of Medicine, Saint Louis, MO, USA
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, Saint Louis, MO, USA
| | - Shabaana A Khader
- Department of Molecular Microbiology, Washington University in St. Louis School of Medicine, Saint Louis, MO, USA
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, Saint Louis, MO, USA
| | - Maximilian Seidl
- Center for Chronic Immunodeficiency and Institute for Clinical Pathology, Department of Pathology, Medical Center and Faculty of Medicine, Freiburg, Germany and Institute of Pathology, Heinrich Heine University and University Hospital of Duesseldorf, Duesseldorf, Germany
| | | | - Christoph Hölscher
- Forschungszentrum Borstel, Leibniz Lungenzentrum, Borstel, Germany
- Deutsches Zentrum für Infektionsforschung, Standort Borstel, Borstel, Germany
| | - Xue Li Guan
- Nanyang Technological University, Lee Kong Chian School of Medicine, Singapore, Singapore
| | - Anca Dorhoi
- Max Planck Institute for Infection Biology, Berlin, Germany
- Institute of Immunology, Federal Research Institute for Animal Health, Friedrich-Loeffler-Institut (FLI), Insel Riems, Germany
- Faculty of Mathematics and Natural Sciences, University of Greifswald, Greifswald, Germany
| | - Philipp Henneke
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany.
- Center for Pediatrics and Adolescent Medicine, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
44
|
Ravesloot-Chávez MM, Van Dis E, Stanley SA. The Innate Immune Response to Mycobacterium tuberculosis Infection. Annu Rev Immunol 2021; 39:611-637. [PMID: 33637017 DOI: 10.1146/annurev-immunol-093019-010426] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Infection with Mycobacterium tuberculosis causes >1.5 million deaths worldwide annually. Innate immune cells are the first to encounter M. tuberculosis, and their response dictates the course of infection. Dendritic cells (DCs) activate the adaptive response and determine its characteristics. Macrophages are responsible both for exerting cell-intrinsic antimicrobial control and for initiating and maintaining inflammation. The inflammatory response to M. tuberculosis infection is a double-edged sword. While cytokines such as TNF-α and IL-1 are important for protection, either excessive or insufficient cytokine production results in progressive disease. Furthermore, neutrophils-cells normally associated with control of bacterial infection-are emerging as key drivers of a hyperinflammatory response that results in host mortality. The roles of other innate cells, including natural killer cells and innate-like T cells, remain enigmatic. Understanding the nuances of both cell-intrinsic control of infection and regulation of inflammation will be crucial for the successful development of host-targeted therapeutics and vaccines.
Collapse
Affiliation(s)
| | - Erik Van Dis
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA; ,
| | - Sarah A Stanley
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA; , .,Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, California 94720, USA
| |
Collapse
|
45
|
Early innate and adaptive immune perturbations determine long-term severity of chronic virus and Mycobacterium tuberculosis coinfection. Immunity 2021; 54:526-541.e7. [PMID: 33515487 DOI: 10.1016/j.immuni.2021.01.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 11/13/2020] [Accepted: 01/11/2021] [Indexed: 01/01/2023]
Abstract
Chronic viral infections increase severity of Mycobacterium tuberculosis (Mtb) coinfection. Here, we examined how chronic viral infections alter the pulmonary microenvironment to foster coinfection and worsen disease severity. We developed a coordinated system of chronic virus and Mtb infection that induced central clinical manifestations of coinfection, including increased Mtb burden, extra-pulmonary dissemination, and heightened mortality. These disease states were not due to chronic virus-induced immunosuppression or exhaustion; rather, increased amounts of the cytokine TNFα initially arrested pulmonary Mtb growth, impeding dendritic cell mediated antigen transportation to the lymph node and subverting immune-surveillance, allowing bacterial sanctuary. The cryptic Mtb replication delayed CD4 T cell priming, redirecting T helper (Th) 1 toward Th17 differentiation and increasing pulmonary neutrophilia, which diminished long-term survival. Temporally restoring CD4 T cell induction overcame these diverse disease sequelae to enhance Mtb control. Thus, Mtb co-opts TNFα from the chronic inflammatory environment to subvert immune-surveillance, avert early immune function, and foster long-term coinfection.
Collapse
|
46
|
MAIT cell-directed therapy of Mycobacterium tuberculosis infection. Mucosal Immunol 2021; 14:199-208. [PMID: 32811991 PMCID: PMC7790750 DOI: 10.1038/s41385-020-0332-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/16/2020] [Accepted: 07/21/2020] [Indexed: 02/04/2023]
Abstract
Mucosal-associated invariant T (MAIT) cells are potential targets of vaccination and host-directed therapeutics for tuberculosis, but the role of MAIT cells during Mycobacterium tuberculosis (Mtb) infection in vivo is not well understood. Here we find that following Mtb infection MAIT cells mount minimal responses, and MAIT cell-deficient MR1-/- mice display normal survival. Preinfection expansion of MAIT cells through 5-OP-RU vaccination fails to protect against subsequent Mtb challenge. In fact, 5-OP-RU vaccination delays Mtb-specific CD4 T cell priming in lung-draining lymph nodes, and conversely MR1 deficiency or blockade accelerates T cell priming. The MAIT cell-mediated delay in T cell priming is partly dependent on TGF-β. Surprisingly, 5-OP-RU treatment during chronic infection drives MAIT cell expansion and an IL-17A-dependent reduction in bacterial loads. Thus, during early infection MAIT cells directly contribute to the notoriously slow priming of CD4 T cells, but later during infection MAIT cell stimulation may be an effective host-directed therapy for tuberculosis.
Collapse
|
47
|
Dermal IRF4+ dendritic cells and monocytes license CD4+ T helper cells to distinct cytokine profiles. Nat Commun 2020; 11:5637. [PMID: 33159073 PMCID: PMC7647995 DOI: 10.1038/s41467-020-19463-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 10/11/2020] [Indexed: 12/14/2022] Open
Abstract
Antigen (Ag)-presenting cells (APC) instruct CD4+ helper T (Th) cell responses, but it is unclear whether different APC subsets contribute uniquely in determining Th differentiation in pathogen-specific settings. Here, we use skin-relevant, fluorescently-labeled bacterial, helminth or fungal pathogens to track and characterize the APC populations that drive Th responses in vivo. All pathogens are taken up by a population of IRF4+ dermal migratory dendritic cells (migDC2) that similarly upregulate surface co-stimulatory molecules but express pathogen-specific cytokine and chemokine transcripts. Depletion of migDC2 reduces the amount of Ag in lymph node and the development of IFNγ, IL-4 and IL-17A responses without gain of other cytokine responses. Ag+ monocytes are an essential source of IL-12 for both innate and adaptive IFNγ production, and inhibit follicular Th cell development. Our results thus suggest that Th cell differentiation does not require specialized APC subsets, but is driven by inducible and pathogen-specific transcriptional programs in Ag+ migDC2 and monocytes.
Collapse
|
48
|
Khan N, Downey J, Sanz J, Kaufmann E, Blankenhaus B, Pacis A, Pernet E, Ahmed E, Cardoso S, Nijnik A, Mazer B, Sassetti C, Behr MA, Soares MP, Barreiro LB, Divangahi M. M. tuberculosis Reprograms Hematopoietic Stem Cells to Limit Myelopoiesis and Impair Trained Immunity. Cell 2020; 183:752-770.e22. [PMID: 33125891 PMCID: PMC7599081 DOI: 10.1016/j.cell.2020.09.062] [Citation(s) in RCA: 165] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 06/23/2020] [Accepted: 09/02/2020] [Indexed: 12/20/2022]
Abstract
A greater understanding of hematopoietic stem cell (HSC) regulation is required for dissecting protective versus detrimental immunity to pathogens that cause chronic infections such as Mycobacterium tuberculosis (Mtb). We have shown that systemic administration of Bacille Calmette-Guérin (BCG) or β-glucan reprograms HSCs in the bone marrow (BM) via a type II interferon (IFN-II) or interleukin-1 (IL1) response, respectively, which confers protective trained immunity against Mtb. Here, we demonstrate that, unlike BCG or β-glucan, Mtb reprograms HSCs via an IFN-I response that suppresses myelopoiesis and impairs development of protective trained immunity to Mtb. Mechanistically, IFN-I signaling dysregulates iron metabolism, depolarizes mitochondrial membrane potential, and induces cell death specifically in myeloid progenitors. Additionally, activation of the IFN-I/iron axis in HSCs impairs trained immunity to Mtb infection. These results identify an unanticipated immune evasion strategy of Mtb in the BM that controls the magnitude and intrinsic anti-microbial capacity of innate immunity to infection.
Collapse
Affiliation(s)
- Nargis Khan
- Meakins-Christie Laboratories, Department of Medicine, Department of Microbiology and Immunology, Department of Pathology, McGill University, Montreal, QC, Canada; McGill International TB Centre, McGill University Health Centre, Montreal, QC, Canada
| | - Jeffrey Downey
- Meakins-Christie Laboratories, Department of Medicine, Department of Microbiology and Immunology, Department of Pathology, McGill University, Montreal, QC, Canada; McGill International TB Centre, McGill University Health Centre, Montreal, QC, Canada
| | - Joaquin Sanz
- Department of Theoretical Physics, University of Zaragoza, Institute BIFI for Bio-computation and Physics of Complex Systems, University of Zaragoza, Zaragoza, Spain
| | - Eva Kaufmann
- Meakins-Christie Laboratories, Department of Medicine, Department of Microbiology and Immunology, Department of Pathology, McGill University, Montreal, QC, Canada; McGill International TB Centre, McGill University Health Centre, Montreal, QC, Canada
| | | | - Alain Pacis
- Department of Medicine, Genetic Section, University of Chicago, Chicago, IL, USA
| | - Erwan Pernet
- Meakins-Christie Laboratories, Department of Medicine, Department of Microbiology and Immunology, Department of Pathology, McGill University, Montreal, QC, Canada; McGill International TB Centre, McGill University Health Centre, Montreal, QC, Canada
| | - Eisha Ahmed
- Meakins-Christie Laboratories, Department of Medicine, Department of Microbiology and Immunology, Department of Pathology, McGill University, Montreal, QC, Canada
| | | | - Anastasia Nijnik
- Department of Physiology, Complex Traits Group, McGill University, Montreal, QC, Canada
| | - Bruce Mazer
- Meakins-Christie Laboratories, Department of Medicine, Department of Microbiology and Immunology, Department of Pathology, McGill University, Montreal, QC, Canada
| | - Christopher Sassetti
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA
| | - Marcel A Behr
- McGill International TB Centre, McGill University Health Centre, Montreal, QC, Canada
| | | | - Luis B Barreiro
- Department of Medicine, Genetic Section, University of Chicago, Chicago, IL, USA
| | - Maziar Divangahi
- Meakins-Christie Laboratories, Department of Medicine, Department of Microbiology and Immunology, Department of Pathology, McGill University, Montreal, QC, Canada; McGill International TB Centre, McGill University Health Centre, Montreal, QC, Canada.
| |
Collapse
|
49
|
Bacterial immunotherapy for cancer induces CD4-dependent tumor-specific immunity through tumor-intrinsic interferon-γ signaling. Proc Natl Acad Sci U S A 2020; 117:18627-18637. [PMID: 32680964 DOI: 10.1073/pnas.2004421117] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Bacillus Calmette-Guérin (BCG) immunotherapy for bladder cancer is the only bacterial cancer therapy approved for clinical use. Although presumed to induce T cell-mediated immunity, whether tumor elimination depends on bacteria-specific or tumor-specific immunity is unknown. Herein we show that BCG-induced bladder tumor elimination requires CD4 and CD8 T cells, although augmentation or inhibition of bacterial antigen-specific T cell responses does not alter the efficacy of BCG-induced tumor elimination. In contrast, BCG stimulates long-term tumor-specific immunity that primarily depends on CD4 T cells. We demonstrate that BCG therapy results in enhanced effector function of tumor-specific CD4 T cells, mainly through enhanced production of IFN-γ. Accordingly, BCG-induced tumor elimination and tumor-specific immune memory require tumor cell expression of the IFN-γ receptor, but not MHC class II. Our findings establish that a bacterial immunotherapy for cancer is capable of inducing tumor immunity, an antitumor effect that results from enhanced function of tumor-specific CD4 T cells, and ultimately requires tumor-intrinsic IFN-γ signaling, via a mechanism that is distinct from other tumor immunotherapies.
Collapse
|
50
|
Abstract
Mucosal associated invariant T (MAIT) cells are striking in their abundance and their strict conservation across 150 million years of mammalian evolution, implying they must fulfill critical immunological function(s). MAIT cells are defined by their expression of a semi-invariant αβ TCR which recognizes biosynthetic derivatives of riboflavin synthesis presented on MR1. Initial studies focused on their role in detecting predominantly intracellular bacterial and mycobacterial infections. However, it is now recognized that there are several modes of MAIT cell activation and these are related to activation of distinct transcriptional programmes, each associated with distinct functional roles. In this minireview, we summarize current knowledge from human and animal studies of MAIT cell activation induced (1) in an MR1-TCR dependent manner in the context of inflammatory danger signals and associated with antibacterial host defense; (2) in an MR1-TCR independent manner by the cytokines interleukin(IL)-12/-15/-18 and type I interferon, which is associated with antiviral responses; and (3) a recently-described TCR-dependent “tissue repair” programme which is associated with accelerated wound healing in the context of commensal microbiota. Because of this capability for diverse functional responses in diverse immunological contexts, these intriguing cells now appear to be multifunctional effectors central to the interface of innate and adaptive immunity.
Collapse
Affiliation(s)
- Timothy S C Hinks
- Respiratory Medicine Unit and National Institute for Health Research (NIHR), Nuffield Department of Medicine Experimental Medicine, Oxford Biomedical Research Centre (BRC), University of Oxford, Oxfordshire, United Kingdom
| | - Xia-Wei Zhang
- Respiratory Medicine Unit and National Institute for Health Research (NIHR), Nuffield Department of Medicine Experimental Medicine, Oxford Biomedical Research Centre (BRC), University of Oxford, Oxfordshire, United Kingdom.,Division of Respiratory Medicine, Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|