1
|
Kaneko K, Lu W, Xu Y, Morozov A, Fukuda M. The small GTPase Rap1 in POMC neurons regulates leptin actions and glucose metabolism. Mol Metab 2025; 95:102117. [PMID: 40024570 PMCID: PMC11938153 DOI: 10.1016/j.molmet.2025.102117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 02/16/2025] [Accepted: 02/24/2025] [Indexed: 03/04/2025] Open
Abstract
The hypothalamic leptin-proopiomelanocortin (POMC) pathway is critical for regulating metabolism. POMC neurons in the arcuate nucleus respond to leptin and play a pivotal role in mediating energy and glucose balance. However, during diet-induced obesity (DIO), these neurons often develop resistance to exogenous leptin. Recently, the small GTPase Rap1 has been implicated as an inhibitor of neuronal leptin signaling; however, its specific role within POMC neurons remains unexplored. We generated tamoxifen-inducible, POMC neuron-specific Rap1 knockout mice to selectively delete both Rap1a and Rap1b isoforms in POMC neurons. By analyzing these mice through metabolic phenotyping, immunohistochemistry, and biochemical assays, we show that deleting Rap1a and Rap1b in POMC neurons prior to exposing the mice to a high-fat diet significantly prevented weight gain compared to control mice. Furthermore, while DIO mice with intact Rap1 failed to respond to exogenous leptin, genetically removing the Rap1 genes from DIO mice enhanced the ability of exogenous leptin to induce anorectic effects. Remarkably, acute deletion of Rap1 in POMC neurons of already obese mice improved hyperglycemia within one week, with minimal effect on body weight. This glycemic improvement was accompanied by improved glucose tolerance, enhanced insulin sensitivity, and improved cellular insulin signaling. Collectively, these findings suggest that loss of Rap1 in POMC neurons enhances leptin sensitivity, acutely improves glucose balance, and may offer a potential strategy to lower hyperglycemia in dietary obesity.
Collapse
Affiliation(s)
- Kentaro Kaneko
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA; Department of Agricultural Chemistry, School of Agriculture, Meiji University, Kanagawa, Japan
| | - Weisheng Lu
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Yong Xu
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Alexei Morozov
- Fralin Biomedical Research Institute at VTC, Roanoke, VA, 24016, USA
| | - Makoto Fukuda
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
2
|
Erdogan CS, Yavuz Y, Ozgun HB, Bilgin VA, Agus S, Kalkan UF, Yilmaz B. Fam163a knockdown and mitochondrial stress in the arcuate nucleus of hypothalamus reduce AgRP neuron activity and differentially regulate mitochondrial dynamics in mice. Acta Physiol (Oxf) 2025; 241:e70020. [PMID: 40071489 PMCID: PMC11897941 DOI: 10.1111/apha.70020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/21/2025] [Accepted: 02/21/2025] [Indexed: 03/15/2025]
Abstract
AIM Mitochondria play key roles in neuronal activity, particularly in modulating agouti-related protein (AgRP) and proopiomelanocortin (POMC) neurons in the arcuate nucleus of the hypothalamus (ARC), which regulates food intake. FAM163A, a newly identified protein, is suggested to be part of the mitochondrial proteome, though its functions remain largely unknown. This study aimed to investigate the effects of Fam163a knockdown and mitochondrial dysfunction on food intake, AgRP neuron activity, and mitochondrial function in the hypothalamus. METHODS Male C57BL/6 and AgRP-Cre mice received intracranial injections of either Fam163a shRNA, rotenone, or appropriate controls. Behavioral assessments included food intake, locomotor activity, and anxiety-like behaviors. qRT-PCR was used to quantify the expression of the genes related to food intake, mitochondrial biogenesis, dynamics, and oxidative stress. Blood glucose, serum insulin, and leptin levels were measured. Electrophysiological patch-clamp recordings were used to assess the AgRP neuronal activity. RESULTS Fam163a knockdown in the ARC increased the cumulative food intake in short term (first 7 days) without altering the 25-day food intake and significantly increased the Pomc mRNA expression. Fam163a silencing significantly reduced leptin levels. Both Fam163a knockdown and rotenone significantly reduced the firing frequency of AgRP neurons. Neither Fam163a silencing nor rotenone altered locomotor or anxiety-like behaviors. Fam163a knockdown and rotenone differentially altered the expression of mitochondrial biogenesis-, mitophagy-, fusion-, and oxidative stress-related genes. CONCLUSION Hypothalamic FAM163A may play a role in modulating AgRP neuronal activity through regulating mitochondrial biogenesis, dynamics, and redox state. These findings provide insights into the role of FAM163A and mitochondrial stress in the central regulation of metabolism.
Collapse
Affiliation(s)
| | - Yavuz Yavuz
- Department of PhysiologyFaculty of Medicine, Yeditepe UniversityIstanbulTurkey
- Department of Neuroscience and PharmacologyThe University of Iowa Carver College of MedicineIowa CityUSA
| | - Huseyin Bugra Ozgun
- Department of PhysiologyFaculty of Medicine, Yeditepe UniversityIstanbulTurkey
| | - Volkan Adem Bilgin
- Department of PhysiologyFaculty of Medicine, Yeditepe UniversityIstanbulTurkey
| | - Sami Agus
- Department of PhysiologyFaculty of Medicine, Yeditepe UniversityIstanbulTurkey
- Department of PhysiologyAugusta UniversityAugustaGeorgiaUSA
| | - Ugur Faruk Kalkan
- Department of PhysiologyFaculty of Medicine, Yeditepe UniversityIstanbulTurkey
| | - Bayram Yilmaz
- Department of PhysiologyFaculty of Medicine, Yeditepe UniversityIstanbulTurkey
- Department of Physiology, Faculty of MedicineDokuz Eylül UniversityIzmirTurkey
- Izmir Biomedicine and Genome CenterIzmirTurkey
| |
Collapse
|
3
|
Asgari R, Caceres-Valdiviezo M, Wu S, Hamel L, Humber BE, Agarwal SM, Fletcher PJ, Fulton S, Hahn MK, Pereira S. Regulation of energy balance by leptin as an adiposity signal and modulator of the reward system. Mol Metab 2025; 91:102078. [PMID: 39615837 PMCID: PMC11696864 DOI: 10.1016/j.molmet.2024.102078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/02/2024] [Accepted: 11/26/2024] [Indexed: 12/08/2024] Open
Abstract
BACKGROUND Leptin is an adipose tissue-derived hormone that plays a crucial role in body weight, appetite, and behaviour regulation. Leptin controls energy balance as an indicator of adiposity levels and as a modulator of the reward system, which is associated with liking palatable foods. Obesity is characterized by expanded adipose tissue mass and consequently, elevated concentrations of leptin in blood. Leptin's therapeutic potential for most forms of obesity is hampered by leptin resistance and a narrow dose-response window. SCOPE OF REVIEW This review describes the current knowledge of the brain regions and intracellular pathways through which leptin promotes negative energy balance and restrains neural circuits affecting food reward. We also describe mechanisms that hinder these biological responses in obesity and highlight potential therapeutic interventions. MAJOR CONCLUSIONS Additional research is necessary to understand how pathways engaged by leptin in different brain regions are interconnected in the control of energy balance.
Collapse
Affiliation(s)
| | - Maria Caceres-Valdiviezo
- Centre for Addiction and Mental Health, Toronto, ON, Canada; Laboratory of Omic Sciences, School of Medicine, Universidad de Especialidades Espíritu Santo, Samborondón, Ecuador
| | - Sally Wu
- Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Laurie Hamel
- Centre for Addiction and Mental Health, Toronto, ON, Canada
| | | | - Sri Mahavir Agarwal
- Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Banting & Best Diabetes Centre, University of Toronto, Toronto, ON, Canada
| | - Paul J Fletcher
- Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Department of Psychology, University of Toronto, Toronto, ON, Canada
| | - Stephanie Fulton
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal Diabetes Research Center, Montréal, QC, Canada; Department of Nutrition, Université de Montréal, QC, Canada
| | - Margaret K Hahn
- Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Banting & Best Diabetes Centre, University of Toronto, Toronto, ON, Canada; Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada; Department of Pharmacology, University of Toronto, Toronto, ON, Canada.
| | - Sandra Pereira
- Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Physiology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
4
|
Azuma D, Penner Y, Kaneko-Tarui T, Mahmoud T, Breeze JL, Rodday A, O’Tierney-Ginn P, Maron JL. Neonatal body composition, salivary feeding gene expression, and feeding outcomes in infants of diabetic mothers. FRONTIERS IN CLINICAL DIABETES AND HEALTHCARE 2024; 5:1501805. [PMID: 39749266 PMCID: PMC11693610 DOI: 10.3389/fcdhc.2024.1501805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 11/25/2024] [Indexed: 01/04/2025]
Abstract
Introduction Infants of diabetic mothers (IDMs) may exhibit decreased oral intake, requiring nasogastric feedings and prolonged hospitalization. The objective of this study was to explore whether saliva serves as an informative biofluid for detecting expression of hunger signaling and energy homeostasis modulator genes and to perform exploratory analyses examining expression profiles, body composition, and feeding outcomes in late preterm and term IDMs and infants born to mothers with normoglycemia during pregnancy. Methods In this prospective cohort pilot study, infants born at ≥ 35 weeks' gestation to mothers with gestational or type II diabetes (IDM cohort) and normoglycemic mothers (control cohort) were recruited. The presence of known hunger signaling genes: 5'AMP-activated protein kinase (PRKAA2) and neuropeptide Y2 receptor (NPY2R); adipokines: leptin (LEP) and adiponectin (ADIPOQ); and energy homeostasis regulators: ghrelin (GHRL) and proopiomelanocortin (POMC) in neonatal saliva was determined with RT-qPCR and compared between cohorts. Body composition was assessed via skinfold measurements and compared between cohorts. Feeding outcomes were recorded. Exploratory analyses were performed examining associations between infant body composition, energy homeostasis and hunger signaling gene expression. Results Twenty-three infants in the IDM cohort and 22 infants in the control cohort were recruited. LEP and ADIPOQ were not reliably detected in neonatal saliva in either cohort. PRKAA2, GHRL and NPY2R were less likely to be detected in the IDM cohort, whereas POMC was more likely to be detected in the IDM cohort. Infants in the IDM cohort had greater adiposity compared to infants in the normoglycemia cohort. Only 3 IDMs had documented poor feeding; no infant in the control group struggled to feed. In exploring associations between hunger signaling gene expression with energy homeostasis gene expression and body composition, the odds of detecting salivary NPY2R expression decreased as fat mass increased, and the odds of detecting PRKAA2 expression increased in the presence of GHRL expression. Discussion Non-invasive assessment of hunger signaling and energy homeostasis gene expression is possible through neonatal salivary analysis. This pilot study lays the foundation for a larger scale study to further investigate the link between in utero exposure to diabetes with body composition and regulation of appetite.
Collapse
Affiliation(s)
- Dara Azuma
- Mother Infant Research Institute at Tufts Medical Center, Boston, MA, United States
| | - Yvette Penner
- Frances Stern Nutrition Center at Tufts Medical Center, Boston, MA, United States
| | - Tomoko Kaneko-Tarui
- Mother Infant Research Institute at Tufts Medical Center, Boston, MA, United States
| | - Taysir Mahmoud
- Mother Infant Research Institute at Tufts Medical Center, Boston, MA, United States
| | - Janis L. Breeze
- Clinical and Translational Science Program, Tufts University Graduate School of Biomedical Sciences, Boston, MA, United States
| | - Angie Rodday
- Clinical and Translational Science Program, Tufts University Graduate School of Biomedical Sciences, Boston, MA, United States
| | | | - Jill L. Maron
- Mother Infant Research Institute at Tufts Medical Center, Boston, MA, United States
| |
Collapse
|
5
|
Xiao Y, Wu W, Liu F, Jin L, Jia Y, Qiao N, Cai K, Ru S, Cao L, Gui S. Inflammatory mediator contributes to leptin resistance and obesity in craniopharyngioma. FASEB J 2024; 38:e70242. [PMID: 39655658 PMCID: PMC11629452 DOI: 10.1096/fj.202402216rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/24/2024] [Accepted: 11/27/2024] [Indexed: 12/13/2024]
Abstract
Obesity presents a significant challenge in managing patients with craniopharyngioma (CP). Cyst fluid (CF), rich in inflammatory mediators, is implicated in CP-related obesity, though the precise mechanism remains unclear. This study investigated the impact of CF or C-X-C motif chemokine ligand-1 (CXCL1) injections on body weight, Lee index, plasma lipid profiles, hepatic lipid accumulation, leptin levels, NF-κB pathway, the suppressor of cytokine signaling 3 (SOCS3) expression, and leptin sensitivity in rats. Bioinformatics was employed to identify differentially expressed genes (DEGs) between CF/CXCL1-treated and control SY5Y cells, as well as to confirm enriched pathways. Western blotting was used for experimental validation, including the effects of sodium salicylate (SS) on leptin sensitivity in SY5Y cells. Injecting CF or CXCL1 into the brain, without hypothalamic damage, led to increased body weight, Lee index, and hepatic lipid accumulation in rats, alongside elevated fasting blood glucose, triglycerides, and total cholesterol, while high-density lipoprotein cholesterol levels decreased. Additionally, CF and CXCL1 could induce elevated leptin levels, a higher leptin-to-body weight ratio, and resistance to exogenous leptin by activating the NF-κB pathway and upregulating the expression of SOCS3 in rats. Further validation confirmed that CF and CXCL1 suppress leptin signaling by activating the NF-κB pathway and upregulating SOCS3. Moreover, SS mitigated the inhibitory effects of CF or CXCL1 on leptin signaling, preserving leptin sensitivity in SY5Y cells. These results highlight the obesogenic role of CF and CXCL1, offering insights into the development of morbid obesity through inflammatory factor-mediated leptin resistance, independent of hypothalamic damage. SS may serve as a promising therapeutic approach for CP-associated obesity, though additional clinical studies are necessary to confirm its efficacy.
Collapse
Affiliation(s)
- Youchao Xiao
- Department of NeurosurgeryThe First Affiliated Hospital of Ningbo UniversityZhejiangChina
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Wentao Wu
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Fangzheng Liu
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Lu Jin
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Yanfei Jia
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Ning Qiao
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Kefan Cai
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Siming Ru
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Lei Cao
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Songbai Gui
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| |
Collapse
|
6
|
Zhang Z, He Z, Pan J, Yuan M, Lang Y, Wei X, Zhang C. The interaction of BDNF with estrogen in the development of hypertension and obesity, particularly during menopause. Front Endocrinol (Lausanne) 2024; 15:1384159. [PMID: 39655343 PMCID: PMC11625588 DOI: 10.3389/fendo.2024.1384159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 11/05/2024] [Indexed: 12/12/2024] Open
Abstract
The expression of BDNF in both neuronal and non-neuronal cells is influenced by various stimuli, including prenatal developmental factors and postnatal conditions such as estrogens, dietary habits, and lifestyle factors like obesity, blood pressure, and aging. Central BDNF plays a crucial role in modulating how target tissues respond to these stimuli, influencing the pathogenesis of hypertension, mitigating obesity, and protecting neurons from aging. Thus, BDNF serves as a dynamic mediator of environmental influences, reflecting an individual's unique history of exposure. Estrogens, on the other hand, regulate various processes to maintain overall physiological well-being. Through nuclear estrogen receptors (ERα, ERβ) and the membrane estrogen receptor (GPER1), estrogens modulate transcriptional processes and signaling events that regulate the expression of target genes, such as ERα, components of the renin-angiotensin system (RAS), and hormone-sensitive lipase. Estrogens are instrumental in maintaining the set point for blood pressure and energy balance. BDNF and estrogens work cooperatively to prevent obesity by favoring lipolysis, and counteractively regulate blood pressure to adapt to the environment. Estrogen deficiency leads to menopause in women with low central BDNF level. This review delves into the complex mechanisms involving BDNF and estrogen, especially in the context of hypertension and obesity, particularly among postmenopausal women. The insights gained aim to inform the development of comprehensive therapeutic strategies for these prevalent syndromes affecting approximately 68% of adults.
Collapse
Affiliation(s)
- Zhongming Zhang
- Zhang Zhongjing College of Chinese Medicine, Henan Key Laboratory of Zhang Zhongjing’s Formulas for Immunoregulation, Nanyang Institute of Technology, Nanyang, Henan, China
- School of Medicine, Zhengzhou University of Industrial Technology, Xinzheng, Henan, China
| | - Ziyi He
- Zhang Zhongjing College of Chinese Medicine, Henan Key Laboratory of Zhang Zhongjing’s Formulas for Immunoregulation, Nanyang Institute of Technology, Nanyang, Henan, China
| | - Jing Pan
- The First Clinical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Minghui Yuan
- Zhang Zhongjing College of Chinese Medicine, Henan Key Laboratory of Zhang Zhongjing’s Formulas for Immunoregulation, Nanyang Institute of Technology, Nanyang, Henan, China
| | - Yini Lang
- Zhang Zhongjing College of Chinese Medicine, Henan Key Laboratory of Zhang Zhongjing’s Formulas for Immunoregulation, Nanyang Institute of Technology, Nanyang, Henan, China
| | - Xiaomeng Wei
- School of Medicine, Zhengzhou University of Industrial Technology, Xinzheng, Henan, China
| | - Chaoyun Zhang
- Zhang Zhongjing College of Chinese Medicine, Henan Key Laboratory of Zhang Zhongjing’s Formulas for Immunoregulation, Nanyang Institute of Technology, Nanyang, Henan, China
| |
Collapse
|
7
|
Mahishi D, Agrawal N, Jiang W, Yapici N. From Mammals to Insects: Exploring the Genetic and Neural Basis of Eating Behavior. Annu Rev Genet 2024; 58:455-485. [PMID: 39585905 DOI: 10.1146/annurev-genet-111523-102202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Obesity and anorexia are life-threatening diseases that are still poorly understood at the genetic and neuronal levels. Patients suffering from these conditions experience disrupted regulation of food consumption, leading to extreme weight gain or loss and, in severe situations, death from metabolic dysfunction. Despite the development of various behavioral and pharmacological interventions, current treatments often yield limited and short-lived success. To address this, a deeper understanding of the genetic and neural mechanisms underlying food perception and appetite regulation is essential for identifying new drug targets and developing more effective treatment methods. This review summarizes the progress of past research in understanding the genetic and neural mechanisms controlling food consumption and appetite regulation, focusing on two key model organisms: the fruit fly Drosophila melanogaster and the mouse Mus musculus. These studies investigate how the brain senses energy and nutrient deficiency, how sensory signals trigger appetitive behaviors, and how food intake is regulated through interconnected neural circuits in the brain.
Collapse
Affiliation(s)
- Deepthi Mahishi
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York, USA;
| | - Naman Agrawal
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York, USA;
| | - Wenshuai Jiang
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York, USA;
| | - Nilay Yapici
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York, USA;
| |
Collapse
|
8
|
Mao H, Kim GH, Pan L, Qi L. Regulation of leptin signaling and diet-induced obesity by SEL1L-HRD1 ER-associated degradation in POMC expressing neurons. Nat Commun 2024; 15:8435. [PMID: 39343970 PMCID: PMC11439921 DOI: 10.1038/s41467-024-52743-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 09/19/2024] [Indexed: 10/01/2024] Open
Abstract
Endoplasmic reticulum (ER) homeostasis in the hypothalamus has been implicated in the pathogenesis of diet-induced obesity (DIO) and type 2 diabetes; however, the underlying molecular mechanism remain vague and debatable. Here we report that SEL1L-HRD1 protein complex of the highly conserved ER-associated protein degradation (ERAD) machinery in POMC-expressing neurons ameliorates diet-induced obesity and its associated complications, partly by regulating the turnover of the long isoform of Leptin receptors (LepRb). Loss of SEL1L in POMC-expressing neurons attenuates leptin signaling and predisposes mice to HFD-associated pathologies including fatty liver, glucose intolerance, insulin and leptin resistance. Mechanistically, nascent LepRb, both wildtype and disease-associated Cys604Ser variant, are misfolding prone and bona fide substrates of SEL1L-HRD1 ERAD. In the absence of SEL1L-HRD1 ERAD, LepRb are largely retained in the ER, in an ER stress-independent manner. This study uncovers an important role of SEL1L-HRD1 ERAD in the pathogenesis of central leptin resistance and leptin signaling.
Collapse
Affiliation(s)
- Hancheng Mao
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, 48105, USA
| | - Geun Hyang Kim
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, 48105, USA
- Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, New York, NY, 10591, USA
| | - Linxiu Pan
- Department of Molecular Physiology and Biological Physics, University of Virginia, School of Medicine, Charlottesville, VA, 22903, USA
| | - Ling Qi
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, 48105, USA.
- Department of Molecular Physiology and Biological Physics, University of Virginia, School of Medicine, Charlottesville, VA, 22903, USA.
| |
Collapse
|
9
|
Liu Y, Wang X, Li G, Chen S, Jia H, Dai J, He D. Investigating the Impact of Fasting and Refeeding on Blood Biochemical Indicators and Transcriptional Profiles in the Hypothalamus and Subcutaneous Adipose Tissue in Geese. Animals (Basel) 2024; 14:2746. [PMID: 39335335 PMCID: PMC11428393 DOI: 10.3390/ani14182746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/14/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
Fasting and refeeding systems can cause significant short-term fluctuations in nutrient and energy levels, triggering adaptive physiological responses in animals. This study examines the effects of fasting and refeeding on blood biochemical indicators and transcriptional profiles in the hypothalamus and subcutaneous adipose tissue of geese. Biochemical assays reveal that fasting significantly increases levels of free fatty acids and glucagon, while reducing concentrations of triglycerides, leptin, and insulin. Transcriptomic analyses identify a complex transcriptional response in both the hypothalamus and subcutaneous adipose tissue, affecting several metabolic pathways and key genes associated with feed intake and energy metabolism. In subcutaneous adipose tissue, fasting downregulates genes involved in fatty acid synthesis (LPL, SCD, and ACSL1) and upregulates PLIN2, a gene promoting lipid droplet degradation. Fasting affects a variety of metabolic pathways and critical genes in the hypothalamus, including Apelin, insulin, and mTOR signaling pathways. After fasting, the mRNA expression of NOG, GABRD, and IGFBP-1 genes in the hypothalamus are significantly upregulated, while proopiomelanocortin (POMC) gene expression is markedly downregulated. This study highlights the intricate biological responses to nutritional changes in geese, which adds to our understanding of energy balance and metabolic regulation in avian species.
Collapse
Affiliation(s)
- Yi Liu
- Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Xianze Wang
- Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Guangquan Li
- Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Shufang Chen
- Ningbo Academy of Agricultural Sciences, Ningbo 315101, China
| | - Huiyan Jia
- Ningbo Academy of Agricultural Sciences, Ningbo 315101, China
| | - Jiuli Dai
- Ningbo Academy of Agricultural Sciences, Ningbo 315101, China
| | - Daqian He
- Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| |
Collapse
|
10
|
Yu H, Chiang A, Rubinstein M, Low MJ. The homeodomain transcription factor Six3 regulates hypothalamic Pomc expression and its absence from POMC neurons induces hyperphagia and mild obesity in male mice. Mol Metab 2024; 87:101993. [PMID: 39025297 PMCID: PMC11327434 DOI: 10.1016/j.molmet.2024.101993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/30/2024] [Accepted: 07/12/2024] [Indexed: 07/20/2024] Open
Abstract
OBJECTIVE Proopiomelanocortin (POMC) neurons release potent anorexigenic neuropeptides, which suppress food intake and enhance energy expenditure via melanocortin receptors. Although the importance of central melanocortin in physiological regulation is well established, the underlying genetic mechanisms that define the functional identity of melanocortin neurons and maintain hypothalamic Pomc expression remain to be fully determined. In this study, we investigate the functional significance of Six3, a transcriptional regulator notably expressed in embryonic and adult mouse POMC neurons, in the regulation of hypothalamic Pomc expression and downstream physiological consequences. METHODS We first evaluated the expression of Six3 in the developing and adult hypothalamus by double fluorescence in situ hybridization. Next, we assessed POMC immunoreactivity in mutant mice selectively lacking Six3 from Pomc-expressing neurons and quantified Pomc mRNA levels in a tamoxifen-inducible Six3 knockout mouse model activated at embryonic E9.5 days. We also determined glucose and insulin sensitivity, daily food intake, body composition and body weight in adult male and female mice lacking Six3 specifically from POMC neurons. Lastly, we assessed the physiological consequences of ablating Six3 from POMC neurons in adult mice. RESULTS Six3 and Pomc were co-expressed in mouse hypothalamic neurons during development and adulthood. Mouse embryos deficient in Six3 showed reduced Pomc expression in the developing hypothalamus. Targeted deletion of Six3 specifically from POMC neurons resulted in decreased hypothalamic Pomc expression, increased daily food intake, enhanced glucose sensitivity and mild obesity in male but not in female mice. Finally, conditional removal of Six3 from POMC neurons in adult mice led to a reduction in hypothalamic POMC immunoreactivity with no significant effects in body weight or food intake. CONCLUSIONS Altogether, our results demonstrate that Six3 plays an essential role in the early establishment of POMC neuron identity and the maintenance of physiological levels of hypothalamic Pomc expression. In addition, our study demonstrates that the functional significance of Six3 expression in POMC neurons is sexually dimorphic and age-dependent.
Collapse
Affiliation(s)
- Hui Yu
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, United States; Department of Animal Sciences, College of Food, Agricultural, and Environmental Sciences, The Ohio State University, Columbus, United States.
| | - Angelika Chiang
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, United States
| | - Marcelo Rubinstein
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, United States; Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina.
| | - Malcolm J Low
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, United States.
| |
Collapse
|
11
|
Costa-E-Sousa RH, Brooks VL. The growing complexity of the control of the hypothalamic pituitary thyroid axis and brown adipose tissue by leptin. VITAMINS AND HORMONES 2024; 127:305-362. [PMID: 39864945 DOI: 10.1016/bs.vh.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
The balance between food intake and energy expenditure is precisely regulated to maintain adipose stores. Leptin, which is produced in and released from adipose in direct proportion to its size, is a major contributor to this control and initiates its homeostatic responses largely via binding to leptin receptors (LepR) in the hypothalamus. Decreases in hypothalamic LepR binding signals starvation, leading to hunger and reduced energy expenditure, whereas increases in hypothalamic LepR binding can suppress food intake and increase energy expenditure. However, large gaps persist in the specific hypothalamic sites and detailed mechanisms by which leptin increases energy expenditure, via the parallel activation of the hypothalamic pituitary thyroid (HPT) axis and brown adipose tissue (BAT). The purpose of this review is to develop a framework for the complex mechanisms and neurocircuitry. The core circuitry begins with leptin binding to receptors in the arcuate nucleus, which then sends projections to the paraventricular nucleus (to regulate the HPT axis) and the dorsomedial hypothalamus (to regulate BAT). We build on this core by layering complexities, including the intricate and unsettled regulation of arcuate proopiomelanocortin neurons by leptin and the changes that occur as the regulation of the HPT axis and BAT is engaged or modified by challenges such as starvation, hypothermia, obesity, and pregnancy.
Collapse
Affiliation(s)
- Ricardo H Costa-E-Sousa
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, United States
| | - Virginia L Brooks
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR, United States.
| |
Collapse
|
12
|
Heyward FD, Rosen ED. Evidence of persistent hyperphagia following a dietary weight-loss intervention in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.16.608348. [PMID: 39569138 PMCID: PMC11577249 DOI: 10.1101/2024.08.16.608348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
Objective This study sought to determine whether the drive to regain weight following weight loss was truly long-lived in mice. Methods We generated a model of reduced dietary obesity (ReDO) whereby male mice with diet-induced obesity (DIO) mice were calorically restricted until weight matched to control mice, and then after a 24-hour food assessment period were pair-fed relative to control mice. We subsequently generated ReDO mice that, after CR were pair-fed relative to control mice for 0, 8, or 28 days, or chronically. Body weight, food intake, and select metabolic parameters were measured, along with whole hypothalamic Pomc gene expression. Results ReDO mice in both experiments exhibited hyperphagia following CR, while a persistent form of hyperphagia was detected in ReDO_8d and ReDO_28d mice relative to control and chronically pair-fed mice. 4-week initial weight gain was predictive of the degree of weight regain across ReDO_8 and ReDO_28 mice. Conclusions ReDO mice exhibit a long-lived form of hyperphagia and an apparent drive to reclaim an upwardly shifted body weight set point. There was considerable variability with regard to ReDO_8 and ReDO_28 body weight regain which was correlated with the of initial degree of 4-week body-weight gain when first exposed to a high-fat diet. This study showcases the perdurance of weight loss-associated hyperphagia and introduces a prognostic tool for identifying mice that are prone towards weight regain, while setting the stage for future inquiries into the neurobiological basis of persistent hunger following weight loss owed to a dietary intervention in mice.
Collapse
Affiliation(s)
- Frankie D. Heyward
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center
- Harvard Medical School
- Broad Institute of Harvard and MIT
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX, USA
| | - Evan D. Rosen
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center
- Harvard Medical School
- Broad Institute of Harvard and MIT
| |
Collapse
|
13
|
West S, Garza V, Cardoso R. Puberty in beef heifers: effects of prenatal and postnatal nutrition on the development of the neuroendocrine axis. Anim Reprod 2024; 21:e20240048. [PMID: 39176002 PMCID: PMC11340802 DOI: 10.1590/1984-3143-ar2024-0048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 05/29/2024] [Indexed: 08/24/2024] Open
Abstract
Reproductive maturation is a complex physiological process controlled by the neuroendocrine system and is characterized by an increase in gonadotropin-releasing hormone (GnRH) and luteinizing hormone (LH) pulsatile secretion. Nutrition during early development is a key factor regulating puberty onset, which is defined as first ovulation in females. In heifers, nutrient restriction after weaning delays puberty, whereas elevated levels of nutrition and energy reserves advance reproductive maturation. Recent studies in cattle and other animal models have shown that the dam's nutrition during gestation can also program the neuroendocrine system in the developing fetus and has the potential to alter timing of puberty in the offspring. Among the metabolic signals that modulate brain development and control timing of puberty is leptin, a hormone produced primarily by adipocytes that communicates energy status to the brain. Leptin acts within the arcuate nucleus of the hypothalamus to regulate GnRH secretion via an upstream network of neurons that includes neurons that express neuropeptide Y (NPY), an orexigenic peptide with inhibitory effects on GnRH secretion, and alpha melanocyte-stimulating hormone (αMSH), an anorexigenic peptide with excitatory effects on GnRH neurons. Another important population of neurons are KNDy neurons, neurons in the arcuate nucleus that co-express the neuropeptides kisspeptin, neurokinin B, and dynorphin and have strong stimulatory effects on GnRH secretion. Our studies in beef heifers indicate that increased nutrition between 4 to 8 months of age advances puberty by diminishing NPY inhibitory tone and by increasing excitatory inputs of αMSH and kisspeptin, which collectively lead to increased GnRH/LH pulsatility. Our ongoing studies indicate that different planes of nutrition during gestation can alter maternal leptin concentrations and promote changes in the fetal brain. Nonetheless, at least in Bos indicus-influenced heifers, deficits programmed prenatally can be overcome by adequate postnatal nutrition without negatively impacting age at puberty or subsequent fertility.
Collapse
Affiliation(s)
- Sarah West
- Department of Animal Science, Texas A&M University, College Station, TX, USA
| | - Viviana Garza
- Department of Animal Science, Texas A&M University, College Station, TX, USA
| | - Rodolfo Cardoso
- Department of Animal Science, Texas A&M University, College Station, TX, USA
| |
Collapse
|
14
|
Srour N, Caron A, Michael NJ. Do POMC neurons have a sweet tooth for leptin? Special issue: Role of nutrients in nervous control of energy balance. Biochimie 2024; 223:179-187. [PMID: 36122808 DOI: 10.1016/j.biochi.2022.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 08/29/2022] [Accepted: 09/09/2022] [Indexed: 11/19/2022]
Abstract
Coordinated detection of changes in metabolic state by the nervous system is fundamental for survival. Hypothalamic pro-opiomelanocortin (POMC) neurons play a critical role in integrating metabolic signals, including leptin levels. They also coordinate adaptative responses and thus represent an important relay in the regulation of energy balance. Despite a plethora of work documenting the effects of individual hormones, nutrients, and neuropeptides on POMC neurons, the importance for crosstalk and additive effects between such signaling molecules is still underexplored. The ability of the metabolic state and the concentrations of nutrients, such as glucose, to influence leptin's effects on POMC neurons appears critical for understanding the function and complexity of this regulatory network. Here, we summarize the current knowledge on the effects of leptin on POMC neuron electrical excitability and discuss factors potentially contributing to variability in these effects, with a particular focus on the mouse models that have been developed and the importance of extracellular glucose levels. This review highlights the importance of the metabolic "environment" for determining hypothalamic neuronal responsiveness to metabolic cues and for determining the fundamental effects of leptin on the activity of hypothalamic POMC neurons.
Collapse
Affiliation(s)
- Nader Srour
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, 2725 chemin Sainte-Foy, Québec, QC, G1V 4G5, Canada; Faculté de Pharmacie, Université Laval, Québec, QC, Canada
| | - Alexandre Caron
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, 2725 chemin Sainte-Foy, Québec, QC, G1V 4G5, Canada; Faculté de Pharmacie, Université Laval, Québec, QC, Canada; Montreal Diabetes Research Center, QC, Canada.
| | - Natalie Jane Michael
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, 2725 chemin Sainte-Foy, Québec, QC, G1V 4G5, Canada; Faculté de Pharmacie, Université Laval, Québec, QC, Canada.
| |
Collapse
|
15
|
Gallo R, Teijeiro A, Angulo-Aguado M, Djouder N. IL-17A produced by POMC neurons regulates diet-induced obesity. iScience 2024; 27:110259. [PMID: 39027371 PMCID: PMC11255842 DOI: 10.1016/j.isci.2024.110259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 08/29/2023] [Accepted: 06/10/2024] [Indexed: 07/20/2024] Open
Abstract
Overeating leads to obesity, a low-grade inflammatory condition involving interleukin-17A (IL-17A). While pro-opiomelanocortin (POMC) neurons regulate feeding, their connection with IL-17A is not well understood. To impair IL-17A signaling in POMC neurons, IL-17A receptor (Il17ra) was deleted by crossing IL17ra-flox and Pomc-Cre mice. Despite effective deletion, these mice showed no differences in body weight or adiposity compared to control mice, challenging the idea that IL-17A induces obesity through POMC neuron regulation. However, both groups exhibited reduced weight gain and adiposity upon high-fat diet compared to mice carrying only the floxed alleles, suggesting independent effects of Pomc-Cre transgene on body weight. Further analysis reveals that POMC neurons express IL-17A, and reduction in number of POMC neurons in Pomc-Cre mice could be linked to decreased IL-17A expression, which correlates with reduced adipocyte gene expression associated with obesity. Our data underscore an unexpected crosstalk between IL-17A-producing POMC neurons and the endocrine system in obesity regulation.
Collapse
Affiliation(s)
- Rosa Gallo
- Growth Factors, Nutrients and Cancer Group, Molecular Oncology Programme, Centro Nacional de Investigaciones Oncológicas, CNIO, 28029 Madrid, Spain
| | - Ana Teijeiro
- Growth Factors, Nutrients and Cancer Group, Molecular Oncology Programme, Centro Nacional de Investigaciones Oncológicas, CNIO, 28029 Madrid, Spain
| | - Mariana Angulo-Aguado
- Growth Factors, Nutrients and Cancer Group, Molecular Oncology Programme, Centro Nacional de Investigaciones Oncológicas, CNIO, 28029 Madrid, Spain
| | - Nabil Djouder
- Growth Factors, Nutrients and Cancer Group, Molecular Oncology Programme, Centro Nacional de Investigaciones Oncológicas, CNIO, 28029 Madrid, Spain
| |
Collapse
|
16
|
Hohlstein P, Salvarcioglu C, Pollmanns MR, Adams JK, Abu Jhaisha S, Kabak E, Eisert A, Hamesch K, Weiskirchen R, Koch A, Wirtz TH. Diagnostic and Prognostic Value of Serum Leptin in Critically Ill Patients with Acute versus Acute-on-Chronic Liver Failure. Biomedicines 2024; 12:1170. [PMID: 38927377 PMCID: PMC11200812 DOI: 10.3390/biomedicines12061170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/20/2024] [Accepted: 05/22/2024] [Indexed: 06/28/2024] Open
Abstract
Differentiation between acute liver failure (ALF) and acute-on-chronic liver failure (ACLF) can be challenging in patients with de novo liver disease but is important to indicate the referral to a transplant center and urgency of organ allocation. Leptin, an adipocyte-derived cytokine that regulates energy storage and satiety, has multiple regulatory functions in the liver. We enrolled 160 critically ill patients with liver disease and 20 healthy individuals to measure serum leptin concentrations as a potential biomarker for diagnostic and prognostic purposes. Notably, patients with ALF had higher concentrations of serum leptin compared to patients with decompensated advanced chronic liver disease (dACLD) or ACLF (110 vs. 50 vs. 29 pg/mL, p < 0.001). Levels of serum leptin below 56 pg/mL excluded ALF in patients with acute hepatic disease, with a negative predictive value (NPV) of 98.8% in our cohort. Lastly, serum leptin did not show any dynamic changes within the first 48 h of ICU treatment, especially not in comparison with patients with ALF vs. ACLF or survivors vs. non-survivors. In conclusion, serum leptin may represent a helpful biomarker to exclude ALF in critically ill patients who present with acute liver dysfunction.
Collapse
Affiliation(s)
- Philipp Hohlstein
- Department for Gastroenterology, Metabolic Disorders and Intensive Care Medicine, RWTH-University Hospital Aachen, Pauwelsstraße 30, 52074 Aachen, Germany; (P.H.); (C.S.); (M.R.P.); (J.K.A.); (S.A.J.); (E.K.); (K.H.); (T.H.W.)
| | - Can Salvarcioglu
- Department for Gastroenterology, Metabolic Disorders and Intensive Care Medicine, RWTH-University Hospital Aachen, Pauwelsstraße 30, 52074 Aachen, Germany; (P.H.); (C.S.); (M.R.P.); (J.K.A.); (S.A.J.); (E.K.); (K.H.); (T.H.W.)
| | - Maike R. Pollmanns
- Department for Gastroenterology, Metabolic Disorders and Intensive Care Medicine, RWTH-University Hospital Aachen, Pauwelsstraße 30, 52074 Aachen, Germany; (P.H.); (C.S.); (M.R.P.); (J.K.A.); (S.A.J.); (E.K.); (K.H.); (T.H.W.)
| | - Jule K. Adams
- Department for Gastroenterology, Metabolic Disorders and Intensive Care Medicine, RWTH-University Hospital Aachen, Pauwelsstraße 30, 52074 Aachen, Germany; (P.H.); (C.S.); (M.R.P.); (J.K.A.); (S.A.J.); (E.K.); (K.H.); (T.H.W.)
| | - Samira Abu Jhaisha
- Department for Gastroenterology, Metabolic Disorders and Intensive Care Medicine, RWTH-University Hospital Aachen, Pauwelsstraße 30, 52074 Aachen, Germany; (P.H.); (C.S.); (M.R.P.); (J.K.A.); (S.A.J.); (E.K.); (K.H.); (T.H.W.)
| | - Elena Kabak
- Department for Gastroenterology, Metabolic Disorders and Intensive Care Medicine, RWTH-University Hospital Aachen, Pauwelsstraße 30, 52074 Aachen, Germany; (P.H.); (C.S.); (M.R.P.); (J.K.A.); (S.A.J.); (E.K.); (K.H.); (T.H.W.)
| | - Albrecht Eisert
- Hospital Pharmacy, RWTH-University Hospital Aachen, Pauwelsstraße 30, 52074 Aachen, Germany;
- Institute of Clinical Pharmacology, RWTH-University Hospital Aachen, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Karim Hamesch
- Department for Gastroenterology, Metabolic Disorders and Intensive Care Medicine, RWTH-University Hospital Aachen, Pauwelsstraße 30, 52074 Aachen, Germany; (P.H.); (C.S.); (M.R.P.); (J.K.A.); (S.A.J.); (E.K.); (K.H.); (T.H.W.)
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH-University Hospital Aachen, Pauwelsstraße 30, 52074 Aachen, Germany;
| | - Alexander Koch
- Department for Gastroenterology, Metabolic Disorders and Intensive Care Medicine, RWTH-University Hospital Aachen, Pauwelsstraße 30, 52074 Aachen, Germany; (P.H.); (C.S.); (M.R.P.); (J.K.A.); (S.A.J.); (E.K.); (K.H.); (T.H.W.)
| | - Theresa H. Wirtz
- Department for Gastroenterology, Metabolic Disorders and Intensive Care Medicine, RWTH-University Hospital Aachen, Pauwelsstraße 30, 52074 Aachen, Germany; (P.H.); (C.S.); (M.R.P.); (J.K.A.); (S.A.J.); (E.K.); (K.H.); (T.H.W.)
| |
Collapse
|
17
|
Qiu S, Wu Q, Wang H, Liu D, Chen C, Zhu Z, Zheng H, Yang G, Li L, Yang M. AZGP1 in POMC neurons modulates energy homeostasis and metabolism through leptin-mediated STAT3 phosphorylation. Nat Commun 2024; 15:3377. [PMID: 38643150 PMCID: PMC11032411 DOI: 10.1038/s41467-024-47684-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 04/10/2024] [Indexed: 04/22/2024] Open
Abstract
Zinc-alpha2-glycoprotein (AZGP1) has been implicated in peripheral metabolism; however, its role in regulating energy metabolism in the brain, particularly in POMC neurons, remains unknown. Here, we show that AZGP1 in POMC neurons plays a crucial role in controlling whole-body metabolism. POMC neuron-specific overexpression of Azgp1 under high-fat diet conditions reduces energy intake, raises energy expenditure, elevates peripheral tissue leptin and insulin sensitivity, alleviates liver steatosis, and promotes adipose tissue browning. Conversely, mice with inducible deletion of Azgp1 in POMC neurons exhibit the opposite metabolic phenotypes, showing increased susceptibility to diet-induced obesity. Notably, an increase in AZGP1 signaling in the hypothalamus elevates STAT3 phosphorylation and increases POMC neuron excitability. Mechanistically, AZGP1 enhances leptin-JAK2-STAT3 signaling by interacting with acylglycerol kinase (AGK) to block its ubiquitination degradation. Collectively, these results suggest that AZGP1 plays a crucial role in regulating energy homeostasis and glucose/lipid metabolism by acting on hypothalamic POMC neurons.
Collapse
Affiliation(s)
- Sheng Qiu
- Department of Endocrinology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China
- Key Laboratory of Medical Diagnostics of Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Qinan Wu
- Department of Endocrinology, The Affiliated Dazu Hospital of Chongqing Medical University, Chongqing, 402360, China
| | - Hao Wang
- Department of Endocrinology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China
| | - Dongfang Liu
- Department of Endocrinology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China
| | - Chen Chen
- Endocrinology, SBMS, Faculty of Medicine, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Zhiming Zhu
- Department of Hypertension and Endocrinology, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Hongting Zheng
- Department of Endocrinology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Gangyi Yang
- Department of Endocrinology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China.
| | - Ling Li
- Department of Endocrinology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China.
- Key Laboratory of Medical Diagnostics of Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China.
| | - Mengliu Yang
- Department of Endocrinology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China.
| |
Collapse
|
18
|
Lavoie O, Turmel A, Mattoon P, Desrosiers WJ, Plamondon J, Michael NJ, Caron A. Hypothalamic GABAergic Neurons Expressing Cellular Retinoic Acid Binding Protein 1 (CRABP1) Are Sensitive to Metabolic Status and Liraglutide in Male Mice. Neuroendocrinology 2024; 114:681-697. [PMID: 38631315 PMCID: PMC11232952 DOI: 10.1159/000538716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 03/29/2024] [Indexed: 04/19/2024]
Abstract
INTRODUCTION Owing to their privileged anatomical location, neurons of the arcuate nucleus of the hypothalamus (ARC) play critical roles in sensing and responding to metabolic signals such as leptin and glucagon-like peptide 1 (GLP-1). In addition to the well-known proopiomelanocortin (POMC)- and agouti-related peptide (AgRP)-expressing neurons, subpopulations of GABAergic neurons are emerging as key regulators of energy balance. However, the precise identity of these metabolic neurons is still elusive. Here, we identified and characterized the molecular signature of a novel population of GABAergic neurons of the ARC expressing Cellular retinoic acid binding protein 1 (Crabp1). METHODS Using a combination of immunohistochemistry and in situ hybridization techniques, we investigated the expression of Crabp1 across the mouse brain and characterized the molecular identity of Crabp1ARC neurons. We also determined whether Crabp1ARC neurons are sensitive to fasting, leptin, and GLP1R agonism by assessing cFOS immunoreactivity as a marker of neuronal activity. RESULTS Crabp1ARC neurons represent a novel GABAergic neuronal population robustly enriched in the ARC and are distinct from the prototypical melanocortin neurons. Crabp1ARC neurons overlap with three subpopulations of yet uncharacterized ARC neurons expressing Htr3b, Tbx19, and Tmem215. Notably, Crabp1ARC neurons express receptors for metabolic hormones and their activity is modulated by the nutritional state and GLP1R agonism. CONCLUSION Crabp1ARC neurons represent a novel heterogeneous population of GABAergic neurons sensitive to metabolic status.
Collapse
Affiliation(s)
- Olivier Lavoie
- Faculty of Pharmacy, Université Laval, Quebec City, QC, Canada
- Quebec Heart and Lung Institute, Quebec City, QC, Canada
| | - Audrey Turmel
- Faculty of Pharmacy, Université Laval, Quebec City, QC, Canada
- Quebec Heart and Lung Institute, Quebec City, QC, Canada
| | - Paige Mattoon
- Quebec Heart and Lung Institute, Quebec City, QC, Canada
| | | | | | - Natalie Jane Michael
- Faculty of Pharmacy, Université Laval, Quebec City, QC, Canada
- Quebec Heart and Lung Institute, Quebec City, QC, Canada
| | - Alexandre Caron
- Faculty of Pharmacy, Université Laval, Quebec City, QC, Canada
- Quebec Heart and Lung Institute, Quebec City, QC, Canada
| |
Collapse
|
19
|
Martemucci G, Fracchiolla G, Muraglia M, Tardugno R, Dibenedetto RS, D’Alessandro AG. Metabolic Syndrome: A Narrative Review from the Oxidative Stress to the Management of Related Diseases. Antioxidants (Basel) 2023; 12:2091. [PMID: 38136211 PMCID: PMC10740837 DOI: 10.3390/antiox12122091] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/15/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023] Open
Abstract
Metabolic syndrome (MS) is a growing disorder affecting thousands of people worldwide, especially in industrialised countries, increasing mortality. Oxidative stress, hyperglycaemia, insulin resistance, inflammation, dysbiosis, abdominal obesity, atherogenic dyslipidaemia and hypertension are important factors linked to MS clusters of different pathologies, such as diabesity, cardiovascular diseases and neurological disorders. All biochemical changes observed in MS, such as dysregulation in the glucose and lipid metabolism, immune response, endothelial cell function and intestinal microbiota, promote pathological bridges between metabolic syndrome, diabesity and cardiovascular and neurodegenerative disorders. This review aims to summarise metabolic syndrome's involvement in diabesity and highlight the link between MS and cardiovascular and neurological diseases. A better understanding of MS could promote a novel strategic approach to reduce MS comorbidities.
Collapse
Affiliation(s)
- Giovanni Martemucci
- Department of Agricultural and Environmental Sciences, University of Bari Aldo Moro, 70126 Bari, Italy;
| | - Giuseppe Fracchiolla
- Department of Pharmacy–Drug Sciences, University of Bari Aldo Moro, 70126 Bari, Italy; (M.M.); (R.T.); (R.S.D.)
| | - Marilena Muraglia
- Department of Pharmacy–Drug Sciences, University of Bari Aldo Moro, 70126 Bari, Italy; (M.M.); (R.T.); (R.S.D.)
| | - Roberta Tardugno
- Department of Pharmacy–Drug Sciences, University of Bari Aldo Moro, 70126 Bari, Italy; (M.M.); (R.T.); (R.S.D.)
| | - Roberta Savina Dibenedetto
- Department of Pharmacy–Drug Sciences, University of Bari Aldo Moro, 70126 Bari, Italy; (M.M.); (R.T.); (R.S.D.)
| | | |
Collapse
|
20
|
Xu DM, He S, Liang XF, Wu JQ, Wang QL, Jia XD. Regulatory effect of NK homeobox 1 (NKX2.1) on melanocortin 4 receptor (Mc4r) promoter in Mandarin fish. J Cell Physiol 2023; 238:2867-2878. [PMID: 37850660 DOI: 10.1002/jcp.31139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/14/2023] [Accepted: 09/22/2023] [Indexed: 10/19/2023]
Abstract
The melanocortin 4 receptor (MC4R) is a G protein-coupled transporter that mediates the regulation of thyroid hormones and leptin on energy balance and food intake. However, the mechanisms of transcriptional regulation of Mc4r by thyroid hormone and leptin in fish have been rarely reported. The messenger RNA expression of Mc4r gene was significantly higher in brain than those in other tissues of mandarin fish. We analyzed the structure and function of a 2029 bp sequence of Mc4r promoter. Meanwhile, overexpression of NKX2.1 and incubation with leptin significantly increased Mc4r promoter activity, but triiodothyronine showed the opposite effect. In addition, mutations in the NKX2.1 binding site abolished not only the activation of Mc4r promoter activity by leptin but also the inhibitory effect of thyroid hormones on Mc4r promoter activity. In summary, these results suggested that thyroid hormones and leptin might regulate the transcriptional expression of Mc4r through NKX2.1.
Collapse
Affiliation(s)
- Di-Mei Xu
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan, China
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, China
| | - Shan He
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan, China
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, China
| | - Xu-Fang Liang
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan, China
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, China
| | - Jia-Qi Wu
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan, China
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, China
| | - Qiu-Ling Wang
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan, China
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, China
| | - Xiao-Dan Jia
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan, China
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, China
| |
Collapse
|
21
|
Liu Z, Xiao T, Liu H. Leptin signaling and its central role in energy homeostasis. Front Neurosci 2023; 17:1238528. [PMID: 38027481 PMCID: PMC10644276 DOI: 10.3389/fnins.2023.1238528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
Leptin plays a critical role in regulating appetite, energy expenditure and body weight, making it a key factor in maintaining a healthy balance. Despite numerous efforts to develop therapeutic interventions targeting leptin signaling, their effectiveness has been limited, underscoring the importance of gaining a better understanding of the mechanisms through which leptin exerts its functions. While the hypothalamus is widely recognized as the primary site responsible for the appetite-suppressing and weight-reducing effects of leptin, other brain regions have also been increasingly investigated for their involvement in mediating leptin's action. In this review, we summarize leptin signaling pathways and the neural networks that mediate the effects of leptin, with a specific emphasis on energy homeostasis.
Collapse
Affiliation(s)
- Zhaoxun Liu
- Nursing Department, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Emergency, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Tao Xiao
- Nursing Department, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hailan Liu
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
22
|
Srour N, Lavoie O, Khouma A, Minbashi Moeini M, Plamondon J, Kinkead R, Michael NJ, Caron A. Electrophysiological Comparison of Definitive Pro-opiomelanocortin Neurons in the Arcuate Nucleus and the Retrochiasmatic Area of Male and Female Mice. Neuroscience 2023; 530:95-107. [PMID: 37619768 DOI: 10.1016/j.neuroscience.2023.08.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/28/2023] [Accepted: 08/16/2023] [Indexed: 08/26/2023]
Abstract
Pro-opiomelanocortin (POMC)-expressing neurons in the arcuate nucleus of the hypothalamus (ARC) are considered a major site of leptin action. Due to increasing evidence that POMC neurons are highly heterogeneous and indications that the conventional molecular tools to study their functions have important limitations, a reassessment of leptin's effects on definitive POMC neurons is needed. POMC neurons are also expressed in the retrochiasmatic area (RCA), where their function is poorly understood. Furthermore, the response of POMC neurons to leptin in females is largely unknown. Therefore, the present study aimed to determine the differences in leptin responsiveness of POMC neurons in the ARC and the RCA using a mouse model allowing adult-inducible fluorescent labeling. We performed whole-cell patch clamp electrophysiology on 154 POMC neurons from male and female mice. We confirmed and extended the model by which leptin depolarizes POMC neurons, in both the ARC and the RCA. Furthermore, we characterized the electrophysiological properties of an underappreciated subpopulation representing ∼10% of hypothalamic POMC neurons that are inhibited by leptin. We also provide evidence that sex does not appear to be a major determinant of basal properties and leptin responsiveness of POMC neurons, but that females are overall less responsive to leptin compared to males.
Collapse
Affiliation(s)
- Nader Srour
- Faculty of Pharmacy, Université Laval, Quebec City, QC, Canada; Quebec Heart and Lung Institute, Quebec City, QC, Canada
| | - Olivier Lavoie
- Faculty of Pharmacy, Université Laval, Quebec City, QC, Canada; Quebec Heart and Lung Institute, Quebec City, QC, Canada
| | - Axelle Khouma
- Faculty of Pharmacy, Université Laval, Quebec City, QC, Canada; Quebec Heart and Lung Institute, Quebec City, QC, Canada
| | - Moein Minbashi Moeini
- Faculty of Pharmacy, Université Laval, Quebec City, QC, Canada; Quebec Heart and Lung Institute, Quebec City, QC, Canada
| | | | - Richard Kinkead
- Quebec Heart and Lung Institute, Quebec City, QC, Canada; Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Natalie J Michael
- Faculty of Pharmacy, Université Laval, Quebec City, QC, Canada; Quebec Heart and Lung Institute, Quebec City, QC, Canada.
| | - Alexandre Caron
- Faculty of Pharmacy, Université Laval, Quebec City, QC, Canada; Quebec Heart and Lung Institute, Quebec City, QC, Canada.
| |
Collapse
|
23
|
Martinez ME, Wu Z, Hernandez A. Paternal developmental thyrotoxicosis disrupts neonatal leptin leading to increased adiposity and altered physiology of the melanocortin system. Front Endocrinol (Lausanne) 2023; 14:1210414. [PMID: 37560296 PMCID: PMC10407661 DOI: 10.3389/fendo.2023.1210414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 07/10/2023] [Indexed: 08/11/2023] Open
Abstract
Background The genetic code does not fully explain individual variability and inheritance of susceptibility to endocrine conditions, suggesting the contribution of epigenetic factors acting across generations. Methods We used a mouse model of developmental thyrotoxicosis (Dio3-/- mouse) to analyze endocrine outcomes in the adult offspring of Dio3-/- males using standard methods for body composition, and baseline and fasting hormonal and gene expression determinations in serum and tissues of relevance to the control of energy balance. Results Compared to controls, adult females with an exposed father (EF females) exhibited higher body weight and fat mass, but not lean mass, a phenotype that was much milder in EF males. After fasting, both EF females and males exhibited a more pronounced decrease in body weight than controls. EF females also showed markedly elevated serum leptin, increased white adipose tissue mRNA expression of leptin and mesoderm-specific transcript but decreased expression of type 2 deiodinase. EF females exhibited decreased serum ghrelin, which showed more pronounced post-fasting changes in EF females than in control females. EF female hypothalami also revealed significant decreases in the expression of pro-opiomelanocortin, agouti-related peptide, neuropeptide Y and melanocortin receptor 4. These markers also showed larger changes in response to fasting in EF females than in control females. Adult EF females showed no abnormalities in serum thyroid hormones, but pituitary expression of thyrotropin-releasing hormone receptor 1 and thyroid gland expression of thyroid-stimulating hormone receptor, thyroid peroxidase and iodotyrosine deiodinase were increased at baseline and showed differential regulation after fasting, with no increase in Trhr1 expression and more pronounced reductions in Tshr, Tpo and Iyd. In EF males, these abnormalities were generally milder. In addition, postnatal day 14 (P14) serum leptin was markedly reduced in EF pups. Discussion A paternal excess of thyroid hormone during development modifies the endocrine programming and energy balance in the offspring in a sexually dimorphic manner, with baseline and dynamic range alterations in the leptin-melanocortin system and thyroid gland, and consequences for adiposity phenotypes. We conclude that thyroid hormone overexposure may have important implications for the non-genetic, inherited etiology of endocrine and metabolic pathologies.
Collapse
Affiliation(s)
- Maria Elena Martinez
- Center for Molecular Medicine, MaineHealth Institute for Research, Scarborough, ME, United States
| | - Zhaofei Wu
- Center for Molecular Medicine, MaineHealth Institute for Research, Scarborough, ME, United States
| | - Arturo Hernandez
- Center for Molecular Medicine, MaineHealth Institute for Research, Scarborough, ME, United States
- Graduate School for Biomedical Sciences and Engineering, University of Maine, Orono, ME, United States
- Department of Medicine, Tufts University School of Medicine, Boston, MA, United States
| |
Collapse
|
24
|
Xiao Y, Wu W, Cai K, Jin L, Jia Y, Qiao N, Liu F, Ru S, Cao L, Gui S. Clinical Significance of Plasma Leptin and Its Receptors mRNA Expression in Craniopharyngiomas: A Prospective Study. Biomolecules 2023; 13:1078. [PMID: 37509115 PMCID: PMC10377231 DOI: 10.3390/biom13071078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/26/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023] Open
Abstract
Craniopharyngioma (CP) is a benign tumor with a high rate of obesity and frequent recurrence. Moreover, the role of leptin/leptin receptors axis in obesity and the prognosis of CP is still unknown. Plasma leptin concentration and mRNA expression of leptin receptors were assessed in patients with CP. Moreover, the association between leptin/leptin receptors axis, weight-related outcomes, and progression-free survival (PFS) were explored in CP patients. Leptin receptors overexpressed in CP tumor tissue were compared to normal brain tissue (p < 0.05); compared to healthy controls, the concentration of leptin was elevated in CP with or without matched age, sex, and body mass index (BMI) (p < 0.05). The high plasma leptin level was an independent risk predictor for significant weight gain (adjusted odds ratio (aOR) = 2.29, and p = 0.030) and new-onset obesity (aOR = 6.64, and p = 0.016). High plasma leptin level (adjusted hazard ratio (aHR) = 3.74, and p = 0.011) and leptin receptor (LEPR) mRNA expression (aHR = 3.12, and p = 0.045) were independent risk factors for poor PFS in CP. Inappropriately elevated leptin relative to BMI and its failure to inhibit further weight gain indicate the existence of leptin resistance in patients with CP. Leptin and LEPR were independent predictors for PFS of patients with CP. The leptin/leptin receptors axis may be a potential therapeutic target for obesity in patients with CP.
Collapse
Affiliation(s)
- Youchao Xiao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Wentao Wu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Kefan Cai
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Lu Jin
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Yanfei Jia
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Ning Qiao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Fangzheng Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Siming Ru
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Lei Cao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Songbai Gui
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| |
Collapse
|
25
|
Garza V, West SM, Cardoso RC. Review: Gestational and postnatal nutritional effects on the neuroendocrine control of puberty and subsequent reproductive performance in heifers. Animal 2023; 17 Suppl 1:100782. [PMID: 37567667 DOI: 10.1016/j.animal.2023.100782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 03/13/2023] [Accepted: 03/17/2023] [Indexed: 08/13/2023] Open
Abstract
Pubertal attainment is an intricate biological process that involves maturation of the reproductive neuroendocrine axis and increased pulsatile release of gonadotropin-releasing hormone (GnRH) and luteinizing hormone. Nutrition is a critical environmental factor controlling the timing of puberty attainment. Nutrient restriction during early postnatal development delays puberty, whereas increased feed intake and adiposity during this period hasten pubertal maturation by imprinting the hypothalamus. Moreover, the dam's nutrition during gestation can program the neuroendocrine system in the developing fetus and has the potential to advance or delay puberty in the offspring. Leptin, a hormone produced primarily by adipose cells, plays an important role in communicating energy status to the brain and regulating sexual maturation. Leptin's regulation of GnRH release is mediated by an upstream neuronal network since GnRH neurons do not contain the leptin receptor. Two groups of neurons located in the arcuate nucleus of the hypothalamus that express neuropeptide Y (NPY), an orexigenic peptide, and alpha melanocyte-stimulating hormone (αMSH), an anorexigenic peptide, are central elements of the neural circuitry that relay inhibitory (NPY) and excitatory (αMSH) inputs to GnRH neurons. Moreover, KNDy neurons, neurons in the arcuate nucleus that co-express kisspeptin, neurokinin B (NKB), and dynorphin, also play a role in the metabolic regulation of puberty. Our studies in beef heifers demonstrate that increased rates of BW gain during early postweaning (4-9 mo of age) result in reduced expression of NPY mRNA, increased expression of proopiomelanocortin and kisspeptin receptor mRNA, reduced NPY inhibitory inputs to GnRH neurons, and increased excitatory αMSH inputs to KNDy neurons. Finally, our most recent data demonstrate that nutrition of the cow during the last two trimesters of gestation can also induce transcriptional and structural changes in hypothalamic neurocircuitries in the heifer progeny that likely persist long-term after birth. Managerial approaches, such as supplementation of the dam during gestation (fetal programming), creep feeding, early weaning, and stair-step nutritional regimens have been developed to exploit brain plasticity and advance pubertal maturation in heifers.
Collapse
Affiliation(s)
- Viviana Garza
- Department of Animal Science, Texas A&M University, 2471 TAMU, College Station, TX 77843, USA
| | - Sarah M West
- Department of Animal Science, Texas A&M University, 2471 TAMU, College Station, TX 77843, USA
| | - Rodolfo C Cardoso
- Department of Animal Science, Texas A&M University, 2471 TAMU, College Station, TX 77843, USA.
| |
Collapse
|
26
|
Li Y, Zhu S, Du D, Li Q, Xie K, Chen L, Feng X, Wu X, Sun Z, Zhou J, Yang J, Shu G, Wang S, Gao P, Zhu C, Jiang Q, Wang L. TLR4 in POMC neurons regulates thermogenesis in a sex-dependent manner. J Lipid Res 2023; 64:100368. [PMID: 37028769 PMCID: PMC10205441 DOI: 10.1016/j.jlr.2023.100368] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 02/10/2023] [Accepted: 03/17/2023] [Indexed: 04/08/2023] Open
Abstract
The rising prevalence of obesity has become a worldwide health concern. Obesity usually occurs when there is an imbalance between energy intake and energy expenditure. However, energy expenditure consists of several components, including metabolism, physical activity, and thermogenesis. Toll-like receptor 4 (TLR4) is a transmembrane pattern recognition receptor, and it is abundantly expressed in the brain. Here, we showed that pro-opiomelanocortin (POMC)-specific deficiency of TLR4 directly modulates brown adipose tissue thermogenesis and lipid homeostasis in a sex-dependent manner. Deleting TLR4 in POMC neurons is sufficient to increase energy expenditure and thermogenesis resulting in reduced body weight in male mice. POMC neuron is a subpopulation of tyrosine hydroxylase neurons and projects into brown adipose tissue, which regulates the activity of sympathetic nervous system and contributes to thermogenesis in POMC-TLR4-KO male mice. By contrast, deleting TLR4 in POMC neurons decreases energy expenditure and increases body weight in female mice, which affects lipolysis of white adipose tissue (WAT). Mechanistically, TLR4 KO decreases the expression of the adipose triglyceride lipase and lipolytic enzyme hormone-sensitive lipase in WAT in female mice. Furthermore, the function of immune-related signaling pathway in WAT is inhibited because of obesity, which exacerbates the development of obesity reversely. Together, these results demonstrate that TLR4 in POMC neurons regulates thermogenesis and lipid balance in a sex-dependent manner.
Collapse
Affiliation(s)
- Yongxiang Li
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, South China Agricultural University, Guangzhou, Guangdong, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Shuqing Zhu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, South China Agricultural University, Guangzhou, Guangdong, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Dan Du
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, China
| | - Qiyong Li
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, South China Agricultural University, Guangzhou, Guangdong, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Kailai Xie
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, South China Agricultural University, Guangzhou, Guangdong, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Lvshuang Chen
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, South China Agricultural University, Guangzhou, Guangdong, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Xiajie Feng
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, South China Agricultural University, Guangzhou, Guangdong, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Xin Wu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, South China Agricultural University, Guangzhou, Guangdong, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Zhonghua Sun
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, South China Agricultural University, Guangzhou, Guangdong, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Jingjing Zhou
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, South China Agricultural University, Guangzhou, Guangdong, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Jinping Yang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, South China Agricultural University, Guangzhou, Guangdong, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Gang Shu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, South China Agricultural University, Guangzhou, Guangdong, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Songbo Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, South China Agricultural University, Guangzhou, Guangdong, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Ping Gao
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, South China Agricultural University, Guangzhou, Guangdong, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Canjun Zhu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, South China Agricultural University, Guangzhou, Guangdong, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Qingyan Jiang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, South China Agricultural University, Guangzhou, Guangdong, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China.
| | - Lina Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, South China Agricultural University, Guangzhou, Guangdong, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China.
| |
Collapse
|
27
|
Nguyen NPK, Tran KN, Nguyen LTH, Shin HM, Yang IJ. Effects of Essential Oils and Fragrant Compounds on Appetite: A Systematic Review. Int J Mol Sci 2023; 24:ijms24097962. [PMID: 37175666 PMCID: PMC10178777 DOI: 10.3390/ijms24097962] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Appetite dysregulation is one of the factors contributing to anorexia, bulimia nervosa, obesity, and diabetes. Essential oils or fragrant compounds have been proven to regulate food intake and energy expenditure; hence, this study aimed to summarize their effects on appetite and the underlying mechanisms. The PubMed and Web of Science databases were searched until July 2022. Only two of the 41 studies were performed clinically, and the remaining 39 used animal models. Oral administration was the most common route, and a dosage range of 100-2000 mg/kg for mice or 2-32 mg/kg for rats was applied, with a duration of 12 days to 4 weeks, followed by inhalation (10-6-10-3 mg/cage or 10-9-10-2 mg/cm3 within 1 h). Approximately 11 essential oil samples and 22 fragrant compounds were found to increase appetite, while 12 essential oils and seven compounds decreased appetite. These fragrant components can exert appetite-regulating effects via leptin resistance, the activity of sympathetic/parasympathetic nerves, or the mRNA expression of neuropeptide Y (NPY)/agouti-related protein (AgRP), cocaine- and amphetamine-regulated transcript (CART)/proopiomelanocortin (POMC) in the hypothalamus. Fragrance memory and cognitive processes may also play roles in appetite regulation. The findings of this study accentuate the potential of essential oils and fragrant compounds to regulate appetite and eating disorders.
Collapse
Affiliation(s)
- Nhi Phuc Khanh Nguyen
- Department of Physiology, College of Korean Medicine, Dongguk University, Gyeongju 38066, Republic of Korea
| | - Khoa Nguyen Tran
- Department of Physiology, College of Korean Medicine, Dongguk University, Gyeongju 38066, Republic of Korea
| | - Ly Thi Huong Nguyen
- Department of Physiology, College of Korean Medicine, Dongguk University, Gyeongju 38066, Republic of Korea
| | - Heung-Mook Shin
- Department of Physiology, College of Korean Medicine, Dongguk University, Gyeongju 38066, Republic of Korea
| | - In-Jun Yang
- Department of Physiology, College of Korean Medicine, Dongguk University, Gyeongju 38066, Republic of Korea
| |
Collapse
|
28
|
Han Y, He Y, Harris L, Xu Y, Wu Q. Identification of a GABAergic neural circuit governing leptin signaling deficiency-induced obesity. eLife 2023; 12:e82649. [PMID: 37043384 PMCID: PMC10097419 DOI: 10.7554/elife.82649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 03/24/2023] [Indexed: 04/13/2023] Open
Abstract
The hormone leptin is known to robustly suppress food intake by acting upon the leptin receptor (LepR) signaling system residing within the agouti-related protein (AgRP) neurons of the hypothalamus. However, clinical studies indicate that leptin is undesirable as a therapeutic regiment for obesity, which is at least partly attributed to the poorly understood complex secondary structure and key signaling mechanism of the leptin-responsive neural circuit. Here, we show that the LepR-expressing portal neurons send GABAergic projections to a cohort of α3-GABAA receptor expressing neurons within the dorsomedial hypothalamic nucleus (DMH) for the control of leptin-mediated obesity phenotype. We identified the DMH as a key brain region that contributes to the regulation of leptin-mediated feeding. Acute activation of the GABAergic AgRP-DMH circuit promoted food intake and glucose intolerance, while activation of post-synaptic MC4R neurons in the DMH elicited exactly opposite phenotypes. Rapid deletion of LepR from AgRP neurons caused an obesity phenotype which can be rescued by blockage of GABAA receptor in the DMH. Consistent with behavioral results, these DMH neurons displayed suppressed neural activities in response to hunger or hyperglycemia. Furthermore, we identified that α3-GABAA receptor signaling within the DMH exerts potent bi-directional regulation of the central effects of leptin on feeding and body weight. Together, our results demonstrate a novel GABAergic neural circuit governing leptin-mediated feeding and energy balance via a unique α3-GABAA signaling within the secondary leptin-responsive neural circuit, constituting a new avenue for therapeutic interventions in the treatment of obesity and associated comorbidities.
Collapse
Affiliation(s)
- Yong Han
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of MedicineHoustonUnited States
| | - Yang He
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of MedicineHoustonUnited States
| | - Lauren Harris
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of MedicineHoustonUnited States
| | - Yong Xu
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of MedicineHoustonUnited States
| | - Qi Wu
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of MedicineHoustonUnited States
| |
Collapse
|
29
|
Lavoie O, Michael NJ, Caron A. A critical update on the leptin-melanocortin system. J Neurochem 2023; 165:467-486. [PMID: 36648204 DOI: 10.1111/jnc.15765] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/25/2022] [Accepted: 01/09/2023] [Indexed: 01/18/2023]
Abstract
The discovery of leptin in 1994 was an "eureka moment" in the field of neurometabolism that provided new opportunities to better understand the central control of energy balance and glucose metabolism. Rapidly, a prevalent model in the field emerged that pro-opiomelanocortin (POMC) neurons were key in promoting leptin's anorexigenic effects and that the arcuate nucleus of the hypothalamus (ARC) was a key region for the regulation of energy homeostasis. While this model inspired many important discoveries, a growing body of literature indicates that this model is now outdated. In this review, we re-evaluate the hypothalamic leptin-melanocortin model in light of recent advances that directly tackle previous assumptions, with a particular focus on the ARC. We discuss how segregated and heterogeneous these neurons are, and examine how the development of modern approaches allowing spatiotemporal, intersectional, and chemogenetic manipulations of melanocortin neurons has allowed a better definition of the complexity of the leptin-melanocortin system. We review the importance of leptin in regulating glucose homeostasis, but not food intake, through direct actions on ARC POMC neurons. We further highlight how non-POMC, GABAergic neurons mediate leptin's direct effects on energy balance and influence POMC neurons.
Collapse
Affiliation(s)
- Olivier Lavoie
- Faculty of Pharmacy, Université Laval, Quebec City, Quebec, Canada.,Quebec Heart and Lung Institute, Quebec City, Quebec, Canada
| | - Natalie Jane Michael
- Faculty of Pharmacy, Université Laval, Quebec City, Quebec, Canada.,Quebec Heart and Lung Institute, Quebec City, Quebec, Canada
| | - Alexandre Caron
- Faculty of Pharmacy, Université Laval, Quebec City, Quebec, Canada.,Quebec Heart and Lung Institute, Quebec City, Quebec, Canada.,Montreal Diabetes Research Center, Montreal, Quebec, Canada
| |
Collapse
|
30
|
Navarro-Masip È, Caron A, Mulero M, Arola L, Aragonès G. Photoperiodic Remodeling of Adiposity and Energy Metabolism in Non-Human Mammals. Int J Mol Sci 2023; 24:ijms24021008. [PMID: 36674520 PMCID: PMC9865556 DOI: 10.3390/ijms24021008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/01/2023] [Accepted: 01/02/2023] [Indexed: 01/07/2023] Open
Abstract
Energy homeostasis and metabolism in mammals are strongly influenced by seasonal changes. Variations in photoperiod patterns drive adaptations in body weight and adiposity, reflecting changes in the regulation of food intake and energy expenditure. Humans also show distinct patterns of energy balance depending on the season, being more susceptible to gaining weight during a specific time of the year. Changes in body weight are mainly reflected by the adipose tissue, which is a key metabolic tissue and is highly affected by circannual rhythms. Mostly, in summer-like (long-active) photoperiod, adipocytes adopt a rather anabolic profile, more predisposed to store energy, while food intake increases and energy expenditure is reduced. These metabolic adaptations involve molecular modifications, some of which have been studied during the last years and are summarized in this review. In addition, there is a bidirectional relation between obesity and the seasonal responses, with obesity disrupting some of the seasonal responses observed in healthy mammals, and altered seasonality being highly associated with increased risk of developing obesity. This suggests that changes in photoperiod produce important metabolic alterations in healthy organisms. Biological rhythms impact the regulation of metabolism to different extents, some of which are already known, but further research is needed to fully understand the relationship between energy balance and seasonality.
Collapse
Affiliation(s)
- Èlia Navarro-Masip
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain
| | - Alexandre Caron
- Faculty of Pharmacy, Université Laval, Québec City, QC G1V 0A6, Canada
| | - Miquel Mulero
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain
| | - Lluís Arola
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain
| | - Gerard Aragonès
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain
- Correspondence:
| |
Collapse
|
31
|
Liu H, He Y, Bai J, Zhang C, Zhang F, Yang Y, Luo H, Yu M, Liu H, Tu L, Zhang N, Yin N, Han J, Yan Z, Scarcelli NA, Conde KM, Wang M, Bean JC, Potts CHS, Wang C, Hu F, Liu F, Xu Y. Hypothalamic Grb10 enhances leptin signalling and promotes weight loss. Nat Metab 2023; 5:147-164. [PMID: 36593271 DOI: 10.1038/s42255-022-00701-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 10/19/2022] [Indexed: 01/04/2023]
Abstract
Leptin acts on hypothalamic neurons expressing agouti-related protein (AgRP) or pro-opiomelanocortin (POMC) to suppress appetite and increase energy expenditure, but the intracellular mechanisms that modulate central leptin signalling are not fully understood. Here we show that growth factor receptor-bound protein 10 (Grb10), an adaptor protein that binds to the insulin receptor and negatively regulates its signalling pathway, can interact with the leptin receptor and enhance leptin signalling. Ablation of Grb10 in AgRP neurons promotes weight gain, while overexpression of Grb10 in AgRP neurons reduces body weight in male and female mice. In parallel, deletion or overexpression of Grb10 in POMC neurons exacerbates or attenuates diet-induced obesity, respectively. Consistent with its role in leptin signalling, Grb10 in AgRP and POMC neurons enhances the anorexic and weight-reducing actions of leptin. Grb10 also exaggerates the inhibitory effects of leptin on AgRP neurons via ATP-sensitive potassium channel-mediated currents while facilitating the excitatory drive of leptin on POMC neurons through transient receptor potential channels. Our study identifies Grb10 as a potent leptin sensitizer that contributes to the maintenance of energy homeostasis by enhancing the response of AgRP and POMC neurons to leptin.
Collapse
Affiliation(s)
- Hailan Liu
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA
| | - Yang He
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA
| | - Juli Bai
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
- Department of Cell Systems & Anatomy and Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Chuanhai Zhang
- Department of Cell Systems & Anatomy and Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Feng Zhang
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yongjie Yang
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA
| | - Hairong Luo
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Meng Yu
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA
| | - Hesong Liu
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA
| | - Longlong Tu
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA
| | - Nan Zhang
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA
| | - Na Yin
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA
| | - Junying Han
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA
| | - Zili Yan
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA
| | - Nikolas Anthony Scarcelli
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA
| | - Kristine Marie Conde
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA
| | - Mengjie Wang
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA
| | - Jonathan Carter Bean
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA
| | - Camille Hollan Sidell Potts
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA
| | - Chunmei Wang
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA
| | - Fang Hu
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Feng Liu
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China.
| | - Yong Xu
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA.
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA.
| |
Collapse
|
32
|
Rodríguez-Sánchez S, Valiente N, Seseña S, Cabrera-Pinto M, Rodríguez A, Aranda A, Palop L, Fernández-Martos CM. Ozone modified hypothalamic signaling enhancing thermogenesis in the TDP-43 A315T transgenic model of Amyotrophic Lateral Sclerosis. Sci Rep 2022; 12:20814. [PMID: 36460700 PMCID: PMC9718766 DOI: 10.1038/s41598-022-25033-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 11/23/2022] [Indexed: 12/04/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS), a devastating progressive neurodegenerative disease, has no effective treatment. Recent evidence supports a strong metabolic component in ALS pathogenesis. Indeed, metabolic abnormalities in ALS correlate to disease susceptibility and progression, raising additional therapeutic targets against ALS. Ozone (O3), a natural bioactive molecule, has been shown to elicit beneficial effects to reduce metabolic disturbances and improved motor behavior in TDP-43A315T mice. However, it is fundamental to determine the mechanism through which O3 acts in ALS. To characterize the association between O3 exposure and disease-associated weight loss in ALS, we assessed the mRNA and protein expression profile of molecular pathways with a main role in the regulation of the metabolic homeostasis on the hypothalamus and the brown adipose tissue (BAT) at the disease end-stage, in TDP-43A315T mice compared to age-matched WT littermates. In addition, the impact of O3 exposure on the faecal bacterial community diversity, by Illumina sequencing, and on the neuromuscular junctions (NMJs), by confocal imaging, were analysed. Our findings suggest the effectiveness of O3 exposure to induce metabolic effects in the hypothalamus and BAT of TDP-43A315T mice and could be a new complementary non-pharmacological approach for ALS therapy.
Collapse
Affiliation(s)
- Sara Rodríguez-Sánchez
- grid.8048.40000 0001 2194 2329Faculty of Environmental Sciences and Biochemistry, University of Castilla-La Mancha, Toledo, Spain
| | - Nicolas Valiente
- grid.10420.370000 0001 2286 1424Division of Terrestrial Ecosystem Research, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Susana Seseña
- grid.8048.40000 0001 2194 2329Faculty of Environmental Sciences and Biochemistry, University of Castilla-La Mancha, Toledo, Spain
| | - Marta Cabrera-Pinto
- grid.414883.20000 0004 1767 1847Hospital Nacional de Parapléjicos, SESCAM, Toledo, Spain
| | - Ana Rodríguez
- grid.8048.40000 0001 2194 2329Faculty of Environmental Sciences and Biochemistry, University of Castilla-La Mancha, Toledo, Spain
| | - Alfonso Aranda
- grid.8048.40000 0001 2194 2329Faculty of Chemical Science and Technology, University of Castilla-La Mancha, Ciudad Real, Spain
| | - Llanos Palop
- grid.8048.40000 0001 2194 2329Faculty of Environmental Sciences and Biochemistry, University of Castilla-La Mancha, Toledo, Spain
| | - Carmen M. Fernández-Martos
- grid.414883.20000 0004 1767 1847Hospital Nacional de Parapléjicos, SESCAM, Toledo, Spain ,grid.1009.80000 0004 1936 826XWicking Dementia Research and Education Centre, College of Health and Medicine, University of Tasmania, Hobart, Tasmania Australia
| |
Collapse
|
33
|
Zeng W, Yang F, Shen WL, Zhan C, Zheng P, Hu J. Interactions between central nervous system and peripheral metabolic organs. SCIENCE CHINA. LIFE SCIENCES 2022; 65:1929-1958. [PMID: 35771484 DOI: 10.1007/s11427-021-2103-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 04/07/2022] [Indexed: 02/08/2023]
Abstract
According to Descartes, minds and bodies are distinct kinds of "substance", and they cannot have causal interactions. However, in neuroscience, the two-way interaction between the brain and peripheral organs is an emerging field of research. Several lines of evidence highlight the importance of such interactions. For example, the peripheral metabolic systems are overwhelmingly regulated by the mind (brain), and anxiety and depression greatly affect the functioning of these systems. Also, psychological stress can cause a variety of physical symptoms, such as bone loss. Moreover, the gut microbiota appears to play a key role in neuropsychiatric and neurodegenerative diseases. Mechanistically, as the command center of the body, the brain can regulate our internal organs and glands through the autonomic nervous system and neuroendocrine system, although it is generally considered to be outside the realm of voluntary control. The autonomic nervous system itself can be further subdivided into the sympathetic and parasympathetic systems. The sympathetic division functions a bit like the accelerator pedal on a car, and the parasympathetic division functions as the brake. The high center of the autonomic nervous system and the neuroendocrine system is the hypothalamus, which contains several subnuclei that control several basic physiological functions, such as the digestion of food and regulation of body temperature. Also, numerous peripheral signals contribute to the regulation of brain functions. Gastrointestinal (GI) hormones, insulin, and leptin are transported into the brain, where they regulate innate behaviors such as feeding, and they are also involved in emotional and cognitive functions. The brain can recognize peripheral inflammatory cytokines and induce a transient syndrome called sick behavior (SB), characterized by fatigue, reduced physical and social activity, and cognitive impairment. In summary, knowledge of the biological basis of the interactions between the central nervous system and peripheral organs will promote the full understanding of how our body works and the rational treatment of disorders. Thus, we summarize current development in our understanding of five types of central-peripheral interactions, including neural control of adipose tissues, energy expenditure, bone metabolism, feeding involving the brain-gut axis and gut microbiota. These interactions are essential for maintaining vital bodily functions, which result in homeostasis, i.e., a natural balance in the body's systems.
Collapse
Affiliation(s)
- Wenwen Zeng
- Institute for Immunology, and Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, 100084, China. .,Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China. .,Beijing Key Laboratory for Immunological Research on Chronic Diseases, Beijing, 100084, China.
| | - Fan Yang
- The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China.
| | - Wei L Shen
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| | - Cheng Zhan
- Department of Hematology, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China. .,National Institute of Biological Sciences, Beijing, 102206, China. .,Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 100084, China.
| | - Peng Zheng
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400042, China. .,Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, 400016, China. .,Chongqing Key Laboratory of Neurobiology, Chongqing, 400016, China.
| | - Ji Hu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| |
Collapse
|
34
|
Ortega-Avila JG, García-Muñoz H, Segura Ordoñez A, Salazar Contreras BC. Sexual dimorphism of leptin and adiposity in children between 0 and 10 years: a systematic review and meta-analysis. Biol Sex Differ 2022; 13:47. [PMID: 36064746 PMCID: PMC9446796 DOI: 10.1186/s13293-022-00454-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 07/20/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Differences in adolescents and adults by sex in blood levels of leptin and adiposity have been described; however, it is not yet clear if these differences arise from the prepubertal stage in subjects with a normal-weight. Therefore, we examine whether there are differences by sex in levels of blood leptin and adiposity in children with a normal-weight between 0 and 10 years old. METHODS Search strategy: eligible studies were obtained from three electronic databases (Ovid, Embase and LILACS) and contact with experts. SELECTION CRITERIA healthy children up to 10 years of age with normal-weight according to age. DATA COLLECTION AND ANALYSES data were extracted by four independent reviewers using a predesigned data collection form. For the analysis, we stratified according to age groups (newborns, 0.25-0.5 years, 3-5.9 years, 6-7.9 years, 8-10 years). The statistical analysis was performed in the R program. RESULTS Of the initially identified 13,712 records, 21 were selected in the systematic review and meta-analysis. The sex was associated with the overall effect on blood leptin (pooled MD = 1.72 ng/mL, 95% CI: 1.25-2.19) and body fat percentage (pooled MD = 3.43%, 95% CI: 2.53-4.33), being both higher in girls. This finding was consistent in the majority of age groups. CONCLUSION The results of our meta-analyses support the sexual dimorphism in circulating blood leptin and body fat percentage between girls and boys with normal-weight from prepuberty.
Collapse
Affiliation(s)
- Jose Guillermo Ortega-Avila
- Grupo de Investigación de Ciencias Básicas y Clínicas de la Salud, Departamento de Ciencias Básicas de la Salud, Pontificia Universidad Javeriana, Seccional-Cali, Cali, Colombia
- Grupo de investigación Salud y Movimiento, Facultad de Salud, Universidad Santiago de Cali, Cali, Colombia
| | - Harry García-Muñoz
- Grupo de investigación Salud y Movimiento, Facultad de Salud, Universidad Santiago de Cali, Cali, Colombia
- Grupo de Nutrición, Departamento de Ciencias Fisiológicas, Facultad de Salud, Universidad del Valle, Cali, Colombia
| | - Alejandro Segura Ordoñez
- Grupo de investigación Salud y Movimiento, Facultad de Salud, Universidad Santiago de Cali, Cali, Colombia
- Grupo de Nutrición, Departamento de Ciencias Fisiológicas, Facultad de Salud, Universidad del Valle, Cali, Colombia
| | - Blanca C. Salazar Contreras
- Grupo de investigación Salud y Movimiento, Facultad de Salud, Universidad Santiago de Cali, Cali, Colombia
- Programa de Medicina, Facultad de Salud, Universidad Icesi, Cali, Colombia
| |
Collapse
|
35
|
Speakman JR, Elmquist JK. Obesity: an evolutionary context. LIFE METABOLISM 2022; 1:10-24. [PMID: 36394061 PMCID: PMC9642988 DOI: 10.1093/lifemeta/loac002] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/21/2022] [Accepted: 03/09/2022] [Indexed: 05/07/2023]
Abstract
People completely lacking body fat (lipodystrophy/lipoatrophy) and those with severe obesity both show profound metabolic and other health issues. Regulating levels of body fat somewhere between these limits would, therefore, appear to be adaptive. Two different models might be contemplated. More traditional is a set point (SP) where the levels are regulated around a fixed level. Alternatively, dual-intervention point (DIP) is a system that tolerates fairly wide variation but is activated when critically high or low levels are breached. The DIP system seems to fit our experience much better than an SP, and models suggest that it is more likely to have evolved. A DIP system may have evolved because of two contrasting selection pressures. At the lower end, we may have been selected to avoid low levels of fat as a buffer against starvation, to avoid disease-induced anorexia, and to support reproduction. At the upper end, we may have been selected to avoid excess storage because of the elevated risks of predation. This upper limit of control seems to have malfunctioned because some of us deposit large fat stores, with important negative health effects. Why has evolution not protected us against this problem? One possibility is that the protective system slowly fell apart due to random mutations after we dramatically reduced the risk of being predated during our evolutionary history. By chance, it fell apart more in some people than others, and these people are now unable to effectively manage their weight in the face of the modern food glut. To understand the evolutionary context of obesity, it is important to separate the adaptive reason for storing some fat (i.e. the lower intervention point), from the nonadaptive reason for storing lots of fat (a broken upper intervention point). The DIP model has several consequences, showing how we understand the obesity problem and what happens when we attempt to treat it.
Collapse
Affiliation(s)
- John R Speakman
- Shenzhen Key Laboratory of Metabolic Health, Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental biology, Chinese Academy of Sciences, Beijing, China
- CAS Center of Excellence in Animal Evolution and Genetics, Kunming, China
| | - Joel K Elmquist
- Departments of Internal Medicine and Pharmacology, Center for Hypothalamic Research, University of Texas Southwestern, Dallas, TX, USA
| |
Collapse
|
36
|
Fernandes ACA, de Oliveira FP, Fernandez G, da Guia Vieira L, Rosa CG, do Nascimento T, de Castro França S, Donato J, Vella KR, Antunes-Rodrigues J, Mecawi AS, Perello M, Elias LLK, Rorato R. Arcuate AgRP, but not POMC neurons, modulate paraventricular CRF synthesis and release in response to fasting. Cell Biosci 2022; 12:118. [PMID: 35902915 PMCID: PMC9331576 DOI: 10.1186/s13578-022-00853-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 07/14/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The activation of the hypothalamic-pituitary-adrenal (HPA) axis is essential for metabolic adaptation in response to fasting. However, the neurocircuitry connecting changes in the peripheral energy stores to the activity of hypothalamic paraventricular corticotrophin-releasing factor (CRFPVN) neurons, the master controller of the HPA axis activity, is not completely understood. Our main goal was to determine if hypothalamic arcuate nucleus (ARC) POMC and AgRP neurons can communicate fasting-induced changes in peripheral energy stores, associated to a fall in plasma leptin levels, to CRFPVN neurons to modulate the HPA axis activity in mice. RESULTS We observed increased plasma corticosterone levels associate with increased CRFPVN mRNA expression and increased CRFPVN neuronal activity in 36 h fasted mice. These responses were associated with a fall in plasma leptin levels and changes in the mRNA expression of Agrp and Pomc in the ARC. Fasting-induced decrease in plasma leptin partially modulated these responses through a change in the activity of ARC neurons. The chemogenetic activation of POMCARC by DREADDs did not affect fasting-induced activation of the HPA axis. DREADDs inhibition of AgRPARC neurons reduced the content of CRFPVN and increased its accumulation in the median eminence but had no effect on corticosterone secretion induced by fasting. CONCLUSION Our data indicate that AgRPARC neurons are part of the neurocircuitry involved in the coupling of PVNCRF activity to changes in peripheral energy stores induced by prolonged fasting.
Collapse
Affiliation(s)
| | - Franciane Pereira de Oliveira
- Department of Biophysics, Paulista Medical School, Federal University of Sao Paulo, São Paulo, SP, CEP 04023-062, Brazil
| | - Gimena Fernandez
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata, La Plata, 403, Buenos Aires, Argentina
| | - Luane da Guia Vieira
- Department of Biotechnology, University of Ribeirao Preto, Ribeirão Prêto, SP, 14096-900, Brazil
| | - Cristiane Gugelmin Rosa
- Department of Biotechnology, University of Ribeirao Preto, Ribeirão Prêto, SP, 14096-900, Brazil
| | - Taís do Nascimento
- Department of Biotechnology, University of Ribeirao Preto, Ribeirão Prêto, SP, 14096-900, Brazil
| | - Suzelei de Castro França
- Department of Biotechnology, University of Ribeirao Preto, Ribeirão Prêto, SP, 14096-900, Brazil
| | - Jose Donato
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, São Paulo, SP, 05508-000, Brazil
| | - Kristen R Vella
- Department of Endocrinology, Diabetes and Metabolism and the Weill Center for Metabolic Health, Weill Cornell Medical College, New York, NY, 10021, USA
| | - Jose Antunes-Rodrigues
- Department of Physiology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirão Prêto, SP, 14049-900, Brazil
| | - André Souza Mecawi
- Department of Biophysics, Paulista Medical School, Federal University of Sao Paulo, São Paulo, SP, CEP 04023-062, Brazil
| | - Mario Perello
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata, La Plata, 403, Buenos Aires, Argentina
| | - Lucila Leico Kagohara Elias
- Department of Physiology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirão Prêto, SP, 14049-900, Brazil
| | - Rodrigo Rorato
- Department of Biotechnology, University of Ribeirao Preto, Ribeirão Prêto, SP, 14096-900, Brazil.
- Department of Biophysics, Paulista Medical School, Federal University of Sao Paulo, São Paulo, SP, CEP 04023-062, Brazil.
| |
Collapse
|
37
|
Vail GM, Walley SN, Yasrebi A, Maeng A, Degroat TJ, Conde KM, Roepke TA. Implications of peroxisome proliferator-activated receptor gamma (PPARY) with the intersection of organophosphate flame retardants and diet-induced obesity in adult mice. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2022; 85:381-396. [PMID: 35000574 PMCID: PMC8897244 DOI: 10.1080/15287394.2021.2023716] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Previously, organophosphate flame retardants (OPFRs) were demonstrated to dysregulate homeostatic parameters of energy regulation within an adult mouse model of diet-induced obesity. Using the same OPFR mixture consisting of 1 mg/kg/day of each triphenyl phosphate, tricresyl phosphate, and tris(1,3-dichloro-2-propyl)phosphate, the current study examined the role of peroxisome proliferator-activated receptor gamma (PPARγ) in OPFR-induced disruption by utilizing mice with brain-specific deletion of PPARγ (PPARγKO) fed either a low-fat diet (LFD) or high-fat diet (HFD). Body weight and composition, feeding behavior, glucose and insulin tolerance, circulating peptide hormones, and expression of hypothalamic genes associated with energy homeostasis were recorded. When fed HFD, the effects of OPFR on body weight and feeding behavior observed in the previous wild-type (WT) study were absent in mice lacking neuronal PPARγ. This posits PPARγ as an important target for eliciting OPFR disruption in a diet-induced obesity model. Interestingly, female PPARγKO mice, but not males, experienced many novel OPFR effects not noted in WT mice, including decreased fat mass, altered feeding behavior and efficiency, improved insulin sensitivity, elevated plasma ghrelin and hypothalamic expression of its receptor. Taken together, these data suggest both direct roles for PPARγ in OPFR disruption of obese mice and indirect sensitization of pathways alternative to PPARγ when neuronal expression is deleted.
Collapse
Affiliation(s)
- Gwyndolin M. Vail
- Joint Graduate Program in Toxicology, Rutgers, The State University of New Jersey, Piscataway, NJ. USA
| | - Sabrina N. Walley
- Joint Graduate Program in Toxicology, Rutgers, The State University of New Jersey, Piscataway, NJ. USA
| | - Ali Yasrebi
- Department of Animal Sciences, School of Environmental & Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ. USA
| | - Angela Maeng
- Department of Animal Sciences, School of Environmental & Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ. USA
| | - Thomas J. Degroat
- Graduate Program in Endocrinology and Animal Biosciences, School of Environmental & Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ. USA
| | - Kristie M. Conde
- Graduate Program in Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ. USA
| | - Troy A. Roepke
- Joint Graduate Program in Toxicology, Rutgers, The State University of New Jersey, Piscataway, NJ. USA
- Department of Animal Sciences, School of Environmental & Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ. USA
- Graduate Program in Endocrinology and Animal Biosciences, School of Environmental & Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ. USA
- Graduate Program in Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ. USA
| |
Collapse
|
38
|
Martinou E, Stefanova I, Iosif E, Angelidi AM. Neurohormonal Changes in the Gut-Brain Axis and Underlying Neuroendocrine Mechanisms following Bariatric Surgery. Int J Mol Sci 2022; 23:3339. [PMID: 35328759 PMCID: PMC8954280 DOI: 10.3390/ijms23063339] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 02/05/2023] Open
Abstract
Obesity is a complex, multifactorial disease that is a major public health issue worldwide. Currently approved anti-obesity medications and lifestyle interventions lack the efficacy and durability needed to combat obesity, especially in individuals with more severe forms or coexisting metabolic disorders, such as poorly controlled type 2 diabetes. Bariatric surgery is considered an effective therapeutic modality with sustained weight loss and metabolic benefits. Numerous genetic and environmental factors have been associated with the pathogenesis of obesity, while cumulative evidence has highlighted the gut-brain axis as a complex bidirectional communication axis that plays a crucial role in energy homeostasis. This has led to increased research on the roles of neuroendocrine signaling pathways and various gastrointestinal peptides as key mediators of the beneficial effects following weight-loss surgery. The accumulate evidence suggests that the development of gut-peptide-based agents can mimic the effects of bariatric surgery and thus is a highly promising treatment strategy that could be explored in future research. This article aims to elucidate the potential underlying neuroendocrine mechanisms of the gut-brain axis and comprehensively review the observed changes of gut hormones associated with bariatric surgery. Moreover, the emerging role of post-bariatric gut microbiota modulation is briefly discussed.
Collapse
Affiliation(s)
- Eirini Martinou
- Department of Upper Gastrointestinal Surgery, Frimley Health NHS Foundation Trust, Camberley GU16 7UJ, UK;
- Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK
| | - Irena Stefanova
- Department of General Surgery, Frimley Health NHS Foundation Trust, Camberley GU16 7UJ, UK;
| | - Evangelia Iosif
- Department of General Surgery, Royal Surrey County Hospital, Guildford GU2 7XX, UK;
| | - Angeliki M. Angelidi
- Division of Endocrinology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| |
Collapse
|
39
|
Jais A, Brüning JC. Arcuate Nucleus-Dependent Regulation of Metabolism-Pathways to Obesity and Diabetes Mellitus. Endocr Rev 2022; 43:314-328. [PMID: 34490882 PMCID: PMC8905335 DOI: 10.1210/endrev/bnab025] [Citation(s) in RCA: 127] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Indexed: 01/12/2023]
Abstract
The central nervous system (CNS) receives information from afferent neurons, circulating hormones, and absorbed nutrients and integrates this information to orchestrate the actions of the neuroendocrine and autonomic nervous systems in maintaining systemic metabolic homeostasis. Particularly the arcuate nucleus of the hypothalamus (ARC) is of pivotal importance for primary sensing of adiposity signals, such as leptin and insulin, and circulating nutrients, such as glucose. Importantly, energy state-sensing neurons in the ARC not only regulate feeding but at the same time control multiple physiological functions, such as glucose homeostasis, blood pressure, and innate immune responses. These findings have defined them as master regulators, which adapt integrative physiology to the energy state of the organism. The disruption of this fine-tuned control leads to an imbalance between energy intake and expenditure as well as deregulation of peripheral metabolism. Improving our understanding of the cellular, molecular, and functional basis of this regulatory principle in the CNS could set the stage for developing novel therapeutic strategies for the treatment of obesity and metabolic syndrome. In this review, we summarize novel insights with a particular emphasis on ARC neurocircuitries regulating food intake and glucose homeostasis and sensing factors that inform the brain of the organismal energy status.
Collapse
Affiliation(s)
- Alexander Jais
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Cologne, Germany.,Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Cologne, Germany.,Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.,Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - Jens C Brüning
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Cologne, Germany.,Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Cologne, Germany.,Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.,National Center for Diabetes Research (DZD), Neuherberg, Germany
| |
Collapse
|
40
|
Jeong B, Kim KK, Lee TH, Kim HR, Park BS, Park JW, Jeong JK, Seong JY, Lee BJ. Spexin Regulates Hypothalamic Leptin Action on Feeding Behavior. Biomolecules 2022; 12:biom12020236. [PMID: 35204737 PMCID: PMC8961618 DOI: 10.3390/biom12020236] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/26/2022] [Accepted: 01/28/2022] [Indexed: 02/01/2023] Open
Abstract
Spexin (SPX) is a recently identified neuropeptide that is believed to play an important role in the regulation of energy homeostasis. Here, we describe a mediating function of SPX in hypothalamic leptin action. Intracerebroventricular (icv) SPX administration induced a decrease in food intake and body weight gain. SPX was found to be expressed in cells expressing leptin receptor ObRb in the mouse hypothalamus. In line with this finding, icv leptin injection increased SPX mRNA in the ObRb-positive cells of the hypothalamus, which was blocked by treatment with a STAT3 inhibitor. Leptin also increased STAT3 binding to the SPX promoter, as measured by chromatin immunoprecipitation assays. In vivo blockade of hypothalamic SPX biosynthesis with an antisense oligodeoxynucleotide (AS ODN) resulted in a diminished leptin effect on food intake and body weight. AS ODN reversed leptin’s effect on the proopiomelanocortin (POMC) mRNA expression and, moreover, decreased leptin-induced STAT3 binding to the POMC promoter sequence. These results suggest that SPX is involved in leptin’s action on POMC gene expression in the hypothalamus and impacts the anorexigenic effects of leptin.
Collapse
Affiliation(s)
- Bora Jeong
- Department of Biological Sciences, College of Natural Sciences, University of Ulsan, Ulsan 44610, Korea; (B.J.); (K.-K.K.); (T.-H.L.); (B.-S.P.); (J.-W.P.)
| | - Kwang-Kon Kim
- Department of Biological Sciences, College of Natural Sciences, University of Ulsan, Ulsan 44610, Korea; (B.J.); (K.-K.K.); (T.-H.L.); (B.-S.P.); (J.-W.P.)
| | - Tae-Hwan Lee
- Department of Biological Sciences, College of Natural Sciences, University of Ulsan, Ulsan 44610, Korea; (B.J.); (K.-K.K.); (T.-H.L.); (B.-S.P.); (J.-W.P.)
| | - Han-Rae Kim
- Department of Pharmacology and Physiology, School of Medicine & Health Sciences, The George Washington University, Washington, DC 22037, USA; (H.-R.K.); (J.-K.J.)
| | - Byong-Seo Park
- Department of Biological Sciences, College of Natural Sciences, University of Ulsan, Ulsan 44610, Korea; (B.J.); (K.-K.K.); (T.-H.L.); (B.-S.P.); (J.-W.P.)
| | - Jeong-Woo Park
- Department of Biological Sciences, College of Natural Sciences, University of Ulsan, Ulsan 44610, Korea; (B.J.); (K.-K.K.); (T.-H.L.); (B.-S.P.); (J.-W.P.)
| | - Jin-Kwon Jeong
- Department of Pharmacology and Physiology, School of Medicine & Health Sciences, The George Washington University, Washington, DC 22037, USA; (H.-R.K.); (J.-K.J.)
| | - Jae-Young Seong
- Graduate School of Medicine, Korea University, Seoul 02841, Korea
- Correspondence: (J.-Y.S.); (B.-J.L.)
| | - Byung-Ju Lee
- Department of Biological Sciences, College of Natural Sciences, University of Ulsan, Ulsan 44610, Korea; (B.J.); (K.-K.K.); (T.-H.L.); (B.-S.P.); (J.-W.P.)
- Correspondence: (J.-Y.S.); (B.-J.L.)
| |
Collapse
|
41
|
Abstract
Neuronal innervation in the adipose tissues plays a crucial role in regulating adipose thermogenic capacity and metabolic homeostasis. The tissue-wide nerves display a large extent of structural plasticity under physiological and pathological conditions that alter the neuronal control of metabolic states. We find here that neuronal plasticity is regulated by immune cells, which constitutes an appealing way to reshape neural-controlled energy balance by targeting immune components. Sympathetic innervation regulates energy balance, and the nerve density in the adipose tissues changes under various metabolic states, resulting in altered neuronal control and conferring resilience to metabolic challenges. However, the impact of the immune milieu on neuronal innervation is not known. Here, we examined the regulatory role on nerve plasticity by eosinophils and found they increased cell abundance in response to cold and produced nerve growth factor (NGF) in the white adipose tissues (WAT). Deletion of Ngf from eosinophils or depletion of eosinophils impairs cold-induced axonal outgrowth and beiging process. The spatial proximity between sympathetic nerves, IL-33–expressing stromal cells, and eosinophils was visualized in both human and mouse adipose tissues. At the cellular level, the sympathetic adrenergic signal induced calcium flux in the stromal cells and subsequent release of IL-33, which drove the up-regulation of IL-5 from group 2 innate lymphoid cells (ILC2s), leading to eosinophil accretion. We propose a feed-forward loop between sympathetic activity and type 2 immunity that coordinately enhances sympathetic innervation and promotes energy expenditure.
Collapse
|
42
|
Vohra MS, Benchoula K, Serpell CJ, Hwa WE. AgRP/NPY and POMC neurons in the arcuate nucleus and their potential role in treatment of obesity. Eur J Pharmacol 2022; 915:174611. [PMID: 34798121 DOI: 10.1016/j.ejphar.2021.174611] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 10/27/2021] [Accepted: 10/27/2021] [Indexed: 02/08/2023]
Abstract
Obesity is a major health crisis affecting over a third of the global population. This multifactorial disease is regulated via interoceptive neural circuits in the brain, whose alteration results in excessive body weight. Certain central neuronal populations in the brain are recognised as crucial nodes in energy homeostasis; in particular, the hypothalamic arcuate nucleus (ARC) region contains two peptide microcircuits that control energy balance with antagonistic functions: agouti-related peptide/neuropeptide-Y (AgRP/NPY) signals hunger and stimulates food intake; and pro-opiomelanocortin (POMC) signals satiety and reduces food intake. These neuronal peptides levels react to energy status and integrate signals from peripheral ghrelin, leptin, and insulin to regulate feeding and energy expenditure. To manage obesity comprehensively, it is crucial to understand cellular and molecular mechanisms of information processing in ARC neurons, since these regulate energy homeostasis. Importantly, a specific strategy focusing on ARC circuits needs to be devised to assist in treating obese patients and maintaining weight loss with minimal or no side effects. The aim of this review is to elucidate the recent developments in the study of AgRP-, NPY- and POMC-producing neurons, specific to their role in controlling metabolism. The impact of ghrelin, leptin, and insulin signalling via action of these neurons is also surveyed, since they also impact energy balance through this route. Lastly, we present key proteins, targeted genes, compounds, drugs, and therapies that actively work via these neurons and could potentially be used as therapeutic targets for treating obesity conditions.
Collapse
Affiliation(s)
- Muhammad Sufyan Vohra
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University Lakeside Campus, 47500, Subang Jaya, Selangor Darul Ehsan, Malaysia
| | - Khaled Benchoula
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University Lakeside Campus, 47500, Subang Jaya, Selangor Darul Ehsan, Malaysia
| | - Christopher J Serpell
- School of Physical Sciences, Ingram Building, University of Kent, Canterbury, Kent, CT2 7NH, United Kingdom
| | - Wong Eng Hwa
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University Lakeside Campus, 47500, Subang Jaya, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
43
|
Chen XY, Chen L, Yang W, Xie AM. GLP-1 Suppresses Feeding Behaviors and Modulates Neuronal Electrophysiological Properties in Multiple Brain Regions. Front Mol Neurosci 2022; 14:793004. [PMID: 34975402 PMCID: PMC8718614 DOI: 10.3389/fnmol.2021.793004] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 11/29/2021] [Indexed: 11/24/2022] Open
Abstract
The glucagon-like peptide-1 (GLP-1) plays important roles in the regulation of food intake and energy metabolism. Peripheral or central GLP-1 suppresses food intake and reduces body weight. The electrophysiological properties of neurons in the mammalian central nervous system reflect the neuronal excitability and the functional organization of the brain. Recent studies focus on elucidating GLP-1-induced suppression of feeding behaviors and modulation of neuronal electrophysiological properties in several brain regions. Here, we summarize that activation of GLP-1 receptor (GLP-1R) suppresses food intake and induces postsynaptic depolarization of membrane potential and/or presynaptic modulation of glutamatergic or GABAergic neurotransmission in brain nuclei located within the medulla oblongata, pons, mesencephalon, diencephalon, and telencephalon. This review may provide a background to guide future research about the cellular mechanisms of GLP-1-induced feeding inhibition.
Collapse
Affiliation(s)
- Xin-Yi Chen
- Department of International Medicine, Affiliated Hospital of Qingdao University, Qingdao, China.,Department of Neurology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lei Chen
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Wu Yang
- Department of International Medicine, Affiliated Hospital of Qingdao University, Qingdao, China
| | - An-Mu Xie
- Department of Neurology, Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
44
|
Yang Y, He Y, Liu H, Zhou W, Wang C, Xu P, Cai X, Liu H, Yu K, Pei Z, Hyseni I, Fukuda M, Tong Q, Xu J, Sun Z, O'Malley BW, Xu Y. Hypothalamic steroid receptor coactivator-2 regulates adaptations to fasting and overnutrition. Cell Rep 2021; 37:110075. [PMID: 34879284 PMCID: PMC8715676 DOI: 10.1016/j.celrep.2021.110075] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 08/09/2021] [Accepted: 11/09/2021] [Indexed: 01/09/2023] Open
Abstract
The neuroendocrine system coordinates metabolic and behavioral adaptations to fasting, including reducing energy expenditure, promoting counterregulation, and suppressing satiation and anxiety to engage refeeding. Here, we show that steroid receptor coactivator-2 (SRC-2) in pro-opiomelanocortin (POMC) neurons is a key regulator of all these responses to fasting. POMC-specific deletion of SRC-2 enhances the basal excitability of POMC neurons; mutant mice fail to efficiently suppress energy expenditure during food deprivation. SRC-2 deficiency blunts electric responses of POMC neurons to glucose fluctuations, causing impaired counterregulation. When food becomes available, these mutant mice show insufficient refeeding associated with enhanced satiation and discoordination of anxiety and food-seeking behavior. SRC-2 coactivates Forkhead box protein O1 (FoxO1) to suppress POMC gene expression. POMC-specific deletion of SRC-2 protects mice from weight gain induced by an obesogenic diet feeding and/or FoxO1 overexpression. Collectively, we identify SRC-2 as a key molecule that coordinates multifaceted adaptive responses to food shortage.
Collapse
Affiliation(s)
- Yongjie Yang
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Yanlin He
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hailan Liu
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Wenjun Zhou
- Department of Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Chunmei Wang
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Pingwen Xu
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xing Cai
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hesong Liu
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kaifan Yu
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zhou Pei
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ilirjana Hyseni
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Makoto Fukuda
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Qingchun Tong
- Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Jianming Xu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Zheng Sun
- Department of Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Bert W O'Malley
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Yong Xu
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.
| |
Collapse
|
45
|
Alterations in Leptin Signaling in Amyotrophic Lateral Sclerosis (ALS). Int J Mol Sci 2021; 22:ijms221910305. [PMID: 34638645 PMCID: PMC8508891 DOI: 10.3390/ijms221910305] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/21/2021] [Accepted: 09/21/2021] [Indexed: 02/07/2023] Open
Abstract
Leptin has been suggested to play a role in amyotrophic lateral sclerosis (ALS), a fatal progressive neurodegenerative disease. This adipokine has previously been shown to be associated with a lower risk of ALS and to confer a survival advantage in ALS patients. However, the role of leptin in the progression of ALS is unknown. Indeed, our understanding of the mechanisms underlying leptin's effects in the pathogenesis of ALS is very limited, and it is fundamental to determine whether alterations in leptin's actions take place in this neurodegenerative disease. To characterize the association between leptin signaling and the clinical course of ALS, we assessed the mRNA and protein expression profiles of leptin, the long-form of the leptin receptor (Ob-Rb), and leptin-related signaling pathways at two different stages of the disease (onset and end-stage) in TDP-43A315T mice compared to age-matched WT littermates. In addition, at selected time-points, an immunoassay analysis was conducted to characterize plasma levels of total ghrelin, the adipokines resistin and leptin, and metabolic proteins (plasminogen activator inhibitor type 1 (PAI-1), gastric inhibitory peptide (GIP), glucagon-like peptide 1 (GLP-1), insulin and glucagon) in TDP-43A315T mice compared to WT controls. Our results indicate alterations in leptin signaling in the spinal cord and the hypothalamus on the backdrop of TDP-43-induced deficits in mice, providing new evidence about the pathways that could link leptin signaling to ALS.
Collapse
|
46
|
He Z, Lieu L, Dong Y, Afrin S, Chau D, Kabahizi A, Wallace B, Cao J, Hwang ES, Yao T, Huang Y, Okolo J, Cheng B, Gao Y, Hu L, Williams KW. PERK in POMC neurons connects celastrol with metabolism. JCI Insight 2021; 6:145306. [PMID: 34549728 PMCID: PMC8492333 DOI: 10.1172/jci.insight.145306] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 07/28/2021] [Indexed: 01/02/2023] Open
Abstract
ER stress and activation of the unfolded protein response in the periphery as well as the central nervous system have been linked to various metabolic abnormalities. Chemically lowering protein kinase R–like ER kinase (PERK) activity within the hypothalamus leads to decreased food intake and body weight. However, the cell populations required in this response remain undefined. In the current study, we investigated the effects of proopiomelanocortin-specific (POMC-specific) PERK deficiency on energy balance and glucose metabolism. Male mice deficient for PERK in POMC neurons exhibited improvements in energy balance on a high-fat diet, showing decreased food intake and body weight, independent of changes in glucose and insulin tolerances. The plant-based inhibitor of PERK, celastrol, increases leptin sensitivity, resulting in decreased food intake and body weight in a murine model of diet-induced obesity (DIO). Our data extend these observations by demonstrating that celastrol-induced improvements in leptin sensitivity and energy balance were attenuated in mice with PERK deficiency in POMC neurons. Altogether, these data suggest that POMC-specific PERK deficiency in male mice confers protection against DIO, possibly providing a new therapeutic target for the treatment of diabetes and metabolic syndrome.
Collapse
Affiliation(s)
- Zhenyan He
- Department of Neurosurgery, Affiliated Tumor Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Center for Hypothalamic Research, Department of Internal Medicine, The University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, USA
| | - Linh Lieu
- Center for Hypothalamic Research, Department of Internal Medicine, The University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, USA
| | - Yanbin Dong
- Center for Hypothalamic Research, Department of Internal Medicine, The University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, USA.,Institute of Gastroenterology and.,Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Sadia Afrin
- Center for Hypothalamic Research, Department of Internal Medicine, The University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, USA
| | - Dominic Chau
- Center for Hypothalamic Research, Department of Internal Medicine, The University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, USA
| | - Anita Kabahizi
- Center for Hypothalamic Research, Department of Internal Medicine, The University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, USA
| | - Briana Wallace
- Center for Hypothalamic Research, Department of Internal Medicine, The University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, USA
| | - Jianhong Cao
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Eun-Sang Hwang
- Center for Hypothalamic Research, Department of Internal Medicine, The University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, USA
| | - Ting Yao
- Division of Pediatric Endocrinology, Department of Pediatrics, UCLA Children's Discovery and Innovation Institute, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Yiru Huang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Jennifer Okolo
- Center for Hypothalamic Research, Department of Internal Medicine, The University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, USA
| | - Bo Cheng
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Yong Gao
- Laboratory Department, Affiliated Hospital of Binzhou Medical College, Shandong, China
| | - Ling Hu
- Institute of Gastroenterology and.,Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Kevin W Williams
- Center for Hypothalamic Research, Department of Internal Medicine, The University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, USA
| |
Collapse
|
47
|
Moura-Assis A, Nogueira PAS, de-Lima-Junior JC, Simabuco FM, Gaspar JM, Donato Jr J, Velloso LA. TLR4-interactor with leucine-rich repeats (TRIL) is involved in diet-induced hypothalamic inflammation. Sci Rep 2021; 11:18015. [PMID: 34504172 PMCID: PMC8429592 DOI: 10.1038/s41598-021-97291-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/23/2021] [Indexed: 02/08/2023] Open
Abstract
Obesity and high-fat diet (HFD) consumption result in hypothalamic inflammation and metabolic dysfunction. While the TLR4 activation by dietary fats is a well-characterized pathway involved in the neuronal and glial inflammation, the role of its accessory proteins in diet-induced hypothalamic inflammation remains unknown. Here, we demonstrate that the knockdown of TLR4-interactor with leucine-rich repeats (Tril), a functional component of TLR4, resulted in reduced hypothalamic inflammation, increased whole-body energy expenditure, improved the systemic glucose tolerance and protection from diet-induced obesity. The POMC-specific knockdown of Tril resulted in decreased body fat, decreased white adipose tissue inflammation and a trend toward increased leptin signaling in POMC neurons. Thus, Tril was identified as a new component of the complex mechanisms that promote hypothalamic dysfunction in experimental obesity and its inhibition in the hypothalamus may represent a novel target for obesity treatment.
Collapse
Affiliation(s)
- Alexandre Moura-Assis
- grid.411087.b0000 0001 0723 2494Laboratory of Cell Signalling-Obesity and Comorbidities Research Center, University of Campinas, Campinas, Brazil
| | - Pedro A. S. Nogueira
- grid.411087.b0000 0001 0723 2494Laboratory of Cell Signalling-Obesity and Comorbidities Research Center, University of Campinas, Campinas, Brazil
| | - Jose C. de-Lima-Junior
- grid.411087.b0000 0001 0723 2494Laboratory of Cell Signalling-Obesity and Comorbidities Research Center, University of Campinas, Campinas, Brazil
| | - Fernando M. Simabuco
- grid.411087.b0000 0001 0723 2494Multidisciplinary Laboratory of Food and Health (LABMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, São Paulo Brazil
| | - Joana M. Gaspar
- grid.411087.b0000 0001 0723 2494Laboratory of Cell Signalling-Obesity and Comorbidities Research Center, University of Campinas, Campinas, Brazil
| | - Jose Donato Jr
- grid.11899.380000 0004 1937 0722Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Licio A. Velloso
- grid.411087.b0000 0001 0723 2494Laboratory of Cell Signalling-Obesity and Comorbidities Research Center, University of Campinas, Campinas, Brazil ,National Institute of Science and Technology on Neuroimmunomodulation, Rio de Janeiro, Brazil
| |
Collapse
|
48
|
Zhang N, Yan Z, Liu H, Yu M, He Y, Liu H, Liang C, Tu L, Wang L, Yin N, Han J, Scarcelli N, Yang Y, Wang C, Zeng T, Chen LL, Xu Y. Hypothalamic Perineuronal Nets Are Regulated by Sex and Dietary Interventions. Front Physiol 2021; 12:714104. [PMID: 34393830 PMCID: PMC8355523 DOI: 10.3389/fphys.2021.714104] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 07/09/2021] [Indexed: 11/13/2022] Open
Abstract
Perineuronal nets (PNNs) are widely present in the hypothalamus, and are thought to provide physical protection and ion buffering for neurons and regulate their synaptic plasticity and intracellular signaling. Recent evidence indicates that PNNs in the mediobasal hypothalamus play an important role in the regulation of glucose homeostasis. However, whether and how hypothalamic PNNs are regulated are not fully understood. In the present study, we examined whether PNNs in various hypothalamic regions in mice can be regulated by sex, gonadal hormones, dietary interventions, or their interactions. We demonstrated that gonadal hormones are required to maintain normal PNNs in the arcuate nucleus of hypothalamus in both male and female mice. In addition, PNNs in the terete hypothalamic nucleus display a sexual dimorphism with females higher than males, and high-fat diet feeding increases terete PNNs only in female mice but not in male mice. On the other hand, PNNs in other hypothalamic regions are not influenced by sex, gonadal hormones or dietary interventions. In summary, we demonstrated that hypothalamic PNNs are regulated in a region-specific manner and these results provide a framework to further investigate the potential functions of PNNs in regulating energy/glucose homeostasis at the interplay of sex, gonadal hormones and diets.
Collapse
Affiliation(s)
- Nan Zhang
- Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorder, Wuhan, China
| | - Zili Yan
- Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| | - Hailan Liu
- Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| | - Meng Yu
- Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| | - Yang He
- Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| | - Hesong Liu
- Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| | - Chen Liang
- Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| | - Longlong Tu
- Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| | - Lina Wang
- Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| | - Na Yin
- Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| | - Junying Han
- Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| | - Nikolas Scarcelli
- Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| | - Yongjie Yang
- Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| | - Chunmei Wang
- Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| | - Tianshu Zeng
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorder, Wuhan, China
| | - Lu-Lu Chen
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorder, Wuhan, China
| | - Yong Xu
- Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
49
|
Kaczmarek I, Suchý T, Prömel S, Schöneberg T, Liebscher I, Thor D. The relevance of adhesion G protein-coupled receptors in metabolic functions. Biol Chem 2021; 403:195-209. [PMID: 34218541 DOI: 10.1515/hsz-2021-0146] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 06/08/2021] [Indexed: 01/06/2023]
Abstract
G protein-coupled receptors (GPCRs) modulate a variety of physiological functions and have been proven to be outstanding drug targets. However, approximately one-third of all non-olfactory GPCRs are still orphans in respect to their signal transduction and physiological functions. Receptors of the class of Adhesion GPCRs (aGPCRs) are among these orphan receptors. They are characterized by unique features in their structure and tissue-specific expression, which yields them interesting candidates for deorphanization and testing as potential therapeutic targets. Capable of G-protein coupling and non-G protein-mediated function, aGPCRs may extend our repertoire of influencing physiological function. Besides their described significance in the immune and central nervous systems, growing evidence indicates a high importance of these receptors in metabolic tissue. RNAseq analyses revealed high expression of several aGPCRs in pancreatic islets, adipose tissue, liver, and intestine but also in neurons governing food intake. In this review, we focus on aGPCRs and their function in regulating metabolic pathways. Based on current knowledge, this receptor class represents high potential for future pharmacological approaches addressing obesity and other metabolic diseases.
Collapse
Affiliation(s)
- Isabell Kaczmarek
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Johannisallee 30, D-04103 Leipzig, Germany
| | - Tomáš Suchý
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Johannisallee 30, D-04103 Leipzig, Germany
| | - Simone Prömel
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Johannisallee 30, D-04103 Leipzig, Germany
- Institute of Cell Biology, Heinrich Heine University Düsseldorf, D-40225 Düsseldorf, Germany
| | - Torsten Schöneberg
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Johannisallee 30, D-04103 Leipzig, Germany
| | - Ines Liebscher
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Johannisallee 30, D-04103 Leipzig, Germany
| | - Doreen Thor
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Johannisallee 30, D-04103 Leipzig, Germany
| |
Collapse
|
50
|
Münzberg H, Floyd E, Chang JS. Sympathetic Innervation of White Adipose Tissue: to Beige or Not to Beige? Physiology (Bethesda) 2021; 36:246-255. [PMID: 34159808 DOI: 10.1152/physiol.00038.2020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Obesity research progresses in understanding neuronal circuits and adipocyte biology to regulate metabolism. However, the interface of neuro-adipocyte interaction is less studied. We summarize the current knowledge of adipose tissue innervation and interaction with adipocytes and emphasize adipocyte transitions from white to brown adipocytes and vice versa. We further highlight emerging concepts for the differential neuronal regulation of brown/beige versus white adipocyte and the interdependence of both for metabolic regulation.
Collapse
Affiliation(s)
- Heike Münzberg
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana
| | - Elizabeth Floyd
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana
| | - Ji Suk Chang
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana
| |
Collapse
|