1
|
Kulkarni GC, Saha R, Peters CJ. Ion channel expression and function in glioblastoma multiforme (GBM): pathophysiological mechanisms and therapeutic potential. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2025; 1872:119982. [PMID: 40328081 DOI: 10.1016/j.bbamcr.2025.119982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 03/29/2025] [Accepted: 04/10/2025] [Indexed: 05/08/2025]
Abstract
Glioblastoma Multiforme (GBM) is a highly malignant and diffusely invasive WHO Grade IV brain tumor arising from glial and neural stem cells. GBM is characterized by rapid proliferation and migration, aggressive invasion of local brain parenchyma, a hypoxic microenvironment, resistance to apoptosis and high vascular remodeling and angiogenesis. These hallmarks contribute to a near universal tumor recurrence after treatment or resection and poor patient prognosis. Ion channels, a superfamily of proteins responsible for permitting ion flux across otherwise impermeant membranes, show extensive remodeling in GBM with aberrant function mechanistically linked to manipulation of each of these hallmarks. In this review, we will discuss the known links between ion channel expression and activity and cellular processes that are enhanced or perturbed during GBM formation or progression. We will also discuss the extent to which basic or translational findings on ion channels in GBM samples or cell lines have shown preclinical promise towards the development of improved therapeutics against GBMs.
Collapse
Affiliation(s)
- Gauri C Kulkarni
- Department of Anatomy and Cell Biology, University of Illinois Chicago, Chicago, IL, USA
| | - Rayna Saha
- Department of Anatomy and Cell Biology, University of Illinois Chicago, Chicago, IL, USA
| | - Christian J Peters
- Department of Anatomy and Cell Biology, University of Illinois Chicago, Chicago, IL, USA.
| |
Collapse
|
2
|
Peralta M, Dupas A, Larnicol A, Lefebvre O, Goswami R, Stemmelen T, Molitor A, Carapito R, Girardo S, Osmani N, Goetz JG. Endothelial calcium firing mediates the extravasation of metastatic tumor cells. iScience 2025; 28:111690. [PMID: 39898056 PMCID: PMC11787530 DOI: 10.1016/j.isci.2024.111690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 11/08/2024] [Accepted: 12/23/2024] [Indexed: 02/04/2025] Open
Abstract
Metastatic dissemination is driven by genetic, biochemical, and biophysical cues that favor the distant colonization of organs and the formation of life-threatening secondary tumors. We have previously demonstrated that endothelial cells (ECs) actively remodel during extravasation by enwrapping arrested tumor cells (TCs) and extruding them from the vascular lumen while maintaining perfusion. In this work, we dissect the cellular and molecular mechanisms driving endothelial remodeling. Using high-resolution intravital imaging in zebrafish embryos, we demonstrate that the actomyosin network of ECs controls tissue remodeling and subsequent TC extravasation. Furthermore, we uncovered that this cytoskeletal remodeling is driven by altered endothelial-calcium (Ca2+) signaling caused by arrested TCs. Accordingly, we demonstrated that the inhibition of voltage-dependent calcium L-type channels impairs extravasation. Lastly, we identified P2X4, TRP, and Piezo1 mechano-gated Ca2+ channels as key mediators of the process. These results further highlight the central role of endothelial remodeling during the extravasation of TCs and open avenues for successful therapeutic targeting.
Collapse
Affiliation(s)
- Marina Peralta
- Tumor Biomechanics lab, INSERM UMR_S1109, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Amandine Dupas
- Tumor Biomechanics lab, INSERM UMR_S1109, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Annabel Larnicol
- Tumor Biomechanics lab, INSERM UMR_S1109, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Olivier Lefebvre
- Tumor Biomechanics lab, INSERM UMR_S1109, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Ruchi Goswami
- Max Planck Institute for the Science of Light & Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
| | - Tristan Stemmelen
- Université de Strasbourg, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Laboratoire d’ImmunoRhumatologie Moléculaire, Plateforme GENOMAX, Institut national de la santé et de la recherche médicale (INSERM) UMR_S 1109, Institut thématique interdisciplinaire (ITI) de Médecine de Précision de Strasbourg Transplantex NG, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Strasbourg, France
- Service d'Immunologie Biologique, Plateau Technique de Biologie, Pôle de Biologie, Nouvel Hôpital Civil, Hôpitaux Universitaires de Strasbourg, 1 Place de l'Hôpital, 67091 Strasbourg, France
| | - Anne Molitor
- Laboratoire d’ImmunoRhumatologie Moléculaire, Plateforme GENOMAX, Institut national de la santé et de la recherche médicale (INSERM) UMR_S 1109, Institut thématique interdisciplinaire (ITI) de Médecine de Précision de Strasbourg Transplantex NG, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Strasbourg, France
| | - Raphael Carapito
- Université de Strasbourg, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Laboratoire d’ImmunoRhumatologie Moléculaire, Plateforme GENOMAX, Institut national de la santé et de la recherche médicale (INSERM) UMR_S 1109, Institut thématique interdisciplinaire (ITI) de Médecine de Précision de Strasbourg Transplantex NG, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Strasbourg, France
- Service d'Immunologie Biologique, Plateau Technique de Biologie, Pôle de Biologie, Nouvel Hôpital Civil, Hôpitaux Universitaires de Strasbourg, 1 Place de l'Hôpital, 67091 Strasbourg, France
| | - Salvatore Girardo
- Max Planck Institute for the Science of Light & Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
| | - Naël Osmani
- Tumor Biomechanics lab, INSERM UMR_S1109, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Jacky G. Goetz
- Tumor Biomechanics lab, INSERM UMR_S1109, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| |
Collapse
|
3
|
Jia BZ, Tang X, Rossmann MP, Zon LI, Engert F, Cohen AE. Swimming motions evoke Ca 2+ events in vascular endothelial cells of larval zebrafish via mechanical activation of Piezo1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.05.636757. [PMID: 39975374 PMCID: PMC11839014 DOI: 10.1101/2025.02.05.636757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Calcium signaling in blood vessels regulates their growth1,2, immune response3, and vascular tone4. Vascular endothelial cells are known to be mechanosensitive5-7, and it has been assumed that this mechanosensation mediates calcium responses to pulsatile blood flow8-10. Here we show that in larval zebrafish, the dominant trigger for vascular endothelial Ca2+ events comes from body motion, not heartbeat-driven blood flow. Through a series of pharmacological and mechanical perturbations, we showed that body motion is necessary and sufficient to induce endothelial Ca2+ events, while neither neural activity nor blood circulation is either necessary or sufficient. Knockout and temporally restricted knockdown of piezo1 eliminated the motion-induced Ca2+ events. Our results demonstrate that swimming-induced tissue motion is an important driver of endothelial Ca2+ dynamics in larval zebrafish.
Collapse
Affiliation(s)
- Bill Z. Jia
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Xin Tang
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Marlies P. Rossmann
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
- Stem Cell Program and Division of Hematology/Oncology, Boston Children’s Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Leonard I. Zon
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
- Stem Cell Program and Division of Hematology/Oncology, Boston Children’s Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Florian Engert
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Adam E. Cohen
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
4
|
Dragoni S, Moccia F, Bootman MD. The Roles of Transient Receptor Potential (TRP) Channels Underlying Aberrant Calcium Signaling in Blood-Retinal Barrier Dysfunction. Cold Spring Harb Perspect Biol 2025; 17:a041763. [PMID: 39586624 PMCID: PMC11864113 DOI: 10.1101/cshperspect.a041763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
The inner blood-retinal barrier (iBRB) protects the retinal vasculature from the peripheral circulation. Endothelial cells (ECs) are the core component of the iBRB; their close apposition and linkage via tight junctions limit the passage of fluids, proteins, and cells from the bloodstream to the parenchyma. Dysfunction of the iBRB is a hallmark of many retinal disorders. Vascular endothelial growth factor (VEGF) has been identified as the primary driver leading to a dysfunctional iBRB, thereby becoming the main target for therapy. However, a complete understanding of the molecular mechanisms underlying iBRB dysfunction is elusive and alternative therapeutic targets remain unexplored. Calcium (Ca2+) is a universal intracellular messenger whose homeostasis and dynamics are dysregulated in many pathological disorders. Among the extensive components of the cellular Ca2+-signaling toolkit, cation-selective transient receptor potential (TRP) channels are broadly involved in cell physiology and disease and, therefore, are widely studied as possible targets for therapy. Albeit that TRP channels have been discovered in the photoreceptors of Drosophila and have been studied in the neuroretina, their presence and function in the iBRB have only recently emerged. Within this article, we discuss the structure and functions of the iBRB with a particular focus on Ca2+ signaling in retinal ECs and highlight the potential of TRP channels as new targets for retinal diseases.
Collapse
Affiliation(s)
- Silvia Dragoni
- Institute of Ophthalmology, University College London, London EC1V 9EL, United Kingdom
| | - Francesco Moccia
- Department of Biology and Biotechnology "Lazzaro Spallanzani," University of Pavia, Pavia 27100, Italy
| | - Martin D Bootman
- School of Life, Health and Chemical Sciences, Faculty of Science, Technology, Engineering and Mathematics, The Open University, Milton Keynes MK7 6AA, United Kingdom
| |
Collapse
|
5
|
Yaguchi K, Saito D, Menon T, Matsura A, Hosono M, Mizutani T, Kotani T, Nair S, Uehara R. Haploidy-linked cell proliferation defects limit larval growth in zebrafish. Open Biol 2024; 14:240126. [PMID: 39378986 PMCID: PMC11461072 DOI: 10.1098/rsob.240126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/02/2024] [Accepted: 08/05/2024] [Indexed: 10/10/2024] Open
Abstract
Haploid larvae in non-mammalian vertebrates are lethal, with characteristic organ growth retardation collectively called 'haploid syndrome'. In contrast to mammals, whose haploid intolerance is attributed to imprinting misregulation, the cellular principle of haploidy-linked defects in non-mammalian vertebrates remains unknown. Here, we investigated cellular defects that disrupt the ontogeny of gynogenetic haploid zebrafish larvae. Unlike diploid control larvae, haploid larvae manifested unscheduled cell death at the organogenesis stage, attributed to haploidy-linked p53 upregulation. Moreover, we found that haploid larvae specifically suffered the gradual aggravation of mitotic spindle monopolarization during 1-3 days post-fertilization, causing spindle assembly checkpoint-mediated mitotic arrest throughout the entire body. High-resolution imaging revealed that this mitotic defect accompanied the haploidy-linked centrosome loss occurring concomitantly with the gradual decrease in larval cell size. Either resolution of mitotic arrest or depletion of p53 partially improved organ growth in haploid larvae. Based on these results, we propose that haploidy-linked mitotic defects and cell death are parts of critical cellular causes shared among vertebrates that limit the larval growth in the haploid state, contributing to an evolutionary constraint on allowable ploidy status in the vertebrate life cycle.
Collapse
Affiliation(s)
- Kan Yaguchi
- Graduate School of Life Science, Hokkaido University, Kita 21, Nishi 11, Kita-Ku, Sapporo001-0021, Japan
- Faculty of Advanced Life Science, Hokkaido University, Kita 21, Nishi 11, Kita-Ku, Sapporo001-0021, Japan
| | - Daiki Saito
- Graduate School of Life Science, Hokkaido University, Kita 21, Nishi 11, Kita-Ku, Sapporo001-0021, Japan
| | - Triveni Menon
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Akira Matsura
- Graduate School of Life Science, Hokkaido University, Kita 21, Nishi 11, Kita-Ku, Sapporo001-0021, Japan
| | - Miyu Hosono
- Graduate School of Life Science, Hokkaido University, Kita 21, Nishi 11, Kita-Ku, Sapporo001-0021, Japan
| | - Takeomi Mizutani
- Department of Life Science and Technology, Faculty of Engineering, Hokkai-Gakuen University, Minami 26, Nishi 11, Chuo-ku, Sapporo064-0926, Japan
| | - Tomoya Kotani
- Department of Biological Sciences, Faculty of Science, Hokkaido University, Kita 10, Nishi 8, Kita-Ku, Sapporo060-0810, Japan
| | - Sreelaja Nair
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai400076, India
| | - Ryota Uehara
- Graduate School of Life Science, Hokkaido University, Kita 21, Nishi 11, Kita-Ku, Sapporo001-0021, Japan
- Faculty of Advanced Life Science, Hokkaido University, Kita 21, Nishi 11, Kita-Ku, Sapporo001-0021, Japan
| |
Collapse
|
6
|
Astashev ME, Serov DA, Tankanag AV, Knyazeva IV, Dorokhov AA, Simakin AV, Gudkov SV. Study of the Synchronization and Transmission of Intracellular Signaling Oscillations in Cells Using Bispectral Analysis. BIOLOGY 2024; 13:685. [PMID: 39336112 PMCID: PMC11428995 DOI: 10.3390/biology13090685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 09/30/2024]
Abstract
The oscillation synchronization analysis in biological systems will expand our knowledge about the response of living systems to changes in environmental conditions. This knowledge can be used in medicine (diagnosis, therapy, monitoring) and agriculture (increasing productivity, resistance to adverse effects). Currently, the search is underway for an informative, accurate and sensitive method for analyzing the synchronization of oscillatory processes in cell biology. It is especially pronounced in analyzing the concentration oscillations of intracellular signaling molecules in electrically nonexcitable cells. The bispectral analysis method could be applied to assess the characteristics of synchronized oscillations of intracellular mediators. We chose endothelial cells from mouse microvessels as model cells. Concentrations of well-studied calcium and nitric oxide (NO) were selected for study in control conditions and well-described stress: heating to 40 °C and hyperglycemia. The bispectral analysis allows us to accurately evaluate the proportion of synchronized cells, their synchronization degree, and the amplitude and frequency of synchronized calcium and NO oscillations. Heating to 40 °C increased cell synchronization for calcium but decreased for NO oscillations. Hyperglycemia abolished this effect. Heating to 40 °C changed the frequencies and increased the amplitudes of synchronized oscillations of calcium concentration and the NO synthesis rate. The first part of this paper describes the principles of the bispectral analysis method and equations and modifications of the method we propose. In the second part of this paper, specific examples of the application of bispectral analysis to assess the synchronization of living cells in vitro are presented. The discussion compares the capabilities of bispectral analysis with other analytical methods in this field.
Collapse
Affiliation(s)
- Maxim E Astashev
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilove St. 38, 119991 Moscow, Russia
- Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Institute of Cell Biophysics of the Russian Academy of Sciences, 3 Institutskaya St., 142290 Pushchino, Russia
| | - Dmitriy A Serov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilove St. 38, 119991 Moscow, Russia
- Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Institute of Cell Biophysics of the Russian Academy of Sciences, 3 Institutskaya St., 142290 Pushchino, Russia
| | - Arina V Tankanag
- Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Institute of Cell Biophysics of the Russian Academy of Sciences, 3 Institutskaya St., 142290 Pushchino, Russia
| | - Inna V Knyazeva
- Federal Scientific Agroengineering Center VIM, 1st Institutsky Proezd 5, 109428 Moscow, Russia
| | - Artem A Dorokhov
- Federal Scientific Agroengineering Center VIM, 1st Institutsky Proezd 5, 109428 Moscow, Russia
| | - Alexander V Simakin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilove St. 38, 119991 Moscow, Russia
| | - Sergey V Gudkov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilove St. 38, 119991 Moscow, Russia
- Federal Scientific Agroengineering Center VIM, 1st Institutsky Proezd 5, 109428 Moscow, Russia
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod Institute, Gagarin av. 23, 603105 Nizhny Novgorod, Russia
| |
Collapse
|
7
|
Zhang RJ, Vermot J, Gherardi R, Fukui H, Chow RWY. Calcium Signal Analysis in the Zebrafish Heart via Phase Matching of the Cardiac Cycle. Bio Protoc 2024; 14:e4989. [PMID: 38798980 PMCID: PMC11116896 DOI: 10.21769/bioprotoc.4989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/18/2024] [Accepted: 04/23/2024] [Indexed: 05/29/2024] Open
Abstract
Calcium signalling in the endocardium is critical for heart valve development. Calcium ion pulses in the endocardium are generated in response to mechanical forces due to blood flow and can be visualised in the beating zebrafish heart using a genetically encoded calcium indicator such as GCaMP7a. Analysing these pulses is challenging because of the rapid movement of the heart during heartbeat. This protocol outlines an imaging analysis method used to phase-match the cardiac cycle in single z-slice movies of the beating heart, allowing easy measurement of the calcium signal. Key features • Software to synchronise and analyse frames from movies of the beating heart corresponding to a user-defined phase of the cardiac cycle. • Software to measure the fluorescence intensity of the beating heart corresponding to a user-defined region of interest.
Collapse
Affiliation(s)
| | | | - Riccardo Gherardi
- Australian Regenerative Medicine Institute, Monash University, Melbourne, Australia
| | - Hajime Fukui
- Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan
| | - Renee Wei-Yan Chow
- Australian Regenerative Medicine Institute, Monash University, Melbourne, Australia
| |
Collapse
|
8
|
Morooka N, Gui N, Ando K, Sako K, Fukumoto M, Hasegawa U, Hußmann M, Schulte-Merker S, Mochizuki N, Nakajima H. Angpt1 binding to Tie1 regulates the signaling required for lymphatic vessel development in zebrafish. Development 2024; 151:dev202269. [PMID: 38742432 DOI: 10.1242/dev.202269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 04/26/2024] [Indexed: 05/16/2024]
Abstract
Development of the vascular system is regulated by multiple signaling pathways mediated by receptor tyrosine kinases. Among them, angiopoietin (Ang)/Tie signaling regulates lymphatic and blood vessel development in mammals. Of the two Tie receptors, Tie2 is well known as a key mediator of Ang/Tie signaling, but, unexpectedly, recent studies have revealed that the Tie2 locus has been lost in many vertebrate species, whereas the Tie1 gene is more commonly present. However, Tie1-driven signaling pathways, including ligands and cellular functions, are not well understood. Here, we performed comprehensive mutant analyses of angiopoietins and Tie receptors in zebrafish and found that only angpt1 and tie1 mutants show defects in trunk lymphatic vessel development. Among zebrafish angiopoietins, only Angpt1 binds to Tie1 as a ligand. We indirectly monitored Ang1/Tie1 signaling and detected Tie1 activation in sprouting endothelial cells, where Tie1 inhibits nuclear import of EGFP-Foxo1a. Angpt1/Tie1 signaling functions in endothelial cell migration and proliferation, and in lymphatic specification during early lymphangiogenesis, at least in part by modulating Vegfc/Vegfr3 signaling. Thus, we show that Angpt1/Tie1 signaling constitutes an essential signaling pathway for lymphatic development in zebrafish.
Collapse
Affiliation(s)
- Nanami Morooka
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka 564-8565, Japan
- Department of Medical Physiology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3192, Japan
| | - Ning Gui
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka 564-8565, Japan
| | - Koji Ando
- Department of Cardiac Regeneration Biology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka 564-8565, Japan
| | - Keisuke Sako
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka 564-8565, Japan
| | - Moe Fukumoto
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka 564-8565, Japan
| | - Urara Hasegawa
- Department of Materials Science and Engineering, The Pennsylvania State University, Steidle Building, University Park, Pennsylvania 16802, United States
| | - Melina Hußmann
- Institute of Cardiovascular Organogenesis and Regeneration, Faculty of Medicine, WU Münster, 48149 Münster, Germany
| | - Stefan Schulte-Merker
- Institute of Cardiovascular Organogenesis and Regeneration, Faculty of Medicine, WU Münster, 48149 Münster, Germany
| | - Naoki Mochizuki
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka 564-8565, Japan
| | - Hiroyuki Nakajima
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka 564-8565, Japan
| |
Collapse
|
9
|
Préau L, Lischke A, Merkel M, Oegel N, Weissenbruch M, Michael A, Park H, Gradl D, Kupatt C, le Noble F. Parenchymal cues define Vegfa-driven venous angiogenesis by activating a sprouting competent venous endothelial subtype. Nat Commun 2024; 15:3118. [PMID: 38600061 PMCID: PMC11006894 DOI: 10.1038/s41467-024-47434-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 04/02/2024] [Indexed: 04/12/2024] Open
Abstract
Formation of organo-typical vascular networks requires cross-talk between differentiating parenchymal cells and developing blood vessels. Here we identify a Vegfa driven venous sprouting process involving parenchymal to vein cross-talk regulating venous endothelial Vegfa signaling strength and subsequent formation of a specialized angiogenic cell, prefabricated with an intact lumen and pericyte coverage, termed L-Tip cell. L-Tip cell selection in the venous domain requires genetic interaction between vascular Aplnra and Kdrl in a subset of venous endothelial cells and exposure to parenchymal derived Vegfa and Apelin. Parenchymal Esm1 controls the spatial positioning of venous sprouting by fine-tuning local Vegfa availability. These findings may provide a conceptual framework for understanding how Vegfa generates organo-typical vascular networks based on the selection of competent endothelial cells, induced via spatio-temporal control of endothelial Kdrl signaling strength involving multiple parenchymal derived cues generated in a tissue dependent metabolic context.
Collapse
Affiliation(s)
- Laetitia Préau
- Department of Cell and Developmental Biology, Institute of Zoology (ZOO), Karlsruhe Institute of Technology (KIT), Fritz Haber Weg 4, 76131, Karlsruhe, Germany
- Institute for Biological and Chemical Systems-Biological Information Processing, Karlsruhe Institute of Technology (KIT), PO Box 3640, 76021, Karlsruhe, Germany
| | - Anna Lischke
- Department of Cell and Developmental Biology, Institute of Zoology (ZOO), Karlsruhe Institute of Technology (KIT), Fritz Haber Weg 4, 76131, Karlsruhe, Germany
| | - Melanie Merkel
- Department of Cell and Developmental Biology, Institute of Zoology (ZOO), Karlsruhe Institute of Technology (KIT), Fritz Haber Weg 4, 76131, Karlsruhe, Germany
| | - Neslihan Oegel
- Department of Cell and Developmental Biology, Institute of Zoology (ZOO), Karlsruhe Institute of Technology (KIT), Fritz Haber Weg 4, 76131, Karlsruhe, Germany
| | - Maria Weissenbruch
- Department of Cell and Developmental Biology, Institute of Zoology (ZOO), Karlsruhe Institute of Technology (KIT), Fritz Haber Weg 4, 76131, Karlsruhe, Germany
| | - Andria Michael
- Department of Cell and Developmental Biology, Institute of Zoology (ZOO), Karlsruhe Institute of Technology (KIT), Fritz Haber Weg 4, 76131, Karlsruhe, Germany
| | - Hongryeol Park
- Dept. Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, Roentgen Strasse 20, 48149, Muenster, Germany
| | - Dietmar Gradl
- Department of Cell and Developmental Biology, Institute of Zoology (ZOO), Karlsruhe Institute of Technology (KIT), Fritz Haber Weg 4, 76131, Karlsruhe, Germany
| | - Christian Kupatt
- Klinik und Poliklinik für Innere Medizin I, Klinikum rechts der Isar, Technical University Munich, and DZHK (German Center for Cardiovascular Research), partner site Munich, Munich, Germany
| | - Ferdinand le Noble
- Department of Cell and Developmental Biology, Institute of Zoology (ZOO), Karlsruhe Institute of Technology (KIT), Fritz Haber Weg 4, 76131, Karlsruhe, Germany.
- Institute for Biological and Chemical Systems-Biological Information Processing, Karlsruhe Institute of Technology (KIT), PO Box 3640, 76021, Karlsruhe, Germany.
- Institute of Experimental Cardiology, University of Heidelberg, Im Neuenheimer Feld 669, 69120 Heidelberg, Germany and DZHK (German Center for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany.
| |
Collapse
|
10
|
Schevenels G, Cabochette P, America M, Vandenborne A, De Grande L, Guenther S, He L, Dieu M, Christou B, Vermeersch M, Germano RFV, Perez-Morga D, Renard P, Martin M, Vanlandewijck M, Betsholtz C, Vanhollebeke B. A brain-specific angiogenic mechanism enabled by tip cell specialization. Nature 2024; 628:863-871. [PMID: 38570687 PMCID: PMC11041701 DOI: 10.1038/s41586-024-07283-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 03/07/2024] [Indexed: 04/05/2024]
Abstract
Vertebrate organs require locally adapted blood vessels1,2. The gain of such organotypic vessel specializations is often deemed to be molecularly unrelated to the process of organ vascularization. Here, opposing this model, we reveal a molecular mechanism for brain-specific angiogenesis that operates under the control of Wnt7a/b ligands-well-known blood-brain barrier maturation signals3-5. The control mechanism relies on Wnt7a/b-dependent expression of Mmp25, which we find is enriched in brain endothelial cells. CRISPR-Cas9 mutagenesis in zebrafish reveals that this poorly characterized glycosylphosphatidylinositol-anchored matrix metalloproteinase is selectively required in endothelial tip cells to enable their initial migration across the pial basement membrane lining the brain surface. Mechanistically, Mmp25 confers brain invasive competence by cleaving meningeal fibroblast-derived collagen IV α5/6 chains within a short non-collagenous region of the central helical part of the heterotrimer. After genetic interference with the pial basement membrane composition, the Wnt-β-catenin-dependent organotypic control of brain angiogenesis is lost, resulting in properly patterned, yet blood-brain-barrier-defective cerebrovasculatures. We reveal an organ-specific angiogenesis mechanism, shed light on tip cell mechanistic angiodiversity and thereby illustrate how organs, by imposing local constraints on angiogenic tip cells, can select vessels matching their distinctive physiological requirements.
Collapse
Affiliation(s)
- Giel Schevenels
- Laboratory of Neurovascular Signaling, Department of Molecular Biology, ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Gosselies, Belgium
| | - Pauline Cabochette
- Laboratory of Neurovascular Signaling, Department of Molecular Biology, ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Gosselies, Belgium
| | - Michelle America
- Laboratory of Neurovascular Signaling, Department of Molecular Biology, ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Gosselies, Belgium
| | - Arnaud Vandenborne
- Laboratory of Neurovascular Signaling, Department of Molecular Biology, ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Gosselies, Belgium
| | - Line De Grande
- Laboratory of Neurovascular Signaling, Department of Molecular Biology, ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Gosselies, Belgium
| | - Stefan Guenther
- Max Planck Institute for Heart and Lung Research, ECCPS Bioinformatics and Deep Sequencing Platform, Bad Nauheim, Germany
| | - Liqun He
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Marc Dieu
- Mass Spectrometry Facility (MaSUN), University of Namur, Namur, Belgium
| | - Basile Christou
- Laboratory of Neurovascular Signaling, Department of Molecular Biology, ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Gosselies, Belgium
| | - Marjorie Vermeersch
- Center for Microscopy and Molecular Imaging (CMMI), Université libre de Bruxelles (ULB), Gosselies, Belgium
| | - Raoul F V Germano
- Laboratory of Neurovascular Signaling, Department of Molecular Biology, ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Gosselies, Belgium
| | - David Perez-Morga
- Laboratory of Neurovascular Signaling, Department of Molecular Biology, ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Gosselies, Belgium
- Center for Microscopy and Molecular Imaging (CMMI), Université libre de Bruxelles (ULB), Gosselies, Belgium
| | - Patricia Renard
- Mass Spectrometry Facility (MaSUN), University of Namur, Namur, Belgium
| | - Maud Martin
- Laboratory of Neurovascular Signaling, Department of Molecular Biology, ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Gosselies, Belgium
| | - Michael Vanlandewijck
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
- Department of Medicine (Huddinge), Karolinska Institutet, Huddinge, Sweden
| | - Christer Betsholtz
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
- Department of Medicine (Huddinge), Karolinska Institutet, Huddinge, Sweden
| | - Benoit Vanhollebeke
- Laboratory of Neurovascular Signaling, Department of Molecular Biology, ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Gosselies, Belgium.
| |
Collapse
|
11
|
Gorobets O, Gorobets S, Polyakova T, Zablotskii V. Modulation of calcium signaling and metabolic pathways in endothelial cells with magnetic fields. NANOSCALE ADVANCES 2024; 6:1163-1182. [PMID: 38356636 PMCID: PMC10863714 DOI: 10.1039/d3na01065a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/21/2024] [Indexed: 02/16/2024]
Abstract
Calcium signaling plays a crucial role in various physiological processes, including muscle contraction, cell division, and neurotransmitter release. Dysregulation of calcium levels and signaling has been linked to a range of pathological conditions such as neurodegenerative disorders, cardiovascular disease, and cancer. Here, we propose a theoretical model that predicts the modulation of calcium ion channel activity and calcium signaling in the endothelium through the application of either a time-varying or static gradient magnetic field (MF). This modulation is achieved by exerting magnetic forces or torques on either biogenic or non-biogenic magnetic nanoparticles that are bound to endothelial cell membranes. Since calcium signaling in endothelial cells induces neuromodulation and influences blood flow control, treatment with a magnetic field shows promise for regulating neurovascular coupling and treating vascular dysfunctions associated with aging and neurodegenerative disorders. Furthermore, magnetic treatment can enable control over the decoding of Ca signals, ultimately impacting protein synthesis. The ability to modulate calcium wave frequencies using MFs and the MF-controlled decoding of Ca signaling present promising avenues for treating diseases characterized by calcium dysregulation.
Collapse
Affiliation(s)
- Oksana Gorobets
- National Technical University of Ukraine, "Igor Sikorsky Kyiv Polytechnic Institute" Ukraine
| | - Svitlana Gorobets
- National Technical University of Ukraine, "Igor Sikorsky Kyiv Polytechnic Institute" Ukraine
| | - Tatyana Polyakova
- Institute of Physics of the Czech Academy of Sciences Prague Czech Republic
| | - Vitalii Zablotskii
- Institute of Physics of the Czech Academy of Sciences Prague Czech Republic
- International Magnetobiology Frontier Research Center (iMFRC), Science Island Hefei China
| |
Collapse
|
12
|
Ren R, Ding S, Ma K, Jiang Y, Wang Y, Chen J, Wang Y, Kou Y, Fan X, Zhu X, Qin L, Qiu C, Simons M, Wei X, Yu L. SUMOylation Fine-Tunes Endothelial HEY1 in the Regulation of Angiogenesis. Circ Res 2024; 134:203-222. [PMID: 38166414 PMCID: PMC10872267 DOI: 10.1161/circresaha.123.323398] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 12/15/2023] [Indexed: 01/04/2024]
Abstract
BACKGROUND Angiogenesis, which plays a critical role in embryonic development and tissue repair, is controlled by a set of angiogenic signaling pathways. As a TF (transcription factor) belonging to the basic helix-loop-helix family, HEY (hairy/enhancer of split related with YRPW motif)-1 (YRPW motif, abbreviation of 4 highly conserved amino acids in the motif) has been identified as a key player in developmental angiogenesis. However, the precise mechanisms underlying HEY1's actions in angiogenesis remain largely unknown. Our previous studies have suggested a potential role for posttranslational SUMOylation in the dynamic regulation of vascular development and organization. METHODS Immunoprecipitation, mass spectrometry, and bioinformatics analysis were used to determine the biochemical characteristics of HEY1 SUMOylation. The promoter-binding capability of HEY1 was determined by chromatin immunoprecipitation, dual luciferase, and electrophoretic mobility shift assays. The dimerization pattern of HEY1 was determined by coimmunoprecipitation. The angiogenic capabilities of endothelial cells were assessed by CCK-8 (cell counting kit-8), 5-ethynyl-2-deoxyuridine staining, wound healing, transwell, and sprouting assays. Embryonic and postnatal vascular growth in mouse tissues, matrigel plug assay, cutaneous wound healing model, oxygen-induced retinopathy model, and tumor angiogenesis model were used to investigate the angiogenesis in vivo. RESULTS We identified intrinsic endothelial HEY1 SUMOylation at conserved lysines by TRIM28 (tripartite motif containing 28) as the unique E3 ligase. Functionally, SUMOylation facilitated HEY1-mediated suppression of angiogenic RTK (receptor tyrosine kinase) signaling and angiogenesis in primary human endothelial cells and mice with endothelial cell-specific expression of wild-type HEY1 or a SUMOylation-deficient HEY1 mutant. Mechanistically, SUMOylation facilitates HEY1 homodimer formation, which in turn preserves HEY1's DNA-binding capability via recognition of E-box promoter elements. Therefore, SUMOylation maintains HEY1's function as a repressive TF controlling numerous angiogenic genes, including RTKs and Notch pathway components. Proangiogenic stimuli induce HEY1 deSUMOylation, leading to heterodimerization of HEY1 with HES (hairy and enhancer of split)-1, which results in ineffective DNA binding and loss of HEY1's angiogenesis-suppressive activity. CONCLUSIONS Our findings demonstrate that reversible HEY1 SUMOylation is a molecular mechanism that coordinates endothelial angiogenic signaling and angiogenesis, both in physiological and pathological milieus, by fine-tuning the transcriptional activity of HEY1. Specifically, SUMOylation facilitates the formation of the HEY1 transcriptional complex and enhances its DNA-binding capability in endothelial cells.
Collapse
Affiliation(s)
- Ruizhe Ren
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province of Sir Run Run Shaw Hospital, MOE Laboratory of Biosystems Homeostasis & Protection of College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Cancer Center and Joint Research Centre for Engineering Biology, Zhejiang University, Zhejiang, China
| | - Sha Ding
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province of Sir Run Run Shaw Hospital, MOE Laboratory of Biosystems Homeostasis & Protection of College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Cancer Center and Joint Research Centre for Engineering Biology, Zhejiang University, Zhejiang, China
| | - Kefan Ma
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province of Sir Run Run Shaw Hospital, MOE Laboratory of Biosystems Homeostasis & Protection of College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Cancer Center and Joint Research Centre for Engineering Biology, Zhejiang University, Zhejiang, China
| | - Yuanqing Jiang
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province of Sir Run Run Shaw Hospital, MOE Laboratory of Biosystems Homeostasis & Protection of College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Cancer Center and Joint Research Centre for Engineering Biology, Zhejiang University, Zhejiang, China
| | - Yiran Wang
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province of Sir Run Run Shaw Hospital, MOE Laboratory of Biosystems Homeostasis & Protection of College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Cancer Center and Joint Research Centre for Engineering Biology, Zhejiang University, Zhejiang, China
| | - Junbo Chen
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province of Sir Run Run Shaw Hospital, MOE Laboratory of Biosystems Homeostasis & Protection of College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Cancer Center and Joint Research Centre for Engineering Biology, Zhejiang University, Zhejiang, China
| | - Yunyun Wang
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province of Sir Run Run Shaw Hospital, MOE Laboratory of Biosystems Homeostasis & Protection of College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Cancer Center and Joint Research Centre for Engineering Biology, Zhejiang University, Zhejiang, China
| | - Yaohui Kou
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province of Sir Run Run Shaw Hospital, MOE Laboratory of Biosystems Homeostasis & Protection of College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Cancer Center and Joint Research Centre for Engineering Biology, Zhejiang University, Zhejiang, China
| | - Xiao Fan
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province of Sir Run Run Shaw Hospital, MOE Laboratory of Biosystems Homeostasis & Protection of College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaolong Zhu
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province of Sir Run Run Shaw Hospital, MOE Laboratory of Biosystems Homeostasis & Protection of College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Cancer Center and Joint Research Centre for Engineering Biology, Zhejiang University, Zhejiang, China
| | - Lingfeng Qin
- Department of Surgery, Program in Vascular Biology and Therapeutics, Yale School of Medicine, New Haven, Connecticut, USA
| | - Cong Qiu
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province of Sir Run Run Shaw Hospital, MOE Laboratory of Biosystems Homeostasis & Protection of College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Cancer Center and Joint Research Centre for Engineering Biology, Zhejiang University, Zhejiang, China
| | - Michael Simons
- Yale Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Xiyang Wei
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province of Sir Run Run Shaw Hospital, MOE Laboratory of Biosystems Homeostasis & Protection of College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Luyang Yu
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province of Sir Run Run Shaw Hospital, MOE Laboratory of Biosystems Homeostasis & Protection of College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Cancer Center and Joint Research Centre for Engineering Biology, Zhejiang University, Zhejiang, China
| |
Collapse
|
13
|
George LF, Follmer ML, Fontenoy E, Moran HR, Brown JR, Ozekin YH, Bates EA. Endoplasmic Reticulum Calcium Mediates Drosophila Wing Development. Bioelectricity 2023; 5:290-306. [PMID: 38143873 PMCID: PMC10733776 DOI: 10.1089/bioe.2022.0036] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2023] Open
Abstract
Background The temporal dynamics of morphogen presentation impacts transcriptional responses and tissue patterning. However, the mechanisms controlling morphogen release are far from clear. We found that inwardly rectifying potassium (Irk) channels regulate endogenous transient increases in intracellular calcium and bone morphogenetic protein (BMP/Dpp) release for Drosophila wing development. Inhibition of Irk channels reduces BMP/Dpp signaling, and ultimately disrupts wing morphology. Ion channels impact development of several tissues and organisms in which BMP signaling is essential. In neurons and pancreatic beta cells, Irk channels modulate membrane potential to affect intracellular Ca++ to control secretion of neurotransmitters and insulin. Based on Irk activity in neurons, we hypothesized that electrical activity controls endoplasmic reticulum (ER) Ca++ release into the cytoplasm to regulate the release of BMP. Materials and Methods To test this hypothesis, we reduced expression of four proteins that control ER calcium, Stromal interaction molecule 1 (Stim), Calcium release-activated calcium channel protein 1 (Orai), SarcoEndoplasmic Reticulum Calcium ATPase (SERCA), small conductance calcium-activated potassium channel (SK), and Bestrophin 2 (Best2) using RNAi and documented wing phenotypes. We use live imaging to study calcium and Dpp release within pupal wings and larval wing discs. Additionally, we employed immunohistochemistry to characterize Small Mothers Against Decapentaplegic (SMAD) phosphorylation downstream of the BMP/Dpp pathway following RNAi knockdown. Results We found that reduced Stim and SERCA function decreases amplitude and frequency of endogenous calcium transients in the wing disc and reduced BMP/Dpp release. Conclusion Our results suggest control of ER calcium homeostasis is required for BMP/Dpp release, and Drosophila wing development.
Collapse
Affiliation(s)
- Laura Faith George
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Mikaela Lynn Follmer
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Emily Fontenoy
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Hannah Rose Moran
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Jeremy Ryan Brown
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Yunus H. Ozekin
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Emily Anne Bates
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
14
|
Moccia F, Brunetti V, Soda T, Berra-Romani R, Scarpellino G. Cracking the Endothelial Calcium (Ca 2+) Code: A Matter of Timing and Spacing. Int J Mol Sci 2023; 24:16765. [PMID: 38069089 PMCID: PMC10706333 DOI: 10.3390/ijms242316765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/16/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
A monolayer of endothelial cells lines the innermost surface of all blood vessels, thereby coming into close contact with every region of the body and perceiving signals deriving from both the bloodstream and parenchymal tissues. An increase in intracellular Ca2+ concentration ([Ca2+]i) is the main mechanism whereby vascular endothelial cells integrate the information conveyed by local and circulating cues. Herein, we describe the dynamics and spatial distribution of endothelial Ca2+ signals to understand how an array of spatially restricted (at both the subcellular and cellular levels) Ca2+ signals is exploited by the vascular intima to fulfill this complex task. We then illustrate how local endothelial Ca2+ signals affect the most appropriate vascular function and are integrated to transmit this information to more distant sites to maintain cardiovascular homeostasis. Vasorelaxation and sprouting angiogenesis were selected as an example of functions that are finely tuned by the variable spatio-temporal profile endothelial Ca2+ signals. We further highlighted how distinct Ca2+ signatures regulate the different phases of vasculogenesis, i.e., proliferation and migration, in circulating endothelial precursors.
Collapse
Affiliation(s)
- Francesco Moccia
- Laboratory of General Physiology, Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (V.B.); (G.S.)
| | - Valentina Brunetti
- Laboratory of General Physiology, Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (V.B.); (G.S.)
| | - Teresa Soda
- Department of Health Sciences, University of Magna Graecia, 88100 Catanzaro, Italy;
| | - Roberto Berra-Romani
- Department of Biomedicine, School of Medicine, Benemérita Universidad Autónoma de Puebla, Puebla 72410, Mexico;
| | - Giorgia Scarpellino
- Laboratory of General Physiology, Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (V.B.); (G.S.)
| |
Collapse
|
15
|
Luo Z, Yao J, Wang Z, Xu J. Mitochondria in endothelial cells angiogenesis and function: current understanding and future perspectives. J Transl Med 2023; 21:441. [PMID: 37407961 DOI: 10.1186/s12967-023-04286-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/19/2023] [Indexed: 07/07/2023] Open
Abstract
Endothelial cells (ECs) angiogenesis is the process of sprouting new vessels from the existing ones, playing critical roles in physiological and pathological processes such as wound healing, placentation, ischemia/reperfusion, cardiovascular diseases and cancer metastasis. Although mitochondria are not the major sites of energy source in ECs, they function as important biosynthetic and signaling hubs to regulate ECs metabolism and adaptations to local environment, thus affecting ECs migration, proliferation and angiogenic process. The understanding of the importance and potential mechanisms of mitochondria in regulating ECs metabolism, function and the process of angiogenesis has developed in the past decades. Thus, in this review, we discuss the current understanding of mitochondrial proteins and signaling molecules in ECs metabolism, function and angiogeneic signaling, to provide new and therapeutic targets for treatment of diverse cardiovascular and angiogenesis-dependent diseases.
Collapse
Affiliation(s)
- Zhen Luo
- Shanghai Key Laboratory of Veterinary Biotechnology/Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Dongchuan Road 800, Minhang District, Shanghai, China
| | - Jianbo Yao
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, West Virginia, USA
| | - Zhe Wang
- Shanghai Key Laboratory of Veterinary Biotechnology/Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Dongchuan Road 800, Minhang District, Shanghai, China
| | - Jianxiong Xu
- Shanghai Key Laboratory of Veterinary Biotechnology/Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Dongchuan Road 800, Minhang District, Shanghai, China.
| |
Collapse
|
16
|
Ambattu LA, Yeo LY. Sonomechanobiology: Vibrational stimulation of cells and its therapeutic implications. BIOPHYSICS REVIEWS 2023; 4:021301. [PMID: 38504927 PMCID: PMC10903386 DOI: 10.1063/5.0127122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 02/27/2023] [Indexed: 03/21/2024]
Abstract
All cells possess an innate ability to respond to a range of mechanical stimuli through their complex internal machinery. This comprises various mechanosensory elements that detect these mechanical cues and diverse cytoskeletal structures that transmit the force to different parts of the cell, where they are transcribed into complex transcriptomic and signaling events that determine their response and fate. In contrast to static (or steady) mechanostimuli primarily involving constant-force loading such as compression, tension, and shear (or forces applied at very low oscillatory frequencies (≤ 1 Hz) that essentially render their effects quasi-static), dynamic mechanostimuli comprising more complex vibrational forms (e.g., time-dependent, i.e., periodic, forcing) at higher frequencies are less well understood in comparison. We review the mechanotransductive processes associated with such acoustic forcing, typically at ultrasonic frequencies (> 20 kHz), and discuss the various applications that arise from the cellular responses that are generated, particularly for regenerative therapeutics, such as exosome biogenesis, stem cell differentiation, and endothelial barrier modulation. Finally, we offer perspectives on the possible existence of a universal mechanism that is common across all forms of acoustically driven mechanostimuli that underscores the central role of the cell membrane as the key effector, and calcium as the dominant second messenger, in the mechanotransduction process.
Collapse
Affiliation(s)
- Lizebona August Ambattu
- Micro/Nanophysics Research Laboratory, School of Engineering, RMIT University, Melbourne VIC 3000, Australia
| | - Leslie Y. Yeo
- Micro/Nanophysics Research Laboratory, School of Engineering, RMIT University, Melbourne VIC 3000, Australia
| |
Collapse
|
17
|
Ren R, Ma K, Jiang Y, Chen J, Kou Y, Ge Z, Chen Z, Wei X, Yu L. Endothelial miR-196b-5p regulates angiogenesis via the hypoxia/miR-196b-5p/HMGA2/HIF1α loop. Am J Physiol Cell Physiol 2023; 324:C407-C419. [PMID: 36534502 DOI: 10.1152/ajpcell.00309.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Angiogenesis is involved in development, reproduction, wound healing, homeostasis, and other pathophysiological events. Imbalanced angiogenesis predisposes patients to various pathological processes, such as angiocardiopathy, inflammation, and tumorigenesis. MicroRNAs (miRNAs) have been found to be important in regulating cellular processing and physiological events including angiogenesis. However, the role of miRNAs that regulate angiogenesis (angiomiRs) is not fully understood. Here, we observed a downregulation of the miR-196 family in endothelial cells upon hypoxia. Functionally, miR-196b-5p inhibited the angiogenic functions of endothelial cells in vitro and suppressed angiogenesis in Matrigel plugs and skin wound healing in vivo. Mechanistically, miR-196b-5p bound onto the 3' untranslated region (UTR) of high-mobility group AT-hook 2 (HMGA2) mRNA and repressed the translation of HMGA2, which in turn represses HIF1α accumulation in endothelial cells upon hypoxia. Together, our results establish the role of endothelial miR-196b-5p as an angiomiR that negatively regulates endothelial growth in angiogenesis via the hypoxia/miR-196b-5p/HMGA2/HIF1α loop. miR-196b-5p and its regulatory loop could be an important addition to the molecular mechanisms underlying angiogenesis and may serve as potential targets for antiangiogenic therapy.
Collapse
Affiliation(s)
- Ruizhe Ren
- MOE Laboratory of Biosystems Homeostasis & Protection of College of Life Sciences, Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province of Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, People's Republic of China.,College of Life Sciences-iCell Biotechnology Regenerative Biomedicine Laboratory, Joint Research Centre for Engineering Biology, Zhejiang University-University of Edinburgh Institute, Zhejiang University, Haining, People's Republic of China
| | - Kefan Ma
- MOE Laboratory of Biosystems Homeostasis & Protection of College of Life Sciences, Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province of Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, People's Republic of China.,College of Life Sciences-iCell Biotechnology Regenerative Biomedicine Laboratory, Joint Research Centre for Engineering Biology, Zhejiang University-University of Edinburgh Institute, Zhejiang University, Haining, People's Republic of China
| | - Yuanqing Jiang
- MOE Laboratory of Biosystems Homeostasis & Protection of College of Life Sciences, Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province of Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, People's Republic of China.,College of Life Sciences-iCell Biotechnology Regenerative Biomedicine Laboratory, Joint Research Centre for Engineering Biology, Zhejiang University-University of Edinburgh Institute, Zhejiang University, Haining, People's Republic of China
| | - Junbo Chen
- MOE Laboratory of Biosystems Homeostasis & Protection of College of Life Sciences, Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province of Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, People's Republic of China.,College of Life Sciences-iCell Biotechnology Regenerative Biomedicine Laboratory, Joint Research Centre for Engineering Biology, Zhejiang University-University of Edinburgh Institute, Zhejiang University, Haining, People's Republic of China
| | - Yaohui Kou
- MOE Laboratory of Biosystems Homeostasis & Protection of College of Life Sciences, Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province of Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, People's Republic of China.,College of Life Sciences-iCell Biotechnology Regenerative Biomedicine Laboratory, Joint Research Centre for Engineering Biology, Zhejiang University-University of Edinburgh Institute, Zhejiang University, Haining, People's Republic of China
| | - Zhen Ge
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, People's Republic of China
| | - Zhaoming Chen
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, People's Republic of China
| | - Xiyang Wei
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, People's Republic of China
| | - Luyang Yu
- MOE Laboratory of Biosystems Homeostasis & Protection of College of Life Sciences, Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province of Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, People's Republic of China.,College of Life Sciences-iCell Biotechnology Regenerative Biomedicine Laboratory, Joint Research Centre for Engineering Biology, Zhejiang University-University of Edinburgh Institute, Zhejiang University, Haining, People's Republic of China
| |
Collapse
|
18
|
Transient Receptor Potential (TRP) Channels in Tumor Vascularization. Int J Mol Sci 2022; 23:ijms232214253. [PMID: 36430727 PMCID: PMC9692925 DOI: 10.3390/ijms232214253] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/13/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
Tumor diseases are unfortunately quick spreading, even though numerous studies are under way to improve early diagnosis and targeted treatments that take into account both the different characteristics associated with the various tumor types and the conditions of individual patients. In recent years, studies have focused on the role of ion channels in tumor development, as these proteins are involved in several cellular processes relevant to neoplastic transformation. Among all ion channels, many studies have focused on the superfamily of Transient Receptor Potential (TRP) channels, which are non-selective cation channels mediating extracellular Ca2+ influx. In this review, we examined the role of different endothelial TRP channel isoforms in tumor vessel formation, a process that is essential in tumor growth and metastasis.
Collapse
|
19
|
Harnessing conserved signaling and metabolic pathways to enhance the maturation of functional engineered tissues. NPJ Regen Med 2022; 7:44. [PMID: 36057642 PMCID: PMC9440900 DOI: 10.1038/s41536-022-00246-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 08/05/2022] [Indexed: 11/08/2022] Open
Abstract
The development of induced-pluripotent stem cell (iPSC)-derived cell types offers promise for basic science, drug testing, disease modeling, personalized medicine, and translatable cell therapies across many tissue types. However, in practice many iPSC-derived cells have presented as immature in physiological function, and despite efforts to recapitulate adult maturity, most have yet to meet the necessary benchmarks for the intended tissues. Here, we summarize the available state of knowledge surrounding the physiological mechanisms underlying cell maturation in several key tissues. Common signaling consolidators, as well as potential synergies between critical signaling pathways are explored. Finally, current practices in physiologically relevant tissue engineering and experimental design are critically examined, with the goal of integrating greater decision paradigms and frameworks towards achieving efficient maturation strategies, which in turn may produce higher-valued iPSC-derived tissues.
Collapse
|
20
|
Lee SH, Hou JC, Hamidzadeh A, Yousafzai MS, Ajeti V, Chang H, Odde DJ, Murrell M, Levchenko A. A molecular clock controls periodically driven cell migration in confined spaces. Cell Syst 2022; 13:514-529.e10. [PMID: 35679858 DOI: 10.1016/j.cels.2022.05.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 09/10/2021] [Accepted: 05/13/2022] [Indexed: 01/25/2023]
Abstract
Navigation through a dense, physically confining extracellular matrix is common in invasive cell spread and tissue reorganization but is still poorly understood. Here, we show that this migration is mediated by cyclic changes in the activity of a small GTPase RhoA, which is dependent on the oscillatory changes in the activity and abundance of the RhoA guanine nucleotide exchange factor, GEF-H1, and triggered by a persistent increase in the intracellular Ca2+ levels. We show that the molecular clock driving these cyclic changes is mediated by two coupled negative feedback loops, dependent on the microtubule dynamics, with a frequency that can be experimentally modulated based on a predictive mathematical model. We further demonstrate that an increasing frequency of the clock translates into a faster cell migration within physically confining spaces. This work lays the foundation for a better understanding of the molecular mechanisms dynamically driving cell migration in complex environments.
Collapse
Affiliation(s)
- Sung Hoon Lee
- Yale Systems Biology Institute, Yale University, West Haven, CT 06516, USA; Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| | - Jay C Hou
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Archer Hamidzadeh
- Yale Systems Biology Institute, Yale University, West Haven, CT 06516, USA; Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| | - M Sulaiman Yousafzai
- Yale Systems Biology Institute, Yale University, West Haven, CT 06516, USA; Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA; Department of Physics, Yale University, New Haven, CT 06520, USA
| | - Visar Ajeti
- Yale Systems Biology Institute, Yale University, West Haven, CT 06516, USA; Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA; Department of Physics, Yale University, New Haven, CT 06520, USA; Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT 06032, USA
| | - Hao Chang
- Yale Systems Biology Institute, Yale University, West Haven, CT 06516, USA; Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| | - David J Odde
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Michael Murrell
- Yale Systems Biology Institute, Yale University, West Haven, CT 06516, USA; Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA; Department of Physics, Yale University, New Haven, CT 06520, USA
| | - Andre Levchenko
- Yale Systems Biology Institute, Yale University, West Haven, CT 06516, USA; Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA.
| |
Collapse
|
21
|
Moccia F, Negri S, Faris P, Ronchi C, Lodola F. Optical excitation of organic semiconductors as a highly selective strategy to induce vascular regeneration and tissue repair. Vascul Pharmacol 2022; 144:106998. [PMID: 35589009 DOI: 10.1016/j.vph.2022.106998] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/06/2022] [Accepted: 05/12/2022] [Indexed: 10/18/2022]
Abstract
Therapeutic neovascularization represents a promising strategy to rescue the vascular network and restore organ function in cardiovascular disorders (CVDs), including acute myocardial infarction, heart failure, peripheral artery disease, and brain stroke. Endothelial colony forming cells (ECFCs), which are mobilized in circulation upon an ischemic insult, are commonly regarded as the most suitable cellular tool to achieve therapeutic neovascularization. ECFCs can be genetically or pharmacologically manipulated to enhance their vasoreparative potential by boosting specific pro-angiogenic signalling pathways. However, optical stimulation represents the most reliable approach to control cellular activity because of its high selectivity and unprecedented spatio-temporal resolution. Herein, we discuss a novel strategy to drive ECFC angiogenic activity in ischemic tissues by combining geneless optical excitation with photosensitive organic semiconductors. We describe how photoexcitation of the conducting polymer poly(3-hexylthiophene-2,5-diyl), also known as P3HT, stimulates extracellular Ca2+ entry through Transient Receptor Potential Vanilloid 1 (TRPV1) channels upon the production of hydrogen peroxide (H2O2) in the cleft between the nanomaterial and the cell membrane. H2O2-induced TRPV1-dependent Ca2+ entry stimulates ECFC proliferation and tube formation, thereby providing the proof-of-concept that photoexcitation of organic semiconductors may offer a reliable strategy to stimulate ECFCs-dependent neovascularization in CVDs.
Collapse
Affiliation(s)
- Francesco Moccia
- Department of Biology and Biotechnology "Lazzaro Spallanzani", Laboratory of General Physiology, University of Pavia, 27100 Pavia, Italy.
| | - Sharon Negri
- Department of Biology and Biotechnology "Lazzaro Spallanzani", Laboratory of General Physiology, University of Pavia, 27100 Pavia, Italy
| | - Pawan Faris
- Department of Biology and Biotechnology "Lazzaro Spallanzani", Laboratory of General Physiology, University of Pavia, 27100 Pavia, Italy
| | - Carlotta Ronchi
- Center for Nano Science and Technology@PoliMi, Istituto Italiano di Tecnologia, 20133 Milan, Italy
| | - Francesco Lodola
- Department of Biotechnology and Bioscience, Laboratory of Cardiac Cellular Physiology, University of Milano-Bicocca, 20126 Milan, Italy
| |
Collapse
|
22
|
Yuge S, Nishiyama K, Arima Y, Hanada Y, Oguri-Nakamura E, Hanada S, Ishii T, Wakayama Y, Hasegawa U, Tsujita K, Yokokawa R, Miura T, Itoh T, Tsujita K, Mochizuki N, Fukuhara S. Mechanical loading of intraluminal pressure mediates wound angiogenesis by regulating the TOCA family of F-BAR proteins. Nat Commun 2022; 13:2594. [PMID: 35551172 PMCID: PMC9098626 DOI: 10.1038/s41467-022-30197-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 04/14/2022] [Indexed: 11/13/2022] Open
Abstract
Angiogenesis is regulated in coordinated fashion by chemical and mechanical cues acting on endothelial cells (ECs). However, the mechanobiological mechanisms of angiogenesis remain unknown. Herein, we demonstrate a crucial role of blood flow-driven intraluminal pressure (IP) in regulating wound angiogenesis. During wound angiogenesis, blood flow-driven IP loading inhibits elongation of injured blood vessels located at sites upstream from blood flow, while downstream injured vessels actively elongate. In downstream injured vessels, F-BAR proteins, TOCA1 and CIP4, localize at leading edge of ECs to promote N-WASP-dependent Arp2/3 complex-mediated actin polymerization and front-rear polarization for vessel elongation. In contrast, IP loading expands upstream injured vessels and stretches ECs, preventing leading edge localization of TOCA1 and CIP4 to inhibit directed EC migration and vessel elongation. These data indicate that the TOCA family of F-BAR proteins are key actin regulatory proteins required for directed EC migration and sense mechanical cell stretching to regulate wound angiogenesis. Chemical and mechanical cues coordinately regulate angiogenesis. Here, the authors show that blood flow-driven intraluminal pressure regulates wound angiogenesis. Findings indicate that TOCA family of F-BAR proteins act as actin regulators required for endothelial cell migration and sense mechanical cell stretching to regulate wound angiogenesis.
Collapse
Affiliation(s)
- Shinya Yuge
- Department of Molecular Pathophysiology, Institute for Advanced Medical Sciences, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602, Japan
| | - Koichi Nishiyama
- International Research Center for Medical Sciences, Kumamoto University, Kumamoto City, Kumamoto, 860-0811, Japan. .,Laboratory of Vascular and Cellular Dynamics, Department of Medical Sciences, University of Miyazaki, Miyazaki City, Miyazaki, 889-1962, Japan.
| | - Yuichiro Arima
- International Research Center for Medical Sciences, Kumamoto University, Kumamoto City, Kumamoto, 860-0811, Japan.,Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto City, Kumamoto, Japan
| | - Yasuyuki Hanada
- International Research Center for Medical Sciences, Kumamoto University, Kumamoto City, Kumamoto, 860-0811, Japan.,Department of Cardiology, Graduate School of Medicine, Nagoya University, Nagoya City, Aichi, 466-8550, Japan
| | - Eri Oguri-Nakamura
- Department of Molecular Pathophysiology, Institute for Advanced Medical Sciences, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602, Japan
| | - Sanshiro Hanada
- International Research Center for Medical Sciences, Kumamoto University, Kumamoto City, Kumamoto, 860-0811, Japan
| | - Tomohiro Ishii
- Department of Molecular Pathophysiology, Institute for Advanced Medical Sciences, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602, Japan
| | - Yuki Wakayama
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, 565-8565, Japan
| | - Urara Hasegawa
- Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA, 16802, USA
| | - Kazuya Tsujita
- Biosignal Research Center, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan.,Division of Membrane Biology, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Ryuji Yokokawa
- Department of Micro Engineering, Graduate School of Engineering, Kyoto University, Kyoto, 615-8540, Japan
| | - Takashi Miura
- Department of Anatomy and Cell Biology, Graduate School of Medical Sciences, Kyushu University, Fukuoka City, Fukuoka, 812-8582, Japan
| | - Toshiki Itoh
- Biosignal Research Center, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan.,Division of Membrane Biology, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Kenichi Tsujita
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto City, Kumamoto, Japan
| | - Naoki Mochizuki
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, 565-8565, Japan
| | - Shigetomo Fukuhara
- Department of Molecular Pathophysiology, Institute for Advanced Medical Sciences, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602, Japan.
| |
Collapse
|
23
|
Panara V, Monteiro R, Koltowska K. Epigenetic Regulation of Endothelial Cell Lineages During Zebrafish Development-New Insights From Technical Advances. Front Cell Dev Biol 2022; 10:891538. [PMID: 35615697 PMCID: PMC9125237 DOI: 10.3389/fcell.2022.891538] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 04/10/2022] [Indexed: 01/09/2023] Open
Abstract
Epigenetic regulation is integral in orchestrating the spatiotemporal regulation of gene expression which underlies tissue development. The emergence of new tools to assess genome-wide epigenetic modifications has enabled significant advances in the field of vascular biology in zebrafish. Zebrafish represents a powerful model to investigate the activity of cis-regulatory elements in vivo by combining technologies such as ATAC-seq, ChIP-seq and CUT&Tag with the generation of transgenic lines and live imaging to validate the activity of these regulatory elements. Recently, this approach led to the identification and characterization of key enhancers of important vascular genes, such as gata2a, notch1b and dll4. In this review we will discuss how the latest technologies in epigenetics are being used in the zebrafish to determine chromatin states and assess the function of the cis-regulatory sequences that shape the zebrafish vascular network.
Collapse
Affiliation(s)
- Virginia Panara
- Immunology Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Rui Monteiro
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- Birmingham Centre of Genome Biology, University of Birmingham, Birmingham, United Kingdom
| | | |
Collapse
|
24
|
Nawrot DA, Ozer LY, Al Haj Zen A. A Novel High Content Angiogenesis Assay Reveals That Lacidipine, L-Type Calcium Channel Blocker, Induces In Vitro Vascular Lumen Expansion. Int J Mol Sci 2022; 23:ijms23094891. [PMID: 35563280 PMCID: PMC9100973 DOI: 10.3390/ijms23094891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/23/2022] [Accepted: 04/26/2022] [Indexed: 11/21/2022] Open
Abstract
Angiogenesis is a critical cellular process toward establishing a functional circulatory system capable of delivering oxygen and nutrients to the tissue in demand. In vitro angiogenesis assays represent an important tool for elucidating the biology of blood vessel formation and for drug discovery applications. Herein, we developed a novel, high content 2D angiogenesis assay that captures endothelial morphogenesis’s cellular processes, including lumen formation. In this assay, endothelial cells form luminized vascular-like structures in 48 h. The assay was validated for its specificity and performance. Using the optimized assay, we conducted a phenotypic screen of a library containing 150 FDA-approved cardiovascular drugs to identify modulators of lumen formation. The screening resulted in several L-type calcium channel blockers being able to expand the lumen space compared to controls. Among these blockers, Lacidipine was selected for follow-up studies. We found that the endothelial cells treated with Lacidipine showed enhanced activity of caspase-3 in the luminal space. Pharmacological inhibition of caspase activity abolished the Lacidipine-enhancing effect on lumen formation, suggesting the involvement of apoptosis. Using a Ca2+ biosensor, we found that Lacipidine reduces the intracellular Ca2+ oscillations amplitude in the endothelial cells at the early stage, whereas Lacidipine blocks these Ca2+ oscillations completely at the late stage. The inhibition of MLCK exhibits a phenotype of lumen expansion similar to that of Lacidipine. In conclusion, this study describes a novel high-throughput phenotypic assay to study angiogenesis. Our findings suggest that calcium signalling plays an essential role during lumen morphogenesis. L-type Ca2+ channel blockers could be used for more efficient angiogenesis-mediated therapies.
Collapse
Affiliation(s)
- Dorota A. Nawrot
- BHF Centre of Research Excellence, Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK;
- Alzheimer’s Research UK, Oxford Drug Discovery Institute, Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, UK
| | - Lutfiye Yildiz Ozer
- College of Health and Life Sciences, Hamad Bin Khalifa University, Education City, Doha P.O. Box 34110, Qatar;
| | - Ayman Al Haj Zen
- BHF Centre of Research Excellence, Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK;
- College of Health and Life Sciences, Hamad Bin Khalifa University, Education City, Doha P.O. Box 34110, Qatar;
- Correspondence: ; Tel.: +974-4454-6352
| |
Collapse
|
25
|
George LF, Bates EA. Mechanisms Underlying Influence of Bioelectricity in Development. Front Cell Dev Biol 2022; 10:772230. [PMID: 35237593 PMCID: PMC8883286 DOI: 10.3389/fcell.2022.772230] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 01/07/2022] [Indexed: 12/25/2022] Open
Abstract
To execute the intricate process of development, cells coordinate across tissues and organs to determine where each cell divides and differentiates. This coordination requires complex communication between cells. Growing evidence suggests that bioelectrical signals controlled via ion channels contribute to cell communication during development. Ion channels collectively regulate the transmembrane potential of cells, and their function plays a conserved role in the development of organisms from flies to humans. Spontaneous calcium oscillations can be found in nearly every cell type and tissue, and disruption of these oscillations leads to defects in development. However, the mechanism by which bioelectricity regulates development is still unclear. Ion channels play essential roles in the processes of cell death, proliferation, migration, and in each of the major canonical developmental signaling pathways. Previous reviews focus on evidence for one potential mechanism by which bioelectricity affects morphogenesis, but there is evidence that supports multiple different mechanisms which are not mutually exclusive. Evidence supports bioelectricity contributing to development through multiple different mechanisms. Here, we review evidence for the importance of bioelectricity in morphogenesis and provide a comprehensive review of the evidence for several potential mechanisms by which ion channels may act in developmental processes.
Collapse
Affiliation(s)
- Laura Faith George
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, United States
| | - Emily Anne Bates
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, United States
| |
Collapse
|
26
|
Yadav V, Senapati S, Chang HC. Ion-Depleting Action of Perm-Selective Membranes for Enhancing Electrical Communication and Gated Ion Channel Activity in Cell Cultures. ACS Biomater Sci Eng 2021; 8:4618-4621. [PMID: 34932307 DOI: 10.1021/acsbiomaterials.1c01384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ion-depletion action of an ion-selective membrane produces a moat channel that electrically insulates a cell colony and elevates the cell medium potential uniformly to synchronously activate and deactivate the voltage-gated ion channels of all cells. The result is robust synchronization with strong intercellular electrical communication and the discovery of ion channel deactivation that is only possible when the cells are in communication. The study suggests that the collective response of a cell colony to external stimuli is distinct from that of a single cell. Cell proliferation must hence be guided with strong intercellular communication and proper exogenous stimuli.
Collapse
Affiliation(s)
- Vivek Yadav
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Satyajyoti Senapati
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States.,Harper Cancer Research Institute, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Hsueh-Chia Chang
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States.,Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States.,Harper Cancer Research Institute, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
27
|
Debir B, Meaney C, Kohandel M, Unlu MB. The role of calcium oscillations in the phenotype selection in endothelial cells. Sci Rep 2021; 11:23781. [PMID: 34893636 PMCID: PMC8664853 DOI: 10.1038/s41598-021-02720-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/07/2021] [Indexed: 11/10/2022] Open
Abstract
Angiogenesis is an important process in the formation and maintenance of tissues which is driven by a complex system of intracellular and intercellular signaling mechanisms. Endothelial cells taking part in early angiogenesis must select their phenotype as either a tip cells (leading, migratory) or a stalk cells (following). Recent experiments have demonstrated that rapid calcium oscillations within active cells characterize this phenotype selection process and that these oscillations play a necessary role in governing phenotype selection and eventual vessel architecture. In this work, we develop a mathematical model capable of describing these oscillations and their role in phenotype selection then use it to improve our understanding of the biological mechanisms at play. We developed a model based on two previously published and experimentally validated mathematical models of calcium and angiogenesis then use our resulting model to simulate various multi-cell scenarios. We are able to capture essential calcium oscillation dynamics and intercellular communication between neighboring cells. The results of our model show that although the late DLL4 (a transmembrane protein that activates Notch pathway) levels of a cell are connected with its initial IP3 (Inositol 1,4,5-trisphosphate) level, cell-to-cell communication determines its eventual phenotype.
Collapse
Affiliation(s)
- Birses Debir
- Department of Physics, Bogazici University, 34342, Istanbul, Turkey.
| | - Cameron Meaney
- Department of Applied Mathematics, University of Waterloo, Waterloo, ON, Canada
| | - Mohammad Kohandel
- Department of Applied Mathematics, University of Waterloo, Waterloo, ON, Canada
| | - M Burcin Unlu
- Department of Physics, Bogazici University, 34342, Istanbul, Turkey
- Hokkaido University, Global Station for Quantum Medical Science and Engineering, Global Institution for Collaborative Research and Education (GI-CoRE), Sapporo, 060-8648, Japan
| |
Collapse
|
28
|
Serov D, Tankanag A, Astashev M. Low-frequency oscillations of murine skin microcirculations and periodic changes of [Ca 2+ ] i and [NO] i levels in murine endotheliocytes: An effect of provocative tests. Cell Biol Int 2021; 46:427-442. [PMID: 34882893 DOI: 10.1002/cbin.11743] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 11/07/2021] [Accepted: 12/04/2021] [Indexed: 01/14/2023]
Abstract
The five frequency intervals of skin blood oscillation were described: cardiac, respiratory, myogenic, neurogenic, and endothelial. The endothelial interval is derived into NO-independent and NO-dependent. The exact molecular, cell, or systemic mechanisms of endothelial oscillations generation are unclear. We proposed that oscillations of Ca2+ and NO in endotheliocytes may be possible sources of skin blood perfusion (SBP) oscillations in endothelial interval. To examine our hypothesis we compared the oscillations of cytoplasmic Ca2+ and NO ([Ca2+ ]i and [NO]i ) concentration in cultured murine microvascular endotheliocytes and SBP oscillations in mice. Local heating test and model hypoxia were used as tools to evaluate an interconnection of studied parameters. [Ca2+ ]i and [NO]i were measured simultaneously by Fura-2 AM and DAF-FM. The SBP was measured by laser Doppler flowmetry. The [Ca2+ ]i and [NO]i oscillations at 0.005-0.01 Hz were observed in endotheliocytes, that coincides the ranges of NO-independent endothelial interval. Heating decreased amplitude of [Ca2+ ]i and [NO]i oscillations in cells in NO-independent endothelial interval, while amplitudes of SBP oscillations increased in NO-independent and NO-dependent intervals. Hypoxia reduced the [NO]i oscillations amplitude. Heating test during hypoxia increased NO-independent endothelial SBP oscillations and decreased myogenic ones, did not effect on [NO]i oscillations, and shifted [Ca2+ ]i oscillations peak from 0.005-0.01 Hz to 0.01-0.018 Hz. We observed the [Ca2+ ]i and [NO]i oscillations synchronization within a cell and between cells for the first time. Heating abolished these synchronizations. Therefore low-frequency [Ca2+ ]i and [NO]i oscillations in endotheliocytes may be considered as modulators of low-frequency endothelial SBP oscillations.
Collapse
Affiliation(s)
- Dmitriy Serov
- Institute of Cell Biophisics, Russian Academy of Sciences, Laboratory of Cellular Neurobiology, Pushchino, Moscow region, Russia.,Prokhorov General Physics Institute of the Russian Academy of Sciences, Biophotonics Center, Moscow, Russia
| | - Arina Tankanag
- Institute of Cell Biophisics, Russian Academy of Sciences, Laboratory of Cellular Neurobiology, Pushchino, Moscow region, Russia
| | - Maksim Astashev
- Institute of Cell Biophisics, Russian Academy of Sciences, Laboratory of Cellular Neurobiology, Pushchino, Moscow region, Russia.,Prokhorov General Physics Institute of the Russian Academy of Sciences, Biophotonics Center, Moscow, Russia
| |
Collapse
|
29
|
Negri S, Faris P, Tullii G, Vismara M, Pellegata AF, Lodola F, Guidetti G, Rosti V, Antognazza MR, Moccia F. Conjugated polymers mediate intracellular Ca 2+ signals in circulating endothelial colony forming cells through the reactive oxygen species-dependent activation of Transient Receptor Potential Vanilloid 1 (TRPV1). Cell Calcium 2021; 101:102502. [PMID: 34896699 DOI: 10.1016/j.ceca.2021.102502] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/14/2021] [Accepted: 11/15/2021] [Indexed: 02/07/2023]
Abstract
Endothelial colony forming cells (ECFCs) represent the most suitable cellular substrate to induce revascularization of ischemic tissues. Recently, optical excitation of the light-sensitive conjugated polymer, regioregular Poly (3-hexyl-thiophene), rr-P3HT, was found to stimulate ECFC proliferation and tube formation by activating the non-selective cation channel, Transient Receptor Potential Vanilloid 1 (TRPV1). Herein, we adopted a multidisciplinary approach, ranging from intracellular Ca2+ imaging to pharmacological manipulation and genetic suppression of TRPV1 expression, to investigate the effects of photoexcitation on intracellular Ca2+ concentration ([Ca2+]i) in circulating ECFCs plated on rr-P3HT thin films. Polymer-mediated optical excitation induced a long-lasting increase in [Ca2+]i that could display an oscillatory pattern at shorter light stimuli. Pharmacological and genetic manipulation revealed that the Ca2+ response to light was triggered by extracellular Ca2+ entry through TRPV1, whose activation required the production of reactive oxygen species at the interface between rr-P3HT and the cell membrane. Light-induced TRPV1-mediated Ca2+ entry was able to evoke intracellular Ca2+ release from the endoplasmic reticulum through inositol-1,4,5-trisphosphate receptors, followed by store-operated Ca2+ entry on the plasma membrane. These data show that TRPV1 may serve as a decoder at the interface between rr-P3HT thin films and ECFCs to translate optical excitation in pro-angiogenic Ca2+ signals.
Collapse
Affiliation(s)
- Sharon Negri
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Pawan Faris
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Gabriele Tullii
- Center for Nano Science and Technology@PoliMi, Istituto Italiano di Tecnologia, 20133 Milano, Italy
| | - Mauro Vismara
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Alessandro F Pellegata
- Center for Nano Science and Technology@PoliMi, Istituto Italiano di Tecnologia, 20133 Milano, Italy
| | - Francesco Lodola
- Center for Nano Science and Technology@PoliMi, Istituto Italiano di Tecnologia, 20133 Milano, Italy
| | - Gianni Guidetti
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Vittorio Rosti
- Center for the Study of Myelofibrosis, Laboratory of Biochemistry, Biotechnology and Advanced Diagnosis, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy
| | - Maria Rosa Antognazza
- Center for Nano Science and Technology@PoliMi, Istituto Italiano di Tecnologia, 20133 Milano, Italy.
| | - Francesco Moccia
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, 27100 Pavia, Italy.
| |
Collapse
|
30
|
Fukui H, Chow RWY, Xie J, Foo YY, Yap CH, Minc N, Mochizuki N, Vermot J. Bioelectric signaling and the control of cardiac cell identity in response to mechanical forces. Science 2021; 374:351-354. [PMID: 34648325 DOI: 10.1126/science.abc6229] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Hajime Fukui
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Centre National de la Recherche Scientifique UMR7104, Institut National de la Santé et de la Recherche Médicale U1258 and Université de Strasbourg, Illkirch, France.,Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Suita, Japan
| | - Renee Wei-Yan Chow
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Centre National de la Recherche Scientifique UMR7104, Institut National de la Santé et de la Recherche Médicale U1258 and Université de Strasbourg, Illkirch, France
| | - Jing Xie
- Université de Paris, Centre National de la Recherche Scientifique UMR7592, Institut Jacques Monod, Paris, France
| | - Yoke Yin Foo
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
| | - Choon Hwai Yap
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore.,Department of Bioengineering, Imperial College London, London, UK
| | - Nicolas Minc
- Université de Paris, Centre National de la Recherche Scientifique UMR7592, Institut Jacques Monod, Paris, France
| | - Naoki Mochizuki
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Suita, Japan
| | - Julien Vermot
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Centre National de la Recherche Scientifique UMR7104, Institut National de la Santé et de la Recherche Médicale U1258 and Université de Strasbourg, Illkirch, France.,Department of Bioengineering, Imperial College London, London, UK
| |
Collapse
|
31
|
Molecular and Cellular Mechanisms of Vascular Development in Zebrafish. Life (Basel) 2021; 11:life11101088. [PMID: 34685459 PMCID: PMC8539546 DOI: 10.3390/life11101088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/11/2021] [Accepted: 10/13/2021] [Indexed: 12/13/2022] Open
Abstract
The establishment of a functional cardiovascular system is crucial for the development of all vertebrates. Defects in the development of the cardiovascular system lead to cardiovascular diseases, which are among the top 10 causes of death worldwide. However, we are just beginning to understand which signaling pathways guide blood vessel growth in different tissues and organs. The advantages of the model organism zebrafish (Danio rerio) helped to identify novel cellular and molecular mechanisms of vascular growth. In this review we will discuss the current knowledge of vasculogenesis and angiogenesis in the zebrafish embryo. In particular, we describe the molecular mechanisms that contribute to the formation of blood vessels in different vascular beds within the embryo.
Collapse
|
32
|
Ando K, Ishii T, Fukuhara S. Zebrafish Vascular Mural Cell Biology: Recent Advances, Development, and Functions. Life (Basel) 2021; 11:1041. [PMID: 34685412 PMCID: PMC8537713 DOI: 10.3390/life11101041] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/29/2021] [Accepted: 09/29/2021] [Indexed: 12/14/2022] Open
Abstract
Recruitment of mural cells to the vascular wall is essential for forming the vasculature as well as maintaining proper vascular functions. In recent years, zebrafish genetic tools for mural cell biology have improved substantially. Fluorescently labeled zebrafish mural cell reporter lines enable us to study, with higher spatiotemporal resolution than ever, the processes of mural cell development from their progenitors. Furthermore, recent phenotypic analysis of platelet-derived growth factor beta mutant zebrafish revealed well-conserved organotypic mural cell development and functions in vertebrates with the unique features of zebrafish. However, comprehensive reviews of zebrafish mural cells are lacking. Therefore, herein, we highlight recent advances in zebrafish mural cell tools. We also summarize the fundamental features of zebrafish mural cell development, especially at early stages, and functions.
Collapse
Affiliation(s)
- Koji Ando
- Department of Molecular Pathophysiology, Institute of Advanced Medical Sciences, Nippon Medical School, Tokyo 113 8602, Japan; (T.I.); (S.F.)
| | | | | |
Collapse
|
33
|
Li J, Fang Y, Wu D. Mechanical forces and metabolic changes cooperate to drive cellular memory and endothelial phenotypes. CURRENT TOPICS IN MEMBRANES 2021; 87:199-253. [PMID: 34696886 PMCID: PMC8639155 DOI: 10.1016/bs.ctm.2021.07.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Endothelial cells line the innermost layer of arterial, venous, and lymphatic vascular tree and accordingly are subject to hemodynamic, stretch, and stiffness mechanical forces. Normally quiescent, endothelial cells have a hemodynamic set point and become "activated" in response to disturbed hemodynamics, which may signal impending nutrient or gas depletion. Endothelial cells in the majority of tissue beds are normally inactivated and maintain vessel barrier functions, are anti-inflammatory, anti-coagulant, and anti-thrombotic. However, under aberrant mechanical forces, endothelial signaling transforms in response, resulting cellular changes that herald pathological diseases. Endothelial cell metabolism is now recognized as the primary intermediate pathway that undergirds cellular transformation. In this review, we discuss the various mechanical forces endothelial cells sense in the large vessels, microvasculature, and lymphatics, and how changes in environmental mechanical forces result in changes in metabolism, which ultimately influence cell physiology, cellular memory, and ultimately disease initiation and progression.
Collapse
Affiliation(s)
- Jin Li
- Committee on Molecular Metabolism and Nutrition, Biological Sciences Division, University of Chicago, Chicago, IL, United States; Department of Medicine, Biological Sciences Division, University of Chicago, Chicago, IL, United States
| | - Yun Fang
- Committee on Molecular Metabolism and Nutrition, Biological Sciences Division, University of Chicago, Chicago, IL, United States; Department of Medicine, Biological Sciences Division, University of Chicago, Chicago, IL, United States
| | - David Wu
- Committee on Molecular Metabolism and Nutrition, Biological Sciences Division, University of Chicago, Chicago, IL, United States; Department of Medicine, Biological Sciences Division, University of Chicago, Chicago, IL, United States.
| |
Collapse
|
34
|
Endothelial Heterogeneity in Development and Wound Healing. Cells 2021; 10:cells10092338. [PMID: 34571987 PMCID: PMC8469713 DOI: 10.3390/cells10092338] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/30/2021] [Accepted: 09/06/2021] [Indexed: 12/28/2022] Open
Abstract
The vasculature is comprised of endothelial cells that are heterogeneous in nature. From tissue resident progenitors to mature differentiated endothelial cells, the diversity of these populations allows for the formation, maintenance, and regeneration of the vascular system in development and disease, particularly during situations of wound healing. Additionally, the de-differentiation and plasticity of different endothelial cells, especially their capacity to undergo endothelial to mesenchymal transition, has also garnered significant interest due to its implication in disease progression, with emphasis on scarring and fibrosis. In this review, we will pinpoint the seminal discoveries defining the phenotype and mechanisms of endothelial heterogeneity in development and disease, with a specific focus only on wound healing.
Collapse
|
35
|
Normalizing Tumor Vasculature to Reduce Hypoxia, Enhance Perfusion, and Optimize Therapy Uptake. Cancers (Basel) 2021; 13:cancers13174444. [PMID: 34503254 PMCID: PMC8431369 DOI: 10.3390/cancers13174444] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 08/26/2021] [Accepted: 09/01/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary In order for solid tumors to grow, they need to develop new blood vessels in order to support their increasing metabolic requirements. To facilitate the novel vessel formation, the tumor initiates an aggressive pro-angiogenic program. As a result of the aggressive angiogenesis, blood vessels form very rapidly and are often malformed and dysfunctional. There is a reduction in perfusion to the tumor, and often the tumors exhibit significant areas of tumor hypoxia. This review paper discusses the pro-tumorigenic environment induced by tumor hypoxia and how this can be targeted through normalization of the tumor vasculature. Here, we review tumor angiogenesis, the development of a hypoxic phenotype, and how this contributes to sustained tumorigenesis and resistance to therapy. We further discuss the potential of vascular normalization to reduce tumor hypoxia and facilitate uptake and efficacy of a variety of therapies. Abstract A basic requirement of tumorigenesis is the development of a vascular network to support the metabolic requirements of tumor growth and metastasis. Tumor vascular formation is regulated by a balance between promoters and inhibitors of angiogenesis. Typically, the pro-angiogenic environment created by the tumor is extremely aggressive, resulting in the rapid vessel formation with abnormal, dysfunctional morphology. The altered morphology and function of tumor blood and lymphatic vessels has numerous implications including poor perfusion, tissue hypoxia, and reduced therapy uptake. Targeting tumor angiogenesis as a therapeutic approach has been pursued in a host of different cancers. Although some preclinical success was seen, there has been a general lack of clinical success with traditional anti-angiogenic therapeutics as single agents. Typically, following anti-angiogenic therapy, there is remodeling of the tumor microenvironment and widespread tumor hypoxia, which is associated with development of therapy resistance. A more comprehensive understanding of the biology of tumor angiogenesis and insights into new clinical approaches, including combinations with immunotherapy, are needed to advance vascular targeting as a therapeutic area.
Collapse
|
36
|
Abstract
Phospholipase C γ1 (PLCγ1) is a member of the PLC family that functions as signal transducer by hydrolyzing membrane lipid to generate second messengers. The unique protein structure of PLCγ1 confers a critical role as a direct effector of VEGFR2 and signaling mediated by other receptor tyrosine kinases. The distinct vascular phenotypes in PLCγ1-deficient animal models and the gain-of-function mutations of PLCγ1 found in human endothelial cancers point to a major physiological role of PLCγ1 in the endothelial system. In this review, we discuss aspects of physiological and molecular function centering around PLCγ1 in the context of endothelial cells and provide a perspective for future investigation.
Collapse
Affiliation(s)
- Dongying Chen
- Yale Cardiovascular Research Center, Departments of Internal Medicine and Cell Biology, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Michael Simons
- Yale Cardiovascular Research Center, Departments of Internal Medicine and Cell Biology, Yale University School of Medicine, New Haven, CT 06511, USA.
| |
Collapse
|
37
|
Watterston C, Halabi R, McFarlane S, Childs SJ. Endothelial Semaphorin 3fb regulates Vegf pathway-mediated angiogenic sprouting. PLoS Genet 2021; 17:e1009769. [PMID: 34424892 PMCID: PMC8412281 DOI: 10.1371/journal.pgen.1009769] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 09/02/2021] [Accepted: 08/10/2021] [Indexed: 12/12/2022] Open
Abstract
Vessel growth integrates diverse extrinsic signals with intrinsic signaling cascades to coordinate cell migration and sprouting morphogenesis. The pro-angiogenic effects of Vascular Endothelial Growth Factor (VEGF) are carefully controlled during sprouting to generate an efficiently patterned vascular network. We identify crosstalk between VEGF signaling and that of the secreted ligand Semaphorin 3fb (Sema3fb), one of two zebrafish paralogs of mammalian Sema3F. The sema3fb gene is expressed by endothelial cells in actively sprouting vessels. Loss of sema3fb results in abnormally wide and stunted intersegmental vessel artery sprouts. Although the sprouts initiate at the correct developmental time, they have a reduced migration speed. These sprouts have persistent filopodia and abnormally spaced nuclei suggesting dysregulated control of actin assembly. sema3fb mutants show simultaneously higher expression of pro-angiogenic (VEGF receptor 2 (vegfr2) and delta-like 4 (dll4)) and anti-angiogenic (soluble VEGF receptor 1 (svegfr1)/ soluble Fms Related Receptor Tyrosine Kinase 1 (sflt1)) pathway components. We show increased phospho-ERK staining in migrating angioblasts, consistent with enhanced Vegf activity. Reducing Vegfr2 kinase activity in sema3fb mutants rescues angiogenic sprouting. Our data suggest that Sema3fb plays a critical role in promoting endothelial sprouting through modulating the VEGF signaling pathway, acting as an autocrine cue that modulates intrinsic growth factor signaling.
Collapse
Affiliation(s)
- Charlene Watterston
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Canada
| | - Rami Halabi
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Sarah McFarlane
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Canada
| | - Sarah J. Childs
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Canada
| |
Collapse
|
38
|
Armani G, Pozzi E, Pagani A, Porta C, Rizzo M, Cicognini D, Rovati B, Moccia F, Pedrazzoli P, Ferraris E. The heterogeneity of cancer endothelium: The relevance of angiogenesis and endothelial progenitor cells in cancer microenvironment. Microvasc Res 2021; 138:104189. [PMID: 34062191 DOI: 10.1016/j.mvr.2021.104189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 05/18/2021] [Accepted: 05/22/2021] [Indexed: 01/02/2023]
Abstract
Tumor-associated vessels constitution is the result of angiogenesis, the hallmark of cancer essential for tumor to develop in dimension and to spread throughout the organism. Tumor endothelium is configured as an active functioning organ capable of determine interaction with the immune response and all the other components of the variegate cancer microenvironment, determining reciprocal influence. Angiogenesis is here analyzed in its molecular and cellular mechanisms, multiple mediators and principal players, represented by Endothelial Cells. It is discussed the striking heterogeneity of cancer endothelium, due to morphological and molecular aberrations that it often presents and its multiple origin. Among the cells that participate to the composition of tumor vasculature, Endothelial Progenitor Cells represent an important source for physical sustain and paracrine signaling in the process of angiogenesis. Treatment options are reviewed, with particular focus on novel therapeutic strategies for overcoming tumor resistance to anti-angiogenic agents.
Collapse
Affiliation(s)
- Giovanna Armani
- Division of Medical Oncology, Fondazione IRCCS Policlinico San Matteo, University of Pavia, Italy..
| | - Emma Pozzi
- Medical Oncology Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Anna Pagani
- Medical Oncology Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Camillo Porta
- Division of Translational Oncology, IRCCS Istituti Clinici Scientifici Maugeri, Pavia, Italy
| | - Mimma Rizzo
- Division of Translational Oncology, IRCCS Istituti Clinici Scientifici Maugeri, Pavia, Italy
| | - Daniela Cicognini
- Medical Oncology Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Bianca Rovati
- Medical Oncology Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Francesco Moccia
- Medical Oncology Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Paolo Pedrazzoli
- Medical Oncology Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Elisa Ferraris
- Medical Oncology Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| |
Collapse
|
39
|
Chen M, Li X. Role of TRPV4 channel in vasodilation and neovascularization. Microcirculation 2021; 28:e12703. [PMID: 33971061 DOI: 10.1111/micc.12703] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 05/02/2021] [Indexed: 12/12/2022]
Abstract
The transient receptor potential vanilloid type 4 (TRPV4) channel, a Ca2+ -permeable nonselective cation channel, is widely distributed in the circulatory system, particularly in vascular endothelial cells (ECs) and smooth muscle cells (SMCs). The TRPV4 channel is activated by various endogenous and exogenous stimuli, including shear stress, low intravascular pressure, and arachidonic acid. TRPV4 has a role in mediating vascular tone and arterial blood pressure. The activation of the TRPV4 channel induces Ca2+ influx, thereby resulting in endothelium-dependent hyperpolarization and SMC relaxation through SKCa and IKCa activation on ECs or through BKCa activation on SMCs. Ca2+ binds to calmodulin, which leads to the production of nitric oxide, causing vasodilation. Furthermore, the TRPV4 channel plays an important role in angiogenesis and arteriogenesis and is critical for tumor angiogenesis and growth, since it promotes or inhibits the development of various types of cancer. The TRPV4 channel is involved in the active growth of collateral arteries induced by flow shear stress, which makes it a promising therapeutic target in the occlusion or stenosis of the main arteries. In this review, we explore the role and the potential mechanism of action of the TRPV4 channel in the regulation of vascular tone and in the induction of neovascularization to provide a reference for future research.
Collapse
Affiliation(s)
- Miao Chen
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, China
| | - Xiucun Li
- Department of Hand and Foot Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Anatomy and Histoembryology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
40
|
Okuda KS, Keyser MS, Gurevich DB, Sturtzel C, Mason EA, Paterson S, Chen H, Scott M, Condon ND, Martin P, Distel M, Hogan BM. Live-imaging of endothelial Erk activity reveals dynamic and sequential signalling events during regenerative angiogenesis. eLife 2021; 10:62196. [PMID: 34003110 PMCID: PMC8175085 DOI: 10.7554/elife.62196] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 05/17/2021] [Indexed: 12/23/2022] Open
Abstract
The formation of new blood vessel networks occurs via angiogenesis during development, tissue repair, and disease. Angiogenesis is regulated by intracellular endothelial signalling pathways, induced downstream of vascular endothelial growth factors (VEGFs) and their receptors (VEGFRs). A major challenge in understanding angiogenesis is interpreting how signalling events occur dynamically within endothelial cell populations during sprouting, proliferation, and migration. Extracellular signal-regulated kinase (Erk) is a central downstream effector of Vegf-signalling and reports the signalling that drives angiogenesis. We generated a vascular Erk biosensor transgenic line in zebrafish using a kinase translocation reporter that allows live-imaging of Erk-signalling dynamics. We demonstrate the utility of this line to live-image Erk activity during physiologically relevant angiogenic events. Further, we reveal dynamic and sequential endothelial cell Erk-signalling events following blood vessel wounding. Initial signalling is dependent upon Ca2+ in the earliest responding endothelial cells, but is independent of Vegfr-signalling and local inflammation. The sustained regenerative response, however, involves a Vegfr-dependent mechanism that initiates concomitantly with the wound inflammatory response. This work reveals a highly dynamic sequence of signalling events in regenerative angiogenesis and validates a new resource for the study of vascular Erk-signalling in real-time.
Collapse
Affiliation(s)
- Kazuhide S Okuda
- Organogenesis and Cancer Program, Peter MacCallum Cancer Centre, Melbourne, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia.,Department of Anatomy and Physiology, University of Melbourne, Melbourne, Australia.,Institute for Molecular Bioscience, The University of Queensland, St Lucia, St Lucia, Australia
| | - Mikaela S Keyser
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, St Lucia, Australia
| | - David B Gurevich
- School of Biochemistry, Biomedical Sciences Building, University Walk, University of Bristol, Bristol, United Kingdom.,Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, United Kingdom
| | - Caterina Sturtzel
- Innovative Cancer Models, St Anna Kinderkrebsforschung, Children's Cancer Research Institute, Vienna, Austria.,Zebrafish Platform Austria for preclinical drug screening (ZANDR), Vienna, Austria
| | - Elizabeth A Mason
- Organogenesis and Cancer Program, Peter MacCallum Cancer Centre, Melbourne, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia.,Department of Anatomy and Physiology, University of Melbourne, Melbourne, Australia
| | - Scott Paterson
- Organogenesis and Cancer Program, Peter MacCallum Cancer Centre, Melbourne, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia.,Department of Anatomy and Physiology, University of Melbourne, Melbourne, Australia.,Institute for Molecular Bioscience, The University of Queensland, St Lucia, St Lucia, Australia
| | - Huijun Chen
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, St Lucia, Australia
| | - Mark Scott
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, St Lucia, Australia
| | - Nicholas D Condon
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, St Lucia, Australia
| | - Paul Martin
- School of Biochemistry, Biomedical Sciences Building, University Walk, University of Bristol, Bristol, United Kingdom
| | - Martin Distel
- Innovative Cancer Models, St Anna Kinderkrebsforschung, Children's Cancer Research Institute, Vienna, Austria.,Zebrafish Platform Austria for preclinical drug screening (ZANDR), Vienna, Austria
| | - Benjamin M Hogan
- Organogenesis and Cancer Program, Peter MacCallum Cancer Centre, Melbourne, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia.,Department of Anatomy and Physiology, University of Melbourne, Melbourne, Australia.,Institute for Molecular Bioscience, The University of Queensland, St Lucia, St Lucia, Australia
| |
Collapse
|
41
|
Negri S, Faris P, Moccia F. Endolysosomal Ca 2+ signaling in cardiovascular health and disease. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021; 363:203-269. [PMID: 34392930 DOI: 10.1016/bs.ircmb.2021.03.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
An increase in intracellular Ca2+ concentration ([Ca2+]i) regulates a plethora of functions in the cardiovascular (CV) system, including contraction in cardiomyocytes and vascular smooth muscle cells (VSMCs), and angiogenesis in vascular endothelial cells and endothelial colony forming cells. The sarco/endoplasmic reticulum (SR/ER) represents the largest endogenous Ca2+ store, which releases Ca2+ through ryanodine receptors (RyRs) and/or inositol-1,4,5-trisphosphate receptors (InsP3Rs) upon extracellular stimulation. The acidic vesicles of the endolysosomal (EL) compartment represent an additional endogenous Ca2+ store, which is targeted by several second messengers, including nicotinic acid adenine dinucleotide phosphate (NAADP) and phosphatidylinositol 3,5-bisphosphate [PI(3,5)P2], and may release intraluminal Ca2+ through multiple Ca2+ permeable channels, including two-pore channels 1 and 2 (TPC1-2) and Transient Receptor Potential Mucolipin 1 (TRPML1). Herein, we discuss the emerging, pathophysiological role of EL Ca2+ signaling in the CV system. We describe the role of cardiac TPCs in β-adrenoceptor stimulation, arrhythmia, hypertrophy, and ischemia-reperfusion injury. We then illustrate the role of EL Ca2+ signaling in VSMCs, where TPCs promote vasoconstriction and contribute to pulmonary artery hypertension and atherosclerosis, whereas TRPML1 sustains vasodilation and is also involved in atherosclerosis. Subsequently, we describe the mechanisms whereby endothelial TPCs promote vasodilation, contribute to neurovascular coupling in the brain and stimulate angiogenesis and vasculogenesis. Finally, we discuss about the possibility to target TPCs, which are likely to mediate CV cell infection by the Severe Acute Respiratory Disease-Coronavirus-2, with Food and Drug Administration-approved drugs to alleviate the detrimental effects of Coronavirus Disease-19 on the CV system.
Collapse
Affiliation(s)
- Sharon Negri
- Laboratory of Physiology, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| | - Pawan Faris
- Laboratory of Physiology, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| | - Francesco Moccia
- Laboratory of Physiology, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy.
| |
Collapse
|
42
|
Zakirov B, Charalambous G, Thuret R, Aspalter IM, Van-Vuuren K, Mead T, Harrington K, Regan ER, Herbert SP, Bentley K. Active perception during angiogenesis: filopodia speed up Notch selection of tip cells in silico and in vivo. Philos Trans R Soc Lond B Biol Sci 2021; 376:20190753. [PMID: 33550953 PMCID: PMC7934951 DOI: 10.1098/rstb.2019.0753] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2020] [Indexed: 12/19/2022] Open
Abstract
How do cells make efficient collective decisions during tissue morphogenesis? Humans and other organisms use feedback between movement and sensing known as 'sensorimotor coordination' or 'active perception' to inform behaviour, but active perception has not before been investigated at a cellular level within organs. Here we provide the first proof of concept in silico/in vivo study demonstrating that filopodia (actin-rich, dynamic, finger-like cell membrane protrusions) play an unexpected role in speeding up collective endothelial decisions during the time-constrained process of 'tip cell' selection during blood vessel formation (angiogenesis). We first validate simulation predictions in vivo with live imaging of zebrafish intersegmental vessel growth. Further simulation studies then indicate the effect is due to the coupled positive feedback between movement and sensing on filopodia conferring a bistable switch-like property to Notch lateral inhibition, ensuring tip selection is a rapid and robust process. We then employ measures from computational neuroscience to assess whether filopodia function as a primitive (basal) form of active perception and find evidence in support. By viewing cell behaviour through the 'basal cognitive lens' we acquire a fresh perspective on the tip cell selection process, revealing a hidden, yet vital time-keeping role for filopodia. Finally, we discuss a myriad of new and exciting research directions stemming from our conceptual approach to interpreting cell behaviour. This article is part of the theme issue 'Basal cognition: multicellularity, neurons and the cognitive lens'.
Collapse
Affiliation(s)
- Bahti Zakirov
- Cellular Adaptive Behaviour Lab, Francis Crick Institute, London, NW1 1AT, UK
- Department of Informatics, King's College London, London, UK
| | - Georgios Charalambous
- Division of Developmental Biology and Medicine, University of Manchester, Manchester, UK
| | - Raphael Thuret
- Division of Developmental Biology and Medicine, University of Manchester, Manchester, UK
| | - Irene M. Aspalter
- Cellular Adaptive Behaviour Lab, Francis Crick Institute, London, NW1 1AT, UK
| | - Kelvin Van-Vuuren
- Cellular Adaptive Behaviour Lab, Francis Crick Institute, London, NW1 1AT, UK
| | - Thomas Mead
- Cellular Adaptive Behaviour Lab, Francis Crick Institute, London, NW1 1AT, UK
- Department of Informatics, King's College London, London, UK
| | - Kyle Harrington
- Virtual Technology and Design, University of Idaho, Moscow, ID, USA
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - Erzsébet Ravasz Regan
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Department of Pathology, Harvard Medical School, Boston, MA, USA
- Department of Biology, The College of Wooster, Wooster, OH, USA
| | - Shane Paul Herbert
- Division of Developmental Biology and Medicine, University of Manchester, Manchester, UK
| | - Katie Bentley
- Cellular Adaptive Behaviour Lab, Francis Crick Institute, London, NW1 1AT, UK
- Department of Informatics, King's College London, London, UK
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Department of Pathology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
43
|
Guo Z, Mo Z. Regulation of endothelial cell differentiation in embryonic vascular development and its therapeutic potential in cardiovascular diseases. Life Sci 2021; 276:119406. [PMID: 33785330 DOI: 10.1016/j.lfs.2021.119406] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 03/05/2021] [Accepted: 03/14/2021] [Indexed: 12/17/2022]
Abstract
During vertebrate development, the cardiovascular system begins operating earlier than any other organ in the embryo. Endothelial cell (EC) forms the inner lining of blood vessels, and its extensive proliferation and migration are requisite for vasculogenesis and angiogenesis. Many aspects of cellular biology are involved in vasculogenesis and angiogenesis, including the tip versus stalk cell specification. Recently, epigenetics has attracted growing attention in regulating embryonic vascular development and controlling EC differentiation. Some proteins that regulate chromatin structure have been shown to be directly implicated in human cardiovascular diseases. Additionally, the roles of important EC signaling such as vascular endothelial growth factor and its receptors, angiopoietin-1 and tyrosine kinase containing immunoglobulin and epidermal growth factor homology domain-2, and transforming growth factor-β in EC differentiation during embryonic vasculature development are briefly discussed in this review. Recently, the transplantation of human induced pluripotent stem cell (iPSC)-ECs are promising approaches for the treatment of ischemic cardiovascular disease including myocardial infarction. Patient-specific iPSC-derived EC is a potential new target to study differences in gene expression or response to drugs. However, clinical application of the iPSC-ECs in regenerative medicine is often limited by the challenges of maintaining cell viability and function. Therefore, novel insights into the molecular mechanisms underlying EC differentiation might provide a better understanding of embryonic vascular development and bring out more effective EC-based therapeutic strategies for cardiovascular diseases.
Collapse
Affiliation(s)
- Zi Guo
- Department of Endocrinology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhaohui Mo
- Department of Endocrinology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
44
|
Liu TT, Hou H, Du JL. A protocol for simultaneous Ca 2+ and morphology imaging of brain endothelial tip cells in larval zebrafish. STAR Protoc 2021; 2:100388. [PMID: 33778782 PMCID: PMC7982748 DOI: 10.1016/j.xpro.2021.100388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Endothelial tip cells (ETCs) located at growing blood vessels display high morphological dynamics and associated intracellular Ca2+ activities with different spatiotemporal patterns during migration. Examining the Ca2+ activity and morphological dynamics of ETCs will provide an insight for understanding the mechanism of vascular development in organs, including the brain. Here, we describe a method for simultaneous monitoring and relevant analysis of the Ca2+ activity and morphology of growing brain ETCs in larval zebrafish. For complete details on the use and execution of this protocol, please refer to Liu et al. (2020). Image Ca2+ activity of brain endothelial tip cells (ETCs) in larval zebrafish Image the morphology of ETCs Quantify the spatiotemporal pattern of Ca2+ activities in ETCs Analyze the morphology of ETCs to trace the growing state
Collapse
Affiliation(s)
- Ting-Ting Liu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China.,University of Chinese Academy of Sciences, 19A Yu-Quan Road, Beijing 100049, China
| | - Han Hou
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
| | - Jiu-Lin Du
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China.,University of Chinese Academy of Sciences, 19A Yu-Quan Road, Beijing 100049, China.,School of Life Science and Technology, ShanghaiTech University, 319 Yue-Yang Road, Shanghai 200031, China
| |
Collapse
|
45
|
Yin J, Heutschi D, Belting HG, Affolter M. Building the complex architectures of vascular networks: Where to branch, where to connect and where to remodel? Curr Top Dev Biol 2021; 143:281-297. [PMID: 33820624 DOI: 10.1016/bs.ctdb.2021.01.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The cardiovascular system is the first organ to become functional during vertebrate embryogenesis and is responsible for the distribution of oxygen and nutrients to all cells of the body. The cardiovascular system constitutes a circulatory loop in which blood flows from the heart through arteries into the microvasculature and back through veins to the heart. The vasculature is characterized by the heterogeneity of blood vessels with respect to size, cellular architecture and function, including both larger vessels that are found at defined positions within the body and smaller vessels or vascular beds that are organized in a less stereotyped manner. Recent studies have shed light on how the vascular tree is formed and how the interconnection of all branches is elaborated and maintained. In contrast to many other branched organs such as the lung or the kidney, vessel connection (also called anastomosis) is a key process underlying the formation of vascular networks; each outgrowing angiogenic sprout must anastomose in order to allow blood flow in the newly formed vessel segment. It turns out that during this "sprouting and anastomosis" process, too many vessels are generated, and that blood flow is subsequently optimized through the removal (pruning) of low flow segments. Here, we reflect on the cellular and molecular mechanisms involved in forming the complex architecture of the vasculature through sprouting, anastomosis and pruning, and raise some questions that remain to be addressed in future studies.
Collapse
Affiliation(s)
- Jianmin Yin
- Biozentrum der Universität Basel, Basel, Switzerland
| | | | | | | |
Collapse
|
46
|
Chen YL, Baker TM, Lee F, Shui B, Lee JC, Tvrdik P, Kotlikoff MI, Sonkusare SK. Calcium Signal Profiles in Vascular Endothelium from Cdh5-GCaMP8 and Cx40-GCaMP2 Mice. J Vasc Res 2021; 58:159-171. [PMID: 33706307 PMCID: PMC8102377 DOI: 10.1159/000514210] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 12/23/2020] [Indexed: 01/04/2023] Open
Abstract
INTRODUCTION Studies in Cx40-GCaMP2 mice, which express calcium biosensor GCaMP2 in the endothelium under connexin 40 promoter, have identified the unique properties of endothelial calcium signals. However, Cx40-GCaMP2 mouse is associated with a narrow dynamic range and lack of signal in the venous endothelium. Recent studies have proposed many GCaMPs (GCaMP5/6/7/8) with improved properties although their performance in endothelium-specific calcium studies is not known. METHODS We characterized a newly developed mouse line that constitutively expresses GCaMP8 in the endothelium under the VE-cadherin (Cdh5-GCaMP8) promoter. Calcium signals through endothelial IP3 receptors and TRP vanilloid 4 (TRPV4) ion channels were recorded in mesenteric arteries (MAs) and veins from Cdh5-GCaMP8 and Cx40-GCaMP2 mice. RESULTS Cdh5-GCaMP8 mice showed lower baseline fluorescence intensity, higher dynamic range, and higher amplitudes of individual calcium signals than Cx40-GCaMP2 mice. Importantly, Cdh5-GCaMP8 mice enabled the first recordings of discrete calcium signals in the intact venous endothelium and revealed striking differences in IP3 receptor and TRPV4 channel calcium signals between MAs and mesenteric veins. CONCLUSION Our findings suggest that Cdh5-GCaMP8 mice represent significant improvements in dynamic range, sensitivity for low-intensity signals, and the ability to record calcium signals in venous endothelium.
Collapse
Affiliation(s)
- Yen Lin Chen
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia, USA
| | - Thomas M Baker
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia, USA
| | - Frank Lee
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Bo Shui
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Jane C Lee
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Petr Tvrdik
- Departments of Neurosurgery and Neuroscience and Bioengineering, University of Virginia, Charlottesville, Virginia, USA
| | - Michael I Kotlikoff
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Swapnil K Sonkusare
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia, USA,
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia, USA,
| |
Collapse
|
47
|
Zebrafish as an animal model for biomedical research. Exp Mol Med 2021; 53:310-317. [PMID: 33649498 PMCID: PMC8080808 DOI: 10.1038/s12276-021-00571-5] [Citation(s) in RCA: 250] [Impact Index Per Article: 62.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 12/15/2022] Open
Abstract
Zebrafish have several advantages compared to other vertebrate models used in modeling human diseases, particularly for large-scale genetic mutant and therapeutic compound screenings, and other biomedical research applications. With the impactful developments of CRISPR and next-generation sequencing technology, disease modeling in zebrafish is accelerating the understanding of the molecular mechanisms of human genetic diseases. These efforts are fundamental for the future of precision medicine because they provide new diagnostic and therapeutic solutions. This review focuses on zebrafish disease models for biomedical research, mainly in developmental disorders, mental disorders, and metabolic diseases.
Collapse
|
48
|
Moccia F, Antognazza MR, Lodola F. Towards Novel Geneless Approaches for Therapeutic Angiogenesis. Front Physiol 2021; 11:616189. [PMID: 33551844 PMCID: PMC7855168 DOI: 10.3389/fphys.2020.616189] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 12/08/2020] [Indexed: 12/22/2022] Open
Abstract
Cardiovascular diseases are the leading cause of mortality worldwide. Such a widespread diffusion makes the conditions affecting the heart and blood vessels a primary medical and economic burden. It, therefore, becomes mandatory to identify effective treatments that can alleviate this global problem. Among the different solutions brought to the attention of the medical-scientific community, therapeutic angiogenesis is one of the most promising. However, this approach, which aims to treat cardiovascular diseases by generating new blood vessels in ischemic tissues, has so far led to inadequate results due to several issues. In this perspective, we will discuss cutting-edge approaches and future perspectives to alleviate the potentially lethal impact of cardiovascular diseases. We will focus on the consolidated role of resident endothelial progenitor cells, particularly endothelial colony forming cells, as suitable candidates for cell-based therapy demonstrating the importance of targeting intracellular Ca2+ signaling to boost their regenerative outcome. Moreover, we will elucidate the advantages of physical stimuli over traditional approaches. In particular, we will critically discuss recent results obtained by using optical stimulation, as a novel strategy to drive endothelial colony forming cells fate and its potential in the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Francesco Moccia
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | - Maria Rosa Antognazza
- Center for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia, Milan, Italy
| | - Francesco Lodola
- Center for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia, Milan, Italy.,Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| |
Collapse
|
49
|
Piezo1-Mediated Ca2+ Activities Regulate Brain Vascular Pathfinding during Development. Neuron 2020; 108:180-192.e5. [DOI: 10.1016/j.neuron.2020.07.025] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 06/26/2020] [Accepted: 07/21/2020] [Indexed: 12/17/2022]
|
50
|
Komici K, Faris P, Negri S, Rosti V, García-Carrasco M, Mendoza-Pinto C, Berra-Romani R, Cervera R, Guerra G, Moccia F. Systemic lupus erythematosus, endothelial progenitor cells and intracellular Ca2+ signaling: A novel approach for an old disease. J Autoimmun 2020; 112:102486. [DOI: 10.1016/j.jaut.2020.102486] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 05/07/2020] [Accepted: 05/09/2020] [Indexed: 02/07/2023]
|