1
|
Stewart RG, Marquis MJ, Jo S, Harris BJ, Aberra AS, Cook V, Whiddon Z, Yarov-Yarovoy V, Ferns M, Sack JT. A Kv2 inhibitor combination reveals native neuronal conductances consistent with Kv2/KvS heteromers. eLife 2025; 13:RP99410. [PMID: 40423692 PMCID: PMC12113274 DOI: 10.7554/elife.99410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2025] Open
Abstract
KvS proteins are voltage-gated potassium channel subunits that form functional channels when assembled into heteromers with Kv2.1 (KCNB1) or Kv2.2 (KCNB2). Mammals have 10 KvS subunits: Kv5.1 (KCNF1), Kv6.1 (KCNG1), Kv6.2 (KCNG2), Kv6.3 (KCNG3), Kv6.4 (KCNG4), Kv8.1 (KCNV1), Kv8.2 (KCNV2), Kv9.1 (KCNS1), Kv9.2 (KCNS2), and Kv9.3 (KCNS3). Electrically excitable cells broadly express channels containing Kv2 subunits and most neurons have substantial Kv2 conductance. However, whether KvS subunits contribute to these conductances has not been clear, leaving the physiological roles of KvS subunits poorly understood. Here, we identify that two potent Kv2 inhibitors, used in combination, can distinguish conductances of Kv2/KvS heteromers and Kv2-only channels. We find that Kv5, Kv6, Kv8, or Kv9-containing channels are resistant to the Kv2-selective pore-blocker RY785 yet remain sensitive to the Kv2-selective voltage sensor modulator guangxitoxin-1E (GxTX). Using these inhibitors in mouse superior cervical ganglion neurons, we find predominantly RY785-sensitive conductances consistent with channels composed entirely of Kv2 subunits. In contrast, RY785-resistant but GxTX-sensitive conductances consistent with Kv2/KvS heteromeric channels predominate in mouse and human dorsal root ganglion neurons. These results establish an approach to pharmacologically distinguish conductances of Kv2/KvS heteromers from Kv2-only channels, enabling investigation of the physiological roles of endogenous KvS subunits. These findings suggest that drugs which distinguish KvS subunits could modulate electrical activity of subsets of Kv2-expressing cell types.
Collapse
Affiliation(s)
- Robert G Stewart
- Department of Physiology and Membrane Biology, University of California DavisDavisUnited States
- Neurobiology Course, Marine Biological LaboratoryWoods HoleUnited States
- Department of Neurobiology, Harvard Medical SchoolBostonUnited States
| | - Matthew James Marquis
- Department of Physiology and Membrane Biology, University of California DavisDavisUnited States
| | - Sooyeon Jo
- Department of Neurobiology, Harvard Medical SchoolBostonUnited States
| | - Brandon J Harris
- Department of Physiology and Membrane Biology, University of California DavisDavisUnited States
| | - Aman S Aberra
- Neurobiology Course, Marine Biological LaboratoryWoods HoleUnited States
- Department of Biological Sciences, Dartmouth CollegeHanoverUnited States
| | - Verity Cook
- Neurobiology Course, Marine Biological LaboratoryWoods HoleUnited States
- Einstein Center for Neuroscience, Charité Universitätsmedizin BerlinHufelandwegGermany
| | - Zachary Whiddon
- Neurobiology Course, Marine Biological LaboratoryWoods HoleUnited States
| | - Vladimir Yarov-Yarovoy
- Department of Physiology and Membrane Biology, University of California DavisDavisUnited States
- Department of Anesthesiology and Pain Medicine, University of California DavisDavisUnited States
| | - Michael Ferns
- Department of Physiology and Membrane Biology, University of California DavisDavisUnited States
- Department of Anesthesiology and Pain Medicine, University of California DavisDavisUnited States
| | - Jon T Sack
- Department of Physiology and Membrane Biology, University of California DavisDavisUnited States
- Neurobiology Course, Marine Biological LaboratoryWoods HoleUnited States
- Department of Anesthesiology and Pain Medicine, University of California DavisDavisUnited States
| |
Collapse
|
2
|
Effantin G, Kandiah E, Pelosse M. Structure of AcMNPV nucleocapsid reveals DNA portal organization and packaging apparatus of circular dsDNA baculovirus. Nat Commun 2025; 16:4844. [PMID: 40413174 PMCID: PMC12103608 DOI: 10.1038/s41467-025-60152-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 05/16/2025] [Indexed: 05/27/2025] Open
Abstract
Baculoviruses are large DNA viruses found in nature propagating amongst insects and lepidoptera in particular. They have been studied for decades and are nowadays considered as invaluable biotechnology tools used as biopesticides, recombinant expression systems or delivery vehicle for gene therapy. However, little is known about the baculovirus nucleocapsid assembly at a molecular level. Here, we solve the whole structure of the Autographa californica multiple nucleopolyhedrovirus (AcMNPV) nucleocapsid by applying cryo-electron microscopy (CryoEM) combined with de novo modelling and Alphafold predictions. Our structure completes prior observations and elucidates the intricate architecture of the apical cap, unravelling the organization of a DNA portal featuring intriguing symmetry mismatches between its core and vertex. The core, closing the capsid at the apex, holds two DNA helices of the viral genome tethered to Ac54 proteins. Different symmetry components at the apical cap and basal structure are constituted of the same building block, made of Ac101/Ac144, proving the versatility of this modular pair. The crown forming the portal vertex displays a C21 symmetry and contains, amongst others, the motor-like protein Ac66. Our findings support the viral portal to be involved in DNA packaging, probably in conjunction with other parts of a larger DNA packaging apparatus.
Collapse
Affiliation(s)
- Gregory Effantin
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), 38000, Grenoble, France.
| | - Eaazhisai Kandiah
- European Synchrotron Radiation Facility (ESRF), 71 Avenue des Martyrs, 38000, Grenoble, France.
| | - Martin Pelosse
- European Molecular Biology Laboratory, 71 Avenue des Martyrs, CS 90181, 38042, Grenoble, Cedex, France.
| |
Collapse
|
3
|
Gen R, Addetia A, Asarnow D, Park YJ, Quispe J, Chan MC, Brown JT, Lee J, Campbell MG, Lapointe CP, Veesler D. SARS-CoV-2 nsp1 mediates broad inhibition of translation in mammals. Cell Rep 2025; 44:115696. [PMID: 40359110 DOI: 10.1016/j.celrep.2025.115696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 03/13/2025] [Accepted: 04/23/2025] [Indexed: 05/15/2025] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) non-structural protein 1 (nsp1) promotes innate immune evasion by inhibiting host translation in human cells. However, the role of nsp1 in other host species remains elusive, especially in bats-natural reservoirs of sarbecoviruses with a markedly different innate immune system than humans. We reveal that nsp1 potently inhibits translation in Rhinolophus lepidus bat cells, which belong to the same genus as known sarbecovirus reservoir hosts. We determined a cryoelectron microscopy structure of nsp1 bound to the R. lepidus 40S ribosomal subunit, showing that it blocks the mRNA entry channel by targeting a highly conserved site among mammals. Accordingly, we found that nsp1 blocked protein translation in mammalian cells from several species, underscoring its broadly inhibitory activity and conserved role in numerous SARS-CoV-2 hosts. Our findings illuminate the arms race between coronaviruses and mammalian host immunity, providing a foundation for understanding the determinants of viral maintenance in bat hosts and spillover.
Collapse
Affiliation(s)
- Risako Gen
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Amin Addetia
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Daniel Asarnow
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Young-Jun Park
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Joel Quispe
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Matthew C Chan
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Jack T Brown
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Jimin Lee
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Melody G Campbell
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | | | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
4
|
Basanta B, Nugroho K, Yan NL, Kline GM, Powers ET, Tsai FJ, Wu M, Hansel-Harris A, Chen JS, Forli S, Kelly JW, Lander GC. The conformational landscape of human transthyretin revealed by cryo-EM. Nat Struct Mol Biol 2025; 32:876-883. [PMID: 39843982 DOI: 10.1038/s41594-024-01472-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 12/09/2024] [Indexed: 01/24/2025]
Abstract
Transthyretin (TTR) is a natively tetrameric thyroxine transporter in blood and cerebrospinal fluid whose misfolding and aggregation causes TTR amyloidosis. A rational drug design campaign identified the small molecule tafamidis (Vyndamax) as a stabilizer of the native TTR fold, and this aggregation inhibitor is regulatory agency approved for the treatment of TTR amyloidosis. Here we used cryo-EM to investigate the conformational landscape of this 55 kDa tetramer in the absence and presence of one or two ligands, revealing inherent asymmetries in the tetrameric architecture and previously unobserved conformational states. These findings provide critical mechanistic insights into negatively cooperative ligand binding and the structural pathways responsible for TTR amyloidogenesis, underscoring the capacity of cryo-EM to identify pharmacological targets suppressed by the confines of the crystal lattice, opening uncharted territory in structure-based drug design.
Collapse
Affiliation(s)
- Benjamin Basanta
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA, USA
- Arzeda, Seattle, WA, USA
| | - Karina Nugroho
- Department of Chemistry, Scripps Research, La Jolla, CA, USA
| | - Nicholas L Yan
- Department of Chemistry, Scripps Research, La Jolla, CA, USA
| | - Gabriel M Kline
- Department of Chemistry, Scripps Research, La Jolla, CA, USA
| | - Evan T Powers
- Department of Chemistry, Scripps Research, La Jolla, CA, USA
| | - Felix J Tsai
- Department of Chemistry, Scripps Research, La Jolla, CA, USA
| | - Mengyu Wu
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA, USA
- Neomorph, San Diego, CA, USA
| | - Althea Hansel-Harris
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA, USA
| | - Jason S Chen
- Automated Synthesis Facility, Scripps Research, La Jolla, CA, USA
| | - Stefano Forli
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA, USA
| | - Jeffrey W Kelly
- Department of Chemistry, Scripps Research, La Jolla, CA, USA
| | - Gabriel C Lander
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA, USA.
| |
Collapse
|
5
|
McDonald EF, Kim M, Olson JA, Meiler J, Plate L. Proteostasis landscapes of cystic fibrosis variants reveal drug response vulnerability. Proc Natl Acad Sci U S A 2025; 122:e2418407122. [PMID: 40261935 PMCID: PMC12054793 DOI: 10.1073/pnas.2418407122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 02/26/2025] [Indexed: 04/24/2025] Open
Abstract
Cystic fibrosis (CF) is a lethal genetic disorder caused by variants in CF transmembrane conductance regulator (CFTR). Many variants are treatable with correctors, which enhance the folding and trafficking of CFTR. However, approximately 3% of persons with CF harbor poorly responsive variants. Here, we used affinity purification mass spectrometry proteomics to profile the protein homeostasis (proteostasis) changes of CFTR variants during correction to assess modulated interactions with protein folding and maturation pathways. Responsive variant interactions converged on similar proteostasis pathways during correction. In contrast, poorly responsive variants subtly diverged, revealing a partial restoration of protein quality control surveillance and partial correction. Computational structural modeling showed that corrector VX-445 failed to confer enough NBD1 stability to poor responders. NBD1 secondary stabilizing mutations rescued poorly responsive variants, revealing structural vulnerabilities in NBD1 required for treating poor responders. Our study provides a framework for discerning the underlying protein quality control and structural defects of CFTR variants not reached with existing drugs to expand therapeutics to all susceptible CFTR variants.
Collapse
Affiliation(s)
- Eli Fritz McDonald
- Department of Chemistry, Vanderbilt University, Nashville, TN37240
- Center for Structural Biology, Vanderbilt University, Nashville, TN37240
| | - Minsoo Kim
- Department of Chemistry, Vanderbilt University, Nashville, TN37240
- Chemical and Physical Biology Program, Vanderbilt University, Nashville, TN37240
| | - John A. Olson
- Department of Chemistry, Vanderbilt University, Nashville, TN37240
- Chemical and Physical Biology Program, Vanderbilt University, Nashville, TN37240
| | - Jens Meiler
- Department of Chemistry, Vanderbilt University, Nashville, TN37240
- Center for Structural Biology, Vanderbilt University, Nashville, TN37240
- Department of Pharmacology, Vanderbilt University, Nashville, TN37240
- Institute for Drug Discovery, Leipzig University, Leipzig, SAC04103, Germany
| | - Lars Plate
- Department of Chemistry, Vanderbilt University, Nashville, TN37240
- Department of Biological Sciences, Vanderbilt University, Nashville, TN37240
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN37232
| |
Collapse
|
6
|
Trezza A, Visibelli A, Roncaglia B, Barletta R, Iannielli S, Mahboob L, Spiga O, Santucci A. Unveiling Dynamic Hotspots in Protein-Ligand Binding: Accelerating Target and Drug Discovery Approaches. Int J Mol Sci 2025; 26:3971. [PMID: 40362212 PMCID: PMC12071544 DOI: 10.3390/ijms26093971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2025] [Revised: 04/14/2025] [Accepted: 04/21/2025] [Indexed: 05/15/2025] Open
Abstract
Computational methods have transformed target and drug discovery, significantly accelerating the identification of biological targets and lead compounds. Despite its limitations, in silico molecular docking represents a foundational tool. Molecular Dynamics (MD) simulations, employing accurate force fields, provide near-realistic insights into a compound's behavior within a biological target. However, docking and MD predictions may be unreliable without precise knowledge of the target binding site. Through MD simulations, we investigated 100 co-crystal structures of biological targets complexed with active compounds, identifying key structural and energy dynamic features that govern target-ligand interactions. Our analysis provides a detailed quantitative description of these parameters, offering critical validation for improving the predictive reliability of docking and MD simulations. This work provides a robust framework for refining early-stage drug discovery and target identification.
Collapse
Affiliation(s)
- Alfonso Trezza
- ONE-HEALTH Laboratory, Department of Biotechnology Chemistry Pharmacy, University of Siena, Via Aldo Moro, 2, 53100 Siena, Italy; (A.V.); (B.R.); (R.B.); (S.I.); (L.M.); (O.S.); (A.S.)
| | - Anna Visibelli
- ONE-HEALTH Laboratory, Department of Biotechnology Chemistry Pharmacy, University of Siena, Via Aldo Moro, 2, 53100 Siena, Italy; (A.V.); (B.R.); (R.B.); (S.I.); (L.M.); (O.S.); (A.S.)
| | - Bianca Roncaglia
- ONE-HEALTH Laboratory, Department of Biotechnology Chemistry Pharmacy, University of Siena, Via Aldo Moro, 2, 53100 Siena, Italy; (A.V.); (B.R.); (R.B.); (S.I.); (L.M.); (O.S.); (A.S.)
| | - Roberta Barletta
- ONE-HEALTH Laboratory, Department of Biotechnology Chemistry Pharmacy, University of Siena, Via Aldo Moro, 2, 53100 Siena, Italy; (A.V.); (B.R.); (R.B.); (S.I.); (L.M.); (O.S.); (A.S.)
| | - Stefania Iannielli
- ONE-HEALTH Laboratory, Department of Biotechnology Chemistry Pharmacy, University of Siena, Via Aldo Moro, 2, 53100 Siena, Italy; (A.V.); (B.R.); (R.B.); (S.I.); (L.M.); (O.S.); (A.S.)
| | - Linta Mahboob
- ONE-HEALTH Laboratory, Department of Biotechnology Chemistry Pharmacy, University of Siena, Via Aldo Moro, 2, 53100 Siena, Italy; (A.V.); (B.R.); (R.B.); (S.I.); (L.M.); (O.S.); (A.S.)
| | - Ottavia Spiga
- ONE-HEALTH Laboratory, Department of Biotechnology Chemistry Pharmacy, University of Siena, Via Aldo Moro, 2, 53100 Siena, Italy; (A.V.); (B.R.); (R.B.); (S.I.); (L.M.); (O.S.); (A.S.)
| | - Annalisa Santucci
- ONE-HEALTH Laboratory, Department of Biotechnology Chemistry Pharmacy, University of Siena, Via Aldo Moro, 2, 53100 Siena, Italy; (A.V.); (B.R.); (R.B.); (S.I.); (L.M.); (O.S.); (A.S.)
- SienabioACTIVE, University of Siena, Via Aldo Moro, 2, 53100 Siena, Italy
- MetabERN, University of Siena, Via Aldo Moro, 2, 53100 Siena, Italy
| |
Collapse
|
7
|
Chen LN, Zhou H, Xi K, Cheng S, Liu Y, Fu Y, Ma X, Xu P, Ji SY, Wang WW, Shen DD, Zhang H, Shen Q, Chai R, Zhang M, Yang L, Han F, Mao C, Cai X, Zhang Y. Proton perception and activation of a proton-sensing GPCR. Mol Cell 2025; 85:1640-1657.e8. [PMID: 40215960 DOI: 10.1016/j.molcel.2025.02.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/22/2025] [Accepted: 02/28/2025] [Indexed: 04/20/2025]
Abstract
Maintaining pH at cellular, tissular, and systemic levels is essential for human health. Proton-sensing GPCRs regulate physiological and pathological processes by sensing the extracellular acidity. However, the molecular mechanism of proton sensing and activation of these receptors remains elusive. Here, we present cryoelectron microscopy (cryo-EM) structures of human GPR4, a prototypical proton-sensing GPCR, in its inactive and active states. Our studies reveal that three extracellular histidine residues are crucial for proton sensing of human GPR4. The binding of protons induces substantial conformational changes in GPR4's ECLs, particularly in ECL2, which transforms from a helix-loop to a β-turn-β configuration. This transformation leads to the rearrangements of H-bond network and hydrophobic packing, relayed by non-canonical motifs to accommodate G proteins. Furthermore, the antagonist NE52-QQ57 hinders human GPR4 activation by preventing hydrophobic stacking rearrangement. Our findings provide a molecular framework for understanding the activation mechanism of a human proton-sensing GPCR, aiding future drug discovery.
Collapse
Affiliation(s)
- Li-Nan Chen
- Department of Pathology of Sir Run Run Shaw Hospital, Department of Pharmacology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Hui Zhou
- Department of Pathology of Sir Run Run Shaw Hospital, Department of Pharmacology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Kun Xi
- Department of Pathology of Sir Run Run Shaw Hospital, Department of Pharmacology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Shizhuo Cheng
- Department of Pathology of Sir Run Run Shaw Hospital, Department of Pharmacology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yongfeng Liu
- Department of Pathology of Sir Run Run Shaw Hospital, Department of Pharmacology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yifan Fu
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Xiangyu Ma
- Department of Pathology of Sir Run Run Shaw Hospital, Department of Pharmacology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou 310058, China; State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing 210096, China
| | - Ping Xu
- Department of Pathology of Sir Run Run Shaw Hospital, Department of Pharmacology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou 310058, China; Institute of Cytology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Su-Yu Ji
- Department of Pathology of Sir Run Run Shaw Hospital, Department of Pharmacology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Wei-Wei Wang
- Department of Pathology of Sir Run Run Shaw Hospital, Department of Pharmacology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Dan-Dan Shen
- Department of Pathology of Sir Run Run Shaw Hospital, Department of Pharmacology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Huibing Zhang
- Department of Pathology of Sir Run Run Shaw Hospital, Department of Pharmacology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Qingya Shen
- Department of Pathology of Sir Run Run Shaw Hospital, Department of Pharmacology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Renjie Chai
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing 210096, China
| | - Min Zhang
- College of Computer Science and Technology, Zhejiang University, Hangzhou 310027, China
| | - Lin Yang
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Feng Han
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China.
| | - Chunyou Mao
- Department of Pathology of Sir Run Run Shaw Hospital, Department of Pharmacology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou 310058, China; Center for Structural Pharmacology and Therapeutics Development, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China; Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China.
| | - Xiujun Cai
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China; National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Hangzhou 310016, China; Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Hangzhou 310016, China.
| | - Yan Zhang
- Department of Pathology of Sir Run Run Shaw Hospital, Department of Pharmacology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou 310058, China.
| |
Collapse
|
8
|
Letscher H, Guilligay D, Effantin G, Amen A, Sulbaran G, Burger JA, Bossevot L, Junges L, Leonec M, Morin J, Van Tilbeurgh M, Hérate C, Gallouët AS, Relouzat F, van der Werf S, Cavarelli M, Dereuddre-Bosquet N, van Gils MJ, Sanders RW, Poignard P, Le Grand R, Weissenhorn W. RBD-depleted SARS-CoV-2 spike generates protective immunity in cynomolgus macaques. NPJ Vaccines 2025; 10:63. [PMID: 40159504 PMCID: PMC11955555 DOI: 10.1038/s41541-025-01113-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 03/17/2025] [Indexed: 04/02/2025] Open
Abstract
The SARS-CoV-2 pandemic revealed the rapid evolution of circulating strains. This led to new variants carrying mostly mutations within the receptor binding domain, which is immunodominant upon immunization and infection. In order to steer the immune response away from RBD epitopes to more conserved domains, we generated S glycoprotein trimers without RBD and stabilized them by formaldehyde cross-linking. The cryoEM structure demonstrated that SΔRBD folds into the native prefusion conformation, stabilized by one specific cross-link between S2 protomers. SΔRBD was coated onto lipid vesicles, to produce synthetic virus-like particles, SΔRBD-LV, which were utilized in a heterologous prime-boost strategy. Immunization of cynomolgus macaques either three times with the mRNA Comirnaty vaccine or two times followed by SΔRBD-LV showed that the SΔRBD-LV boost induced similar antibody titers and neutralization of different variants, including omicron. Upon challenge with omicron XBB.3, both the Comirnaty only and Comirnaty/SΔRBD-LV vaccination schemes conferred similar overall protection from infection for both the Comirnaty only and Comirnaty/SΔRBD-LV vaccination schemes. However, the SΔRBD-LV boost indicated better protection against lung infection than the Comirnaty strategy alone. Together our findings indicate that SΔRBD is highly immunogenic and provides improved protection compared to a third mRNA boost indicative of superior antibody-based protection.
Collapse
Affiliation(s)
- Hélène Letscher
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT/UMR-S 1184), Fontenay-aux-Roses & Le Kremlin-Bicêtre, Paris, France.
| | - Delphine Guilligay
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), Grenoble, France
| | - Gregory Effantin
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), Grenoble, France
| | - Axelle Amen
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), Grenoble, France
- CHU Grenoble Alpes, Grenoble, France
| | - Guidenn Sulbaran
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), Grenoble, France
| | - Judith A Burger
- University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Centers, Location AMC, Amsterdam, The Netherlands
| | - Laetitia Bossevot
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT/UMR-S 1184), Fontenay-aux-Roses & Le Kremlin-Bicêtre, Paris, France
| | - Laura Junges
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT/UMR-S 1184), Fontenay-aux-Roses & Le Kremlin-Bicêtre, Paris, France
| | - Marco Leonec
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT/UMR-S 1184), Fontenay-aux-Roses & Le Kremlin-Bicêtre, Paris, France
| | - Julie Morin
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT/UMR-S 1184), Fontenay-aux-Roses & Le Kremlin-Bicêtre, Paris, France
| | - Matthieu Van Tilbeurgh
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT/UMR-S 1184), Fontenay-aux-Roses & Le Kremlin-Bicêtre, Paris, France
| | - Cécile Hérate
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT/UMR-S 1184), Fontenay-aux-Roses & Le Kremlin-Bicêtre, Paris, France
| | - Anne-Sophie Gallouët
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT/UMR-S 1184), Fontenay-aux-Roses & Le Kremlin-Bicêtre, Paris, France
| | - Francis Relouzat
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT/UMR-S 1184), Fontenay-aux-Roses & Le Kremlin-Bicêtre, Paris, France
| | - Sylvie van der Werf
- Institut Pasteur, Molecular Genetics of RNA Viruses, Department of Virology, CNRS UMR 3569, Université de Paris, Paris, France
- Institut Pasteur, National Reference Center for Respiratory Viruses, Paris, France
| | - Mariangela Cavarelli
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT/UMR-S 1184), Fontenay-aux-Roses & Le Kremlin-Bicêtre, Paris, France
| | - Nathalie Dereuddre-Bosquet
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT/UMR-S 1184), Fontenay-aux-Roses & Le Kremlin-Bicêtre, Paris, France
| | - Marit J van Gils
- University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Centers, Location AMC, Amsterdam, The Netherlands
| | - Rogier W Sanders
- University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Centers, Location AMC, Amsterdam, The Netherlands
- Weill Medical College of Cornell University, Department of Microbiology and Immunology, New York, NY, USA
| | - Pascal Poignard
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), Grenoble, France
- CHU Grenoble Alpes, Grenoble, France
| | - Roger Le Grand
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT/UMR-S 1184), Fontenay-aux-Roses & Le Kremlin-Bicêtre, Paris, France.
| | - Winfried Weissenhorn
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), Grenoble, France.
| |
Collapse
|
9
|
Park YJ, Liu C, Lee J, Brown JT, Ma CB, Liu P, Gen R, Xiong Q, Zepeda SK, Stewart C, Addetia A, Craig CJ, Tortorici MA, Alshukairi AN, Starr TN, Yan H, Veesler D. Molecular basis of convergent evolution of ACE2 receptor utilization among HKU5 coronaviruses. Cell 2025; 188:1711-1728.e21. [PMID: 39922192 DOI: 10.1016/j.cell.2024.12.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/25/2024] [Accepted: 12/20/2024] [Indexed: 02/10/2025]
Abstract
DPP4 was considered a canonical receptor for merbecoviruses until the recent discovery of African bat-borne MERS-related coronaviruses using ACE2. The extent and diversity of ACE2 utilization among merbecoviruses and their receptor species tropism remain unknown. Here, we reveal that HKU5 enters host cells utilizing Pipistrellus abramus (P.abr) and several non-bat mammalian ACE2s through a binding mode distinct from that of any other known ACE2-using coronaviruses. We defined the molecular determinants of receptor species tropism and identified a single amino acid mutation enabling HKU5 to utilize human ACE2, providing proof of principle for machine-learning-assisted outbreak preparedness. We show that MERS-CoV and HKU5 have markedly distinct antigenicity and identified several HKU5 inhibitors, including two clinical compounds. Our findings profoundly alter our understanding of coronavirus evolution, as several merbecovirus clades independently evolved ACE2 utilization, and pave the way for developing countermeasures against viruses poised for human emergence.
Collapse
Affiliation(s)
- Young-Jun Park
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | - Chen Liu
- State Key Laboratory of Virology and Biosafety, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Jimin Lee
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Jack T Brown
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Cheng-Bao Ma
- State Key Laboratory of Virology and Biosafety, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Peng Liu
- State Key Laboratory of Virology and Biosafety, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Risako Gen
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Qing Xiong
- State Key Laboratory of Virology and Biosafety, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Samantha K Zepeda
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Cameron Stewart
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Amin Addetia
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Caroline J Craig
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | | | - Abeer N Alshukairi
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia; Department of Medicine, King Faisal Specialist Hospital and Research Center, Jeddah, Saudi Arabia
| | - Tyler N Starr
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Huan Yan
- State Key Laboratory of Virology and Biosafety, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei 430072, China.
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
10
|
Ma CB, Liu C, Park YJ, Tang J, Chen J, Xiong Q, Lee J, Stewart C, Asarnow D, Brown J, Tortorici MA, Yang X, Sun YH, Chen YM, Yu X, Si JY, Liu P, Tong F, Huang ML, Li J, Shi ZL, Deng Z, Veesler D, Yan H. Multiple independent acquisitions of ACE2 usage in MERS-related coronaviruses. Cell 2025; 188:1693-1710.e18. [PMID: 39922191 DOI: 10.1016/j.cell.2024.12.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/20/2024] [Accepted: 12/20/2024] [Indexed: 02/10/2025]
Abstract
The angiotensin-converting enzyme 2 (ACE2) receptor is shared by various coronaviruses with distinct receptor-binding domain (RBD) architectures, yet our understanding of these convergent acquisition events remains elusive. Here, we report that two bat MERS-related coronaviruses (MERSr-CoVs) infecting Pipistrellus nathusii (P.nat)-MOW15-22 and PnNL2018B-use ACE2 as their receptor, with narrow ortholog specificity. Cryoelectron microscopy structures of the MOW15-22/PnNL2018B RBD-ACE2 complexes unveil an unexpected and entirely distinct binding mode, mapping >45 Å away from that of any other known ACE2-using coronaviruses. Functional profiling of ACE2 orthologs from 105 mammalian species led to the identification of host tropism determinants, including an ACE2 N432-glycosylation restricting viral recognition, and the design of a soluble P.nat ACE2 mutant with potent viral neutralizing activity. Our findings reveal convergent acquisition of ACE2 usage for merbecoviruses found in European bats, underscoring the extraordinary diversity of ACE2 recognition modes among coronaviruses and the promiscuity of this receptor.
Collapse
Affiliation(s)
- Cheng-Bao Ma
- State Key Laboratory of Virology and Biosafety, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430072, Hubei, China
| | - Chen Liu
- State Key Laboratory of Virology and Biosafety, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430072, Hubei, China
| | - Young-Jun Park
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | - Jingjing Tang
- State Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Jing Chen
- State Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Qing Xiong
- State Key Laboratory of Virology and Biosafety, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430072, Hubei, China
| | - Jimin Lee
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Cameron Stewart
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Daniel Asarnow
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Jack Brown
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | | | - Xiao Yang
- State Key Laboratory of Virology and Biosafety, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430072, Hubei, China
| | - Ye-Hui Sun
- State Key Laboratory of Virology and Biosafety, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430072, Hubei, China
| | - Yuan-Mei Chen
- State Key Laboratory of Virology and Biosafety, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430072, Hubei, China
| | - Xiao Yu
- State Key Laboratory of Virology and Biosafety, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430072, Hubei, China
| | - Jun-Yu Si
- State Key Laboratory of Virology and Biosafety, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430072, Hubei, China
| | - Peng Liu
- State Key Laboratory of Virology and Biosafety, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430072, Hubei, China
| | - Fei Tong
- State Key Laboratory of Virology and Biosafety, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430072, Hubei, China
| | - Mei-Ling Huang
- State Key Laboratory of Virology and Biosafety, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430072, Hubei, China
| | - Jing Li
- State Key Laboratory of Virology and Biosafety, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430072, Hubei, China
| | - Zheng-Li Shi
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou 510005, China.
| | - Zengqin Deng
- State Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; Hubei Jiangxia Laboratory, Wuhan 430207, China.
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA.
| | - Huan Yan
- State Key Laboratory of Virology and Biosafety, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430072, Hubei, China.
| |
Collapse
|
11
|
Nasburg JA, Rouen KC, Dietrich CJ, Shim H, Zhang M, Vorobyov I, Wulff H. 6,7-Dichloro-1H-indole-2,3-dione-3-oxime functions as a superagonist for the intermediate-conductance Ca 2+-activated K + channel K Ca3.1. Mol Pharmacol 2025; 107:100018. [PMID: 40068526 DOI: 10.1016/j.molpha.2025.100018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 01/26/2025] [Indexed: 04/01/2025] Open
Abstract
NS309 (6,7-dichloro-1H-indole-2,3-dione-3-oxime) is widely used as a pharmacological tool to increase the activity of small- and intermediate-conductance calcium-activated potassium channels. NS309 is assumed to function as a positive allosteric gating modulator. However, its binding site and the molecular details of its action remain unknown. Here, we show that NS309 has a profound effect on the calcium-dependent gating of the intermediate-conductance Ca2+-activated K+ channel KCa3.1. In inside-out experiments, 10 μM NS309 shifted the calcium EC50 from 430 to 31 nM. In whole-cell experiments, changing free intracellular calcium from 250 nM to 3 μM decreased the EC50 of NS309 from 74 to 8.6 nM. We further observed that NS309 could elicit greater responses than saturating calcium, making it a "superagonist." Molecular modeling suggested 2 possible binding sites for NS309 in KCa3.1, which we probed by mutagenesis and determined that NS309 is binding in the interface between the S45A segment of the intracellular S4-S5 linker and the N-lobe of the channel-associated calmodulin. Molecular dynamic simulations revealed that NS309 pushes several water molecules out of the interface pocket, establishes stable contacts with S181 and L185 in the S45A segment of KCa3.1 and E54 in calmodulin, and promotes longer sustained widening of the inner gate of KCa3.1 at V282 in the S6 segment. Polar substitutions of the hydrophobic-gating residues V282 and A279 resulted in constitutively open channels that could not be further potentiated by NS309, suggesting that NS309 produces its agonistic effects by increasing the open probability of the inner gate of KCa3.1. SIGNIFICANCE STATEMENT: The publication of the full-length cryo-electron microscopy structure of the intermediate-conductance Ca2+-activated K+ channel KCa3.1 suggested that the previously reported binding site of NS309 (6,7-dichloro-1H-indole-2,3-dione-3-oxime) was a crystallization artifact because this structure only included the C-terminus and the channel-associated calmodulin. This study demonstrates that the true binding site of NS309 is located between the S4 and S5 linker of KCa3.1 and the N-lobe of calmodulin. NS309 acts as a stabilizing force within the gating interface and increases the open probability of the inner hydrophobic gate.
Collapse
Affiliation(s)
- Joshua A Nasburg
- Department of Pharmacology, School of Medicine, University of California, Davis, California
| | - Kyle C Rouen
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, California
| | - Connor J Dietrich
- Department of Pharmacology, School of Medicine, University of California, Davis, California
| | - Heesung Shim
- Physical and Life Sciences, Lawrence Livermore National Laboratory, Livermore, California
| | - Miao Zhang
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California
| | - Igor Vorobyov
- Department of Pharmacology, School of Medicine, University of California, Davis, California; Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, California
| | - Heike Wulff
- Department of Pharmacology, School of Medicine, University of California, Davis, California.
| |
Collapse
|
12
|
Xia R, Sun M, Lu Y, Wang N, Zhang A, Guo C, Xu Z, Cai X, He Y. Cryo-EM structure of a nanobody-bound heliorhodopsin. Biochem Biophys Res Commun 2025; 750:151398. [PMID: 39889627 DOI: 10.1016/j.bbrc.2025.151398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 01/24/2025] [Indexed: 02/03/2025]
Abstract
Heliorhodopsins (HeRs) represent a distinct class of microbial rhodopsins (MRs) with an inverted membrane topology compared to other MRs. Previous structural studies have shown that HeRs lack a proton acceptor residue, and protons are never released from the protein. In this study, we present the cryo-electron microscopy (cryo-EM) structure of HeR bound to a nanobody. The structure reveals an acetate-like molecule in the Schiff base cavity (SBC) on the intracellular side of HeR under neutral condition. Structural comparisons and analyses suggest that the acetate molecule may function as a proton acceptor for the protonated retinal Schiff base (RSB) and act as a mediator for the intramolecular signaling transduction in HeR during light stimulation. These structural insights shed new light on the mechanism and function of HeR.
Collapse
Affiliation(s)
- Ruixue Xia
- HIT Center for Life Sciences, School of Life Science and Technology, Faculty of Life Sciences and Medicine, Harbin Institute of Technology, Harbin, 150001, China
| | - Mingxia Sun
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, 150001, China
| | - Yang Lu
- HIT Center for Life Sciences, School of Life Science and Technology, Faculty of Life Sciences and Medicine, Harbin Institute of Technology, Harbin, 150001, China
| | - Na Wang
- HIT Center for Life Sciences, School of Life Science and Technology, Faculty of Life Sciences and Medicine, Harbin Institute of Technology, Harbin, 150001, China
| | - Anqi Zhang
- HIT Center for Life Sciences, School of Life Science and Technology, Faculty of Life Sciences and Medicine, Harbin Institute of Technology, Harbin, 150001, China
| | - Changyou Guo
- HIT Center for Life Sciences, School of Life Science and Technology, Faculty of Life Sciences and Medicine, Harbin Institute of Technology, Harbin, 150001, China
| | - Zhenmei Xu
- HIT Center for Life Sciences, School of Life Science and Technology, Faculty of Life Sciences and Medicine, Harbin Institute of Technology, Harbin, 150001, China.
| | - Xuehui Cai
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, 150001, China.
| | - Yuanzheng He
- HIT Center for Life Sciences, School of Life Science and Technology, Faculty of Life Sciences and Medicine, Harbin Institute of Technology, Harbin, 150001, China; Frontiers Science Center for Matter Behave in Space Environment, Harbin Institute of Technology, Harbin, 150001, China.
| |
Collapse
|
13
|
Khmelinskaia A, Bethel NP, Fatehi F, Mallik BB, Antanasijevic A, Borst AJ, Lai SH, Chim HY, Wang JY'J, Miranda MC, Watkins AM, Ogohara C, Caldwell S, Wu M, Heck AJR, Veesler D, Ward AB, Baker D, Twarock R, King NP. Local structural flexibility drives oligomorphism in computationally designed protein assemblies. Nat Struct Mol Biol 2025:10.1038/s41594-025-01490-z. [PMID: 40011747 DOI: 10.1038/s41594-025-01490-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 01/14/2025] [Indexed: 02/28/2025]
Abstract
Many naturally occurring protein assemblies have dynamic structures that allow them to perform specialized functions. Although computational methods for designing novel self-assembling proteins have advanced substantially over the past decade, they primarily focus on designing static structures. Here we characterize three distinct computationally designed protein assemblies that exhibit unanticipated structural diversity arising from flexibility in their subunits. Cryo-EM single-particle reconstructions and native mass spectrometry reveal two distinct architectures for two assemblies, while six cryo-EM reconstructions for the third likely represent a subset of its solution-phase structures. Structural modeling and molecular dynamics simulations indicate that constrained flexibility within the subunits of each assembly promotes a defined range of architectures rather than nonspecific aggregation. Redesigning the flexible region in one building block rescues the intended monomorphic assembly. These findings highlight structural flexibility as a powerful design principle, enabling exploration of new structural and functional spaces in protein assembly design.
Collapse
Affiliation(s)
- Alena Khmelinskaia
- Department of Biochemistry, University of Washington, Seattle, WA, USA.
- Institute for Protein Design, University of Washington, Seattle, WA, USA.
- Transdisciplinary Research Areas 'Building Blocks of Matter and Fundamental Interactions', University of Bonn, Bonn, Germany.
- Life and Medical Sciences Institute, University of Bonn, Bonn, Germany.
- Department of Chemistry, Ludwig Maximilian University of Munich, Munich, Germany.
| | - Neville P Bethel
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Farzad Fatehi
- Department of Mathematics, University of York, York, UK
- York Cross-Disciplinary Center for Systems Analysis, University of York, York, UK
| | - Bhoomika Basu Mallik
- Transdisciplinary Research Areas 'Building Blocks of Matter and Fundamental Interactions', University of Bonn, Bonn, Germany
- Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
- Department of Chemistry, Ludwig Maximilian University of Munich, Munich, Germany
| | - Aleksandar Antanasijevic
- Department of Integrative, Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
- Scripps Consortium for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA, USA
- School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Andrew J Borst
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Szu-Hsueh Lai
- Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, the Netherlands
- Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands
- Department of Chemistry, National Cheng Kung University, Tainan, Taiwan
| | - Ho Yeung Chim
- Department of Chemistry, Ludwig Maximilian University of Munich, Munich, Germany
| | - Jing Yang 'John' Wang
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Graduate Program in Molecular and Cellular Biology, University of Washington, Seattle, WA, USA
| | - Marcos C Miranda
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | | | - Cassandra Ogohara
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Shane Caldwell
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Mengyu Wu
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Albert J R Heck
- Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, the Netherlands
- Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Howard Hughes Medical Institute, Seattle, WA, USA
| | - Andrew B Ward
- Scripps Consortium for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA, USA
- School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Howard Hughes Medical Institute, Seattle, WA, USA
| | - Reidun Twarock
- Department of Mathematics, University of York, York, UK
- York Cross-Disciplinary Center for Systems Analysis, University of York, York, UK
- Department of Biology, University of York, York, UK
| | - Neil P King
- Department of Biochemistry, University of Washington, Seattle, WA, USA.
- Institute for Protein Design, University of Washington, Seattle, WA, USA.
| |
Collapse
|
14
|
Anton JS, Iacovache I, Bada Juarez JF, Abriata LA, Perrin LW, Cao C, Marcaida MJ, Zuber B, Dal Peraro M. Aerolysin Nanopore Structures Revealed at High Resolution in a Lipid Environment. J Am Chem Soc 2025; 147:4984-4992. [PMID: 39900531 PMCID: PMC11826888 DOI: 10.1021/jacs.4c14288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/17/2025] [Accepted: 01/21/2025] [Indexed: 02/05/2025]
Abstract
Aerolysin is a β-pore-forming toxin produced by most Aeromonas bacteria, which has attracted large attention in the field of nanopore sensing due to its narrow and charged pore lumen. Structurally similar proteins, belonging to the aerolysin-like family, are present throughout all kingdoms of life, but very few of them have been structurally characterized in a lipid environment. Here, we present the first high-resolution atomic cryo-EM structures of aerolysin prepore and pore in a membrane-like environment. These structures allow the identification of key interactions, which are relevant for understanding the pore formation mechanism and for correctly positioning the pore β-barrel and its anchoring β-turn motif in the membrane. Moreover, we elucidate at high resolution the architecture of key pore mutations and precisely identify four constriction rings in the pore lumen that are highly relevant for nanopore sensing experiments.
Collapse
Affiliation(s)
- Jana S. Anton
- Institute
of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Ioan Iacovache
- Institute
of Anatomy, University of Bern, Baltzerstrasse 2, 3012 Bern, Switzerland
| | - Juan F. Bada Juarez
- Institute
of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Luciano A. Abriata
- Institute
of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Louis W. Perrin
- Department
of Inorganic and Analytical Chemistry, Chemistry and Biochemistry, University of Geneva, 1211 Geneva, Switzerland
| | - Chan Cao
- Department
of Inorganic and Analytical Chemistry, Chemistry and Biochemistry, University of Geneva, 1211 Geneva, Switzerland
| | - Maria J. Marcaida
- Institute
of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Benoît Zuber
- Institute
of Anatomy, University of Bern, Baltzerstrasse 2, 3012 Bern, Switzerland
| | - Matteo Dal Peraro
- Institute
of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
15
|
Dowling QM, Park YJ, Fries CN, Gerstenmaier NC, Ols S, Yang EC, Wargacki AJ, Dosey A, Hsia Y, Ravichandran R, Walkey CD, Burrell AL, Veesler D, Baker D, King NP. Hierarchical design of pseudosymmetric protein nanocages. Nature 2025; 638:553-561. [PMID: 39695230 PMCID: PMC11821544 DOI: 10.1038/s41586-024-08360-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 11/06/2024] [Indexed: 12/20/2024]
Abstract
Discrete protein assemblies ranging from hundreds of kilodaltons to hundreds of megadaltons in size are a ubiquitous feature of biological systems and perform highly specialized functions1,2. Despite remarkable recent progress in accurately designing new self-assembling proteins, the size and complexity of these assemblies has been limited by a reliance on strict symmetry3. Here, inspired by the pseudosymmetry observed in bacterial microcompartments and viral capsids, we developed a hierarchical computational method for designing large pseudosymmetric self-assembling protein nanomaterials. We computationally designed pseudosymmetric heterooligomeric components and used them to create discrete, cage-like protein assemblies with icosahedral symmetry containing 240, 540 and 960 subunits. At 49, 71 and 96 nm diameter, these nanocages are the largest bounded computationally designed protein assemblies generated to date. More broadly, by moving beyond strict symmetry, our work substantially broadens the variety of self-assembling protein architectures that are accessible through design.
Collapse
Affiliation(s)
- Quinton M Dowling
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Young-Jun Park
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Chelsea N Fries
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Neil C Gerstenmaier
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Sebastian Ols
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Erin C Yang
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Adam J Wargacki
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Annie Dosey
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Yang Hsia
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Rashmi Ravichandran
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Carl D Walkey
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Anika L Burrell
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Howard Hughes Medical Institute, Seattle, WA, USA
| | - David Baker
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Howard Hughes Medical Institute, Seattle, WA, USA
| | - Neil P King
- Institute for Protein Design, University of Washington, Seattle, WA, USA.
- Department of Biochemistry, University of Washington, Seattle, WA, USA.
| |
Collapse
|
16
|
Duan Y, Xu Z, Hao B, Zhang A, Guo C, He Y. Molecular mechanism of ligand recognition and activation of lysophosphatidic acid receptor LPAR6. Proc Natl Acad Sci U S A 2025; 122:e2415426122. [PMID: 39847322 PMCID: PMC11789011 DOI: 10.1073/pnas.2415426122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 12/12/2024] [Indexed: 01/24/2025] Open
Abstract
Lysophosphatidic acid (LPA) exerts its physiological roles through the endothelialdifferentiation gene (EDG) family LPA receptors (LPAR1-3) or the non-EDG family LPA receptors (LPAR4-6). LPAR6 plays crucial roles in hair loss and cancer progression, yet its structural information is very limited. Here, we report the cryoelectron microscopy structure of LPA-bound human LPAR6 in complex with a mini G13 or Gq protein. These structures reveal a distinct ligand binding and recognition mode that differs significantly from that of LPAR1. Specifically, LPA uses its charged head to form an extensive polar interaction network with key polar residues on the extracellular side of transmembrane helix 5-6 and the extracellular loop 2. Structural comparisons and homology analysis suggest that the EDG and non-EDG families use two distinct modes for LPA binding. The structural observations are validated through functional mutagenesis studies. We further uncover the mechanisms of LPAR6 activation and principles of G-protein coupling. The structural information revealed by our study lays the groundwork for understanding LPAR6 signaling and provides a rational basis for designing compounds targeting LPAR6.
Collapse
Affiliation(s)
- Yaning Duan
- Faculty of Life Sciences and Medicine, Harbin Institute of Technology Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin150001, China
| | - Zhenmei Xu
- Faculty of Life Sciences and Medicine, Harbin Institute of Technology Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin150001, China
| | - Boyu Hao
- Faculty of Life Sciences and Medicine, Harbin Institute of Technology Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin150001, China
| | - Anqi Zhang
- Faculty of Life Sciences and Medicine, Harbin Institute of Technology Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin150001, China
| | - Changyou Guo
- Faculty of Life Sciences and Medicine, Harbin Institute of Technology Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin150001, China
| | - Yuanzheng He
- Faculty of Life Sciences and Medicine, Harbin Institute of Technology Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin150001, China
- Frontiers Science Center for Matter Behave in Space Environment, Harbin Institute of Technology, Harbin150001, China
| |
Collapse
|
17
|
McDonald EF, Kim M, Olson JA, Meiler J, Plate L. Proteostasis Landscapes of Cystic Fibrosis Variants Reveals Drug Response Vulnerability. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.07.10.602964. [PMID: 39026768 PMCID: PMC11257600 DOI: 10.1101/2024.07.10.602964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Cystic Fibrosis (CF) is a lethal genetic disorder caused by variants in CF transmembrane conductance regulator (CFTR). Many variants are treatable with correctors, which enhance the folding and trafficking of CFTR. However, approximately 3% of persons with CF harbor poorly responsive variants. Here, we used affinity purification mass spectrometry proteomics to profile the protein homeostasis (proteostasis) changes of CFTR variants during correction to assess modulated interactions with protein folding and maturation pathways. Responsive variant interactions converged on similar proteostasis pathways during correction. In contrast, poorly responsive variants subtly diverged, revealing a partial restoration of protein quality control surveillance and partial correction. Computational structural modeling showed that corrector VX-445 failed to confer enough NBD1 stability to poor responders. NBD1 secondary stabilizing mutations rescued poorly responsive variants, revealing structural vulnerabilities in NBD1 required for treating poor responders. Our study provides a framework for discerning the underlying protein quality control and structural defects of CFTR variants not reached with existing drugs to expand therapeutics to all susceptible CFTR variants. SIGNIFICANCE STATEMENT Cystic Fibrosis (CF) is a lethal genetic disease with variants leading to misfolding of an anion channel protein. Enhancing productive channel folding using a novel class of small molecules called correctors has emerged as the current CF treatment paradigm. However, correctors fail to reach all patient variants. Using high throughput interactomics, Rosetta simulations, and biochemical trafficking assays, this study demonstrates poorly responsive CF variants experience diverse misfolding pathways caused by structural defects in the core of a nucleotide-binding domain. Stabilizing secondary mutations in this domain rescues poorly responsive variants, paving the way for mechanistic-based therapeutic development for untreatable CF variants and future protein misfolding corrector drugs.
Collapse
Affiliation(s)
- Eli Fritz McDonald
- Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37240, USA
| | - Minsoo Kim
- Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA
- Chemical and Physical Biology Program, Vanderbilt University, Nashville, TN 37240, USA
| | - John A. Olson
- Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA
- Chemical and Physical Biology Program, Vanderbilt University, Nashville, TN 37240, USA
| | - Jens Meiler
- Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37240, USA
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37240, USA
- Institute for Drug Discovery, Leipzig University, Leipzig, SAC 04103, Germany
| | - Lars Plate
- Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37240, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
18
|
Brown S, Antanasijevic A, Sewall LM, Garcia DM, Ferguson J, Brouwer PJM, Sanders RW, Ward AB. Anti-immune complex antibodies are elicited during repeated immunization with HIV Env immunogens. Sci Immunol 2025; 10:eadp5218. [PMID: 39823319 PMCID: PMC12057571 DOI: 10.1126/sciimmunol.adp5218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 12/10/2024] [Indexed: 01/19/2025]
Abstract
Vaccination strategies against HIV-1 aim to elicit broadly neutralizing antibodies (bnAbs) using prime-boost regimens with HIV envelope (Env) immunogens. Epitope mapping has shown that early antibody responses are directed to easily accessible nonneutralizing epitopes on Env instead of bnAb epitopes. Autologously neutralizing antibody responses appear upon boosting, once immunodominant epitopes are saturated. Here, we use electron microscopy-based polyclonal epitope mapping (EMPEM) to elucidate how repeated immunization with HIV Env SOSIP immunogens results in the generation of Ab2α anti-idiotypic antibodies in rabbits and rhesus macaques. We present the structures of six anti-immune complex antibodies and find that they target idiotopes composed of framework regions of antibodies bound to Env. Examination of cryo-electron microscopy density enabled prediction of sequences for an anti-immune complex antibody, the paratope of which is enriched with aromatic amino acids. This work sheds light on current vaccine development efforts for HIV, as well as for other pathogens in which repeated exposure to antigen is required.
Collapse
Affiliation(s)
- Sharidan Brown
- Department of Integrative, Structural and Computational Biology, Scripps Research; La Jolla, CA, USA
| | | | - Leigh M. Sewall
- Department of Integrative, Structural and Computational Biology, Scripps Research; La Jolla, CA, USA
| | - Daniel Montiel Garcia
- Department of Integrative, Structural and Computational Biology, Scripps Research; La Jolla, CA, USA
| | - James Ferguson
- Department of Integrative, Structural and Computational Biology, Scripps Research; La Jolla, CA, USA
| | - Philip J. M. Brouwer
- Department of Integrative, Structural and Computational Biology, Scripps Research; La Jolla, CA, USA
| | - Rogier W. Sanders
- Department of Medical Microbiology, Amsterdam Institute for Infection and Immunity, Amsterdam UMC, University of Amsterdam; Amsterdam, The Netherlands
| | - Andrew B. Ward
- Department of Integrative, Structural and Computational Biology, Scripps Research; La Jolla, CA, USA
| |
Collapse
|
19
|
Gen R, Addetia A, Asarnow D, Park YJ, Quispe J, Chan MC, Brown JT, Lee J, Campbell MG, Lapointe CP, Veesler D. SARS-CoV-2 nsp1 mediates broad inhibition of translation in mammals. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.14.633005. [PMID: 39868184 PMCID: PMC11761087 DOI: 10.1101/2025.01.14.633005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
SARS-CoV-2 nonstructural protein 1 (nsp1) promotes innate immune evasion by inhibiting host translation in human cells. However, the role of nsp1 in other host species remains elusive, especially in bats which are natural reservoirs of sarbecoviruses and possess a markedly different innate immune system than humans. Here, we reveal that SARS-CoV-2 nsp1 potently inhibits translation in bat cells from Rhinolophus lepidus, belonging to the same genus as known sarbecovirus reservoirs hosts. We determined a cryo-electron microscopy structure of SARS-CoV-2 nsp1 bound to the Rhinolophus lepidus 40S ribosome and show that it blocks the mRNA entry channel via targeting a highly conserved site among mammals. Accordingly, we found that nsp1 blocked protein translation in mammalian cell lines from several species, underscoring its broadly inhibitory activity and conserved role in numerous SARS-CoV-2 hosts. Our findings illuminate the arms race between coronaviruses and mammalian host immunity (including bats), providing a foundation for understanding the determinants of viral maintenance in bat hosts and spillovers.
Collapse
Affiliation(s)
- Risako Gen
- Department of Biochemistry, University of Washington; Seattle, WA 98195, USA
| | - Amin Addetia
- Department of Biochemistry, University of Washington; Seattle, WA 98195, USA
| | - Daniel Asarnow
- Department of Biochemistry, University of Washington; Seattle, WA 98195, USA
| | - Young-Jun Park
- Department of Biochemistry, University of Washington; Seattle, WA 98195, USA
| | - Joel Quispe
- Department of Biochemistry, University of Washington; Seattle, WA 98195, USA
| | - Matthew C Chan
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Jack T Brown
- Department of Biochemistry, University of Washington; Seattle, WA 98195, USA
| | - Jimin Lee
- Department of Biochemistry, University of Washington; Seattle, WA 98195, USA
| | - Melody G Campbell
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | | | - David Veesler
- Department of Biochemistry, University of Washington; Seattle, WA 98195, USA
- Howard Hughes Medical Institute, University of Washington; Seattle, WA 98195, USA
| |
Collapse
|
20
|
Pandey A, Rohweder PJ, Chan LM, Ongpipattanakul C, Chung DH, Paolella B, Quimby FM, Nguyen N, Verba KA, Evans MJ, Craik CS. Therapeutic Targeting and Structural Characterization of a Sotorasib-Modified KRAS G12C-MHC I Complex Demonstrate the Antitumor Efficacy of Hapten-Based Strategies. Cancer Res 2025; 85:329-341. [PMID: 39656104 PMCID: PMC11733532 DOI: 10.1158/0008-5472.can-24-2450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/11/2024] [Accepted: 11/11/2024] [Indexed: 01/30/2025]
Abstract
Antibody-based therapies have emerged as a powerful strategy for the management of diverse cancers. Unfortunately, tumor-specific antigens remain challenging to identify and target. Recent work established that inhibitor-modified peptide adducts derived from KRAS G12C are competent for antigen presentation via MHC I and can be targeted by antibody-based therapeutics, offering a means to directly target an intracellular oncoprotein at the cell surface with combination therapies. Here, we validated the antigen display of "haptenated" KRAS G12C peptide fragments on tumors in mouse models treated with the FDA-approved KRAS G12C covalent inhibitor sotorasib using PET/CT imaging of an 89Zr-labeled P1B7 IgG antibody, which selectively binds sotorasib-modified KRAS G12C-MHC I complexes. Targeting this peptide-MHC I complex with radioligand therapy using 225Ac- or 177Lu-P1B7 IgG effectively inhibited tumor growth in combination with sotorasib. Elucidation of the 3.1 Å cryo-EM structure of P1B7 bound to a haptenated KRAS G12C peptide-MHC I complex confirmed that the sotorasib-modified KRAS G12C peptide is presented via a canonical binding pose and showed that P1B7 binds the complex in a T-cell receptor-like manner. Together, these findings demonstrate the potential value of targeting unique oncoprotein-derived, haptenated MHC I complexes with radioligand therapeutics and provide a structural framework for developing next generation antibodies. Significance: Radioligand therapy using an antibody targeting KRAS-derived, sotorasib-modified MHC I complexes elicits antitumor effects superior to those of sotorasib alone and provides a potential strategy to repurpose sotorasib as a hapten to overcome resistance.
Collapse
Affiliation(s)
- Apurva Pandey
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California
| | - Peter J. Rohweder
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California
| | - Lieza M. Chan
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, California
| | - Chayanid Ongpipattanakul
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California
| | - Dong hee Chung
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California
| | - Bryce Paolella
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California
| | - Fiona M. Quimby
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California
| | - Ngoc Nguyen
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California
| | - Kliment A. Verba
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, California
| | - Michael J. Evans
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California
| | - Charles S. Craik
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California
| |
Collapse
|
21
|
Blanco E, Camps C, Bahal S, Kerai MD, Ferla MP, Rochussen AM, Handel AE, Golwala ZM, Spiridou Goncalves H, Kricke S, Klein F, Zhang F, Zinghirino F, Evans G, Keane TM, Lizot S, Kusters MA, Iro MA, Patel SV, Morris EC, Burns SO, Radcliffe R, Vasudevan P, Price A, Gillham O, Valdebenito GE, Stewart GS, Worth A, Adams SP, Duchen M, André I, Adams DJ, Santili G, Gilmour KC, Holländer GA, Davies EG, Taylor JC, Griffiths GM, Thrasher AJ, Dhalla F, Kreins AY. Dominant negative variants in ITPR3 impair T cell Ca2+ dynamics causing combined immunodeficiency. J Exp Med 2025; 222:e20220979. [PMID: 39560673 PMCID: PMC11577440 DOI: 10.1084/jem.20220979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 09/09/2024] [Accepted: 10/25/2024] [Indexed: 11/20/2024] Open
Abstract
The importance of calcium (Ca2+) as a second messenger in T cell signaling is exemplified by genetic deficiencies of STIM1 and ORAI1, which abolish store-operated Ca2+ entry (SOCE) resulting in combined immunodeficiency (CID). We report five unrelated patients with de novo missense variants in ITPR3, encoding a subunit of the inositol 1,4,5-trisphosphate receptor (IP3R), which forms a Ca2+ channel in the endoplasmic reticulum (ER) membrane responsible for the release of ER Ca2+ required to trigger SOCE, and for Ca2+ transfer to other organelles. The patients presented with CID, abnormal T cell Ca2+ homeostasis, incompletely penetrant ectodermal dysplasia, and multisystem disease. Their predominant T cell immunodeficiency is characterized by significant T cell lymphopenia, defects in late stages of thymic T cell development, and impaired function of peripheral T cells, including inadequate NF-κB- and NFAT-mediated, proliferative, and metabolic responses to activation. Pathogenicity is not due to haploinsufficiency, rather ITPR3 protein variants interfere with IP3R channel function leading to depletion of ER Ca2+ stores and blunted SOCE in T cells.
Collapse
Affiliation(s)
- Elena Blanco
- Molecular and Cellular Immunology, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Carme Camps
- National Institute for Health Research Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Sameer Bahal
- Molecular and Cellular Immunology, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Mohit D. Kerai
- Molecular and Cellular Immunology, Great Ormond Street Institute of Child Health, University College London, London, UK
- Immunology Laboratory, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Matteo P. Ferla
- National Institute for Health Research Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Adam M. Rochussen
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - Adam E. Handel
- Department of Paediatrics and Institute of Developmental and Regenerative Medicine, University of Oxford, Oxford, UK
| | - Zainab M. Golwala
- Molecular and Cellular Immunology, Great Ormond Street Institute of Child Health, University College London, London, UK
- Department of Paediatric Immunology and Gene Therapy, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Helena Spiridou Goncalves
- Molecular and Cellular Immunology, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Susanne Kricke
- SIHMDS-Haematology Laboratory, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Fabian Klein
- Department of Paediatrics and Institute of Developmental and Regenerative Medicine, University of Oxford, Oxford, UK
| | - Fang Zhang
- Molecular and Cellular Immunology, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Federica Zinghirino
- Molecular and Cellular Immunology, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Grace Evans
- Molecular and Cellular Immunology, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Thomas M. Keane
- Wellcome Sanger Institute, Cambridge, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Cambridge, UK
| | - Sabrina Lizot
- Human Lymphohematopoiesis Laboratory, Imagine Institute, INSERM UMR 1163, Université Paris Cité, Paris, France
| | - Maaike A.A. Kusters
- Department of Paediatric Immunology and Gene Therapy, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Mildred A. Iro
- Department of Paediatric Infectious Diseases and Immunology, University Hospital Southampton NHS Foundation Trust, Southampton, UK
- Faculty of Medicine and Institute of Life Sciences, University of Southampton, Southampton, UK
| | - Sanjay V. Patel
- Department of Paediatric Infectious Diseases and Immunology, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Emma C. Morris
- Department of Immunology, Royal Free London Hospitals NHS Foundation Trust, London, UK
- Institute for Immunity and Transplantation, University College London, London, UK
| | - Siobhan O. Burns
- Department of Immunology, Royal Free London Hospitals NHS Foundation Trust, London, UK
- Institute for Immunity and Transplantation, University College London, London, UK
| | - Ruth Radcliffe
- Department of Immunology, University Hospitals of Leicester NHS Trust, Leicester, UK
| | - Pradeep Vasudevan
- Department of Clinical Genetics, University Hospitals of Leicester NHS Trust, Leicester, UK
| | - Arthur Price
- Department of Immunology, University Hospitals of Leicester NHS Trust, Leicester, UK
| | - Olivia Gillham
- Department of Cell and Developmental Biology and Consortium for Mitochondrial Research, University College London, London, UK
| | - Gabriel E. Valdebenito
- Department of Cell and Developmental Biology and Consortium for Mitochondrial Research, University College London, London, UK
| | - Grant S. Stewart
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Austen Worth
- Department of Paediatric Immunology and Gene Therapy, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Stuart P. Adams
- SIHMDS-Haematology Laboratory, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Michael Duchen
- Department of Cell and Developmental Biology and Consortium for Mitochondrial Research, University College London, London, UK
| | - Isabelle André
- Human Lymphohematopoiesis Laboratory, Imagine Institute, INSERM UMR 1163, Université Paris Cité, Paris, France
| | | | - Giorgia Santili
- Molecular and Cellular Immunology, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Kimberly C. Gilmour
- Immunology Laboratory, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Georg A. Holländer
- Department of Paediatrics and Institute of Developmental and Regenerative Medicine, University of Oxford, Oxford, UK
- Paediatric Immunology, Department of Biomedicine, University of Basel and University Children’s Hospital, Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - E. Graham Davies
- Molecular and Cellular Immunology, Great Ormond Street Institute of Child Health, University College London, London, UK
- Department of Paediatric Immunology and Gene Therapy, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Jenny C. Taylor
- National Institute for Health Research Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Gillian M. Griffiths
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - Adrian J. Thrasher
- Molecular and Cellular Immunology, Great Ormond Street Institute of Child Health, University College London, London, UK
- Department of Paediatric Immunology and Gene Therapy, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Fatima Dhalla
- Department of Paediatrics and Institute of Developmental and Regenerative Medicine, University of Oxford, Oxford, UK
- Department of Clinical Immunology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Alexandra Y. Kreins
- Molecular and Cellular Immunology, Great Ormond Street Institute of Child Health, University College London, London, UK
- Department of Paediatric Immunology and Gene Therapy, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
- Institute for Health Research Great Ormond Street Hospital Biomedical Research Centre, London, UK
| |
Collapse
|
22
|
Matico R, Grauwen K, Chauhan D, Yu X, Abdiaj I, Adhikary S, Adriaensen I, Aranzazu GM, Alcázar J, Bassi M, Brisse E, Cañellas S, Chaudhuri S, Delgado F, Diéguez-Vázquez A, Du Jardin M, Eastham V, Finley M, Jacobs T, Keustermans K, Kuhn R, Llaveria J, Leenaerts J, Linares ML, Martín ML, Martín-Pérez R, Martínez C, Miller R, Muñoz FM, Muratore ME, Nooyens A, Perez-Benito L, Perrier M, Pietrak B, Serré J, Sharma S, Somers M, Suarez J, Tresadern G, Trabanco AA, Van den Bulck D, Van Gool M, Van Hauwermeiren F, Varghese T, Vega JA, Youssef SA, Edwards MJ, Oehlrich D, Van Opdenbosch N. Navigating from cellular phenotypic screen to clinical candidate: selective targeting of the NLRP3 inflammasome. EMBO Mol Med 2025; 17:54-84. [PMID: 39653810 PMCID: PMC11730736 DOI: 10.1038/s44321-024-00181-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 11/23/2024] [Accepted: 11/26/2024] [Indexed: 01/15/2025] Open
Abstract
The NLRP3 inflammasome plays a pivotal role in host defense and drives inflammation against microbial threats, crystals, and danger-associated molecular patterns (DAMPs). Dysregulation of NLRP3 activity is associated with various human diseases, making it an attractive therapeutic target. Patients with NLRP3 mutations suffer from Cryopyrin-Associated Periodic Syndrome (CAPS) emphasizing the clinical significance of modulating NLRP3. In this study, we present the identification of a novel chemical class exhibiting selective and potent inhibition of the NLRP3 inflammasome. Through a comprehensive structure-activity relationship (SAR) campaign, we optimized the lead molecule, compound A, for in vivo applications. Extensive in vitro and in vivo characterization of compound A confirmed the high selectivity and potency positioning compound A as a promising clinical candidate for diseases associated with aberrant NLRP3 activity. This research contributes to the ongoing efforts in developing targeted therapies for conditions involving NLRP3-mediated inflammation, opening avenues for further preclinical and clinical investigations.
Collapse
Affiliation(s)
- Rosalie Matico
- Janssen Research & Development, LLC, Discovery Technologies and Molecular Pharmacology (DTMP), Spring House, PA, 19044, USA
| | - Karolien Grauwen
- Janssen Interventional Oncology, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Dhruv Chauhan
- Janssen Interventional Oncology, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Xiaodi Yu
- Janssen Research & Development, LLC, Discovery Technologies and Molecular Pharmacology (DTMP), Spring House, PA, 19044, USA
| | - Irini Abdiaj
- Janssen Research & Development, LLC, Global Discovery Chemistry (GDC), C. Río Jarama, 75, 45007, Toledo, Spain
| | - Suraj Adhikary
- Janssen Research & Development, LLC, Discovery Technologies and Molecular Pharmacology (DTMP), Spring House, PA, 19044, USA
| | - Ine Adriaensen
- Janssen Research & Development, LLC, In Vivo Sciences (IVS), Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Garcia Molina Aranzazu
- Janssen Research & Development, LLC, Global Discovery Chemistry (GDC), C. Río Jarama, 75, 45007, Toledo, Spain
| | - Jesus Alcázar
- Janssen Research & Development, LLC, Global Discovery Chemistry (GDC), C. Río Jarama, 75, 45007, Toledo, Spain
| | - Michela Bassi
- Janssen Research & Development, LLC, Global Discovery Chemistry (GDC), Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Ellen Brisse
- Janssen Interventional Oncology, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Santiago Cañellas
- Janssen Research & Development, LLC, Global Discovery Chemistry (GDC), C. Río Jarama, 75, 45007, Toledo, Spain
| | - Shubhra Chaudhuri
- Janssen Research & Development, LLC, Preclinical Sciences and Translational Safety (PSTS), Spring House, PA, 19044, USA
| | - Francisca Delgado
- Janssen Research & Development, LLC, Global Discovery Chemistry (GDC), C. Río Jarama, 75, 45007, Toledo, Spain
| | - Alejandro Diéguez-Vázquez
- Janssen Research & Development, LLC, Global Discovery Chemistry (GDC), C. Río Jarama, 75, 45007, Toledo, Spain
| | - Marc Du Jardin
- Janssen Research & Development, LLC, Discovery Pharmaceutics, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Victoria Eastham
- Janssen Research & Development, LLC, Discovery Technologies and Molecular Pharmacology (DTMP), Spring House, PA, 19044, USA
| | - Michael Finley
- Janssen Research & Development, LLC, Discovery Technologies and Molecular Pharmacology (DTMP), Spring House, PA, 19044, USA
| | - Tom Jacobs
- Janssen Research & Development, LLC, Preclinical Sciences and Translational Safety (PSTS), Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Ken Keustermans
- Charles River Laboratories, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Robert Kuhn
- Janssen Interventional Oncology, Spring House, PA, 19044, USA
| | - Josep Llaveria
- Janssen Research & Development, LLC, Global Discovery Chemistry (GDC), C. Río Jarama, 75, 45007, Toledo, Spain
| | - Jos Leenaerts
- Janssen Research & Development, LLC, Global Discovery Chemistry (GDC), Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Maria Lourdes Linares
- Janssen Research & Development, LLC, Global Discovery Chemistry (GDC), C. Río Jarama, 75, 45007, Toledo, Spain
| | - Maria Luz Martín
- Janssen Research & Development, LLC, Global Discovery Chemistry (GDC), C. Río Jarama, 75, 45007, Toledo, Spain
| | - Rosa Martín-Pérez
- Janssen Interventional Oncology, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Carlos Martínez
- Janssen Research & Development, LLC, Global Discovery Chemistry (GDC), C. Río Jarama, 75, 45007, Toledo, Spain
| | - Robyn Miller
- Janssen Research & Development, LLC, Discovery Technologies and Molecular Pharmacology (DTMP), Spring House, PA, 19044, USA
| | - Frances M Muñoz
- Janssen Research & Development, LLC, Discovery Technologies and Molecular Pharmacology (DTMP), Spring House, PA, 19044, USA
| | - Michael E Muratore
- Janssen Research & Development, LLC, Global Discovery Chemistry (GDC), Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Amber Nooyens
- Janssen Interventional Oncology, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Laura Perez-Benito
- Janssen Research & Development, LLC, Therapeutic Discovery, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Mathieu Perrier
- Janssen Research & Development, LLC, Global Discovery Chemistry (GDC), Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Beth Pietrak
- Janssen Research & Development, LLC, Discovery Technologies and Molecular Pharmacology (DTMP), Spring House, PA, 19044, USA
| | - Jef Serré
- Janssen Interventional Oncology, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Sujata Sharma
- Janssen Research & Development, LLC, Discovery Technologies and Molecular Pharmacology (DTMP), Spring House, PA, 19044, USA
| | - Marijke Somers
- Janssen Research & Development, LLC, Drug Metabolism and Phamacokinetcs (DMPK), Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Javier Suarez
- Janssen Research & Development, LLC, Discovery Technologies and Molecular Pharmacology (DTMP), Spring House, PA, 19044, USA
| | - Gary Tresadern
- Janssen Research & Development, LLC, Therapeutic Discovery, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Andres A Trabanco
- Janssen Research & Development, LLC, Global Discovery Chemistry (GDC), C. Río Jarama, 75, 45007, Toledo, Spain
| | - Dries Van den Bulck
- Janssen Research & Development, LLC, Discovery Technologies and Molecular Pharmacology (DTMP), Spring House, PA, 19044, USA
| | - Michiel Van Gool
- Janssen Research & Development, LLC, Global Discovery Chemistry (GDC), Turnhoutseweg 30, 2340, Beerse, Belgium
| | | | - Teena Varghese
- Janssen Research & Development, LLC, Discovery Technologies and Molecular Pharmacology (DTMP), Spring House, PA, 19044, USA
| | - Juan Antonio Vega
- Janssen Research & Development, LLC, Global Discovery Chemistry (GDC), C. Río Jarama, 75, 45007, Toledo, Spain
| | - Sameh A Youssef
- Janssen Research & Development, LLC, Preclinical Sciences and Translational Safety (PSTS), Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Matthew J Edwards
- Janssen Interventional Oncology, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Daniel Oehlrich
- Janssen Research & Development, LLC, Global Discovery Chemistry (GDC), Turnhoutseweg 30, 2340, Beerse, Belgium
| | | |
Collapse
|
23
|
Ataca S, Sangesland M, de Paiva Fróes Rocha R, Torrents de la Peña A, Ronsard L, Boyoglu-Barnum S, Gillespie RA, Tsybovsky Y, Stephens T, Moin SM, Lederhofer J, Creanga A, Andrews SF, Barnes RM, Rohrer D, Lonberg N, Graham BS, Ward AB, Lingwood D, Kanekiyo M. Modulating the immunodominance hierarchy of immunoglobulin germline-encoded structural motifs targeting the influenza hemagglutinin stem. Cell Rep 2024; 43:114990. [PMID: 39580804 PMCID: PMC11672684 DOI: 10.1016/j.celrep.2024.114990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 09/05/2024] [Accepted: 11/01/2024] [Indexed: 11/26/2024] Open
Abstract
Antibodies targeting epitopes through germline-encoded motifs can be found in different individuals. While these public antibodies are often beneficial, they also pose hurdles for subdominant antibodies to emerge. Here, we use transgenic mice that reproduce the human IGHV1-69∗01 germline-encoded antibody response to the conserved stem epitope on group 1 hemagglutinin (HA) of influenza A virus to show that this germline-endowed response can be overridden by a subdominant yet cross-group reactive public antibody response. Immunization with a non-cognate group 2 HA stem enriched B cells harboring the IGHD3-9 gene, thereby switching from IGHV1-69- to IGHD3-9-encoded motif-dependent epitope recognition. These IGHD3-9 antibodies bound, neutralized, and conferred cross-group protection in mice against influenza A viruses. A cryoelectron microscopy (cryo-EM) structure of an IGHD3-9 antibody resembled the human broadly neutralizing antibody FI6v3, which uses IGHD3-9. Together, our findings offer insights into vaccine regimens that engage an immunoglobulin repertoire with broader cross-reactivity to influenza A viruses.
Collapse
Affiliation(s)
- Sila Ataca
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Maya Sangesland
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | | | | | - Larance Ronsard
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Seyhan Boyoglu-Barnum
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Rebecca A Gillespie
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yaroslav Tsybovsky
- Vaccine Research Center Electron Microscopy Unit, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD 20701, USA
| | - Tyler Stephens
- Vaccine Research Center Electron Microscopy Unit, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD 20701, USA
| | - Syed M Moin
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Julia Lederhofer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Adrian Creanga
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sarah F Andrews
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | - Nils Lonberg
- Bristol-Myers Squibb, Redwood City, CA 94063, USA
| | - Barney S Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Andrew B Ward
- The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Daniel Lingwood
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Masaru Kanekiyo
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
24
|
Begley M, Aragon M, Baker RW. A structure-based mechanism for initiation of AP-3 coated vesicle formation. Proc Natl Acad Sci U S A 2024; 121:e2411974121. [PMID: 39705307 DOI: 10.1073/pnas.2411974121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 10/14/2024] [Indexed: 12/22/2024] Open
Abstract
Adaptor protein complex-3 (AP-3) mediates cargo sorting from endosomes to lysosomes and lysosome-related organelles. Recently, it was shown that AP-3 adopts a constitutively open conformation compared to the related AP-1 and AP-2 coat complexes, which are inactive until undergoing large conformational changes upon membrane recruitment. How AP-3 is regulated is therefore an open question. To understand the mechanism of AP-3 membrane recruitment and activation, we reconstituted human AP-3 and determined multiple structures in the soluble and membrane-bound states using electron cryo-microscopy. Similar to yeast AP-3, human AP-3 is in a constitutively open conformation. To reconstitute AP-3 activation by adenosine di-phosphate (ADP)-ribosylation factor 1 (Arf1), a small guanosine tri-phosphate (GTP)ase, we used lipid nanodiscs to build Arf1-AP-3 complexes on membranes and determined three structures showing the stepwise conformational changes required for formation of AP-3 coated vesicles. First, membrane recruitment is driven by one of two predicted Arf1 binding sites, which flexibly tethers AP-3 to the membrane. Second, cargo binding causes AP-3 to adopt a fixed position and rigidifies the complex, which stabilizes binding for a second Arf1 molecule. Finally, binding of the second Arf1 molecule provides the template for AP-3 dimerization, providing a glimpse into the first step of coat polymerization. We propose coat polymerization only occurs after cargo engagement, thereby linking cargo sorting with assembly of higher-order coat structures. Additionally, we provide evidence for two amphipathic helices in AP-3, suggesting that AP-3 contributes to membrane deformation during coat assembly. In total, these data provide evidence for the first stages of AP-3-mediated vesicle coat assembly.
Collapse
Affiliation(s)
- Matthew Begley
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599
| | - Mahira Aragon
- Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY 10027
| | - Richard W Baker
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599
| |
Collapse
|
25
|
Rosen LE, Tortorici MA, De Marco A, Pinto D, Foreman WB, Taylor AL, Park YJ, Bohan D, Rietz T, Errico JM, Hauser K, Dang HV, Chartron JW, Giurdanella M, Cusumano G, Saliba C, Zatta F, Sprouse KR, Addetia A, Zepeda SK, Brown J, Lee J, Dellota E, Rajesh A, Noack J, Tao Q, DaCosta Y, Tsu B, Acosta R, Subramanian S, de Melo GD, Kergoat L, Zhang I, Liu Z, Guarino B, Schmid MA, Schnell G, Miller JL, Lempp FA, Czudnochowski N, Cameroni E, Whelan SPJ, Bourhy H, Purcell LA, Benigni F, di Iulio J, Pizzuto MS, Lanzavecchia A, Telenti A, Snell G, Corti D, Veesler D, Starr TN. A potent pan-sarbecovirus neutralizing antibody resilient to epitope diversification. Cell 2024; 187:7196-7213.e26. [PMID: 39383863 PMCID: PMC11645210 DOI: 10.1016/j.cell.2024.09.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/01/2024] [Accepted: 09/16/2024] [Indexed: 10/11/2024]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) evolution has resulted in viral escape from clinically authorized monoclonal antibodies (mAbs), creating a need for mAbs that are resilient to epitope diversification. Broadly neutralizing coronavirus mAbs that are sufficiently potent for clinical development and retain activity despite viral evolution remain elusive. We identified a human mAb, designated VIR-7229, which targets the viral receptor-binding motif (RBM) with unprecedented cross-reactivity to all sarbecovirus clades, including non-ACE2-utilizing bat sarbecoviruses, while potently neutralizing SARS-CoV-2 variants since 2019, including the recent EG.5, BA.2.86, and JN.1. VIR-7229 tolerates extraordinary epitope variability, partly attributed to its high binding affinity, receptor molecular mimicry, and interactions with RBM backbone atoms. Consequently, VIR-7229 features a high barrier for selection of escape mutants, which are rare and associated with reduced viral fitness, underscoring its potential to be resilient to future viral evolution. VIR-7229 is a strong candidate to become a next-generation medicine.
Collapse
MESH Headings
- Humans
- SARS-CoV-2/immunology
- SARS-CoV-2/genetics
- Epitopes/immunology
- Epitopes/chemistry
- Animals
- Antibodies, Neutralizing/immunology
- Antibodies, Neutralizing/chemistry
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/chemistry
- Antibodies, Viral/immunology
- Antibodies, Viral/chemistry
- Spike Glycoprotein, Coronavirus/immunology
- Spike Glycoprotein, Coronavirus/chemistry
- Spike Glycoprotein, Coronavirus/metabolism
- Spike Glycoprotein, Coronavirus/genetics
- Cross Reactions/immunology
- Chiroptera/virology
- Chiroptera/immunology
- COVID-19/immunology
- COVID-19/virology
- Angiotensin-Converting Enzyme 2/metabolism
- Angiotensin-Converting Enzyme 2/chemistry
Collapse
Affiliation(s)
| | | | - Anna De Marco
- Humabs BioMed SA, a Subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | - Dora Pinto
- Humabs BioMed SA, a Subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | - William B Foreman
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Ashley L Taylor
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Young-Jun Park
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | - Dana Bohan
- Vir Biotechnology, San Francisco, CA 94158, USA
| | - Tyson Rietz
- Vir Biotechnology, San Francisco, CA 94158, USA
| | | | | | - Ha V Dang
- Vir Biotechnology, San Francisco, CA 94158, USA
| | | | - Martina Giurdanella
- Humabs BioMed SA, a Subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | - Giuseppe Cusumano
- Humabs BioMed SA, a Subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | - Christian Saliba
- Humabs BioMed SA, a Subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | - Fabrizia Zatta
- Humabs BioMed SA, a Subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | - Kaitlin R Sprouse
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Amin Addetia
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Samantha K Zepeda
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Jack Brown
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Jimin Lee
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | | | | | - Julia Noack
- Vir Biotechnology, San Francisco, CA 94158, USA
| | - Qiqing Tao
- Vir Biotechnology, San Francisco, CA 94158, USA
| | | | - Brian Tsu
- Vir Biotechnology, San Francisco, CA 94158, USA
| | - Rima Acosta
- Vir Biotechnology, San Francisco, CA 94158, USA
| | | | - Guilherme Dias de Melo
- Institut Pasteur, Université Paris Cité, Lyssavirus Epidemiology and Neuropathology Unit, F-75015 Paris, France
| | - Lauriane Kergoat
- Institut Pasteur, Université Paris Cité, Lyssavirus Epidemiology and Neuropathology Unit, F-75015 Paris, France
| | - Ivy Zhang
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Tri-Institutional PhD Program in Computational Biology and Medicine, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA
| | - Zhuoming Liu
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Barbara Guarino
- Humabs BioMed SA, a Subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | - Michael A Schmid
- Humabs BioMed SA, a Subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | | | | | - Florian A Lempp
- Vir Biotechnology, San Francisco, CA 94158, USA; Humabs BioMed SA, a Subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | | | - Elisabetta Cameroni
- Humabs BioMed SA, a Subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | - Sean P J Whelan
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Hervé Bourhy
- Institut Pasteur, Université Paris Cité, Lyssavirus Epidemiology and Neuropathology Unit, F-75015 Paris, France
| | | | - Fabio Benigni
- Humabs BioMed SA, a Subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | | | | | - Antonio Lanzavecchia
- Humabs BioMed SA, a Subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | | | | | - Davide Corti
- Humabs BioMed SA, a Subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland.
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA.
| | - Tyler N Starr
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA.
| |
Collapse
|
26
|
Rexhepaj M, Asarnow D, Perruzza L, Park YJ, Guarino B, Mccallum M, Culap K, Saliba C, Leoni G, Balmelli A, Yoshiyama CN, Dickinson MS, Quispe J, Brown JT, Tortorici MA, Sprouse KR, Taylor AL, Corti D, Starr TN, Benigni F, Veesler D. Isolation and escape mapping of broadly neutralizing antibodies against emerging delta-coronaviruses. Immunity 2024; 57:2914-2927.e7. [PMID: 39488210 DOI: 10.1016/j.immuni.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 08/06/2024] [Accepted: 10/02/2024] [Indexed: 11/04/2024]
Abstract
Porcine delta-coronavirus (PDCoV) spillovers were recently detected in febrile children, underscoring the recurrent zoonoses of divergent CoVs. To date, no vaccines or specific therapeutics are approved for use in humans against PDCoV. To prepare for possible future PDCoV epidemics, we isolated PDCoV spike (S)-directed monoclonal antibodies (mAbs) from humanized mice and found that two, designated PD33 and PD41, broadly neutralized a panel of PDCoV variants. Cryoelectron microscopy (cryo-EM) structures of PD33 and PD41 in complex with the S receptor-binding domain (RBD) and ectodomain trimer revealed the epitopes recognized by these mAbs, rationalizing their broad inhibitory activity. We show that both mAbs competitively interfere with host aminopeptidase N binding to neutralize PDCoV and used deep-mutational scanning epitope mapping to associate RBD antigenic sites with mAb-mediated neutralization potency. Our results indicate a PD33-PD41 mAb cocktail may heighten the barrier to escape. PD33 and PD41 are candidates for clinical advancement against future PDCoV outbreaks.
Collapse
Affiliation(s)
- Megi Rexhepaj
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Daniel Asarnow
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Lisa Perruzza
- Humabs Biomed SA, a Subsidiary of Vir. Biotechnology, 6500 Bellinzona, Switzerland
| | - Young-Jun Park
- Department of Biochemistry, University of Washington, Seattle, WA, USA; Howard Hughes Medical Institute, Seattle, WA 98195, USA
| | - Barbara Guarino
- Humabs Biomed SA, a Subsidiary of Vir. Biotechnology, 6500 Bellinzona, Switzerland
| | - Mathew Mccallum
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Katja Culap
- Humabs Biomed SA, a Subsidiary of Vir. Biotechnology, 6500 Bellinzona, Switzerland
| | - Christian Saliba
- Humabs Biomed SA, a Subsidiary of Vir. Biotechnology, 6500 Bellinzona, Switzerland
| | - Giada Leoni
- Humabs Biomed SA, a Subsidiary of Vir. Biotechnology, 6500 Bellinzona, Switzerland
| | - Alessio Balmelli
- Humabs Biomed SA, a Subsidiary of Vir. Biotechnology, 6500 Bellinzona, Switzerland
| | | | - Miles S Dickinson
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Joel Quispe
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Jack T Brown
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - M Alejandra Tortorici
- Department of Biochemistry, University of Washington, Seattle, WA, USA; Howard Hughes Medical Institute, Seattle, WA 98195, USA
| | - Kaitlin R Sprouse
- Department of Biochemistry, University of Washington, Seattle, WA, USA; Howard Hughes Medical Institute, Seattle, WA 98195, USA
| | - Ashley L Taylor
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Davide Corti
- Humabs Biomed SA, a Subsidiary of Vir. Biotechnology, 6500 Bellinzona, Switzerland
| | - Tyler N Starr
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA.
| | - Fabio Benigni
- Humabs Biomed SA, a Subsidiary of Vir. Biotechnology, 6500 Bellinzona, Switzerland.
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, WA, USA; Howard Hughes Medical Institute, Seattle, WA 98195, USA.
| |
Collapse
|
27
|
Feng Z, Huang J, Baboo S, Diedrich JK, Bangaru S, Paulson JC, Yates JR, Yuan M, Wilson IA, Ward AB. Structural and Functional Insights into the Evolution of SARS-CoV-2 KP.3.1.1 Spike Protein. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.10.627775. [PMID: 39713475 PMCID: PMC11661143 DOI: 10.1101/2024.12.10.627775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
The JN.1-sublineage KP.3.1.1 recently emerged as the globally prevalent SARS-CoV-2 variant, demonstrating increased infectivity and antibody escape. We investigated how mutations and a deletion in the KP.3.1.1 spike protein (S) affect ACE2 binding and antibody escape. Mass spectrometry revealed a new glycan site at residue N30 and altered glycoforms at neighboring N61. Cryo-EM structures showed that the N30 glycan and rearrangement of adjacent residues did not significantly change the overall spike structure, up-down ratio of the receptor-binding domains (RBDs), or ACE2 binding. Furthermore, a KP.3.1.1 S structure with hACE2 further confirmed an epistatic effect between F456L and Q493E on ACE2 binding. Our analysis shows SARS-CoV-2 variants that emerged after late 2023 are now incorporating reversions to residues found in other sarbecoviruses, including the N30 glycan, Q493E, and others. Overall, these results inform on the structural and functional consequences of the KP.3.1.1 mutations, the current SARS-CoV-2 evolutionary trajectory, and immune evasion.
Collapse
Affiliation(s)
- Ziqi Feng
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jiachen Huang
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Sabyasachi Baboo
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jolene K. Diedrich
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Sandhya Bangaru
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - James C. Paulson
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - John R. Yates
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Meng Yuan
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ian A. Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Andrew B. Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
28
|
Ma X, Chen LN, Liao M, Zhang L, Xi K, Guo J, Shen C, Shen DD, Cai P, Shen Q, Qi J, Zhang H, Zang SK, Dong YJ, Miao L, Qin J, Ji SY, Li Y, Liu J, Mao C, Zhang Y, Chai R. Molecular insights into the activation mechanism of GPR156 in maintaining auditory function. Nat Commun 2024; 15:10601. [PMID: 39638804 PMCID: PMC11621567 DOI: 10.1038/s41467-024-54681-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 11/18/2024] [Indexed: 12/07/2024] Open
Abstract
The class C orphan G-protein-coupled receptor (GPCR) GPR156, which lacks the large extracellular region, plays a pivotal role in auditory function through Gi2/3. Here, we firstly demonstrate that GPR156 with high constitutive activity is essential for maintaining auditory function, and further reveal the structural basis of the sustained role of GPR156. We present the cryo-EM structures of human apo GPR156 and the GPR156-Gi3 complex, unveiling a small extracellular region formed by extracellular loop 2 (ECL2) and the N-terminus. The GPR156 dimer in both apo state and Gi3 protein-coupled state adopt a transmembrane (TM)5/6-TM5/6 interface, indicating the high constitutive activity of GPR156 in the apo state. Furthermore, C-terminus in G-bound subunit of GPR156 plays a dual role in promoting G protein binding within G-bound subunit while preventing the G-free subunit from binding to additional G protein. Together, these results explain how GPR156 constitutive activity is maintained through dimerization and provide a mechanistic insight into the sustained role of GPR156 in maintaining auditory function.
Collapse
Affiliation(s)
- Xiangyu Ma
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
| | - Li-Nan Chen
- Department of Pharmacology and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
| | - Menghui Liao
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
| | - Liyan Zhang
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
| | - Kun Xi
- Department of Pharmacology and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiamin Guo
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
| | - Cangsong Shen
- Key Laboratory of Molecular Biophysics of MOE, International Research Center for Sensory Biology and Technology of MOST, College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, China
- Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| | - Dan-Dan Shen
- Department of Pharmacology and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
| | - Pengjun Cai
- Analytical Research Center for Organic and Biological Molecules, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Media, Chinese Academy of Sciences, Shanghai, China
| | - Qingya Shen
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
| | - Jieyu Qi
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
- Department of Neurology, Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Huibing Zhang
- Department of Pharmacology and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
| | - Shao-Kun Zang
- Department of Pharmacology and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
| | - Ying-Jun Dong
- Department of Pharmacology and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
| | - Luwei Miao
- Department of Pharmacology and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
| | - Jiao Qin
- Department of Pharmacology and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
| | - Su-Yu Ji
- Department of Pharmacology and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
| | - Yue Li
- Analytical Research Center for Organic and Biological Molecules, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Media, Chinese Academy of Sciences, Shanghai, China
| | - Jianfeng Liu
- Key Laboratory of Molecular Biophysics of MOE, International Research Center for Sensory Biology and Technology of MOST, College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, China.
- Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China.
| | - Chunyou Mao
- Center for Structural Pharmacology and Therapeutics Development, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Yan Zhang
- Department of Pharmacology and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China.
- Center for Structural Pharmacology and Therapeutics Development, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Medicine, Hangzhou, China.
| | - Renjie Chai
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China.
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China.
- Department of Neurology, Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing, China.
- Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
- Southeast University Shenzhen Research Institute, Shenzhen, China.
| |
Collapse
|
29
|
Nan X, Li Y, Zhang R, Wang R, Lv N, Li J, Chen Y, Zhou B, Wang Y, Wang Z, Zhu J, Chen J, Li J, Chen W, Zhang Q, Shi X, Zhao C, Chen C, Liu Z, Zhao Y, Liu D, Wang X, Yan LT, Li T, Zhang L, Yang YR. Exploring distinct modes of inter-spike cross-linking for enhanced neutralization by SARS-CoV-2 antibodies. Nat Commun 2024; 15:10578. [PMID: 39632831 PMCID: PMC11618796 DOI: 10.1038/s41467-024-54746-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 11/19/2024] [Indexed: 12/07/2024] Open
Abstract
The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its Omicron subvariants drastically amplifies transmissibility, infectivity, and immune escape, mainly due to their resistance to most neutralizing antibodies. Thus, exploring the mechanisms underlying antibody evasion is crucial. Although the full-length native form of antibody, immunoglobulin G (IgG), offers valuable insights into the neutralization, structural investigations primarily focus on the fragment of antigen-binding (Fab). Here, we employ single-particle cryo-electron microscopy (cryo-EM) to characterize a W328-6H2 antibody, in its native IgG form complexed with severe acute respiratory syndrome (SARS), severe acute respiratory syndrome coronavirus 2 wild-type (WT) and Omicron variant BA.1 spike protein (S). Three high-resolution structures reveal that the full-length IgG forms a centered head-to-head dimer of trimer when binds fully stoichiometrically with both SARS and WT S, while adopting a distinct offset configuration with Omicron BA.1 S. Combined with functional assays, our results suggest that, beyond the binding affinity between the RBD epitope and Fab, the higher-order architectures of S trimer and full-length IgG play an additional role in neutralization, enriching our understanding of enhanced neutralization by SARS-CoV-2 antibodies.
Collapse
Grants
- 22277017, 92169205, 82241072, 82150205, and 32270983 National Natural Science Foundation of China (National Science Foundation of China)
- National Key R&D Program of China (2022YFA1206400), Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB0770000), National Key Plan for Scientific Research and Development of China (2022YFF1203100, 2021YFC0864500,2022YFC2604100,2022YFC2303400 and 2023YFC3043300), the Wanke Scientific Research Program (20221080056), Special Research Fund for the Central High-level Hospitals of Peking Union Medical College Hospital (2022-PUMCH-D-008), the Chinese Academy of Medical Sciences (CAMS) Innovation Fund for Medical Sciences (2021-I2M-1-037), National Key Technologies R&D Program for the 13th Five-year Plan (2017ZX10202101-001), CAMS Innovation Fund for Medical Sciences (CIFMS 2019-I2M-5-018),Tencent Foundation, Shuidi Foundation, and TH Capital for financial support.
Collapse
Affiliation(s)
- Xuanyu Nan
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, China
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Yujie Li
- Engineering Research Center of Advanced Rare Earth Materials, (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, China
| | - Rui Zhang
- Comprehensive AlDS Research Center, Pandemic Research Alliance Unit, Center for Infection Biology, School of Basic Medical Sciences, Tsinghua Medicine, Tsinghua University, Beijing, China
- Department of Infectious Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Ruoke Wang
- Comprehensive AlDS Research Center, Pandemic Research Alliance Unit, Center for Infection Biology, School of Basic Medical Sciences, Tsinghua Medicine, Tsinghua University, Beijing, China
- Tsinghua-Peking Joint Center for Life Sciences, Beijing, China
| | - Niannian Lv
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, China
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Research Unit of Nanoscience and Technology, Chinese Academy of Medical Sciences, Beijing, China
| | - Jiayi Li
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuanfang Chen
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Bini Zhou
- Engineering Research Center of Advanced Rare Earth Materials, (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, China
| | - Yangjunqi Wang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, China
| | - Ziyi Wang
- The Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Collaborative Innovation Center for Biotherapy, School of Life Sciences, Tsinghua University, Beijing, China
| | - Jiayi Zhu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, China
| | - Jing Chen
- The Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Collaborative Innovation Center for Biotherapy, School of Life Sciences, Tsinghua University, Beijing, China
| | - Jinqian Li
- Comprehensive AlDS Research Center, Pandemic Research Alliance Unit, Center for Infection Biology, School of Basic Medical Sciences, Tsinghua Medicine, Tsinghua University, Beijing, China
| | - Wenlong Chen
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, China
| | - Qi Zhang
- Comprehensive AlDS Research Center, Pandemic Research Alliance Unit, Center for Infection Biology, School of Basic Medical Sciences, Tsinghua Medicine, Tsinghua University, Beijing, China
| | - Xuanling Shi
- Comprehensive AlDS Research Center, Pandemic Research Alliance Unit, Center for Infection Biology, School of Basic Medical Sciences, Tsinghua Medicine, Tsinghua University, Beijing, China
| | - Changwen Zhao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Chunying Chen
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, China
| | - Zhihua Liu
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuliang Zhao
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, China
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Research Unit of Nanoscience and Technology, Chinese Academy of Medical Sciences, Beijing, China
| | - Dongsheng Liu
- Engineering Research Center of Advanced Rare Earth Materials, (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, China
| | - Xinquan Wang
- The Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Collaborative Innovation Center for Biotherapy, School of Life Sciences, Tsinghua University, Beijing, China
| | - Li-Tang Yan
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, China
| | - Taisheng Li
- Department of Infectious Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China.
- State Key Laboratory for Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Beijing, China.
- Center for AIDS Research, Chinese Academy of Medical Sciences, Beijing, China.
| | - Linqi Zhang
- Comprehensive AlDS Research Center, Pandemic Research Alliance Unit, Center for Infection Biology, School of Basic Medical Sciences, Tsinghua Medicine, Tsinghua University, Beijing, China.
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China.
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, China.
| | - Yuhe R Yang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
30
|
Mittal A, Martin MF, Levin EJ, Adams C, Yang M, Provins L, Hall A, Procter M, Ledecq M, Hillisch A, Wolff C, Gillard M, Horanyi PS, Coleman JA. Structures of synaptic vesicle protein 2A and 2B bound to anticonvulsants. Nat Struct Mol Biol 2024; 31:1964-1974. [PMID: 38898101 DOI: 10.1038/s41594-024-01335-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 05/14/2024] [Indexed: 06/21/2024]
Abstract
Epilepsy is a common neurological disorder characterized by abnormal activity of neuronal networks, leading to seizures. The racetam class of anti-seizure medications bind specifically to a membrane protein found in the synaptic vesicles of neurons called synaptic vesicle protein 2 (SV2) A (SV2A). SV2A belongs to an orphan subfamily of the solute carrier 22 organic ion transporter family that also includes SV2B and SV2C. The molecular basis for how anti-seizure medications act on SV2s remains unknown. Here we report cryo-electron microscopy structures of SV2A and SV2B captured in a luminal-occluded conformation complexed with anticonvulsant ligands. The conformation bound by anticonvulsants resembles an inhibited transporter with closed luminal and intracellular gates. Anticonvulsants bind to a highly conserved central site in SV2s. These structures provide blueprints for future drug design and will facilitate future investigations into the biological function of SV2s.
Collapse
Affiliation(s)
- Anshumali Mittal
- Department of Structural Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Matthew F Martin
- Department of Structural Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | | | | | | | | | | | | | | | | | | | - Jonathan A Coleman
- Department of Structural Biology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
31
|
Reyes RA, Raghavan SSR, Hurlburt NK, Introini V, Bol S, Kana IH, Jensen RW, Martinez-Scholze E, Gestal-Mato M, López-Gutiérrez B, Sanz S, Bancells C, Fernández-Quintero ML, Loeffler JR, Ferguson JA, Lee WH, Martin GM, Theander TG, Lusingu JPA, Minja DTR, Ssewanyana I, Feeney ME, Greenhouse B, Ward AB, Bernabeu M, Pancera M, Turner L, Bunnik EM, Lavstsen T. Broadly inhibitory antibodies to severe malaria virulence proteins. Nature 2024; 636:182-189. [PMID: 39567685 DOI: 10.1038/s41586-024-08220-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 10/15/2024] [Indexed: 11/22/2024]
Abstract
Malaria pathology is driven by the accumulation of Plasmodium falciparum-infected erythrocytes in microvessels1. This process is mediated by the polymorphic erythrocyte membrane protein 1 (PfEMP1) adhesion proteins of the parasite. A subset of PfEMP1 variants that bind to human endothelial protein C receptor (EPCR) through their CIDRα1 domains is responsible for severe malaria pathogenesis2. A longstanding question is whether individual antibodies can recognize the large repertoire of circulating PfEMP1 variants. Here we describe two broadly reactive and inhibitory human monoclonal antibodies to CIDRα1. The antibodies isolated from two different individuals exhibited similar and consistent EPCR-binding inhibition of diverse CIDRα1 domains, representing five of the six subclasses of CIDRα1. Both antibodies inhibited EPCR binding of both recombinant full-length and native PfEMP1 proteins, as well as parasite sequestration in bioengineered 3D human brain microvessels under physiologically relevant flow conditions. Structural analyses of the two antibodies in complex with three different CIDRα1 antigen variants reveal similar binding mechanisms that depend on interactions with three highly conserved amino acid residues of the EPCR-binding site in CIDRα1. These broadly reactive antibodies are likely to represent a common mechanism of acquired immunity to severe malaria and offer novel insights for the design of a vaccine or treatment targeting severe malaria.
Collapse
Affiliation(s)
- Raphael A Reyes
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Sai Sundar Rajan Raghavan
- Centre for Translational Medicine and Parasitology, Department of Immunology and Microbiology, University of Copenhagen and Department of Infectious Diseases, Righospitalet, Copenhagen, Denmark
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Nicholas K Hurlburt
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | | | - Sebastiaan Bol
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Ikhlaq Hussain Kana
- Centre for Translational Medicine and Parasitology, Department of Immunology and Microbiology, University of Copenhagen and Department of Infectious Diseases, Righospitalet, Copenhagen, Denmark
| | - Rasmus W Jensen
- Centre for Translational Medicine and Parasitology, Department of Immunology and Microbiology, University of Copenhagen and Department of Infectious Diseases, Righospitalet, Copenhagen, Denmark
| | - Elizabeth Martinez-Scholze
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | | | | | | | | | | | - Johannes R Loeffler
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - James Alexander Ferguson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Wen-Hsin Lee
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Greg Michael Martin
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Thor G Theander
- Centre for Translational Medicine and Parasitology, Department of Immunology and Microbiology, University of Copenhagen and Department of Infectious Diseases, Righospitalet, Copenhagen, Denmark
| | - John P A Lusingu
- National Institute for Medical Research, Tanga Research Centre, Tanga, Tanzania
| | - Daniel T R Minja
- National Institute for Medical Research, Tanga Research Centre, Tanga, Tanzania
| | | | - Margaret E Feeney
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
| | - Bryan Greenhouse
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | | | - Marie Pancera
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Louise Turner
- Centre for Translational Medicine and Parasitology, Department of Immunology and Microbiology, University of Copenhagen and Department of Infectious Diseases, Righospitalet, Copenhagen, Denmark.
| | - Evelien M Bunnik
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
| | - Thomas Lavstsen
- Centre for Translational Medicine and Parasitology, Department of Immunology and Microbiology, University of Copenhagen and Department of Infectious Diseases, Righospitalet, Copenhagen, Denmark.
| |
Collapse
|
32
|
Gudipati RK, Gaidatzis D, Seebacher J, Muehlhaeusser S, Kempf G, Cavadini S, Hess D, Soneson C, Großhans H. Deep quantification of substrate turnover defines protease subsite cooperativity. Mol Syst Biol 2024; 20:1303-1328. [PMID: 39468329 PMCID: PMC11612144 DOI: 10.1038/s44320-024-00071-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 10/15/2024] [Accepted: 10/18/2024] [Indexed: 10/30/2024] Open
Abstract
Substrate specificity determines protease functions in physiology and in clinical and biotechnological applications, yet quantitative cleavage information is often unavailable, biased, or limited to a small number of events. Here, we develop qPISA (quantitative Protease specificity Inference from Substrate Analysis) to study Dipeptidyl Peptidase Four (DPP4), a key regulator of blood glucose levels. We use mass spectrometry to quantify >40,000 peptides from a complex, commercially available peptide mixture. By analyzing changes in substrate levels quantitatively instead of focusing on qualitative product identification through a binary classifier, we can reveal cooperative interactions within DPP4's active pocket and derive a sequence motif that predicts activity quantitatively. qPISA distinguishes DPP4 from the related C. elegans DPF-3 (a DPP8/9-orthologue), and we relate the differences to the structural features of the two enzymes. We demonstrate that qPISA can direct protein engineering efforts like the stabilization of GLP-1, a key DPP4 substrate used in the treatment of diabetes and obesity. Thus, qPISA offers a versatile approach for profiling protease and especially exopeptidase specificity, facilitating insight into enzyme mechanisms and biotechnological and clinical applications.
Collapse
Affiliation(s)
- Rajani Kanth Gudipati
- Friedrich Miescher Institute for Biomedical Research, Fabrikstrasse 24, Basel, 4056, Switzerland
- Center for Advanced Technologies, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, 61-614, Poznań, Poland
| | - Dimos Gaidatzis
- Friedrich Miescher Institute for Biomedical Research, Fabrikstrasse 24, Basel, 4056, Switzerland
- SIB Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Jan Seebacher
- Friedrich Miescher Institute for Biomedical Research, Fabrikstrasse 24, Basel, 4056, Switzerland
| | - Sandra Muehlhaeusser
- Friedrich Miescher Institute for Biomedical Research, Fabrikstrasse 24, Basel, 4056, Switzerland
| | - Georg Kempf
- Friedrich Miescher Institute for Biomedical Research, Fabrikstrasse 24, Basel, 4056, Switzerland
| | - Simone Cavadini
- Friedrich Miescher Institute for Biomedical Research, Fabrikstrasse 24, Basel, 4056, Switzerland
| | - Daniel Hess
- Friedrich Miescher Institute for Biomedical Research, Fabrikstrasse 24, Basel, 4056, Switzerland
| | - Charlotte Soneson
- Friedrich Miescher Institute for Biomedical Research, Fabrikstrasse 24, Basel, 4056, Switzerland
- SIB Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Helge Großhans
- Friedrich Miescher Institute for Biomedical Research, Fabrikstrasse 24, Basel, 4056, Switzerland.
- Faculty of Natural Sciences, University of Basel, Basel, Switzerland.
| |
Collapse
|
33
|
Pratap PP, Cottrell CA, Quinn J, Carnathan DG, Bader DLV, Tran AS, Enemuo CA, Ngo JT, Richey ST, Gao H, Shen X, Greene KM, Hurtado J, Michaels KK, Ben-Akiva E, Allen JD, Ozorowski G, Crispin M, Briney B, Montefiori D, Silvestri G, Irvine DJ, Crotty S, Ward AB. Immunofocusing on the conserved fusion peptide of HIV envelope glycoprotein in rhesus macaques. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.27.625755. [PMID: 39651156 PMCID: PMC11623688 DOI: 10.1101/2024.11.27.625755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
During infection, the fusion peptide (FP) of HIV envelope glycoprotein (Env) serves a central role in viral fusion with the host cell. As such, the FP is highly conserved and therefore an attractive epitope for vaccine design. Here, we describe a vaccination study in non-human primates (NHPs) where glycan deletions were made on soluble HIV Env to increase FP epitope exposure. When delivered via implantable osmotic pumps, this immunogen primed immune responses against the FP, which were then boosted with heterologous trimers resulting in a focused immune response targeting the conserved FP epitope. Although autologous immunizations did not elicit high affinity FP-targeting antibodies, the conserved FP epitope on a heterologous trimer further matured the lower affinity, FP-targeting B cells. This study suggests using epitope conservation strategies on distinct Env trimer immunogens can focus humoral responses on desired neutralizing epitopes and suppress immune-distracting antibody responses against non-neutralizing epitopes.
Collapse
|
34
|
Huang W, Jin N, Guo J, Shen C, Xu C, Xi K, Bonhomme L, Quast RB, Shen DD, Qin J, Liu YR, Song Y, Gao Y, Margeat E, Rondard P, Pin JP, Zhang Y, Liu J. Structural basis of orientated asymmetry in a mGlu heterodimer. Nat Commun 2024; 15:10345. [PMID: 39609406 PMCID: PMC11604941 DOI: 10.1038/s41467-024-54744-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 11/19/2024] [Indexed: 11/30/2024] Open
Abstract
The structural basis for the allosteric interactions within G protein-coupled receptors (GPCRs) heterodimers remains largely unknown. The metabotropic glutamate (mGlu) receptors are complex dimeric GPCRs important for the fine tuning of many synapses. Heterodimeric mGlu receptors with specific allosteric properties have been identified in the brain. Here we report four cryo-electron microscopy structures of mGlu2-4 heterodimer in different states: an inactive state bound to antagonists, two intermediate states bound to either mGlu2 or mGlu4 agonist only and an active state bound to both glutamate and a mGlu4 positive allosteric modulator (PAM) in complex with Gi protein. In addition to revealing a unique PAM binding pocket among mGlu receptors, our data bring important information for the asymmetric activation of mGlu heterodimers. First, we show that agonist binding to a single subunit in the extracellular domain is not sufficient to stabilize an active dimer conformation. Single-molecule FRET data show that the monoliganded mGlu2-4 can be found in both intermediate states and an active one. Second, we provide a detailed view of the asymmetric interface in seven-transmembrane (7TM) domains and identified key residues within the mGlu2 7TM that limits its activation leaving mGlu4 as the only subunit activating G proteins.
Collapse
Affiliation(s)
- Weizhu Huang
- Key Laboratory of Molecular Biophysics of MOE, College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, China
- International Research Center for Sensory Biology and Technology of MOST, College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Nan Jin
- Key Laboratory of Molecular Biophysics of MOE, College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, China
- International Research Center for Sensory Biology and Technology of MOST, College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, China
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jia Guo
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
| | - Cangsong Shen
- Key Laboratory of Molecular Biophysics of MOE, College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, China
- International Research Center for Sensory Biology and Technology of MOST, College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, China
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chanjuan Xu
- Key Laboratory of Molecular Biophysics of MOE, College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, China
- International Research Center for Sensory Biology and Technology of MOST, College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, China
- Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| | - Kun Xi
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Léo Bonhomme
- Centre de Biologie Structurale (CBS), Univ. Montpellier, CNRS, INSERM, Montpellier, France
| | - Robert B Quast
- Centre de Biologie Structurale (CBS), Univ. Montpellier, CNRS, INSERM, Montpellier, France
| | - Dan-Dan Shen
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
| | - Jiao Qin
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
| | - Yi-Ru Liu
- Key Laboratory of Molecular Biophysics of MOE, College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, China
- International Research Center for Sensory Biology and Technology of MOST, College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Yuxuan Song
- Key Laboratory of Molecular Biophysics of MOE, College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, China
- International Research Center for Sensory Biology and Technology of MOST, College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Yang Gao
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
| | - Emmanuel Margeat
- Centre de Biologie Structurale (CBS), Univ. Montpellier, CNRS, INSERM, Montpellier, France
| | - Philippe Rondard
- Institut de Génomique Fonctionnelle (IGF), Univ. Montpellier, CNRS, INSERM, Montpellier, France
| | - Jean-Philippe Pin
- Institut de Génomique Fonctionnelle (IGF), Univ. Montpellier, CNRS, INSERM, Montpellier, France.
| | - Yan Zhang
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China.
- Center for Structural Pharmacology and Therapeutics Development, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Medicine, Hangzhou, China.
| | - Jianfeng Liu
- Key Laboratory of Molecular Biophysics of MOE, College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, China.
- International Research Center for Sensory Biology and Technology of MOST, College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, China.
- Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China.
| |
Collapse
|
35
|
Suryadevara N, Kose N, Bangaru S, Binshtein E, Munt J, Martinez DR, Schäfer A, Myers L, Scobey TD, Carnahan RH, Ward AB, Baric RS, Crowe JE. Structural characterization of human monoclonal antibodies targeting uncommon antigenic sites on spike glycoprotein of SARS-CoV. J Clin Invest 2024; 135:e178880. [PMID: 39589795 PMCID: PMC11785922 DOI: 10.1172/jci178880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 11/22/2024] [Indexed: 11/27/2024] Open
Abstract
The function of the spike protein N terminal domain (NTD) in coronavirus (CoV) infections is poorly understood. However, some rare antibodies that target the SARS-CoV-2 NTD potently neutralize the virus. This finding suggests the NTD may contribute, in part, to protective immunity. Pansarbecovirus antibodies are desirable for broad protection, but the NTD region of SARS-CoV and SARS-CoV-2 exhibit a high level of sequence divergence; therefore, cross-reactive NTD-specific antibodies are unexpected, and there is no structure of a SARS-CoV NTD-specific antibody in complex with NTD. Here, we report a monoclonal antibody COV1-65, encoded by the IGHV1-69 gene, that recognizes the NTD of SARS-CoV S protein. A prophylaxis study showed the mAb COV1-65 prevented disease when administered before SARS-CoV challenge of BALB/c mice, an effect that requires intact fragment crystallizable region (Fc) effector functions for optimal protection in vivo. The footprint on the S protein of COV1-65 is near to functional components of the S2 fusion machinery, and the selection of COV1-65 escape mutant viruses identified critical residues Y886H and Q974H, which likely affect the epitope through allosteric effects. Structural features of the mAb COV1-65-SARS-CoV antigen interaction suggest critical antigenic determinants that should be considered in the rational design of sarbecovirus vaccine candidates.
Collapse
MESH Headings
- Spike Glycoprotein, Coronavirus/immunology
- Spike Glycoprotein, Coronavirus/chemistry
- Spike Glycoprotein, Coronavirus/genetics
- Humans
- Animals
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/chemistry
- Antibodies, Monoclonal/pharmacology
- SARS-CoV-2/immunology
- Mice
- Mice, Inbred BALB C
- Antibodies, Viral/immunology
- Antibodies, Viral/chemistry
- COVID-19/immunology
- COVID-19/prevention & control
- Female
- Protein Domains
- Epitopes/immunology
- Epitopes/chemistry
- Antibodies, Neutralizing/immunology
- Antibodies, Neutralizing/chemistry
- Antigens, Viral/immunology
- Antigens, Viral/chemistry
Collapse
Affiliation(s)
| | - Nurgun Kose
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Sandhya Bangaru
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Elad Binshtein
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jennifer Munt
- Department of Epidemiology, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - David R. Martinez
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Alexandra Schäfer
- Department of Epidemiology, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Luke Myers
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Trevor D. Scobey
- Department of Epidemiology, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Robert H. Carnahan
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Andrew B. Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Ralph S. Baric
- Department of Epidemiology, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - James E. Crowe
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
36
|
Yin H, Kamakura N, Qian Y, Tatsumi M, Ikuta T, Liang J, Xu Z, Xia R, Zhang A, Guo C, Inoue A, He Y. Insights into lysophosphatidylserine recognition and Gα 12/13-coupling specificity of P2Y10. Cell Chem Biol 2024; 31:1899-1908.e5. [PMID: 39265572 DOI: 10.1016/j.chembiol.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 06/05/2024] [Accepted: 08/08/2024] [Indexed: 09/14/2024]
Abstract
The lysophosphatidylserine (LysoPS) receptor P2Y10, also known as LPS2, plays crucial roles in the regulation of immune responses and holds promise for the treatment of autoimmune diseases. Here, we report the cryoelectron microscopy (cryo-EM) structure of LysoPS-bound P2Y10 in complex with an engineered G13 heterotrimeric protein. The structure and a mutagenesis study highlight the predominant role of a comprehensive polar network in facilitating the binding and activation of the receptor by LysoPS. This interaction pattern is preserved in GPR174, but not in GPR34. Moreover, our structural study unveils the essential interactions that underlie the Gα13 engagement of P2Y10 and identifies key determinants for Gα12-vs.-Gα13-coupling selectivity, whose mutations selectively disrupt Gα12 engagement while preserving the intact coupling of Gα13. The combined structural and functional studies provide insights into the molecular mechanisms of LysoPS recognition and Gα12/13 coupling specificity.
Collapse
Affiliation(s)
- Han Yin
- Laboratory of Receptor Structure and Signaling, HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Nozomi Kamakura
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Yu Qian
- Laboratory of Receptor Structure and Signaling, HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Manae Tatsumi
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Tatsuya Ikuta
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Jiale Liang
- Laboratory of Receptor Structure and Signaling, HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Zhenmei Xu
- Laboratory of Receptor Structure and Signaling, HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Ruixue Xia
- Laboratory of Receptor Structure and Signaling, HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Anqi Zhang
- Laboratory of Receptor Structure and Signaling, HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Changyou Guo
- Laboratory of Receptor Structure and Signaling, HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578, Japan; Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-Shimo-Adachi-cho, Sakyo-ku, Kyoto 606-8501, Japan.
| | - Yuanzheng He
- Laboratory of Receptor Structure and Signaling, HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China.
| |
Collapse
|
37
|
Liu P, Huang ML, Guo H, McCallum M, Si JY, Chen YM, Wang CL, Yu X, Shi LL, Xiong Q, Ma CB, Bowen JE, Tong F, Liu C, Sun YH, Yang X, Chen J, Guo M, Li J, Corti D, Veesler D, Shi ZL, Yan H. Design of customized coronavirus receptors. Nature 2024; 635:978-986. [PMID: 39478224 DOI: 10.1038/s41586-024-08121-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 09/25/2024] [Indexed: 11/29/2024]
Abstract
Although coronaviruses use diverse receptors, the characterization of coronaviruses with unknown receptors has been impeded by a lack of infection models1,2. Here we introduce a strategy to engineer functional customized viral receptors (CVRs). The modular design relies on building artificial receptor scaffolds comprising various modules and generating specific virus-binding domains. We identify key factors for CVRs to functionally mimic native receptors by facilitating spike proteolytic cleavage, membrane fusion, pseudovirus entry and propagation for various coronaviruses. We delineate functional SARS-CoV-2 spike receptor-binding sites for CVR design and reveal the mechanism of cell entry promoted by the N-terminal domain-targeting S2L20-CVR. We generated CVR-expressing cells for 12 representative coronaviruses from 6 subgenera, most of which lack known receptors, and show that a pan-sarbecovirus CVR supports propagation of a propagation-competent HKU3 pseudovirus and of authentic RsHuB2019A3. Using an HKU5-specific CVR, we successfully rescued wild-type and ZsGreen-HiBiT-incorporated HKU5-1 (LMH03f) and isolated a HKU5 strain from bat samples. Our study demonstrates the potential of the CVR strategy for establishing native receptor-independent infection models, providing a tool for studying viruses that lack known susceptible target cells.
Collapse
Affiliation(s)
- Peng Liu
- State Key Laboratory of Virology, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Mei-Ling Huang
- State Key Laboratory of Virology, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Hua Guo
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Matthew McCallum
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Jun-Yu Si
- State Key Laboratory of Virology, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Yuan-Mei Chen
- State Key Laboratory of Virology, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Chun-Li Wang
- State Key Laboratory of Virology, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Xiao Yu
- State Key Laboratory of Virology, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Lu-Lu Shi
- State Key Laboratory of Virology, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Qing Xiong
- State Key Laboratory of Virology, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Cheng-Bao Ma
- State Key Laboratory of Virology, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - John E Bowen
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Fei Tong
- State Key Laboratory of Virology, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Chen Liu
- State Key Laboratory of Virology, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Ye-Hui Sun
- State Key Laboratory of Virology, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Xiao Yang
- State Key Laboratory of Virology, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Jing Chen
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Ming Guo
- State Key Laboratory of Virology, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Jing Li
- State Key Laboratory of Virology, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Davide Corti
- Humabs BioMed SA, subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, WA, USA.
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA.
| | - Zheng-Li Shi
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.
- Guangzhou Laboratory, Guangzhou International Bio Island, Guangzhou, China.
| | - Huan Yan
- State Key Laboratory of Virology, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China.
| |
Collapse
|
38
|
McCallum M, Veesler D. Computational design of prefusion-stabilized Herpesvirus gB trimers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.23.619923. [PMID: 39484573 PMCID: PMC11526958 DOI: 10.1101/2024.10.23.619923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
In the absence of effective vaccines, human-infecting members of the Herpesvirus family cause considerable morbidity and mortality worldwide. Herpesvirus infection relies on receptor engagement by a gH/gL glycoprotein complex which induces large-scale conformational changes of the gB glycoprotein to mediate fusion of the viral and host membranes and infection. The instability of all herpesvirus gBs have hindered biochemical and functional studies, thereby limiting our understanding of the infection mechanisms of these pathogens and preventing vaccine design. Here, we computationally stabilized and structurally characterized the Epstein-Barr virus prefusion gB ectodomain trimer, providing an atomic-level description of this key therapeutic target. We show that this stabilization strategy is broadly applicable to other herpesvirus gB trimers and identified conformational intermediates supporting a previously unanticipated mechanism of gB-mediated fusion. These findings provide a blueprint to develop vaccine candidates for these pathogens with major public health burden.
Collapse
Affiliation(s)
- Matthew McCallum
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
- Howard Hughes Medical Institute, Seattle, WA 98195, USA
| |
Collapse
|
39
|
Walker MR, Underwood A, Björnsson KH, Raghavan SSR, Bassi MR, Binderup A, Pham LV, Ramirez S, Pinholt M, Dagil R, Knudsen AS, Idorn M, Soegaard M, Wang K, Ward AB, Salanti A, Bukh J, Barfod L. Broadly potent spike-specific human monoclonal antibodies inhibit SARS-CoV-2 Omicron sub-lineages. Commun Biol 2024; 7:1239. [PMID: 39354108 PMCID: PMC11445456 DOI: 10.1038/s42003-024-06951-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 09/24/2024] [Indexed: 10/03/2024] Open
Abstract
The continuous emergence of SARS-CoV-2 variants of concern has rendered many therapeutic monoclonal antibodies (mAbs) ineffective. To date, there are no clinically authorized therapeutic antibodies effective against the recently circulating Omicron sub-lineages BA.2.86 and JN.1. Here, we report the isolation of broad and potent neutralizing human mAbs (HuMabs) from a healthcare worker infected with SARS-CoV-2 early in the pandemic. These include a genetically unique HuMab, named K501SP6, which can neutralize different Omicron sub-lineages, including BQ.1, XBB.1, BA.2.86 and JN.1, by targeting a highly conserved epitope on the N terminal domain, as well as an RBD-specific HuMab (K501SP3) with high potency towards earlier circulating variants that was escaped by the more recent Omicron sub-lineages through spike F486 and E484 substitutions. Characterizing SARS-CoV-2 spike-specific HuMabs, including broadly reactive non-RBD-specific HuMabs, can give insight into the immune mechanisms involved in neutralization and immune evasion, which can be a valuable addition to already existing SARS-CoV-2 therapies.
Collapse
Affiliation(s)
- Melanie R Walker
- Centre for Translational Medicine and Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Alexander Underwood
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kasper H Björnsson
- Centre for Translational Medicine and Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sai Sundar Rajan Raghavan
- Centre for Translational Medicine and Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Maria R Bassi
- Centre for Translational Medicine and Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Alekxander Binderup
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Long V Pham
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Santseharay Ramirez
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mette Pinholt
- Department of Clinical Microbiology, Copenhagen University Hospital, Hvidovre, Denmark
| | - Robert Dagil
- Centre for Translational Medicine and Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anne S Knudsen
- Centre for Translational Medicine and Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Manja Idorn
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | - Kaituo Wang
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Ali Salanti
- Centre for Translational Medicine and Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens Bukh
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lea Barfod
- Centre for Translational Medicine and Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
40
|
Brouwer PJM, Perrett HR, Beaumont T, Nijhuis H, Kruijer S, Burger JA, Bontjer I, Lee WH, Ferguson JA, Schauflinger M, Müller-Kräuter H, Sanders RW, Strecker T, van Gils MJ, Ward AB. Defining bottlenecks and opportunities for Lassa virus neutralization by structural profiling of vaccine-induced polyclonal antibody responses. Cell Rep 2024; 43:114708. [PMID: 39243373 PMCID: PMC11422484 DOI: 10.1016/j.celrep.2024.114708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 07/19/2024] [Accepted: 08/19/2024] [Indexed: 09/09/2024] Open
Abstract
Lassa fever continues to be a major public health burden in West Africa, yet effective therapies or vaccines are lacking. The isolation of protective neutralizing antibodies against the Lassa virus glycoprotein complex (GPC) justifies the development of vaccines that can elicit strong neutralizing antibody responses. However, Lassa vaccine candidates have generally been unsuccessful at doing so, and the associated antibody responses to these vaccines remain poorly characterized. Here, we establish an electron microscopy-based epitope mapping workflow that enables high-resolution structural characterization of polyclonal antibodies to the GPC. By applying this method to rabbits vaccinated with a recombinant GPC vaccine and a GPC-derived virus-like particle, we reveal determinants of neutralization that involve epitopes of the GPC-A competition cluster. Furthermore, by identifying undescribed immunogenic off-target epitopes, we expose the challenges that recombinant GPC vaccines face. By enabling detailed polyclonal antibody characterization, our work ushers in a next generation of more rational Lassa vaccine design.
Collapse
Affiliation(s)
- Philip J M Brouwer
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA 92037, USA
| | - Hailee R Perrett
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA 92037, USA
| | - Tim Beaumont
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Center, Location AMC, University of Amsterdam, Amsterdam Infection & Immunity Institute, 1105 AZ Amsterdam, the Netherlands
| | - Haye Nijhuis
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Center, Location AMC, University of Amsterdam, Amsterdam Infection & Immunity Institute, 1105 AZ Amsterdam, the Netherlands
| | - Sabine Kruijer
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Center, Location AMC, University of Amsterdam, Amsterdam Infection & Immunity Institute, 1105 AZ Amsterdam, the Netherlands
| | - Judith A Burger
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Center, Location AMC, University of Amsterdam, Amsterdam Infection & Immunity Institute, 1105 AZ Amsterdam, the Netherlands
| | - Ilja Bontjer
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Center, Location AMC, University of Amsterdam, Amsterdam Infection & Immunity Institute, 1105 AZ Amsterdam, the Netherlands
| | - Wen-Hsin Lee
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA 92037, USA
| | - James A Ferguson
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA 92037, USA
| | | | | | - Rogier W Sanders
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Center, Location AMC, University of Amsterdam, Amsterdam Infection & Immunity Institute, 1105 AZ Amsterdam, the Netherlands; Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY 10021, USA
| | - Thomas Strecker
- Institute of Virology, Philipps University Marburg, 35043 Marburg, Germany
| | - Marit J van Gils
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Center, Location AMC, University of Amsterdam, Amsterdam Infection & Immunity Institute, 1105 AZ Amsterdam, the Netherlands
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA 92037, USA.
| |
Collapse
|
41
|
Monnens Y, Theodoropoulou A, Rosier K, Bhalla K, Mahy A, Vanhoutte R, Meulemans S, Cavani E, Antanasijevic A, Lemmens I, Lee JA, Spellicy CJ, Schroer RJ, Maselli RA, Laverty CG, Agostinis P, Pagliarini DJ, Verhelst S, Marcaida MJ, Rochtus A, Dal Peraro M, Creemers JW. Missense variants in CMS22 patients reveal that PREPL has both enzymatic and nonenzymatic functions. JCI Insight 2024; 9:e179276. [PMID: 39078710 PMCID: PMC11385081 DOI: 10.1172/jci.insight.179276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 07/23/2024] [Indexed: 08/28/2024] Open
Abstract
Congenital myasthenic syndrome-22 (CMS22, OMIM 616224) is a rare genetic disorder caused by deleterious genetic variation in the prolyl endopeptidase-like (PREPL) gene. Previous reports have described patients with deletions and nonsense variants in PREPL, but nothing is known about the effect of missense variants in the pathology of CMS22. In this study, we have functionally characterized missense variants in PREPL from 3 patients with CMS22, all with hallmark phenotypes. Biochemical evaluation revealed that these missense variants do not impair hydrolase activity, thereby challenging the conventional diagnostic criteria and disease mechanism. Structural analysis showed that the variants affect regions most likely involved in intraprotein or protein-protein interactions. Indeed, binding to a selected group of known interactors was differentially reduced for the 3 variants. The importance of nonhydrolytic functions of PREPL was investigated in catalytically inactive PREPL p.Ser559Ala cell lines, which showed that hydrolytic activity of PREPL is needed for normal mitochondrial function but not for regulating AP1-mediated transport in the transgolgi network. In conclusion, these studies showed that CMS22 can be caused not only by deletion and truncation of PREPL but also by missense variants that do not necessarily result in a loss of hydrolytic activity of PREPL.
Collapse
Affiliation(s)
- Yenthe Monnens
- Laboratory for Biochemical Neuroendocrinology, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Anastasia Theodoropoulou
- Laboratory for Biomolecular Modeling, Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Karen Rosier
- Laboratory for Biochemical Neuroendocrinology, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Kritika Bhalla
- Laboratory for Biochemical Neuroendocrinology, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Alexia Mahy
- Laboratory for Biochemical Neuroendocrinology, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Roeland Vanhoutte
- Laboratory for Chemical Biology, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Sandra Meulemans
- Laboratory for Biochemical Neuroendocrinology, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Edoardo Cavani
- Laboratory for Biomolecular Modeling, Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Aleksandar Antanasijevic
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Irma Lemmens
- VIB-UGent Center for Medical Biotechnology, Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | | | | | | | | | | | - Patrizia Agostinis
- Laboratory for Cell death Research & Therapy, VIB, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - David J. Pagliarini
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Steven Verhelst
- Laboratory for Chemical Biology, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Maria J. Marcaida
- Laboratory for Biomolecular Modeling, Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | | | - Matteo Dal Peraro
- Laboratory for Biomolecular Modeling, Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - John W.M. Creemers
- Laboratory for Biochemical Neuroendocrinology, Department of Human Genetics, KU Leuven, Leuven, Belgium
| |
Collapse
|
42
|
Guo J, Li S, Bai L, Zhao H, Shang W, Zhong Z, Maimaiti T, Gao X, Ji N, Chao Y, Li Z, Du D. Structural transition of GP64 triggered by a pH-sensitive multi-histidine switch. Nat Commun 2024; 15:7668. [PMID: 39227374 PMCID: PMC11372198 DOI: 10.1038/s41467-024-51799-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 08/16/2024] [Indexed: 09/05/2024] Open
Abstract
The fusion of viruses with cellular membranes is a critical step in the life cycle of enveloped viruses. This process is facilitated by viral fusion proteins, many of which are conformationally pH-sensitive. The specifics of how changes in pH initiate this fusion have remained largely elusive. This study presents the cryo-electron microscopy (cryo-EM) structures of a prototype class III fusion protein, GP64, in its prefusion and early intermediate states, revealing the structural intermediates accompanying the membrane fusion process. The structures identify the involvement of a pH-sensitive switch, comprising H23, H245, and H304, in sensing the low pH that triggers the initial step of membrane fusion. The pH sensing role of this switch is corroborated by assays of cell-cell syncytium formation and dual dye-labeling. The findings demonstrate that coordination between multiple histidine residues acts as a pH sensor and activator. The involvement of a multi-histidine switch in viral fusion is applicable to fusogens of human-infecting thogotoviruses and other viruses, which could lead to strategies for developing anti-viral therapies and vaccines.
Collapse
Affiliation(s)
- Jinliang Guo
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Shangrong Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Lisha Bai
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Huimin Zhao
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Wenyu Shang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Zhaojun Zhong
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | | | - Xueyan Gao
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Ning Ji
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yanjie Chao
- CAS Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
| | - Zhaofei Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Dijun Du
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| |
Collapse
|
43
|
Qian Y, Ma Z, Xu Z, Duan Y, Xiong Y, Xia R, Zhu X, Zhang Z, Tian X, Yin H, Liu J, Song J, Lu Y, Zhang A, Guo C, Jin L, Kim WJ, Ke J, Xu F, Huang Z, He Y. Structural basis of Frizzled 4 in recognition of Dishevelled 2 unveils mechanism of WNT signaling activation. Nat Commun 2024; 15:7644. [PMID: 39223191 PMCID: PMC11369211 DOI: 10.1038/s41467-024-52174-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024] Open
Abstract
WNT signaling is fundamental in development and homeostasis, but how the Frizzled receptors (FZDs) propagate signaling remains enigmatic. Here, we present the cryo-EM structure of FZD4 engaged with the DEP domain of Dishevelled 2 (DVL2), a key WNT transducer. We uncover a distinct binding mode where the DEP finger-loop inserts into the FZD4 cavity to form a hydrophobic interface. FZD4 intracellular loop 2 (ICL2) additionally anchors the complex through polar contacts. Mutagenesis validates the structural observations. The DEP interface is highly conserved in FZDs, indicating a universal mechanism by which FZDs engage with DVLs. We further reveal that DEP mimics G-protein/β-arrestin/GRK to recognize an active conformation of receptor, expanding current GPCR engagement models. Finally, we identify a distinct FZD4 dimerization interface. Our findings delineate the molecular determinants governing FZD/DVL assembly and propagation of WNT signaling, providing long-sought answers underlying WNT signal transduction.
Collapse
Affiliation(s)
- Yu Qian
- Laboratory of Receptor Structure and Signaling, HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Zhengxiong Ma
- Laboratory of Receptor Structure and Signaling, HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Zhenmei Xu
- Laboratory of Receptor Structure and Signaling, HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Yaning Duan
- Laboratory of Receptor Structure and Signaling, HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Yangjie Xiong
- Laboratory of Receptor Structure and Signaling, HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Ruixue Xia
- Laboratory of Receptor Structure and Signaling, HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Xinyan Zhu
- Laboratory of Receptor Structure and Signaling, HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Zongwei Zhang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Xinyu Tian
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Han Yin
- Laboratory of Receptor Structure and Signaling, HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Jian Liu
- Laboratory of Receptor Structure and Signaling, HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Jing Song
- Laboratory of Receptor Structure and Signaling, HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Yang Lu
- Laboratory of Receptor Structure and Signaling, HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Anqi Zhang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Changyou Guo
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Lihua Jin
- Northeast Forestry University, Harbin, China
| | - Woo Jae Kim
- Laboratory of Receptor Structure and Signaling, HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Jiyuan Ke
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, China
| | - Fei Xu
- iHuman Institute, ShanghaiTech University, Shanghai, China
| | - Zhiwei Huang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Yuanzheng He
- Laboratory of Receptor Structure and Signaling, HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, China.
| |
Collapse
|
44
|
Berndsen ZT, Akhtar M, Thapa M, Vickers TJ, Schmitz A, Torres JL, Baboo S, Kumar P, Khatoon N, Sheikh A, Hamrick M, Diedrich JK, Martinez-Bartolome S, Garrett PT, Yates JR, Turner JS, Laird RM, Poly F, Porter CK, Copps J, Ellebedy AH, Ward AB, Fleckenstein JM. Repeat modules and N-linked glycans define structure and antigenicity of a critical enterotoxigenic E. coli adhesin. PLoS Pathog 2024; 20:e1012241. [PMID: 39283948 PMCID: PMC11463764 DOI: 10.1371/journal.ppat.1012241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 10/09/2024] [Accepted: 08/12/2024] [Indexed: 09/25/2024] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) cause hundreds of millions of cases of infectious diarrhea annually, predominantly in children from low-middle income regions. Notably, in children, as well as volunteers challenged with ETEC, diarrheal severity is significantly increased in blood group A (bgA) individuals. EtpA, is a secreted glycoprotein adhesin that functions as a blood group A lectin to promote critical interactions between ETEC and blood group A glycans on intestinal epithelia for effective bacterial adhesion and toxin delivery. EtpA is highly immunogenic resulting in robust antibody responses following natural infection and experimental challenge of volunteers with ETEC. To understand how EtpA directs ETEC-blood group A interactions and stimulates adaptive immunity, we mutated EtpA, mapped its glycosylation by mass-spectrometry (MS), isolated polyclonal (pAbs) and monoclonal antibodies (mAbs) from vaccinated mice and ETEC-infected volunteers, and determined structures of antibody-EtpA complexes by cryo-electron microscopy. Both bgA and mAbs that inhibited EtpA-bgA interactions and ETEC adhesion, bound to the C-terminal repeat domain highlighting this region as crucial for ETEC pathogen-host interaction. MS analysis uncovered extensive and heterogeneous N-linked glycosylation of EtpA and cryo-EM structures revealed that mAbs directly engage these unique glycan containing epitopes. Finally, electron microscopy-based polyclonal epitope mapping revealed antibodies targeting numerous distinct epitopes on N and C-terminal domains, suggesting that EtpA vaccination generates responses against neutralizing and decoy regions of the molecule. Collectively, we anticipate that these data will inform our general understanding of pathogen-host glycan interactions and adaptive immunity relevant to rational vaccine subunit design.
Collapse
Affiliation(s)
- Zachary T. Berndsen
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, California, United States of America
| | - Marjahan Akhtar
- Department of Medicine, Division of Infectious Diseases, Washington University in Saint Louis, School of Medicine. Saint Louis, Missouri, United States of America
| | - Mahima Thapa
- Department of Pathology and Immunology, Washington University in Saint Louis, School of Medicine, Saint Louis, Missouri, United States of America
| | - Tim J. Vickers
- Department of Medicine, Division of Infectious Diseases, Washington University in Saint Louis, School of Medicine. Saint Louis, Missouri, United States of America
| | - Aaron Schmitz
- Department of Pathology and Immunology, Washington University in Saint Louis, School of Medicine, Saint Louis, Missouri, United States of America
| | - Jonathan L. Torres
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, California, United States of America
| | - Sabyasachi Baboo
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, United States of America
| | - Pardeep Kumar
- Department of Medicine, Division of Infectious Diseases, Washington University in Saint Louis, School of Medicine. Saint Louis, Missouri, United States of America
| | - Nazia Khatoon
- Department of Medicine, Division of Infectious Diseases, Washington University in Saint Louis, School of Medicine. Saint Louis, Missouri, United States of America
| | - Alaullah Sheikh
- Department of Medicine, Division of Infectious Diseases, Washington University in Saint Louis, School of Medicine. Saint Louis, Missouri, United States of America
| | - Melissa Hamrick
- Department of Medicine, Division of Infectious Diseases, Washington University in Saint Louis, School of Medicine. Saint Louis, Missouri, United States of America
| | - Jolene K. Diedrich
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, United States of America
| | - Salvador Martinez-Bartolome
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, United States of America
| | - Patrick T. Garrett
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, United States of America
| | - John R. Yates
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, United States of America
| | - Jackson S. Turner
- Department of Pathology and Immunology, Washington University in Saint Louis, School of Medicine, Saint Louis, Missouri, United States of America
| | - Renee M. Laird
- Operationally Relevant Infections Department, Naval Medical Research Command (NMRC), Silver Spring, Maryland, United States of America
| | - Frédéric Poly
- Operationally Relevant Infections Department, Naval Medical Research Command (NMRC), Silver Spring, Maryland, United States of America
| | - Chad K. Porter
- Translational and Clinical Research Department, Naval Medical Research Command (NMRC), Silver Spring, Maryland, United States of America
| | - Jeffrey Copps
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, California, United States of America
| | - Ali H. Ellebedy
- Department of Pathology and Immunology, Washington University in Saint Louis, School of Medicine, Saint Louis, Missouri, United States of America
- Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine, St Louis, Missouri, United States of America
- The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - Andrew B. Ward
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, California, United States of America
| | - James M. Fleckenstein
- Department of Medicine, Division of Infectious Diseases, Washington University in Saint Louis, School of Medicine. Saint Louis, Missouri, United States of America
- Operationally Relevant Infections Department, Naval Medical Research Command (NMRC), Silver Spring, Maryland, United States of America
- Medicine Service, Infectious Diseases, Veterans Affairs Health Care System, Saint Louis, Missouri, United States of America
| |
Collapse
|
45
|
Vidal-Calvo EE, Martin-Salazar A, Choudhary S, Dagil R, Raghavan SSR, Duvnjak L, Nordmaj MA, Clausen TM, Skafte A, Oberkofler J, Wang K, Agerbæk MØ, Løppke C, Jørgensen AM, Ropac D, Mujollari J, Willis S, Garcias López A, Miller RL, Karlsson RTG, Goerdeler F, Chen YH, Colaço AR, Wang Y, Lavstsen T, Martowicz A, Nelepcu I, Marzban M, Oo HZ, Ørum-Madsen MS, Wang Y, Nielsen MA, Clausen H, Wierer M, Wolf D, Gögenur I, Theander TG, Al-Nakouzi N, Gustavsson T, Daugaard M, Salanti A. Tumor-agnostic cancer therapy using antibodies targeting oncofetal chondroitin sulfate. Nat Commun 2024; 15:7553. [PMID: 39215044 PMCID: PMC11364678 DOI: 10.1038/s41467-024-51781-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 08/16/2024] [Indexed: 09/04/2024] Open
Abstract
Molecular similarities between embryonic and malignant cells can be exploited to target tumors through specific signatures absent in healthy adult tissues. One such embryonic signature tumors express is oncofetal chondroitin sulfate (ofCS), which supports disease progression and dissemination in cancer. Here, we report the identification and characterization of phage display-derived antibody fragments recognizing two distinct ofCS epitopes. These antibody fragments show binding affinity to ofCS in the low nanomolar range across a broad selection of solid tumor types in vitro and in vivo with minimal binding to normal, inflamed, or benign tumor tissues. Anti-ofCS antibody drug conjugates and bispecific immune cell engagers based on these targeting moieties disrupt tumor progression in animal models of human and murine cancers. Thus, anti-ofCS antibody fragments hold promise for the development of broadly effective therapeutic and diagnostic applications targeting human malignancies.
Collapse
Affiliation(s)
- Elena Ethel Vidal-Calvo
- Centre for Translational Medicine and Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark.
- VAR2 Pharmaceuticals ApS, Copenhagen, Denmark.
| | - Anne Martin-Salazar
- Centre for Translational Medicine and Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark
| | - Swati Choudhary
- Centre for Translational Medicine and Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark
- VAR2 Pharmaceuticals ApS, Copenhagen, Denmark
| | - Robert Dagil
- Centre for Translational Medicine and Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark
- VAR2 Pharmaceuticals ApS, Copenhagen, Denmark
| | - Sai Sundar Rajan Raghavan
- Centre for Translational Medicine and Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark
| | - Lara Duvnjak
- Centre for Translational Medicine and Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark
- VAR2 Pharmaceuticals ApS, Copenhagen, Denmark
| | - Mie Anemone Nordmaj
- Centre for Translational Medicine and Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark
| | | | - Ann Skafte
- Centre for Translational Medicine and Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark
- VAR2 Pharmaceuticals ApS, Copenhagen, Denmark
| | - Jan Oberkofler
- Centre for Translational Medicine and Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark
| | - Kaituo Wang
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mette Ø Agerbæk
- Centre for Translational Medicine and Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark
- VARCT Diagnostics, Copenhagen, Denmark
| | - Caroline Løppke
- Centre for Translational Medicine and Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark
| | - Amalie Mundt Jørgensen
- Centre for Translational Medicine and Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark
- VARCT Diagnostics, Copenhagen, Denmark
| | - Daria Ropac
- Centre for Translational Medicine and Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark
| | - Joana Mujollari
- Centre for Translational Medicine and Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark
| | - Shona Willis
- Centre for Translational Medicine and Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark
| | - Agnès Garcias López
- Centre for Translational Medicine and Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark
| | - Rebecca Louise Miller
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Richard Torbjörn Gustav Karlsson
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Felix Goerdeler
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Ana R Colaço
- Proteomics Research Infrastructure, University of Copenhagen, Copenhagen, Denmark
| | - Yong Wang
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Thomas Lavstsen
- Centre for Translational Medicine and Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark
| | - Agnieszka Martowicz
- Department of Internal Medicine V, Haematology & Oncology, Comprehensive Cancer Center Innsbruck (CCCI) and Tyrolean Cancer Research Institute (TKFI), Medical University of Innsbruck, Innsbruck, Austria
| | - Irina Nelepcu
- Vancouver Prostate Centre, Vancouver Coastal Health Research Institutes, Vancouver, BC, Canada
- Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Mona Marzban
- Vancouver Prostate Centre, Vancouver Coastal Health Research Institutes, Vancouver, BC, Canada
- Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Htoo Zarni Oo
- Vancouver Prostate Centre, Vancouver Coastal Health Research Institutes, Vancouver, BC, Canada
- Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Maj Sofie Ørum-Madsen
- Vancouver Prostate Centre, Vancouver Coastal Health Research Institutes, Vancouver, BC, Canada
- Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Yuzhuo Wang
- Vancouver Prostate Centre, Vancouver Coastal Health Research Institutes, Vancouver, BC, Canada
| | - Morten A Nielsen
- Centre for Translational Medicine and Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark
- VAR2 Pharmaceuticals ApS, Copenhagen, Denmark
| | - Henrik Clausen
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Michael Wierer
- Proteomics Research Infrastructure, University of Copenhagen, Copenhagen, Denmark
| | - Dominik Wolf
- Department of Internal Medicine V, Haematology & Oncology, Comprehensive Cancer Center Innsbruck (CCCI) and Tyrolean Cancer Research Institute (TKFI), Medical University of Innsbruck, Innsbruck, Austria
| | - Ismail Gögenur
- Center for Surgical Science, Department of Surgery, Zealand University Hospital Køge, Køge, Denmark
| | - Thor G Theander
- Centre for Translational Medicine and Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark
- VAR2 Pharmaceuticals ApS, Copenhagen, Denmark
| | - Nader Al-Nakouzi
- VAR2 Pharmaceuticals ApS, Copenhagen, Denmark
- Vancouver Prostate Centre, Vancouver Coastal Health Research Institutes, Vancouver, BC, Canada
- Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Tobias Gustavsson
- Centre for Translational Medicine and Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark
- VAR2 Pharmaceuticals ApS, Copenhagen, Denmark
| | - Mads Daugaard
- VAR2 Pharmaceuticals ApS, Copenhagen, Denmark.
- Vancouver Prostate Centre, Vancouver Coastal Health Research Institutes, Vancouver, BC, Canada.
- Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada.
| | - Ali Salanti
- Centre for Translational Medicine and Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark.
- VAR2 Pharmaceuticals ApS, Copenhagen, Denmark.
| |
Collapse
|
46
|
Park YJ, Liu C, Lee J, Brown JT, Ma CB, Liu P, Xiong Q, Stewart C, Addetia A, Craig CJ, Tortorici MA, Alshukari A, Starr T, Yan H, Veesler D. Molecular basis of convergent evolution of ACE2 receptor utilization among HKU5 coronaviruses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.28.608351. [PMID: 39253417 PMCID: PMC11383307 DOI: 10.1101/2024.08.28.608351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
DPP4 was considered a canonical receptor for merbecoviruses until the recent discovery of African bat-borne MERS-related coronaviruses using ACE2. The extent and diversity with which merbecoviruses engage ACE2 and their receptor species tropism remain unknown. Here, we reveal that HKU5 enters host cells utilizing Pipistrellus abramus (P.abr) and several non-bat mammalian ACE2s through a binding mode distinct from that of any other known ACE2-using coronaviruses. These results show that several merbecovirus clades independently evolved ACE2 utilization, which appears to be a broadly shared property among these pathogens, through an extraordinary diversity of ACE2 recognition modes. We show that MERS-CoV and HKU5 have markedly distinct antigenicity, due to extensive genetic divergence, and identified several HKU5 inhibitors, including two clinical compounds. Our findings profoundly alter our understanding of coronavirus evolution and pave the way for developing countermeasures against viruses poised for human emergence.
Collapse
Affiliation(s)
- Young-Jun Park
- Department of Biochemistry, University of Washington; Seattle, WA 98195, USA
- Howard Hughes Medical Institute, University of Washington; Seattle, WA 98195, USA
| | - Chen Liu
- State Key Laboratory of Virology, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University; Wuhan, Hubei, 430072, China
| | - Jimin Lee
- Department of Biochemistry, University of Washington; Seattle, WA 98195, USA
| | - Jack T Brown
- Department of Biochemistry, University of Washington; Seattle, WA 98195, USA
| | - Chen-Bao Ma
- State Key Laboratory of Virology, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University; Wuhan, Hubei, 430072, China
| | - Peng Liu
- State Key Laboratory of Virology, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University; Wuhan, Hubei, 430072, China
| | - Qing Xiong
- State Key Laboratory of Virology, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University; Wuhan, Hubei, 430072, China
| | - Cameron Stewart
- Department of Biochemistry, University of Washington; Seattle, WA 98195, USA
| | - Amin Addetia
- Department of Biochemistry, University of Washington; Seattle, WA 98195, USA
| | - Caroline J. Craig
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | | | - Abeer Alshukari
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
- Department of Medicine, King Faisal Specialist Hospital and Research Center, Jeddah, Saudi Arabia
| | - Tyler Starr
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Huan Yan
- State Key Laboratory of Virology, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University; Wuhan, Hubei, 430072, China
| | - David Veesler
- Department of Biochemistry, University of Washington; Seattle, WA 98195, USA
- Howard Hughes Medical Institute, University of Washington; Seattle, WA 98195, USA
| |
Collapse
|
47
|
Liou SH, Boggavarapu R, Cohen NR, Zhang Y, Sharma I, Zeheb L, Mukund Acharekar N, Rodgers HD, Islam S, Pitts J, Arze C, Swaminathan H, Yozwiak N, Ong T, Hajjar RJ, Chang Y, Swanson KA, Delagrave S. Structure of anellovirus-like particles reveal a mechanism for immune evasion. Nat Commun 2024; 15:7219. [PMID: 39174507 PMCID: PMC11341859 DOI: 10.1038/s41467-024-51064-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 07/26/2024] [Indexed: 08/24/2024] Open
Abstract
Anelloviruses are nonpathogenic viruses that comprise a major portion of the human virome. Despite being ubiquitous in the human population, anelloviruses (ANVs) remain poorly understood. Basic features of the virus, such as the identity of its capsid protein and the structure of the viral particle, have been unclear until now. Here, we use cryogenic electron microscopy to describe the first structure of an ANV-like particle. The particle, formed by 60 jelly roll domain-containing ANV capsid proteins, forms an icosahedral particle core from which spike domains extend to form a salient part of the particle surface. The spike domains come together around the 5-fold symmetry axis to form crown-like features. The base of the spike domain, the P1 subdomain, shares some sequence conservation between ANV strains while a hypervariable region, forming the P2 subdomain, is at the spike domain apex. We propose that this structure renders the particle less susceptible to antibody neutralization by hiding vulnerable conserved domains while exposing highly diverse epitopes as immunological decoys, thereby contributing to the immune evasion properties of anelloviruses. These results shed light on the structure of anelloviruses and provide a framework to understand their interactions with the immune system.
Collapse
Affiliation(s)
- Shu-Hao Liou
- Ring Therapeutics, 140 First Street Suite 300, Cambridge, MA, 02139, USA
- Carbon Biosciences, Waltham, MA, 02451, USA
| | | | - Noah R Cohen
- Ring Therapeutics, 140 First Street Suite 300, Cambridge, MA, 02139, USA
- AbbVie Bioresearch Center, Worcester, MA, 01605, USA
| | - Yue Zhang
- Ring Therapeutics, 140 First Street Suite 300, Cambridge, MA, 02139, USA
| | - Ishwari Sharma
- Ring Therapeutics, 140 First Street Suite 300, Cambridge, MA, 02139, USA
| | - Lynn Zeheb
- Ring Therapeutics, 140 First Street Suite 300, Cambridge, MA, 02139, USA
| | | | - Hillary D Rodgers
- Ring Therapeutics, 140 First Street Suite 300, Cambridge, MA, 02139, USA
| | - Saadman Islam
- Ring Therapeutics, 140 First Street Suite 300, Cambridge, MA, 02139, USA
- GSK, Cambridge, MA, 02139, USA
| | - Jared Pitts
- Ring Therapeutics, 140 First Street Suite 300, Cambridge, MA, 02139, USA
| | - Cesar Arze
- Ring Therapeutics, 140 First Street Suite 300, Cambridge, MA, 02139, USA
| | - Harish Swaminathan
- Ring Therapeutics, 140 First Street Suite 300, Cambridge, MA, 02139, USA
- DaCapo Brainscience, Cambridge, MA, 02139, USA
| | - Nathan Yozwiak
- Ring Therapeutics, 140 First Street Suite 300, Cambridge, MA, 02139, USA
- Gene and Cell Therapy Institute, Mass General Brigham, Cambridge, MA, 02139, USA
| | - Tuyen Ong
- Ring Therapeutics, 140 First Street Suite 300, Cambridge, MA, 02139, USA
| | - Roger J Hajjar
- Ring Therapeutics, 140 First Street Suite 300, Cambridge, MA, 02139, USA
- Gene and Cell Therapy Institute, Mass General Brigham, Cambridge, MA, 02139, USA
| | - Yong Chang
- Ring Therapeutics, 140 First Street Suite 300, Cambridge, MA, 02139, USA
| | - Kurt A Swanson
- Ring Therapeutics, 140 First Street Suite 300, Cambridge, MA, 02139, USA.
| | - Simon Delagrave
- Ring Therapeutics, 140 First Street Suite 300, Cambridge, MA, 02139, USA
- Delagrave Life Sciences, LLC, Sudbury, MA, 01776, USA
| |
Collapse
|
48
|
Lee J, Case JB, Park YJ, Ravichandran R, Asarnow D, Tortorici MA, Brown JT, Sanapala S, Carter L, Baker D, Diamond MS, Veesler D. A pan-variant miniprotein inhibitor protects against SARS-CoV-2 variants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.08.606885. [PMID: 39149384 PMCID: PMC11326246 DOI: 10.1101/2024.08.08.606885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
The continued evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has compromised neutralizing antibody responses elicited by prior infection or vaccination and abolished the utility of most monoclonal antibody therapeutics. We previously described a computationally-designed, homotrimeric miniprotein inhibitor, designated TRI2-2, that protects mice against pre-Omicron SARS-CoV-2 variants. Here, we show that TRI2-2 exhibits pan neutralization of variants that evolved during the 4.5 years since the emergence of SARS-CoV-2 and protects mice against BQ.1.1, XBB.1.5 and BA.2.86 challenge when administered post-exposure by an intranasal route. The resistance of TRI2-2 to viral escape and its direct delivery to the upper airways rationalize a path toward clinical advancement.
Collapse
Affiliation(s)
- Jimin Lee
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - James Brett Case
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Young-Jun Park
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | - Rashmi Ravichandran
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Daniel Asarnow
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | | | - Jack T. Brown
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Shilpa Sanapala
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Lauren Carter
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Michael S. Diamond
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
49
|
McCallum M, Park YJ, Stewart C, Sprouse KR, Addetia A, Brown J, Tortorici MA, Gibson C, Wong E, Ieven M, Telenti A, Veesler D. Human coronavirus HKU1 recognition of the TMPRSS2 host receptor. Cell 2024; 187:4231-4245.e13. [PMID: 38964328 DOI: 10.1016/j.cell.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/26/2024] [Accepted: 06/05/2024] [Indexed: 07/06/2024]
Abstract
The human coronavirus HKU1 spike (S) glycoprotein engages host cell surface sialoglycans and transmembrane protease serine 2 (TMPRSS2) to initiate infection. The molecular basis of HKU1 binding to TMPRSS2 and determinants of host receptor tropism remain elusive. We designed an active human TMPRSS2 construct enabling high-yield recombinant production in human cells of this key therapeutic target. We determined a cryo-electron microscopy structure of the HKU1 RBD bound to human TMPRSS2, providing a blueprint of the interactions supporting viral entry and explaining the specificity for TMPRSS2 among orthologous proteases. We identified TMPRSS2 orthologs from five mammalian orders promoting HKU1 S-mediated entry into cells along with key residues governing host receptor usage. Our data show that the TMPRSS2 binding motif is a site of vulnerability to neutralizing antibodies and suggest that HKU1 uses S conformational masking and glycan shielding to balance immune evasion and receptor engagement.
Collapse
Affiliation(s)
- Matthew McCallum
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Young-Jun Park
- Department of Biochemistry, University of Washington, Seattle, WA, USA; Howard Hughes Medical Institute, Seattle, WA 98195, USA
| | - Cameron Stewart
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Kaitlin R Sprouse
- Department of Biochemistry, University of Washington, Seattle, WA, USA; Howard Hughes Medical Institute, Seattle, WA 98195, USA
| | - Amin Addetia
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Jack Brown
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | | | - Cecily Gibson
- Department of Biochemistry, University of Washington, Seattle, WA, USA; Howard Hughes Medical Institute, Seattle, WA 98195, USA
| | - Emily Wong
- Vir Biotechnology, San Francisco, CA 94158, USA
| | - Margareta Ieven
- Laboratory of Clinical Microbiology, Vaccine & Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | | | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, WA, USA; Howard Hughes Medical Institute, Seattle, WA 98195, USA.
| |
Collapse
|
50
|
Bou‐Abdallah F, Fish J, Terashi G, Zhang Y, Kihara D, Arosio P. Unveiling the stochastic nature of human heteropolymer ferritin self-assembly mechanism. Protein Sci 2024; 33:e5104. [PMID: 38995055 PMCID: PMC11241160 DOI: 10.1002/pro.5104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/18/2024] [Accepted: 06/23/2024] [Indexed: 07/13/2024]
Abstract
Despite ferritin's critical role in regulating cellular and systemic iron levels, our understanding of the structure and assembly mechanism of isoferritins, discovered over eight decades ago, remains limited. Unveiling how the composition and molecular architecture of hetero-oligomeric ferritins confer distinct functionality to isoferritins is essential to understanding how the structural intricacies of H and L subunits influence their interactions with cellular machinery. In this study, ferritin heteropolymers with specific H to L subunit ratios were synthesized using a uniquely engineered plasmid design, followed by high-resolution cryo-electron microscopy analysis and deep learning-based amino acid modeling. Our structural examination revealed unique architectural features during the self-assembly mechanism of heteropolymer ferritins and demonstrated a significant preference for H-L heterodimer formation over H-H or L-L homodimers. Unexpectedly, while dimers seem essential building blocks in the protein self-assembly process, the overall mechanism of ferritin self-assembly is observed to proceed randomly through diverse pathways. The physiological significance of these findings is discussed including how ferritin microheterogeneity could represent a tissue-specific adaptation process that imparts distinctive tissue-specific functions to isoferritins.
Collapse
Affiliation(s)
- Fadi Bou‐Abdallah
- Department of ChemistryState University of New YorkPotsdamNew YorkUSA
| | - Jeremie Fish
- Department of Electrical & Computer EngineeringCoulter School of Engineering, Clarkson UniversityPotsdamNew YorkUSA
| | - Genki Terashi
- Department of Biological Sciences and Department of Computer SciencePurdue UniversityWest LafayetteIndianaUSA
| | - Yuanyuan Zhang
- Department of Biological Sciences and Department of Computer SciencePurdue UniversityWest LafayetteIndianaUSA
| | - Daisuke Kihara
- Department of Biological Sciences and Department of Computer SciencePurdue UniversityWest LafayetteIndianaUSA
| | - Paolo Arosio
- Department of Molecular and Translational MedicineUniversity of BresciaBresciaItaly
| |
Collapse
|