1
|
Li Y, Wang Y, Dang J, Zhuo W, Xu B, Guo Y. The 133-kDa N-terminal region of myosin XVa is critical for normal structure and function of auditory and hair cells. Acta Otolaryngol 2025; 145:363-374. [PMID: 40126902 DOI: 10.1080/00016489.2025.2479632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/04/2025] [Accepted: 03/07/2025] [Indexed: 03/26/2025]
Abstract
BACKGROUND MYO15A is a commonly implicated gene in severe to profound sensorineural hearing loss. Numerous studies have identified mutations in MYO15A in humans, analyzed their presence and co-segregation, and predicted their pathogenicity using software tools. However, few have investigated the pathogenic mechanisms of these mutations using mouse models. In a prior study, we identified the MYO15A c.2482 C > T mutation as a potential causative gene for deafness in a Uygur family from Xinjiang. To further explore the pathogenicity and mechanisms of this mutation, we constructed a mouse model harboring the Myo15a c.2455A > T mutation. This study demonstrates that mice with the Myo15a c.2455A > T spot knock-in exhibit the abnormal hair cell morphology, dysfunction, and hearing loss phenotype observed in humans. OBJECTIVES To investigate the pathogenic mechanism of deafness caused by MYO15A c.2482C > T mutation. MATERIAL AND METHODS To assess the impact of the MYO15A mutation on hair cell morphology and function, mice underwent audiological tests, quantitative real-time PCR, scanning electron microscopy, immunofluorescence, and Western blot analysis. RESULTS The p.Arg819* mutation located in the N-terminal domain of MYO15A showed marked differences in hair cell morphology and function between homozygous mutant mice and normal controls. Notably, the homozygous mutant mice retained residual hearing up to approximately five weeks of age. CONCLUSIONS AND SIGNIFICANCE Our findings confirm that Myo15a c.2455A > T spot knock-in mice replicate the abnormal hair cell morphology and dysfunction, as well as the hearing loss phenotype. Additionally, our results indicate that the novel c.2482C > T variant in the MYO15A gene can cause inner ear hair cell dysfunction and audiological disorders in this family.
Collapse
Affiliation(s)
- Yong Li
- Department of Otolaryngology-Head and Neck Surgery, Lanzhou University Second Hospital, Lanzhou, China
| | - Yanli Wang
- Department of Otolaryngology-Head and Neck Surgery, Lanzhou University Second Hospital, Lanzhou, China
| | - Jiong Dang
- Department of Otolaryngology-Head and Neck Surgery, Lanzhou University Second Hospital, Lanzhou, China
| | - Wenjing Zhuo
- Department of Otolaryngology-Head and Neck Surgery, Lanzhou University Second Hospital, Lanzhou, China
| | - Baicheng Xu
- Department of Otolaryngology-Head and Neck Surgery, Lanzhou University Second Hospital, Lanzhou, China
| | - Yufen Guo
- Department of Otolaryngology-Head and Neck Surgery, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
2
|
Morovvati S, Sarband MM, Doostmohammadi S, Rayat S, Emamdjomeh H, Farhadi M, Asghari A, Garshasbi M, Falah M. The clinical and genetic spectrum of twenty-six individuals with hearing loss affected by MYO15A variants. Sci Rep 2025; 15:14320. [PMID: 40275102 PMCID: PMC12022297 DOI: 10.1038/s41598-025-99417-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 04/21/2025] [Indexed: 04/26/2025] Open
Abstract
Myosin XVA (MYO15A) is a member of the myosin superfamily that, as a motor protein, plays an essential role in actin polymerization at the tip of the stereocilia in hair cells. Variants in MYO15A are known to be the third most common reason for autosomal recessive non-syndromic hearing loss (ARNSHL). Here, we present twenty-six unrelated families with MYO15A variants from an Iranian cohort. Whole exome sequencing (WES) was performed following a comprehensive medical evaluation. The identified variants were assessed based on the American College of Medical Genetics and Genomics guidelines. Twenty-seven distinct variants linked to MYO15A were identified as contributors to profound ARNSHL. These included ten novel variants and seventeen previously documented variants that co-segregated. Most variants were truncating, with an equal distribution of missense and splicing variants. This research expands the mutational spectrum of MYO15A by introducing ten novel variants and highlights its importance in profound ARNSHL. Moreover, comparing the variants in different domains of MYO15A with previously reported variants in these domains provides more information about the MYO15A protein's role in the hearing process. This information can enhance understanding of the genetic basis of hearing loss and improve future management strategies, including prognosis, prevention, and treatment based on gene modification.
Collapse
Affiliation(s)
- Saeid Morovvati
- Department of Genetics, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Samaneh Doostmohammadi
- Faculty of Converging Sciences and Technologies (NBIC), Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Sima Rayat
- Department of Biology, School of Basic Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Hessamaldin Emamdjomeh
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Farhadi
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Alimohamad Asghari
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Masoud Garshasbi
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Masoumeh Falah
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Li S, Park J, Phan TM, Egelman EH, Bird JE, Shin JB. Tonotopic Specialization of MYO7A Isoforms in Auditory Hair Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.01.646665. [PMID: 40236041 PMCID: PMC11996455 DOI: 10.1101/2025.04.01.646665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
1. Mutations in Myo7a cause Usher syndrome type 1B and non-syndromic deafness, but the precise function of MYO7A in sensory hair cells remains unclear. We identify and characterize a novel isoform, MYO7A-N, expressed in auditory hair cells alongside the canonical MYO7A-C. Isoform-specific knock-in mice reveal that inner hair cells primarily express MYO7A-C, while outer hair cells express both isoforms in opposing tonotopic gradients. Both localize to the upper tip-link insertion site, consistent with a role in the tip link for mechanotransduction. Loss of MYO7A-N leads to outer hair cell degeneration and progressive hearing loss. Cryo-EM structures reveal isoform-specific differences at actomyosin interfaces, correlating with distinct ATPase activities. These findings reveal an unexpected layer of molecular diversity within the mechanotransduction machinery. We propose that MYO7A isoform specialization enables fine-tuning of tip-link tension, thus hearing sensitivity, and contributes to the frequency-resolving power of the cochlea.
Collapse
|
4
|
Behnammanesh G, Dragich AK, Liao X, Hadi S, Kim MJ, Perrin B, Someya S, Frolenkov GI, Bird JE. A Myosin Nanomotor Essential for Stereocilia Maintenance Expands the Etiology of Hereditary Hearing Loss DFNB3. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.19.639121. [PMID: 40027801 PMCID: PMC11870491 DOI: 10.1101/2025.02.19.639121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Cochlear hair cells transduce sound using stereocilia, and disruption to these delicate mechanosensors is a significant cause of hearing loss. Stereocilia architecture is dependent upon the nanomotor myosin 15. A short isoform (MYO15A-2) drives stereocilia development by delivering an elongation-promoting complex (EC) to stereocilia tips, and an alternatively spliced long isoform (MYO15A-1) tunes postnatal size in shorter stereocilia, which possess mechanosensitive ion channels. Disruption of these functions causes two distinct stereocilia pathologies, which underly human autosomal recessive non-syndromic hearing loss DFNB3. Here, we characterize a new isoform, MYO15A-3, that increases expression in postnatal hair cells as the developmental MYO15A-2 isoform wanes reciprocally. We show the critical EC complex is initially delivered by MYO15A-2, followed by a postnatal handover to MYO15A-3, which continues to deliver the EC. In a Myo15a-3 mutant mouse, stereocilia develop normally with correct EC targeting, but lack the EC postnatally and do not maintain their adult architecture, leading to progressive hearing loss. We conclude MYO15A-3 delivers the EC in postnatal hair cells and that the EC and MYO15A-3 are both required to maintain stereocilia integrity. Our results add to the spectrum of stereocilia pathology underlying DFNB3 hearing loss and reveal new molecular mechanisms necessary for resilient hearing during adult life.
Collapse
Affiliation(s)
- Ghazaleh Behnammanesh
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL 32610
| | | | - Xiayi Liao
- Indiana University- Indianapolis, Indianapolis, IN 46202
| | - Shadan Hadi
- Department of Physiology, University of Kentucky, Lexington, KY 40536
| | - Mi-Jung Kim
- Department of Physiology and Aging, University of Florida, Gainesville, FL 32610
| | | | - Shinichi Someya
- Department of Physiology and Aging, University of Florida, Gainesville, FL 32610
| | | | - Jonathan E. Bird
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL 32610
| |
Collapse
|
5
|
Baumann O, Cheng F, Kirschbaum F, Tiedemann R. Organization of the stalk system on electrocytes in mormyrid weakly electric fish Campylomormyrus compressirostris. Cell Tissue Res 2025; 399:193-209. [PMID: 39704840 PMCID: PMC11787269 DOI: 10.1007/s00441-024-03938-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 11/15/2024] [Indexed: 12/21/2024]
Abstract
The adult electric organ in weakly electric mormyrid fish consists of action-potential-generating electrocytes, structurally and functionally modified skeletal muscle cells. The electrocytes have a disc-shaped portion and, on one of its sides, numerous thin processes, termed stalklets. These unite to stalks leading to a single main stalk that carries the innervation site. Here, we describe the 3-dimensional layout of the stalklet/stalk system in adult Campylomormyrus compressirostris by differential interference contrast microscopy and confocal fluorescence microscopy. Using antibodies against Na+/K+-ATPase α-subunit and plasma membrane Ca2+-ATPase, we show that these ion pumps are differentially distributed over the stalklet/stalk system, with plasma membrane Ca2+-ATPase being enriched on the stalklet membrane. Stalklets are distributed and organized in a quite uniform pattern on the posterior face of the electrocyte disc and fuse to terminal stalks. The latter then unite in a mostly dichotomic mode to stalks of increasing thickness, with the main stalk measuring about 100 µm in diameter. We further analyse the structural organization of stalklets and stalks, with a characteristic cytoskeletal system of bundled actin filaments in the centre and nuclei in subsurface position. These results suggest that the stalklet/stalk system is adapted in its structural layout to generate an action potential highly synchronized over the entire disc-portion of the electrocyte, accounting for the short electric organ discharge in this species. Our results suggest that actin-related proteins overexpressed in electrocytes, as shown previously by transcriptome analysis, may be involved in the organization of the unique F-actin system in stalklets and stalks.
Collapse
Affiliation(s)
- Otto Baumann
- Unit of Animal Physiology, Institute of Biochemistry and Biology, University of Potsdam, 14476, Potsdam, Germany.
| | - Feng Cheng
- Unit of Evolutionary Biology/Systematic Zoology, Institute of Biochemistry and Biology, University of Potsdam, 14476, Potsdam, Germany
| | - Frank Kirschbaum
- Unit of Evolutionary Biology/Systematic Zoology, Institute of Biochemistry and Biology, University of Potsdam, 14476, Potsdam, Germany
| | - Ralph Tiedemann
- Unit of Evolutionary Biology/Systematic Zoology, Institute of Biochemistry and Biology, University of Potsdam, 14476, Potsdam, Germany
| |
Collapse
|
6
|
Moreland ZG, Jiang F, Aguilar C, Barzik M, Gong R, Behnammanesh G, Park J, Shams A, Faaborg-Andersen C, Werth JC, Harley R, Sutton DC, Heidings JB, Cole SM, Parker A, Morse S, Wilson E, Takagi Y, Sellers JR, Brown SDM, Friedman TB, Alushin GM, Bowl MR, Bird JE. Myosin-based nucleation of actin filaments contributes to stereocilia development critical for hearing. Nat Commun 2025; 16:947. [PMID: 39843411 PMCID: PMC11754657 DOI: 10.1038/s41467-025-55898-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 01/03/2025] [Indexed: 01/24/2025] Open
Abstract
Assembly of actin-based stereocilia is critical for cochlear hair cells to detect sound. To tune their mechanosensivity, stereocilia form bundles composed of graded rows of ascending height, necessitating the precise control of actin polymerization. Myosin 15 (MYO15A) drives hair bundle development by delivering critical proteins to growing stereocilia that regulate actin polymerization via an unknown mechanism. Here, we show that MYO15A is itself an actin nucleation-promoting factor. Moreover, a deafness-causing mutation in the MYO15A actin-binding interface inhibits nucleation activity but still preserves some movement on filaments in vitro and partial trafficking on stereocilia in vivo. Stereocilia fail to elongate correctly in this mutant mouse, providing evidence that MYO15A-driven actin nucleation contributes to hair bundle biogenesis. Our work shows that in addition to generating force and motility, the ATPase domain of MYO15A can directly regulate actin polymerization and that disrupting this activity can promote cytoskeletal disease, such as hearing loss.
Collapse
Affiliation(s)
- Zane G Moreland
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA
- Myology Institute, University of Florida, Gainesville, FL, USA
- Graduate Program in Biomedical Sciences, University of Florida, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Fangfang Jiang
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA
- Myology Institute, University of Florida, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Carlos Aguilar
- Mammalian Genetics Unit, MRC Harwell Institute, Didcot, UK
- UCL Ear Institute, University College London, London, UK
| | - Melanie Barzik
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Rui Gong
- Laboratory of Structural Biophysics and Mechanobiology, The Rockefeller University, New York, NY, USA
| | - Ghazaleh Behnammanesh
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA
- Myology Institute, University of Florida, Gainesville, FL, USA
- Graduate Program in Biomedical Sciences, University of Florida, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Jinho Park
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA
- Myology Institute, University of Florida, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Arik Shams
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Christian Faaborg-Andersen
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Jesse C Werth
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Randall Harley
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Daniel C Sutton
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - James B Heidings
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA
- Myology Institute, University of Florida, Gainesville, FL, USA
- Graduate Program in Biomedical Sciences, University of Florida, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Stacey M Cole
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Andrew Parker
- Mammalian Genetics Unit, MRC Harwell Institute, Didcot, UK
| | - Susan Morse
- Mammalian Genetics Unit, MRC Harwell Institute, Didcot, UK
| | - Elizabeth Wilson
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Yasuharu Takagi
- Laboratory of Molecular Physiology, Cell and Developmental Biology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - James R Sellers
- Laboratory of Molecular Physiology, Cell and Developmental Biology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - Thomas B Friedman
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Gregory M Alushin
- Laboratory of Structural Biophysics and Mechanobiology, The Rockefeller University, New York, NY, USA
| | - Michael R Bowl
- Mammalian Genetics Unit, MRC Harwell Institute, Didcot, UK.
- UCL Ear Institute, University College London, London, UK.
| | - Jonathan E Bird
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA.
- Myology Institute, University of Florida, Gainesville, FL, USA.
- Graduate Program in Biomedical Sciences, University of Florida, Gainesville, FL, USA.
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
7
|
López-Porras AI, Kruse AM, McClendon MT, Vélez-Ortega AC. Myosin XVA isoforms participate in the mechanotransduction-dependent remodeling of the actin cytoskeleton in auditory stereocilia. Front Neurol 2024; 15:1482892. [PMID: 39777322 PMCID: PMC11704364 DOI: 10.3389/fneur.2024.1482892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 12/03/2024] [Indexed: 01/11/2025] Open
Abstract
Auditory hair cells form precise and sensitive staircase-like actin protrusions known as stereocilia. These specialized microvilli detect deflections induced by sound through the activation of mechano-electrical transduction (MET) channels located at their tips. At rest, a small MET channel current results in a constant calcium influx which regulates the morphology of the actin cytoskeleton in the shorter 'transducing' stereocilia. However, the molecular mechanisms involved in this novel type of activity-driven plasticity in the stereocilium cytoskeleton are currently unknown. Here, we tested the contribution of myosin XVA (MYO15A) isoforms, given their known roles in the regulation of stereocilia dimensions during hair bundle development and the maintenance of transducing stereocilia in mature hair cells. We used electron microscopy to evaluate morphological changes in the cytoskeleton of auditory hair cell stereocilia after the pharmacological blockage of resting MET currents in cochlear explants from mice that lacked one or all isoforms of MYO15A. Hair cells lacking functional MYO15A isoforms did not exhibit MET-dependent remodeling in their stereocilia cytoskeleton. In contrast, hair cells lacking only the long isoform of MYO15A exhibited increased MET-dependent stereocilia remodeling, including remodeling in stereocilia from the tallest 'non-transducing' row of the bundle. We conclude that MYO15A isoforms both enable and fine-tune the MET-dependent remodeling of the actin cytoskeleton in transducing stereocilia, while also contributing to the stability of the tallest row.
Collapse
|
8
|
Liao X, Tung CY, Krey JF, Behnammanesh G, Cirilo JA, Colpan M, Yengo CM, Barr-Gillespie PG, Bird JE, Perrin BJ. Myosin-dependent short actin filaments contribute to peripheral widening in developing stereocilia. RESEARCH SQUARE 2024:rs.3.rs-5448262. [PMID: 39678325 PMCID: PMC11643313 DOI: 10.21203/rs.3.rs-5448262/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
In the auditory and vestibular systems, stereocilia are actin-based protrusions that convert mechanical stimuli into electrical signals. During development, stereocilia elongate and widen by adding filamentous actin (F-actin), attaining their mature shape necessary for mechanosensitive function. Myosin motors, including MYO3A/B and MYO15A, are required for normal stereocilia growth, but the regulation of actin and the impact of myosins on actin assembly remain unclear. We focused on stereocilia widening, which requires the addition of new filaments to the bundle of linear F-actin comprising the initial stereocilia core. Our findings revealed that newly expressed actin incorporates at the stereocilia tip first, then along the shaft to promote stereocilia widening. The newly incorporated F-actin surrounded the existing F-actin core, suggesting that the core is stable once formed, with additional actin adding only to the periphery. To better understand the nature of incorporating actin, we used several probes to detect globular (G-) actin, F-actin barbed ends, and F-actin pointed ends. While F-actin core filaments are parallel and thought to present only barbed ends at stereocilia tips, we also detected F-actin pointed ends, indicating a previously undetected population of short actin filaments. Overexpression of actin resulted in abundant F-actin pointed and barbed ends along the periphery of the stereocilia shaft, suggesting that short actin filaments contribute to stereocilia widening. Short actin filament levels correlated with the levels of MYO3A/B and MYO15A at stereocilia tips, suggesting these myosins generate or stabilize short actin filaments essential for stereocilia widening and elongation.
Collapse
Affiliation(s)
- Xiayi Liao
- Department of Biology, Indiana University, Indianapolis, IN
| | - Chun-Yu Tung
- Department of Biology, Indiana University, Indianapolis, IN
| | - Jocelyn F Krey
- Oregon Hearing Research Center, Oregon Health & Science University, Portland, OR
- Vollum Institute, Oregon Health & Science University, Portland, OR
| | | | - Joseph A Cirilo
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA
| | - Mert Colpan
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, AZ
| | - Christopher M Yengo
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA
| | - Peter G Barr-Gillespie
- Oregon Hearing Research Center, Oregon Health & Science University, Portland, OR
- Vollum Institute, Oregon Health & Science University, Portland, OR
| | - Jonathan E Bird
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL
| | | |
Collapse
|
9
|
Wang Y, Liu Z, Li Y, Nie Z, Xu B, Zhu Y, Duan S, Chen X, Tan H, Dang J, Guan M, Guo Y. A Novel Mutation Located in the N-Terminal Domain of MYO15A Caused Sensorineural Hearing Loss. Mol Genet Genomic Med 2024; 12:e70042. [PMID: 39620501 PMCID: PMC11609997 DOI: 10.1002/mgg3.70042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/07/2024] [Accepted: 11/12/2024] [Indexed: 04/06/2025] Open
Abstract
BACKGROUND MYO15A is one of the common genes of severe-to-profound sensorineural deafness. Mutations in this gene can cause both pre- and post-lingual hearing losses. In this study, a novel MYO15A variant (c.2482C>T) was identified to be associated with autosomal recessive non-syndromic hearing loss (ARNSHL) in a Chinese Uighur family. METHODS To examine the effects of the MYO15A mutation on the morphology and function of the derived hair cell-like cells, two iPSCs were generated separately from the proband and a mutation-negative family member and those were then induced to hair cell-like cells. RESULTS Results showed that this homozygous MYO15A mutation (PVS1 + PM2 + PP1 + PP3), which is located in the N-terminal domain, displayed significant differences in the morphology and function of hair cell-like cells between the proband and the normal control, although it had no effect on the totipotency of iPSCs. CONCLUSION Our study demonstrates that the novel variant c.2482C>T in the MYO15A gene may cause inner ear hair cell dysfunction and audiological disorders in this family.
Collapse
Affiliation(s)
- Yanli Wang
- Department of Otolaryngology—Head and Neck SurgeryLanzhou University Second HospitalLanzhouGansuChina
| | - Zengping Liu
- Department of Otolaryngology—Head and Neck SurgeryLanzhou University Second HospitalLanzhouGansuChina
| | - Yong Li
- Department of Otolaryngology—Head and Neck SurgeryLanzhou University Second HospitalLanzhouGansuChina
| | - Zhipeng Nie
- Institute of GeneticsZhejiang University School of MedicineZhejiangHangzhouChina
| | - Baicheng Xu
- Department of Otolaryngology—Head and Neck SurgeryLanzhou University Second HospitalLanzhouGansuChina
| | - Yiming Zhu
- Department of Otolaryngology—Head and Neck SurgeryLanzhou University Second HospitalLanzhouGansuChina
| | - Shihong Duan
- Department of Otolaryngology—Head and Neck SurgeryLanzhou University Second HospitalLanzhouGansuChina
| | - Xingjian Chen
- Department of Otolaryngology—Head and Neck SurgeryLanzhou University Second HospitalLanzhouGansuChina
| | - Huan Tan
- Department of Otolaryngology—Head and Neck SurgeryLanzhou University Second HospitalLanzhouGansuChina
| | - Jiong Dang
- Department of Otolaryngology—Head and Neck SurgeryLanzhou University Second HospitalLanzhouGansuChina
| | - Minxin Guan
- Institute of GeneticsZhejiang University School of MedicineZhejiangHangzhouChina
| | - Yufen Guo
- Department of Otolaryngology—Head and Neck SurgeryLanzhou University Second HospitalLanzhouGansuChina
| |
Collapse
|
10
|
Hartig EI, Day M, Jarysta A, Tarchini B. Proteins required for stereocilia elongation during mammalian hair cell development ensure precise and steady heights during adult life. Proc Natl Acad Sci U S A 2024; 121:e2405455121. [PMID: 39320919 PMCID: PMC11459194 DOI: 10.1073/pnas.2405455121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 08/05/2024] [Indexed: 09/26/2024] Open
Abstract
The hair bundle, or stereocilia bundle, is the mechanosensory compartment of hair cells (HCs) in the inner ear. To date, most mechanistic studies have focused on stereocilia bundle morphogenesis, and it remains unclear how this organelle critical for hearing preserves its precise dimensions during life in mammals. The GPSM2-GNAI complex occupies the distal tip of stereocilia in the tallest row and is required for their elongation during development. Here, we ablate GPSM2-GNAI in adult mouse HCs after normal stereocilia elongation is completed. We observe a progressive height reduction of the tallest row stereocilia totaling ~600 nm after 12 wk in Gpsm2 mutant inner HCs. To measure GPSM2 longevity at tips, we generated a HaloTag-Gpsm2 mouse strain and performed pulse-chase experiments in vivo. Estimates using pulse-chase or tracking loss of GPSM2 immunolabeling following Gpsm2 inactivation suggest that GPSM2 is relatively long-lived at stereocilia tips with a half-life of 9 to 10 d. Height reduction coincides with dampened auditory brainstem responses evoked by low-frequency stimuli in particular. Finally, GPSM2 is required for normal tip enrichment of elongation complex (EC) partners MYO15A, WHRN, and EPS8, mirroring their established codependence during development. Taken together, our results show that the EC is also essential in mature HCs to ensure precise and stable stereocilia height and for sensitive detection of a full range of sound frequencies.
Collapse
Affiliation(s)
- Elli I. Hartig
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, MA02111
- The Jackson Laboratory, Bar Harbor, ME04609
| | | | | | - Basile Tarchini
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, MA02111
- The Jackson Laboratory, Bar Harbor, ME04609
| |
Collapse
|
11
|
Miller KK, Wang P, Grillet N. SUB-immunogold-SEM reveals nanoscale distribution of submembranous epitopes. Nat Commun 2024; 15:7864. [PMID: 39256352 PMCID: PMC11387508 DOI: 10.1038/s41467-024-51849-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 08/20/2024] [Indexed: 09/12/2024] Open
Abstract
Electron microscopy paired with immunogold labeling is the most precise tool for protein localization. However, these methods are either cumbersome, resulting in small sample numbers and restricted quantification, or limited to identifying protein epitopes external to the membrane. Here, we introduce SUB-immunogold-SEM, a scanning electron microscopy technique that detects intracellular protein epitopes proximal to the membrane. We identify four critical sample preparation factors contributing to the method's sensitivity. We validate its efficacy through precise localization and high-powered quantification of cytoskeletal and transmembrane protein distribution. We evaluate the capabilities of SUB-immunogold-SEM on cells with highly differentiated apical surfaces: (i) auditory hair cells, revealing the presence of nanoscale MYO15A-L rings at the tip of stereocilia; and (ii) respiratory multiciliate cells, mapping the distribution of the SARS-CoV-2 receptor ACE2 along the motile cilia. SUB-immunogold-SEM extends the application of SEM-based nanoscale protein localization to the detection of intracellular epitopes on the exposed surfaces of any cell.
Collapse
Affiliation(s)
- Katharine K Miller
- Department of Otolaryngology-Head & Neck Surgery, School of Medicine, 240 Pasteur Drive, Stanford University, Stanford, CA, 94305, USA
| | - Pei Wang
- Department of Otolaryngology-Head & Neck Surgery, School of Medicine, 240 Pasteur Drive, Stanford University, Stanford, CA, 94305, USA
| | - Nicolas Grillet
- Department of Otolaryngology-Head & Neck Surgery, School of Medicine, 240 Pasteur Drive, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
12
|
López-Porras AI, Kruse AM, McClendon MT, Vélez-Ortega AC. Myosin XVA isoforms participate in the mechanotransduction-dependent remodeling of the actin cytoskeleton in auditory stereocilia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.04.611210. [PMID: 39282394 PMCID: PMC11398346 DOI: 10.1101/2024.09.04.611210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2025]
Abstract
Auditory hair cells form precise and sensitive staircase-like actin protrusions known as stereocilia. These specialized microvilli detect deflections induced by sound through the activation of mechano-electrical transduction (MET) channels located at their tips. At rest, a small MET channel current results in a constant calcium influx, which regulates the morphology of the actin cytoskeleton in the shorter 'transducing' stereocilia. However, the molecular mechanisms involved in this novel type of activity-driven plasticity in the stereocilium cytoskeleton are currently unknown. Here, we tested the contribution of myosin XVA (MYO15A) isoforms. We used electron microscopy to evaluate morphological changes in the cytoskeleton of auditory hair cell stereocilia after the pharmacological blockage of resting MET currents in cochlear explants from mice that lacked one or all isoforms of MYO15A. Hair cells lacking functional MYO15A isoforms did not exhibit MET-dependent remodeling in their stereocilia cytoskeleton. In contrast, hair cells that only lack the long isoform of MYO15A exhibited increased MET-dependent stereocilia remodeling, including remodeling in stereocilia from the tallest 'non-transducing' row of the bundle. We conclude that MYO15A isoforms not only enable but also fine-tune the MET-dependent remodeling of the actin cytoskeleton in transducing stereocilia and contribute to the stability of the tallest row.
Collapse
|
13
|
Yan K, Zhang H, Qu C, Xi Y, Han ZG, Xu Z. BAIAP2L1 and BAIAP2L2 differently regulate hair cell stereocilia morphology. FASEB J 2024; 38:e23860. [PMID: 39093051 DOI: 10.1096/fj.202400121r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 06/20/2024] [Accepted: 07/23/2024] [Indexed: 08/04/2024]
Abstract
Inner ear sensory hair cells are characterized by their apical F-actin-based cell protrusions named stereocilia. In each hair cell, several rows of stereocilia with different height are organized into a staircase-like pattern. The height of stereocilia is tightly regulated by two protein complexes, namely row-1 and row-2 tip complex, that localize at the tips of tallest-row and shorter-row stereocilia, respectively. Previously, we and others identified BAI1-associated protein 2-like 2 (BAIAP2L2) as a component of row-2 complex that play an important role in maintaining shorter-row stereocilia. In the present work we show that BAIAP2L1, an ortholog of BAIAP2L2, localizes at the tips of tallest-row stereocilia in a way dependent on known row-1 complex proteins EPS8 and MYO15A. Interestingly, unlike BAIAP2L2 whose stereocilia-tip localization requires calcium, the localization of BAIAP2L1 on the tips of tallest-row stereocilia is calcium-independent. Therefore, our data suggest that BAIAP2L1 and BAIAP2L2 localize at the tips of different stereociliary rows and might regulate the development and/or maintenance of stereocilia differently. However, loss of BAIAP2L1 does not affect the row-1 protein complex, and the auditory and balance function of Baiap2l1 knockout mice are largely normal. We hypothesize that other orthologous protein(s) such as BAIAP2 might compensate for the loss of BAIAP2L1 in the hair cells.
Collapse
Affiliation(s)
- Keji Yan
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology and Key Laboratory for Experimental Teratology of the Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong, China
| | - Haoqing Zhang
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology and Key Laboratory for Experimental Teratology of the Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong, China
| | - Chengli Qu
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology and Key Laboratory for Experimental Teratology of the Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong, China
| | - Yuehui Xi
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology and Key Laboratory for Experimental Teratology of the Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong, China
| | - Ze-Guang Han
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhigang Xu
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology and Key Laboratory for Experimental Teratology of the Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong, China
- Shandong Provincial Collaborative Innovation Center of Cell Biology, Shandong Normal University, Jinan, Shandong, China
| |
Collapse
|
14
|
Miyoshi T, Belyantseva IA, Sajeevadathan M, Friedman TB. Pathophysiology of human hearing loss associated with variants in myosins. Front Physiol 2024; 15:1374901. [PMID: 38562617 PMCID: PMC10982375 DOI: 10.3389/fphys.2024.1374901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 02/21/2024] [Indexed: 04/04/2024] Open
Abstract
Deleterious variants of more than one hundred genes are associated with hearing loss including MYO3A, MYO6, MYO7A and MYO15A and two conventional myosins MYH9 and MYH14. Variants of MYO7A also manifest as Usher syndrome associated with dysfunction of the retina and vestibule as well as hearing loss. While the functions of MYH9 and MYH14 in the inner ear are debated, MYO3A, MYO6, MYO7A and MYO15A are expressed in inner ear hair cells along with class-I myosin MYO1C and are essential for developing and maintaining functional stereocilia on the apical surface of hair cells. Stereocilia are large, cylindrical, actin-rich protrusions functioning as biological mechanosensors to detect sound, acceleration and posture. The rigidity of stereocilia is sustained by highly crosslinked unidirectionally-oriented F-actin, which also provides a scaffold for various proteins including unconventional myosins and their cargo. Typical myosin molecules consist of an ATPase head motor domain to transmit forces to F-actin, a neck containing IQ-motifs that bind regulatory light chains and a tail region with motifs recognizing partners. Instead of long coiled-coil domains characterizing conventional myosins, the tails of unconventional myosins have various motifs to anchor or transport proteins and phospholipids along the F-actin core of a stereocilium. For these myosins, decades of studies have elucidated their biochemical properties, interacting partners in hair cells and variants associated with hearing loss. However, less is known about how myosins traffic in a stereocilium using their motor function, and how each variant correlates with a clinical condition including the severity and onset of hearing loss, mode of inheritance and presence of symptoms other than hearing loss. Here, we cover the domain structures and functions of myosins associated with hearing loss together with advances, open questions about trafficking of myosins in stereocilia and correlations between hundreds of variants in myosins annotated in ClinVar and the corresponding deafness phenotypes.
Collapse
Affiliation(s)
- Takushi Miyoshi
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, United States
- Division of Molecular and Integrative Physiology, Department of Biomedical Sciences, Southern Illinois University School of Medicine, Carbondale, IL, United States
| | - Inna A. Belyantseva
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, United States
| | - Mrudhula Sajeevadathan
- Division of Molecular and Integrative Physiology, Department of Biomedical Sciences, Southern Illinois University School of Medicine, Carbondale, IL, United States
| | - Thomas B. Friedman
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
15
|
Sutton DC, Andrews JC, Dolezal DM, Park YJ, Li H, Eberl DF, Yamamoto S, Groves AK. Comparative exploration of mammalian deafness gene homologues in the Drosophila auditory organ shows genetic correlation between insect and vertebrate hearing. PLoS One 2024; 19:e0297846. [PMID: 38412189 PMCID: PMC10898740 DOI: 10.1371/journal.pone.0297846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 01/13/2024] [Indexed: 02/29/2024] Open
Abstract
Johnston's organ, the Drosophila auditory organ, is anatomically very different from the mammalian organ of Corti. However, recent evidence indicates significant cellular and molecular similarities exist between vertebrate and invertebrate hearing, suggesting that Drosophila may be a useful platform to determine the function of the many mammalian deafness genes whose underlying biological mechanisms are poorly characterized. Our goal was a comprehensive screen of all known orthologues of mammalian deafness genes in the fruit fly to better understand conservation of hearing mechanisms between the insect and the fly and ultimately gain insight into human hereditary deafness. We used bioinformatic comparisons to screen previously reported human and mouse deafness genes and found that 156 of them have orthologues in Drosophila melanogaster. We used fluorescent imaging of T2A-GAL4 gene trap and GFP or YFP fluorescent protein trap lines for 54 of the Drosophila genes and found 38 to be expressed in different cell types in Johnston's organ. We phenotypically characterized the function of strong loss-of-function mutants in three genes expressed in Johnston's organ (Cad99C, Msp-300, and Koi) using a courtship assay and electrophysiological recordings of sound-evoked potentials. Cad99C and Koi were found to have significant courtship defects. However, when we tested these genes for electrophysiological defects in hearing response, we did not see a significant difference suggesting the courtship defects were not caused by hearing deficiencies. Furthermore, we used a UAS/RNAi approach to test the function of seven genes and found two additional genes, CG5921 and Myo10a, that gave a statistically significant delay in courtship but not in sound-evoked potentials. Our results suggest that many mammalian deafness genes have Drosophila homologues expressed in the Johnston's organ, but that their requirement for hearing may not necessarily be the same as in mammals.
Collapse
Affiliation(s)
- Daniel C. Sutton
- Graduate Program in Genetics & Genomics, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Jonathan C. Andrews
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, Texas, United States of America
| | - Dylan M. Dolezal
- Department of Biology, University of Iowa, Iowa City, Iowa, United States of America
| | - Ye Jin Park
- Graduate Program in Development, Disease Models & Therapeutics, Baylor College of Medicine, Houston, Texas, United States of America
- Huffington Center on Aging, One Baylor Plaza, Houston, Texas, United States of America
| | - Hongjie Li
- Graduate Program in Development, Disease Models & Therapeutics, Baylor College of Medicine, Houston, Texas, United States of America
- Huffington Center on Aging, One Baylor Plaza, Houston, Texas, United States of America
| | - Daniel F. Eberl
- Department of Biology, University of Iowa, Iowa City, Iowa, United States of America
| | - Shinya Yamamoto
- Graduate Program in Genetics & Genomics, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, Texas, United States of America
- Graduate Program in Development, Disease Models & Therapeutics, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, United States of America
| | - Andrew K. Groves
- Graduate Program in Genetics & Genomics, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Graduate Program in Development, Disease Models & Therapeutics, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, United States of America
| |
Collapse
|
16
|
Bao Y, Jia F, Li M, Xu R, Xie Y, Zhang F, Guo J. Characterizing the Molecular Mechanism of the Lethal C423D Mutation in FgMyoI: A Molecular Perspective. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:1539-1549. [PMID: 38226494 DOI: 10.1021/acs.jafc.3c08648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
The lethal mutation C423D in Fusarium graminearum myosin I (FgMyoI) occurs close to the binding pocket of the allosteric inhibitor phenamacril and causes severe inhibition on mycelial growth of F. graminearum strain PH-1. Here, based on extensive Gaussian accelerated molecular dynamics simulations and wet experiments, we elucidate the underlying molecular mechanism of the abnormal functioning of the FgMyoIC423D mutant at the atomistic level. Our results suggest that the damaging mutation C423D exhibits a synergistic allosteric inhibition mechanism similar to but more robust than that of phenamacril, including effects on the active site and actin binding. Unlike phenamacril-induced closure of Switch2, the mutation results in unfolding of the N-terminal relay helix with a partially opened Switch2 and blocks the structural rearrangement of the relay/SH1 helices, impairing the proper initiation of the recovery stroke. Due to the significant influence of C423D mutation on the function of FgMyoI, designing covalent inhibitors targeting this site holds tremendous potential.
Collapse
Affiliation(s)
- Yiqiong Bao
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Fangying Jia
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Mengrong Li
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Ran Xu
- Centre for Artificial Intelligence Driven Drug Discovery, Faculty of Applied Sciences, Macao Polytechnic University, Macao 999078, China
| | - Yanjie Xie
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Feng Zhang
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Jingjing Guo
- Centre for Artificial Intelligence Driven Drug Discovery, Faculty of Applied Sciences, Macao Polytechnic University, Macao 999078, China
| |
Collapse
|
17
|
Miller KK, Wang P, Grillet N. SUB-Immunogold-SEM reveals nanoscale distribution of submembranous epitopes. RESEARCH SQUARE 2024:rs.3.rs-3876898. [PMID: 38343799 PMCID: PMC10854333 DOI: 10.21203/rs.3.rs-3876898/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Electron microscopy paired with immunogold labeling is the most precise tool for protein localization. However, these methods are either cumbersome, resulting in small sample numbers and restricted quantification, or limited to identifying protein epitopes external to the membrane. Here, we introduce SUB-immunogold-SEM, a scanning electron microscopy technique that detects intracellular protein epitopes proximal to the membrane. We identified four critical sample preparation factors that contribute to the method's sensitivity and validate its efficacy through precise localization and high-powered quantification of cytoskeletal and transmembrane proteins. We evaluated the capabilities of SUB-immunogold-SEM on cells with highly differentiated apical surfaces: (i) auditory hair cells, revealing the presence of nanoscale Myosin rings at the tip of stereocilia; and (ii) respiratory multiciliate cells, mapping the distribution of the SARS-CoV-2 receptor ACE2 along the motile cilia. SUB-immunogold-SEM provides a novel solution for nanoscale protein localization at the exposed surface of any cell.
Collapse
Affiliation(s)
- Katharine K. Miller
- Department of Otolaryngology-Head & Neck Surgery, School of Medicine, 240 Pasteur Drive, Stanford University, Stanford, CA 94305, USA
| | - Pei Wang
- Department of Otolaryngology-Head & Neck Surgery, School of Medicine, 240 Pasteur Drive, Stanford University, Stanford, CA 94305, USA
| | - Nicolas Grillet
- Department of Otolaryngology-Head & Neck Surgery, School of Medicine, 240 Pasteur Drive, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
18
|
Clements R, Smith T, Cowart L, Zhumi J, Sherrod A, Cahill A, Hunter GL. Myosin XV is a negative regulator of signaling filopodia during long-range lateral inhibition. Dev Biol 2024; 505:110-121. [PMID: 37956923 PMCID: PMC10767839 DOI: 10.1016/j.ydbio.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/30/2023] [Accepted: 11/06/2023] [Indexed: 11/20/2023]
Abstract
The self-organization of cells during development is essential for the formation of healthy tissues and requires the coordination of cell activities at local scales. Cytonemes, or signaling filopodia, are dynamic actin-based cellular protrusions that allow cells to engage in contact mediated signaling at a distance. While signaling filopodia have been shown to support several signaling paradigms during development, less is understood about how these protrusions are regulated. We investigated the role of the plus-end directed, unconventional MyTH4-FERM myosins in regulating signaling filopodia during sensory bristle patterning on the dorsal thorax of the fruit fly Drosophila melanogaster. We found that Myosin XV is required for regulating signaling filopodia dynamics and, as a consequence, lateral inhibition more broadly throughout the patterning epithelium. We found that Myosin XV is required for limiting the length and number of signaling filopodia generated by bristle precursor cells. Cells with additional and longer signaling filopodia due to loss of Myosin XV are not signaling competent, due to altered levels of Delta ligand and Notch receptor along their lengths. We conclude that Myosin XV acts to negatively regulate signaling filopodia, as well as promote the ability of signaling filopodia to engage in long-range Notch signaling. Since Myosin XV isoforms are present across several vertebrate and invertebrate systems, this may have significance for other long-range signaling mechanisms.
Collapse
Affiliation(s)
- Rhiannon Clements
- Department of Biology, Clarkson University, Potsdam, NY, 13699, United States
| | - Tyler Smith
- Department of Biology, Clarkson University, Potsdam, NY, 13699, United States
| | - Luke Cowart
- Department of Biology, Clarkson University, Potsdam, NY, 13699, United States
| | - Jennifer Zhumi
- Department of Biology, Clarkson University, Potsdam, NY, 13699, United States
| | - Alan Sherrod
- Department of Biology, Clarkson University, Potsdam, NY, 13699, United States
| | - Aidan Cahill
- Department of Biology, Clarkson University, Potsdam, NY, 13699, United States
| | - Ginger L Hunter
- Department of Biology, Clarkson University, Potsdam, NY, 13699, United States.
| |
Collapse
|
19
|
Cirilo JA, Liao X, Perrin BJ, Yengo CM. The dynamics of actin protrusions can be controlled by tip-localized myosin motors. J Biol Chem 2024; 300:105516. [PMID: 38042485 PMCID: PMC10801316 DOI: 10.1016/j.jbc.2023.105516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 12/04/2023] Open
Abstract
Class III myosins localize to inner ear hair cell stereocilia and are thought to be crucial for stereocilia length regulation. Mutations within the motor domain of MYO3A that disrupt its intrinsic motor properties have been associated with non-syndromic hearing loss, suggesting that the motor properties of MYO3A are critical for its function within stereocilia. In this study, we investigated the impact of a MYO3A hearing loss mutation, H442N, using both in vitro motor assays and cell biological studies. Our results demonstrate the mutation causes a dramatic increase in intrinsic motor properties, actin-activated ATPase and in vitro actin gliding velocity, as well as an increase in actin protrusion extension velocity. We propose that both "gain of function" and "loss of function" mutations in MYO3A can impair stereocilia length regulation, which is crucial for stereocilia formation during development and normal hearing. Furthermore, we generated chimeric MYO3A constructs that replace the MYO3A motor and neck domain with the motor and neck domain of other myosins. We found that duty ratio, fraction of ATPase cycle myosin is strongly bound to actin, is a critical motor property that dictates the ability to tip localize within filopodia. In addition, in vitro actin gliding velocities correlated extremely well with filopodial extension velocities over a wide range of gliding and extension velocities. Taken together, our data suggest a model in which tip-localized myosin motors exert force that slides the membrane tip-ward, which can combat membrane tension and enhance the actin polymerization rate that ultimately drives protrusion elongation.
Collapse
Affiliation(s)
- Joseph A Cirilo
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Xiayi Liao
- Department of Biology, Indiana University - Purdue University, Indianapolis, Indiana, USA
| | - Benjamin J Perrin
- Department of Biology, Indiana University - Purdue University, Indianapolis, Indiana, USA
| | - Christopher M Yengo
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania, USA.
| |
Collapse
|
20
|
Park J, Bird JE. The actin cytoskeleton in hair bundle development and hearing loss. Hear Res 2023; 436:108817. [PMID: 37300948 PMCID: PMC10408727 DOI: 10.1016/j.heares.2023.108817] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 05/18/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023]
Abstract
Inner ear hair cells assemble mechanosensitive hair bundles on their apical surface that transduce sounds and accelerations. Each hair bundle is comprised of ∼ 100 individual stereocilia that are arranged into rows of increasing height and width; their specific and precise architecture being necessary for mechanoelectrical transduction (MET). The actin cytoskeleton is fundamental to establishing this architecture, not only by forming the structural scaffold shaping each stereocilium, but also by composing rootlets and the cuticular plate that together provide a stable foundation supporting each stereocilium. In concert with the actin cytoskeleton, a large assortment of actin-binding proteins (ABPs) function to cross-link actin filaments into specific topologies, as well as control actin filament growth, severing, and capping. These processes are individually critical for sensory transduction and are all disrupted in hereditary forms of human hearing loss. In this review, we provide an overview of actin-based structures in the hair bundle and the molecules contributing to their assembly and functional properties. We also highlight recent advances in mechanisms driving stereocilia elongation and how these processes are tuned by MET.
Collapse
Affiliation(s)
- Jinho Park
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL 32610, United States; Myology Institute, University of Florida, Gainesville, FL 32610, United States
| | - Jonathan E Bird
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL 32610, United States; Myology Institute, University of Florida, Gainesville, FL 32610, United States.
| |
Collapse
|
21
|
Clements R, Smith T, Cowart L, Zhumi J, Sherrod A, Cahill A, Hunter GL. Myosin XV is a negative regulator of signaling filopodia during long-range lateral inhibition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.07.547992. [PMID: 37461640 PMCID: PMC10350058 DOI: 10.1101/2023.07.07.547992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
The self-organization of cells during development is essential for the formation of healthy tissues, and requires the coordination of cell activities at local scales. Cytonemes, or signaling filopodia, are dynamic actin-based cellular protrusions that allow cells to engage in contact mediated signaling at a distance. While signaling filopodia have been shown to support several signaling paradigms during development, less is understood about how these protrusions are regulated. We investigated the role of the plus-end directed, unconventional MyTH4-FERM myosins in regulating signaling filopodia during sensory bristle patterning on the dorsal thorax of the fruit fly Drosophila melanogaster. We found that Myosin XV is required for regulating signaling filopodia dynamics and, as a consequence, lateral inhibition more broadly throughout the patterning epithelium. We found that Myosin XV is required for limiting the length and number of signaling filopodia generated by bristle precursor cells. Cells with additional and longer signaling filopodia due to loss of Myosin XV are not signaling competent, due to altered levels of Delta ligand and Notch receptor along their lengths. We conclude that Myosin XV acts to negatively regulate signaling filopodia, as well as promote the ability of signaling filopodia to engage in long-range Notch signaling. Since Myosin XV is present across several vertebrate and invertebrate systems, this may have significance for other long-range signaling mechanisms.
Collapse
Affiliation(s)
| | - Tyler Smith
- Department of Biology, Clarkson University, Potsdam, NY, 13699, USA
| | - Luke Cowart
- Department of Biology, Clarkson University, Potsdam, NY, 13699, USA
| | - Jennifer Zhumi
- Department of Biology, Clarkson University, Potsdam, NY, 13699, USA
| | - Alan Sherrod
- Department of Biology, Clarkson University, Potsdam, NY, 13699, USA
| | - Aidan Cahill
- Department of Biology, Clarkson University, Potsdam, NY, 13699, USA
| | - Ginger L Hunter
- Department of Biology, Clarkson University, Potsdam, NY, 13699, USA
| |
Collapse
|
22
|
Asaad M, Mahfood M, Al Mutery A, Tlili A. Loss-of-function mutations in MYO15A and OTOF cause non-syndromic hearing loss in two Yemeni families. Hum Genomics 2023; 17:42. [PMID: 37189200 DOI: 10.1186/s40246-023-00489-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 05/06/2023] [Indexed: 05/17/2023] Open
Abstract
BACKGROUND Hearing loss is a rare hereditary deficit that is rather common among consanguineous populations. Autosomal recessive non-syndromic hearing loss is the predominant form of hearing loss worldwide. Although prevalent, hearing loss is extremely heterogeneous and poses a pitfall in terms of diagnosis and screening. Using next-generation sequencing has enabled a rapid increase in the identification rate of genes and variants in heterogeneous conditions, including hearing loss. We aimed to identify the causative variants in two consanguineous Yemeni families affected with hearing loss using targeted next-generation sequencing (clinical exome sequencing). The proband of each family was presented with sensorineural hearing loss as indicated by pure-tone audiometry results. RESULTS We explored variants obtained from both families, and our analyses collectively revealed the presence and segregation of two novel loss-of-function variants: a frameshift variant, c.6347delA in MYO15A in Family I, and a splice site variant, c.5292-2A > C, in OTOF in Family II. Sanger sequencing and PCR-RFLP of DNA samples from 130 deaf and 50 control individuals confirmed that neither variant was present in our in-house database. In silico analyses predicted that each variant has a pathogenic effect on the corresponding protein. CONCLUSIONS We describe two novel loss-of-function variants in MYO15A and OTOF that cause autosomal recessive non-syndromic hearing loss in Yemeni families. Our findings are consistent with previously reported pathogenic variants in the MYO15A and OTOF genes in Middle Eastern individuals and suggest their implication in hearing loss.
Collapse
Affiliation(s)
- Maria Asaad
- Department of Applied Biology, College of Sciences, University of Sharjah, Building W8 - Room 107, P.O. Box 27272, Sharjah, UAE
| | - Mona Mahfood
- Department of Applied Biology, College of Sciences, University of Sharjah, Building W8 - Room 107, P.O. Box 27272, Sharjah, UAE
| | - Abdullah Al Mutery
- Department of Applied Biology, College of Sciences, University of Sharjah, Building W8 - Room 107, P.O. Box 27272, Sharjah, UAE
- Human Genetics and Stem Cells Research Group, Research Institute of Sciences and Engineering, University of Sharjah, Sharjah, UAE
| | - Abdelaziz Tlili
- Department of Applied Biology, College of Sciences, University of Sharjah, Building W8 - Room 107, P.O. Box 27272, Sharjah, UAE.
- Human Genetics and Stem Cells Research Group, Research Institute of Sciences and Engineering, University of Sharjah, Sharjah, UAE.
| |
Collapse
|
23
|
Wang X, Liu S, Cheng Q, Qu C, Ren R, Du H, Li N, Yan K, Wang Y, Xiong W, Xu Z. CIB2 and CIB3 Regulate Stereocilia Maintenance and Mechanoelectrical Transduction in Mouse Vestibular Hair Cells. J Neurosci 2023; 43:3219-3231. [PMID: 37001993 PMCID: PMC10162464 DOI: 10.1523/jneurosci.1807-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 03/20/2023] [Accepted: 03/25/2023] [Indexed: 04/03/2023] Open
Abstract
The mechanoelectrical transduction (MET) protein complex in the inner-ear hair cells is essential for hearing and balance perception. Calcium and integrin-binding protein 2 (CIB2) has been reported to be a component of MET complex, and loss of CIB2 completely abolishes MET currents in auditory hair cells, causing profound congenital hearing loss. However, loss of CIB2 does not affect MET currents in vestibular hair cells (VHCs) as well as general balance function. Here, we show that CIB2 and CIB3 act redundantly to regulate MET in VHCs, as MET currents are completely abolished in the VHCs of Cib2/Cib3 double knock-out mice of either sex. Furthermore, we show that Cib2 and Cib3 transcripts have complementary expression patterns in the vestibular maculae, and that they play different roles in stereocilia maintenance in VHCs. Cib2 transcripts are highly expressed in the striolar region, and knock-out of Cib2 affects stereocilia maintenance in striolar VHCs. In contrast, Cib3 transcripts are highly expressed in the extrastriolar region, and knock-out of Cib3 mainly affects stereocilia maintenance in extrastriolar VHCs. Simultaneous knock-out of Cib2 and Cib3 affects stereocilia maintenance in all VHCs and leads to severe balance deficits. Taken together, our present work reveals that CIB2 and CIB3 are important for stereocilia maintenance as well as MET in mouse VHCs.SIGNIFICANCE STATEMENT Calcium and integrin-binding protein 2 (CIB2) is an important component of mechanoelectrical transduction (MET) complex, and loss of CIB2 completely abolishes MET in auditory hair cells. However, MET is unaffected in Cib2 knock-out vestibular hair cells (VHCs). In the present work, we show that CIB3 could compensate for the loss of CIB2 in VHCs, and Cib2/Cib3 double knock-out completely abolishes MET in VHCs. Interestingly, CIB2 and CIB3 could also regulate VHC stereocilia maintenance in a nonredundant way. Cib2 and Cib3 transcripts are highly expressed in the striolar and extrastriolar regions, respectively. Stereocilia maintenance and balance function are differently affected in Cib2 or Cib3 knock-out mice. In conclusion, our data suggest that CIB2 and CIB3 are important for stereocilia maintenance and MET in mouse VHCs.
Collapse
Affiliation(s)
- Xiaoying Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology and Key Laboratory for Experimental Teratology of the Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, People's Republic of China
| | - Shuang Liu
- School of Life Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, People's Republic of China
- Chinese Institute for Brain Research, Beijing 102206, People's Republic of China
| | - Qi Cheng
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology and Key Laboratory for Experimental Teratology of the Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, People's Republic of China
| | - Chengli Qu
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology and Key Laboratory for Experimental Teratology of the Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, People's Republic of China
| | - Rui Ren
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology and Key Laboratory for Experimental Teratology of the Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, People's Republic of China
| | - Haibo Du
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology and Key Laboratory for Experimental Teratology of the Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, People's Republic of China
| | - Nana Li
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology and Key Laboratory for Experimental Teratology of the Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, People's Republic of China
| | - Keji Yan
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology and Key Laboratory for Experimental Teratology of the Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, People's Republic of China
| | - Yanfei Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology and Key Laboratory for Experimental Teratology of the Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, People's Republic of China
| | - Wei Xiong
- School of Life Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, People's Republic of China
- Chinese Institute for Brain Research, Beijing 102206, People's Republic of China
| | - Zhigang Xu
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology and Key Laboratory for Experimental Teratology of the Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, People's Republic of China
- Shandong Provincial Collaborative Innovation Center of Cell Biology, Shandong Normal University, Jinan, Shandong 250014, People's Republic of China
| |
Collapse
|
24
|
Jung J, Müller U. Mechanoelectrical transduction-related genetic forms of hearing loss. CURRENT OPINION IN PHYSIOLOGY 2023; 32:100632. [PMID: 36936795 PMCID: PMC10022594 DOI: 10.1016/j.cophys.2023.100632] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Hair cells of the mammalian cochlea are specialized mechanosensory cells that convert mechanical stimuli into electrical signals to initiate the neuronal responses that lead to the perception of sound. The mechanoelectrical transduction (MET) machinery of cochlear hair cells is a multimeric protein complex that consists of the pore forming subunits of the MET channel and several essential accessory subunits that are crucial to regulate channel function and render the channel mechanically sensitive. Mutations have been discovered in the genes that encode all known components of the MET machinery. These mutations cause hearing loss with or without vestibular dysfunction. Some mutations also affect other tissues such as the retina. In this brief review, we will summarize gene mutations that affect the MET machinery of hair cells and how the study of the affected genes has illuminated our understanding of the physiological role of the encoded proteins.
Collapse
Affiliation(s)
- Jinsei Jung
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Otorhinolaryngology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Ulrich Müller
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
25
|
Sharkova M, Chow E, Erickson T, Hocking JC. The morphological and functional diversity of apical microvilli. J Anat 2023; 242:327-353. [PMID: 36281951 PMCID: PMC9919547 DOI: 10.1111/joa.13781] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 10/03/2022] [Accepted: 10/05/2022] [Indexed: 11/30/2022] Open
Abstract
Sensory neurons use specialized apical processes to perceive external stimuli and monitor internal body conditions. The apical apparatus can include cilia, microvilli, or both, and is adapted for the functions of the particular cell type. Photoreceptors detect light through a large, modified cilium (outer segment), that is supported by a surrounding ring of microvilli-like calyceal processes (CPs). Although first reported 150 years ago, CPs remain poorly understood. As a basis for future study, we therefore conducted a review of existing literature about sensory cell microvilli, which can act either as the primary sensory detector or as support for a cilia-based detector. While all microvilli are finger-like cellular protrusions with an actin core, the processes vary across cell types in size, number, arrangement, dynamics, and function. We summarize the current state of knowledge about CPs and the characteristics of the microvilli found on inner ear hair cells (stereocilia) and cerebral spinal fluid-contacting neurons, with comparisons to the brush border of the intestinal and renal epithelia. The structure, stability, and dynamics of the actin core are regulated by a complement of actin-binding proteins, which includes both common components and unique features when compared across cell types. Further, microvilli are often supported by lateral links, a glycocalyx, and a defined extracellular matrix, each adapted to the function and environment of the cell. Our comparison of microvillar features will inform further research into how CPs support photoreceptor function, and also provide a general basis for investigations into the structure and functions of apical microvilli found on sensory neurons.
Collapse
Affiliation(s)
- Maria Sharkova
- Department of Cell Biology, Faculty of Medicine and DentistryUniversity of AlbertaEdmontonAlbertaCanada
| | - Erica Chow
- Department of Cell Biology, Faculty of Medicine and DentistryUniversity of AlbertaEdmontonAlbertaCanada
| | - Timothy Erickson
- Department of BiologyUniversity of New BrunswickFrederictonNew BrunswickCanada
| | - Jennifer C. Hocking
- Department of Cell Biology, Faculty of Medicine and DentistryUniversity of AlbertaEdmontonAlbertaCanada
- Division of Anatomy, Department of Surgery, Faculty of Medicine and DentistryUniversity of AlbertaEdmontonAlbertaCanada
- Department of Medical Genetics, Faculty of Medicine and DentistryUniversity of AlbertaEdmontonAlbertaCanada
- Women and Children's Health Research InstituteUniversity of AlbertaEdmontonAlbertaCanada
| |
Collapse
|
26
|
Moreland ZG, Bird JE. Myosin motors in sensory hair bundle assembly. Curr Opin Cell Biol 2022; 79:102132. [PMID: 36257241 DOI: 10.1016/j.ceb.2022.102132] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 09/02/2022] [Accepted: 09/07/2022] [Indexed: 01/31/2023]
Abstract
Mechanosensory hair bundles are assembled from actin-based stereocilia that project from the apical surface of hair cells in the inner ear. Stereocilia architecture is critical for the transduction of sound and accelerations, and structural defects in these mechano-sensors are a clinical cause of hearing and balance disorders in humans. Unconventional myosin motors are central to the assembly and shaping of stereocilia architecture. A sub-group of myosin motors with MyTH4-FERM domains (MYO7A, MYO15A) are particularly important in these processes, and hypothesized to act as transporters delivering structural and actin-regulatory cargos, in addition to generating force and tension. In this review, we summarize existing evidence for how MYO7A and MYO15A operate and how their dysfunction leads to stereocilia pathology. We further highlight emerging properties of the MyTH4/FERM myosin family and speculate how these new functions might contribute towards the acquisition and maintenance of mechano-sensitivity.
Collapse
Affiliation(s)
- Zane G Moreland
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, 32610, USA; Myology Institute, University of Florida, Gainesville, FL, 32610, USA; Graduate Program in Biomedical Sciences, University of Florida, Gainesville, FL, 32610, USA
| | - Jonathan E Bird
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, 32610, USA; Myology Institute, University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|
27
|
Qiu X, Müller U. Sensing sound: Cellular specializations and molecular force sensors. Neuron 2022; 110:3667-3687. [PMID: 36223766 PMCID: PMC9671866 DOI: 10.1016/j.neuron.2022.09.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/03/2022] [Accepted: 09/14/2022] [Indexed: 11/08/2022]
Abstract
Organisms of all phyla express mechanosensitive ion channels with a wide range of physiological functions. In recent years, several classes of mechanically gated ion channels have been identified. Some of these ion channels are intrinsically mechanosensitive. Others depend on accessory proteins to regulate their response to mechanical force. The mechanotransduction machinery of cochlear hair cells provides a particularly striking example of a complex force-sensing machine. This molecular ensemble is embedded into a specialized cellular compartment that is crucial for its function. Notably, mechanotransduction channels of cochlear hair cells are not only critical for auditory perception. They also shape their cellular environment and regulate the development of auditory circuitry. Here, we summarize recent discoveries that have shed light on the composition of the mechanotransduction machinery of cochlear hair cells and how this machinery contributes to the development and function of the auditory system.
Collapse
Affiliation(s)
- Xufeng Qiu
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ulrich Müller
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
28
|
Wang L, Zhang Y, Xue Q, Huang P, Liu X. Identification of novel compound heterozygous mutations of the MYO15A gene with autosomal recessive non-syndromic hearing loss. J Clin Lab Anal 2022; 36:e24653. [PMID: 36217262 PMCID: PMC9551133 DOI: 10.1002/jcla.24653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The most common inheritance pattern responsible for congenital deafness belongs to autosomal recessive non-syndromic hearing loss (ARNSHL) and mutations of the highly heterogeneous MYO15A locus are present in a large proportion of cases. METHODS One Chinese family with ARNSHL was subjected to clinical evaluation and genetic analysis. We used targeted and whole exome sequencing with Sanger sequencing to identify and characterize mutations. Bioinformatics analysis was conducted to evaluate molecular functions. RESULTS Three compound heterozygous MYO15A gene variants, including two novel variants, c.6804G > A (p.M2268I), and c.6188_6190delinsGTCA (p.F2063Cfs*60), responsible for deafness were identified. Pathogenicity was assessed by multiple bioinformatics analyses. CONCLUSION We identified novel mutations of the MYO15A locus associated with ARNSHL in a Chinese family. The current findings expand the MYO15A pathogenic mutation spectrum to assist with genetic counseling and prenatal diagnosis.
Collapse
Affiliation(s)
- Luming Wang
- Prenatal Diagnosis CenterJiaxing Maternity and Child Health Care HospitalJiaxingChina
| | - Yue Zhang
- Prenatal Diagnosis CenterJiaxing Maternity and Child Health Care HospitalJiaxingChina
| | - Qiuxia Xue
- Prenatal Diagnosis CenterJiaxing Maternity and Child Health Care HospitalJiaxingChina
| | - Pinghua Huang
- Prenatal Diagnosis CenterJiaxing Maternity and Child Health Care HospitalJiaxingChina
| | - Xiaodan Liu
- Prenatal Diagnosis CenterJiaxing Maternity and Child Health Care HospitalJiaxingChina
| |
Collapse
|
29
|
Jeng JY, Carlton AJ, Goodyear RJ, Chinowsky C, Ceriani F, Johnson SL, Sung TC, Dayn Y, Richardson GP, Bowl MR, Brown SD, Manor U, Marcotti W. AAV-mediated rescue of Eps8 expression in vivo restores hair-cell function in a mouse model of recessive deafness. Mol Ther Methods Clin Dev 2022; 26:355-370. [PMID: 36034774 PMCID: PMC9382420 DOI: 10.1016/j.omtm.2022.07.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 07/15/2022] [Indexed: 11/24/2022]
Abstract
The transduction of acoustic information by hair cells depends upon mechanosensitive stereociliary bundles that project from their apical surface. Mutations or absence of the stereociliary protein EPS8 cause deafness in humans and mice, respectively. Eps8 knockout mice (Eps8 -/- ) have hair cells with immature stereocilia and fail to become sensory receptors. Here, we show that exogenous delivery of Eps8 using Anc80L65 in P1-P2 Eps8 -/- mice in vivo rescued the hair bundle structure of apical-coil hair cells. Rescued hair bundles correctly localize EPS8, WHIRLIN, MYO15, and BAIAP2L2, and generate normal mechanoelectrical transducer currents. Inner hair cells with normal-looking stereocilia re-expressed adult-like basolateral ion channels (BK and KCNQ4) and have normal exocytosis. The number of hair cells undergoing full recovery was not sufficient to rescue hearing in Eps8 -/- mice. Adeno-associated virus (AAV)-transduction of P3 apical-coil and P1-P2 basal-coil hair cells does not rescue hair cells, nor does Anc80L65-Eps8 delivery in adult Eps8 -/- mice. We propose that AAV-induced gene-base therapy is an efficient strategy to recover the complex hair-cell defects in Eps8 -/- mice. However, this therapeutic approach may need to be performed in utero since, at postnatal ages, Eps8 -/- hair cells appear to have matured or accumulated damage beyond the point of repair.
Collapse
Affiliation(s)
- Jing-Yi Jeng
- School of Bioscience, University of Sheffield, Sheffield S10 2TN, UK
| | - Adam J. Carlton
- School of Bioscience, University of Sheffield, Sheffield S10 2TN, UK
| | - Richard J. Goodyear
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK
| | - Colbie Chinowsky
- Waitt Advanced Biophotonics Center, Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Federico Ceriani
- School of Bioscience, University of Sheffield, Sheffield S10 2TN, UK
| | - Stuart L. Johnson
- School of Bioscience, University of Sheffield, Sheffield S10 2TN, UK
- Neuroscience Institute, University of Sheffield, Sheffield S10 2TN, UK
| | - Tsung-Chang Sung
- Transgenic Core, Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Yelena Dayn
- Transgenic Core, Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Guy P. Richardson
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK
| | - Michael R. Bowl
- Mammalian Genetics Unit, MRC Harwell Institute, Harwell Campus, Oxfordshire OX11 0RD UK
| | - Steve D.M. Brown
- Mammalian Genetics Unit, MRC Harwell Institute, Harwell Campus, Oxfordshire OX11 0RD UK
| | - Uri Manor
- Waitt Advanced Biophotonics Center, Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Walter Marcotti
- School of Bioscience, University of Sheffield, Sheffield S10 2TN, UK
- Neuroscience Institute, University of Sheffield, Sheffield S10 2TN, UK
| |
Collapse
|
30
|
Zhai X, Du H, Shen Y, Zhang X, Chen Z, Wang Y, Xu Z. FCHSD2 is required for stereocilia maintenance in mouse cochlear hair cells. J Cell Sci 2022; 135:jcs259912. [PMID: 35892293 DOI: 10.1242/jcs.259912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 07/15/2022] [Indexed: 11/20/2022] Open
Abstract
Stereocilia are F-actin-based protrusions on the apical surface of inner-ear hair cells and are indispensable for hearing and balance perception. The stereocilia of each hair cell are organized into rows of increasing heights, forming a staircase-like pattern. The development and maintenance of stereocilia are tightly regulated, and deficits in these processes lead to stereocilia disorganization and hearing loss. Previously, we showed that the F-BAR protein FCHSD2 is localized along the stereocilia of cochlear hair cells and cooperates with CDC42 to regulate F-actin polymerization and cell protrusion formation in cultured COS-7 cells. In the present work, Fchsd2 knockout mice were established to investigate the role of FCHSD2 in hearing. Our data show that stereocilia maintenance is severely affected in cochlear hair cells of Fchsd2 knockout mice, which leads to progressive hearing loss. Moreover, Fchsd2 knockout mice show increased acoustic vulnerability. Noise exposure causes robust stereocilia degeneration as well as enhanced hearing threshold elevation in Fchsd2 knockout mice. Lastly, Fchsd2/Cdc42 double knockout mice show more severe stereocilia deficits and hearing loss, suggesting that FCHSD2 and CDC42 cooperatively regulate stereocilia maintenance.
Collapse
Affiliation(s)
- Xiaoyan Zhai
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology and Key Laboratory for Experimental Teratology of the Ministry of Education , School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Haibo Du
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology and Key Laboratory for Experimental Teratology of the Ministry of Education , School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Yuxin Shen
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology and Key Laboratory for Experimental Teratology of the Ministry of Education , School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Xiujuan Zhang
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology and Key Laboratory for Experimental Teratology of the Ministry of Education , School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Zhengjun Chen
- State Key Laboratory of Cell Biology , Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences (CAS), Shanghai 200031, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 200031, China
| | - Yanfei Wang
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology and Key Laboratory for Experimental Teratology of the Ministry of Education , School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Zhigang Xu
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology and Key Laboratory for Experimental Teratology of the Ministry of Education , School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
- Shandong Provincial Collaborative Innovation Center of Cell Biology , Shandong Normal University, Jinan, Shandong 250014, China
| |
Collapse
|
31
|
Selective binding and transport of protocadherin 15 isoforms by stereocilia unconventional myosins in a heterologous expression system. Sci Rep 2022; 12:13764. [PMID: 35962067 PMCID: PMC9374675 DOI: 10.1038/s41598-022-17757-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 07/30/2022] [Indexed: 11/09/2022] Open
Abstract
During hair cell development, the mechanoelectrical transduction (MET) apparatus is assembled at the stereocilia tips, where it coexists with the stereocilia actin regulatory machinery. While the myosin-based tipward transport of actin regulatory proteins is well studied, isoform complexity and built-in redundancies in the MET apparatus have limited our understanding of how MET components are transported. We used a heterologous expression system to elucidate the myosin selective transport of isoforms of protocadherin 15 (PCDH15), the protein that mechanically gates the MET apparatus. We show that MYO7A selectively transports the CD3 isoform while MYO3A and MYO3B transports the CD2 isoform. Furthermore, MYO15A showed an insignificant role in the transport of PCDH15, and none of the myosins tested transport PCDH15-CD1. Our data suggest an important role for MYO3A, MYO3B, and MYO7A in the MET apparatus formation and highlight the intricate nature of MET and actin regulation during development and functional maturation of the stereocilia bundle.
Collapse
|
32
|
Gong R, Jiang F, Moreland ZG, Reynolds MJ, de los Reyes SE, Gurel P, Shams A, Heidings JB, Bowl MR, Bird JE, Alushin GM. Structural basis for tunable control of actin dynamics by myosin-15 in mechanosensory stereocilia. SCIENCE ADVANCES 2022; 8:eabl4733. [PMID: 35857845 PMCID: PMC9299544 DOI: 10.1126/sciadv.abl4733] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 06/03/2022] [Indexed: 05/12/2023]
Abstract
The motor protein myosin-15 is necessary for the development and maintenance of mechanosensory stereocilia, and mutations in myosin-15 cause hereditary deafness. In addition to transporting actin regulatory machinery to stereocilia tips, myosin-15 directly nucleates actin filament ("F-actin") assembly, which is disrupted by a progressive hearing loss mutation (p.D1647G, "jordan"). Here, we present cryo-electron microscopy structures of myosin-15 bound to F-actin, providing a framework for interpreting the impacts of deafness mutations on motor activity and actin nucleation. Rigor myosin-15 evokes conformational changes in F-actin yet maintains flexibility in actin's D-loop, which mediates inter-subunit contacts, while the jordan mutant locks the D-loop in a single conformation. Adenosine diphosphate-bound myosin-15 also locks the D-loop, which correspondingly blunts actin-polymerization stimulation. We propose myosin-15 enhances polymerization by bridging actin protomers, regulating nucleation efficiency by modulating actin's structural plasticity in a myosin nucleotide state-dependent manner. This tunable regulation of actin polymerization could be harnessed to precisely control stereocilium height.
Collapse
Affiliation(s)
- Rui Gong
- Laboratory of Structural Biophysics and Mechanobiology, The Rockefeller University, New York, NY, USA
| | - Fangfang Jiang
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA
| | - Zane G. Moreland
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA
| | - Matthew J. Reynolds
- Laboratory of Structural Biophysics and Mechanobiology, The Rockefeller University, New York, NY, USA
| | | | - Pinar Gurel
- Laboratory of Structural Biophysics and Mechanobiology, The Rockefeller University, New York, NY, USA
| | - Arik Shams
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - James B. Heidings
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA
| | - Michael R. Bowl
- Mammalian Genetics Unit, MRC Harwell Institute, Harwell Campus, Oxfordshire, UK
- UCL Ear Institute, University College London, London, UK
| | - Jonathan E. Bird
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA
| | - Gregory M. Alushin
- Laboratory of Structural Biophysics and Mechanobiology, The Rockefeller University, New York, NY, USA
| |
Collapse
|
33
|
Hearing Features and Cochlear Implantation Outcomes in Patients With PathogenicMYO15AVariants: a Multicenter Observational Study. Ear Hear 2022; 43:1198-1207. [DOI: 10.1097/aud.0000000000001171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
34
|
Fu Y, Huang S, Gao X, Han M, Wang G, Kang D, Yuan Y, Dai P. Analysis of the genotype–phenotype correlation of MYO15A variants in Chinese non-syndromic hearing loss patients. BMC Med Genomics 2022; 15:71. [PMID: 35346193 PMCID: PMC8962197 DOI: 10.1186/s12920-022-01201-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 02/28/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Mutations in the MYO15A gene are a widely recognized cause of autosomal recessive non-syndromic sensorineural hearing loss (NSHL) globally. Here, we examined the role and the genotype–phenotype correlation of MYO15A variants in a cohort of Chinese NSHL cases.
Methods
Eighty-one cases with evidenced MYO15A variants from the 2263 Chinese NSHL cases, who underwent next-generation sequencing (NGS), were enrolled in the study. We investigated the association of MYO15A variants with the severity, progression and age of onset of hearing loss, as well as compared it to the previous reports in different nationalities. The cases were divided into groups according to the number of truncating variants: 2 truncating, 1 truncating and 1 non-truncating, 2 non-truncating variants, and compared the severity of HL among the groups.
Results
MYO15A accounted for 3.58% (81/2263) of all NSHL cases. We analyzed 81 MYO15A-related NSHL cases, 73 of whom were with congenital bilateral, symmetric or severe-to-profound hearing loss (HL), however, 2 of them had a postlingual, asymmetric, mild or moderate HL. There were 102 variants identified in all MYO15A structural domains, 76.47% (78/102) of whom were novel. The most common types of detected variants were missense (44/102, 43.14%), followed by frameshift (27/102, 26.47%), nonsense (14/102, 13.72%), splice site (10/102, 9.80%), in frame (4/102, 3.92%), non-coding (2/102, 1.96%) and synonymous (1/102, 0.98%). The most recurrent variant c.10245_10247delCTC was detected in 12 cases. We observed that the MYO15A variants, located in its N-terminal, motor and FERM domains, led to partial deafness with better residual hearing at low frequencies. There were 34 cases with biallelic truncating variants, 37 cases with monoallelic truncating variants, and 13 cases with biallelic non-truncating variants. The biallelic non-truncating variants group had the least number of cases (12/81), and most of them (10/12) were with profound NSHL.
Conclusions
MYO15A is a major gene responsible for NSHL in China. Cases with MYO15A variants mostly showed early-onset, symmetric, severe-to-profound hearing loss. This study is by far the largest focused on the evaluation of the genotype–phenotype correlations among the variants in the MYO15A gene and its implication in the outcome of NSHL. The biallelic non-truncating MYO15A variants commonly caused profound HL, and the cases with one or two truncating MYO15A variants tended to increase the risk of HL. Nevertheless, further investigations are needed to clarify the causes for the variable severities and progression rates of hearing loss and the detected MYO15A variants in these cases.
Collapse
|
35
|
Yan K, Qu C, Wang Y, Zong W, Xu Z. BAIAP2L2 Inactivation Does Not Affect Stereocilia Development or Maintenance in Vestibular Hair Cells. Front Mol Neurosci 2022; 15:829204. [PMID: 35242013 PMCID: PMC8886116 DOI: 10.3389/fnmol.2022.829204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 01/26/2022] [Indexed: 12/02/2022] Open
Abstract
Hair cells are mechanosensitive cells in the inner ear, characterized by dozens to hundreds of actin-based stereocilia and one tubulin-based kinocilium on the apical surface of each cell. Two types of hair cells, namely cochlear hair cells and vestibular hair cells (VHCs), are responsible for the sensation of sound and balancing information, respectively. In each hair cell, the stereocilia are organized into rows of increasing heights with the mechano-electrical transduction (MET) channels localized at the tips of shorter-row stereocilia. A so-called “row 2 protein complex” also localizes at the tips of shorter-row mechanotransducing stereocilia, which plays important roles in the maintenance of mechanotransducing stereocilia. Recently, we and others identified BAIAP2L2 as a new component of row 2 complex. Baiap2l2 inactivation causes degeneration of the mechanotransducing stereocilia in cochlear hair cells, and leads to profound hearing loss in mice. In the present work, we examined the role of BAIAP2L2 in the VHC stereocilia. Confocal microscopy reveals that BAIAP2L2 immunoreactivity is localized at the tips of shorter-row stereocilia in VHCs. However, stereocilia development and maintenance are unaffected in Baiap2l2–/– VHCs. Meanwhile, MET function of VHCs as well as vestibular functions are also unaffected in Baiap2l2–/– mice. Further investigations show that the stereociliary tip localization of CAPZB2, another known row 2 complex component, is not affected in Baiap2l2–/– VHCs, consistent with the unaltered stereocilia morphology. Taken together, our present data show that BAIAP2L2 inactivation does not affect vestibular hair cell stereocilia.
Collapse
Affiliation(s)
- Keji Yan
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Chengli Qu
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Yanfei Wang
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Wen Zong
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Zhigang Xu
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China.,Shandong Provincial Collaborative Innovation Center of Cell Biology, Shandong Normal University, Jinan, China
| |
Collapse
|
36
|
Halford J, Bateschell M, Barr-Gillespie PG. Ca 2+ entry through mechanotransduction channels localizes BAIAP2L2 to stereocilia tips. Mol Biol Cell 2022; 33:br6. [PMID: 35044843 PMCID: PMC9250357 DOI: 10.1091/mbc.e21-10-0491] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Brain-specific angiogenesis inhibitor 1-associated protein 2-like protein 2 (BAIAP2L2), a membrane-binding protein required for the maintenance of mechanotransduction in hair cells, is selectively retained at the tips of transducing stereocilia. BAIAP2L2 trafficked to stereocilia tips in the absence of EPS8, but EPS8 increased the efficiency of localization. A tripartite complex of BAIAP2L2, EPS8, and MYO15A formed efficiently in vitro, and these three proteins robustly targeted to filopodia tips when coexpressed in cultured cells. Mice lacking functional transduction channels no longer concentrated BAIAP2L2 at row 2 stereocilia tips, a result that was phenocopied by blocking channels with tubocurarine in cochlear explants. Transduction channels permit Ca2+ entry into stereocilia, and we found that membrane localization of BAIAP2L2 was enhanced in the presence of Ca2+. Finally, reduction of intracellular Ca2+ in hair cells using BAPTA-AM led to a loss of BAIAP2L2 at stereocilia tips. Taken together, our results show that a MYO15A-EPS8 complex transports BAIAP2L2 to stereocilia tips, and Ca2+ entry through open channels at row 2 tips retains BAIAP2L2 there.
Collapse
Affiliation(s)
- Julia Halford
- Oregon Hearing Research Center & Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Michael Bateschell
- Oregon Hearing Research Center & Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Peter G Barr-Gillespie
- Oregon Hearing Research Center & Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA
| |
Collapse
|
37
|
Zheng L, Adam SA, García‐Anoveros J, Mitchell BJ, Bartles JR. Espin overexpression causes stereocilia defects and provides an anti-capping effect on actin polymerization. Cytoskeleton (Hoboken) 2022; 79:64-74. [PMID: 35844198 PMCID: PMC9796729 DOI: 10.1002/cm.21719] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/01/2022] [Accepted: 07/12/2022] [Indexed: 01/30/2023]
Abstract
Stereocilia are actin-based projections of hair cells that are arranged in a step like array, in rows of increasing height, and that constitute the mechanosensory organelle used for the senses of hearing and balance. In order to function properly, stereocilia must attain precise sizes in different hair cell types and must coordinately form distinct rows with varying lengths. Espins are actin-bundling proteins that have a well-characterized role in stereocilia formation; loss of function mutations in Espin result in shorter stereocilia and deafness in the jerker mouse. Here we describe the generation of an Espin overexpressing transgenic mouse line that results in longer first row stereocilia and discoordination of second-row stereocilia length. Furthermore, Espin overexpression results in the misregulation of other stereocilia factors including GNAI3, GPSM2, EPS8, WHRN, and MYO15A, revealing that GNAI3 and GPSM2 are dispensable for stereocilia overgrowth. Finally, using an in vitro actin polymerization assay we show that espin provides an anti-capping function that requires both the G-actin binding WH2 domain as well as either the C-terminal F-actin binding domain or the internal xAB actin-binding domain. Our results provide a novel function for Espins at the barbed ends of actin filaments distinct from its previous known function of actin bundling that may account for their effects on stereocilia growth.
Collapse
Affiliation(s)
- Lili Zheng
- Department of Cell and Developmental BiologyNorthwestern University, Feinberg School of MedicineChicagoIllinoisUSA
| | - Stephen A. Adam
- Department of Cell and Developmental BiologyNorthwestern University, Feinberg School of MedicineChicagoIllinoisUSA
| | - Jaime García‐Anoveros
- Department of Anesthesiology Neurology and NeuroscienceNorthwestern University, Feinberg School of MedicineChicagoIllinoisUSA,Hugh Knowles Center for Clinical and Basic Science in Hearing and its DisordersNorthwestern University, Feinberg School of MedicineChicagoIllinoisUSA
| | - Brian J. Mitchell
- Department of Cell and Developmental BiologyNorthwestern University, Feinberg School of MedicineChicagoIllinoisUSA
| | - James R. Bartles
- Department of Cell and Developmental BiologyNorthwestern University, Feinberg School of MedicineChicagoIllinoisUSA,Hugh Knowles Center for Clinical and Basic Science in Hearing and its DisordersNorthwestern University, Feinberg School of MedicineChicagoIllinoisUSA
| |
Collapse
|
38
|
Ivanchenko MV, Indzhykulian AA, Corey DP. Electron Microscopy Techniques for Investigating Structure and Composition of Hair-Cell Stereociliary Bundles. Front Cell Dev Biol 2021; 9:744248. [PMID: 34746139 PMCID: PMC8569945 DOI: 10.3389/fcell.2021.744248] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 09/28/2021] [Indexed: 11/18/2022] Open
Abstract
Hair cells—the sensory cells of the vertebrate inner ear—bear at their apical surfaces a bundle of actin-filled protrusions called stereocilia, which mediate the cells’ mechanosensitivity. Hereditary deafness is often associated with morphological disorganization of stereocilia bundles, with the absence or mislocalization within stereocilia of specific proteins. Thus, stereocilia bundles are closely examined to understand most animal models of hereditary hearing loss. Because stereocilia have a diameter less than a wavelength of light, light microscopy is not adequate to reveal subtle changes in morphology or protein localization. Instead, electron microscopy (EM) has proven essential for understanding stereocilia bundle development, maintenance, normal function, and dysfunction in disease. Here we review a set of EM imaging techniques commonly used to study stereocilia, including optimal sample preparation and best imaging practices. These include conventional and immunogold transmission electron microscopy (TEM) and scanning electron microscopy (SEM), as well as focused-ion-beam scanning electron microscopy (FIB-SEM), which enables 3-D serial reconstruction of resin-embedded biological structures at a resolution of a few nanometers. Parameters for optimal sample preparation, fixation, immunogold labeling, metal coating and imaging are discussed. Special attention is given to protein localization in stereocilia using immunogold labeling. Finally, we describe the advantages and limitations of these EM techniques and their suitability for different types of studies.
Collapse
Affiliation(s)
- Maryna V Ivanchenko
- Department of Neurobiology, Harvard Medical School, Boston, MA, United States
| | - Artur A Indzhykulian
- Department of Otolaryngology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, United States
| | - David P Corey
- Department of Neurobiology, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
39
|
Petralia RS, Wang YX. Review of Post-embedding Immunogold Methods for the Study of Neuronal Structures. Front Neuroanat 2021; 15:763427. [PMID: 34720893 PMCID: PMC8551803 DOI: 10.3389/fnana.2021.763427] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 09/28/2021] [Indexed: 01/03/2023] Open
Abstract
The post-embedding immunogold (PI) technique for immunolabeling of neuronal tissues utilizing standard thin-section transmission electron microscopy (TEM) continues to be a prime method for understanding the functional localization of key proteins in neuronal function. Its main advantages over other immunolabeling methods for thin-section TEM are (1) fairly accurate and quantifiable localization of proteins in cells; (2) double-labeling of sections using two gold particle sizes; and (3) the ability to perform multiple labeling for different proteins by using adjacent sections. Here we first review in detail a common method for PI of neuronal tissues. This method has two major parts. First, we describe the freeze-substitution embedding method: cryoprotected tissue is frozen in liquid propane via plunge-freezing, and is placed in a freeze-substitution instrument in which the tissue is embedded in Lowicryl at low temperatures. We highlight important aspects of freeze-substitution embedding. Then we outline how thin sections of embedded tissue on grids are labeled with a primary antibody and a secondary gold particle-conjugated antibody, and the particular problems encountered in TEM of PI-labeled sections. In the Discussion, we compare our method both to earlier PI methods and to more recent PI methods used by other laboratories. We also compare TEM immunolabeling using PI vs. various pre-embedding immunolabeling methods, especially relating to neuronal tissue.
Collapse
Affiliation(s)
- Ronald S. Petralia
- Advanced Imaging Core, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, United States
| | | |
Collapse
|
40
|
Ingham NJ, Banafshe N, Panganiban C, Crunden JL, Chen J, Lewis MA, Steel KP. Inner hair cell dysfunction in Klhl18 mutant mice leads to low frequency progressive hearing loss. PLoS One 2021; 16:e0258158. [PMID: 34597341 PMCID: PMC8486144 DOI: 10.1371/journal.pone.0258158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/19/2021] [Indexed: 12/30/2022] Open
Abstract
Age-related hearing loss in humans (presbycusis) typically involves impairment of high frequency sensitivity before becoming progressively more severe at lower frequencies. Pathologies initially affecting lower frequency regions of hearing are less common. Here we describe a progressive, predominantly low-frequency recessive hearing impairment in two mutant mouse lines carrying different mutant alleles of the Klhl18 gene: a spontaneous missense mutation (Klhl18lowf) and a targeted mutation (Klhl18tm1a(KOMP)Wtsi). Both males and females were studied, and the two mutant lines showed similar phenotypes. Threshold for auditory brainstem responses (ABR; a measure of auditory nerve and brainstem neural activity) were normal at 3 weeks old but showed progressive increases from 4 weeks onwards. In contrast, distortion product otoacoustic emission (DPOAE) sensitivity and amplitudes (a reflection of cochlear outer hair cell function) remained normal in mutants. Electrophysiological recordings from the round window of Klhl18lowf mutants at 6 weeks old revealed 1) raised compound action potential thresholds that were similar to ABR thresholds, 2) cochlear microphonic potentials that were normal compared with wildtype and heterozygous control mice and 3) summating potentials that were reduced in amplitude compared to control mice. Scanning electron microscopy showed that Klhl18lowf mutant mice had abnormally tapering of the tips of inner hair cell stereocilia in the apical half of the cochlea while their synapses appeared normal. These results suggest that Klhl18 is necessary to maintain inner hair cell stereocilia and normal inner hair cell function at low frequencies.
Collapse
Affiliation(s)
- Neil J. Ingham
- Wolfson Centre for Age-Related Diseases, King’s College London, London, United Kingdom
| | - Navid Banafshe
- Wolfson Centre for Age-Related Diseases, King’s College London, London, United Kingdom
| | - Clarisse Panganiban
- Wolfson Centre for Age-Related Diseases, King’s College London, London, United Kingdom
| | - Julia L. Crunden
- Wolfson Centre for Age-Related Diseases, King’s College London, London, United Kingdom
| | - Jing Chen
- Wolfson Centre for Age-Related Diseases, King’s College London, London, United Kingdom
| | - Morag A. Lewis
- Wolfson Centre for Age-Related Diseases, King’s College London, London, United Kingdom
| | - Karen P. Steel
- Wolfson Centre for Age-Related Diseases, King’s College London, London, United Kingdom
| |
Collapse
|
41
|
Yan K, Zong W, Du H, Zhai X, Ren R, Liu S, Xiong W, Wang Y, Xu Z. BAIAP2L2 is required for the maintenance of mechanotransducing stereocilia of cochlear hair cells. J Cell Physiol 2021; 237:774-788. [PMID: 34346063 DOI: 10.1002/jcp.30545] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/21/2021] [Accepted: 07/24/2021] [Indexed: 01/05/2023]
Abstract
Stereocilia are actin-based cell protrusions of inner ear hair cells that play an essential role in mechano-electrical transduction (MET). Stereocilia are organized into several rows of increasing heights with the MET protein complex localized at the tips of shorter row stereocilia. At the tips of shorter row mechanotransducing stereocilia also resides a so-called "row 2 protein complex" whose dysfunction causes degeneration of the mechanotransducing stereocilia. In the present work, we show that BAIAP2L2 is localized at the tips of shorter row stereocilia in neonatal and adult mouse cochlear hair cells. Baiap2l2 inactivation causes degeneration of the mechanotransducing stereocilia, which eventually leads to profound hearing loss in mice of either sex. Consistently, electrophysiology and FM 1-43FX dye uptake results confirm that MET currents are compromised in Baiap2l2 knockout mice. Moreover, BAIAP2L2 binds to known row 2 complex components EPS8L2, TWF2, and CAPZB2, and the stereociliary tip localization of CAPZB2 is dependent on functional BAIAP2L2. Interestingly, BAIAP2L2 also binds to CIB2, a known MET complex component, and the stereociliary tip localization of BAIAP2L2 is abolished in Cib2 knockout mice. In conclusion, our present data suggest that BAIAP2L2 is a row 2 complex component, and is required for the maintenance of mechanotransducing stereocilia. Meanwhile, specific MET components such as CIB2 might play a direct role in stereocilia maintenance through binding to BAIAP2L2.
Collapse
Affiliation(s)
- Keji Yan
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, Shandong, China
| | - Wen Zong
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, China
| | - Haibo Du
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, Shandong, China
| | - Xiaoyan Zhai
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, Shandong, China
| | - Rui Ren
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, Shandong, China
| | - Shuang Liu
- School of Life Sciences, IDG/McGovern Institute for Brain Research at Tsinghua, Tsinghua University, Beijing, China
| | - Wei Xiong
- School of Life Sciences, IDG/McGovern Institute for Brain Research at Tsinghua, Tsinghua University, Beijing, China
| | - Yanfei Wang
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, Shandong, China
| | - Zhigang Xu
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, Shandong, China.,Shandong Provincial Collaborative Innovation Center of Cell Biology, Shandong Normal University, Jinan, Shandong, China
| |
Collapse
|
42
|
Abstract
Filopodia, microvilli and stereocilia represent an important group of plasma membrane protrusions. These specialized projections are supported by parallel bundles of actin filaments and have critical roles in sensing the external environment, increasing cell surface area, and acting as mechanosensors. While actin-associated proteins are essential for actin-filament elongation and bundling in these protrusions, myosin motors have a surprising role in the formation and extension of filopodia and stereocilia and in the organization of microvilli. Actin regulators and specific myosins collaborate in controlling the length of these structures. Myosins can transport cargoes along the length of these protrusions, and, in the case of stereocilia and microvilli, interactions with adaptors and cargoes can also serve to anchor adhesion receptors to the actin-rich core via functionally conserved motor-adaptor complexes. This review highlights recent progress in understanding the diverse roles myosins play in filopodia, microvilli and stereocilia.
Collapse
Affiliation(s)
- Anne Houdusse
- Structural Motility, Institut Curie, Paris Université Sciences et Lettres, Sorbonne Université, CNRS UMR144, 75005 Paris, France.
| | - Margaret A Titus
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
43
|
Rich SK, Baskar R, Terman JR. Propagation of F-actin disassembly via Myosin15-Mical interactions. SCIENCE ADVANCES 2021; 7:7/20/eabg0147. [PMID: 33980493 PMCID: PMC8115926 DOI: 10.1126/sciadv.abg0147] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 03/23/2021] [Indexed: 06/12/2023]
Abstract
The F-actin cytoskeleton drives cellular form and function. However, how F-actin-based changes occur with spatiotemporal precision and specific directional orientation is poorly understood. Here, we identify that the unconventional class XV myosin [Myosin 15 (Myo15)] physically and functionally interacts with the F-actin disassembly enzyme Mical to spatiotemporally position cellular breakdown and reconstruction. Specifically, while unconventional myosins have been associated with transporting cargo along F-actin to spatially target cytoskeletal assembly, we now find they also target disassembly. Myo15 specifically positions this F-actin disassembly by associating with Mical and using its motor and MyTH4-FERM cargo-transporting functions to broaden Mical's distribution. Myo15's broadening of Mical's distribution also expands and directionally orients Mical-mediated F-actin disassembly and subsequent cellular remodeling, including in response to Semaphorin/Plexin cell surface activation signals. Thus, we identify a mechanism that spatiotemporally propagates F-actin disassembly while also proposing that other F-actin-trafficked-cargo is derailed by this disassembly to directionally orient rebuilding.
Collapse
Affiliation(s)
- Shannon K Rich
- Departments of Neuroscience and Pharmacology and Neuroscience Graduate Program, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Raju Baskar
- Departments of Neuroscience and Pharmacology and Neuroscience Graduate Program, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jonathan R Terman
- Departments of Neuroscience and Pharmacology and Neuroscience Graduate Program, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
44
|
Na G, Choi HJ, Joo SY, Rim JH, Kim JA, Kim HY, Yu S, Jeong Y, Shin GC, Noh HE, Lee HY, Kim DH, Gee HY, Jung J, Choi JY. Heterogeneity of MYO15A variants significantly determine the feasibility of acoustic stimulation with hearing aid and cochlear implant. Hear Res 2021; 404:108227. [PMID: 33784549 DOI: 10.1016/j.heares.2021.108227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 03/08/2021] [Accepted: 03/12/2021] [Indexed: 12/15/2022]
Abstract
Autosomal recessive nonsyndromic hearing loss 3 (DFNB3) mainly leads to congenital and severe-to-profound hearing impairment, which is caused by variants in MYO15A. However, audiological heterogeneity in patients with DFNB3 hinders precision medicine in hearing rehabilitation. Here, we aimed to elucidate the heterogeneity of the auditory phenotypes of MYO15A variants according to the affected domain and the feasibilities for acoustic stimulation. We conducted whole-exome sequencing for 10 unrelated individuals from seven multiplex families with DFNB3; 11 MYO15A variants, including the novel frameshift c.900delT (p.Pro301Argfs*143) and nonsense c.4879G > T (p.Glu1627*) variants, were identified. In seven probands, residual hearing at low frequencies was significantly higher in the groups with one or two N-terminal frameshift variants in trans conformation compared to that in the group without these variants. This is consistent with the 56 individuals from the previously published reports that carried a varying number of N-terminal truncating variants in MYO15A. In addition, patients with missense variants in the second FERM domain had better hearing at low frequencies than patients without these variants. Subsequently, acoustic stimulation provided by devices such as hearing aids or cochlear implants was feasible in patients with one or two N-terminal truncating variants or a second FERM missense variant. In conclusion, N-terminal or second FERM variants in MYO15A allow the practical use of acoustic stimulation through hearing aids or electroacoustic stimulation for aural rehabilitation.
Collapse
Affiliation(s)
- Gina Na
- Department of Otorhinolaryngology, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seoul, Seodaemun-gu 03722, Republic of Korea; Department of Otorhinolaryngology, Ilsan Paik Hospital, Inje University College of Medicine, Goyang, Republic of Korea
| | - Hye Ji Choi
- Department of Otorhinolaryngology, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seoul, Seodaemun-gu 03722, Republic of Korea
| | - Sun Young Joo
- Department of Pharmacology, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seoul, Seodaemun-gu 03722, Republic of Korea; Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine Seoul, Republic of Korea
| | - John Hoon Rim
- Department of Pharmacology, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seoul, Seodaemun-gu 03722, Republic of Korea; Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine Seoul, Republic of Korea
| | - Jung Ah Kim
- Department of Pharmacology, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seoul, Seodaemun-gu 03722, Republic of Korea; Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine Seoul, Republic of Korea
| | - Hye-Youn Kim
- Department of Pharmacology, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seoul, Seodaemun-gu 03722, Republic of Korea; Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine Seoul, Republic of Korea
| | - Seyoung Yu
- Department of Pharmacology, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seoul, Seodaemun-gu 03722, Republic of Korea; Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine Seoul, Republic of Korea
| | - Yeonsu Jeong
- Department of Otorhinolaryngology, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seoul, Seodaemun-gu 03722, Republic of Korea
| | - Geun Cheol Shin
- Department of Otorhinolaryngology, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seoul, Seodaemun-gu 03722, Republic of Korea
| | - Hae Eun Noh
- Department of Otorhinolaryngology, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seoul, Seodaemun-gu 03722, Republic of Korea
| | - Ho Young Lee
- Department of Otorhinolaryngology, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seoul, Seodaemun-gu 03722, Republic of Korea
| | - Da Hye Kim
- Department of Otorhinolaryngology, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seoul, Seodaemun-gu 03722, Republic of Korea
| | - Heon Yung Gee
- Department of Pharmacology, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seoul, Seodaemun-gu 03722, Republic of Korea; Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine Seoul, Republic of Korea.
| | - Jinsei Jung
- Department of Otorhinolaryngology, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seoul, Seodaemun-gu 03722, Republic of Korea; Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine Seoul, Republic of Korea.
| | - Jae Young Choi
- Department of Otorhinolaryngology, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seoul, Seodaemun-gu 03722, Republic of Korea
| |
Collapse
|
45
|
Cirilo JA, Gunther LK, Yengo CM. Functional Role of Class III Myosins in Hair Cells. Front Cell Dev Biol 2021; 9:643856. [PMID: 33718386 PMCID: PMC7947357 DOI: 10.3389/fcell.2021.643856] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/01/2021] [Indexed: 11/14/2022] Open
Abstract
Cytoskeletal motors produce force and motion using the energy from ATP hydrolysis and function in a variety of mechanical roles in cells including muscle contraction, cargo transport, and cell division. Actin-based myosin motors have been shown to play crucial roles in the development and function of the stereocilia of auditory and vestibular inner ear hair cells. Hair cells can contain hundreds of stereocilia, which rely on myosin motors to elongate, organize, and stabilize their structure. Mutations in many stereocilia-associated myosins have been shown to cause hearing loss in both humans and animal models suggesting that each myosin isoform has a specific function in these unique parallel actin bundle-based protrusions. Here we review what is known about the classes of myosins that function in the stereocilia, with a special focus on class III myosins that harbor point mutations associated with delayed onset hearing loss. Much has been learned about the role of the two class III myosin isoforms, MYO3A and MYO3B, in maintaining the precise stereocilia lengths required for normal hearing. We propose a model for how class III myosins play a key role in regulating stereocilia lengths and demonstrate how their motor and regulatory properties are particularly well suited for this function. We conclude that ongoing studies on class III myosins and other stereocilia-associated myosins are extremely important and may lead to novel therapeutic strategies for the treatment of hearing loss due to stereocilia degeneration.
Collapse
Affiliation(s)
- Joseph A Cirilo
- Department of Cellular and Molecular Physiology, College of Medicine, Pennsylvania State University, Hershey, PA, United States
| | - Laura K Gunther
- Department of Cellular and Molecular Physiology, College of Medicine, Pennsylvania State University, Hershey, PA, United States
| | - Christopher M Yengo
- Department of Cellular and Molecular Physiology, College of Medicine, Pennsylvania State University, Hershey, PA, United States
| |
Collapse
|
46
|
Carlton AJ, Halford J, Underhill A, Jeng J, Avenarius MR, Gilbert ML, Ceriani F, Ebisine K, Brown SDM, Bowl MR, Barr‐Gillespie PG, Marcotti W. Loss of Baiap2l2 destabilizes the transducing stereocilia of cochlear hair cells and leads to deafness. J Physiol 2021; 599:1173-1198. [PMID: 33151556 PMCID: PMC7898316 DOI: 10.1113/jp280670] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 10/27/2020] [Indexed: 12/17/2022] Open
Abstract
KEY POINTS Mechanoelectrical transduction at auditory hair cells requires highly specialized stereociliary bundles that project from their apical surface, forming a characteristic graded 'staircase' structure. The morphogenesis and maintenance of these stereociliary bundles is a tightly regulated process requiring the involvement of several actin-binding proteins, many of which are still unidentified. We identify a new stereociliary protein, the I-BAR protein BAIAP2L2, which localizes to the tips of the shorter transducing stereocilia in both inner and outer hair cells (IHCs and OHCs). We find that Baiap2l2 deficient mice lose their second and third rows of stereocilia, their mechanoelectrical transducer current, and develop progressive hearing loss, becoming deaf by 8 months of age. We demonstrate that BAIAP2L2 localization to stereocilia tips is dependent on the motor protein MYO15A and its cargo EPS8. We propose that BAIAP2L2 is a new key protein required for the maintenance of the transducing stereocilia in mature cochlear hair cells. ABSTRACT The transduction of sound waves into electrical signals depends upon mechanosensitive stereociliary bundles that project from the apical surface of hair cells within the cochlea. The height and width of these actin-based stereocilia is tightly regulated throughout life to establish and maintain their characteristic staircase-like structure, which is essential for normal mechanoelectrical transduction. Here, we show that BAIAP2L2, a member of the I-BAR protein family, is a newly identified hair bundle protein that is localized to the tips of the shorter rows of transducing stereocilia in mouse cochlear hair cells. BAIAP2L2 was detected by immunohistochemistry from postnatal day 2.5 (P2.5) throughout adulthood. In Baiap2l2 deficient mice, outer hair cells (OHCs), but not inner hair cells (IHCs), began to lose their third row of stereocilia and showed a reduction in the size of the mechanoelectrical transducer current from just after P9. Over the following post-hearing weeks, the ordered staircase structure of the bundle progressively deteriorates, such that, by 8 months of age, both OHCs and IHCs of Baiap2l2 deficient mice have lost most of the second and third rows of stereocilia and become deaf. We also found that BAIAP2L2 interacts with other key stereociliary proteins involved in normal hair bundle morphogenesis, such as CDC42, RAC1, EPS8 and ESPNL. Furthermore, we show that BAIAP2L2 localization to the stereocilia tips depends on the motor protein MYO15A and its cargo EPS8. We propose that BAIAP2L2 is key to maintenance of the normal actin structure of the transducing stereocilia in mature mouse cochlear hair cells.
Collapse
Affiliation(s)
- Adam J. Carlton
- Department of Biomedical ScienceUniversity of SheffieldSheffieldUK
- Neuroscience InstituteUniversity of SheffieldSheffieldUK
| | - Julia Halford
- Oregon Hearing Research Center & Vollum InstituteOregon Health & Science UniversityPortlandORUSA
| | - Anna Underhill
- Department of Biomedical ScienceUniversity of SheffieldSheffieldUK
- Neuroscience InstituteUniversity of SheffieldSheffieldUK
| | - Jing‐Yi Jeng
- Department of Biomedical ScienceUniversity of SheffieldSheffieldUK
- Neuroscience InstituteUniversity of SheffieldSheffieldUK
| | - Matthew R. Avenarius
- Oregon Hearing Research Center & Vollum InstituteOregon Health & Science UniversityPortlandORUSA
- Present address: Department of Pathology Wexner Medical CenterThe Ohio State UniversityColumbusOHUSA
| | - Merle L. Gilbert
- Oregon Hearing Research Center & Vollum InstituteOregon Health & Science UniversityPortlandORUSA
- Present address: US Army Medical Department Activity‐KoreaCamp HumphreysRepublic of Korea
| | - Federico Ceriani
- Department of Biomedical ScienceUniversity of SheffieldSheffieldUK
- Neuroscience InstituteUniversity of SheffieldSheffieldUK
| | | | - Steve D. M. Brown
- Mammalian Genetics UnitMRC Harwell InstituteHarwell CampusOxfordshireUK
| | - Michael R. Bowl
- Mammalian Genetics UnitMRC Harwell InstituteHarwell CampusOxfordshireUK
- Present address: UCL Ear InstituteUniversity College LondonLondonUK
| | - Peter G. Barr‐Gillespie
- Oregon Hearing Research Center & Vollum InstituteOregon Health & Science UniversityPortlandORUSA
- Oregon Hearing Research CenterOregon Health & Science UniversityPortlandORUSA
| | - Walter Marcotti
- Department of Biomedical ScienceUniversity of SheffieldSheffieldUK
- Neuroscience InstituteUniversity of SheffieldSheffieldUK
| |
Collapse
|
47
|
Jiang F, Takagi Y, Shams A, Heissler SM, Friedman TB, Sellers JR, Bird JE. The ATPase mechanism of myosin 15, the molecular motor mutated in DFNB3 human deafness. J Biol Chem 2021; 296:100243. [PMID: 33372036 PMCID: PMC7948958 DOI: 10.1074/jbc.ra120.014903] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 12/23/2020] [Accepted: 12/28/2020] [Indexed: 11/18/2022] Open
Abstract
Cochlear hair cells each possess an exquisite bundle of actin-based stereocilia that detect sound. Unconventional myosin 15 (MYO15) traffics and delivers critical molecules required for stereocilia development and thus is essential for building the mechanosensory hair bundle. Mutations in the human MYO15A gene interfere with stereocilia trafficking and cause hereditary hearing loss, DFNB3, but the impact of these mutations is not known, as MYO15 itself is poorly characterized. To learn more, we performed a kinetic study of the ATPase motor domain to characterize its mechanochemical cycle. Using the baculovirus-Sf9 system, we purified a recombinant minimal motor domain (S1) by coexpressing the mouse MYO15 ATPase, essential and regulatory light chains that bind its IQ domains, and UNC45 and HSP90A chaperones required for correct folding of the ATPase. MYO15 purified with either UNC45A or UNC45B coexpression had similar ATPase activities (kcat = ∼ 6 s-1 at 20 °C). Using stopped-flow and quenched-flow transient kinetic analyses, we measured the major rate constants describing the ATPase cycle, including ATP, ADP, and actin binding; hydrolysis; and phosphate release. Actin-attached ADP release was the slowest measured transition (∼12 s-1 at 20 °C), although this did not rate-limit the ATPase cycle. The kinetic analysis shows the MYO15 motor domain has a moderate duty ratio (∼0.5) and weak thermodynamic coupling between ADP and actin binding. These findings are consistent with MYO15 being kinetically adapted for processive motility when oligomerized. Our kinetic characterization enables future studies into how deafness-causing mutations affect MYO15 and disrupt stereocilia trafficking necessary for hearing.
Collapse
Affiliation(s)
- Fangfang Jiang
- Department of Pharmacology and Therapeutics, and the Myology Institute, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Yasuharu Takagi
- Laboratory of Molecular Physiology, Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Arik Shams
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland, USA
| | - Sarah M Heissler
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Thomas B Friedman
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland, USA
| | - James R Sellers
- Laboratory of Molecular Physiology, Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Jonathan E Bird
- Department of Pharmacology and Therapeutics, and the Myology Institute, University of Florida College of Medicine, Gainesville, Florida, USA.
| |
Collapse
|
48
|
Nakano Y, Wiechert S, Fritzsch B, Bánfi B. Inhibition of a transcriptional repressor rescues hearing in a splicing factor-deficient mouse. Life Sci Alliance 2020; 3:3/12/e202000841. [PMID: 33087486 PMCID: PMC7652395 DOI: 10.26508/lsa.202000841] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 10/09/2020] [Accepted: 10/12/2020] [Indexed: 11/26/2022] Open
Abstract
The vital role of the splicing factor SRRM4 in vestibular and inner hair cells of the ear is inactivation of the gene repressor REST; however, in outer hair cells, SRRM4 is dispensable for REST inactivation, which SRRM3 accomplishes independently. In mechanosensory hair cells (HCs) of the ear, the transcriptional repressor REST is continuously inactivated by alternative splicing of its pre-mRNA. This mechanism of REST inactivation is crucial for hearing in humans and mice. Rest is one of many pre-mRNAs whose alternative splicing is regulated by the splicing factor SRRM4; Srrm4 loss-of-function mutation in mice (Srrm4bv/bv) causes deafness, balance defects, and degeneration of all HC types other than the outer HCs (OHCs). The specific splicing alterations that drive HC degeneration in Srrm4bv/bv mice are unknown, and the mechanism underlying SRRM4-independent survival of OHCs is undefined. Here, we show that transgenic expression of a dominant-negative REST fragment in Srrm4bv/bv mice is sufficient for long-term rescue of hearing, balancing, HCs, alternative splicing of Rest, and expression of REST target genes including the Srrm4 paralog Srrm3. We also show that in HCs, SRRM3 regulates many of the same exons as SRRM4; OHCs are unique among HCs in that they transiently down-regulate Rest transcription as they mature to express Srrm3 independently of SRRM4; and simultaneous SRRM4–SRRM3 deficiency causes complete HC loss by preventing inactivation of REST in all HCs. Thus, our data reveal that REST inactivation is the primary and essential role of SRRM4 in the ear, and that OHCs differ from other HCs in the SRRM4-independent expression of the functionally SRRM4-like splicing factor SRRM3.
Collapse
Affiliation(s)
- Yoko Nakano
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.,Inflammation Program, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Susan Wiechert
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.,Inflammation Program, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Bernd Fritzsch
- Department of Biology, College of Liberal Arts and Sciences, University of Iowa, Iowa City, IA, USA
| | - Botond Bánfi
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA .,Inflammation Program, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.,Department of Otolaryngology-Head and Neck Surgery, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.,Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
49
|
Abstract
Myosins constitute a superfamily of actin-based molecular motor proteins that mediates a variety of cellular activities including muscle contraction, cell migration, intracellular transport, the formation of membrane projections, cell adhesion, and cell signaling. The 12 myosin classes that are expressed in humans share sequence similarities especially in the N-terminal motor domain; however, their enzymatic activities, regulation, ability to dimerize, binding partners, and cellular functions differ. It is becoming increasingly apparent that defects in myosins are associated with diseases including cardiomyopathies, colitis, glomerulosclerosis, neurological defects, cancer, blindness, and deafness. Here, we review the current state of knowledge regarding myosins and disease.
Collapse
|
50
|
Whole exome sequencing identifies novel compound heterozygous pathogenic variants in the MYO15A gene leading to autosomal recessive non-syndromic hearing loss. Mol Biol Rep 2020; 47:5355-5364. [DOI: 10.1007/s11033-020-05618-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 06/22/2020] [Indexed: 12/22/2022]
|