1
|
Dearman A, Bao Y, Schalkwyk L, Kumari M. Serum proteomic correlates of mental health symptoms in a representative UK population sample. Brain Behav Immun Health 2025; 44:100947. [PMID: 39911945 PMCID: PMC11795072 DOI: 10.1016/j.bbih.2025.100947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 10/24/2024] [Accepted: 01/13/2025] [Indexed: 02/07/2025] Open
Abstract
Poor mental health constitutes a public health crisis due to its high prevalence, unmet need and its mechanistic heterogeneity. A comprehensive understanding of the biological correlates of poor mental health in the population could enhance epidemiological research and eventually help guide treatment strategies. The human bloodstream contains many proteins, several of which have been linked to diagnosed mental health conditions but not to population mental health symptoms, however recent technological advances have made this possible. Here we perform exploratory factor analyses of 184 proteins from two panels (cardiometabolic and neurology-related) measured using proximity extension assays from Understanding Society (the UK Household Longitudinal Study; UKHLS). Data reduction results in 28 factors that explain 55-59% of the variance per panel. We perform multiple linear regressions in up to 5304 participants using two mental health symptom-based outcomes: psychological distress assessed with the general health questionnaire (GHQ-12) and mental health functioning assessed with the 12-Item Short Form Survey, Mental Component Summary (SF12-MCS) using the proteomic factors as explanatory variables and adjusting for demographic covariates. We use backward selection to discard non-significant proteomic factors from the models. Ten factors are independently associated with population mental health symptoms, three of which are immune-related (immunometabolism, immune cell-mediated processes, acute phase processes), three brain-related (neurodevelopment, synaptic processes, neuroprotective processes), two proteolysis-related (proteolysis & the kynurenine pathway, haemostasis & proteolysis), growth factors & muscle, and oxidative stress & the cytoskeleton. Associations partially overlap across the two outcomes, and a sensitivity analysis excluding people taking antidepressants or other central nervous system medications suggestively implicates some of the factors in treatment-resistant poor mental health. Our findings replicate those of case-control studies and expand these to underlie mental health symptomatology in the adult population. More work is needed to understand the direction of causality in these associations.
Collapse
Affiliation(s)
- Anna Dearman
- Institute for Social and Economic Research, University of Essex, Wivenhoe Park, Colchester, Essex, CO4 3SQ, UK
| | - Yanchun Bao
- School of Mathematics, Statistics and Actuarial Science (SMSAS), University of Essex, Wivenhoe Park, Colchester, Essex, CO4 3SQ, UK
| | - Leonard Schalkwyk
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, Essex, CO4 3SQ, UK
| | - Meena Kumari
- Institute for Social and Economic Research, University of Essex, Wivenhoe Park, Colchester, Essex, CO4 3SQ, UK
| |
Collapse
|
2
|
Fekete R, Simats A, Bíró E, Pósfai B, Cserép C, Schwarcz AD, Szabadits E, Környei Z, Tóth K, Fichó E, Szalma J, Vida S, Kellermayer A, Dávid C, Acsády L, Kontra L, Silvestre-Roig C, Moldvay J, Fillinger J, Csikász-Nagy A, Hortobágyi T, Liesz A, Benkő S, Dénes Á. Microglia dysfunction, neurovascular inflammation and focal neuropathologies are linked to IL-1- and IL-6-related systemic inflammation in COVID-19. Nat Neurosci 2025; 28:558-576. [PMID: 40050441 PMCID: PMC11893456 DOI: 10.1038/s41593-025-01871-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 12/17/2024] [Indexed: 03/12/2025]
Abstract
COVID-19 is associated with diverse neurological abnormalities, but the underlying mechanisms are unclear. We hypothesized that microglia, the resident immune cells of the brain, are centrally involved in this process. To study this, we developed an autopsy platform allowing the integration of molecular anatomy, protein and mRNA datasets in postmortem mirror blocks of brain and peripheral organ samples from cases of COVID-19. We observed focal loss of microglial P2Y12R, CX3CR1-CX3CL1 axis deficits and metabolic failure at sites of virus-associated vascular inflammation in severely affected medullary autonomic nuclei and other brain areas. Microglial dysfunction is linked to mitochondrial injury at sites of excessive synapse and myelin phagocytosis and loss of glutamatergic terminals, in line with proteomic changes of synapse assembly, metabolism and neuronal injury. Furthermore, regionally heterogeneous microglial changes are associated with viral load and central and systemic inflammation related to interleukin (IL)-1 or IL-6 via virus-sensing pattern recognition receptors and inflammasomes. Thus, SARS-CoV-2-induced inflammation might lead to a primarily gliovascular failure in the brain, which could be a common contributor to diverse COVID-19-related neuropathologies.
Collapse
Affiliation(s)
- Rebeka Fekete
- Momentum Laboratory of Neuroimmunology, HUN-REN Institute of Experimental Medicine, Budapest, Hungary
| | - Alba Simats
- Institute for Stroke and Dementia Research, LMU University Hospital, LMU Munich, Munich, Germany
| | - Eduárd Bíró
- Laboratory of Inflammation-Physiology, Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Balázs Pósfai
- Momentum Laboratory of Neuroimmunology, HUN-REN Institute of Experimental Medicine, Budapest, Hungary
| | - Csaba Cserép
- Momentum Laboratory of Neuroimmunology, HUN-REN Institute of Experimental Medicine, Budapest, Hungary
| | - Anett D Schwarcz
- Momentum Laboratory of Neuroimmunology, HUN-REN Institute of Experimental Medicine, Budapest, Hungary
- János Szentágothai Doctoral School of Neuroscience, Semmelweis University, Budapest, Hungary
| | - Eszter Szabadits
- Momentum Laboratory of Neuroimmunology, HUN-REN Institute of Experimental Medicine, Budapest, Hungary
| | - Zsuzsanna Környei
- Momentum Laboratory of Neuroimmunology, HUN-REN Institute of Experimental Medicine, Budapest, Hungary
| | - Krisztina Tóth
- Momentum Laboratory of Neuroimmunology, HUN-REN Institute of Experimental Medicine, Budapest, Hungary
| | | | - János Szalma
- Cytocast Hungary Kft, Budapest, Hungary
- Pázmány Péter Catholic University, Faculty of Information Technology and Bionics, Budapest, Hungary
| | - Sára Vida
- Momentum Laboratory of Neuroimmunology, HUN-REN Institute of Experimental Medicine, Budapest, Hungary
| | - Anna Kellermayer
- Momentum Laboratory of Neuroimmunology, HUN-REN Institute of Experimental Medicine, Budapest, Hungary
- János Szentágothai Doctoral School of Neuroscience, Semmelweis University, Budapest, Hungary
| | - Csaba Dávid
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
- Lendület Laboratory of Thalamus Research, HUN-REN Institute of Experimental Medicine, Budapest, Hungary
| | - László Acsády
- Lendület Laboratory of Thalamus Research, HUN-REN Institute of Experimental Medicine, Budapest, Hungary
| | - Levente Kontra
- Bioinformatics Unit, HUN-REN Institute of Experimental Medicine, Budapest, Hungary
| | - Carlos Silvestre-Roig
- Institute for Experimental Pathology (ExPat), Center for Molecular Biology of Inflammation, WWU Muenster, Muenster, Germany
| | - Judit Moldvay
- I. Department of Pulmonology, National Korányi Institute of Pulmonology, Budapest, Hungary
- Pulmonology Clinic, Szeged University, Albert Szent-Gyorgyi Medical School, Szeged, Hungary
| | - János Fillinger
- Department of Pathology, National Korányi Institute of Pulmonology, Budapest, Hungary
| | - Attila Csikász-Nagy
- Cytocast Hungary Kft, Budapest, Hungary
- Pázmány Péter Catholic University, Faculty of Information Technology and Bionics, Budapest, Hungary
| | - Tibor Hortobágyi
- Institute of Pathology, Faculty of Medicine, University of Szeged, Szeged, Hungary
- Department of Neurology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Institute of Neuropathology, Universitätsspital Zürich, Zurich, Switzerland
| | - Arthur Liesz
- Institute for Stroke and Dementia Research, LMU University Hospital, LMU Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Szilvia Benkő
- Laboratory of Inflammation-Physiology, Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Ádám Dénes
- Momentum Laboratory of Neuroimmunology, HUN-REN Institute of Experimental Medicine, Budapest, Hungary.
- Mercator Fellow, Institute for Stroke and Dementia Research, LMU University Hospital, LMU Munich, Munich, Germany.
| |
Collapse
|
3
|
Chen X, Lv S, Liu J, Guan Y, Xu C, Ma X, Li M, Bai X, Liu K, Zhang H, Yan Q, Zhou F, Chen Y. Exploring the Role of Axons in ALS from Multiple Perspectives. Cells 2024; 13:2076. [PMID: 39768167 PMCID: PMC11674045 DOI: 10.3390/cells13242076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/05/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
Amyotrophic lateral sclerosis (ALS), commonly known as motor neuron disease, is a neurodegenerative disorder characterized by the progressive degeneration of both upper and lower motor neurons. This pathological process results in muscle weakness and can culminate in paralysis. To date, the precise etiology of ALS remains unclear. However, a burgeoning body of research indicates that axonal dysfunction is a pivotal element in the pathogenesis of ALS and significantly influences the progression of disease. Dysfunction of axons in ALS can result in impediments to nerve impulse transmission, leading to motor impairment, muscle atrophy, and other associated complications that severely compromise patients' quality of life and survival prognosis. In this review, we concentrate on several key areas: the ultrastructure of axons, the mechanisms of axonal degeneration in ALS, the impact of impaired axonal transport on disease progression in ALS, and the potential for axonal regeneration within the central nervous system (CNS). Our objective is to achieve a more holistic and profound understanding of the multifaceted role that axons play in ALS, thereby offering a more intricate and refined perspective on targeted axonal therapeutic interventions.
Collapse
Affiliation(s)
- Xiaosu Chen
- Department of Histology and Embryology, Shandong Second Medical University, Weifang 261053, China; (X.C.); (S.L.); (C.X.); (X.M.); (X.B.)
- Neurologic Disorders and Regenerative Repair Lab of Shandong Higher Education, Shandong Second Medical University, Weifang 261053, China; (J.L.); (M.L.); (K.L.); (H.Z.); (Q.Y.); (F.Z.)
| | - Shuchang Lv
- Department of Histology and Embryology, Shandong Second Medical University, Weifang 261053, China; (X.C.); (S.L.); (C.X.); (X.M.); (X.B.)
- Neurologic Disorders and Regenerative Repair Lab of Shandong Higher Education, Shandong Second Medical University, Weifang 261053, China; (J.L.); (M.L.); (K.L.); (H.Z.); (Q.Y.); (F.Z.)
| | - Jinmeng Liu
- Neurologic Disorders and Regenerative Repair Lab of Shandong Higher Education, Shandong Second Medical University, Weifang 261053, China; (J.L.); (M.L.); (K.L.); (H.Z.); (Q.Y.); (F.Z.)
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao 266000, China
| | - Yingjun Guan
- Department of Histology and Embryology, Shandong Second Medical University, Weifang 261053, China; (X.C.); (S.L.); (C.X.); (X.M.); (X.B.)
- Neurologic Disorders and Regenerative Repair Lab of Shandong Higher Education, Shandong Second Medical University, Weifang 261053, China; (J.L.); (M.L.); (K.L.); (H.Z.); (Q.Y.); (F.Z.)
| | - Chunjie Xu
- Department of Histology and Embryology, Shandong Second Medical University, Weifang 261053, China; (X.C.); (S.L.); (C.X.); (X.M.); (X.B.)
- Neurologic Disorders and Regenerative Repair Lab of Shandong Higher Education, Shandong Second Medical University, Weifang 261053, China; (J.L.); (M.L.); (K.L.); (H.Z.); (Q.Y.); (F.Z.)
| | - Xiaonan Ma
- Department of Histology and Embryology, Shandong Second Medical University, Weifang 261053, China; (X.C.); (S.L.); (C.X.); (X.M.); (X.B.)
- Neurologic Disorders and Regenerative Repair Lab of Shandong Higher Education, Shandong Second Medical University, Weifang 261053, China; (J.L.); (M.L.); (K.L.); (H.Z.); (Q.Y.); (F.Z.)
| | - Mu Li
- Neurologic Disorders and Regenerative Repair Lab of Shandong Higher Education, Shandong Second Medical University, Weifang 261053, China; (J.L.); (M.L.); (K.L.); (H.Z.); (Q.Y.); (F.Z.)
| | - Xue Bai
- Department of Histology and Embryology, Shandong Second Medical University, Weifang 261053, China; (X.C.); (S.L.); (C.X.); (X.M.); (X.B.)
- Neurologic Disorders and Regenerative Repair Lab of Shandong Higher Education, Shandong Second Medical University, Weifang 261053, China; (J.L.); (M.L.); (K.L.); (H.Z.); (Q.Y.); (F.Z.)
| | - Kexin Liu
- Neurologic Disorders and Regenerative Repair Lab of Shandong Higher Education, Shandong Second Medical University, Weifang 261053, China; (J.L.); (M.L.); (K.L.); (H.Z.); (Q.Y.); (F.Z.)
| | - Haoyun Zhang
- Neurologic Disorders and Regenerative Repair Lab of Shandong Higher Education, Shandong Second Medical University, Weifang 261053, China; (J.L.); (M.L.); (K.L.); (H.Z.); (Q.Y.); (F.Z.)
| | - Qiupeng Yan
- Neurologic Disorders and Regenerative Repair Lab of Shandong Higher Education, Shandong Second Medical University, Weifang 261053, China; (J.L.); (M.L.); (K.L.); (H.Z.); (Q.Y.); (F.Z.)
| | - Fenghua Zhou
- Neurologic Disorders and Regenerative Repair Lab of Shandong Higher Education, Shandong Second Medical University, Weifang 261053, China; (J.L.); (M.L.); (K.L.); (H.Z.); (Q.Y.); (F.Z.)
| | - Yanchun Chen
- Department of Histology and Embryology, Shandong Second Medical University, Weifang 261053, China; (X.C.); (S.L.); (C.X.); (X.M.); (X.B.)
- Neurologic Disorders and Regenerative Repair Lab of Shandong Higher Education, Shandong Second Medical University, Weifang 261053, China; (J.L.); (M.L.); (K.L.); (H.Z.); (Q.Y.); (F.Z.)
| |
Collapse
|
4
|
Xu X, Wang X, Zhang L, Jin Y, Li L, Jin M, Li L, Ni H. Nicotinamide adenine dinucleotide treatment confers resistance to neonatal ischemia and hypoxia: effects on neurobehavioral phenotypes. Neural Regen Res 2024; 19:2760-2772. [PMID: 38595293 PMCID: PMC11168517 DOI: 10.4103/nrr.nrr-d-23-01490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 01/16/2024] [Accepted: 01/29/2024] [Indexed: 04/11/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202412000-00031/figure1/v/2024-04-08T165401Z/r/image-tiff Neonatal hypoxic-ischemic brain injury is the main cause of hypoxic-ischemic encephalopathy and cerebral palsy. Currently, there are few effective clinical treatments for neonatal hypoxic-ischemic brain injury. Here, we investigated the neuroprotective and molecular mechanisms of exogenous nicotinamide adenine dinucleotide, which can protect against hypoxic injury in adulthood, in a mouse model of neonatal hypoxic-ischemic brain injury. In this study, nicotinamide adenine dinucleotide (5 mg/kg) was intraperitoneally administered 30 minutes before surgery and every 24 hours thereafter. The results showed that nicotinamide adenine dinucleotide treatment improved body weight, brain structure, adenosine triphosphate levels, oxidative damage, neurobehavioral test outcomes, and seizure threshold in experimental mice. Tandem mass tag proteomics revealed that numerous proteins were altered after nicotinamide adenine dinucleotide treatment in hypoxic-ischemic brain injury mice. Parallel reaction monitoring and western blotting confirmed changes in the expression levels of proteins including serine (or cysteine) peptidase inhibitor, clade A, member 3N, fibronectin 1, 5'-nucleotidase, cytosolic IA, microtubule associated protein 2, and complexin 2. Proteomics analyses showed that nicotinamide adenine dinucleotide ameliorated hypoxic-ischemic injury through inflammation-related signaling pathways (e.g., nuclear factor-kappa B, mitogen-activated protein kinase, and phosphatidylinositol 3 kinase/protein kinase B). These findings suggest that nicotinamide adenine dinucleotide treatment can improve neurobehavioral phenotypes in hypoxic-ischemic brain injury mice through inflammation-related pathways.
Collapse
Affiliation(s)
- Xiaowen Xu
- Division of Brain Science, Institute of Pediatric Research, Children’s Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Xinxin Wang
- Division of Brain Science, Institute of Pediatric Research, Children’s Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Li Zhang
- Division of Brain Science, Institute of Pediatric Research, Children’s Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Yiming Jin
- Division of Brain Science, Institute of Pediatric Research, Children’s Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Lili Li
- Division of Brain Science, Institute of Pediatric Research, Children’s Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Meifang Jin
- Division of Brain Science, Institute of Pediatric Research, Children’s Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Lianyong Li
- Department of Pediatric Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Hong Ni
- Division of Brain Science, Institute of Pediatric Research, Children’s Hospital of Soochow University, Suzhou, Jiangsu Province, China
| |
Collapse
|
5
|
Lundt S, Ding S. Potential Therapeutic Interventions Targeting NAD + Metabolism for ALS. Cells 2024; 13:1509. [PMID: 39273079 PMCID: PMC11394323 DOI: 10.3390/cells13171509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 08/27/2024] [Accepted: 09/07/2024] [Indexed: 09/15/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease affecting both upper and lower motor neurons. While there have been many potential factors implicated for ALS development, such as oxidative stress and mitochondrial dysfunction, no exact mechanism has been determined at this time. Nicotinamide adenine dinucleotide (NAD+) is one of the most abundant metabolites in mammalian cells and is crucial for a broad range of cellular functions from DNA repair to energy homeostasis. NAD+ can be synthesized from three different intracellular pathways, but it is the NAD+ salvage pathway that generates the largest proportion of NAD+. Impaired NAD+ homeostasis has been connected to aging and neurodegenerative disease-related dysfunctions. In ALS mice, NAD+ homeostasis is potentially disrupted prior to the appearance of physical symptoms and is significantly reduced in the nervous system at the end stage. Treatments targeting NAD+ metabolism, either by administering NAD+ precursor metabolites or small molecules that alter NAD+-dependent enzyme activity, have shown strong beneficial effects in ALS disease models. Here, we review the therapeutic interventions targeting NAD+ metabolism for ALS and their effects on the most prominent pathological aspects of ALS in animal and cell models.
Collapse
Affiliation(s)
- Samuel Lundt
- Dalton Cardiovascular Research Center (DCRC), Columbia, MO 65203, USA;
| | - Shinghua Ding
- Dalton Cardiovascular Research Center (DCRC), Columbia, MO 65203, USA;
- Department of Chemical and Biomedical Engineering (ChBME), University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
6
|
McGuinness HY, Gu W, Shi Y, Kobe B, Ve T. SARM1-Dependent Axon Degeneration: Nucleotide Signaling, Neurodegenerative Disorders, Toxicity, and Therapeutic Opportunities. Neuroscientist 2024; 30:473-492. [PMID: 37002660 PMCID: PMC11282687 DOI: 10.1177/10738584231162508] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Axons are an essential component of the nervous system, and axon degeneration is an early feature of many neurodegenerative disorders. The NAD+ metabolome plays an essential role in regulating axonal integrity. Axonal levels of NAD+ and its precursor NMN are controlled in large part by the NAD+ synthesizing survival factor NMNAT2 and the pro-neurodegenerative NADase SARM1, whose activation triggers axon destruction. SARM1 has emerged as a promising axon-specific target for therapeutic intervention, and its function, regulation, structure, and role in neurodegenerative diseases have been extensively characterized in recent years. In this review, we first introduce the key molecular players involved in the SARM1-dependent axon degeneration program. Next, we summarize recent major advances in our understanding of how SARM1 is kept inactive in healthy neurons and how it becomes activated in injured or diseased neurons, which has involved important insights from structural biology. Finally, we discuss the role of SARM1 in neurodegenerative disorders and environmental neurotoxicity and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Helen Y. McGuinness
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Saint Lucia, Australia
| | - Weixi Gu
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Saint Lucia, Australia
| | - Yun Shi
- Institute for Glycomics, Griffith University, Gold Coast, Australia
| | - Bostjan Kobe
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Saint Lucia, Australia
| | - Thomas Ve
- Institute for Glycomics, Griffith University, Gold Coast, Australia
| |
Collapse
|
7
|
Terao R, Lee TJ, Colasanti J, Pfeifer CW, Lin JB, Santeford A, Hase K, Yamaguchi S, Du D, Sohn BS, Sasaki Y, Yoshida M, Apte RS. LXR/CD38 activation drives cholesterol-induced macrophage senescence and neurodegeneration via NAD + depletion. Cell Rep 2024; 43:114102. [PMID: 38636518 PMCID: PMC11223747 DOI: 10.1016/j.celrep.2024.114102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 02/23/2024] [Accepted: 03/27/2024] [Indexed: 04/20/2024] Open
Abstract
Although dysregulated cholesterol metabolism predisposes aging tissues to inflammation and a plethora of diseases, the underlying molecular mechanism remains poorly defined. Here, we show that metabolic and genotoxic stresses, convergently acting through liver X nuclear receptor, upregulate CD38 to promote lysosomal cholesterol efflux, leading to nicotinamide adenine dinucleotide (NAD+) depletion in macrophages. Cholesterol-mediated NAD+ depletion induces macrophage senescence, promoting key features of age-related macular degeneration (AMD), including subretinal lipid deposition and neurodegeneration. NAD+ augmentation reverses cellular senescence and macrophage dysfunction, preventing the development of AMD phenotype. Genetic and pharmacological senolysis protect against the development of AMD and neurodegeneration. Subretinal administration of healthy macrophages promotes the clearance of senescent macrophages, reversing the AMD disease burden. Thus, NAD+ deficit induced by excess intracellular cholesterol is the converging mechanism of macrophage senescence and a causal process underlying age-related neurodegeneration.
Collapse
Affiliation(s)
- Ryo Terao
- John F. Hardesty, MD Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA; Department of Ophthalmology, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
| | - Tae Jun Lee
- John F. Hardesty, MD Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - Jason Colasanti
- John F. Hardesty, MD Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - Charles W Pfeifer
- John F. Hardesty, MD Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - Joseph B Lin
- John F. Hardesty, MD Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - Andrea Santeford
- John F. Hardesty, MD Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - Keitaro Hase
- John F. Hardesty, MD Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA; Department of Ophthalmology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Hokkaido, Japan
| | - Shinobu Yamaguchi
- John F. Hardesty, MD Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - Daniel Du
- John F. Hardesty, MD Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - Brian S Sohn
- John F. Hardesty, MD Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - Yo Sasaki
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Mitsukuni Yoshida
- John F. Hardesty, MD Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA; Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA.
| | - Rajendra S Apte
- John F. Hardesty, MD Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA; Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA; Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
8
|
Song M, Kang K, Wang S, Zhang C, Zhao X, Song F. Elevated intracellular Ca 2+ functions downstream of mitodysfunction to induce Wallerian-like degeneration and necroptosis in organophosphorus-induced delayed neuropathy. Toxicology 2024; 504:153812. [PMID: 38653376 DOI: 10.1016/j.tox.2024.153812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/06/2024] [Accepted: 04/19/2024] [Indexed: 04/25/2024]
Abstract
Neurotoxic organophosphorus compounds can induce a type of delayed neuropathy in humans and sensitive animals, known as organophosphorus-induced delayed neuropathy (OPIDN). OPIDN is characterized by axonal degeneration akin to Wallerian-like degeneration, which is thought to be caused by increased intra-axonal Ca2+ concentrations. This study was designed to investigate that deregulated cytosolic Ca2+ may function downstream of mitodysfunction in activating Wallerian-like degeneration and necroptosis in OPIDN. Adult hens were administrated a single dosage of 750 mg/kg tri-ortho-cresyl phosphate (TOCP), and then sacrificed at 1 day, 5 day, 10 day and 21 day post-exposure, respectively. Sciatic nerves and spinal cords were examined for pathological changes and proteins expression related to Wallerian-like degeneration and necroptosis. In vitro experiments using differentiated neuro-2a (N2a) cells were conducted to investigate the relationship among mitochondrial dysfunction, Ca2+ influx, axonal degeneration, and necroptosis. The cells were co-administered with the Ca2+-chelator BAPTA-AM, the TRPA1 channel inhibitor HC030031, the RIPK1 inhibitor Necrostatin-1, and the mitochondrial-targeted antioxidant MitoQ along with TOCP. Results demonstrated an increase in cytosolic calcium concentration and key proteins associated with Wallerian degeneration and necroptosis in both in vivo and in vitro models after TOCP exposure. Moreover, co-administration with BATPA-AM or HC030031 significantly attenuated the loss of NMNAT2 and STMN2 in N2a cells, as well as the upregulation of SARM1, RIPK1 and p-MLKL. In contrast, Necrostatin-1 treatment only inhibited the TOCP-induced elevation of p-MLKL. Notably, pharmacological protection of mitochondrial function with MitoQ effectively alleviated the increase in intracellular Ca2+ following TOCP and mitigated axonal degeneration and necroptosis in N2a cells, supporting mitochondrial dysfunction as an upstream event of the intracellular Ca2+ imbalance and neuronal damage in OPIDN. These findings suggest that mitochondrial dysfunction post-TOCP intoxication leads to an elevated intracellular Ca2+ concentration, which plays a pivotal role in the initiation and development of OPIDN through inducing SARM1-mediated axonal degeneration and activating the necroptotic signaling pathway.
Collapse
Affiliation(s)
- Mingxue Song
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, PR China
| | - Kang Kang
- Qingdao Municipal Center for Disease Control & Prevention, Qingdao, Shandong 266033, PR China
| | - Shuai Wang
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, PR China
| | - Cuiqin Zhang
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, PR China
| | - Xiulan Zhao
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, PR China
| | - Fuyong Song
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, PR China.
| |
Collapse
|
9
|
Ma Y, Deng L, Du Z. Development and validation of an LC-MS/MS method for quantifying NAD + and related metabolites in mice sciatic nerves and its application to a nerve injury animal model. J Chromatogr A 2024; 1721:464821. [PMID: 38547681 DOI: 10.1016/j.chroma.2024.464821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/13/2024] [Accepted: 03/14/2024] [Indexed: 04/13/2024]
Abstract
Recent studies highlight the pivotal roles of Nicotinamide adenine dinucleotide (NAD+) and its metabolites in aging and neurodegeneration. Accurate quantification of NAD+ and its metabolite levels in cells or tissues is crucial for advancing biochemical research and interventions targeting aging and neurodegenerative diseases. This study presents an accurate, precise, and rapid LC-MS/MS method using a surrogate matrix to quantify endogenous substances NAD+, nicotinamide mononucleotide (NMN), nicotinamide (NAM), adenosine diphosphate ribose (ADPR), and cyclic adenosine diphosphate ribose (cADPR) concentrations in mice sciatic nerves. Considering the properties of the phosphate groups in the analytes, the column and mobile phase were systematically optimized. These five polar analytes exhibited excellent analytical performance and baseline separation within 5 min on an Atlantis Premier BEH C18 AX column, with methylene phosphonic acid as a mobile phase additive. Enhanced sensitivity addressed the challenges posed by the small sample size of mice sciatic nerve and low NMN and cADPR detection. The method was fully validated, with linear correlation coefficients exceeding 0.992, precision (%relative standard deviation, RSD) values within 8.8%, and accuracy values between 92.2% and 107.3%, suggesting good reproducibility. Analytical recoveries in spiked and diluted matrix ranged from 87.8% to 104.7%, indicating the suitability of water as a surrogate matrix. Application of the method to quantify NAD+ and its metabolite levels in normal and injured mice sciatic nerve identified cADPR as a sensitive biomarker in the nerve injury model. This method is anticipated to deepen our understanding of the connections between NAD+ and its metabolites in health and disease, potentially improving diagnoses of various neurological disorders and aiding drug development for aging and neurodegenerative diseases.
Collapse
Affiliation(s)
- Yongfen Ma
- College of Chemistry, Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, Beijing University of Chemical Technology, Beijing 100029, China; DMPK Department, Sironax (Beijing) Co., Ltd, Beijing 102206, China
| | - Li Deng
- DMPK Department, Sironax (Beijing) Co., Ltd, Beijing 102206, China
| | - Zhenxia Du
- College of Chemistry, Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
10
|
Iqbal T, Nakagawa T. The therapeutic perspective of NAD + precursors in age-related diseases. Biochem Biophys Res Commun 2024; 702:149590. [PMID: 38340651 DOI: 10.1016/j.bbrc.2024.149590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/18/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024]
Abstract
Nicotinamide adenine dinucleotide (NAD+) is the fundamental molecule that performs numerous biological reactions and is crucial for maintaining cellular homeostasis. Studies have found that NAD+ decreases with age in certain tissues, and age-related NAD+ depletion affects physiological functions and contributes to various aging-related diseases. Supplementation of NAD+ precursor significantly elevates NAD+ levels in murine tissues, effectively mitigates metabolic syndrome, enhances cardiovascular health, protects against neurodegeneration, and boosts muscular strength. Despite the versatile therapeutic functions of NAD+ in animal studies, the efficacy of NAD+ precursors in clinical studies have been limited compared with that in the pre-clinical study. Clinical studies have demonstrated that NAD+ precursor treatment efficiently increases NAD+ levels in various tissues, though their clinical proficiency is insufficient to ameliorate the diseases. However, the latest studies regarding NAD+ precursors and their metabolism highlight the significant role of gut microbiota. The studies found that orally administered NAD+ intermediates interact with the gut microbiome. These findings provide compelling evidence for future trials to further explore the involvement of gut microbiota in NAD+ metabolism. Also, the reduced form of NAD+ precursor shows their potential to raise NAD+, though preclinical studies have yet to discover their efficacy. This review sheds light on NAD+ therapeutic efficiency in preclinical and clinical studies and the effect of the gut microbiota on NAD+ metabolism.
Collapse
Affiliation(s)
- Tooba Iqbal
- Department of Molecular and Medical Pharmacology, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Takashi Nakagawa
- Department of Molecular and Medical Pharmacology, Faculty of Medicine, University of Toyama, Toyama, Japan; Research Center for Pre-Disease Science, University of Toyama, Toyama, Japan.
| |
Collapse
|
11
|
Berry D, Ene J, Nathani A, Singh M, Li Y, Zeng C. Effects of Physical Cues on Stem Cell-Derived Extracellular Vesicles toward Neuropathy Applications. Biomedicines 2024; 12:489. [PMID: 38540102 PMCID: PMC10968089 DOI: 10.3390/biomedicines12030489] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/12/2024] [Accepted: 02/17/2024] [Indexed: 11/28/2024] Open
Abstract
The peripheral nervous system undergoes sufficient stress when affected by diabetic conditions, chemotherapeutic drugs, and personal injury. Consequently, peripheral neuropathy arises as the most common complication, leading to debilitating symptoms that significantly alter the quality and way of life. The resulting chronic pain requires a treatment approach that does not simply mask the accompanying symptoms but provides the necessary external environment and neurotrophic factors that will effectively facilitate nerve regeneration. Under normal conditions, the peripheral nervous system self-regenerates very slowly. The rate of progression is further hindered by the development of fibrosis and scar tissue formation, which does not allow sufficient neurite outgrowth to the target site. By incorporating scaffolding supplemented with secretome derived from human mesenchymal stem cells, it is hypothesized that neurotrophic factors and cellular signaling can facilitate the optimal microenvironment for nerve reinnervation. However, conventional methods of secretory vesicle production are low yield, thus requiring improved methods to enhance paracrine secretions. This report highlights the state-of-the-art methods of neuropathy treatment as well as methods to optimize the clinical application of stem cells and derived secretory vesicles for nerve regeneration.
Collapse
Affiliation(s)
- Danyale Berry
- Department of Industrial and Manufacturing Engineering, FAMU-FSU College of Engineering, Florida Agricultural and Mechanical University, Tallahassee, FL 32310, USA;
- High Performance Materials Institute, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 23210, USA
| | - Justice Ene
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 32310, USA;
| | - Aakash Nathani
- College of Pharmacy and Pharmaceutical Sciences, Florida Agricultural and Mechanical University, Tallahassee, FL 32307, USA; (A.N.); (M.S.)
| | - Mandip Singh
- College of Pharmacy and Pharmaceutical Sciences, Florida Agricultural and Mechanical University, Tallahassee, FL 32307, USA; (A.N.); (M.S.)
| | - Yan Li
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 32310, USA;
| | - Changchun Zeng
- Department of Industrial and Manufacturing Engineering, FAMU-FSU College of Engineering, Florida Agricultural and Mechanical University, Tallahassee, FL 32310, USA;
- High Performance Materials Institute, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 23210, USA
| |
Collapse
|
12
|
Miyamoto T, Kim C, Chow J, Dugas JC, DeGroot J, Bagdasarian AL, Thottumkara AP, Larhammar M, Calvert ME, Fox BM, Lewcock JW, Kane LA. SARM1 is responsible for calpain-dependent dendrite degeneration in mouse hippocampal neurons. J Biol Chem 2024; 300:105630. [PMID: 38199568 PMCID: PMC10862016 DOI: 10.1016/j.jbc.2024.105630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 12/10/2023] [Accepted: 12/24/2023] [Indexed: 01/12/2024] Open
Abstract
Sterile alpha and toll/interleukin receptor motif-containing 1 (SARM1) is a critical regulator of axon degeneration that acts through hydrolysis of NAD+ following injury. Recent work has defined the mechanisms underlying SARM1's catalytic activity and advanced our understanding of SARM1 function in axons, yet the role of SARM1 signaling in other compartments of neurons is still not well understood. Here, we show in cultured hippocampal neurons that endogenous SARM1 is present in axons, dendrites, and cell bodies and that direct activation of SARM1 by the neurotoxin Vacor causes not just axon degeneration, but degeneration of all neuronal compartments. In contrast to the axon degeneration pathway defined in dorsal root ganglia, SARM1-dependent hippocampal axon degeneration in vitro is not sensitive to inhibition of calpain proteases. Dendrite degeneration downstream of SARM1 in hippocampal neurons is dependent on calpain 2, a calpain protease isotype enriched in dendrites in this cell type. In summary, these data indicate SARM1 plays a critical role in neurodegeneration outside of axons and elucidates divergent pathways leading to degeneration in hippocampal axons and dendrites.
Collapse
Affiliation(s)
| | - Chaeyoung Kim
- Denali Therapeutics Inc, South San Francisco, California, USA
| | - Johann Chow
- Denali Therapeutics Inc, South San Francisco, California, USA
| | - Jason C Dugas
- Denali Therapeutics Inc, South San Francisco, California, USA
| | - Jack DeGroot
- Denali Therapeutics Inc, South San Francisco, California, USA
| | | | | | | | | | - Brian M Fox
- Denali Therapeutics Inc, South San Francisco, California, USA
| | | | - Lesley A Kane
- Denali Therapeutics Inc, South San Francisco, California, USA.
| |
Collapse
|
13
|
Alexandris AS, Koliatsos VE. NAD +, Axonal Maintenance, and Neurological Disease. Antioxid Redox Signal 2023; 39:1167-1184. [PMID: 37503611 PMCID: PMC10715442 DOI: 10.1089/ars.2023.0350] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 05/28/2023] [Indexed: 07/29/2023]
Abstract
Significance: The remarkable geometry of the axon exposes it to unique challenges for survival and maintenance. Axonal degeneration is a feature of peripheral neuropathies, glaucoma, and traumatic brain injury, and an early event in neurodegenerative diseases. Since the discovery of Wallerian degeneration (WD), a molecular program that hijacks nicotinamide adenine dinucleotide (NAD+) metabolism for axonal self-destruction, the complex roles of NAD+ in axonal viability and disease have become research priority. Recent Advances: The discoveries of the protective Wallerian degeneration slow (WldS) and of sterile alpha and TIR motif containing 1 (SARM1) activation as the main instructive signal for WD have shed new light on the regulatory role of NAD+ in axonal degeneration in a growing number of neurological diseases. SARM1 has been characterized as a NAD+ hydrolase and sensor of NAD+ metabolism. The discovery of regulators of nicotinamide mononucleotide adenylyltransferase 2 (NMNAT2) proteostasis in axons, the allosteric regulation of SARM1 by NAD+ and NMN, and the existence of clinically relevant windows of action of these signals has opened new opportunities for therapeutic interventions, including SARM1 inhibitors and modulators of NAD+ metabolism. Critical Issues: Events upstream and downstream of SARM1 remain unclear. Furthermore, manipulating NAD+ metabolism, an overdetermined process crucial in cell survival, for preventing the degeneration of the injured axon may be difficult and potentially toxic. Future Directions: There is a need for clarification of the distinct roles of NAD+ metabolism in axonal maintenance as contrasted to WD. There is also a need to better understand the role of NAD+ metabolism in axonal endangerment in neuropathies, diseases of the white matter, and the early stages of neurodegenerative diseases of the central nervous system. Antioxid. Redox Signal. 39, 1167-1184.
Collapse
Affiliation(s)
| | - Vassilis E. Koliatsos
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Neurology, and Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
14
|
Icso JD, Thompson PR. A phase transition reduces the threshold for nicotinamide mononucleotide-based activation of SARM1, an NAD(P) hydrolase, to physiologically relevant levels. J Biol Chem 2023; 299:105284. [PMID: 37742918 PMCID: PMC10624580 DOI: 10.1016/j.jbc.2023.105284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/04/2023] [Accepted: 09/19/2023] [Indexed: 09/26/2023] Open
Abstract
Axonal degeneration is a hallmark feature of neurodegenerative diseases. Activation of the NAD(P)ase sterile alpha and toll-interleukin receptor motif containing protein 1 (SARM1) is critical for this process. In resting neurons, SARM1 activity is inhibited, but upon damage, SARM1 is activated and catalyzes one of three NAD(P)+ dependent reactions: (1) NAD(P)+ hydrolysis to form ADP-ribose (ADPR[P]) and nicotinamide; (2) the formation of cyclic-ADPR (cADPR[P]); or (3) a base exchange reaction with nicotinic acid (NA) and NADP+ to form NA adenine dinucleotide phosphate. Production of these metabolites triggers axonal death. Two activation mechanisms have been proposed: (1) an increase in the nicotinamide mononucleotide (NMN) concentration, which leads to the allosteric activation of SARM1, and (2) a phase transition, which stabilizes the active conformation of the enzyme. However, neither of these mechanisms have been shown to occur at the same time. Using in vitro assay systems, we show that the liquid-to-solid phase transition lowers the NMN concentration required to activate the catalytic activity of SARM1 by up to 140-fold. These results unify the proposed activation mechanisms and show for the first time that a phase transition reduces the threshold for NMN-based SARM1 activation to physiologically relevant levels. These results further our understanding of SARM1 activation and will be important for the future development of therapeutics targeting SARM1.
Collapse
Affiliation(s)
- Janneke Doedée Icso
- Program in Chemical Biology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA; Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medial School, Worcester, Massachusetts, USA
| | - Paul Ryan Thompson
- Program in Chemical Biology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA; Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medial School, Worcester, Massachusetts, USA.
| |
Collapse
|
15
|
Pacifico P, Coy-Dibley JS, Miller RJ, Menichella DM. Peripheral mechanisms of peripheral neuropathic pain. Front Mol Neurosci 2023; 16:1252442. [PMID: 37781093 PMCID: PMC10537945 DOI: 10.3389/fnmol.2023.1252442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 08/14/2023] [Indexed: 10/03/2023] Open
Abstract
Peripheral neuropathic pain (PNP), neuropathic pain that arises from a damage or disease affecting the peripheral nervous system, is associated with an extremely large disease burden, and there is an increasing and urgent need for new therapies for treating this disorder. In this review we have highlighted therapeutic targets that may be translated into disease modifying therapies for PNP associated with peripheral neuropathy. We have also discussed how genetic studies and novel technologies, such as optogenetics, chemogenetics and single-cell RNA-sequencing, have been increasingly successful in revealing novel mechanisms underlying PNP. Additionally, consideration of the role of non-neuronal cells and communication between the skin and sensory afferents is presented to highlight the potential use of drug treatment that could be applied topically, bypassing drug side effects. We conclude by discussing the current difficulties to the development of effective new therapies and, most importantly, how we might improve the translation of targets for peripheral neuropathic pain identified from studies in animal models to the clinic.
Collapse
Affiliation(s)
- Paola Pacifico
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - James S. Coy-Dibley
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Richard J. Miller
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Daniela M. Menichella
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
16
|
Kim LJ, Chalmers TJ, Madawala R, Smith GC, Li C, Das A, Poon EWK, Wang J, Tucker SP, Sinclair DA, Quek LE, Wu LE. Host-microbiome interactions in nicotinamide mononucleotide (NMN) deamidation. FEBS Lett 2023; 597:2196-2220. [PMID: 37463842 DOI: 10.1002/1873-3468.14698] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 06/04/2023] [Accepted: 06/13/2023] [Indexed: 07/20/2023]
Abstract
The nicotinamide adenine dinucleotide (NAD+ ) precursor nicotinamide mononucleotide (NMN) is a proposed therapy for age-related disease, whereby it is assumed that NMN is incorporated into NAD+ through the canonical recycling pathway. During oral delivery, NMN is exposed to the gut microbiome, which could modify the NAD+ metabolome through enzyme activities not present in the mammalian host. We show that orally delivered NMN can undergo deamidation and incorporation in mammalian tissue via the de novo pathway, which is reduced in animals treated with antibiotics to ablate the gut microbiome. Antibiotics increased the availability of NAD+ metabolites, suggesting the microbiome could be in competition with the host for dietary NAD+ precursors. These findings highlight new interactions between NMN and the gut microbiome.
Collapse
Affiliation(s)
- Lynn-Jee Kim
- School of Biomedical Sciences, UNSW Sydney, NSW, Australia
| | | | | | - Greg C Smith
- School of Biomedical Sciences, UNSW Sydney, NSW, Australia
| | - Catherine Li
- School of Biomedical Sciences, UNSW Sydney, NSW, Australia
| | - Abhirup Das
- School of Biomedical Sciences, UNSW Sydney, NSW, Australia
| | | | - Jun Wang
- GeneHarbor (Hong Kong) Biotechnologies Limited, Hong Kong Science Park, China
- School of Life Sciences, The Chinese University of Hong Kong, China
| | | | - David A Sinclair
- School of Biomedical Sciences, UNSW Sydney, NSW, Australia
- Harvard Medical School, Boston, MA, USA
| | - Lake-Ee Quek
- School of Mathematics and Statistics, The University of Sydney, NSW, Australia
| | - Lindsay E Wu
- School of Biomedical Sciences, UNSW Sydney, NSW, Australia
| |
Collapse
|
17
|
Tribble JR, Hui F, Quintero H, El Hajji S, Bell K, Di Polo A, Williams PA. Neuroprotection in glaucoma: Mechanisms beyond intraocular pressure lowering. Mol Aspects Med 2023; 92:101193. [PMID: 37331129 DOI: 10.1016/j.mam.2023.101193] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/25/2023] [Accepted: 06/04/2023] [Indexed: 06/20/2023]
Abstract
Glaucoma is a common, complex, multifactorial neurodegenerative disease characterized by progressive dysfunction and then loss of retinal ganglion cells, the output neurons of the retina. Glaucoma is the most common cause of irreversible blindness and affects ∼80 million people worldwide with many more undiagnosed. The major risk factors for glaucoma are genetics, age, and elevated intraocular pressure. Current strategies only target intraocular pressure management and do not directly target the neurodegenerative processes occurring at the level of the retinal ganglion cell. Despite strategies to manage intraocular pressure, as many as 40% of glaucoma patients progress to blindness in at least one eye during their lifetime. As such, neuroprotective strategies that target the retinal ganglion cell and these neurodegenerative processes directly are of great therapeutic need. This review will cover the recent advances from basic biology to on-going clinical trials for neuroprotection in glaucoma covering degenerative mechanisms, metabolism, insulin signaling, mTOR, axon transport, apoptosis, autophagy, and neuroinflammation. With an increased understanding of both the basic and clinical mechanisms of the disease, we are closer than ever to a neuroprotective strategy for glaucoma.
Collapse
Affiliation(s)
- James R Tribble
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Flora Hui
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Australia; Department of Optometry & Vision Sciences, The University of Melbourne, Melbourne, Australia
| | - Heberto Quintero
- Department of Neuroscience, University of Montreal, Montreal, Canada; Neuroscience Division, Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Canada
| | - Sana El Hajji
- Department of Neuroscience, University of Montreal, Montreal, Canada; Neuroscience Division, Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Canada
| | - Katharina Bell
- NHMRC Clinical Trials Centre, University of Sydney, Australia; Eye ACP Duke-NUS, Singapore
| | - Adriana Di Polo
- Department of Neuroscience, University of Montreal, Montreal, Canada; Neuroscience Division, Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Canada
| | - Pete A Williams
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
18
|
Narne P, Phanithi PB. Role of NAD + and FAD in Ischemic Stroke Pathophysiology: An Epigenetic Nexus and Expanding Therapeutic Repertoire. Cell Mol Neurobiol 2023; 43:1719-1768. [PMID: 36180651 PMCID: PMC11412205 DOI: 10.1007/s10571-022-01287-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 09/15/2022] [Indexed: 11/03/2022]
Abstract
The redox coenzymes viz., oxidized β-nicotinamide adenine dinucleotide (NAD+) and flavin adenine dinucleotide (FAD) by way of generation of optimal reducing power and cellular energy currency (ATP), control a staggering array of metabolic reactions. The prominent cellular contenders for NAD+ utilization, inter alia, are sirtuins (SIRTs) and poly(ADP-ribose) polymerase (PARP-1), which have been significantly implicated in ischemic stroke (IS) pathogenesis. NAD+ and FAD are also two crucial epigenetic enzyme-required metabolites mediating histone deacetylation and poly(ADP-ribosyl)ation through SIRTs and PARP-1 respectively, and demethylation through FAD-mediated lysine specific demethylase activity. These enzymes and post-translational modifications impinge on the components of neurovascular unit, primarily neurons, and elicit diverse functional upshots in an ischemic brain. These could be circumstantially linked with attendant cognitive deficits and behavioral outcomes in post-stroke epoch. Parsing out the contribution of NAD+/FAD-synthesizing and utilizing enzymes towards epigenetic remodeling in IS setting, together with their cognitive and behavioral associations, combined with possible therapeutic implications will form the crux of this review.
Collapse
Affiliation(s)
- Parimala Narne
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana State, 500046, India.
| | - Prakash Babu Phanithi
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana State, 500046, India.
| |
Collapse
|
19
|
Guss EJ, Akbergenova Y, Cunningham KL, Littleton JT. Loss of the extracellular matrix protein Perlecan disrupts axonal and synaptic stability during Drosophila development. eLife 2023; 12:RP88273. [PMID: 37368474 PMCID: PMC10328508 DOI: 10.7554/elife.88273] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023] Open
Abstract
Heparan sulfate proteoglycans (HSPGs) form essential components of the extracellular matrix (ECM) and basement membrane (BM) and have both structural and signaling roles. Perlecan is a secreted ECM-localized HSPG that contributes to tissue integrity and cell-cell communication. Although a core component of the ECM, the role of Perlecan in neuronal structure and function is less understood. Here, we identify a role for Drosophila Perlecan in the maintenance of larval motoneuron axonal and synaptic stability. Loss of Perlecan causes alterations in the axonal cytoskeleton, followed by axonal breakage and synaptic retraction of neuromuscular junctions. These phenotypes are not prevented by blocking Wallerian degeneration and are independent of Perlecan's role in Wingless signaling. Expression of Perlecan solely in motoneurons cannot rescue synaptic retraction phenotypes. Similarly, removing Perlecan specifically from neurons, glia, or muscle does not cause synaptic retraction, indicating the protein is secreted from multiple cell types and functions non-cell autonomously. Within the peripheral nervous system, Perlecan predominantly localizes to the neural lamella, a specialized ECM surrounding nerve bundles. Indeed, the neural lamella is disrupted in the absence of Perlecan, with axons occasionally exiting their usual boundary in the nerve bundle. In addition, entire nerve bundles degenerate in a temporally coordinated manner across individual hemi-segments throughout larval development. These observations indicate disruption of neural lamella ECM function triggers axonal destabilization and synaptic retraction of motoneurons, revealing a role for Perlecan in axonal and synaptic integrity during nervous system development.
Collapse
Affiliation(s)
- Ellen J Guss
- The Picower Institute for Learning and Memory, Department of Biology, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, United States
| | - Yulia Akbergenova
- The Picower Institute for Learning and Memory, Department of Biology, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, United States
| | - Karen L Cunningham
- The Picower Institute for Learning and Memory, Department of Biology, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, United States
| | - J Troy Littleton
- The Picower Institute for Learning and Memory, Department of Biology, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, United States
| |
Collapse
|
20
|
Waddell J, Khatoon R, Kristian T. Cellular and Mitochondrial NAD Homeostasis in Health and Disease. Cells 2023; 12:1329. [PMID: 37174729 PMCID: PMC10177113 DOI: 10.3390/cells12091329] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/26/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
The mitochondrion has a unique position among other cellular organelles due to its dynamic properties and symbiotic nature, which is reflected in an active exchange of metabolites and cofactors between the rest of the intracellular compartments. The mitochondrial energy metabolism is greatly dependent on nicotinamide adenine dinucleotide (NAD) as a cofactor that is essential for both the activity of respiratory and TCA cycle enzymes. The NAD level is determined by the rate of NAD synthesis, the activity of NAD-consuming enzymes, and the exchange rate between the individual subcellular compartments. In this review, we discuss the NAD synthesis pathways, the NAD degradation enzymes, and NAD subcellular localization, as well as NAD transport mechanisms with a focus on mitochondria. Finally, the effect of the pathologic depletion of mitochondrial NAD pools on mitochondrial proteins' post-translational modifications and its role in neurodegeneration will be reviewed. Understanding the physiological constraints and mechanisms of NAD maintenance and the exchange between subcellular compartments is critical given NAD's broad effects and roles in health and disease.
Collapse
Affiliation(s)
- Jaylyn Waddell
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
| | - Rehana Khatoon
- Department of Anesthesiology and the Center for Shock, Trauma and Anesthesiology Research (S.T.A.R.), University of Maryland School of Medicine, Baltimore, MD 21201, USA;
| | - Tibor Kristian
- Department of Anesthesiology and the Center for Shock, Trauma and Anesthesiology Research (S.T.A.R.), University of Maryland School of Medicine, Baltimore, MD 21201, USA;
- Veterans Affairs Maryland Health Center System, 10 North Greene Street, Baltimore, MD 21201, USA
| |
Collapse
|
21
|
Thomas S, Enders J, Kaiser A, Rovenstine L, Heslop L, Hauser W, Chadwick A, Wright D. Abnormal intraepidermal nerve fiber density in disease: A scoping review. Front Neurol 2023; 14:1161077. [PMID: 37153658 PMCID: PMC10157176 DOI: 10.3389/fneur.2023.1161077] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 03/30/2023] [Indexed: 05/10/2023] Open
Abstract
Background Intraepidermal nerve fiber density (IENFD) has become an important biomarker for neuropathy diagnosis and research. The consequences of reduced IENFD can include sensory dysfunction, pain, and a significant decrease in quality of life. We examined the extent to which IENFD is being used as a tool in human and mouse models and compared the degree of fiber loss between diseases to gain a broader understanding of the existing data collected using this common technique. Methods We conducted a scoping review of publications that used IENFD as a biomarker in human and non-human research. PubMed was used to identify 1,004 initial articles that were then screened to select articles that met the criteria for inclusion. Criteria were chosen to standardize publications so they could be compared rigorously and included having a control group, measuring IENFD in a distal limb, and using protein gene product 9.5 (PGP9.5). Results We analyzed 397 articles and collected information related to publication year, the condition studied, and the percent IENFD loss. The analysis revealed that the use of IENFD as a tool has been increasing in both human and non-human research. We found that IENFD loss is prevalent in many diseases, and metabolic or diabetes-related diseases were the most studied conditions in humans and rodents. Our analysis identified 73 human diseases in which IENFD was affected, with 71 reporting IENFD loss and an overall average IENFD change of -47%. We identified 28 mouse and 21 rat conditions, with average IENFD changes of -31.6% and -34.7%, respectively. Additionally, we present data describing sub-analyses of IENFD loss according to disease characteristics in diabetes and chemotherapy treatments in humans and rodents. Interpretation Reduced IENFD occurs in a surprising number of human disease conditions. Abnormal IENFD contributes to important complications, including poor cutaneous vascularization, sensory dysfunction, and pain. Our analysis informs future rodent studies so they may better mirror human diseases impacted by reduced IENFD, highlights the breadth of diseases impacted by IENFD loss, and urges exploration of common mechanisms that lead to substantial IENFD loss as a complication in disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Douglas Wright
- Sensory Nerve Disorder Lab, Department of Anesthesiology, University of Kansas Medical Center, Kansas City, KS, United States
| |
Collapse
|
22
|
Shen C, Chen C, Wang T, Gao TY, Zeng M, Lu YB, Zhang WP. The Depletion of NAMPT Disturbs Mitochondrial Homeostasis and Causes Neuronal Degeneration in Mouse Hippocampus. Mol Neurobiol 2023; 60:1267-1280. [PMID: 36441480 DOI: 10.1007/s12035-022-03142-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 11/17/2022] [Indexed: 11/29/2022]
Abstract
Nicotinamide phosphoribosyltransferase (NAMPT) is the key enzyme in the salvaging synthesis pathway of the nicotinamide adenine dinucleotide (NAD). Both NAMPT and NAD progressively decline upon aging and neurodegenerative diseases. The depletion of NAMPT induces mitochondrial dysfunction in motor neurons and causes bioenergetic stress in neurons. However, the roles of NAMPT in hippocampus neurons need to be further studied. Using floxed Nampt (Namptflox/flox) mice, we knocked out Nampt specifically in the hippocampus CA1 neurons by injecting rAAV-hSyn-Cre-APRE-pA. The depletion of NAMPT in hippocampus neurons induced cognitive deficiency in mice. Nevertheless, no morphological change of hippocampus neurons was observed with immunofluorescent imaging. Under the transmission electron microscope, we observed mitochondrial swollen and mitochondrial number decreasing in the cell body and the neurites of hippocampus neurons. In addition, we found the intracellular Aβ (6E10) increased in the hippocampus CA1 region. The intensity of Aβ42 remained unchanged, but it tended to aggregate. The GFAP level, an astrocyte marker, and the Iba1 level, a microglia marker, significantly increased in the mouse hippocampus. In the primary cultured rat neurons, NAMPT inhibition by FK866 decreased the NAD level of neurons at > 10-9 M. FK866 dropped the mitochondrial membrane potential in the cell body of neurons at > 10-9 M and in the dendrite of neurons at > 10-8 M. FK866 decreased the number and shortened the length of branches of neurons at > 10-7 M. Together, likely due to the injury of mitochondria, the decline of NAMPT level can be a critical risk factor for neurodegeneration.
Collapse
Affiliation(s)
- Chen Shen
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China.,Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Cong Chen
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China.,Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Tong Wang
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China.,Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Tong-Yao Gao
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China.,Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Min Zeng
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China.,Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Yun-Bi Lu
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China. .,Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China.
| | - Wei-Ping Zhang
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China. .,Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China.
| |
Collapse
|
23
|
Sarkar A, Dutta S, Sur M, Chakraborty S, Dey P, Mukherjee P. Early loss of endogenous NAD + following rotenone treatment leads to mitochondrial dysfunction and Sarm1 induction that is ameliorated by PARP inhibition. FEBS J 2023; 290:1596-1624. [PMID: 36239430 DOI: 10.1111/febs.16652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 08/17/2022] [Accepted: 10/13/2022] [Indexed: 11/07/2022]
Abstract
Sarm1 is an evolutionary conserved innate immune adaptor protein that has emerged as a primary regulator of programmed axonal degeneration over the past decade. In vitro structural insights have revealed that although Sarm1 induces energy depletion by breaking down nicotinamide adenine dinucleotide+ (NAD+ ), it is also allosterically inhibited by NAD+ . However, how NAD+ levels modulate the activation of intracellular Sarm1 has not been elucidated so far. This study focuses on understanding the events leading to Sarm1 activation in both neuronal and non-neuronal cells using the mitochondrial complex I inhibitor rotenone. Here, we report the regulation of rotenone-induced cell death by loss of NAD+ that may act as a 'biological trigger' of Sarm1 activation. Our study revealed that early loss of endogenous NAD+ levels arising due to PARP1 hyperactivation preceded Sarm1 induction following rotenone treatment. Interestingly, replenishing NAD+ levels by the PARP inhibitor, PJ34 restored mitochondrial complex I activity and also prevented subsequent Sarm1 activation in rotenone-treated cells. These cellular data were further validated in Drosophila melanogaster where a significant reduction in rotenone-mediated loss of locomotor abilities, and reduced dSarm expression was observed in the flies following PARP inhibition. Taken together, these observations not only uncover a novel regulation of Sarm1 induction by endogenous NAD+ levels but also point towards an important understanding on how PARP inhibitors could be repurposed in the treatment of mitochondrial complex I deficiency disorders.
Collapse
Affiliation(s)
- Ankita Sarkar
- Institute of Health Sciences, Presidency University, Kolkata, India
| | - Sourav Dutta
- Institute of Health Sciences, Presidency University, Kolkata, India
| | - Malinki Sur
- Institute of Health Sciences, Presidency University, Kolkata, India
| | | | - Puja Dey
- Institute of Health Sciences, Presidency University, Kolkata, India
| | - Piyali Mukherjee
- Institute of Health Sciences, Presidency University, Kolkata, India
| |
Collapse
|
24
|
Czech VL, O'Connor LC, Philippon B, Norman E, Byrne AB. TIR-1/SARM1 inhibits axon regeneration and promotes axon degeneration. eLife 2023; 12:80856. [PMID: 37083456 PMCID: PMC10121217 DOI: 10.7554/elife.80856] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 01/31/2023] [Indexed: 03/03/2023] Open
Abstract
Growth and destruction are central components of the neuronal injury response. Injured axons that are capable of repair, including axons in the mammalian peripheral nervous system and in many invertebrate animals, often regenerate and degenerate on either side of the injury. Here we show that TIR-1/dSarm/SARM1, a key regulator of axon degeneration, also inhibits regeneration of injured motor axons. The increased regeneration in tir-1 mutants is not a secondary consequence of its effects on degeneration, nor is it determined by the NADase activity of TIR-1. Rather, we found that TIR-1 functions cell-autonomously to regulate each of the seemingly opposite processes through distinct interactions with two MAP kinase pathways. On one side of the injury, TIR-1 inhibits axon regeneration by activating the NSY-1/ASK1 MAPK signaling cascade, while on the other side of the injury, TIR-1 simultaneously promotes axon degeneration by interacting with the DLK-1 mitogen-activated protein kinase (MAPK) signaling cascade. In parallel, we found that the ability to cell-intrinsically inhibit axon regeneration is conserved in human SARM1. Our finding that TIR-1/SARM1 regulates axon regeneration provides critical insight into how axons coordinate a multidimensional response to injury, consequently informing approaches to manipulate the response toward repair.
Collapse
Affiliation(s)
- Victoria L Czech
- Department of Neurobiology, UMass Chan Massachusetts Medical School
| | | | | | - Emily Norman
- Department of Neurobiology, UMass Chan Massachusetts Medical School
| | | |
Collapse
|
25
|
Huang K, Zhu WJ, Li WH, Lee HC, Zhao YJ, Lee CS. Base-Exchange Enabling the Visualization of SARM1 Activities in Sciatic Nerve-Injured Mice. ACS Sens 2023; 8:767-773. [PMID: 36689294 PMCID: PMC9972468 DOI: 10.1021/acssensors.2c02317] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Enzymes are important in homeostasis in living organisms. Since abnormal enzyme activities are highly associated with many human diseases, detection of in vivo activities of a specific enzyme is important to study the pathology of the related diseases. In this work, we have designed and synthesized a series of new small-molecule-activatable fluorescent probes for the imaging of Sterile Alpha and TIR Motif-containing 1 (SARM1) activities based on its transglycosidase activities (base-exchange reactions of NAD+). Probe 1a was found to undergo base-exchange reactions with NAD+ in the presence of activated SARM1 but not CD38 nor NADase and formed a highly emissive product AD-1a [about a 100-fold fluorescence enhancement in 20 min with a 150 nm (5665 cm-1) Stokes shift and a 100 nm (3812 cm-1) red shift]. This probe exhibited a higher reactivity and sensitivity than those commonly used for SARM1 imaging. The utilities of 1a have also been demonstrated in live-cell imaging and detection of in vivo activities of SARM1 in a sciatic nerve injury mouse model.
Collapse
Affiliation(s)
- Ke Huang
- Department of Chemistry, Hong Kong Baptist University, Waterloo Road, Kowloon Tong, Kowloon, Hong Kong SAR 999077, China
| | - Wen Jie Zhu
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen University Town, Lishui Road, Shenzhen 518055, China
| | - Wan Hua Li
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen University Town, Lishui Road, Shenzhen 518055, China.,Ciechanover Institute of Precision and Regenerative Medicine, School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong Shenzhen, Shenzhen 518172, China.,School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Hon Cheung Lee
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen University Town, Lishui Road, Shenzhen 518055, China
| | - Yong Juan Zhao
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen University Town, Lishui Road, Shenzhen 518055, China.,Ciechanover Institute of Precision and Regenerative Medicine, School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong Shenzhen, Shenzhen 518172, China.,Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
| | - Chi-Sing Lee
- Department of Chemistry, Hong Kong Baptist University, Waterloo Road, Kowloon Tong, Kowloon, Hong Kong SAR 999077, China
| |
Collapse
|
26
|
Thomas SJ, Enders J, Kaiser A, Rovenstine L, Heslop L, Hauser W, Chadwick A, Wright DE. Abnormal Intraepidermal Nerve Fiber Density in Disease: A Scoping Review. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.02.08.23285644. [PMID: 36798392 PMCID: PMC9934806 DOI: 10.1101/2023.02.08.23285644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Background Intraepidermal nerve fiber density (IENFD) has become an important biomarker for neuropathy diagnosis and research. The consequences of reduced IENFD can include sensory dysfunction, pain, and a significant decrease in quality of life. We examined the extent to which IENFD is being used as a tool in human and mouse models and compared the degree of fiber loss between diseases to gain a broader understanding of the existing data collected using this common technique. Methods We conducted a scoping review of publications that used IENFD as a biomarker in human and non-human research. PubMed was used to identify 1,004 initial articles that were then screened to select articles that met the criteria for inclusion. Criteria were chosen to standardize publications so they could be compared rigorously and included having a control group, measuring IENFD in a distal limb, and using protein gene product 9.5 (PGP9.5). Results We analyzed 397 articles and collected information related to publication year, the condition studied, and the percent IENFD loss. The analysis revealed that the use of IENFD as a tool has been increasing in both human and non-human research. We found that IENFD loss is prevalent in many diseases, and metabolic or diabetes-related diseases were the most studied conditions in humans and rodents. Our analysis identified 74 human diseases in which IENFD was affected, with 71 reporting IENFD loss and an overall average IENFD change of -47%. We identified 28 mouse and 21 rat conditions, with average IENFD changes of -31.6 % and - 34.7% respectively. Additionally, we present data describing sub-analyses of IENFD loss according to disease characteristics in diabetes and chemotherapy treatments in humans and rodents. Interpretation Reduced IENFD occurs in a surprising number of human disease conditions. Abnormal IENFD contributes to important complications, including poor cutaneous vascularization, sensory dysfunction, and pain. Our analysis informs future rodent studies so they may better mirror human diseases impacted by reduced IENFD, highlights the breadth of diseases impacted by IENFD loss, and urges exploration of common mechanisms that lead to substantial IENFD loss as a complication in disease.
Collapse
Affiliation(s)
- SJ Thomas
- Sensory Nerve Disorder Lab, University of Kansas Medical Center, Anesthesiology Department, Kansas City, KS, USA
| | - J Enders
- Sensory Nerve Disorder Lab, University of Kansas Medical Center, Anesthesiology Department, Kansas City, KS, USA
| | - A Kaiser
- Sensory Nerve Disorder Lab, University of Kansas Medical Center, Anesthesiology Department, Kansas City, KS, USA
| | - L Rovenstine
- Sensory Nerve Disorder Lab, University of Kansas Medical Center, Anesthesiology Department, Kansas City, KS, USA
| | - L Heslop
- Sensory Nerve Disorder Lab, University of Kansas Medical Center, Anesthesiology Department, Kansas City, KS, USA
| | - W Hauser
- Sensory Nerve Disorder Lab, University of Kansas Medical Center, Anesthesiology Department, Kansas City, KS, USA
| | - A Chadwick
- Sensory Nerve Disorder Lab, University of Kansas Medical Center, Anesthesiology Department, Kansas City, KS, USA
| | - DE Wright
- Sensory Nerve Disorder Lab, University of Kansas Medical Center, Anesthesiology Department, Kansas City, KS, USA
| |
Collapse
|
27
|
Brown EE, Scandura MJ, Pierce E. Role of Nuclear NAD + in Retinal Homeostasis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1415:235-239. [PMID: 37440039 DOI: 10.1007/978-3-031-27681-1_34] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
The retina is one of the most metabolically active tissues and maintenance of metabolic homeostasis is critical for retinal function. Nicotinamide adenine dinucleotide (NAD+) is a cofactor that is required for key processes, including the electron transport chain, glycolysis, fatty acid oxidation, and redox reactions. NAD+ also acts as a co-substrate for enzymes involved in maintaining genomic DNA integrity and cellular homeostasis, including poly-ADP ribose polymerases (PARPs) and Sirtuins. This review highlights the importance of NAD+ in the retina, including the role of enzymes involved in NAD+ production in the retina and how NAD+-consuming enzymes may play a role in disease pathology. We also suggest a cell death pathway that may be common in multiple models of photoreceptor degeneration and highlight the role that NAD+ likely plays in this process. Finally, we explore future experimental approaches to enhance our understanding of the role of NAD+ in the retina.
Collapse
Affiliation(s)
- Emily E Brown
- Ocular Genomics Institute, Massachusetts Eye and Ear, Boston, MA, USA
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Michael J Scandura
- Ocular Genomics Institute, Massachusetts Eye and Ear, Boston, MA, USA
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Eric Pierce
- Ocular Genomics Institute, Massachusetts Eye and Ear, Boston, MA, USA.
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
28
|
Sato-Yamada Y, Strickland A, Sasaki Y, Bloom J, DiAntonio A, Milbrandt J. A SARM1-mitochondrial feedback loop drives neuropathogenesis in a Charcot-Marie-Tooth disease type 2A rat model. J Clin Invest 2022; 132:e161566. [PMID: 36287202 PMCID: PMC9711878 DOI: 10.1172/jci161566] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 10/11/2022] [Indexed: 11/17/2022] Open
Abstract
Charcot-Marie-Tooth disease type 2A (CMT2A) is an axonal neuropathy caused by mutations in the mitofusin 2 (MFN2) gene. MFN2 mutations result in profound mitochondrial abnormalities, but the mechanism underlying the axonal pathology is unknown. Sterile α and Toll/IL-1 receptor motif-containing 1 (SARM1), the central executioner of axon degeneration, can induce neuropathy and is activated by dysfunctional mitochondria. We tested the role of SARM1 in a rat model carrying a dominant CMT2A mutation (Mfn2H361Y) that exhibits progressive dying-back axonal degeneration, neuromuscular junction (NMJ) abnormalities, muscle atrophy, and mitochondrial abnormalities - all hallmarks of the human disease. We generated Sarm1-KO (Sarm1-/-) and Mfn2H361Y Sarm1 double-mutant rats and found that deletion of Sarm1 rescued axonal, synaptic, muscle, and functional phenotypes, demonstrating that SARM1 was responsible for much of the neuropathology in this model. Despite the presence of mutant MFN2 protein in these double-mutant rats, loss of SARM1 also dramatically suppressed many mitochondrial defects, including the number, size, and cristae density defects of synaptic mitochondria. This surprising finding indicates that dysfunctional mitochondria activated SARM1 and that activated SARM1 fed back on mitochondria to exacerbate the mitochondrial pathology. As such, this work identifies SARM1 inhibition as a therapeutic candidate for the treatment of CMT2A and other neurodegenerative diseases with prominent mitochondrial pathology.
Collapse
Affiliation(s)
- Yurie Sato-Yamada
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, USA
- Center for Advanced Oral Science, Niigata University Graduate School of Medical and Dental Science, Niigata City, Japan
| | - Amy Strickland
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Yo Sasaki
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Joseph Bloom
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, USA
- Needleman Center for Neurometabolism and Axonal Therapeutics, St. Louis, Missouri, USA
| | - Aaron DiAntonio
- Needleman Center for Neurometabolism and Axonal Therapeutics, St. Louis, Missouri, USA
- Department of Developmental Biology and
| | - Jeffrey Milbrandt
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, USA
- Needleman Center for Neurometabolism and Axonal Therapeutics, St. Louis, Missouri, USA
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
29
|
Loss of hepatic Nmnat1 has no impact on diet-induced fatty liver disease. Biochem Biophys Res Commun 2022; 636:89-95. [DOI: 10.1016/j.bbrc.2022.10.072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 10/18/2022] [Indexed: 11/20/2022]
|
30
|
Croteau LP, Risner ML, Wareham LK, McGrady NR, Chamling X, Zack DJ, Calkins DJ. Ex Vivo Integration of Human Stem Retinal Ganglion Cells into the Mouse Retina. Cells 2022; 11:cells11203241. [PMID: 36291110 PMCID: PMC9600680 DOI: 10.3390/cells11203241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 10/04/2022] [Accepted: 10/13/2022] [Indexed: 11/16/2022] Open
Abstract
Cell replacement therapies may be key in achieving functional recovery in neurodegenerative optic neuropathies diseases such as glaucoma. One strategy that holds promise in this regard is the use of human embryonic stem cell and induced pluripotent stem-derived retinal ganglion cells (hRGCs). Previous hRGC transplantation studies have shown modest success. This is in part due to the low survival and integration of the transplanted cells in the host retina. The field is further challenged by mixed assays and outcome measurements that probe and determine transplantation success. Thefore, we have devised a transplantation assay involving hRGCs and mouse retina explants that bypasses physical barriers imposed by retinal membranes. We show that hRGC neurites and somas are capable of invading mouse explants with a subset of hRGC neurites being guided by mouse RGC axons. Neonatal mouse retina explants, and to a lesser extent, adult explants, promote hRGC integrity and neurite outgrowth. Using this assay, we tested whether suppmenting cultures with brain derived neurotrophic factor (BDNF) and the adenylate cyclase activator, forskolin, enhances hRGC neurite integration, neurite outgrowth, and integrity. We show that supplementing cultures with a combination BDNF and forskolin strongly favors hRGC integrity, increasing neurite outgrowth and complexity as well as the invasion of mouse explants. The transplantation assay presented here is a practical tool for investigating strategies for testing and optimizing the integration of donor cells into host tissues.
Collapse
Affiliation(s)
- Louis-Philippe Croteau
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Michael L. Risner
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Lauren K. Wareham
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Nolan R. McGrady
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Xitiz Chamling
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Donald J. Zack
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - David J. Calkins
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Correspondence:
| |
Collapse
|
31
|
Alexandris AS, Ryu J, Rajbhandari L, Harlan R, McKenney J, Wang Y, Aja S, Graham D, Venkatesan A, Koliatsos VE. Protective effects of NAMPT or MAPK inhibitors and NaR on Wallerian degeneration of mammalian axons. Neurobiol Dis 2022; 171:105808. [PMID: 35779777 PMCID: PMC10621467 DOI: 10.1016/j.nbd.2022.105808] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/14/2022] [Accepted: 06/25/2022] [Indexed: 01/23/2023] Open
Abstract
Wallerian degeneration (WD) is a conserved axonal self-destruction program implicated in several neurological diseases. WD is driven by the degradation of the NAD+ synthesizing enzyme NMNAT2, the buildup of its substrate NMN, and the activation of the NAD+ degrading SARM1, eventually leading to axonal fragmentation. The regulation and amenability of these events to therapeutic interventions remain unclear. Here we explored pharmacological strategies that modulate NMN and NAD+ metabolism, namely the inhibition of the NMN-synthesizing enzyme NAMPT, activation of the nicotinic acid riboside (NaR) salvage pathway and inhibition of the NMNAT2-degrading DLK MAPK pathway in an axotomy model in vitro. Results show that NAMPT and DLK inhibition cause a significant but time-dependent delay of WD. These time-dependent effects are related to NMNAT2 degradation and changes in NMN and NAD+ levels. Supplementation of NAMPT inhibition with NaR has an enhanced effect that does not depend on timing of intervention and leads to robust protection up to 4 days. Additional DLK inhibition extends this even further to 6 days. Metabolite analyses reveal complex effects indicating that NAMPT and MAPK inhibition act by reducing NMN levels, ameliorating NAD+ loss and suppressing SARM1 activity. Finally, the axonal NAD+/NMN ratio is highly predictive of cADPR levels, extending previous cell-free evidence on the allosteric regulation of SARM1. Our findings establish a window of axon protection extending several hours following injury. Moreover, we show prolonged protection by mixed treatments combining MAPK and NAMPT inhibition that proceed via complex effects on NAD+ metabolism and inhibition of SARM1.
Collapse
Affiliation(s)
| | - Jiwon Ryu
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Labchan Rajbhandari
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Robert Harlan
- The Molecular Determinants Center and Core, Johns Hopkins All Children's Hospital, St. Petersburg, FL, USA
| | - James McKenney
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yiqing Wang
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Susan Aja
- The Molecular Determinants Center and Core, Johns Hopkins All Children's Hospital, St. Petersburg, FL, USA
| | - David Graham
- The Molecular Determinants Center and Core, Johns Hopkins All Children's Hospital, St. Petersburg, FL, USA
| | - Arun Venkatesan
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Vassilis E Koliatsos
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
32
|
Essuman K, Milbrandt J, Dangl JL, Nishimura MT. Shared TIR enzymatic functions regulate cell death and immunity across the tree of life. Science 2022; 377:eabo0001. [DOI: 10.1126/science.abo0001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In the 20th century, researchers studying animal and plant signaling pathways discovered a protein domain shared across diverse innate immune systems: the Toll/Interleukin-1/Resistance-gene (TIR) domain. The TIR domain is found in several protein architectures and was defined as an adaptor mediating protein-protein interactions in animal innate immunity and developmental signaling pathways. However, studies of nerve degeneration in animals, and subsequent breakthroughs in plant, bacterial and archaeal systems, revealed that TIR domains possess enzymatic activities. We provide a synthesis of TIR functions and the role of various related TIR enzymatic products in evolutionarily diverse immune systems. These studies may ultimately guide interventions that would span the tree of life, from treating human neurodegenerative disorders and bacterial infections, to preventing plant diseases.
Collapse
Affiliation(s)
- Kow Essuman
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Jeffrey Milbrandt
- Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
- Needleman Center for Neurometabolism and Axonal Therapeutics, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
- McDonnell Genome Institute, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Jeffery L. Dangl
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Howard Hughes Medical Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Marc T. Nishimura
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
33
|
Krus KL, Strickland A, Yamada Y, Devault L, Schmidt RE, Bloom AJ, Milbrandt J, DiAntonio A. Loss of Stathmin-2, a hallmark of TDP-43-associated ALS, causes motor neuropathy. Cell Rep 2022; 39:111001. [PMID: 35767949 PMCID: PMC9327139 DOI: 10.1016/j.celrep.2022.111001] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/18/2022] [Accepted: 06/02/2022] [Indexed: 12/03/2022] Open
Abstract
TDP-43 mediates proper Stathmin-2 (STMN2) mRNA splicing, and STMN2 protein is reduced in the spinal cord of most patients with amyotrophic lateral sclerosis (ALS). To test the hypothesis that STMN2 loss contributes to ALS pathogenesis, we generated constitutive and conditional STMN2 knockout mice. Constitutive STMN2 loss results in early-onset sensory and motor neuropathy featuring impaired motor behavior and dramatic distal neuromuscular junction (NMJ) denervation of fast-fatigable motor units, which are selectively vulnerable in ALS, without axon or motoneuron degeneration. Selective excision of STMN2 in motoneurons leads to similar NMJ pathology. STMN2 knockout heterozygous mice, which better model the partial loss of STMN2 protein found in patients with ALS, display a slowly progressive, motor-selective neuropathy with functional deficits and NMJ denervation. Thus, our findings strongly support the hypothesis that STMN2 reduction owing to TDP-43 pathology contributes to ALS pathogenesis.
Collapse
Affiliation(s)
- Kelsey L Krus
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; Medical Scientist Training Program, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Amy Strickland
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Yurie Yamada
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Laura Devault
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Robert E Schmidt
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - A Joseph Bloom
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA; Needleman Center for Neurometabolism and Axonal Therapeutics, St. Louis, MO 63110, USA
| | - Jeffrey Milbrandt
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO 63110, USA; Needleman Center for Neurometabolism and Axonal Therapeutics, St. Louis, MO 63110, USA.
| | - Aaron DiAntonio
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; Needleman Center for Neurometabolism and Axonal Therapeutics, St. Louis, MO 63110, USA.
| |
Collapse
|
34
|
Zhang Y, Guo X, Peng Z, Liu C, Ren L, Liang J, Wang P. Nicotinamide Mononucleotide Adenylyltransferase 1 Regulates Cerebral Ischemia-Induced Blood-Brain Barrier Disruption Through NAD +/SIRT1 Signaling Pathway. Mol Neurobiol 2022; 59:4879-4891. [PMID: 35657458 DOI: 10.1007/s12035-022-02903-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 05/26/2022] [Indexed: 10/18/2022]
Abstract
The molecular mechanisms of blood-brain barrier (BBB) disruption in the early stage after ischemic stroke are poorly understood. In the present study, we investigated the potential role of nicotinamide mononucleotide adenylyltransferase 1 (NMNAT1) in ischemia-induced BBB damage using an animal middle cerebral artery occlusion (MCAO) model of ischemic stroke. Recombinant human NMNAT1 (rh-NMNAT1) was administered intranasally and Sirtuin 1 (SIRT1) siRNA was administered by intracerebroventricular injection. Our results indicate that rh-NMNAT1 reduced infarct volume, improved functional outcome, and decreased BBB permeability in mice after ischemic stroke. Furthermore, rh-NMNAT1 prevented the loss of tight junction proteins (occludin and claudin-5) and reduced cell apoptosis in ischemic microvessels. NMNAT1-mediated BBB permeability was correlated with the elevation of nicotinamide adenine dinucleotide (NAD+)/NADH ratio and SIRT1 level in brain microvascular endothelial cells. In addition, rh-NMNAT1 treatment significantly decreased the levels of acetylated nuclear factor-κB, acetylated p53, and matrix metalloproteinase-9 in ischemic microvessels. Moreover, the protective effects of rh-NMNAT1 could be reversed by SIRT1 siRNA. In conclusion, these findings indicate that rh-NMNAT1 protects BBB integrity after cerebral ischemia via the NAD+/SIRT1 signaling pathway in brain microvascular endothelial cells. NMNAT1 may be a novel potential therapeutic target for reducing BBB disruption after ischemic stroke.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Neurobiology and Key Laboratory of Neurodegenerative Diseases of Liaoning Province, Jinzhou Medical University, Jinzhou, 121001, Liaoning, China
| | - Xun Guo
- Department of Neurobiology and Key Laboratory of Neurodegenerative Diseases of Liaoning Province, Jinzhou Medical University, Jinzhou, 121001, Liaoning, China
| | - Zhifeng Peng
- Department of Physiology, Shanxi Datong University, Datong, 037009, Shanxi, China
| | - Chang Liu
- Department of Neurobiology and Key Laboratory of Neurodegenerative Diseases of Liaoning Province, Jinzhou Medical University, Jinzhou, 121001, Liaoning, China
| | - Lili Ren
- Department of Neurobiology and Key Laboratory of Neurodegenerative Diseases of Liaoning Province, Jinzhou Medical University, Jinzhou, 121001, Liaoning, China
| | - Jia Liang
- Institute of Life Science, Jinzhou Medical University, Jinzhou, 121001, Liaoning, China.
| | - Peng Wang
- Department of Neurobiology and Key Laboratory of Neurodegenerative Diseases of Liaoning Province, Jinzhou Medical University, Jinzhou, 121001, Liaoning, China.
| |
Collapse
|
35
|
Brace EJ, Essuman K, Mao X, Palucki J, Sasaki Y, Milbrandt J, DiAntonio A. Distinct developmental and degenerative functions of SARM1 require NAD+ hydrolase activity. PLoS Genet 2022; 18:e1010246. [PMID: 35737728 PMCID: PMC9223315 DOI: 10.1371/journal.pgen.1010246] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 05/10/2022] [Indexed: 11/25/2022] Open
Abstract
SARM1 is the founding member of the TIR-domain family of NAD+ hydrolases and the central executioner of pathological axon degeneration. SARM1-dependent degeneration requires NAD+ hydrolysis. Prior to the discovery that SARM1 is an enzyme, SARM1 was studied as a TIR-domain adaptor protein with non-degenerative signaling roles in innate immunity and invertebrate neurodevelopment, including at the Drosophila neuromuscular junction (NMJ). Here we explore whether the NADase activity of SARM1 also contributes to developmental signaling. We developed transgenic Drosophila lines that express SARM1 variants with normal, deficient, and enhanced NADase activity and tested their function in NMJ development. We find that NMJ overgrowth scales with the amount of NADase activity, suggesting an instructive role for NAD+ hydrolysis in this developmental signaling pathway. While degenerative and developmental SARM1 signaling share a requirement for NAD+ hydrolysis, we demonstrate that these signals use distinct upstream and downstream mechanisms. These results identify SARM1-dependent NAD+ hydrolysis as a heretofore unappreciated component of developmental signaling. SARM1 now joins sirtuins and Parps as enzymes that regulate signal transduction pathways via mechanisms that involve NAD+ cleavage, greatly expanding the potential scope of SARM1 TIR NADase functions. SARM1 is the central executioner of axon loss, and inhibition of SARM1 is a therapeutic target for many devastating neurodegenerative disorders. SARM1 is the founding member of the TIR-domain family of NAD+ cleaving enzymes, destroying the essential metabolite NAD+ and inducing an energetic crisis in the axon. This was a surprising finding, as previously studied TIR-domain proteins were characterized as scaffolds that bind signaling proteins to coordinate signal transduction cascades. Indeed, before the discovery of the role of SARM1 in axon degeneration, SARM1 was studied as a regulator of intracellular signaling in immunity and neurodevelopment where it was assumed to act as a scaffold. Here we investigate whether the recently described SARM1 enzymatic activity also regulates such signal transduction pathways. Indeed, we show that a developmental signaling pathway scales with the amount of NADase activity, suggesting an instructive role for NAD+ cleavage. While degenerative and developmental SARM1 signaling share a requirement for NAD+ cleavage, they utilize distinct upstream and downstream mechanisms. With these findings, SARM1 now joins sirtuins and Parps as enzymes that regulate signal transduction pathways via mechanisms that involve NAD+ cleavage, greatly expanding the potential scope of SARM1 TIR NADase functions.
Collapse
Affiliation(s)
- E J Brace
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Kow Essuman
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Xianrong Mao
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - John Palucki
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Yo Sasaki
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Jeff Milbrandt
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America.,Needleman Center for Neurometabolism and Axonal Therapeutics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Aaron DiAntonio
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America.,Needleman Center for Neurometabolism and Axonal Therapeutics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| |
Collapse
|
36
|
Shi Y, Kerry PS, Nanson JD, Bosanac T, Sasaki Y, Krauss R, Saikot FK, Adams SE, Mosaiab T, Masic V, Mao X, Rose F, Vasquez E, Furrer M, Cunnea K, Brearley A, Gu W, Luo Z, Brillault L, Landsberg MJ, DiAntonio A, Kobe B, Milbrandt J, Hughes RO, Ve T. Structural basis of SARM1 activation, substrate recognition, and inhibition by small molecules. Mol Cell 2022; 82:1643-1659.e10. [PMID: 35334231 PMCID: PMC9188649 DOI: 10.1016/j.molcel.2022.03.007] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 01/11/2022] [Accepted: 03/01/2022] [Indexed: 01/04/2023]
Abstract
The NADase SARM1 (sterile alpha and TIR motif containing 1) is a key executioner of axon degeneration and a therapeutic target for several neurodegenerative conditions. We show that a potent SARM1 inhibitor undergoes base exchange with the nicotinamide moiety of nicotinamide adenine dinucleotide (NAD+) to produce the bona fide inhibitor 1AD. We report structures of SARM1 in complex with 1AD, NAD+ mimetics and the allosteric activator nicotinamide mononucleotide (NMN). NMN binding triggers reorientation of the armadillo repeat (ARM) domains, which disrupts ARM:TIR interactions and leads to formation of a two-stranded TIR domain assembly. The active site spans two molecules in these assemblies, explaining the requirement of TIR domain self-association for NADase activity and axon degeneration. Our results reveal the mechanisms of SARM1 activation and substrate binding, providing rational avenues for the design of new therapeutics targeting SARM1.
Collapse
Affiliation(s)
- Yun Shi
- Institute for Glycomics, Griffith University, Southport, QLD 4222, Australia
| | - Philip S Kerry
- Evotec (UK) Ltd., 114 Innovation Drive, Milton Park, Abingdon, Oxfordshire OX14 4RZ, UK
| | - Jeffrey D Nanson
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, QLD 4072, Australia
| | - Todd Bosanac
- Disarm Therapeutics, a wholly-owned subsidiary of Eli Lilly & Co., Cambridge, MA, USA
| | - Yo Sasaki
- Needleman Center for Neurometabolism and Axonal Therapeutics and Department of Genetics, Washington University School of Medicine in Saint Louis, St. Louis, MO, USA
| | - Raul Krauss
- Disarm Therapeutics, a wholly-owned subsidiary of Eli Lilly & Co., Cambridge, MA, USA
| | - Forhad K Saikot
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, QLD 4072, Australia
| | - Sarah E Adams
- Evotec (UK) Ltd., 114 Innovation Drive, Milton Park, Abingdon, Oxfordshire OX14 4RZ, UK
| | - Tamim Mosaiab
- Institute for Glycomics, Griffith University, Southport, QLD 4222, Australia
| | - Veronika Masic
- Institute for Glycomics, Griffith University, Southport, QLD 4222, Australia
| | - Xianrong Mao
- Needleman Center for Neurometabolism and Axonal Therapeutics and Department of Genetics, Washington University School of Medicine in Saint Louis, St. Louis, MO, USA
| | - Faith Rose
- Institute for Glycomics, Griffith University, Southport, QLD 4222, Australia
| | - Eduardo Vasquez
- Institute for Glycomics, Griffith University, Southport, QLD 4222, Australia
| | - Marieke Furrer
- Evotec SE, Manfred Eigen Campus, Essener Bogen 7, 22419 Hamburg, Germany
| | - Katie Cunnea
- Evotec (UK) Ltd., 114 Innovation Drive, Milton Park, Abingdon, Oxfordshire OX14 4RZ, UK
| | - Andrew Brearley
- Evotec (UK) Ltd., 114 Innovation Drive, Milton Park, Abingdon, Oxfordshire OX14 4RZ, UK
| | - Weixi Gu
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, QLD 4072, Australia
| | - Zhenyao Luo
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, QLD 4072, Australia
| | - Lou Brillault
- Centre for Microscopy and Microanalysis, The University of Queensland, Brisbane, Australia
| | - Michael J Landsberg
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, QLD 4072, Australia
| | - Aaron DiAntonio
- Needleman Center for Neurometabolism and Axonal Therapeutics and Department of Developmental Biology, Washington University School of Medicine in Saint Louis, St. Louis, MO, USA
| | - Bostjan Kobe
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, QLD 4072, Australia
| | - Jeffrey Milbrandt
- Needleman Center for Neurometabolism and Axonal Therapeutics and Department of Genetics, Washington University School of Medicine in Saint Louis, St. Louis, MO, USA
| | - Robert O Hughes
- Disarm Therapeutics, a wholly-owned subsidiary of Eli Lilly & Co., Cambridge, MA, USA.
| | - Thomas Ve
- Institute for Glycomics, Griffith University, Southport, QLD 4222, Australia.
| |
Collapse
|
37
|
Discovery of small-molecule activators of nicotinamide phosphoribosyltransferase (NAMPT) and their preclinical neuroprotective activity. Cell Res 2022; 32:570-584. [PMID: 35459935 DOI: 10.1038/s41422-022-00651-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 02/19/2022] [Indexed: 01/07/2023] Open
Abstract
The decline of nicotinamide adenine dinucleotide (NAD) occurs in a variety of human pathologies including neurodegeneration. NAD-boosting agents can provide neuroprotective benefits. Here, we report the discovery and development of a class of potent activators (NATs) of nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting enzyme in the NAD salvage pathway. We obtained the crystal structure of NAMPT in complex with the NAT, which defined the allosteric action of NAT near the enzyme active site. The optimization of NAT further revealed the critical role of K189 residue in boosting NAMPT activity. NATs effectively increased intracellular levels of NAD and induced subsequent metabolic and transcriptional reprogramming. Importantly, NATs exhibited strong neuroprotective efficacy in a mouse model of chemotherapy-induced peripheral neuropathy (CIPN) without any overt toxicity. These findings demonstrate the potential of NATs in the treatment of neurodegenerative diseases or conditions associated with NAD level decline.
Collapse
|
38
|
Li X, Li Y, Li F, Chen Q, Zhao Z, Liu X, Zhang N, Li H. NAD + Anabolism Disturbance Causes Glomerular Mesangial Cell Injury in Diabetic Nephropathy. Int J Mol Sci 2022; 23:ijms23073458. [PMID: 35408818 PMCID: PMC8998683 DOI: 10.3390/ijms23073458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/17/2022] [Accepted: 03/19/2022] [Indexed: 12/04/2022] Open
Abstract
The homeostasis of NAD+ anabolism is indispensable for maintaining the NAD+ pool. In mammals, the mainly synthetic pathway of NAD+ is the salvage synthesis, a reaction catalyzed by nicotinamide mononucleotide adenylyltransferase (NAMPT) and nicotinamide mononucleotide adenylyltransferase (NMNATs) successively, converting nicotinamide (NAM) to nicotinamide mononucleotide (NMN) and NMN to NAD+, respectively. However, the relationship between NAD+ anabolism disturbance and diabetic nephropathy (DN) remains elusive. Here our study found that the disruption of NAD+ anabolism homeostasis caused an elevation in both oxidative stress and fibronectin expression, along with a decrease in Sirt1 and an increase in both NF-κB P65 expression and acetylation, culminating in extracellular matrix deposition and globular fibrosis in DN. More importantly, through constitutively overexpressing NMNAT1 or NAMPT in human mesangial cells, we revealed NAD+ levels altered inversely with NMN levels in the context of DN and, further, their changes affect Sirt1/NF-κB P65, thus playing a crucial role in the pathogenesis of DN. Accordingly, FK866, a NAMPT inhibitor, and quercetin, a Sirt1 agonist, have favorable effects on the maintenance of NAD+ homeostasis and renal function in db/db mice. Collectively, our findings suggest that NMN accumulation may provide a causal link between NAD+ anabolism disturbance and diabetic nephropathy (DN) as well as a promising therapeutic target for DN treatment.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Hui Li
- Correspondence: ; Tel.: +86-021-54237528
| |
Collapse
|
39
|
Quantification of Neurite Degeneration with Enhanced Accuracy and Efficiency in an In Vitro Model of Parkinson's Disease. eNeuro 2022; 9:ENEURO.0327-21.2022. [PMID: 35210286 PMCID: PMC8938979 DOI: 10.1523/eneuro.0327-21.2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 01/21/2022] [Accepted: 01/30/2022] [Indexed: 11/21/2022] Open
Abstract
Neurite degeneration is associated with early stages of neurodegenerative disorders such as Alzheimer’s disease, Parkinson’s disease (PD), and amyotrophic lateral sclerosis. One method that is commonly used to analyze neurite degeneration involves calculation of a Degeneration Index (DI) following utilization of the Analyze Particles tool of ImageJ to detect neurite fragments in micrographs of cultured cells. However, DI analyses are prone to several types of measurement error, can be time consuming to perform, and are limited in application. Here, we describe an improved method for performing DI analyses. Accuracy of measurements was enhanced through modification of selection criteria for detecting neurite fragments, removal of image artifacts and non-neurite materials from images, and optimization of image contrast. Such enhancements were implemented into an ImageJ macro that enables rapid and fully automated DI analysis of multiple images. The macro features operations for automated removal of cell bodies from micrographs, thus expanding the application of DI analyses to use in experiments involving dissociated cultures. We present experimental findings supporting that, compared with the conventional method, the enhanced analysis method yields measurements with increased accuracy and requires significantly less time to perform. Furthermore, we demonstrate the utility of the method to investigate neurite degeneration in a cell culture model of PD by conducting an experiment revealing the effects of c-Jun N-terminal kinase (JNK) on neurite degeneration induced by oxidative stress in human mesencephalic cells. This improved analysis method may be used to gain novel insight into factors underlying neurite degeneration and the progression of neurodegenerative disorders.
Collapse
|
40
|
Lu Q, Botchway BOA, Zhang Y, Jin T, Liu X. SARM1 can be a potential therapeutic target for spinal cord injury. Cell Mol Life Sci 2022; 79:161. [PMID: 35224705 PMCID: PMC11072485 DOI: 10.1007/s00018-022-04195-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 01/26/2022] [Accepted: 02/05/2022] [Indexed: 01/03/2023]
Abstract
Injury to the spinal cord is devastating. Studies have implicated Wallerian degeneration as the main cause of axonal destruction in the wake of spinal cord injury. Therefore, the suppression of Wallerian degeneration could be beneficial for spinal cord injury treatment. Sterile alpha and armadillo motif-containing protein 1 (SARM1) is a key modulator of Wallerian degeneration, and its impediment can improve spinal cord injury to a significant degree. In this report, we analyze the various signaling domains of SARM1, the recent findings on Wallerian degeneration and its relation to axonal insults, as well as its connection to SARM1, the mitogen-activated protein kinase (MAPK) signaling, and the survival factor, nicotinamide mononucleotide adenylyltransferase 2 (NMNAT2). We then elaborate on the possible role of SARM1 in spinal cord injury and explicate how its obstruction could potentially alleviate the injury.
Collapse
Affiliation(s)
- Qicheng Lu
- Department of Histology and Embryology, Medical College, Shaoxing University, Shaoxing, China
| | - Benson O A Botchway
- Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou, China
| | - Yong Zhang
- Department of Histology and Embryology, Medical College, Shaoxing University, Shaoxing, China
| | - Tian Jin
- Department of Histology and Embryology, Medical College, Shaoxing University, Shaoxing, China
| | - Xuehong Liu
- Department of Histology and Embryology, Medical College, Shaoxing University, Shaoxing, China.
| |
Collapse
|
41
|
Li Y, Pazyra-Murphy MF, Avizonis D, de Sá Tavares Russo M, Tang S, Chen CY, Hsueh YP, Bergholz JS, Jiang T, Zhao JJ, Zhu J, Ko KW, Milbrandt J, DiAntonio A, Segal RA. Sarm1 activation produces cADPR to increase intra-axonal Ca++ and promote axon degeneration in PIPN. J Cell Biol 2022; 221:e202106080. [PMID: 34935867 PMCID: PMC8704956 DOI: 10.1083/jcb.202106080] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 10/17/2021] [Accepted: 12/07/2021] [Indexed: 12/23/2022] Open
Abstract
Cancer patients frequently develop chemotherapy-induced peripheral neuropathy (CIPN), a painful and long-lasting disorder with profound somatosensory deficits. There are no effective therapies to prevent or treat this disorder. Pathologically, CIPN is characterized by a "dying-back" axonopathy that begins at intra-epidermal nerve terminals of sensory neurons and progresses in a retrograde fashion. Calcium dysregulation constitutes a critical event in CIPN, but it is not known how chemotherapies such as paclitaxel alter intra-axonal calcium and cause degeneration. Here, we demonstrate that paclitaxel triggers Sarm1-dependent cADPR production in distal axons, promoting intra-axonal calcium flux from both intracellular and extracellular calcium stores. Genetic or pharmacologic antagonists of cADPR signaling prevent paclitaxel-induced axon degeneration and allodynia symptoms, without mitigating the anti-neoplastic efficacy of paclitaxel. Our data demonstrate that cADPR is a calcium-modulating factor that promotes paclitaxel-induced axon degeneration and suggest that targeting cADPR signaling provides a potential therapeutic approach for treating paclitaxel-induced peripheral neuropathy (PIPN).
Collapse
Affiliation(s)
- Yihang Li
- Department of Neurobiology, Harvard Medical School, Boston, MA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA
| | - Maria F. Pazyra-Murphy
- Department of Neurobiology, Harvard Medical School, Boston, MA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA
| | - Daina Avizonis
- Metabolomics Innovation Resource, Goodman Cancer Research Centre, McGill University, Montréal, Quebec, Canada
| | - Mariana de Sá Tavares Russo
- Metabolomics Innovation Resource, Goodman Cancer Research Centre, McGill University, Montréal, Quebec, Canada
| | - Sophia Tang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA
| | - Chiung-Ya Chen
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, Republic of China
| | - Yi-Ping Hsueh
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, Republic of China
| | - Johann S. Bergholz
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA
| | - Tao Jiang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA
| | - Jean J. Zhao
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA
| | - Jian Zhu
- Department of Genetics, Washington University School of Medicine, St. Louis, MO
| | - Kwang Woo Ko
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO
| | - Jeffrey Milbrandt
- Department of Genetics, Washington University School of Medicine, St. Louis, MO
- Needleman Center for Neurometabolism and Axonal Therapeutics, Washington University School of Medicine, St. Louis, MO
| | - Aaron DiAntonio
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO
- Needleman Center for Neurometabolism and Axonal Therapeutics, Washington University School of Medicine, St. Louis, MO
| | - Rosalind A. Segal
- Department of Neurobiology, Harvard Medical School, Boston, MA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA
| |
Collapse
|
42
|
Ji H, Sapar ML, Sarkar A, Wang B, Han C. Phagocytosis and self-destruction break down dendrites of Drosophila sensory neurons at distinct steps of Wallerian degeneration. Proc Natl Acad Sci U S A 2022; 119:e2111818119. [PMID: 35058357 PMCID: PMC8795528 DOI: 10.1073/pnas.2111818119] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 12/01/2021] [Indexed: 12/12/2022] Open
Abstract
After injury, severed dendrites and axons expose the "eat-me" signal phosphatidylserine (PS) on their surface while they break down. The degeneration of injured axons is controlled by a conserved Wallerian degeneration (WD) pathway, which is thought to activate neurite self-destruction through Sarm-mediated nicotinamide adenine dinucleotide (NAD+) depletion. While neurite PS exposure is known to be affected by genetic manipulations of NAD+, how the WD pathway coordinates both neurite PS exposure and self-destruction and whether PS-induced phagocytosis contributes to neurite breakdown in vivo remain unknown. Here, we show that in Drosophila sensory dendrites, PS exposure and self-destruction are two sequential steps of WD resulting from Sarm activation. Surprisingly, phagocytosis is the main driver of dendrite degeneration induced by both genetic NAD+ disruptions and injury. However, unlike neuronal Nmnat loss, which triggers PS exposure only and results in phagocytosis-dependent dendrite degeneration, injury activates both PS exposure and self-destruction as two redundant means of dendrite degeneration. Furthermore, the axon-death factor Axed is only partially required for self-destruction of injured dendrites, acting in parallel with PS-induced phagocytosis. Lastly, injured dendrites exhibit a unique rhythmic calcium-flashing that correlates with WD. Therefore, both NAD+-related general mechanisms and dendrite-specific programs govern PS exposure and self-destruction in injury-induced dendrite degeneration in vivo.
Collapse
Affiliation(s)
- Hui Ji
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853
| | - Maria L Sapar
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853
| | - Ankita Sarkar
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853
| | - Bei Wang
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853
| | - Chun Han
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853;
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853
| |
Collapse
|
43
|
Kayazawa T, Kuniyoshi K, Hatsukawa Y, Fujinami K, Yoshitake K, Tsunoda K, Shimojo H, Iwata T, Kusaka S. Clinical course of a Japanese girl with Leber congenital amaurosis associated with a novel nonsense pathogenic variant in NMNAT1: a case report and mini review. Ophthalmic Genet 2022; 43:400-408. [PMID: 35026968 DOI: 10.1080/13816810.2021.2023195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Leber congenital amaurosis (LCA), although rare, is one of the most severe forms of early-onset inherited retinal dystrophy (IRD). Here, we review the molecular genetics and phenotypic characteristics of patients with NMNAT1-associated IRD. The longitudinal clinical and molecular findings of a Japanese girl diagnosed with LCA associated with pathogenic variants in NMNAT1 c.648delG, (p.Trp216Ter*) and c.709C>T (p.Arg237Cys) have been described to highlight the salient clinical features of NMNAT1-associated IRD.
Collapse
Affiliation(s)
- Tomoyasu Kayazawa
- Department of Ophthalmology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Kazuki Kuniyoshi
- Department of Ophthalmology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Yoshikazu Hatsukawa
- Department of Ophthalmology, Osaka Women's and Children's Hospital, Osaka, Japan
| | - Kaoru Fujinami
- Laboratory of Visual Physiology, Division of Vision Research, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Tokyo, Japan.,Genetics, UCL Institute of Ophthalmology Associated with Moorfields Eye Hospital, London, UK.,Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Kazutoshi Yoshitake
- Division of Molecular and Cellular Biology, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Tokyo, Japan.,Graduate School of Agricultural and Life Science, Faculty of Agriculture, The University of Tokyo, Tokyo, Japan
| | - Kazushige Tsunoda
- Laboratory of Visual Physiology, Division of Vision Research, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Tokyo, Japan
| | - Hiroshi Shimojo
- Department of Ophthalmology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Takeshi Iwata
- Division of Molecular and Cellular Biology, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Tokyo, Japan
| | - Shunji Kusaka
- Department of Ophthalmology, Kindai University Faculty of Medicine, Osaka, Japan
| |
Collapse
|
44
|
Varadarajan SG, Hunyara JL, Hamilton NR, Kolodkin AL, Huberman AD. Central nervous system regeneration. Cell 2022; 185:77-94. [PMID: 34995518 PMCID: PMC10896592 DOI: 10.1016/j.cell.2021.10.029] [Citation(s) in RCA: 135] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 02/06/2023]
Abstract
Neurons of the mammalian central nervous system fail to regenerate. Substantial progress has been made toward identifying the cellular and molecular mechanisms that underlie regenerative failure and how altering those pathways can promote cell survival and/or axon regeneration. Here, we summarize those findings while comparing the regenerative process in the central versus the peripheral nervous system. We also highlight studies that advance our understanding of the mechanisms underlying neural degeneration in response to injury, as many of these mechanisms represent primary targets for restoring functional neural circuits.
Collapse
Affiliation(s)
| | - John L Hunyara
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Natalie R Hamilton
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Alex L Kolodkin
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Andrew D Huberman
- Department of Neurobiology, Stanford University, Stanford, CA 94305, USA; Department of Ophthalmology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
45
|
Llobet Rosell A, Paglione M, Gilley J, Kocia M, Perillo G, Gasparrini M, Cialabrini L, Raffaelli N, Angeletti C, Orsomando G, Wu PH, Coleman MP, Loreto A, Neukomm LJ. The NAD + precursor NMN activates dSarm to trigger axon degeneration in Drosophila. eLife 2022; 11:80245. [PMID: 36476387 PMCID: PMC9788811 DOI: 10.7554/elife.80245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 12/06/2022] [Indexed: 12/12/2022] Open
Abstract
Axon degeneration contributes to the disruption of neuronal circuit function in diseased and injured nervous systems. Severed axons degenerate following the activation of an evolutionarily conserved signaling pathway, which culminates in the activation of SARM1 in mammals to execute the pathological depletion of the metabolite NAD+. SARM1 NADase activity is activated by the NAD+ precursor nicotinamide mononucleotide (NMN). In mammals, keeping NMN levels low potently preserves axons after injury. However, it remains unclear whether NMN is also a key mediator of axon degeneration and dSarm activation in flies. Here, we demonstrate that lowering NMN levels in Drosophila through the expression of a newly generated prokaryotic NMN-Deamidase (NMN-D) preserves severed axons for months and keeps them circuit-integrated for weeks. NMN-D alters the NAD+ metabolic flux by lowering NMN, while NAD+ remains unchanged in vivo. Increased NMN synthesis by the expression of mouse nicotinamide phosphoribosyltransferase (mNAMPT) leads to faster axon degeneration after injury. We also show that NMN-induced activation of dSarm mediates axon degeneration in vivo. Finally, NMN-D delays neurodegeneration caused by loss of the sole NMN-consuming and NAD+-synthesizing enzyme dNmnat. Our results reveal a critical role for NMN in neurodegeneration in the fly, which extends beyond axonal injury. The potent neuroprotection by reducing NMN levels is similar to the interference with other essential mediators of axon degeneration in Drosophila.
Collapse
Affiliation(s)
- Arnau Llobet Rosell
- Department of Fundamental Neurosciences, University of LausanneLausanneSwitzerland
| | - Maria Paglione
- Department of Fundamental Neurosciences, University of LausanneLausanneSwitzerland
| | - Jonathan Gilley
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of CambridgeCambridgeUnited Kingdom
| | - Magdalena Kocia
- Department of Fundamental Neurosciences, University of LausanneLausanneSwitzerland
| | - Giulia Perillo
- Department of Genetic Medicine and Development, University of GenevaGenevaSwitzerland
| | - Massimiliano Gasparrini
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of MarcheAnconaItaly
| | - Lucia Cialabrini
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of MarcheAnconaItaly
| | - Nadia Raffaelli
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of MarcheAnconaItaly
| | - Carlo Angeletti
- Department of Clinical Sciences, Section of Biochemistry, Polytechnic University of MarcheAnconaItaly
| | - Giuseppe Orsomando
- Department of Clinical Sciences, Section of Biochemistry, Polytechnic University of MarcheAnconaItaly
| | - Pei-Hsuan Wu
- Department of Genetic Medicine and Development, University of GenevaGenevaSwitzerland
| | - Michael P Coleman
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of CambridgeCambridgeUnited Kingdom
| | - Andrea Loreto
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of CambridgeCambridgeUnited Kingdom
| | - Lukas Jakob Neukomm
- Department of Fundamental Neurosciences, University of LausanneLausanneSwitzerland
| |
Collapse
|
46
|
Loreto A, Angeletti C, Gu W, Osborne A, Nieuwenhuis B, Gilley J, Merlini E, Arthur-Farraj P, Amici A, Luo Z, Hartley-Tassell L, Ve T, Desrochers LM, Wang Q, Kobe B, Orsomando G, Coleman MP. Neurotoxin-mediated potent activation of the axon degeneration regulator SARM1. eLife 2021; 10:72823. [PMID: 34870595 PMCID: PMC8758145 DOI: 10.7554/elife.72823] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 12/05/2021] [Indexed: 11/13/2022] Open
Abstract
Axon loss underlies symptom onset and progression in many neurodegenerative disorders. Axon degeneration in injury and disease is promoted by activation of the NAD-consuming enzyme SARM1. Here, we report a novel activator of SARM1, a metabolite of the pesticide and neurotoxin vacor. Removal of SARM1 completely rescues mouse neurons from vacor-induced neuron and axon death in vitro and in vivo. We present the crystal structure of the Drosophila SARM1 regulatory domain complexed with this activator, the vacor metabolite VMN, which as the most potent activator yet known is likely to support drug development for human SARM1 and NMNAT2 disorders. This study indicates the mechanism of neurotoxicity and pesticide action by vacor, raises important questions about other pyridines in wider use today, provides important new tools for drug discovery, and demonstrates that removing SARM1 can robustly block programmed axon death induced by toxicity as well as genetic mutation.
Collapse
Affiliation(s)
- Andrea Loreto
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Carlo Angeletti
- Department of Clinical Sciences (DISCO), Section of Biochemistry, Polytechnic University of Marche, Ancona, Italy
| | - Weixi Gu
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Australia
| | - Andrew Osborne
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Bart Nieuwenhuis
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Jonathan Gilley
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Elisa Merlini
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Peter Arthur-Farraj
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Adolfo Amici
- Department of Clinical Sciences (DISCO), Section of Biochemistry, Polytechnic University of Marche, Ancona, Italy
| | - Zhenyao Luo
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Australia
| | | | - Thomas Ve
- Institute for Glycomics, Griffith University, Southport, Australia
| | - Laura M Desrochers
- Neuroscience, BioPharmaceuticals R and D, AstraZeneca, Waltham, United States
| | - Qi Wang
- Neuroscience, BioPharmaceuticals R and D, AstraZeneca, Waltham, United States
| | - Bostjan Kobe
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Australia
| | - Giuseppe Orsomando
- Department of Clinical Sciences (DISCO), Section of Biochemistry, Polytechnic University of Marche, Ancona, Italy
| | - Michael P Coleman
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
47
|
Ko KW, Devault L, Sasaki Y, Milbrandt J, DiAntonio A. Live imaging reveals the cellular events downstream of SARM1 activation. eLife 2021; 10:e71148. [PMID: 34779400 PMCID: PMC8612704 DOI: 10.7554/elife.71148] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 11/12/2021] [Indexed: 12/15/2022] Open
Abstract
SARM1 is an inducible NAD+ hydrolase that triggers axon loss and neuronal cell death in the injured and diseased nervous system. While SARM1 activation and enzyme function are well defined, the cellular events downstream of SARM1 activity but prior to axonal demise are much less well understood. Defects in calcium, mitochondria, ATP, and membrane homeostasis occur in injured axons, but the relationships among these events have been difficult to disentangle because prior studies analyzed large collections of axons in which cellular events occur asynchronously. Here, we used live imaging of mouse sensory neurons with single axon resolution to investigate the cellular events downstream of SARM1 activity. Our studies support a model in which SARM1 NADase activity leads to an ordered sequence of events from loss of cellular ATP, to defects in mitochondrial movement and depolarization, followed by calcium influx, externalization of phosphatidylserine, and loss of membrane permeability prior to catastrophic axonal self-destruction.
Collapse
Affiliation(s)
- Kwang Woo Ko
- Washington University School of MedicineSt LouisUnited States
| | - Laura Devault
- Washington University School of MedicineSt LouisUnited States
| | - Yo Sasaki
- Genetics, Washington University School of MedicineSt LouisUnited States
| | - Jeffrey Milbrandt
- Genetics, Hope Center for Neurological Disorders, Washington University School of MedicineSt LouisUnited States
| | - Aaron DiAntonio
- Developmental Biology, Needleman Center for Neurometabolism and Axonal Therapeutics, Washington University School of MedicineSt LouisUnited States
| |
Collapse
|
48
|
Lundt S, Ding S. NAD + Metabolism and Diseases with Motor Dysfunction. Genes (Basel) 2021; 12:1776. [PMID: 34828382 PMCID: PMC8625820 DOI: 10.3390/genes12111776] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 12/12/2022] Open
Abstract
Neurodegenerative diseases result in the progressive deterioration of the nervous system, with motor and cognitive impairments being the two most observable problems. Motor dysfunction could be caused by motor neuron diseases (MNDs) characterized by the loss of motor neurons, such as amyotrophic lateral sclerosis and Charcot-Marie-Tooth disease, or other neurodegenerative diseases with the destruction of brain areas that affect movement, such as Parkinson's disease and Huntington's disease. Nicotinamide adenine dinucleotide (NAD+) is one of the most abundant metabolites in the human body and is involved with numerous cellular processes, including energy metabolism, circadian clock, and DNA repair. NAD+ can be reversibly oxidized-reduced or directly consumed by NAD+-dependent proteins. NAD+ is synthesized in cells via three different paths: the de novo, Preiss-Handler, or NAD+ salvage pathways, with the salvage pathway being the primary producer of NAD+ in mammalian cells. NAD+ metabolism is being investigated for a role in the development of neurodegenerative diseases. In this review, we discuss cellular NAD+ homeostasis, looking at NAD+ biosynthesis and consumption, with a focus on the NAD+ salvage pathway. Then, we examine the research, including human clinical trials, focused on the involvement of NAD+ in MNDs and other neurodegenerative diseases with motor dysfunction.
Collapse
Affiliation(s)
- Samuel Lundt
- Dalton Cardiovascular Research Center, University of Missouri-Columbia, Columbia, MO 65211, USA;
- Interdisciplinary Neuroscience Program, University of Missouri-Columbia, Columbia, MO 65211, USA
| | - Shinghua Ding
- Dalton Cardiovascular Research Center, University of Missouri-Columbia, Columbia, MO 65211, USA;
- Department of Biomedical, Biological and Chemical Engineering, University of Missouri-Columbia, Columbia, MO 65211, USA
| |
Collapse
|
49
|
Sasaki Y, Zhu J, Shi Y, Gu W, Kobe B, Ve T, DiAntonio A, Milbrandt J. Nicotinic acid mononucleotide is an allosteric SARM1 inhibitor promoting axonal protection. Exp Neurol 2021; 345:113842. [PMID: 34403688 PMCID: PMC8571713 DOI: 10.1016/j.expneurol.2021.113842] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/09/2021] [Accepted: 08/12/2021] [Indexed: 12/31/2022]
Abstract
SARM1 is an inducible NAD+ hydrolase that is the central executioner of pathological axon loss. Recently, we elucidated the molecular mechanism of SARM1 activation, demonstrating that SARM1 is a metabolic sensor regulated by the levels of NAD+ and its precursor, nicotinamide mononucleotide (NMN), via their competitive binding to an allosteric site within the SARM1 N-terminal ARM domain. In healthy neurons with abundant NAD+, binding of NAD+ blocks access of NMN to this allosteric site. However, with injury or disease the levels of the NAD+ biosynthetic enzyme NMNAT2 drop, increasing the NMN/ NAD+ ratio and thereby promoting NMN binding to the SARM1 allosteric site, which in turn induces a conformational change activating the SARM1 NAD+ hydrolase. Hence, NAD+ metabolites both regulate the activation of SARM1 and, in turn, are regulated by the SARM1 NAD+ hydrolase. This dual upstream and downstream role for NAD+ metabolites in SARM1 function has hindered mechanistic understanding of axoprotective mechanisms that manipulate the NAD+ metabolome. Here we reevaluate two methods that potently block axon degeneration via modulation of NAD+ related metabolites, 1) the administration of the NMN biosynthesis inhibitor FK866 in conjunction with the NAD+ precursor nicotinic acid riboside (NaR) and 2) the neuronal expression of the bacterial enzyme NMN deamidase. We find that these approaches not only lead to a decrease in the levels of the SARM1 activator NMN, but also an increase in the levels of the NAD+ precursor nicotinic acid mononucleotide (NaMN). We show that NaMN inhibits SARM1 activation, and demonstrate that this NaMN-mediated inhibition is important for the long-term axon protection induced by these treatments. Analysis of the NaMN-ARM domain co-crystal structure shows that NaMN competes with NMN for binding to the SARM1 allosteric site and promotes the open, autoinhibited configuration of SARM1 ARM domain. Together, these results demonstrate that the SARM1 allosteric pocket can bind a diverse set of metabolites including NMN, NAD+, and NaMN to monitor cellular NAD+ homeostasis and regulate SARM1 NAD+ hydrolase activity. The relative promiscuity of the allosteric site may enable the development of potent pharmacological inhibitors of SARM1 activation for the treatment of neurodegenerative disorders.
Collapse
Affiliation(s)
- Yo Sasaki
- Washington University School of Medicine in Saint Louis, Department of Genetics, St. Louis, MO, USA; Needleman Center for Neurometabolism and Axonal Therapeutics, USA.
| | - Jian Zhu
- Washington University School of Medicine in Saint Louis, Department of Genetics, St. Louis, MO, USA; Needleman Center for Neurometabolism and Axonal Therapeutics, USA
| | - Yun Shi
- Institute for Glycomics, Griffith University, Southport, QLD 4222, Australia
| | - Weixi Gu
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, QLD 4072, Australia
| | - Bostjan Kobe
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, QLD 4072, Australia
| | - Thomas Ve
- Institute for Glycomics, Griffith University, Southport, QLD 4222, Australia
| | - Aaron DiAntonio
- Washington University School of Medicine in Saint Louis, Department of Developmental Biology, St. Louis, MO, USA; Needleman Center for Neurometabolism and Axonal Therapeutics, USA
| | - Jeffrey Milbrandt
- Washington University School of Medicine in Saint Louis, Department of Genetics, St. Louis, MO, USA; Needleman Center for Neurometabolism and Axonal Therapeutics, USA
| |
Collapse
|
50
|
Wu T, Zhu J, Strickland A, Ko KW, Sasaki Y, Dingwall CB, Yamada Y, Figley MD, Mao X, Neiner A, Bloom AJ, DiAntonio A, Milbrandt J. Neurotoxins subvert the allosteric activation mechanism of SARM1 to induce neuronal loss. Cell Rep 2021; 37:109872. [PMID: 34686345 PMCID: PMC8638332 DOI: 10.1016/j.celrep.2021.109872] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/06/2021] [Accepted: 09/29/2021] [Indexed: 10/20/2022] Open
Abstract
SARM1 is an inducible TIR-domain NAD+ hydrolase that mediates pathological axon degeneration. SARM1 is activated by an increased ratio of NMN to NAD+, which competes for binding to an allosteric activating site. When NMN binds, the TIR domain is released from autoinhibition, activating its NAD+ hydrolase activity. The discovery of this allosteric activating site led us to hypothesize that other NAD+-related metabolites might activate SARM1. Here, we show the nicotinamide analog 3-acetylpyridine (3-AP), first identified as a neurotoxin in the 1940s, is converted to 3-APMN, which activates SARM1 and induces SARM1-dependent NAD+ depletion, axon degeneration, and neuronal death. In mice, systemic treatment with 3-AP causes rapid SARM1-dependent death, while local application to the peripheral nerve induces SARM1-dependent axon degeneration. We identify 2-aminopyridine as another SARM1-dependent neurotoxin. These findings identify SARM1 as a candidate mediator of environmental neurotoxicity and suggest that SARM1 agonists could be developed into selective agents for neurolytic therapy.
Collapse
Affiliation(s)
- Tong Wu
- Department of Genetics, Washington University Medical School, St. Louis, MO 63110, USA; Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Jian Zhu
- Department of Genetics, Washington University Medical School, St. Louis, MO 63110, USA; Needleman Center for Neurometabolism and Axonal Therapeutics, Washington University School of Medicine in Saint Louis, St. Louis, MO 63114, USA
| | - Amy Strickland
- Department of Genetics, Washington University Medical School, St. Louis, MO 63110, USA
| | - Kwang Woo Ko
- Department of Developmental Biology, Washington University Medical School, St. Louis, MO 63110, USA
| | - Yo Sasaki
- Department of Genetics, Washington University Medical School, St. Louis, MO 63110, USA
| | - Caitlin B Dingwall
- Department of Genetics, Washington University Medical School, St. Louis, MO 63110, USA
| | - Yurie Yamada
- Department of Genetics, Washington University Medical School, St. Louis, MO 63110, USA
| | - Matthew D Figley
- Department of Developmental Biology, Washington University Medical School, St. Louis, MO 63110, USA
| | - Xianrong Mao
- Department of Genetics, Washington University Medical School, St. Louis, MO 63110, USA
| | - Alicia Neiner
- Department of Genetics, Washington University Medical School, St. Louis, MO 63110, USA
| | - A Joseph Bloom
- Department of Genetics, Washington University Medical School, St. Louis, MO 63110, USA; Needleman Center for Neurometabolism and Axonal Therapeutics, Washington University School of Medicine in Saint Louis, St. Louis, MO 63114, USA
| | - Aaron DiAntonio
- Department of Developmental Biology, Washington University Medical School, St. Louis, MO 63110, USA; Needleman Center for Neurometabolism and Axonal Therapeutics, Washington University School of Medicine in Saint Louis, St. Louis, MO 63114, USA.
| | - Jeffrey Milbrandt
- Department of Genetics, Washington University Medical School, St. Louis, MO 63110, USA; Needleman Center for Neurometabolism and Axonal Therapeutics, Washington University School of Medicine in Saint Louis, St. Louis, MO 63114, USA.
| |
Collapse
|