1
|
Wu Z, Gao L, Ashraf MA, Nan Q. Interaction Between Actin and Microtubules During Plant Development. Cytoskeleton (Hoboken) 2025. [PMID: 40237573 DOI: 10.1002/cm.22029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 03/30/2025] [Accepted: 04/07/2025] [Indexed: 04/18/2025]
Abstract
The dynamic interaction between actin filaments (AFs) and microtubules (MTs) plays a crucial role in regulating key developmental and physiological processes in plant cells, particularly in the formation of specialized cell types with distinct shapes and functions, such as pollen tubes, trichomes, and leaf epidermal cells. These cytoskeletal components are organized into specialized structures, and their coordination is tightly regulated by molecular mechanisms, including ROP signaling pathways that control actin- and microtubule-binding proteins. Additionally, bifunctional proteins such as kinesins and myosins, which interact with both AFs and MTs, further facilitate the coordination of cytoskeletal activities, thus regulating cell morphology. Recent advances in understanding of stomatal development (Arabidopsis and maize), moss protonemal cells, and xylem differentiation have provided novel mechanistic insights into cytoskeletal crosstalk. This review, based on recent discoveries, focuses on the role of actin-microtubule interactions in the formation of new cell types, vesicular transport, and cell division. Furthermore, we highlight the molecular mechanisms that govern these interactions and propose future research directions in this field.
Collapse
Affiliation(s)
- Zining Wu
- Institute of Future Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Lidong Gao
- Institute of Future Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - M Arif Ashraf
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | - Qiong Nan
- Institute of Future Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
2
|
Xie W, Zhao Y, Deng X, Chen R, Qiang Z, García-Caparros P, Mao T, Qin T. GLABRA3-mediated trichome branching requires transcriptional repression of MICROTUBULE-DESTABILIZING PROTEIN25. PLANT PHYSIOLOGY 2024; 197:kiae563. [PMID: 39431560 DOI: 10.1093/plphys/kiae563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 09/21/2024] [Indexed: 10/22/2024]
Abstract
Microtubules play pivotal roles in establishing trichome branching patterns, which is a model system for studying cell-shape control in Arabidopsis (Arabidopsis thaliana). However, the signaling pathway that regulates microtubule reorganization during trichome branching remains poorly understood. In this study, we report that MICROTUBULE-DESTABILIZING PROTEIN25 (MDP25) is involved in GLABRA3 (GL3)-mediated trichome branching by regulating microtubule stability. Loss of MDP25 function led to excessive trichome branching, and this phenotype in mdp25 could not be rescued by the MDP25 K7A or MDP25 K18A mutated variants. Pharmacological treatment and live-cell imaging revealed increased microtubule stability in the mdp25 mutant. Furthermore, the microtubule collar observed during trichome branching remained more intact in mdp25 compared to the WT under oryzalin treatment. Results of genetic assays further demonstrated that knocking out MDP25 rescued the reduced branching phenotype of gl3 trichomes. In gl3 trichomes, normal microtubule organization was disrupted, and microtubule stability was significantly compromised. Moreover, GL3 physically bound to the MDP25 promoter, thereby inhibiting its expression. Overexpression of GL3 negated the effects of PMDP25-driven MDP25 or its mutant proteins on trichome branching and microtubules in the mdp25 background. Overall, our study uncovers a mechanism by which GL3 inhibits MDP25 transcription, thereby influencing microtubule stability and regulating trichome branching. This mechanism provides a connection between early regulatory components and microtubules during trichome development.
Collapse
Affiliation(s)
- Wenfei Xie
- College of Grassland Agriculture, Northwest A&F University, Yangling 712100, China
| | - Yuang Zhao
- College of Grassland Agriculture, Northwest A&F University, Yangling 712100, China
| | - Xianwang Deng
- College of Grassland Agriculture, Northwest A&F University, Yangling 712100, China
| | - Ruixin Chen
- College of Grassland Agriculture, Northwest A&F University, Yangling 712100, China
| | - Zhiquan Qiang
- College of Grassland Agriculture, Northwest A&F University, Yangling 712100, China
| | - Pedro García-Caparros
- Department of Superior School Engineering, University of Almería, Ctra. Sacramento 04120, Almería, Spain
| | - Tonglin Mao
- State Key Laboratory of Plant Physiology and Biochemistry, Department of Plant Sciences, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Tao Qin
- College of Grassland Agriculture, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
3
|
Niu L, Xie W, Li Q, Wang Y, Zhang X, Shi M, Zeng J, Li M, Wang Y, Shao J, Yu F, An L. BEACH domain-containing protein SPIRRIG facilitates microtubule cytoskeleton-associated trichome morphogenesis in Arabidopsis. PLANTA 2024; 260:115. [PMID: 39400709 DOI: 10.1007/s00425-024-04545-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 10/02/2024] [Indexed: 10/15/2024]
Abstract
MAIN CONCLUSION Our studies reveal the involvement of SPI in cytoskeleton-associated trichome morphogenesis, expanding the roles of SPI in regulating plant epidermal cell development. Acquisition of distinct shapes is crucial for cells to perform their biological functions in multicellular organisms. Trichomes are specialized epidermal cells of plant aerial parts, offering an excellent paradigm for dissecting the underlying regulatory mechanism of plant cell shape development at the single-cell level. SPIRRIG (SPI) that encodes a BEACH domain-containing protein was initially identified to regulate trichome branch extension, but the possible pathway(s) through which SPI regulates trichome morphogenesis remain unclear. Here, we report that SPI facilitates microtubule-associated regulation on trichome branching in Arabidopsis. Functional loss of SPI results in trichome morphogenesis hyper-sensitive to the microtubule-disrupting drug oryzalin, implying SPI may mediate microtubule stability during trichome development. Accordingly, spi mutant has less-branched trichomes. Detailed live-cell imaging showed that the spatio-temporal microtubule organization during trichome morphogenesis is aberrant in spi mutants. Further genetic investigation indicated that SPI may cooperate with ZWICHEL (ZWI) to modulate microtubule dynamics during trichome morphogenesis. ZWI encodes a kinesin-like calmodulin-binding protein (KCBP), whose distribution is necessary for the proper microtubule organization in trichomes, and zwi mutants produce less-branched trichomes as well. Trichome branching is further inhibited in spi-3 zwi-101 double mutants compared to either of the single mutant. Moreover, we found SPI could co-localize with the MYTH4 domain of ZWI. Taken together, our results expand the role of SPI in regulating trichome morphogenesis and also reveal a molecular and genetic pathway in plant cell shape formation control.
Collapse
Affiliation(s)
- Linyu Niu
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production and College of Life Sciences, Northwest A&F University, 22 Xinong Rd, Yangling, Shaanxi Province, 712100, People's Republic of China
| | - Wenjuan Xie
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production and College of Life Sciences, Northwest A&F University, 22 Xinong Rd, Yangling, Shaanxi Province, 712100, People's Republic of China
| | - Qian Li
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production and College of Life Sciences, Northwest A&F University, 22 Xinong Rd, Yangling, Shaanxi Province, 712100, People's Republic of China
| | - Yali Wang
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production and College of Life Sciences, Northwest A&F University, 22 Xinong Rd, Yangling, Shaanxi Province, 712100, People's Republic of China
| | - Xuanyu Zhang
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production and College of Life Sciences, Northwest A&F University, 22 Xinong Rd, Yangling, Shaanxi Province, 712100, People's Republic of China
| | - Muyang Shi
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production and College of Life Sciences, Northwest A&F University, 22 Xinong Rd, Yangling, Shaanxi Province, 712100, People's Republic of China
| | - Jingyu Zeng
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production and College of Life Sciences, Northwest A&F University, 22 Xinong Rd, Yangling, Shaanxi Province, 712100, People's Republic of China
| | - Mengxiang Li
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production and College of Life Sciences, Northwest A&F University, 22 Xinong Rd, Yangling, Shaanxi Province, 712100, People's Republic of China
| | - Yanling Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, People's Republic of China
| | - Jingxia Shao
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production and College of Life Sciences, Northwest A&F University, 22 Xinong Rd, Yangling, Shaanxi Province, 712100, People's Republic of China
| | - Fei Yu
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production and College of Life Sciences, Northwest A&F University, 22 Xinong Rd, Yangling, Shaanxi Province, 712100, People's Republic of China
| | - Lijun An
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production and College of Life Sciences, Northwest A&F University, 22 Xinong Rd, Yangling, Shaanxi Province, 712100, People's Republic of China.
| |
Collapse
|
4
|
Xu C, Zhu X, Xu A, Song J, Liang S. Construction and validation of co-expression vector for rice alpha tubulin and microtubule associated protein respectively fused with fluorescent proteins. PeerJ 2024; 12:e18118. [PMID: 39346063 PMCID: PMC11439384 DOI: 10.7717/peerj.18118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 08/28/2024] [Indexed: 10/01/2024] Open
Abstract
Microtubule (MT) consists of α-tubulin and β-tubulin. The dynamic instability regulated by various microtubule associated proteins (MAPs) is essential for MT functions. To analyze the interaction between tubulin/MT and MAP in vivo, we usually need tubulin and MAP co-expressed. Here, we constructed a dual-transgene vector expressing rice (Oryza sativa) α-tubulin and MAP simultaneously. To construct this vector, plant expression vector pCambia1301 was used as the plasmid backbone and Gibson assembly cloning technology was used. We first fused and cloned the GFP fragment, α-tubulin open reading frame (ORF), and NOS terminator into the vector pCambia1301 to construct the p35S::GFP-α-tubulin vector that expressed GFP-α-tubulin fusion protein. Subsequently, we fused and cloned the CaMV 35S promoter, mCherry fragment, and NOS terminator into the p35S::GFP-α-tubulin vector to generate the universal dual-transgene expression vector (p35S::GFP-α-tubulin-p35S::mCherry vector). With the p35S::GFP-α-tubulin-p35S::mCherry vector, MAP ORF can be cloned into the site of 5' or 3' terminus of mCherry to co-express GFP-α-tubulin and MAP-mCherry/mCherry-MAP. To validate the availability and universality of the dual-transgene expression vector, a series of putative rice MAP genes including GL7, OsKCBP, OsCLASP, and OsMOR1 were cloned into the vector respectively, transformed into Agrobacterium tumefaciens strain, and expressed in Nicotiana benthamiana leaves. The results indicated that all of the MAPs were co-expressed with α-tubulin and localized to MTs, validating the availability and universality of the vector and that GL7, OsKCBP, OsCLASP, and OsMOR1 might be MAPs. The application of the co-expression vector constructed by us would facilitate studies on the interaction between tubulin/MT and MAP in tobacco transient expression systems or transgenic rice.
Collapse
Affiliation(s)
- Chenshan Xu
- College of Life Science, Dezhou University, Dezhou, Shandong, China
| | - Xiaoli Zhu
- College of Life Science, Dezhou University, Dezhou, Shandong, China
| | - Aihong Xu
- College of Ecology, Resources and Environment, Dezhou University, Dezhou, Shandong, China
| | - Jian Song
- College of Life Science, Dezhou University, Dezhou, Shandong, China
| | - Shuxia Liang
- College of Life Science, Dezhou University, Dezhou, Shandong, China
| |
Collapse
|
5
|
Song Z, Zhang C, Song G, Wei H, Xu W, Pan H, Ding C, Xu M, Zhen Y. Unraveling the lncRNA-miRNA-mRNA Regulatory Network Involved in Poplar Coma Development through High-Throughput Sequencing. Int J Mol Sci 2024; 25:7403. [PMID: 39000510 PMCID: PMC11242837 DOI: 10.3390/ijms25137403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/25/2024] [Accepted: 06/28/2024] [Indexed: 07/16/2024] Open
Abstract
Poplar coma, the fluff-like appendages of seeds originating from the differentiated surface cells of the placenta and funicle, aids in the long-distance dispersal of seeds in the spring. However, it also poses hazards to human safety and causes pollution in the surrounding environment. Unraveling the regulatory mechanisms governing the initiation and development of coma is essential for addressing this issue comprehensively. In this study, strand-specific RNA-seq was conducted at three distinct stages of coma development, revealing 1888 lncRNAs and 52,810 mRNAs. The expression profiles of lncRNAs and mRNAs during coma development were analyzed. Subsequently, potential target genes of lncRNAs were predicted through co-localization and co-expression analyses. Integrating various types of sequencing data, lncRNA-miRNA-TF regulatory networks related to the initiation of coma were constructed. Utilizing identified differentially expressed genes encoding kinesin and actin, lncRNA-miRNA-mRNA regulatory networks associated with the construction and arrangement of the coma cytoskeleton were established. Additionally, relying on differentially expressed genes encoding cellulose synthase, sucrose synthase, and expansin, lncRNA-miRNA-mRNA regulatory networks related to coma cell wall synthesis and remodeling were developed. This study not only enhances the comprehension of lncRNA but also provides novel insights into the molecular mechanisms governing the initiation and development of poplar coma.
Collapse
Affiliation(s)
- Zihe Song
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Chenghao Zhang
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Guotao Song
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Hang Wei
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Wenlin Xu
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Huixin Pan
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Changjun Ding
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Meng Xu
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Yan Zhen
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
6
|
Liu L, Wang Y, Cao W, Yang L, Zhang C, Yuan L, Wang D, Wang W, Zhang H, Schiefelbein J, Yu F, An L. TRANSPARENT TESTA GLABRA2 defines trichome cell shape by modulating actin cytoskeleton in Arabidopsis thaliana. PLANT PHYSIOLOGY 2024; 195:1256-1276. [PMID: 38391271 DOI: 10.1093/plphys/kiae091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/11/2024] [Accepted: 01/17/2024] [Indexed: 02/24/2024]
Abstract
The Arabidopsis (Arabidopsis thaliana) TRANSPARENT TESTA GLABRA2 (TTG2) gene encodes a WRKY transcription factor that regulates a range of development events like trichome, seed coat, and atrichoblast formation. Loss-of-function of TTG2 was previously shown to reduce or eliminate trichome specification and branching. Here, we report the identification of an allele of TTG2, ttg2-6. In contrast to the ttg2 mutants described before, ttg2-6 displayed unique trichome phenotypes. Some ttg2-6 mutant trichomes were hyper-branched, whereas others were hypo-branched, distorted, or clustered. Further, we found that in addition to specifically activating R3 MYB transcription factor TRIPTYCHON (TRY) to modulate trichome specification, TTG2 also integrated cytoskeletal signaling to regulate trichome morphogenesis. The ttg2-6 trichomes displayed aberrant cortical microtubules (cMTs) and actin filaments (F-actin) configurations. Moreover, genetic and biochemical analyses showed that TTG2 could directly bind to the promoter and regulate the expression of BRICK1 (BRK1), which encodes a subunit of the actin nucleation promoting complex suppressor of cyclic AMP repressor (SCAR)/Wiskott-Aldrich syndrome protein family verprolin homologous protein (WAVE). Collectively, taking advantage of ttg2-6, we uncovered a function for TTG2 in facilitating cMTs and F-actin cytoskeleton-dependent trichome development, providing insight into cellular signaling events downstream of the core transcriptional regulation during trichome development in Arabidopsis.
Collapse
Affiliation(s)
- Lu Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yali Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Weihua Cao
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lan Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chi Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lanxin Yuan
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Dan Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wenjia Wang
- CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Hongchang Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - John Schiefelbein
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Fei Yu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lijun An
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
7
|
Zhu H, Xu J, Yu K, Wu J, Xu H, Wang S, Wen T. Genome-wide identification of the key Kinesin genes during fiber and boll development in upland cotton (Gossypium hirsutum L). Mol Genet Genomics 2024; 299:2. [PMID: 38200363 DOI: 10.1007/s00438-023-02087-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 10/11/2023] [Indexed: 01/12/2024]
Abstract
Kinesin is a kind of motor protein, which interacts with microtubule filaments and regulates cellulose synthesis. Cotton fiber is a natural model for studying the cellular development and cellulose synthesis. Therefore, a systematic research of Kinesin gene family in cotton (Gossypium spp.) will be beneficial for both understanding the function of Kinesin protein and assisting the fiber improvement. Here, we aimed to identify the key Kinesin genes present in cotton by combining genome-wide expression profile data, association mapping, and public quantitative trait loci (QTLs) in upland cotton (Gossypium hirsutum L.). Results showed that 159 Kinesin genes, including 15 genes of the Kinesin-13 gene subfamily, were identified in upland cotton; of which 157 Kinesin genes can be traced back to the diploid ancestors, G. raimondii and G. arboreum. Using a combined analysis of public QTLs and genome-wide expression profile information, there were 29 QTLs co-localized together with 28 Kinesin genes in upland cotton, including 10 Kinesin-13 subfamily genes. Genome-wide expression profile data indicated that, among the 28 co-localized genes, seven Kinesin genes were predominantly expressed in fibers or ovules. By association mapping analysis, 30 Kinesin genes were significantly associated with three fiber traits, among which a Kinesin-13 gene, Ghir_A11G028430, was found to be associated with both cotton boll length and lint weight, and one Kinesin-7 gene, Ghir_D04G017880 (Gh_Kinesin7), was significantly associated with fiber strength. In addition, two missense mutations were identified in the motor domain of the Gh_Kinesin7 protein. Overall, the Kinesin gene family seemingly plays an important role in cotton fiber and boll development. The exploited Kinesin genes will be beneficial for the genetic improvement of fiber quality and yield.
Collapse
Affiliation(s)
- Hong Zhu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China
| | - Jianzhong Xu
- Agriculture and Rural Affairs Bureau of Gao'an, Yichun, 330800, Jiangxi, China
| | - Kanbing Yu
- Xishuangbanna Institute of Agricultural Science, Xishuangbanna Autonomous Prefecture, 666100, Yunnan, China
| | - Jianfei Wu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China
| | - Huifang Xu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China
| | - Shubin Wang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China
| | - Tianwang Wen
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China.
| |
Collapse
|
8
|
Suárez-Baron H, Alzate JF, Ambrose BA, Pelaz S, González F, Pabón-Mora N. Comparative morphoanatomy and transcriptomic analyses reveal key factors controlling floral trichome development in Aristolochia (Aristolochiaceae). JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6588-6607. [PMID: 37656729 DOI: 10.1093/jxb/erad345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 08/30/2023] [Indexed: 09/03/2023]
Abstract
Trichomes are specialized epidermal cells in aerial plant parts. Trichome development proceeds in three stages, determination of cell fate, specification, and morphogenesis. Most genes responsible for these processes have been identified in the unicellular branched leaf trichomes from the model Arabidopsis thaliana. Less is known about the molecular basis of multicellular trichome formation across flowering plants, especially those formed in floral organs of early diverging angiosperms. Here, we aim to identify the genetic regulatory network (GRN) underlying multicellular trichome development in the kettle-shaped trap flowers of Aristolochia (Aristolochiaceae). We selected two taxa for comparison, A. fimbriata, with trichomes inside the perianth, which play critical roles in pollination, and A. macrophylla, lacking specialized trichomes in the perianth. A detailed morphoanatomical characterization of floral epidermis is presented for the two species. We compared transcriptomic profiling at two different developmental stages in the different perianth portions (limb, tube, and utricle) of the two species. Moreover, we present a comprehensive expression map for positive regulators and repressors of trichome development, as well as cell cycle regulators. Our data point to extensive modifications in gene composition, expression, and putative roles in all functional categories when compared with model species. We also record novel differentially expressed genes (DEGs) linked to epidermis patterning and trichome development. We thus propose the first hypothetical genetic regulatory network (GRN) underlying floral multicellular trichome development in Aristolochia, and pinpoint key factors responsible for the presence and specialization of floral trichomes in phylogenetically distant species of the genus.
Collapse
Affiliation(s)
- Harold Suárez-Baron
- Department of Natural Sciences and Mathematics, Pontificia Universidad Javeriana Cali, Cali, Colombia
- Instituto de Biología, Universidad de Antioquia, Medellín, Colombia
| | - Juan F Alzate
- Centro Nacional de Secuenciación Genómica (CNSG), Sede de Investigación Universitaria, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | | | - Soraya Pelaz
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, Barcelona, Spain
- ICREA (Institució Catalana de Recerca i Estudis Avançats), Barcelona, Spain
| | - Favio González
- Universidad Nacional de Colombia, Sede Bogotá Facultad de Ciencias, Instituto de Ciencias Naturales, Bogotá, Colombia
| | | |
Collapse
|
9
|
Du P, Liu Y, Deng L, Qian D, Xue X, Yang T, Li T, Xiang Y, Ren H. AtMAC stabilizes the phragmoplast by crosslinking microtubules and actin filaments during cytokinesis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:1950-1965. [PMID: 37093857 DOI: 10.1111/jipb.13497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 04/23/2023] [Indexed: 05/03/2023]
Abstract
The phragmoplast, a structure crucial for the completion of cytokinesis in plant cells, is composed of antiparallel microtubules (MTs) and actin filaments (AFs). However, how the parallel structure of phragmoplast MTs and AFs is maintained, especially during centrifugal phragmoplast expansion, remains elusive. Here, we analyzed a new Arabidopsis thaliana MT and AF crosslinking protein (AtMAC). When AtMAC was deleted, the phragmoplast showed disintegrity during centrifugal expansion, and the resulting phragmoplast fragmentation led to incomplete cell plates. Overexpression of AtMAC increased the resistance of phragmoplasts to depolymerization and caused the formation of additional phragmoplasts during cytokinesis. Biochemical experiments showed that AtMAC crosslinked MTs and AFs in vitro, and the truncated AtMAC protein, N-CC1, was the key domain controlling the ability of AtMAC. Further analysis showed that N-CC1(51-154) is the key domain for binding MTs, and N-CC1(51-125) for binding AFs. In conclusion, AtMAC is the novel MT and AF crosslinking protein found to be involved in regulation of phragmoplast organization during centrifugal phragmoplast expansion, which is required for complete cytokinesis.
Collapse
Affiliation(s)
- Pingzhou Du
- Center for Biological Science and Technology, Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, Zhuhai-Macao Biotechnology Joint Laboratory, Advanced Institute of Natural Science, Beijing Normal University, Zhuhai, 519087, China
| | - Yu Liu
- Center for Biological Science and Technology, Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, Zhuhai-Macao Biotechnology Joint Laboratory, Advanced Institute of Natural Science, Beijing Normal University, Zhuhai, 519087, China
| | - Lu Deng
- Center for Biological Science and Technology, Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, Zhuhai-Macao Biotechnology Joint Laboratory, Advanced Institute of Natural Science, Beijing Normal University, Zhuhai, 519087, China
| | - Dong Qian
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Xiuhua Xue
- Center for Biological Science and Technology, Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, Zhuhai-Macao Biotechnology Joint Laboratory, Advanced Institute of Natural Science, Beijing Normal University, Zhuhai, 519087, China
| | - Ting Yang
- Center for Biological Science and Technology, Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, Zhuhai-Macao Biotechnology Joint Laboratory, Advanced Institute of Natural Science, Beijing Normal University, Zhuhai, 519087, China
| | - Tonghui Li
- Center for Biological Science and Technology, Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, Zhuhai-Macao Biotechnology Joint Laboratory, Advanced Institute of Natural Science, Beijing Normal University, Zhuhai, 519087, China
| | - Yun Xiang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Haiyun Ren
- Center for Biological Science and Technology, Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, Zhuhai-Macao Biotechnology Joint Laboratory, Advanced Institute of Natural Science, Beijing Normal University, Zhuhai, 519087, China
| |
Collapse
|
10
|
Inaba H, Oikawa K, Ishikawa K, Kodama Y, Matsuura K, Numata K. Binding of Tau-derived peptide-fused GFP to plant microtubules in Arabidopsis thaliana. PLoS One 2023; 18:e0286421. [PMID: 37267323 DOI: 10.1371/journal.pone.0286421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 05/16/2023] [Indexed: 06/04/2023] Open
Abstract
Studies on how exogenous molecules modulate properties of plant microtubules, such as their stability, structure, and dynamics, are important for understanding and modulating microtubule functions in plants. We have developed a Tau-derived peptide (TP) that binds to microtubules and modulates their properties by binding of TP-conjugated molecules in vitro. However, there was no investigation of TPs on microtubules in planta. Here, we generated transgenic Arabidopsis thaliana plants stably expressing TP-fused superfolder GFP (sfGFP-TP) and explored the binding properties and effects of sfGFP-TP on plant microtubules. Our results indicate that the expressed sfGFP-TP binds to the plant microtubules without inhibiting plant growth. A transgenic line strongly expressing sfGFP-TP produced thick fibrous structures that were stable under conditions where microtubules normally depolymerize. This study generates a new tool for analyzing and modulating plant microtubules.
Collapse
Affiliation(s)
- Hiroshi Inaba
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Tottori, Japan
- Centre for Research on Green Sustainable Chemistry, Tottori University, Tottori, Japan
| | - Kazusato Oikawa
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Kazuya Ishikawa
- Center for Bioscience Research and Education, Utsunomiya University, Tochigi, Japan
| | - Yutaka Kodama
- Center for Bioscience Research and Education, Utsunomiya University, Tochigi, Japan
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
| | - Kazunori Matsuura
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Tottori, Japan
- Centre for Research on Green Sustainable Chemistry, Tottori University, Tottori, Japan
| | - Keiji Numata
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
| |
Collapse
|
11
|
Zhang Y, Dong G, Wu L, Wang X, Chen F, Xiong E, Xiong G, Zhou Y, Kong Z, Fu Y, Zeng D, Ma D, Qian Q, Yu Y. Formin protein DRT1 affects gross morphology and chloroplast relocation in rice. PLANT PHYSIOLOGY 2023; 191:280-298. [PMID: 36102807 PMCID: PMC9806613 DOI: 10.1093/plphys/kiac427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/21/2022] [Indexed: 06/15/2023]
Abstract
Plant height and tiller number are two major factors determining plant architecture and yield. However, in rice (Oryza sativa), the regulatory mechanism of plant architecture remains to be elucidated. Here, we reported a recessive rice mutant presenting dwarf and reduced tillering phenotypes (drt1). Map-based cloning revealed that the phenotypes are caused by a single point mutation in DRT1, which encodes the Class I formin protein O. sativa formin homolog 13 (OsFH13), binds with F-actin, and promotes actin polymerization for microfilament organization. DRT1 protein localized on the plasma membrane (PM) and chloroplast (CP) outer envelope. DRT1 interacted with rice phototropin 2 (OsPHOT2), and the interaction was interrupted in drt1. Upon blue light stimulus, PM localized DRT1 and OsPHOT2 were translocated onto the CP membrane. Moreover, deficiency of DRT1 reduced OsPHOT2 internalization and OsPHOT2-mediated CP relocation. Our study suggests that rice formin protein DRT1/OsFH13 is necessary for plant morphology and CP relocation by modulating the actin-associated cytoskeleton network.
Collapse
Affiliation(s)
- Yanli Zhang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
- Rice Research Institute, Shenyang Agricultural University, Shenyang, 110866, China
| | - Guojun Dong
- State Key Laboratory for Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Limin Wu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
| | - Xuewen Wang
- Institute of Plant Breeding, Genetics, and Genomics, University of Georgia, Athens, Georgia, 30601, USA
| | - Fei Chen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
| | - Erhui Xiong
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
| | - Guosheng Xiong
- Institute of Agricultural Genomics, Chinese Academy of Agricultural Sciences, Shenzhen, 100018, China
| | - Yihua Zhou
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhaosheng Kong
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ying Fu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Dali Zeng
- State Key Laboratory for Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Dianrong Ma
- Rice Research Institute, Shenyang Agricultural University, Shenyang, 110866, China
| | - Qian Qian
- State Key Laboratory for Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Yanchun Yu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, 310036, China
| |
Collapse
|
12
|
Kuan C, Yang SL, Ho CMK. Using quantitative methods to understand leaf epidermal development. QUANTITATIVE PLANT BIOLOGY 2022; 3:e28. [PMID: 37077990 PMCID: PMC10097589 DOI: 10.1017/qpb.2022.25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 10/25/2022] [Accepted: 11/13/2022] [Indexed: 05/03/2023]
Abstract
As the interface between plants and the environment, the leaf epidermis provides the first layer of protection against drought, ultraviolet light, and pathogen attack. This cell layer comprises highly coordinated and specialised cells such as stomata, pavement cells and trichomes. While much has been learned from the genetic dissection of stomatal, trichome and pavement cell formation, emerging methods in quantitative measurements that monitor cellular or tissue dynamics will allow us to further investigate cell state transitions and fate determination in leaf epidermal development. In this review, we introduce the formation of epidermal cell types in Arabidopsis and provide examples of quantitative tools to describe phenotypes in leaf research. We further focus on cellular factors involved in triggering cell fates and their quantitative measurements in mechanistic studies and biological patterning. A comprehensive understanding of how a functional leaf epidermis develops will advance the breeding of crops with improved stress tolerance.
Collapse
Affiliation(s)
- Chi Kuan
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei City, Taiwan
| | - Shao-Li Yang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei City, Taiwan
| | - Chin-Min Kimmy Ho
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei City, Taiwan
| |
Collapse
|
13
|
The Cytoskeleton in Plant Immunity: Dynamics, Regulation, and Function. Int J Mol Sci 2022; 23:ijms232415553. [PMID: 36555194 PMCID: PMC9779068 DOI: 10.3390/ijms232415553] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/04/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
The plant cytoskeleton, consisting of actin filaments and microtubules, is a highly dynamic filamentous framework involved in plant growth, development, and stress responses. Recently, research has demonstrated that the plant cytoskeleton undergoes rapid remodeling upon sensing pathogen attacks, coordinating the formation of microdomain immune complexes, the dynamic and turnover of pattern-recognizing receptors (PRRs), the movement and aggregation of organelles, and the transportation of defense compounds, thus serving as an important platform for responding to pathogen infections. Meanwhile, pathogens produce effectors targeting the cytoskeleton to achieve pathogenicity. Recent findings have uncovered several cytoskeleton-associated proteins mediating cytoskeletal remodeling and defense signaling. Furthermore, the reorganization of the actin cytoskeleton is revealed to further feedback-regulate reactive oxygen species (ROS) production and trigger salicylic acid (SA) signaling, suggesting an extremely complex role of the cytoskeleton in plant immunity. Here, we describe recent advances in understanding the host cytoskeleton dynamics upon sensing pathogens and summarize the effectors that target the cytoskeleton. We highlight advances in the regulation of cytoskeletal remodeling associated with the defense response and assess the important function of the rearrangement of the cytoskeleton in the immune response. Finally, we propose suggestions for future research in this area.
Collapse
|
14
|
nKCBP controls central vacuole formation for symbiosome development. NATURE PLANTS 2022; 8:1218-1219. [PMID: 36333590 DOI: 10.1038/s41477-022-01262-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
|
15
|
Zhang X, Wang Q, Wu J, Qi M, Zhang C, Huang Y, Wang G, Wang H, Tian J, Yu Y, Chen D, Li Y, Wang D, Zhang Y, Xue Y, Kong Z. A legume kinesin controls vacuole morphogenesis for rhizobia endosymbiosis. NATURE PLANTS 2022; 8:1275-1288. [PMID: 36316454 DOI: 10.1038/s41477-022-01261-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 09/09/2022] [Indexed: 06/16/2023]
Abstract
Symbioses between legumes and rhizobia require establishment of the plant-derived symbiosome membrane, which surrounds the rhizobia and accommodates the symbionts by providing an interface for nutrient and signal exchange. The host cytoskeleton and endomembrane trafficking systems play central roles in the formation of a functional symbiotic interface for rhizobia endosymbiosis; however, the underlying mechanisms remain largely unknown. Here we demonstrate that the nodulation-specific kinesin-like calmodulin-binding protein (nKCBP), a plant-specific microtubule-based kinesin motor, controls central vacuole morphogenesis in symbiotic cells in Medicago truncatula. Phylogenetic analysis further indicated that nKCBP duplication occurs solely in legumes of the clade that form symbiosomes. Knockout of nKCBP results in central vacuole deficiency, defective symbiosomes and abolished nitrogen fixation. nKCBP decorates linear particles along microtubules, and crosslinks microtubules with the actin cytoskeleton, to control central vacuole formation by modulating vacuolar vesicle fusion in symbiotic cells. Together, our findings reveal that rhizobia co-opted nKCBP to achieve symbiotic interface formation by regulating cytoskeletal assembly and central vacuole morphogenesis during nodule development.
Collapse
Affiliation(s)
- Xiaxia Zhang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Qi Wang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Jingxia Wu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Meifang Qi
- State Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Science, Chinese Academy of Sciences, Shanghai, China
| | - Chen Zhang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Yige Huang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Guangda Wang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Huan Wang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Juan Tian
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Yanjun Yu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Dasong Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Youguo Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Dong Wang
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA, USA
| | - Yijing Zhang
- State Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Science, Chinese Academy of Sciences, Shanghai, China
| | - Yongbiao Xue
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Zhaosheng Kong
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China.
- Houji Laboratory in Shanxi Province, Academy of Agronomy, Shanxi Agricultural University, Taiyuan, China.
| |
Collapse
|
16
|
Xing X, Liu M, Jiang F, Zhou R, Bai Y, Wei H, Zhang D, Wei J, Wu Z. Abscisic acid induces the expression of AsKIN during the recovery period of garlic cryopreservation. PLANT CELL REPORTS 2022; 41:1955-1973. [PMID: 36066602 DOI: 10.1007/s00299-022-02894-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/12/2022] [Indexed: 06/15/2023]
Abstract
Abscisic acid induced the expression of AsKIN during the recovery period of garlic cryopreservation. AsKIN was identified as a gene involved in cold and osmotic stress resistance. Cryopreservation has been proven to be effective in removing viruses from garlic. However, oxidative damage in cryopreservation has a significant impact on the survival after preservation. Abscisic acid (ABA) has been shown to reduce oxidative stress and promote the survival after cryopreservation. However, it is not clear which genes play important roles in this process. In this study, we added ABA to the dehydration step and analyzed the transcriptomic divergences between the ABA-treated group and the control group in three cryogenic steps (dehydration, unloading and recovery). By short time-series expression miner (STEM) analysis and weighted gene co-expression network analysis (WGCNA), the recovery step was identified as the period of significant changes in gene expression levels in cryopreservation. The addition of ABA promoted the upregulated expression of microtubule-related genes in the recovery step. We further identified AsKIN as a hub gene in the recovery step and verified its function. The results showed that overexpression of AsKIN enhanced the tolerance of Arabidopsis to oxidative stress in cryopreservation, influenced the expression of genes in response to cold and osmotic stress and promoted plant growth after stress. The AsKIN gene is likely to be involved in the plant response to cold stress and osmotic stress. These results reveal the molecular mechanisms of ABA in cryopreservation and elucidate the potential biological functions of the kinesin-14 subfamily.
Collapse
Affiliation(s)
- Xiaodong Xing
- College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in East China, Ministry of Agriculture, Nanjing, China
| | - Min Liu
- College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in East China, Ministry of Agriculture, Nanjing, China
| | - Fangling Jiang
- College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in East China, Ministry of Agriculture, Nanjing, China
| | - Rong Zhou
- College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in East China, Ministry of Agriculture, Nanjing, China
| | - Yunhe Bai
- College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in East China, Ministry of Agriculture, Nanjing, China
| | - Hanyu Wei
- College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in East China, Ministry of Agriculture, Nanjing, China
| | - Deng Zhang
- College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in East China, Ministry of Agriculture, Nanjing, China
| | - Jingjing Wei
- College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in East China, Ministry of Agriculture, Nanjing, China
| | - Zhen Wu
- College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China.
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in East China, Ministry of Agriculture, Nanjing, China.
| |
Collapse
|
17
|
Zeng J, Xi J, Li B, Yan X, Dai Y, Wu Y, Xiao Y, Pei Y, Zhang M. Microtubules play a crucial role in regulating actin organization and cell initiation in cotton fibers. PLANT CELL REPORTS 2022; 41:1059-1073. [PMID: 35217893 DOI: 10.1007/s00299-022-02837-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
Dynamic organization of actin and microtubule cytoskeletons directs a distinct expansion behavior of cotton fiber initiation from cell elongation. Cotton fibers are highly elongated single cells derived from the ovule epidermis. Although actin and microtubule (MT) cytoskeletons have been implicated in cell elongation and secondary wall deposition, their roles in fiber initiation is poorly understood. Here, we used fluorescent probes and pharmacological approaches to study the roles of these cytoskeletal components during cotton fiber initiation. Both cytoskeletons align along the growth axis in initiating fibers. The dorsal view of ovules shows that unlike the fine actin filaments (AFs) in nonfiber cells, the AFs in fiber cells are dense and bundled. MTs are randomized in fiber cells and well-ordered in nonfiber cells. The pharmacological experiments revealed that the depolymerization of AFs and MTs assisted fiber initiation. Both AF stabilization and depolymerization inhibited fiber elongation. In contrast, the proper depolymerization of MTs promoted cell elongation, although the MT-stabilizing drug consistently resulted in a negative effect. Notably, we found that the organization of AFs was correlated with MT dynamics. Stabilizing the MTs by taxol treatment promoted the formation of AF bundles (in fiber initials) and transversely aligned AFs (in elongating fibers), whereas depolymerizing the MTs by oryzalin treatment promoted the fragmentation of AFs. Collectively, our data indicates that MTs plays a crucial role in regulating AF organization and early development of cotton fibers.
Collapse
Affiliation(s)
- Jianyan Zeng
- Biotechnology Research Center, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing, 400715, People's Republic of China
- Academy of Agricultural Sciences, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing, 400715, People's Republic of China
| | - Jing Xi
- Biotechnology Research Center, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing, 400715, People's Republic of China
- Academy of Agricultural Sciences, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing, 400715, People's Republic of China
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, No. 2 Tiansheng Road, Beibei, Chongqing, 400715, People's Republic of China
| | - Baoxia Li
- Biotechnology Research Center, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing, 400715, People's Republic of China
- Academy of Agricultural Sciences, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing, 400715, People's Republic of China
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, No. 2 Tiansheng Road, Beibei, Chongqing, 400715, People's Republic of China
| | - Xingying Yan
- Biotechnology Research Center, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing, 400715, People's Republic of China
- Academy of Agricultural Sciences, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing, 400715, People's Republic of China
| | - Yonglu Dai
- Biotechnology Research Center, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing, 400715, People's Republic of China
- Academy of Agricultural Sciences, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing, 400715, People's Republic of China
| | - Yiping Wu
- Biotechnology Research Center, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing, 400715, People's Republic of China
- Academy of Agricultural Sciences, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing, 400715, People's Republic of China
| | - Yuehua Xiao
- Biotechnology Research Center, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing, 400715, People's Republic of China
- Academy of Agricultural Sciences, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing, 400715, People's Republic of China
| | - Yan Pei
- Biotechnology Research Center, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing, 400715, People's Republic of China
- Academy of Agricultural Sciences, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing, 400715, People's Republic of China
| | - Mi Zhang
- Biotechnology Research Center, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing, 400715, People's Republic of China.
- Academy of Agricultural Sciences, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing, 400715, People's Republic of China.
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, No. 2 Tiansheng Road, Beibei, Chongqing, 400715, People's Republic of China.
| |
Collapse
|
18
|
Angelini J, Klassen R, Široká J, Novák O, Záruba K, Siegel J, Novotná Z, Valentová O. Silver Nanoparticles Alter Microtubule Arrangement, Dynamics and Stress Phytohormone Levels. PLANTS 2022; 11:plants11030313. [PMID: 35161294 PMCID: PMC8838976 DOI: 10.3390/plants11030313] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 01/19/2022] [Accepted: 01/21/2022] [Indexed: 11/17/2022]
Abstract
The superior properties of silver nanoparticles (AgNPs) has resulted in their broad utilization worldwide, but also the risk of irreversible environment infestation. The plant cuticle and cell wall can trap a large part of the nanoparticles and thus protect the internal cell structures, where the cytoskeleton, for example, reacts very quickly to the threat, and defense signaling is subsequently triggered. We therefore used not only wild-type Arabidopsis seedlings, but also the glabra 1 mutant, which has a different composition of the cuticle. Both lines had GFP-labeled microtubules (MTs), allowing us to observe their arrangement. To quantify MT dynamics, we developed a new microscopic method based on the FRAP technique. The number and growth rate of MTs decreased significantly after AgNPs, similarly in both lines. However, the layer above the plasma membrane thickened significantly in wild-type plants. The levels of three major stress phytohormone derivatives—jasmonic, abscisic, and salicylic acids—after AgNP (with concomitant Ag+) treatment increased significantly (particularly in mutant plants) and to some extent resembled the plant response after mechanical stress. The profile of phytohormones helped us to estimate the mechanism of response to AgNPs and also to understand the broader physiological context of the observed changes in MT structure and dynamics.
Collapse
Affiliation(s)
- Jindřiška Angelini
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 3, 166 28 Prague, Czech Republic; (R.K.); (Z.N.); (O.V.)
- Correspondence:
| | - Ruslan Klassen
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 3, 166 28 Prague, Czech Republic; (R.K.); (Z.N.); (O.V.)
| | - Jitka Široká
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences & Faculty of Science of Palacký University, Šlechtitelů 27, 78371 Olomouc, Czech Republic; (J.Š.); (O.N.)
| | - Ondřej Novák
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences & Faculty of Science of Palacký University, Šlechtitelů 27, 78371 Olomouc, Czech Republic; (J.Š.); (O.N.)
| | - Kamil Záruba
- Deparment of Analytical Chemistry, University of Chemistry and Technology Prague, Technická 3, 166 28 Prague, Czech Republic;
| | - Jakub Siegel
- Department of Solid State Engineering, University of Chemistry and Technology Prague, Technická 3, 166 28 Prague, Czech Republic;
| | - Zuzana Novotná
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 3, 166 28 Prague, Czech Republic; (R.K.); (Z.N.); (O.V.)
| | - Olga Valentová
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 3, 166 28 Prague, Czech Republic; (R.K.); (Z.N.); (O.V.)
| |
Collapse
|
19
|
Gu Y, Rasmussen CG. Cell biology of primary cell wall synthesis in plants. THE PLANT CELL 2022; 34:103-128. [PMID: 34613413 PMCID: PMC8774047 DOI: 10.1093/plcell/koab249] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 10/01/2021] [Indexed: 05/07/2023]
Abstract
Building a complex structure such as the cell wall, with many individual parts that need to be assembled correctly from distinct sources within the cell, is a well-orchestrated process. Additional complexity is required to mediate dynamic responses to environmental and developmental cues. Enzymes, sugars, and other cell wall components are constantly and actively transported to and from the plasma membrane during diffuse growth. Cell wall components are transported in vesicles on cytoskeletal tracks composed of microtubules and actin filaments. Many of these components, and additional proteins, vesicles, and lipids are trafficked to and from the cell plate during cytokinesis. In this review, we first discuss how the cytoskeleton is initially organized to add new cell wall material or to build a new cell wall, focusing on similarities during these processes. Next, we discuss how polysaccharides and enzymes that build the cell wall are trafficked to the correct location by motor proteins and through other interactions with the cytoskeleton. Finally, we discuss some of the special features of newly formed cell walls generated during cytokinesis.
Collapse
Affiliation(s)
- Ying Gu
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Carolyn G Rasmussen
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, California 92521
| |
Collapse
|
20
|
Xu R, Li Y, Liu C, Shen N, Zhang Q, Cao T, Qin M, Han L, Tang D. Twinfilin regulates actin assembly and Hexagonal peroxisome 1 (Hex1) localization in the pathogenesis of rice blast fungus Magnaporthe oryzae. MOLECULAR PLANT PATHOLOGY 2021; 22:1641-1655. [PMID: 34519407 PMCID: PMC8578832 DOI: 10.1111/mpp.13136] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 08/06/2021] [Accepted: 08/18/2021] [Indexed: 05/06/2023]
Abstract
Actin assembly at the hyphal tip is key for polar growth and pathogenesis of the rice blast fungus Magnaporthe oryzae. The mechanism of its precise assemblies and biological functions is not understood. Here, we characterized the role of M. oryzae Twinfilin (MoTwf) in M. oryzae infection through organizing the actin cables that connect to Spitzenkörper (Spk) at the hyphal tip. MoTwf could bind and bundle the actin filaments. It formed a complex with Myosin2 (MoMyo2) and the Woronin body protein Hexagonal peroxisome 1 (MoHex1). Enrichment of MoMyo2 and MoHex1 in the hyphal apical region was disrupted in a ΔMotwf loss-of-function mutant, which also showed a decrease in the number and width of actin cables. These findings indicate that MoTwf participates in the virulence of M. oryzae by organizing Spk-connected actin filaments and regulating MoHex1 distribution at the hyphal tip.
Collapse
Affiliation(s)
- Rui Xu
- State Key Laboratory of Ecological Control of Fujian‐Taiwan Crop PestsKey Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of CropsPlant Immunity CenterFujian Agriculture and Forestry UniversityFuzhouChina
- College of Crop ScienceFujian Agriculture and Forestry UniversityFuzhouChina
| | - Yuan‐Bao Li
- State Key Laboratory of Ecological Control of Fujian‐Taiwan Crop PestsKey Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of CropsPlant Immunity CenterFujian Agriculture and Forestry UniversityFuzhouChina
- College of Crop ScienceFujian Agriculture and Forestry UniversityFuzhouChina
| | - Chengyu Liu
- State Key Laboratory of Ecological Control of Fujian‐Taiwan Crop PestsKey Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of CropsPlant Immunity CenterFujian Agriculture and Forestry UniversityFuzhouChina
- College of Life SciencesFujian Agriculture and Forestry UniversityFuzhouChina
| | - Ningning Shen
- State Key Laboratory of Ecological Control of Fujian‐Taiwan Crop PestsKey Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of CropsPlant Immunity CenterFujian Agriculture and Forestry UniversityFuzhouChina
- College of Crop ScienceFujian Agriculture and Forestry UniversityFuzhouChina
| | - Qian Zhang
- State Key Laboratory of Ecological Control of Fujian‐Taiwan Crop PestsKey Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of CropsPlant Immunity CenterFujian Agriculture and Forestry UniversityFuzhouChina
- College of Crop ScienceFujian Agriculture and Forestry UniversityFuzhouChina
| | - Tingyan Cao
- State Key Laboratory of Ecological Control of Fujian‐Taiwan Crop PestsKey Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of CropsPlant Immunity CenterFujian Agriculture and Forestry UniversityFuzhouChina
- College of Life SciencesFujian Agriculture and Forestry UniversityFuzhouChina
| | - Minghui Qin
- State Key Laboratory of Ecological Control of Fujian‐Taiwan Crop PestsKey Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of CropsPlant Immunity CenterFujian Agriculture and Forestry UniversityFuzhouChina
- College of Crop ScienceFujian Agriculture and Forestry UniversityFuzhouChina
| | - Li‐Bo Han
- State Key Laboratory of Ecological Control of Fujian‐Taiwan Crop PestsKey Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of CropsPlant Immunity CenterFujian Agriculture and Forestry UniversityFuzhouChina
- College of Crop ScienceFujian Agriculture and Forestry UniversityFuzhouChina
| | - Dingzhong Tang
- State Key Laboratory of Ecological Control of Fujian‐Taiwan Crop PestsKey Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of CropsPlant Immunity CenterFujian Agriculture and Forestry UniversityFuzhouChina
- College of Crop ScienceFujian Agriculture and Forestry UniversityFuzhouChina
| |
Collapse
|
21
|
Behnami S, Bonetta D. With an Ear Up against the Wall: An Update on Mechanoperception in Arabidopsis. PLANTS (BASEL, SWITZERLAND) 2021; 10:1587. [PMID: 34451632 PMCID: PMC8398075 DOI: 10.3390/plants10081587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/26/2021] [Accepted: 07/28/2021] [Indexed: 11/16/2022]
Abstract
Cells interpret mechanical signals and adjust their physiology or development appropriately. In plants, the interface with the outside world is the cell wall, a structure that forms a continuum with the plasma membrane and the cytoskeleton. Mechanical stress from cell wall damage or deformation is interpreted to elicit compensatory responses, hormone signalling, or immune responses. Our understanding of how this is achieved is still evolving; however, we can refer to examples from animals and yeast where more of the details have been worked out. Here, we provide an update on this changing story with a focus on candidate mechanosensitive channels and plasma membrane-localized receptors.
Collapse
Affiliation(s)
| | - Dario Bonetta
- Faculty of Science, Ontario Tech University, 2000 Simcoe St N, Oshawa, ON L1G 0C5, Canada;
| |
Collapse
|
22
|
Shi K, Yang L, Du X, Guo D, Xue L. Molecular chaperone Hsp90 protects KCBP from degradation by proteasome in Dunaliella salina cells. Folia Microbiol (Praha) 2021; 66:949-957. [PMID: 34240332 DOI: 10.1007/s12223-021-00897-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 07/01/2021] [Indexed: 11/26/2022]
Abstract
Kinesin-like calmodulin-binding protein (KCBP) is a unique kinesin with half kinesin and half myosin, with kinesin motor domain at C-terminus and myosin tail homology region 4 (MyTH4) and band 4.1, ezrin, radixin, moesin (FERM) domains at N-terminus. The special structure endows KCBP multi-intracellular functions, including cell division, trichome morphogenesis in plants, and flagellar function in algae. However, little is known about the molecular mechanism underlying these functions. Here, we identified a molecular chaperone Hsp90 as a novel binding partner with KCBP in Dunaliella salina using a yeast two-hybrid screen. Further analysis showed that Hsp90 interacted with both the N-terminal and C-terminal of DsKCBP. Since Hsp90 was involved in the stability and proteolytic turnover of numerous proteins, whether Hsp90 regulated the degradation of DsKCBP was investigated. Our results showed that both Hsp90 and DsKCBP presented in the purified proteasome, and the interaction of DsKCBP-Hsp90 was inhibited upon Hsp90 inhibitor geldanamycin treatment. The level of DsKCBP proteins was diminished remarkably indicating that the disassociation of DsKCBP from Hsp90 accelerated the degradation of the former. Furthermore, immunofluorescence results showed that the localization of DsKCBP at basal body and flagella was disappeared by Hsp90 inhibition. The increased mRNA level of DsKCBP during flagellar assembly was not obvious by geldanamycin treatment. These data provided evidence that Hsp90 protected DsKCBP from degradation by proteasome and was involved in the role of DsKCBP in flagellar assembly.
Collapse
Affiliation(s)
- Ke Shi
- Department of Biochemistry and Molecular Biology, Henan Medical College, Zhengzhou, Henan, China.
- Laboratory for Cell Biology, the First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan, China.
| | - Liang Yang
- Department of Microbiology and Immunology and Medicine, Henan Medical College, Zhengzhou, Henan, China
| | - Xiuhong Du
- Department of Biochemistry and Molecular Biology, Henan Medical College, Zhengzhou, Henan, China
| | - Dan Guo
- Department of Biochemistry and Molecular Biology, Henan Medical College, Zhengzhou, Henan, China
| | - Lexun Xue
- Laboratory for Cell Biology, the First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
23
|
Abstract
Kinesins constitute a superfamily of ATP-driven microtubule motor enzymes that convert the chemical energy of ATP hydrolysis into mechanical work along microtubule tracks. Kinesins are found in all eukaryotic organisms and are essential to all eukaryotic cells, involved in diverse cellular functions such as microtubule dynamics and morphogenesis, chromosome segregation, spindle formation and elongation and transport of organelles. In this review, we explore recently reported functions of kinesins in eukaryotes and compare their specific cargoes in both plant and animal kingdoms to understand the possible roles of uncharacterized motors in a kingdom based on their reported functions in other kingdoms.
Collapse
Affiliation(s)
- Iftikhar Ali
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences , Beijing, China
| | - Wei-Cai Yang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences , Beijing, China.,The College of Advanced Agricultural Science, The University of Chinese Academy of Sciences , Beijing, China
| |
Collapse
|
24
|
Oliver J, Fan M, McKinley B, Zemelis‐Durfee S, Brandizzi F, Wilkerson C, Mullet JE. The AGCVIII kinase Dw2 modulates cell proliferation, endomembrane trafficking, and MLG/xylan cell wall localization in elongating stem internodes of Sorghum bicolor. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:1053-1071. [PMID: 33211340 PMCID: PMC7983884 DOI: 10.1111/tpj.15086] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/06/2020] [Accepted: 11/12/2020] [Indexed: 05/31/2023]
Abstract
Stems of bioenergy sorghum (Sorghum bicolor L. Moench.), a drought-tolerant C4 grass, contain up to 50 nodes and internodes of varying length that span 4-5 m and account for approximately 84% of harvested biomass. Stem internode growth impacts plant height and biomass accumulation and is regulated by brassinosteroid signaling, auxin transport, and gibberellin biosynthesis. In addition, an AGCVIII kinase (Dw2) regulates sorghum stem internode growth, but the underlying mechanism and signaling network are unknown. Here we provide evidence that mutation of Dw2 reduces cell proliferation in internode intercalary meristems, inhibits endocytosis, and alters the distribution of heteroxylan and mixed linkage glucan in cell walls. Phosphoproteomic analysis showed that Dw2 signaling influences the phosphorylation of proteins involved in lipid signaling (PLDδ), endomembrane trafficking, hormone, light, and receptor signaling, and photosynthesis. Together, our results show that Dw2 modulates endomembrane function and cell division during sorghum internode growth, providing insight into the regulation of monocot stem development.
Collapse
Affiliation(s)
- Joel Oliver
- Department of Biochemistry & BiophysicsTexas A&M UniversityCollege StationTexas77843USA
| | - Mingzhu Fan
- Department of Plant BiologyMichigan State UniversityEast LansingMichigan48824USA
- Great Lakes Bioenergy Research CenterMichigan State UniversityEast LansingMichigan48824USA
| | - Brian McKinley
- Department of Biochemistry & BiophysicsTexas A&M UniversityCollege StationTexas77843USA
| | - Starla Zemelis‐Durfee
- MSU‐DOE Plant Research LabMichigan State UniversityEast LansingMichigan48824USA
- Great Lakes Bioenergy Research CenterMichigan State UniversityEast LansingMichigan48824USA
| | - Federica Brandizzi
- MSU‐DOE Plant Research LabMichigan State UniversityEast LansingMichigan48824USA
- Department of Plant BiologyMichigan State UniversityEast LansingMichigan48824USA
- Great Lakes Bioenergy Research CenterMichigan State UniversityEast LansingMichigan48824USA
| | - Curtis Wilkerson
- Department of Plant BiologyMichigan State UniversityEast LansingMichigan48824USA
- Great Lakes Bioenergy Research CenterMichigan State UniversityEast LansingMichigan48824USA
- Department of Biochemistry and Molecular BiologyMichigan State UniversityEast LansingMichigan48824USA
| | - John E. Mullet
- Department of Biochemistry & BiophysicsTexas A&M UniversityCollege StationTexas77843USA
| |
Collapse
|
25
|
Du P, Wang J, He Y, Zhang S, Hu B, Xue X, Miao L, Ren H. AtFH14 crosslinks actin filaments and microtubules in different manners. Biol Cell 2021; 113:235-249. [PMID: 33386758 DOI: 10.1111/boc.202000147] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/16/2020] [Accepted: 12/18/2020] [Indexed: 12/23/2022]
Abstract
BACKGROUND INFORMATION In many cellular processes including cell division, the synergistic dynamics of actin filaments and microtubules play vital roles. However, the regulatory mechanisms of these synergistic dynamics are not fully understood. Proteins such as formins are involved in actin filament-microtubule interactions and Arabidopsis thaliana formin 14 (AtFH14) may function as a crosslinker between actin filaments and microtubules in cell division, but the molecular mechanism underlying such crosslinking remains unclear. RESULTS Without microtubules, formin homology (FH) 1/FH2 of AtFH14 nucleated actin polymerisation from actin monomers and capped the barbed end of actin filaments. However, in the presence of microtubules, quantitative analysis showed that the binding affinity of AtFH14 FH1FH2 to microtubules was higher than that to actin filaments. Moreover, microtubule-bound AtFH14 FH1FH2 neither nucleated actin polymerisation nor inhibited barbed end elongation. In contrast, tubulin did not affect AtFH14 FH1FH2 to nucleate actin polymerisation and inhibit barbed end elongation. Nevertheless, microtubule-bound AtFH14 FH1FH2 bound actin filaments and the bound actin filaments slid and elongated along the microtubules or elongated away from the microtubules, which induced bundling or crosslinking of actin filaments and microtubules. Pharmacological analyses indicated that AtFH14 FH1FH2 promoted crosslinking of actin filaments and microtubules in vivo. Additionally, co-sedimentation and fluorescent dye-labelling experiments of AtFH14 FH2-truncated proteins in vitro revealed the essential motifs of bundling actin filaments or microtubules, which were 63-92 aa and 42-62 aa in the AtFH14 FH2 N-terminal, respectively, and 42-62 aa was the essential motif to crosslink actin filaments and microtubules. CONCLUSIONS AND SIGNIFICANCE Our results aid in explaining how AtFH14 functions as a crosslinker between actin filaments and microtubules to regulate their dynamics via different manners during cell division. They also facilitate further understanding of the molecular mechanisms of the interactions between actin filaments and microtubules.
Collapse
Affiliation(s)
- Pingzhou Du
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, Center for Biological Science and Technology, Advanced Institute of Natural Science, Beijing Normal University, Zhuhai, 519087, China
| | - Jiaojiao Wang
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, Center for Biological Science and Technology, Advanced Institute of Natural Science, Beijing Normal University, Zhuhai, 519087, China
| | - Yunqiu He
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, Center for Biological Science and Technology, Advanced Institute of Natural Science, Beijing Normal University, Zhuhai, 519087, China
| | - Sha Zhang
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, Center for Biological Science and Technology, Advanced Institute of Natural Science, Beijing Normal University, Zhuhai, 519087, China
| | - Bailing Hu
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, Center for Biological Science and Technology, Advanced Institute of Natural Science, Beijing Normal University, Zhuhai, 519087, China
| | - Xiuhua Xue
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, Center for Biological Science and Technology, Advanced Institute of Natural Science, Beijing Normal University, Zhuhai, 519087, China
| | - Long Miao
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haiyun Ren
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, Center for Biological Science and Technology, Advanced Institute of Natural Science, Beijing Normal University, Zhuhai, 519087, China
| |
Collapse
|
26
|
Zhang P, Qian D, Luo C, Niu Y, Li T, Li C, Xiang Y, Wang X, Niu Y. Arabidopsis ADF5 Acts as a Downstream Target Gene of CBFs in Response to Low-Temperature Stress. Front Cell Dev Biol 2021; 9:635533. [PMID: 33585491 PMCID: PMC7876393 DOI: 10.3389/fcell.2021.635533] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/08/2021] [Indexed: 12/13/2022] Open
Abstract
Low temperature is a major adverse environment that affects normal plant growth. Previous reports showed that the actin cytoskeleton plays an important role in the plant response to low-temperature stress, but the regulatory mechanism of the actin cytoskeleton in this process is not clear. C-repeat binding factors (CBFs) are the key molecular switches for plants to adapt to cold stress. However, whether CBFs are involved in the regulation of the actin cytoskeleton has not been reported. We found that Arabidopsis actin depolymerizing factor 5 (ADF5), an ADF that evolved F-actin bundling function, was up-regulated at low temperatures. We also demonstrated that CBFs bound to the ADF5 promoter directly in vivo and in vitro. The cold-induced expression of ADF5 was significantly inhibited in the cbfs triple mutant. The freezing resistance of the adf5 knockout mutant was weaker than that of wild type (WT) with or without cold acclimation. After low-temperature treatment, the actin cytoskeleton of WT was relatively stable, but the actin cytoskeletons of adf5, cbfs, and adf5 cbfs were disturbed to varying degrees. Compared to WT, the endocytosis rate of the amphiphilic styryl dye FM4-64 in adf5, cbfs, and adf5 cbfs at low temperature was significantly reduced. In conclusion, CBFs directly combine with the CRT/DRE DNA regulatory element of the ADF5 promoter after low-temperature stress to transcriptionally activate the expression of ADF5; ADF5 further regulates the actin cytoskeleton dynamics to participate in the regulation of plant adaptation to a low-temperature environment.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Yue Niu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| |
Collapse
|
27
|
Guan L, Yang S, Li S, Liu Y, Liu Y, Yang Y, Qin G, Wang H, Wu T, Wang Z, Feng X, Wu Y, Zhu JK, Li X, Li L. AtSEC22 Regulates Cell Morphogenesis via Affecting Cytoskeleton Organization and Stabilities. FRONTIERS IN PLANT SCIENCE 2021; 12:635732. [PMID: 34149743 PMCID: PMC8211912 DOI: 10.3389/fpls.2021.635732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 04/01/2021] [Indexed: 05/03/2023]
Abstract
The plant cytoskeleton forms a stereoscopic network that regulates cell morphogenesis. The cytoskeleton also provides tracks for trafficking of vesicles to the target membrane. Fusion of vesicles with the target membrane is promoted by SNARE proteins, etc. The vesicle-SNARE, Sec22, regulates membrane trafficking between the ER and Golgi in yeast and mammals. Arabidopsis AtSEC22 might also regulate early secretion and is essential for gametophyte development. However, the role of AtSEC22 in plant development is unclear. To clarify the role of AtSEC22 in the regulation of plant development, we isolated an AtSEC22 knock-down mutant, atsec22-4, and found that cell morphogenesis and development were seriously disturbed. atsec22-4 exhibited shorter primary roots (PRs), dwarf plants, and partial abortion. More interestingly, the atsec22-4 mutant had less trichomes with altered morphology, irregular stomata, and pavement cells, suggesting that cell morphogenesis was perturbed. Further analyses revealed that in atsec22-4, vesicle trafficking was blocked, resulting in the trapping of proteins in the ER and collapse of structures of the ER and Golgi apparatus. Furthermore, AtSEC22 defects resulted in impaired organization and stability of the cytoskeleton in atsec22-4. Our findings revealed essential roles of AtSEC22 in membrane trafficking and cytoskeleton dynamics during plant development.
Collapse
Affiliation(s)
- Li Guan
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Shurui Yang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
| | - Shenglin Li
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Yu Liu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
| | - Yuqi Liu
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Yi Yang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
| | - Guochen Qin
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Haihai Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Tao Wu
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Zhigang Wang
- School of Life Sciences and Agriculture and Forestry, Qiqihar University, Qiqihar, China
| | - Xianzhong Feng
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Yongrui Wu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jian-Kang Zhu
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xugang Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
| | - Lixin Li
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China
- *Correspondence: Lixin Li,
| |
Collapse
|
28
|
Li J, Wang X, Jiang R, Dong B, Fang S, Li Q, Lv Z, Chen W. Phytohormone-Based Regulation of Trichome Development. FRONTIERS IN PLANT SCIENCE 2021; 12:734776. [PMID: 34659303 PMCID: PMC8514689 DOI: 10.3389/fpls.2021.734776] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/27/2021] [Indexed: 05/08/2023]
Abstract
Phytohormones affect plant growth and development. Many phytohormones are involved in the initiation of trichome development, which can help prevent damage from UV radiation and insect bites and produce fragrance, flavors, and compounds used as pharmaceuticals. Phytohormones promote the participation of transcription factors in the initiation of trichome development; for example, the transcription factors HDZIP, bHLH and MYB interact and form transcriptional complexes to regulate trichome development. Jasmonic acid (JA) mediates the progression of the endoreduplication cycle to increase the number of multicellular trichomes or trichome size. Moreover, there is crosstalk between phytohormones, and some phytohormones interact with each other to affect trichome development. Several new techniques, such as the CRISPR-Cas9 system and single-cell transcriptomics, are available for investigating gene function, determining the trajectory of individual trichome cells and elucidating the regulatory network underlying trichome cell lineages. This review discusses recent advances in the modulation of trichome development by phytohormones, emphasizes the differences and similarities between phytohormones initially present in trichomes and provides suggestions for future research.
Collapse
Affiliation(s)
- Jinxing Li
- Research and Development Center of Chinese Medicine Resources and Biotechnology, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xingxing Wang
- Research and Development Center of Chinese Medicine Resources and Biotechnology, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Rui Jiang
- Research and Development Center of Chinese Medicine Resources and Biotechnology, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Boran Dong
- Research and Development Center of Chinese Medicine Resources and Biotechnology, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shiyuan Fang
- Research and Development Center of Chinese Medicine Resources and Biotechnology, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qing Li
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Zongyou Lv
- Research and Development Center of Chinese Medicine Resources and Biotechnology, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Zongyou Lv,
| | - Wansheng Chen
- Research and Development Center of Chinese Medicine Resources and Biotechnology, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai, China
- Wansheng Chen,
| |
Collapse
|
29
|
Lian N, Wang X, Jing Y, Lin J. Regulation of cytoskeleton-associated protein activities: Linking cellular signals to plant cytoskeletal function. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:241-250. [PMID: 33274838 DOI: 10.1111/jipb.13046] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 12/01/2020] [Indexed: 05/24/2023]
Abstract
The plant cytoskeleton undergoes dynamic remodeling in response to diverse developmental and environmental cues. Remodeling of the cytoskeleton coordinates growth in plant cells, including trafficking and exocytosis of membrane and wall components during cell expansion, and regulation of hypocotyl elongation in response to light. Cytoskeletal remodeling also has key functions in disease resistance and abiotic stress responses. Many stimuli result in altered activity of cytoskeleton-associated proteins, microtubule-associated proteins (MAPs) and actin-binding proteins (ABPs). MAPs and ABPs are the main players determining the spatiotemporally dynamic nature of the cytoskeleton, functioning in a sensory hub that decodes signals to modulate plant cytoskeletal behavior. Moreover, MAP and ABP activities and levels are precisely regulated during development and environmental responses, but our understanding of this process remains limited. In this review, we summarize the evidence linking multiple signaling pathways, MAP and ABP activities and levels, and cytoskeletal rearrangements in plant cells. We highlight advances in elucidating the multiple mechanisms that regulate MAP and ABP activities and levels, including calcium and calmodulin signaling, ROP GTPase activity, phospholipid signaling, and post-translational modifications.
Collapse
Affiliation(s)
- Na Lian
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Xinwei Wang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Yanping Jing
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Jinxing Lin
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| |
Collapse
|
30
|
Lopez-Hernandez F, Tryfona T, Rizza A, Yu XL, Harris MOB, Webb AAR, Kotake T, Dupree P. Calcium Binding by Arabinogalactan Polysaccharides Is Important for Normal Plant Development. THE PLANT CELL 2020; 32:3346-3369. [PMID: 32769130 PMCID: PMC7534474 DOI: 10.1105/tpc.20.00027] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 06/17/2020] [Accepted: 07/31/2020] [Indexed: 05/19/2023]
Abstract
Arabinogalactan proteins (AGPs) are a family of plant extracellular proteoglycans involved in many physiological events. AGPs are often anchored to the extracellular side of the plasma membrane and are highly glycosylated with arabinogalactan (AG) polysaccharides, but the molecular function of this glycosylation remains largely unknown. The β-linked glucuronic acid (GlcA) residues in AG polysaccharides have been shown in vitro to bind to calcium in a pH-dependent manner. Here, we used Arabidopsis (Arabidopsis thaliana) mutants in four AG β-glucuronyltransferases (GlcAT14A, -B, -D, and -E) to understand the role of glucuronidation of AG. AG isolated from glcat14 triple mutants had a strong reduction in glucuronidation. AG from a glcat14a/b/d triple mutant had lower calcium binding capacity in vitro than AG from wild-type plants. Some mutants had multiple developmental defects such as reduced trichome branching. glcat14a/b/e triple mutant plants had severely limited seedling growth and were sterile, and the propagation of calcium waves was perturbed in roots. Several of the developmental phenotypes were suppressed by increasing the calcium concentration in the growth medium. Our results show that AG glucuronidation is crucial for multiple developmental processes in plants and suggest that a function of AGPs might be to bind and release cell-surface apoplastic calcium.
Collapse
Affiliation(s)
| | - Theodora Tryfona
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom
| | - Annalisa Rizza
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, United Kingdom
| | - Xiaolan L Yu
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom
| | - Matthew O B Harris
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom
| | - Alex A R Webb
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| | - Toshihisa Kotake
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom
- Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan
| | - Paul Dupree
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom
| |
Collapse
|
31
|
Kimata Y, Ueda M. Intracellular dynamics and transcriptional regulations in plant zygotes: a case study of Arabidopsis. PLANT REPRODUCTION 2020; 33:89-96. [PMID: 32322957 DOI: 10.1007/s00497-020-00389-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 04/09/2020] [Indexed: 06/11/2023]
Abstract
Recent understandings ofArabidopsiszygote. Body axis formation is essential for the proper development of multicellular organisms. The apical-basal axis in Arabidopsis thaliana is determined by the asymmetric division of the zygote, following its cellular polarization. However, the regulatory mechanism of zygote polarization is unclear due to technical issues. The zygote is located deep in the seed (ovule) in flowers, which prevents the living dynamics of zygotes from being observed. In addition, elucidation of molecular pathways by conventional forward genetic screens was not enough because of high gene redundancy in early development. Here, we present a review introducing two new methods, which have been developed to overcome these problems. Method 1: the two-photon live-cell imaging method provides a new system to visualize the dynamics of intracellular structures in Arabidopsis zygotes, such as cytoskeletons and vacuoles. Microtubules form transverse rings and control zygote elongation, while vacuoles dynamically change their shapes along longitudinal actin filaments and support polar nuclear migration. Method 2: the transcriptome method uses isolated Arabidopsis zygotes and egg cells to reveal the gene expression profiles before and after fertilization. This approach revealed that de novo transcription occurs extensively and immediately after fertilization. Moreover, inhibition of the de novo transcription was shown to sufficiently block the zygotic division, thus indicating a strong possibility that yet unidentified zygote regulators can be found using this transcriptome approach. These new strategies in Arabidopsis will help to further our understanding of the fundamental principles regarding the proper formation of plant bodies from unicellular zygotes.
Collapse
Affiliation(s)
- Yusuke Kimata
- Institute of Transformative Bio-Molecules (ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8601, Japan
| | - Minako Ueda
- Institute of Transformative Bio-Molecules (ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8601, Japan.
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602, Japan.
| |
Collapse
|
32
|
Ali I, Yang WC. Why are ATP-driven microtubule minus-end directed motors critical to plants? An overview of plant multifunctional kinesins. FUNCTIONAL PLANT BIOLOGY : FPB 2020; 47:524-536. [PMID: 32336322 DOI: 10.1071/fp19177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 01/13/2020] [Indexed: 06/11/2023]
Abstract
In plants, microtubule and actin cytoskeletons are involved in key processes including cell division, cell expansion, growth and development, biotic and abiotic stress, tropisms, hormonal signalling as well as cytoplasmic streaming in growing pollen tubes. Kinesin enzymes have a highly conserved motor domain for binding microtubule cytoskeleton assisting these motors to organise their own tracks, the microtubules by using chemical energy of ATP hydrolysis. In addition to this conserved binding site, kinesins possess non-conserved variable domains mediating structural and functional interaction of microtubules with other cell structures to perform various cellular jobs such as chromosome segregation, spindle formation and elongation, transport of organelles as well as microtubules-actins cross linking and microtubules sliding. Therefore, how the non-motor variable regions specify the kinesin function is of fundamental importance for all eukaryotic cells. Kinesins are classified into ~17 known families and some ungrouped orphans, of which ~13 families have been recognised in plants. Kinesin-14 family consisted of plant specific microtubules minus end-directed motors, are much diverse and unique to plants in the sense that they substitute the functions of animal dynein. In this review, we explore the functions of plant kinesins, especially from non-motor domains viewpoint, focussing mainly on recent work on the origin and functional diversity of motors that drive microtubule minus-end trafficking events.
Collapse
Affiliation(s)
- Iftikhar Ali
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wei-Cai Yang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; and The College of Advanced Agricultural Science, The University of Chinese Academy of Sciences, Beijing 100049, China; and Corresponding author.
| |
Collapse
|
33
|
Galindo-Trigo S, Grand TM, Voigt CA, Smith LM. A malectin domain kinesin functions in pollen and seed development in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:1828-1841. [PMID: 31950166 PMCID: PMC7094084 DOI: 10.1093/jxb/eraa023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 01/13/2020] [Indexed: 05/25/2023]
Abstract
The kinesin family is greatly expanded in plants compared with animals and, with more than a third up-regulated in expression during cell division, it has been suggested that this expansion facilitated complex plant-specific cytoskeletal rearrangements. The cell cycle-regulated kinesins include two with an N-terminal malectin domain, a protein domain that has been shown to bind polysaccharides and peptides when found extracellularly in receptor-like kinases. Although malectin domain kinesins are evolutionarily deep rooted, their function in plants remains unclear. Here we show that loss of MALECTIN DOMAIN KINESIN 2 (MDKIN2) results in stochastic developmental defects in pollen, embryo, and endosperm. High rates of seed abnormalities and abortion occur in mdkin2 mutants through a partial maternal effect. No additive effect or additional developmental defects were noted in mdkin1 mdkin2 double mutants. MDKIN2 is expressed in regions of cell division throughout the plant. Subcellular localization of MDKIN2 indicates a role in cell division, with a possible secondary function in the nuclei. Our results reveal a non-essential but important role for a malectin domain kinesin during development in plants.
Collapse
Affiliation(s)
- Sergio Galindo-Trigo
- Department of Animal and Plant Sciences and The Plant Production and Protection (P3) Centre, University of Sheffield, Western Bank, Sheffield, UK
| | - Thomas M Grand
- Department of Animal and Plant Sciences and The Plant Production and Protection (P3) Centre, University of Sheffield, Western Bank, Sheffield, UK
| | - Christian A Voigt
- Department of Animal and Plant Sciences and The Plant Production and Protection (P3) Centre, University of Sheffield, Western Bank, Sheffield, UK
| | - Lisa M Smith
- Department of Animal and Plant Sciences and The Plant Production and Protection (P3) Centre, University of Sheffield, Western Bank, Sheffield, UK
| |
Collapse
|
34
|
Winnicki K. The Winner Takes It All: Auxin-The Main Player during Plant Embryogenesis. Cells 2020; 9:E606. [PMID: 32138372 PMCID: PMC7140527 DOI: 10.3390/cells9030606] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 02/21/2020] [Accepted: 02/27/2020] [Indexed: 12/11/2022] Open
Abstract
In plants, the first asymmetrical division of a zygote leads to the formation of two cells with different developmental fates. The establishment of various patterns relies on spatial and temporal gene expression, however the precise mechanism responsible for embryonic patterning still needs elucidation. Auxin seems to be the main player which regulates embryo development and controls expression of various genes in a dose-dependent manner. Thus, local auxin maxima and minima which are provided by polar auxin transport underlie cell fate specification. Diverse auxin concentrations in various regions of an embryo would easily explain distinct cell identities, however the question about the mechanism of cellular patterning in cells exposed to similar auxin concentrations still remains open. Thus, specification of cell fate might result not only from the cell position within an embryo but also from events occurring before and during mitosis. This review presents the impact of auxin on the orientation of the cell division plane and discusses the mechanism of auxin-dependent cytoskeleton alignment. Furthermore, close attention is paid to auxin-induced calcium fluxes, which regulate the activity of MAPKs during postembryonic development and which possibly might also underlie cellular patterning during embryogenesis.
Collapse
Affiliation(s)
- Konrad Winnicki
- Department of Cytophysiology, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lódź, Poland
| |
Collapse
|
35
|
Li YB, Xu R, Liu C, Shen N, Han LB, Tang D. Magnaporthe oryzae fimbrin organizes actin networks in the hyphal tip during polar growth and pathogenesis. PLoS Pathog 2020; 16:e1008437. [PMID: 32176741 PMCID: PMC7098657 DOI: 10.1371/journal.ppat.1008437] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 03/26/2020] [Accepted: 02/26/2020] [Indexed: 01/19/2023] Open
Abstract
Magnaporthe oryzae causes rice blast disease, but little is known about the dynamic restructuring of the actin cytoskeleton during its polarized tip growth and pathogenesis. Here, we used super-resolution live-cell imaging to investigate the dynamic organization of the actin cytoskeleton in M. oryzae during hyphal tip growth and pathogenesis. We observed a dense actin network at the apical region of the hyphae and actin filaments originating from the Spitzenkörper (Spk, the organizing center for hyphal growth and development) that formed branched actin bundles radiating to the cell membrane. The actin cross-linking protein Fimbrin (MoFim1) helps organize this actin distribution. MoFim1 localizes to the actin at the subapical collar, the actin bundles, and actin at the Spk. Knockout of MoFim1 resulted in impaired Spk maintenance and reduced actin bundle formation, preventing polar growth, vesicle transport, and the expansion of hyphae in plant cells. Finally, transgenic rice (Oryza sativa) expressing RNA hairpins targeting MoFim1 exhibited improved resistance to M. oryzae infection, indicating that MoFim1 represents an excellent candidate for M. oryzae control. These results reveal the dynamics of actin assembly in M. oryzae during hyphal tip development and pathogenesis, and they suggest a mechanism in which MoFim1 organizes such actin networks.
Collapse
Affiliation(s)
- Yuan-Bao Li
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Rui Xu
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Chengyu Liu
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Ningning Shen
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Li-Bo Han
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Dingzhong Tang
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| |
Collapse
|
36
|
Stephan L, Jakoby M, Hülskamp M. Evolutionary Comparison of the Developmental/Physiological Phenotype and the Molecular Behavior of SPIRRIG Between Arabidopsis thaliana and Arabis alpina. FRONTIERS IN PLANT SCIENCE 2020; 11:596065. [PMID: 33584744 PMCID: PMC7874212 DOI: 10.3389/fpls.2020.596065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 12/03/2020] [Indexed: 05/19/2023]
Abstract
Beige and Chediak Higashi (BEACH) domain proteins mediate membrane-dependent processes in eukaryotic cells. The plant BEACH domain protein SPIRRIG in A. thaliana (AtSPI) was shown to display a similar molecular behavior as its yeast and animal homologs, along with a range of cell morphological defects. In addition, AtSPI was shown to interact with the P-body component DCP1, to differentially effect RNA levels and to be involved in the regulation of RNA stability in the context of salt stress responses. To determine, whether the dual function of SPI in apparently unrelated molecular pathways and traits is evolutionary conserved, we analyzed three Aaspi alleles in Arabis alpina. We show that the molecular behavior of the SPI protein and the role in cell morphogenesis and salt stress response are similar in the two species, though we observed distinct deviations in the phenotypic spectrum.
Collapse
|
37
|
|
38
|
Cifrová P, Oulehlová D, Kollárová E, Martinek J, Rosero A, Žárský V, Schwarzerová K, Cvrčková F. Division of Labor Between Two Actin Nucleators-the Formin FH1 and the ARP2/3 Complex-in Arabidopsis Epidermal Cell Morphogenesis. FRONTIERS IN PLANT SCIENCE 2020; 11:148. [PMID: 32194585 PMCID: PMC7061858 DOI: 10.3389/fpls.2020.00148] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 01/30/2020] [Indexed: 05/11/2023]
Abstract
The ARP2/3 complex and formins are the only known plant actin nucleators. Besides their actin-related functions, both systems also modulate microtubule organization and dynamics. Loss of the main housekeeping Arabidopsis thaliana Class I membrane-targeted formin FH1 (At3g25500) is known to increase cotyledon pavement cell lobing, while mutations affecting ARP2/3 subunits exhibit an opposite effect. Here we examine the role of FH1 and the ARP2/3 complex subunit ARPC5 (At4g01710) in epidermal cell morphogenesis with focus on pavement cells and trichomes using a model system of single fh1 and arpc5, as well as double fh1 arpc5 mutants. While cotyledon pavement cell shape in double mutants mostly resembled single arpc5 mutants, analysis of true leaf epidermal morphology, as well as actin and microtubule organization and dynamics, revealed a more complex relationship between the two systems and similar, rather than antagonistic, effects on some parameters. Both fh1 and arpc5 mutations increased actin network density and increased cell shape complexity in pavement cells and trichomes of first true leaves, in contrast to cotyledons. Thus, while the two actin nucleation systems have complementary roles in some aspects of cell morphogenesis in cotyledon pavement cells, they may act in parallel in other cell types and developmental stages.
Collapse
Affiliation(s)
- Petra Cifrová
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czechia
| | - Denisa Oulehlová
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czechia
- Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Prague, Czechia
| | - Eva Kollárová
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czechia
| | - Jan Martinek
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czechia
| | - Amparo Rosero
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czechia
| | - Viktor Žárský
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czechia
- Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Prague, Czechia
| | - Kateřina Schwarzerová
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czechia
| | - Fatima Cvrčková
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czechia
- *Correspondence: Fatima Cvrčková,
| |
Collapse
|
39
|
Wang C, Zhang H, Xia Q, Yu J, Zhu D, Zhao Q. ZmGLR, a cell membrane localized microtubule-associated protein, mediated leaf morphogenesis in maize. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 289:110248. [PMID: 31623783 DOI: 10.1016/j.plantsci.2019.110248] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 08/28/2019] [Accepted: 08/30/2019] [Indexed: 06/10/2023]
Abstract
Microtubule arrays play notable roles in cell division, cell movement, cell morphogenesis and signal transduction. Due to their important regulation of microtubule dynamic instability and array-ordering processes, microtubule-associated proteins have been a cutting-edge issue in research. Here, a new maize microtubule-associated protein, ZmGLR (Zea mays glutamic acid- and lysine-rich), was found. ZmGLR bundles microtubules in vitro and targets the cell membrane through an interaction between 24 conserved N-terminal amino acids and specific phosphatidylinositol phosphates (PtdInsPs). Increased Ca2+ levels in the cytoplasm lead to ZmGLR partially dissociating from the cell membrane and moving into the cytoplasm to associate with microtubule. Overexpression and RNAi of ZmGLR both resulted in misoriented microtubule arrays, which led to dwarf maize plants and curved leaves. In addition, the expression of ZmGLR was regulated by BR and auxin through ZmBES1 and ZmARF9, respectively. This study reveals that the microtubule-associated protein ZmGLR plays a crucial role in cortical microtubule reorientation and maize leaf morphogenesis.
Collapse
Affiliation(s)
- Chenchen Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, 100193, Beijing, China
| | - Hua Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, 100193, Beijing, China
| | - Qi Xia
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, 100193, Beijing, China
| | - Jingjuan Yu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, 100193, Beijing, China
| | - Dengyun Zhu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, 100193, Beijing, China
| | - Qian Zhao
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, 100193, Beijing, China.
| |
Collapse
|
40
|
Yang Y, Chen B, Dang X, Zhu L, Rao J, Ren H, Lin C, Qin Y, Lin D. Arabidopsis IPGA1 is a microtubule-associated protein essential for cell expansion during petal morphogenesis. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:5231-5243. [PMID: 31198941 PMCID: PMC6793458 DOI: 10.1093/jxb/erz284] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 06/05/2019] [Indexed: 05/23/2023]
Abstract
Unlike animal cells, plant cells do not possess centrosomes that serve as microtubule organizing centers; how microtubule arrays are organized throughout plant morphogenesis remains poorly understood. We report here that Arabidopsis INCREASED PETAL GROWTH ANISOTROPY 1 (IPGA1), a previously uncharacterized microtubule-associated protein, regulates petal growth and shape by affecting cortical microtubule organization. Through a genetic screen, we showed that IPGA1 loss-of-function mutants displayed a phenotype of longer and narrower petals, as well as increased anisotropic cell expansion of the petal epidermis in the late phases of flower development. Map-based cloning studies revealed that IPGA1 encodes a previously uncharacterized protein that colocalizes with and directly binds to microtubules. IPGA1 plays a negative role in the organization of cortical microtubules into parallel arrays oriented perpendicular to the axis of cell elongation, with the ipga1-1 mutant displaying increased microtubule ordering in petal abaxial epidermal cells. The IPGA1 family is conserved among land plants and its homologs may have evolved to regulate microtubule organization. Taken together, our findings identify IPGA1 as a novel microtubule-associated protein and provide significant insights into IPGA1-mediated microtubule organization and petal growth anisotropy.
Collapse
Affiliation(s)
- Yanqiu Yang
- College of Life Science, Basic Forestry and Proteomics Research Center, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Binqinq Chen
- College of Life Science, Basic Forestry and Proteomics Research Center, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xie Dang
- College of Life Science, Basic Forestry and Proteomics Research Center, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Lab of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, China
| | - Lilan Zhu
- College of Life Science, Basic Forestry and Proteomics Research Center, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jinqiu Rao
- College of Life Science, Basic Forestry and Proteomics Research Center, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Huibo Ren
- College of Life Science, Basic Forestry and Proteomics Research Center, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Chentao Lin
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yuan Qin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Lab of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Center for Genomics and Biotechnology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Deshu Lin
- College of Life Science, Basic Forestry and Proteomics Research Center, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Lab of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, China
- Correspondence:
| |
Collapse
|
41
|
Yasuhara H, Kitamoto K. TBK11, a Tobacco Kinesin-14-II, Associates with the Nuclear Envelope through Its Central Coiled-Coil Domain. CYTOLOGIA 2019. [DOI: 10.1508/cytologia.84.285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Hiroki Yasuhara
- Department of Life Science and Biotechnology, Faculty of Chemistry, Materials and Bioengineering, Kansai University
| | - Kazuki Kitamoto
- Department of Life Science and Biotechnology, Faculty of Chemistry, Materials and Bioengineering, Kansai University
| |
Collapse
|
42
|
Fambrini M, Pugliesi C. The Dynamic Genetic-Hormonal Regulatory Network Controlling the Trichome Development in Leaves. PLANTS (BASEL, SWITZERLAND) 2019; 8:E253. [PMID: 31357744 PMCID: PMC6724107 DOI: 10.3390/plants8080253] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/22/2019] [Accepted: 07/23/2019] [Indexed: 02/05/2023]
Abstract
Plant trichomes are outgrowths developed from an epidermal pavement cells of leaves and other organs. Trichomes (also called 'hairs') play well-recognized roles in defense against insect herbivores, forming a physical barrier that obstructs insect movement and mediating chemical defenses. In addition, trichomes can act as a mechanosensory switch, transducing mechanical stimuli (e.g., insect movement) into physiological signals, helping the plant to respond to insect attacks. Hairs can also modulate plant responses to abiotic stresses, such as water loss, an excess of light and temperature, and reflect light to protect plants against UV radiation. The structure of trichomes is species-specific and this trait is generally related to their function. These outgrowths are easily analyzed and their origin represents an outstanding subject to study epidermal cell fate and patterning in plant organs. In leaves, the developmental control of the trichomatous complement has highlighted a regulatory network based on four fundamental elements: (i) genes that activate and/or modify the normal cell cycle of epidermal pavement cells (i.e., endoreduplication cycles); (ii) transcription factors that create an activator/repressor complex with a central role in determining cell fate, initiation, and differentiation of an epidermal cell in trichomes; (iii) evidence that underlines the interplay of the aforesaid complex with different classes of phytohormones; (iv) epigenetic mechanisms involved in trichome development. Here, we reviewed the role of genes in the development of trichomes, as well as the interaction between genes and hormones. Furthermore, we reported basic studies about the regulation of the cell cycle and the complexity of trichomes. Finally, this review focused on the epigenetic factors involved in the initiation and development of hairs, mainly on leaves.
Collapse
Affiliation(s)
- Marco Fambrini
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto, 80-56124 Pisa, Italy
| | - Claudio Pugliesi
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto, 80-56124 Pisa, Italy.
| |
Collapse
|
43
|
Huang Y, Wang H, Huang X, Wang Q, Wang J, An D, Li J, Wang W, Wu Y. Maize VKS1 Regulates Mitosis and Cytokinesis During Early Endosperm Development. THE PLANT CELL 2019; 31:1238-1256. [PMID: 30962394 PMCID: PMC6588315 DOI: 10.1105/tpc.18.00966] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 03/21/2019] [Accepted: 04/04/2019] [Indexed: 05/18/2023]
Abstract
Cell number is a critical factor that determines kernel size in maize (Zea mays). Rapid mitotic divisions in early endosperm development produce most of the cells that make up the starchy endosperm; however, the mechanisms underlying early endosperm development remain largely unknown. We isolated a maize mutant that shows a varied-kernel-size phenotype (vks1). Vks1 encodes ZmKIN11, which belongs to the kinesin-14 subfamily and is predominantly expressed in early endosperm development. VKS1 dynamically localizes to the nucleus and microtubules and plays key roles in the migration of free nuclei in the coenocyte as well as in mitosis and cytokinesis in early mitotic divisions. Absence of VKS1 has relatively minor effects on plants but causes deformities in spindle assembly, sister chromatid separation, and phragmoplast formation in early endosperm development, thereby resulting in reduced cell proliferation. Severities of aberrant mitosis and cytokinesis within individual vks1 endosperms differ, thereby resulting in varied kernel sizes. Our discovery highlights VKS1 as a central regulator of mitosis in early maize endosperm development and provides a potential approach for future yield improvement.
Collapse
Affiliation(s)
- Yongcai Huang
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Haihai Wang
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Xing Huang
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Qiong Wang
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jiechen Wang
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Dong An
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jiqin Li
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Wenqin Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yongrui Wu
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
44
|
Ahn HK, Yoon JT, Choi I, Kim S, Lee HS, Pai HS. Functional characterization of chaperonin containing T-complex polypeptide-1 and its conserved and novel substrates in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:2741-2757. [PMID: 30825377 PMCID: PMC6506772 DOI: 10.1093/jxb/erz099] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 02/21/2019] [Indexed: 05/31/2023]
Abstract
Chaperonin containing T-complex polypeptide-1 (CCT) is an evolutionarily conserved chaperonin multi-subunit complex that mediates protein folding in eukaryotes. It is essential for cell growth and survival in yeast and mammals, with diverse substrate proteins. However, only a few studies on plant CCT have been reported to date, due to the essentiality of CCT subunit genes and the large size of the complex. Here, we have investigated the structure and function of the Arabidopsis CCT complex in detail. The plant CCT consisted of eight subunits that assemble to form a high-molecular-mass protein complex, shown by diverse methods. CCT-deficient cells exhibited depletion of cortical microtubules, accompanied by a reduction in cellular α- and β-tubulin levels due to protein degradation. Cycloheximide-chase assays suggested that CCT is involved in the folding of tubulins in plants. Furthermore, CCT interacted with PPX1, the catalytic subunit of protein phosphatase 4, and may participate in the folding of PPX1 as its substrate. CCT also interacted with Tap46, a regulatory subunit of PP2A family phosphatases, but Tap46 appeared to function in PPX1 stabilization, rather than as a CCT substrate. Collectively, our findings reveal the essential functions of CCT chaperonin in plants and its conserved and novel substrates.
Collapse
Affiliation(s)
- Hee-Kyung Ahn
- Department of Systems Biology, Yonsei University, Seoul, Korea
| | - Joong-Tak Yoon
- Department of Systems Biology, Yonsei University, Seoul, Korea
| | - Ilyeong Choi
- Department of Systems Biology, Yonsei University, Seoul, Korea
| | - Sumin Kim
- Department of Systems Biology, Yonsei University, Seoul, Korea
| | - Ho-Seok Lee
- Department of Systems Biology, Yonsei University, Seoul, Korea
| | - Hyun-Sook Pai
- Department of Systems Biology, Yonsei University, Seoul, Korea
| |
Collapse
|
45
|
Wang Y, Clevenger JP, Illa-Berenguer E, Meulia T, van der Knaap E, Sun L. A Comparison of sun, ovate, fs8.1 and Auxin Application on Tomato Fruit Shape and Gene Expression. PLANT & CELL PHYSIOLOGY 2019; 60:1067-1081. [PMID: 30753610 DOI: 10.1093/pcp/pcz024] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 02/07/2019] [Indexed: 05/04/2023]
Abstract
Elongated tomato fruit shape is the result of the action of the fruit shape genes possibly in coordination with the phytohormone auxin. To investigate the possible link between auxin and the fruit shape genes, a series of auxin (2,4-D) treatments were performed on the wild-type and the fruit shape near-isogenic lines (NILs) in Solanum pimpinellifolium accession LA1589 background. Morphological and histological analyses indicated that auxin application approximately 3 weeks before anthesis led to elongated pear-shaped ovaries and fruits, which was mainly attributed to the increase of ovary/fruit proximal end caused by the increase of both cell number and cell size. Fruit shape changes caused by SUN, OVATE and fs8.1 were primarily due to the alterations of cell number along different growth axes. Particularly, SUN caused elongation by extending cell number along the entire proximal-distal axis, whereas OVATE caused fruit elongation in the proximal area, which was most similar to the effect of auxin on ovary shape. Expression analysis of flower buds at different stages in fruit shape NILs indicated that SUN had a stronger impact on the transcriptome than OVATE and fs8.1. The sun NIL differentially expressed genes were enriched in several biological processes, such as lipid metabolism, ion transmembrane and actin cytoskeleton organization. Additionally, SUN also shifted the expression of the auxin-related genes, including those involved in auxin biosynthesis, homeostasis, signal transduction and polar transport, indicating that SUN may regulate ovary/fruit shape through modifying the expression of auxin-related genes very early during the formation of the ovary in the developing flower.
Collapse
Affiliation(s)
- Yanping Wang
- College of Horticulture, China Agricultural University, Beijing, P.R. China
- Department of Horticulture and Crop Science, The Ohio State University/OARDC, Wooster, OH, USA
- National Engineering Research Center for Vegetables, Beijing Academy of Agriculture and Forestry Sciences, Beijing, P.R. China
| | - Josh P Clevenger
- Department of Horticulture and Crop Science, The Ohio State University/OARDC, Wooster, OH, USA
- Institute of Plant Breeding, Genetics & Genomics, University of Georgia, Athens, GA, USA
- Center for Applied Genetic Technologies, Mars Wrigley Confectionery, Athens, GA, USA
| | | | - Tea Meulia
- Department of Plant Pathology, Molecular and Cellular Imaging Center, The Ohio State University/OARDC, Wooster, OH, USA
| | - Esther van der Knaap
- Department of Horticulture and Crop Science, The Ohio State University/OARDC, Wooster, OH, USA
- Institute of Plant Breeding, Genetics & Genomics, University of Georgia, Athens, GA, USA
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA, USA
| | - Liang Sun
- College of Horticulture, China Agricultural University, Beijing, P.R. China
- Department of Horticulture and Crop Science, The Ohio State University/OARDC, Wooster, OH, USA
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing, P.R. China
| |
Collapse
|
46
|
Yu Y, Wu S, Nowak J, Wang G, Han L, Feng Z, Mendrinna A, Ma Y, Wang H, Zhang X, Tian J, Dong L, Nikoloski Z, Persson S, Kong Z. Live-cell imaging of the cytoskeleton in elongating cotton fibres. NATURE PLANTS 2019; 5:498-504. [PMID: 31040442 DOI: 10.1038/s41477-019-0418-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 03/18/2019] [Indexed: 05/23/2023]
Abstract
Cotton (Gossypium hirsutum) fibres consist of single cells that grow in a highly polarized manner, assumed to be controlled by the cytoskeleton1-3. However, how the cytoskeletal organization and dynamics underpin fibre development remains unexplored. Moreover, it is unclear whether cotton fibres expand via tip growth or diffuse growth2-4. We generated stable transgenic cotton plants expressing fluorescent markers of the actin and microtubule cytoskeleton. Live-cell imaging revealed that elongating cotton fibres assemble a cortical filamentous actin network that extends along the cell axis to finally form actin strands with closed loops in the tapered fibre tip. Analyses of F-actin network properties indicate that cotton fibres have a unique actin organization that blends features of both diffuse and tip growth modes. Interestingly, typical actin organization and endosomal vesicle aggregation found in tip-growing cell apices were not observed in fibre tips. Instead, endomembrane compartments were evenly distributed along the elongating fibre cells and moved bi-directionally along the fibre shank to the fibre tip. Moreover, plus-end tracked microtubules transversely encircled elongating fibre shanks, reminiscent of diffusely growing cells. Collectively, our findings indicate that cotton fibres elongate via a unique tip-biased diffuse growth mode.
Collapse
Affiliation(s)
- Yanjun Yu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shenjie Wu
- Cotton Research Institute, Shanxi Academy of Agricultural Sciences, Yucheng, China
| | - Jacqueline Nowak
- School of Biosciences, University of Melbourne, Melbourne, Victoria, Australia
- Systems Biology and Mathematical Modeling, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
- Bioinformatics, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Guangda Wang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Libo Han
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhidi Feng
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Amelie Mendrinna
- School of Biosciences, University of Melbourne, Melbourne, Victoria, Australia
| | - Yinping Ma
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Huan Wang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaxia Zhang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Juan Tian
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Li Dong
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zoran Nikoloski
- Systems Biology and Mathematical Modeling, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
- Bioinformatics, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Staffan Persson
- School of Biosciences, University of Melbourne, Melbourne, Victoria, Australia.
| | - Zhaosheng Kong
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Academy of Seed Design, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
47
|
Liu W, Wang C, Wang G, Ma Y, Tian J, Yu Y, Dong L, Kong Z. Towards a better recording of microtubule cytoskeletal spatial organization and dynamics in plant cells. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2019; 61:388-393. [PMID: 30226291 DOI: 10.1111/jipb.12721] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 09/07/2018] [Indexed: 06/08/2023]
Abstract
Numerous fluorescent marker lines are currently available to visualize microtubule (MT) architecture and dynamics in living plant cells, such as markers expressing p35S::GFP-MBD or p35S::GFP-TUB6. However, these MT marker lines display obvious defects that affect plant growth or produce unstable fluorescent signals. Here, a series of new marker lines were developed, including the pTUB6::VisGreen-TUB6-expressing line in which TUB6 is under the control of its endogenous regulatory elements and eGFP is replaced with VisGreen, a brighter fluorescent protein. Moreover, two different markers were combined into one expression vector and developed two dual-marker lines. These marker lines produce bright, stable fluorescent signals in various tissues, and greatly shorten the screening process for generating dual-marker lines. These new marker lines provide a novel resource for MT research.
Collapse
Affiliation(s)
- Weiwei Liu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, the Chinese Academy of Sciences, Beijing 100101, China
- The University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chaofeng Wang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, the Chinese Academy of Sciences, Beijing 100101, China
- The University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guangda Wang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, the Chinese Academy of Sciences, Beijing 100101, China
- The University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yinping Ma
- State Key Laboratory of Plant Genomics, Institute of Microbiology, the Chinese Academy of Sciences, Beijing 100101, China
- The University of Chinese Academy of Sciences, Beijing 100049, China
| | - Juan Tian
- State Key Laboratory of Plant Genomics, Institute of Microbiology, the Chinese Academy of Sciences, Beijing 100101, China
| | - Yanjun Yu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, the Chinese Academy of Sciences, Beijing 100101, China
| | - Li Dong
- State Key Laboratory of Plant Genomics, Institute of Microbiology, the Chinese Academy of Sciences, Beijing 100101, China
| | - Zhaosheng Kong
- State Key Laboratory of Plant Genomics, Institute of Microbiology, the Chinese Academy of Sciences, Beijing 100101, China
- The University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
48
|
Liang S, Yang X, Deng M, Zhao J, Shao J, Qi Y, Liu X, Yu F, An L. A New Allele of the SPIKE1 Locus Reveals Distinct Regulation of Trichome and Pavement Cell Development and Plant Growth. FRONTIERS IN PLANT SCIENCE 2019; 10:16. [PMID: 30733726 PMCID: PMC6353857 DOI: 10.3389/fpls.2019.00016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 01/08/2019] [Indexed: 06/09/2023]
Abstract
The single-celled trichomes of Arabidopsis thaliana have long served as an elegant model for elucidating the mechanisms of cell differentiation and morphogenesis due to their unique growth patterns. To identify new components in the genetic network that governs trichome development, we carried out exhaustive screens for additional Arabidopsis mutants with altered trichome morphology. Here, we report one mutant, aberrantly branched trichome1-1 (abt1-1), with a reduced trichome branching phenotype. After positional cloning, a point mutation in the SPIKE1 (SPK1) gene was identified in abt1-1. Further genetic complementation experiments confirmed that abt1-1 is a new allele of SPK1, so abt1-1 was renamed as spk1-7 according to the literatures. spk1-7 and two other spk1 mutant alleles, covering a spectrum of phenotypic severity, highlighted the distinct responses of developmental programs to different SPK1 mutations. Although null spk1 mutants are lethal and show defects in plant stature, trichome and epidermal pavement cell development, only trichome branching is affected in spk1-7. Surprisingly, we found that SPK1 is involved in the positioning of nuclei in the trichome cells. Lastly, through double mutant analysis, we found the coordinated regulation of trichome branching between SPK1 and two other trichome branching regulators, ANGUSTIFOLIA (AN) and ZWICHEL (ZWI). SPK1 might serve for the precise positioning of trichome nuclei, while AN and ZWI contribute to the formation of branch points through governing the cMTs dynamics. In summary, this study presented a fully viable new mutant allele of SPK1 and shed new light on the regulation of trichome branching and other developmental processes by SPK1.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Fei Yu
- *Correspondence: Fei Yu, Lijun An,
| | - Lijun An
- *Correspondence: Fei Yu, Lijun An,
| |
Collapse
|
49
|
Kölling M, Kumari P, Bürstenbinder K. Calcium- and calmodulin-regulated microtubule-associated proteins as signal-integration hubs at the plasma membrane-cytoskeleton nexus. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:387-396. [PMID: 30590729 DOI: 10.1093/jxb/ery397] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 12/06/2018] [Indexed: 05/09/2023]
Abstract
Plant growth and development are a genetically predetermined series of events but can change dramatically in response to environmental stimuli, involving perpetual pattern formation and reprogramming of development. The rate of growth is determined by cell division and subsequent cell expansion, which are restricted and controlled by the cell wall-plasma membrane-cytoskeleton continuum, and are coordinated by intricate networks that facilitate intra- and intercellular communication. An essential role in cellular signaling is played by calcium ions, which act as universal second messengers that transduce, integrate, and multiply incoming signals during numerous plant growth processes, in part by regulation of the microtubule cytoskeleton. In this review, we highlight recent advances in the understanding of calcium-mediated regulation of microtubule-associated proteins, their function at the microtubule cytoskeleton, and their potential role as hubs in crosstalk with other signaling pathways.
Collapse
Affiliation(s)
- Malte Kölling
- Leibniz Institute of Plant Biochemistry, Weinberg, Halle/Saale, Germany
| | - Pratibha Kumari
- Leibniz Institute of Plant Biochemistry, Weinberg, Halle/Saale, Germany
| | | |
Collapse
|
50
|
Zhang X, Han L, Wang Q, Zhang C, Yu Y, Tian J, Kong Z. The host actin cytoskeleton channels rhizobia release and facilitates symbiosome accommodation during nodulation in Medicago truncatula. THE NEW PHYTOLOGIST 2019; 221:1049-1059. [PMID: 30156704 DOI: 10.1111/nph.15423] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Accepted: 08/02/2018] [Indexed: 05/13/2023]
Abstract
In plants, the actin cytoskeleton plays a central role in regulating intracellular transport and trafficking in the endomembrane system. Work in legumes suggested that during nodulation, the actin cytoskeleton coordinates numerous cellular processes in the development of nitrogen-fixing nodules. However, we lacked live-cell visualizations demonstrating dynamic remodeling of the actin cytoskeleton during infection droplet release and symbiosome development. Here, we generated transgenic Medicago truncatula lines stably expressing the fluorescent actin marker ABD2-GFP, and utilized live-cell imaging to reveal the architecture and dynamics of the actin cytoskeleton during nodule development. Live-cell observations showed that different zones in nitrogen-fixing nodules exhibit distinct actin architectures and infected cells display five characteristic actin architectures during nodule development. Live-cell imaging combined with three-dimensional reconstruction demonstrated that dense filamentous-actin (F-actin) arrays channel the elongation of infection threads and the release of infection droplets, an F-actin network encircles freshly-released rhizobia, and short F-actin fragments and actin dots around radially distributed symbiosomes. Our findings suggest an important role of the actin cytoskeleton in infection droplet release, symbiosome development and maturation, and provide significant insight into the cellular mechanisms underlying nodule development and nitrogen fixation during legume-rhizobia interactions.
Collapse
Affiliation(s)
- Xiaxia Zhang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Libo Han
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qi Wang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Chen Zhang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanjun Yu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Juan Tian
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhaosheng Kong
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|