1
|
Müller U, Strucken EM, Gao J, Rahmatalla S, Korkuć P, Reissmann M, Brockmann GA. Are SNPs Linked to Somatic Cell Score Suitable Markers for the Susceptibility to Specific Mastitis Pathogens in Holstein Cows? J Anim Breed Genet 2025; 142:354-361. [PMID: 39485036 PMCID: PMC11975196 DOI: 10.1111/jbg.12904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/21/2024] [Accepted: 10/04/2024] [Indexed: 11/03/2024]
Abstract
Mastitis in cattle is often caused by microorganism infections in the udder. The three most common pathogens are esculin-positive streptococci (SC+), coagulase-negative staphylococci (CNS), and Escherichia coli (E. coli). In a previous study, 10 SNPs were associated with somatic cell score and mastitis in diverse Holstein populations. We tested these SNPs for their effects on individual pathogen presence. Milk and pathogen samples of 3076 Holstein cows were collected from four farms. Samples were excluded if multiple pathogens were present at the same time. Records of the same pathogen within 14 days of each other were counted as one infection. This resulted in 1129 pathogen-positive samples. Cases and controls were in ratios of 20:80 for SC+, 8:92 for CNS, and 11:89 for E. coli. The lasso, backward, and forward methods were used to narrow down SNPs associated with pathogen presence. The suitability of the SNPs to separate the samples into cases or controls for each pathogen was indicated using ROC curves. The Cochran-Armitage (CAT) and the Jonckheere-Terpstra (JTT) tests evaluated the influence of the SNPs on pathogen presence. Finally, a generalised linear mixed model (GLMM) including fixed environmental effects and a random sire effect was fitted to the binary trait of pathogen presence to test for association. In total, six out of the 10 investigated SNPs showed associations with pathogen presence based on the forward method: Two SNPs each for SC+ (rs41588957, rs41257403) and CNS (rs109934030, rs109441194), and three for E. coli (rs109934030, rs41634110, rs41636878). The CAT and GTT tests linked four SNPs (rs41588957, rs41634110, rs109441194, rs41636878) to pathogen presence, two of which were confirmed with the GLMM (rs41634110, rs109441194), with effects on CNS and E. coli. The SNPs linked to CNS and those linked to E. coli explained 13.2% and 13.8% of the variance, compared to 19% and 18.4%, respectively, of the full model with all 10 SNPs. Half of the SNP genotypes previously linked to lower SCS also decreased the probability for pathogen presence and might therefore be targets not just for lower SCS but for a better pathogen resistance. Trial Registration: Not applicable, no new data were collected for this study.
Collapse
Affiliation(s)
- U. Müller
- Breeding Biology and Molecular Genetics, Department for Crop and Animal SciencesHumboldt‐Universität Zu BerlinBerlinGermany
| | - E. M. Strucken
- Breeding Biology and Molecular Genetics, Department for Crop and Animal SciencesHumboldt‐Universität Zu BerlinBerlinGermany
| | - J. Gao
- Breeding Biology and Molecular Genetics, Department for Crop and Animal SciencesHumboldt‐Universität Zu BerlinBerlinGermany
| | - S. Rahmatalla
- Breeding Biology and Molecular Genetics, Department for Crop and Animal SciencesHumboldt‐Universität Zu BerlinBerlinGermany
| | - P. Korkuć
- Breeding Biology and Molecular Genetics, Department for Crop and Animal SciencesHumboldt‐Universität Zu BerlinBerlinGermany
| | - M. Reissmann
- Breeding Biology and Molecular Genetics, Department for Crop and Animal SciencesHumboldt‐Universität Zu BerlinBerlinGermany
| | - G. A. Brockmann
- Breeding Biology and Molecular Genetics, Department for Crop and Animal SciencesHumboldt‐Universität Zu BerlinBerlinGermany
| |
Collapse
|
2
|
de Andrade AG, Vanderley SER, de Farias Marques L, Almeida FS, Cavalcante-Silva LHA, Keesen TSL. Leptin, NK cells, and the weight of immunity: Insights into obesity. Int Immunopharmacol 2025; 147:113992. [PMID: 39755107 DOI: 10.1016/j.intimp.2024.113992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/28/2024] [Accepted: 12/29/2024] [Indexed: 01/06/2025]
Abstract
Obesity is a chronic inflammatory disease that affects more than 1 billion people worldwide and is associated with various metabolic and physiological dysfunctions, directly impacting the dynamics of the immune response, partly due to elevated leptin levels. Leptin is an important peptide hormone that regulates neuroendocrine function and energy homeostasis, with its blood levels reflecting energy reserves, fat mass, or energy deprivation. This hormone also plays a fundamental role in regulating immune function, including the activity of NK cells, which are essential components in antiviral and antitumor activity. In obese individuals, leptin resistance is commonly established, however, NK cells and other immune components remain responsive to this hormone. So far, leptin has demonstrated paradoxical activities of these cells, often associated with a dysfunctional profile when associated with obesity. The excessive fat is usually related to metabolic remodeling in NK cells, resulting in compromised antitumor responses due to reduced cytotoxic capacity and decreased expression of cytokines important for these defense mechanisms, such as IFN-γ. Therefore, this review approaches a better understanding of the immunoendocrine interactions between leptin and NK cells in the context of obesity.
Collapse
Affiliation(s)
- Arthur Gomes de Andrade
- Immunology Laboratory of Infectious Diseases, Department of Cellular and Molecular Biology, Federal University of Paraiba, João Pessoa, Paraíba 58051-900, Brazil
| | - Shayenne Eduarda Ramos Vanderley
- Immunology Laboratory of Infectious Diseases, Department of Cellular and Molecular Biology, Federal University of Paraiba, João Pessoa, Paraíba 58051-900, Brazil
| | - Lorrane de Farias Marques
- Immunology Laboratory of Infectious Diseases, Department of Cellular and Molecular Biology, Federal University of Paraiba, João Pessoa, Paraíba 58051-900, Brazil
| | - Fernanda Silva Almeida
- Immunology Laboratory of Infectious Diseases, Department of Cellular and Molecular Biology, Federal University of Paraiba, João Pessoa, Paraíba 58051-900, Brazil
| | | | - Tatjana Souza Lima Keesen
- Immunology Laboratory of Infectious Diseases, Department of Cellular and Molecular Biology, Federal University of Paraiba, João Pessoa, Paraíba 58051-900, Brazil.
| |
Collapse
|
3
|
Liao Y, Zheng Y, Zhang R, Chen X, Huang J, Liu J, Zhao Y, Zheng Y, Zhang X, Gao Z, Gao X, Bu J, Peng T, Li X, Shen E. Regulatory roles of transcription factors T-bet and Eomes in group 1 ILCs. Int Immunopharmacol 2024; 143:113229. [PMID: 39357208 DOI: 10.1016/j.intimp.2024.113229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 10/04/2024]
Abstract
T-bet and Eomes, both T-box transcription factors, have been extensively studied for their critical roles in the differentiation and functional maintenance of various immune cells. In this review, we provide a focused overview of their contributions to the transcriptional activation and differentiation, development, and terminal maturation of natural killer cells and innate lymphoid cell 1 cells. Furthermore, the interplay between T-bet and Eomes in regulating NK cell function, and its subsequent implications for immune responses against infections and tumors, is thoroughly examined. The review explores the ramifications of dysregulated transcription factor expression, examining its impact on homeostatic balance and its role in a spectrum of disease models. Expression variances among distinct NK cell subsets resident in different tissues are highlighted to underscore the complexity of their biological roles. Collectively, this work aims to expand the current understanding of NK cell biology, thereby paving the way for innovative approaches in the realm of NK cell-based immunotherapies.
Collapse
Affiliation(s)
- Yue Liao
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, The Second Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China
| | - Yanling Zheng
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, The Second Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China; Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ruizhi Zhang
- Department of Emergency Medicine, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiangming Chen
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, The Second Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China
| | - Jijun Huang
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, The Second Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China
| | - Jiamin Liu
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, The Second Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China
| | - Yuyang Zhao
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, The Second Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China
| | - Yu Zheng
- National Center for STD Control, Chinese Center for Disease Control and Prevention, Nanjing, Jiangsu, China; Hospital for Skin Disease (Institute of Dermatology), Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China
| | - Xueyan Zhang
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, The Second Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China
| | - Zhiyan Gao
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, The Second Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China
| | - Xiaojing Gao
- National Center for STD Control, Chinese Center for Disease Control and Prevention, Nanjing, Jiangsu, China; Hospital for Skin Disease (Institute of Dermatology), Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China
| | - Jin Bu
- National Center for STD Control, Chinese Center for Disease Control and Prevention, Nanjing, Jiangsu, China; Hospital for Skin Disease (Institute of Dermatology), Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China.
| | - Tieli Peng
- The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, China.
| | - Xiaomin Li
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, The Second Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China.
| | - Erxia Shen
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, The Second Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
4
|
Chen J, Li H, Zhuo J, Lin Z, Hu Z, He C, Wu X, Jin Y, Lin Z, Su R, Sun Y, Wang R, Sun J, Wei X, Zheng S, Lu D, Xu X. Impact of immunosuppressants on tumor pulmonary metastasis: new insight into transplantation for hepatocellular carcinoma. Cancer Biol Med 2024; 21:j.issn.2095-3941.2024.0267. [PMID: 39718153 PMCID: PMC11667780 DOI: 10.20892/j.issn.2095-3941.2024.0267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 11/25/2024] [Indexed: 12/25/2024] Open
Abstract
Pulmonary metastasis is a life-threatening complication for patients with hepatocellular carcinoma (HCC) undergoing liver transplantation (LT). In addition to the common mechanisms underlying tumor metastasis, another inevitable factor is that the application of immunosuppressive agents, including calcineurin inhibitors (CNIs) and rapamycin inhibitors (mTORis), after transplantation could influence tumor recurrence and metastasis. In recent years, several studies have reported that mTORis, unlike CNIs, have the capacity to modulate the tumorigenic landscape post-liver transplantation by targeting metastasis-initiating cells and reshaping the pulmonary microenvironment. Therefore, we focused on the effects of immunosuppressive agents on the lung metastatic microenvironment and how mTORis impact tumor growth in distant organs. This revelation has provided profound insights into transplant oncology, leading to a renewed understanding of the use of immunosuppressants after LT for HCC.
Collapse
Affiliation(s)
- Jinyan Chen
- Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Huigang Li
- Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Jianyong Zhuo
- Department of Hepatobiliary and Pancreatic Surgery, Hangzhou First People’s Hospital, Hangzhou 310006, China
| | - Zuyuan Lin
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou 310053, China
| | - Zhihang Hu
- Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Chiyu He
- Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xiang Wu
- Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yiru Jin
- Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Zhanyi Lin
- Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Renyi Su
- Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yiyang Sun
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310063, China
| | - Rongsen Wang
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou 310053, China
| | - Jiancai Sun
- Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xuyong Wei
- Department of Hepatobiliary and Pancreatic Surgery, Hangzhou First People’s Hospital, Hangzhou 310006, China
| | - Shusen Zheng
- Department of Hepatobiliary and Pancreatic Surgery, Shulan (Hangzhou) Hospital, Hangzhou 310022, China
| | - Di Lu
- Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), School of Clinical Medicine, Hangzhou Medical College, Hangzhou 310014, China
| | - Xiao Xu
- Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), School of Clinical Medicine, Hangzhou Medical College, Hangzhou 310014, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310029, China
| |
Collapse
|
5
|
Vahidi S, Zabeti Touchaei A, Samadani AA. IL-15 as a key regulator in NK cell-mediated immunotherapy for cancer: From bench to bedside. Int Immunopharmacol 2024; 133:112156. [PMID: 38669950 DOI: 10.1016/j.intimp.2024.112156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/04/2024] [Accepted: 04/23/2024] [Indexed: 04/28/2024]
Abstract
Interleukin 15 (IL-15) has emerged as a crucial factor in the relationship between natural killer (NK) cells and immunotherapy for cancer. This review article aims to provide a comprehensive understanding of the role of IL-15 in NK cell-mediated immunotherapy. First, the key role of IL-15 signaling in NK cell immunity is discussed, highlighting its regulation of NK cell functions and antitumor properties. Furthermore, the use of IL-15 or its analogs in clinical trials as a therapeutic strategy for various cancers, including the genetic modification of NK cells to produce IL-15, has been explored. The potential of IL-15-based therapies, such as chimeric antigen receptor (CAR) T and NK cell infusion along with IL-15 in combination with checkpoint inhibitors and other treatments, has been examined. This review also addresses the challenges and advantages of incorporating IL-15 in cell-based immunotherapy. Additionally, unresolved questions regarding the detection and biological significance of the soluble IL-15/IL-15Rα complex, as well as the potential role of IL-15/IL-15Rα in human cancer and the immunological consequences of prolonged exposure to soluble IL-15 for NK cells, are discussed.
Collapse
Affiliation(s)
- Sogand Vahidi
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | | | - Ali Akbar Samadani
- Guilan Road Trauma Research Center, Trauma Institute, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
6
|
Xu Y, Li X, Cheng F, Zhao B, Fang M, Li Z, Meng S. Heat shock protein gp96 drives natural killer cell maturation and anti-tumor immunity by counteracting Trim28 to stabilize Eomes. Nat Commun 2024; 15:1106. [PMID: 38321029 PMCID: PMC10847424 DOI: 10.1038/s41467-024-45426-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/23/2024] [Indexed: 02/08/2024] Open
Abstract
The maturation process of natural killer (NK) cells, which is regulated by multiple transcription factors, determines their functionality, but few checkpoints specifically targeting this process have been thoroughly studied. Here we show that NK-specific deficiency of glucose-regulated protein 94 (gp96) leads to decreased maturation of NK cells in mice. These gp96-deficient NK cells exhibit undermined activation, cytotoxicity and IFN-γ production upon stimulation, as well as weakened responses to IL-15 for NK cell maturation, in vitro. In vivo, NK-specific gp96-deficient mice show increased tumor growth. Mechanistically, we identify Eomes as the downstream transcription factor, with gp96 binding to Trim28 to prevent Trim28-mediated ubiquitination and degradation of Eomes. Our study thus suggests the gp96-Trim28-Eomes axis to be an important regulator for NK cell maturation and cancer surveillance in mice.
Collapse
Affiliation(s)
- Yuxiu Xu
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Xin Li
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China.
| | - Fang Cheng
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
- University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Bao Zhao
- Department of Otolaryngology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, 233004, China
| | - Min Fang
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Zihai Li
- The Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Songdong Meng
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China.
- University of Chinese Academy of Sciences, Beijing, P.R. China.
| |
Collapse
|
7
|
Giansanti M, Theinert T, Boeing SK, Haas D, Schlegel PG, Vacca P, Nazio F, Caruana I. Exploiting autophagy balance in T and NK cells as a new strategy to implement adoptive cell therapies. Mol Cancer 2023; 22:201. [PMID: 38071322 PMCID: PMC10709869 DOI: 10.1186/s12943-023-01893-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 10/30/2023] [Indexed: 12/18/2023] Open
Abstract
Autophagy is an essential cellular homeostasis pathway initiated by multiple stimuli ranging from nutrient deprivation to viral infection, playing a key role in human health and disease. At present, a growing number of evidence suggests a role of autophagy as a primitive innate immune form of defense for eukaryotic cells, interacting with components of innate immune signaling pathways and regulating thymic selection, antigen presentation, cytokine production and T/NK cell homeostasis. In cancer, autophagy is intimately involved in the immunological control of tumor progression and response to therapy. However, very little is known about the role and impact of autophagy in T and NK cells, the main players in the active fight against infections and tumors. Important questions are emerging: what role does autophagy play on T/NK cells? Could its modulation lead to any advantages? Could specific targeting of autophagy on tumor cells (blocking) and T/NK cells (activation) be a new intervention strategy? In this review, we debate preclinical studies that have identified autophagy as a key regulator of immune responses by modulating the functions of different immune cells and discuss the redundancy or diversity among the subpopulations of both T and NK cells in physiologic context and in cancer.
Collapse
Affiliation(s)
- Manuela Giansanti
- Immunology Research Area, Innate Lymphoid Cells Unit, Bambino Gesù Children's Hospital (IRCCS), Rome, Italy
| | - Tobias Theinert
- Department of Pediatric Hematology, Oncology and Stem Cell Transplantation, University Hospital Würzburg, 97080, Würzburg, Germany
| | - Sarah Katharina Boeing
- Department of Pediatric Hematology, Oncology and Stem Cell Transplantation, University Hospital Würzburg, 97080, Würzburg, Germany
| | - Dorothee Haas
- Department of Pediatric Hematology, Oncology and Stem Cell Transplantation, University Hospital Würzburg, 97080, Würzburg, Germany
| | - Paul-Gerhardt Schlegel
- Department of Pediatric Hematology, Oncology and Stem Cell Transplantation, University Hospital Würzburg, 97080, Würzburg, Germany
| | - Paola Vacca
- Immunology Research Area, Innate Lymphoid Cells Unit, Bambino Gesù Children's Hospital (IRCCS), Rome, Italy
| | - Francesca Nazio
- Immunology Research Area, Innate Lymphoid Cells Unit, Bambino Gesù Children's Hospital (IRCCS), Rome, Italy.
- Department of Biology, University of Rome Tor Vergata, 00133, Rome, Italy.
| | - Ignazio Caruana
- Department of Pediatric Hematology, Oncology and Stem Cell Transplantation, University Hospital Würzburg, 97080, Würzburg, Germany.
| |
Collapse
|
8
|
Panwar V, Singh A, Bhatt M, Tonk RK, Azizov S, Raza AS, Sengupta S, Kumar D, Garg M. Multifaceted role of mTOR (mammalian target of rapamycin) signaling pathway in human health and disease. Signal Transduct Target Ther 2023; 8:375. [PMID: 37779156 PMCID: PMC10543444 DOI: 10.1038/s41392-023-01608-z] [Citation(s) in RCA: 287] [Impact Index Per Article: 143.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/25/2023] [Accepted: 08/14/2023] [Indexed: 10/03/2023] Open
Abstract
The mammalian target of rapamycin (mTOR) is a protein kinase that controls cellular metabolism, catabolism, immune responses, autophagy, survival, proliferation, and migration, to maintain cellular homeostasis. The mTOR signaling cascade consists of two distinct multi-subunit complexes named mTOR complex 1/2 (mTORC1/2). mTOR catalyzes the phosphorylation of several critical proteins like AKT, protein kinase C, insulin growth factor receptor (IGF-1R), 4E binding protein 1 (4E-BP1), ribosomal protein S6 kinase (S6K), transcription factor EB (TFEB), sterol-responsive element-binding proteins (SREBPs), Lipin-1, and Unc-51-like autophagy-activating kinases. mTOR signaling plays a central role in regulating translation, lipid synthesis, nucleotide synthesis, biogenesis of lysosomes, nutrient sensing, and growth factor signaling. The emerging pieces of evidence have revealed that the constitutive activation of the mTOR pathway due to mutations/amplification/deletion in either mTOR and its complexes (mTORC1 and mTORC2) or upstream targets is responsible for aging, neurological diseases, and human malignancies. Here, we provide the detailed structure of mTOR, its complexes, and the comprehensive role of upstream regulators, as well as downstream effectors of mTOR signaling cascades in the metabolism, biogenesis of biomolecules, immune responses, and autophagy. Additionally, we summarize the potential of long noncoding RNAs (lncRNAs) as an important modulator of mTOR signaling. Importantly, we have highlighted the potential of mTOR signaling in aging, neurological disorders, human cancers, cancer stem cells, and drug resistance. Here, we discuss the developments for the therapeutic targeting of mTOR signaling with improved anticancer efficacy for the benefit of cancer patients in clinics.
Collapse
Affiliation(s)
- Vivek Panwar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Aishwarya Singh
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Sector-125, Noida, Uttar Pradesh, 201313, India
| | - Manini Bhatt
- Department of Biomedical Engineering, Indian Institute of Technology, Ropar, Punjab, 140001, India
| | - Rajiv K Tonk
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi, 110017, India
| | - Shavkatjon Azizov
- Laboratory of Biological Active Macromolecular Systems, Institute of Bioorganic Chemistry, Academy of Sciences Uzbekistan, Tashkent, 100125, Uzbekistan
- Faculty of Life Sciences, Pharmaceutical Technical University, 100084, Tashkent, Uzbekistan
| | - Agha Saquib Raza
- Rajive Gandhi Super Speciality Hospital, Tahirpur, New Delhi, 110093, India
| | - Shinjinee Sengupta
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Sector-125, Noida, Uttar Pradesh, 201313, India.
| | - Deepak Kumar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, 173229, India.
| | - Manoj Garg
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Sector-125, Noida, Uttar Pradesh, 201313, India.
| |
Collapse
|
9
|
Chen E, Mo Y, Yi J, Liu J, Luo T, Li Z, Lin Z, Hu Y, Zou Z, Liu J. A novel hepatocellular carcinoma-specific mTORC1-related signature for anticipating prognosis and immunotherapy. Aging (Albany NY) 2023; 15:7933-7955. [PMID: 37589508 PMCID: PMC10497017 DOI: 10.18632/aging.204862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 06/09/2023] [Indexed: 08/18/2023]
Abstract
Tumor oncogenesis, cancer metastasis, and immune evasion were substantially impacted by the mammalian target of the rapamycin complex 1 (mTORC1) pathway. However, in hepatocellular carcinoma (HCC), no mTORC1 signaling-based gene signature has ever been published. mTORC1 scores were computed employing a single sample gene set enrichment analysis based on databases including the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). The PAG1, LHFPL2, and FABP5 expression levels were obtained to construct a mTORC1 pathway-related model. In two databases, the overall survival (OS) rate was shorter for high-mTORC1 score patients compared to those with low scores. The activation of TFs in the group with high risk was enhanced, such as the HIF-1 pathway. Additionally, it was discovered that a high mTORC1 score was linked to an immune exclusion phenotype and enhanced immunosuppressive cell infiltration. Notably, it was discovered that high-mTORC1 scores patients had poorer immunotherapeutic results and might not gain benefit from immunotherapy. When compared to the low HCC metastatic cell lines, the high HCC metastatic cell lines have overexpressed levels of PAG1, LHFPL2, and FABP5 expression. The expression of PAG1, LHFPL2, and FABP5 was inhibited by the MAPK and mTORC1 pathway inhibitors. Our study identified mTORC1 score signature can aid in the development of individualized immunotherapy protocols and predict the HCC patients' prognoses.
Collapse
Affiliation(s)
- Erbao Chen
- Department of Hepatobiliary and Pancreatic Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Yuqian Mo
- School of Public Health, Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Jing Yi
- Department of Hepatobiliary and Pancreatic Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Jie Liu
- Department of Hepatobiliary and Pancreatic Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Ting Luo
- Operating Room, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Zheng Li
- Department of Ophthalmology, Affiliated Eye Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zewei Lin
- Department of Hepatobiliary and Pancreatic Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Yibing Hu
- Breast and Thyroid Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Zhilin Zou
- Department of Ophthalmology, Affiliated Eye Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jikui Liu
- Department of Hepatobiliary and Pancreatic Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| |
Collapse
|
10
|
Fallone L, Walzer T, Marçais A. Signaling Pathways Leading to mTOR Activation Downstream Cytokine Receptors in Lymphocytes in Health and Disease. Int J Mol Sci 2023; 24:12736. [PMID: 37628917 PMCID: PMC10454121 DOI: 10.3390/ijms241612736] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/09/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
CD8+ T cells and Natural Killer (NK) cells are cytotoxic lymphocytes important in the response to intracellular pathogens and cancer. Their activity depends on the integration of a large set of intracellular and environmental cues, including antigenic signals, cytokine stimulation and nutrient availability. This integration is achieved by signaling hubs, such as the mechanistic target of rapamycin (mTOR). mTOR is a conserved protein kinase that controls cellular growth and metabolism in eukaryotic cells and, therefore, is essential for lymphocyte development and maturation. However, our current understanding of mTOR signaling comes mostly from studies performed in transformed cell lines, which constitute a poor model for comprehending metabolic pathway regulation. Therefore, it is only quite recently that the regulation of mTOR in primary cells has been assessed. Here, we review the signaling pathways leading to mTOR activation in CD8+ T and NK cells, focusing on activation by cytokines. We also discuss how this knowledge can contribute to immunotherapy development, particularly for cancer treatment.
Collapse
Affiliation(s)
| | | | - Antoine Marçais
- CIRI—Centre International de Recherche en Infectiologie (Team Lyacts), Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007 Lyon, France; (L.F.); (T.W.)
| |
Collapse
|
11
|
Yang L, Chu Z, Liu M, Zou Q, Li J, Liu Q, Wang Y, Wang T, Xiang J, Wang B. Amino acid metabolism in immune cells: essential regulators of the effector functions, and promising opportunities to enhance cancer immunotherapy. J Hematol Oncol 2023; 16:59. [PMID: 37277776 DOI: 10.1186/s13045-023-01453-1] [Citation(s) in RCA: 90] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 05/13/2023] [Indexed: 06/07/2023] Open
Abstract
Amino acids are basic nutrients for immune cells during organ development, tissue homeostasis, and the immune response. Regarding metabolic reprogramming in the tumor microenvironment, dysregulation of amino acid consumption in immune cells is an important underlying mechanism leading to impaired anti-tumor immunity. Emerging studies have revealed that altered amino acid metabolism is tightly linked to tumor outgrowth, metastasis, and therapeutic resistance through governing the fate of various immune cells. During these processes, the concentration of free amino acids, their membrane bound transporters, key metabolic enzymes, and sensors such as mTOR and GCN2 play critical roles in controlling immune cell differentiation and function. As such, anti-cancer immune responses could be enhanced by supplement of specific essential amino acids, or targeting the metabolic enzymes or their sensors, thereby developing novel adjuvant immune therapeutic modalities. To further dissect metabolic regulation of anti-tumor immunity, this review summarizes the regulatory mechanisms governing reprogramming of amino acid metabolism and their effects on the phenotypes and functions of tumor-infiltrating immune cells to propose novel approaches that could be exploited to rewire amino acid metabolism and enhance cancer immunotherapy.
Collapse
Affiliation(s)
- Luming Yang
- Chongqing University Medical School, Chongqing, 400044, People's Republic of China
- Department of Gastroenterology and Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), 10# Changjiang Branch Road, Yuzhong District, Chongqing, 400042, People's Republic of China
| | - Zhaole Chu
- Department of Gastroenterology and Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), 10# Changjiang Branch Road, Yuzhong District, Chongqing, 400042, People's Republic of China
| | - Meng Liu
- Chongqing University Medical School, Chongqing, 400044, People's Republic of China
- Department of Gastroenterology and Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), 10# Changjiang Branch Road, Yuzhong District, Chongqing, 400042, People's Republic of China
| | - Qiang Zou
- Chongqing University Medical School, Chongqing, 400044, People's Republic of China
- Department of Gastroenterology and Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), 10# Changjiang Branch Road, Yuzhong District, Chongqing, 400042, People's Republic of China
| | - Jinyang Li
- Department of Gastroenterology and Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), 10# Changjiang Branch Road, Yuzhong District, Chongqing, 400042, People's Republic of China
| | - Qin Liu
- Department of Gastroenterology and Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), 10# Changjiang Branch Road, Yuzhong District, Chongqing, 400042, People's Republic of China
| | - Yazhou Wang
- Chongqing University Medical School, Chongqing, 400044, People's Republic of China.
| | - Tao Wang
- Department of Gastroenterology and Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), 10# Changjiang Branch Road, Yuzhong District, Chongqing, 400042, People's Republic of China.
| | - Junyu Xiang
- Department of Gastroenterology and Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), 10# Changjiang Branch Road, Yuzhong District, Chongqing, 400042, People's Republic of China.
| | - Bin Wang
- Department of Gastroenterology and Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), 10# Changjiang Branch Road, Yuzhong District, Chongqing, 400042, People's Republic of China.
- Institute of Pathology and Southwest Cancer Center, Key Laboratory of Tumor Immunopathology of Ministry of Education of China, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, People's Republic of China.
- Jinfeng Laboratory, Chongqing, 401329, People's Republic of China.
| |
Collapse
|
12
|
Mannick JB, Lamming DW. Targeting the biology of aging with mTOR inhibitors. NATURE AGING 2023; 3:642-660. [PMID: 37142830 PMCID: PMC10330278 DOI: 10.1038/s43587-023-00416-y] [Citation(s) in RCA: 112] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 04/07/2023] [Indexed: 05/06/2023]
Abstract
Inhibition of the protein kinase mechanistic target of rapamycin (mTOR) with the Food and Drug Administration (FDA)-approved therapeutic rapamycin promotes health and longevity in diverse model organisms. More recently, specific inhibition of mTORC1 to treat aging-related conditions has become the goal of basic and translational scientists, clinicians and biotechnology companies. Here, we review the effects of rapamycin on the longevity and survival of both wild-type mice and mouse models of human diseases. We discuss recent clinical trials that have explored whether existing mTOR inhibitors can safely prevent, delay or treat multiple diseases of aging. Finally, we discuss how new molecules may provide routes to the safer and more selective inhibition of mTOR complex 1 (mTORC1) in the decade ahead. We conclude by discussing what work remains to be done and the questions that will need to be addressed to make mTOR inhibitors part of the standard of care for diseases of aging.
Collapse
Affiliation(s)
| | - Dudley W Lamming
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
13
|
Tang J, Yang L, Guan F, Miller H, Camara NOS, James LK, Benlagha K, Kubo M, Heegaard S, Lee P, Lei J, Zeng H, He C, Zhai Z, Liu C. The role of Raptor in lymphocytes differentiation and function. Front Immunol 2023; 14:1146628. [PMID: 37283744 PMCID: PMC10239924 DOI: 10.3389/fimmu.2023.1146628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 04/28/2023] [Indexed: 06/08/2023] Open
Abstract
Raptor, a key component of mTORC1, is required for recruiting substrates to mTORC1 and contributing to its subcellular localization. Raptor has a highly conserved N-terminus domain and seven WD40 repeats, which interact with mTOR and other mTORC1-related proteins. mTORC1 participates in various cellular events and mediates differentiation and metabolism. Directly or indirectly, many factors mediate the differentiation and function of lymphocytes that is essential for immunity. In this review, we summarize the role of Raptor in lymphocytes differentiation and function, whereby Raptor mediates the secretion of cytokines to induce early lymphocyte metabolism, development, proliferation and migration. Additionally, Raptor regulates the function of lymphocytes by regulating their steady-state maintenance and activation.
Collapse
Affiliation(s)
- Jianing Tang
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious Disease, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lu Yang
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious Disease, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Fei Guan
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious Disease, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Heather Miller
- Cytek Biosciences, R&D Clinical Reagents, Fremont, CA, United States
| | - Niels Olsen Saraiva Camara
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, SP, Brazil
| | - Louisa K. James
- Centre for Immunobiology, Bizard Institute, Queen Mary University of London, London, United Kingdom
| | - Kamel Benlagha
- Université de Paris, Institut de Recherche Saint-Louis, EMiLy, Paris, France
| | - Masato Kubo
- Laboratory for Cytokine Regulation, Center for Integrative Medical Science (IMS), Rikagaku Kenkyusho, Institute of Physical and Chemical Research (RIKEN) Yokohama Institute, Yokohama, Japan
| | - Steffen Heegaard
- Department of Ophthalmology, Rigshospitalet Glostrup, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Pamela Lee
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Jiahui Lei
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious Disease, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hu Zeng
- Department of Immunology, Mayo Clinic, Rochester, MN, United States
- Division of Rheumatology, Department of Medicine, Mayo Clinic, Rochester, MN, United States
| | - Chengwei He
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR, China
| | - Zhimin Zhai
- Department of Hematology, The Second Hospital of Anhui Medical University, Hefei, China
| | - Chaohong Liu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious Disease, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
14
|
Cimpean M, Cooper MA. Metabolic regulation of NK cell antiviral functions during cytomegalovirus infection. J Leukoc Biol 2023; 113:525-534. [PMID: 36843434 PMCID: PMC11262056 DOI: 10.1093/jleuko/qiad018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/23/2023] [Accepted: 02/09/2023] [Indexed: 02/28/2023] Open
Abstract
Natural killer (NK) cells quickly mount cytotoxic responses, produce cytokines, and proliferate in response to infected or transformed cells. Moreover, they can develop memory, with enhanced effector responses following activation, in some cases with antigen specificity. To optimally execute these functions, NK cells undergo metabolic reprogramming. Here, we discuss the interplay between metabolism and NK cell function in the context of viral infections. We review findings supporting metabolic regulation of NK cell effector functions, with a focus on NK cell antiviral infection in the context of cytomegalovirus in the mouse (MCMV) and human (HCMV).
Collapse
Affiliation(s)
- Maria Cimpean
- Department of Pediatrics, Division of Rheumatology/Immunology, Washington University in St. Louis, St. Louis, USA
| | - Megan A. Cooper
- Department of Pediatrics, Division of Rheumatology/Immunology, Washington University in St. Louis, St. Louis, USA
| |
Collapse
|
15
|
Bourayou E, Golub R. Inflammatory-driven NK cell maturation and its impact on pathology. Front Immunol 2022; 13:1061959. [PMID: 36569860 PMCID: PMC9780665 DOI: 10.3389/fimmu.2022.1061959] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 11/24/2022] [Indexed: 12/13/2022] Open
Abstract
NK cells are innate lymphocytes involved in a large variety of contexts and are crucial in the immunity to intracellular pathogens as well as cancer due to their ability to kill infected or malignant cells. Thus, they harbor a strong potential for clinical and therapeutic use. NK cells do not require antigen exposure to get activated; their functional response is rather based on a balance between inhibitory/activating signals and on the diversity of germline-encoded receptors they express. In order to reach optimal functional status, NK cells go through a step-wise development in the bone marrow before their egress, and dissemination into peripheral organs via the circulation. In this review, we summarize bone marrow NK cell developmental stages and list key factors involved in their differentiation before presenting newly discovered and emerging factors that regulate NK cell central and peripheral maturation. Lastly, we focus on the impact inflammatory contexts themselves can have on NK cell development and functional maturation.
Collapse
Affiliation(s)
- Elsa Bourayou
- Institut Pasteur, Université Paris Cité, INSERM U1223, Lymphocyte and Immunity Unit, Paris, France
| | - Rachel Golub
- Institut Pasteur, Université Paris Cité, INSERM U1223, Lymphocyte and Immunity Unit, Paris, France
| |
Collapse
|
16
|
Khalil M, Malarkannan S. Innatus immunis: Evolving paradigm of adaptive NK cells. J Exp Med 2022; 219:e20221254. [PMID: 36066493 PMCID: PMC9449531 DOI: 10.1084/jem.20221254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
The mechanisms that govern the development of adaptive-like NK cells are elusive. Shemesh et al. (2022. J. Exp. Med.https://doi.org/10.1084/jem.20220551) report that the development of FcRγ-/low adaptive-like NK cells requires reduced mTOR activity and depends on TGF-β or IFN-α. These findings provide exciting new molecular blueprints explaining the development and functions of adaptive-like NK cells.
Collapse
Affiliation(s)
- Mohamed Khalil
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI
- Blood Research Institute, Versiti, Milwaukee, WI
| | - Subramaniam Malarkannan
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI
- Blood Research Institute, Versiti, Milwaukee, WI
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI
- Division of Hematology, Oncology, and Bone Marrow Transplantation, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI
| |
Collapse
|
17
|
Shemesh A, Su Y, Calabrese DR, Chen D, Arakawa-Hoyt J, Roybal KT, Heath JR, Greenland JR, Lanier LL. Diminished cell proliferation promotes natural killer cell adaptive-like phenotype by limiting FcεRIγ expression. J Exp Med 2022; 219:e20220551. [PMID: 36066491 PMCID: PMC9448639 DOI: 10.1084/jem.20220551] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/14/2022] [Accepted: 08/05/2022] [Indexed: 12/20/2022] Open
Abstract
Human adaptive-like natural killer (NK) cells express low levels of FcεRIγ (FcRγ-/low) and are reported to accumulate during COVID-19 infection; however, the mechanism underlying and regulating FcRγ expression in NK cells has yet to be fully defined. We observed lower FcRγ protein expression in NK cell subsets from lung transplant patients during rapamycin treatment, suggesting a link with reduced mTOR activity. Further, FcRγ-/low NK cell subsets from healthy donors displayed reduced mTOR activity. We discovered that FcRγ upregulation is dependent on cell proliferation progression mediated by IL-2, IL-15, or IL-12, is sensitive to mTOR suppression, and is inhibited by TGFβ or IFNα. Accordingly, the accumulation of adaptive-like FcRγ-/low NK cells in COVID-19 patients corresponded to increased TGFβ and IFNα levels and disease severity. Our results show that an adaptive-like NK cell phenotype is induced by diminished cell proliferation and has an early prognostic value for increased TGFβ and IFNα levels in COVID-19 infection associated with disease severity.
Collapse
Affiliation(s)
- Avishai Shemesh
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA
- Parker Institute for Cancer Immunotherapy, University of California, San Francisco, San Francisco, CA
| | - Yapeng Su
- Institute for Systems Biology, Seattle, WA
| | - Daniel R. Calabrese
- Department of Medicine, University of California, San Francisco, CA
- Medical Service, Veterans Affairs Health Care System, San Francisco, CA
| | - Daniel Chen
- Institute for Systems Biology, Seattle, WA
- Department of Microbiology, University of Washington, Seattle, WA
- Department of Informatics, University of Washington, Seattle, WA
| | - Janice Arakawa-Hoyt
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA
| | - Kole T. Roybal
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA
- Parker Institute for Cancer Immunotherapy, University of California, San Francisco, San Francisco, CA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA
- Chan Zuckerberg Biohub, San Francisco, CA
- Gladstone University of California, San Francisco Institute for Genetic Immunology, San Francisco, CA
- University of California, San Francisco Cell Design Institute, San Francisco, CA
| | - James R. Heath
- Institute for Systems Biology, Seattle, WA
- Department of Bioengineering, University of Washington, Seattle, WA
| | - John R. Greenland
- Department of Medicine, University of California, San Francisco, CA
- Medical Service, Veterans Affairs Health Care System, San Francisco, CA
| | - Lewis L. Lanier
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA
- Parker Institute for Cancer Immunotherapy, University of California, San Francisco, San Francisco, CA
| |
Collapse
|
18
|
He F, Furones AR, Landegren N, Fuxe J, Sarhan D. Sex dimorphism in the tumor microenvironment - From bench to bedside and back. Semin Cancer Biol 2022; 86:166-179. [PMID: 35278635 DOI: 10.1016/j.semcancer.2022.03.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 02/20/2022] [Accepted: 03/06/2022] [Indexed: 01/27/2023]
Abstract
Cancer represents a significant cause of death and suffering in both the developed and developing countries. Key underlying issues in the mortality of cancer are delayed diagnosis and resistance to treatments. However, improvements in biomarkers represent one important step that can be taken for alleviating the suffering caused by malignancy. Precision-based medicine is promising for revolutionizing diagnostic and treatment strategies for cancer patients worldwide. Contemporary methods, including various omics and systems biology approaches, as well as advanced digital imaging and artificial intelligence, allow more accurate assessment of tumor characteristics at the patient level. As a result, treatment strategies can be specifically tailored and adapted for individual and/or groups of patients that carry certain tumor characteristics. This includes immunotherapy, which is based on characterization of the immunosuppressive tumor microenvironment (TME) and, more specifically, the presence and activity of immune cell subsets. Unfortunately, while it is increasingly clear that gender strongly affects immune regulation and response, there is a knowledge gap concerning differences in sex-specific immune responses and how these contribute to the immunosuppressive TME and the response to immunotherapy. In fact, sex dimorphism is poorly understood in cancer progression and is typically ignored in current clinical practice. In this review, we aim to survey the available literature and highlight the existing knowledge gap in order to encourage further studies that would contribute to understanding both gender-biased immunosuppression in the TME and the driver of tumor progression towards invasive and metastatic disease. The review highlights the need to include sex optimized/genderized medicine as a new concept in future medicine cancer diagnostics and treatments.
Collapse
Affiliation(s)
- Fei He
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institute, SE-141 86 Stockholm, Sweden; Department of Urology, First affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Andrea Rodgers Furones
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institute, SE-141 86 Stockholm, Sweden; Tumor Immunology Department, Radboud Institute for Molecular Life Sciences, Nijmegen, Netherlands
| | - Nils Landegren
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala 751 23, Sweden; Center for Molecular Medicine, Department of Medicine (Solna), Karolinska Institutet, Stockholm 171 76, Sweden
| | - Jonas Fuxe
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institute, SE-141 86 Stockholm, Sweden
| | - Dhifaf Sarhan
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institute, SE-141 86 Stockholm, Sweden.
| |
Collapse
|
19
|
Li S, Bern MD, Miao B, Fan C, Xing X, Inoue T, Piersma SJ, Wang T, Colonna M, Kurosaki T, Yokoyama WM. The transcription factor Bach2 negatively regulates murine natural killer cell maturation and function. eLife 2022; 11:e77294. [PMID: 36190189 PMCID: PMC9560152 DOI: 10.7554/elife.77294] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 10/02/2022] [Indexed: 11/13/2022] Open
Abstract
BTB domain And CNC Homolog 2 (Bach2) is a transcription repressor that actively participates in T and B lymphocyte development, but it is unknown if Bach2 is also involved in the development of innate immune cells, such as natural killer (NK) cells. Here, we followed the expression of Bach2 during murine NK cell development, finding that it peaked in immature CD27+CD11b+ cells and decreased upon further maturation. Bach2 showed an organ and tissue-specific expression pattern in NK cells. Bach2 expression positively correlated with the expression of transcription factor TCF1 and negatively correlated with genes encoding NK effector molecules and those involved in the cell cycle. Lack of Bach2 expression caused changes in chromatin accessibility of corresponding genes. In the end, Bach2 deficiency resulted in increased proportions of terminally differentiated NK cells with increased production of granzymes and cytokines. NK cell-mediated control of tumor metastasis was also augmented in the absence of Bach2. Therefore, Bach2 is a key checkpoint protein regulating NK terminal maturation.
Collapse
Affiliation(s)
- Shasha Li
- Division of Rheumatology, Department of Medicine, Washington University School of MedicineSt LouisUnited States
| | - Michael D Bern
- Division of Rheumatology, Department of Medicine, Washington University School of MedicineSt LouisUnited States
| | - Benpeng Miao
- Department of Genetics, Center for Genome Sciences and Systems Biology, Washington University School of MedicineSt LouisUnited States
| | - Changxu Fan
- Department of Genetics, Center for Genome Sciences and Systems Biology, Washington University School of MedicineSt LouisUnited States
| | - Xiaoyun Xing
- Department of Genetics, Center for Genome Sciences and Systems Biology, Washington University School of MedicineSt LouisUnited States
| | - Takeshi Inoue
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka UniversityOsakaJapan
| | - Sytse J Piersma
- Division of Rheumatology, Department of Medicine, Washington University School of MedicineSt LouisUnited States
| | - Ting Wang
- Department of Genetics, Center for Genome Sciences and Systems Biology, Washington University School of MedicineSt LouisUnited States
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of MedicineSt LouisUnited States
| | - Tomohiro Kurosaki
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka UniversityOsakaJapan
| | - Wayne M Yokoyama
- Division of Rheumatology, Department of Medicine, Washington University School of MedicineSt LouisUnited States
| |
Collapse
|
20
|
Wang J, Liu X, Jin T, Cao Y, Tian Y, Xu F. NK cell immunometabolism as target for liver cancer therapy. Int Immunopharmacol 2022; 112:109193. [PMID: 36087507 DOI: 10.1016/j.intimp.2022.109193] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 08/04/2022] [Accepted: 08/22/2022] [Indexed: 11/29/2022]
Abstract
Natural killer (NK) cells are being used effectively as a potential candidate in tumor immunotherapy. However, the migration and transport of NK cells to solid tumors is inadequate. NK cell dysfunction, tumor invasiveness, and metastasis are associated with altered metabolism of NK cells in the liver cancer microenvironment. However, in liver cancers, metabolic impairment of NK cells is still not understood fully. Evidence from various sources has shown that the interaction of NK cell's immune checkpoints with its metabolic checkpoints is responsible for the regulation of the development and function of these cells. How immune checkpoints contribute to metabolic programming is still not fully understood, and how this can be beneficial needs a better understanding, but they are emerging to be incredibly compelling to rebuilding the function of NK cells in the tumor. It is expected to represent a potential aim that focuses on improving the efficacy of therapies based on NK cells for treating liver cancer. Here, the recent advancements made to understand the NK cell's metabolic reprogramming in liver cancer have been summarized, along with the possible interplay between the immune and the metabolic checkpoints in NK cell function. Finally, an overview of some potential metabolic-related targets that can be used for liver cancer therapy treatment has been presented.
Collapse
Affiliation(s)
- Junqi Wang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Xiaolin Liu
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing 314000, Zhejiang, China
| | - Tianqiang Jin
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Yuqing Cao
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Yu Tian
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Feng Xu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| |
Collapse
|
21
|
Guerau-de-Arellano M, Piedra-Quintero ZL, Tsichlis PN. Akt isoforms in the immune system. Front Immunol 2022; 13:990874. [PMID: 36081513 PMCID: PMC9445622 DOI: 10.3389/fimmu.2022.990874] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 08/04/2022] [Indexed: 11/29/2022] Open
Abstract
Akt is a PI3K-activated serine-threonine kinase that exists in three distinct isoforms. Akt's expression in most immune cells, either at baseline or upon activation, reflects its importance in the immune system. While Akt is most highly expressed in innate immune cells, it plays crucial roles in both innate and adaptive immune cell development and/or effector functions. In this review, we explore what's known about the role of Akt in innate and adaptive immune cells. Wherever possible, we discuss the overlapping and distinct role of the three Akt isoforms, namely Akt1, Akt2, and Akt3, in immune cells.
Collapse
Affiliation(s)
- Mireia Guerau-de-Arellano
- School of Health and Rehabilitation Sciences, Division of Medical Laboratory Science, College of Medicine, Wexner Medical Center, The Ohio State University, Columbus, OH, United States,Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, United States,Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States,Department of Neuroscience, The Ohio State University, Columbus, OH, United States,The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States,*Correspondence: Mireia Guerau-de-Arellano,
| | - Zayda L. Piedra-Quintero
- School of Health and Rehabilitation Sciences, Division of Medical Laboratory Science, College of Medicine, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
| | - Philip N. Tsichlis
- The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States,Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
22
|
Downey J, Randolph HE, Pernet E, Tran KA, Khader SA, King IL, Barreiro LB, Divangahi M. Mitochondrial cyclophilin D promotes disease tolerance by licensing NK cell development and IL-22 production against influenza virus. Cell Rep 2022; 39:110974. [PMID: 35732121 DOI: 10.1016/j.celrep.2022.110974] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 03/25/2022] [Accepted: 05/26/2022] [Indexed: 11/03/2022] Open
Abstract
Severity of pulmonary viral infections, including influenza A virus (IAV), is linked to excessive immunopathology, which impairs lung function. Thus, the same immune responses that limit viral replication can concomitantly cause lung damage that must be countered by largely uncharacterized disease tolerance mechanisms. Here, we show that mitochondrial cyclophilin D (CypD) protects against IAV via disease tolerance. CypD-/- mice are significantly more susceptible to IAV infection despite comparable antiviral immunity. This susceptibility results from damage to the lung epithelial barrier caused by a reduction in interleukin-22 (IL-22)-producing natural killer (NK) cells. Transcriptomic and functional data reveal that CypD-/- NK cells are immature and have altered cellular metabolism and impaired IL-22 production, correlating with dysregulated bone marrow lymphopoiesis. Administration of recombinant IL-22 or transfer of wild-type (WT) NK cells abrogates pulmonary damage and protects CypD-/- mice after IAV infection. Collectively, these results demonstrate a key role for CypD in NK cell-mediated disease tolerance.
Collapse
Affiliation(s)
- Jeffrey Downey
- Department of Medicine, McGill University Health Centre, McGill International TB Centre, Meakins-Christie Laboratories, McGill University, 1001 Decarie Boulevard, Montreal, QC H4A 3J1, Canada; Department of Pathology, McGill University Health Centre, McGill International TB Centre, Meakins-Christie Laboratories, McGill University, 1001 Decarie Boulevard, Montreal, QC H4A 3J1, Canada; Department of Microbiology & Immunology, McGill University Health Centre, McGill International TB Centre, Meakins-Christie Laboratories, McGill University, 1001 Decarie Boulevard, Montreal, QC H4A 3J1, Canada
| | - Haley E Randolph
- Genetics, Genomics, and Systems Biology, University of Chicago, Chicago, IL, USA
| | - Erwan Pernet
- Department of Medicine, McGill University Health Centre, McGill International TB Centre, Meakins-Christie Laboratories, McGill University, 1001 Decarie Boulevard, Montreal, QC H4A 3J1, Canada; Department of Pathology, McGill University Health Centre, McGill International TB Centre, Meakins-Christie Laboratories, McGill University, 1001 Decarie Boulevard, Montreal, QC H4A 3J1, Canada; Department of Microbiology & Immunology, McGill University Health Centre, McGill International TB Centre, Meakins-Christie Laboratories, McGill University, 1001 Decarie Boulevard, Montreal, QC H4A 3J1, Canada
| | - Kim A Tran
- Department of Medicine, McGill University Health Centre, McGill International TB Centre, Meakins-Christie Laboratories, McGill University, 1001 Decarie Boulevard, Montreal, QC H4A 3J1, Canada; Department of Pathology, McGill University Health Centre, McGill International TB Centre, Meakins-Christie Laboratories, McGill University, 1001 Decarie Boulevard, Montreal, QC H4A 3J1, Canada; Department of Microbiology & Immunology, McGill University Health Centre, McGill International TB Centre, Meakins-Christie Laboratories, McGill University, 1001 Decarie Boulevard, Montreal, QC H4A 3J1, Canada
| | - Shabaana A Khader
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA; Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Irah L King
- Department of Medicine, McGill University Health Centre, McGill International TB Centre, Meakins-Christie Laboratories, McGill University, 1001 Decarie Boulevard, Montreal, QC H4A 3J1, Canada; Department of Pathology, McGill University Health Centre, McGill International TB Centre, Meakins-Christie Laboratories, McGill University, 1001 Decarie Boulevard, Montreal, QC H4A 3J1, Canada; Department of Microbiology & Immunology, McGill University Health Centre, McGill International TB Centre, Meakins-Christie Laboratories, McGill University, 1001 Decarie Boulevard, Montreal, QC H4A 3J1, Canada
| | - Luis B Barreiro
- Genetics, Genomics, and Systems Biology, University of Chicago, Chicago, IL, USA; Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Maziar Divangahi
- Department of Medicine, McGill University Health Centre, McGill International TB Centre, Meakins-Christie Laboratories, McGill University, 1001 Decarie Boulevard, Montreal, QC H4A 3J1, Canada; Department of Pathology, McGill University Health Centre, McGill International TB Centre, Meakins-Christie Laboratories, McGill University, 1001 Decarie Boulevard, Montreal, QC H4A 3J1, Canada; Department of Microbiology & Immunology, McGill University Health Centre, McGill International TB Centre, Meakins-Christie Laboratories, McGill University, 1001 Decarie Boulevard, Montreal, QC H4A 3J1, Canada.
| |
Collapse
|
23
|
The RNA helicase DHX15 is a critical regulator of natural killer-cell homeostasis and functions. Cell Mol Immunol 2022; 19:687-701. [PMID: 35322175 DOI: 10.1038/s41423-022-00852-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/28/2022] [Indexed: 11/08/2022] Open
Abstract
The RNA helicase DHX15 is widely expressed in immune cells and traditionally thought to be an RNA splicing factor or a viral RNA sensor. However, the role of DHX15 in NK-cell activities has not been studied thus far. Here, we generated Dhx15-floxed mice and found that conditional deletion of Dhx15 in NK cells (Ncr1CreDhx15fl/fl mice) resulted in a marked reduction in NK cells in the periphery and that the remaining Dhx15-deleted NK cells failed to acquire a mature phenotype. As a result, Dhx15-deleted NK cells exhibited profound defects in their cytolytic functions. We also found that deletion of Dhx15 in NK cells abrogated their responsiveness to IL-15, which was associated with inhibition of IL-2/IL-15Rβ (CD122) expression and IL-15R signaling. The defects in Dhx15-deleted NK cells were rescued by ectopic expression of a constitutively active form of STAT5. Mechanistically, DHX15 did not affect CD122 mRNA splicing and stability in NK cells but instead facilitated the surface expression of CD122, likely through interaction with its 3'UTR, which was dependent on the ATPase domain of DHX15 rather than its splicing domain. Collectively, our data identify a key role for DHX15 in regulating NK-cell activities and provide novel mechanistic insights into how DHX15 regulates the IL-15 signaling pathway in NK cells.
Collapse
|
24
|
Huang M, Cai H, Han B, Xia Y, Kong X, Gu J. Natural Killer Cells in Hepatic Ischemia-Reperfusion Injury. Front Immunol 2022; 13:870038. [PMID: 35418990 PMCID: PMC8996070 DOI: 10.3389/fimmu.2022.870038] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 03/07/2022] [Indexed: 11/13/2022] Open
Abstract
Ischemia-reperfusion injury can be divided into two phases, including insufficient supply of oxygen and nutrients in the first stage and then organ injury caused by immune inflammation after blood flow recovery. Hepatic ischemia-reperfusion is an important cause of liver injury post-surgery, consisting of partial hepatectomy and liver transplantation, and a central driver of graft dysfunction, which greatly leads to complications and mortality after liver transplantation. Natural killer (NK) cells are the lymphocyte population mainly involved in innate immune response in the human liver. In addition to their well-known role in anti-virus and anti-tumor defense, NK cells are also considered to regulate the pathogenesis of liver ischemia-reperfusion injury under the support of more and more evidence recently. The infiltration of NK cells into the liver exacerbates the hepatic ischemia-reperfusion injury, which could be significantly alleviated after depletion of NK cells. Interestingly, NK cells may contribute to both liver graft rejection and tolerance according to their origins. In this article, we discussed the development of liver NK cells, their role in ischemia-reperfusion injury, and strategies of inhibiting NK cell activation in order to provide potential possibilities for translation application in future clinical practice.
Collapse
Affiliation(s)
- Miao Huang
- Department of Transplantation, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Central Laboratory, Department of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hao Cai
- Department of Transplantation, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bing Han
- Department of Transplantation, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuhan Xia
- Department of Transplantation, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoni Kong
- Central Laboratory, Department of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jinyang Gu
- Department of Transplantation, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
25
|
Hashemi E, Mei A, Wang D, Khalil M, Malarkannan S. Methods for Isolating and Defining Single-Cell Transcriptomes of Tissue-Resident Human NK Cells. Methods Mol Biol 2022; 2463:103-116. [PMID: 35344170 DOI: 10.1007/978-1-0716-2160-8_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Natural killer (NK) cells are innate lymphocytes that control tumors and microbial infections. Human NK cells are transcriptomically and phenotypically heterogeneous. The site where NK cells develop and reside determines their phenotype and effector functions. Our current knowledge about human NK cells is primarily from blood- and bone marrow-derived NK cells. The major limitation in formulating organ-specific clinical therapy is the knowledge gap on how tissue-resident NK cells develop, home, and function. Thus, it is crucial to define the transcriptomic profiles and the transcriptional regulation of tissue-resident NK cells. The major challenges in studying tissue-resident NK cells include their total number and the complexity of the tissue. Additionally, during isolation, keeping them viable and naïve without activation are challenging tasks. Here, we provide methods for isolating and performing transcriptomic analyses of NK cells at the individual cell level. Single-cell RNA sequencing provides a higher resolution of cellular heterogeneity and a better understanding of cell-cell interactions within the microenvironment. Using these methods, we can efficiently identify distinct populations of NK cells in tissues and define their unique transcriptomic profiles.
Collapse
Affiliation(s)
- Elaheh Hashemi
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Versiti, Milwaukee, WI, USA
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Ao Mei
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Versiti, Milwaukee, WI, USA
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Dandan Wang
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Versiti, Milwaukee, WI, USA
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Mohamed Khalil
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Versiti, Milwaukee, WI, USA
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Subramaniam Malarkannan
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Versiti, Milwaukee, WI, USA.
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA.
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA.
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
26
|
Xu S, Li S, Liu X, Tan K, Zhang J, Li K, Bai X, Zhang Y. Rictor Is a Novel Regulator of TRAF6/TRAF3 in Osteoclasts. J Bone Miner Res 2021; 36:2053-2064. [PMID: 34155681 DOI: 10.1002/jbmr.4398] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 06/09/2021] [Accepted: 06/16/2021] [Indexed: 12/27/2022]
Abstract
Tumor necrosis factor receptor-associated factors (TRAFs) are crucial for receptor activator of nuclear factor-κB (RANK) activation in osteoclasts. However, the upstream mechanisms of TRAF members in the osteoclastic lineage remain largely unknown. Here, we demonstrated that Rictor, a key component of mechanistic target of rapamycin complex 2 (mTORC2), was crucial for TRAF6/TRAF3 expression in osteoclasts. Our ex vivo and in vivo studies showed that Rictor ablation from the osteoclastic lineage reduced osteoclast numbers and increased bone mass in mice. Mechanistically, we found that Rictor ablation restricted osteoclast formation, which disrupted TRAF6 stability and caused autophagy block in a manner distinct from mTORC1, resulting in reduced TRAF3 degradation. Boosting TRAF6 expression or knockdown of TRAF3 levels in Rictor-deficient cells could both overcome the defect. Moreover, Rictor could interact with TRAF6 upon RANK ligand (RANKL) stimulation and loss of Rictor impaired TRAF6 stability and promoted its ubiquitinated degradation. These findings established an innovative link between Rictor, TRAF protein levels, and autophagic block. More importantly, mTOR complexes in the osteoclastic lineage are likely switches for coordinating TRAF6 and TRAF3 protein levels, and Rictor may function as an essential upstream regulator of TRAF6/TRAF3 that is partially independent of mTORC1 activity. Inhibitors targeting Rictor may therefore be valuable for preventing or treating osteoclast-related diseases. © 2021 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Song Xu
- Department of Cell Biology, School of Basic Medical Science, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Southern Medical University, Guangzhou, China.,Department of Arthroplasty, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shihai Li
- Department of Cell Biology, School of Basic Medical Science, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Southern Medical University, Guangzhou, China
| | - Xianming Liu
- Department of Cell Biology, School of Basic Medical Science, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Southern Medical University, Guangzhou, China
| | - Kang Tan
- Department of Cell Biology, School of Basic Medical Science, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Southern Medical University, Guangzhou, China
| | - Jiahuan Zhang
- Department of Cell Biology, School of Basic Medical Science, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Southern Medical University, Guangzhou, China
| | - Kai Li
- Academy of Orthopedics, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Xiaochun Bai
- Department of Cell Biology, School of Basic Medical Science, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Southern Medical University, Guangzhou, China
| | - Yue Zhang
- Department of Cell Biology, School of Basic Medical Science, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Southern Medical University, Guangzhou, China
| |
Collapse
|
27
|
Bi J, Cheng C, Zheng C, Huang C, Zheng X, Wan X, Chen YH, Tian Z, Sun H. TIPE2 is a checkpoint of natural killer cell maturation and antitumor immunity. SCIENCE ADVANCES 2021; 7:eabi6515. [PMID: 34524845 PMCID: PMC8443187 DOI: 10.1126/sciadv.abi6515] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The maturation process of NK cells determines their functionality during which IL-15 plays a critical role. However, very few checkpoints specifically targeting this process have been discovered. Here, we report that TIPE2 expression gradually increased during NK cell ontogenesis correlating to their maturation stages in both mice and humans. NK-specific TIPE2 deficiency increased mature NK cells in mice, and these TIPE2-deficient NK cells exhibited enhanced activation, cytotoxicity, and IFN-γ production upon stimulation and enhanced response to IL-15 for maturation. Moreover, TIPE2 suppressed IL-15–triggered mTOR activity in both human and murine NK cells. Consequently, blocking mTOR constrained the effect of TIPE2 deficiency on NK cell maturation in response to IL-15. Last, NK-specific TIPE2-deficient mice were resistant to tumor growth in vivo. Our results uncover a potent checkpoint in NK cell maturation and antitumor immunity in both mice and humans, suggesting a promising approach of targeting TIPE2 for NK cell–based immunotherapies.
Collapse
Affiliation(s)
- Jiacheng Bi
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Corresponding author. (J.B.); (H.S.)
| | - Chen Cheng
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Chaoyue Zheng
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Chen Huang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xiaohu Zheng
- Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
- Institute of Immunology, University of Science and Technology of China, Hefei 230027, China
| | - Xiaochun Wan
- Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Youhai H. Chen
- Center for Cancer Immunology, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Zhigang Tian
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
- Institute of Immunology, University of Science and Technology of China, Hefei 230027, China
- Research Unit of NK Cell Study, Chinese Academy of Medical Sciences, Beijing 100864, China
| | - Haoyu Sun
- Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
- Institute of Immunology, University of Science and Technology of China, Hefei 230027, China
- Corresponding author. (J.B.); (H.S.)
| |
Collapse
|
28
|
Nazari N, Jafari F, Ghalamfarsa G, Hadinia A, Atapour A, Ahmadi M, Dolati S, Rostamzadeh D. The emerging role of microRNA in regulating the mTOR signaling pathway in immune and inflammatory responses. Immunol Cell Biol 2021; 99:814-832. [PMID: 33988889 DOI: 10.1111/imcb.12477] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 05/10/2021] [Accepted: 05/10/2021] [Indexed: 01/01/2023]
Abstract
The mechanistic/mammalian target of rapamycin (mTOR) is considered to be an atypical protein kinase that plays a critical role in integrating different cellular and environmental inputs in the form of growth factors, nutrients and energy and, subsequently, in regulating different cellular events, including cell metabolism, survival, homeostasis, growth and cellular differentiation. Immunologically, mTOR is a critical regulator of immune function through integrating numerous signals from the immune microenvironment, which coordinates the functions of immune cells and T cell fate decisions. The crucial role of mTOR in immune responses has been lately even more appreciated. MicroRNAs (miRNAs) are endogenous, small, noncoding single-stranded RNAs that act as molecular regulators involved in multiple processes during immune cells development, homeostasis, activation and effector polarization. Several studies have recently indicated that a range of miRNAs are involved in regulating the phosphoinositide 3-kinase/protein kinase B/mTOR (PI3K/AKT/mTOR) signaling pathway by targeting multiple components of this signaling pathway and modulating the expression and function of these targets. Current evidence has revealed the interplay between miRNAs and the mTOR pathway circuits in various immune cell types. The expression of individual miRNA can affect the function of mTOR signaling to determine the cell fate decisions in immune responses through coordinating immune signaling and cell metabolism. Dysregulation of the mTOR pathway/miRNAs crosstalk has been reported in cancers and various immune-related diseases. Thus, expression profiles of dysregulated miRNAs could influence the mTOR pathway, resulting in the promotion of aberrant immunity. This review summarizes the latest information regarding the reciprocal role of the mTOR signaling pathway and miRNAs in orchestrating immune responses.
Collapse
Affiliation(s)
- Nazanin Nazari
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farzaneh Jafari
- Department of Medical Genetics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ghasem Ghalamfarsa
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Abolghasem Hadinia
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Amir Atapour
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Majid Ahmadi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sanam Dolati
- Physical Medicine and Rehabilitation Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Davood Rostamzadeh
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran.,Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| |
Collapse
|
29
|
Besson L, Mery B, Morelle M, Rocca Y, Heudel PE, You B, Bachelot T, Ray-Coquard I, Villard M, Charrier E, Parant F, Viel S, Garin G, Mayet R, Perol D, Walzer T, Tredan O, Marçais A. Cutting Edge: mTORC1 Inhibition in Metastatic Breast Cancer Patients Negatively Affects Peripheral NK Cell Maturation and Number. THE JOURNAL OF IMMUNOLOGY 2021; 206:2265-2270. [PMID: 33931486 DOI: 10.4049/jimmunol.2001215] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 03/15/2021] [Indexed: 11/19/2022]
Abstract
NK cells are cytotoxic lymphocytes displaying strong antimetastatic activity. Mouse models and in vitro studies suggest a prominent role of the mechanistic target of rapamycin (mTOR) kinase in the control of NK cell homeostasis and antitumor functions. However, mTOR inhibitors are used as chemotherapies in several cancer settings. The impact of such treatments on patients' NK cells is unknown. We thus performed immunophenotyping of circulating NK cells from metastatic breast cancer patients treated with the mTOR inhibitor everolimus over a three-month period. Everolimus treatment resulted in inhibition of mTORC1 activity in peripheral NK cells, whereas mTORC2 activity was preserved. NK cell homeostasis was profoundly altered with a contraction of the NK cell pool and an overall decrease in their maturation. Phenotype and function of the remaining NK cell population was less affected. This is, to our knowledge, the first in vivo characterization of the role of mTOR in human NK cells.
Collapse
Affiliation(s)
- Laurie Besson
- Centre International de Recherche en Infectiologie, Equipe Activation et Transduction du Signal dans les Lymphocytes, Université de Lyon, INSERM U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, Ecole Normale Supérieure de Lyon, Lyon, France.,Service d'Immunologie Biologique, Hôpital Lyon-Sud, Hospices Civils de Lyon, Pierre-Bénite, France
| | - Benoite Mery
- Département d'Oncologie Médicale, Centre Léon Bérard, Lyon, France
| | - Magali Morelle
- Centre Léon Bérard, Clinical Research Platform, Lyon, France
| | - Yamila Rocca
- Centre International de Recherche en Infectiologie, Equipe Activation et Transduction du Signal dans les Lymphocytes, Université de Lyon, INSERM U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, Ecole Normale Supérieure de Lyon, Lyon, France
| | | | - Benoit You
- Service d'Oncologie Médicale, Centre d'Investigation pour le Traitement en Oncologie et Hématologie à Lyon, Centre Hospitalier Lyon-Sud, Hospices Civils de Lyon, Pierre-Bénite, France
| | - Thomas Bachelot
- Département d'Oncologie Médicale, Centre Léon Bérard, Lyon, France
| | | | - Marine Villard
- Service d'Immunologie Biologique, Hôpital Lyon-Sud, Hospices Civils de Lyon, Pierre-Bénite, France
| | - Emily Charrier
- Service d'Immunologie Biologique, Hôpital Lyon-Sud, Hospices Civils de Lyon, Pierre-Bénite, France
| | - François Parant
- Laboratoire de Biochimie et Biologie Moléculaire, Hôpital Lyon-Sud, Hospices Civils de Lyon, Pierre-Bénite, France
| | - Sébastien Viel
- Centre International de Recherche en Infectiologie, Equipe Activation et Transduction du Signal dans les Lymphocytes, Université de Lyon, INSERM U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, Ecole Normale Supérieure de Lyon, Lyon, France.,Service d'Immunologie Biologique, Hôpital Lyon-Sud, Hospices Civils de Lyon, Pierre-Bénite, France
| | - Gwenaële Garin
- Centre Léon Bérard, Clinical Research Platform, Lyon, France
| | - Romaine Mayet
- Centre Léon Bérard, Clinical Research Platform, Lyon, France
| | - David Perol
- Centre Léon Bérard, Clinical Research Platform, Lyon, France
| | - Thierry Walzer
- Centre International de Recherche en Infectiologie, Equipe Activation et Transduction du Signal dans les Lymphocytes, Université de Lyon, INSERM U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Olivier Tredan
- Département d'Oncologie Médicale, Centre Léon Bérard, Lyon, France .,Service d'Oncologie Médicale, Centre d'Investigation pour le Traitement en Oncologie et Hématologie à Lyon, Centre Hospitalier Lyon-Sud, Hospices Civils de Lyon, Pierre-Bénite, France
| | - Antoine Marçais
- Centre International de Recherche en Infectiologie, Equipe Activation et Transduction du Signal dans les Lymphocytes, Université de Lyon, INSERM U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, Ecole Normale Supérieure de Lyon, Lyon, France
| |
Collapse
|
30
|
Wang X, Zhao XY. Transcription Factors Associated With IL-15 Cytokine Signaling During NK Cell Development. Front Immunol 2021; 12:610789. [PMID: 33815365 PMCID: PMC8013977 DOI: 10.3389/fimmu.2021.610789] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 03/01/2021] [Indexed: 12/16/2022] Open
Abstract
Natural killer (NK) cells are lymphocytes primarily involved in innate immunity and possess important functional properties in anti-viral and anti-tumor responses; thus, these cells have broad potential for clinical utilization. NK cells originate from hematopoietic stem cells (HSCs) through the following two independent and continuous processes: early commitment from HSCs to IL-15-responsive NK cell progenitors (NKPs) and subsequent differentiation into mature NK cells in response to IL-15. IL-15 is the most important cytokine for NK cell development, is produced by both hematopoietic and nonhematopoietic cells, and functions through a distinct delivery process termed transpresentation. Upon being transpresented to NK cells, IL-15 contributes to NK cell development via the activation of several downstream signaling pathways, including the Ras-MEK-MAPK, JAK-STAT5, and PI3K-ATK-mTOR pathways. Nonetheless, the exact role of IL-15 in NK cell development has not been discussed in a consecutive and comprehensive manner. Here, we review current knowledge about the indispensable role of IL-15 in NK cell development and address which cells produce IL-15 to support NK cell development and when IL-15 exerts its function during multiple developmental stages. Specifically, we highlight how IL-15 supports NK cell development by elucidating the distinct transpresentation of IL-15 to NK cells and revealing the downstream target of IL-15 signaling during NK cell development.
Collapse
Affiliation(s)
- Xiang Wang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Xiang-Yu Zhao
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Beijing, China.,Beijing Engineering Laboratory for Cellular Therapy, Beijing, China
| |
Collapse
|
31
|
He J, Zhao J, Quan Y, Hou X, Yang M, Dong Z. Full Activation of Kinase Protein Kinase B by Phosphoinositide-Dependent Protein Kinase-1 and Mammalian Target of Rapamycin Complex 2 Is Required for Early Natural Killer Cell Development and Survival. Front Immunol 2021; 11:617404. [PMID: 33633735 PMCID: PMC7901528 DOI: 10.3389/fimmu.2020.617404] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 12/23/2020] [Indexed: 12/04/2022] Open
Abstract
The role of PI3K-mTOR pathway in regulating NK cell development has been widely reported. However, it remains unclear whether NK cell development depends on the protein kinase B (PKB), which links PI3K and mTOR, perhaps due to the potential redundancy of PKB. PKB has two phosphorylation sites, threonine 308 (T308) and serine 473 (S473), which can be phosphorylated by phosphoinositide-dependent protein kinase-1 (PDK1) and mTORC2, respectively. In this study, we established a mouse model in which PKB was inactivated through the deletion of PDK1 and Rictor, a key component of mTORC2, respectively. We found that the single deletion of PDK1 or Rictor could lead to a significant defect in NK cell development, while combined deletion of PDK1 and Rictor severely hindered NK cell development at the early stage. Notably, ectopic expression of myristoylated PKB significantly rescued this defect. In terms of mechanism, in PDK1/Rictor-deficient NK cells, E4BP4, a transcription factor for NK cell development, was less expressed, and the exogenous supply of E4BP4 could alleviate the developmental defect of NK cell in these mice. Besides, overexpression of Bcl-2 also helped the survival of PDK1/Rictor-deficient NK cells, suggesting an anti-apoptotic role of PKB in NK cells. In summary, complete phosphorylation of PKB at T308 and S473 by PDK1 and mTORC2 is necessary for optimal NK cell development, and PKB regulates NK cell development by promoting E4BP4 expression and preventing cell apoptosis.
Collapse
Affiliation(s)
- Junming He
- School of Medicine and Institute for Immunology, Tsinghua University, Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua University, Beijing, China
| | - Jun Zhao
- School of Medicine and Institute for Immunology, Tsinghua University, Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua University, Beijing, China
| | - Yuhe Quan
- School of Medicine and Institute for Immunology, Tsinghua University, Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua University, Beijing, China
| | - Xinlei Hou
- School of Medicine and Institute for Immunology, Tsinghua University, Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua University, Beijing, China
| | - Meixiang Yang
- Zhuhai Precision Medical Center, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, Zhuhai, Guangdong, China.,The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, Guangdong, China
| | - Zhongjun Dong
- School of Medicine and Institute for Immunology, Tsinghua University, Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua University, Beijing, China
| |
Collapse
|
32
|
Chen H, Sun Y, Yang Z, Yin S, Li Y, Tang M, Zhu J, Zhang F. Metabolic heterogeneity and immunocompetence of infiltrating immune cells in the breast cancer microenvironment (Review). Oncol Rep 2021; 45:846-856. [PMID: 33650671 PMCID: PMC7859921 DOI: 10.3892/or.2021.7946] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 01/08/2021] [Indexed: 12/13/2022] Open
Abstract
Breast cancer is one of the most common malignancies in women and is characterized by active immunogenicity. Immune cell infiltration plays an important role in the development of breast cancer. The degree of infiltration influences both the response to and effect of treatment. However, immune infiltration is a complex process. Differences in oxygen partial pressure, blood perfusion and nutrients in the tumor microenvironment (TME) suggest that infiltrating immune cells in different sites experience different microenvironments with corresponding changes in the metabolic mode, that is, immune cell metabolism is heterogenous in the TME. Furthermore, the present review found that lipid metabolism can support the immunosuppressive microenvironment in breast cancer based on a review of published literature. Research in this field is still ongoing; however, it is vital to understand the metabolic patterns and effects of different microenvironments for antitumor therapy. Therefore, this review discusses the metabolic responses of various immune cells to different microenvironments in breast cancer and provides potentially meaningful insights for tumor immunotherapy.
Collapse
Affiliation(s)
- Hongdan Chen
- Department of Breast and Thyroid Surgery, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing 401147, P.R. China
| | - Yizeng Sun
- Department of Breast and Thyroid Surgery, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing 401147, P.R. China
| | - Zeyu Yang
- Department of Breast and Thyroid Surgery, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing 401147, P.R. China
| | - Supeng Yin
- Department of Breast and Thyroid Surgery, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing 401147, P.R. China
| | - Yao Li
- Department of Breast and Thyroid Surgery, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing 401147, P.R. China
| | - Mi Tang
- Department of Breast and Thyroid Surgery, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing 401147, P.R. China
| | - Junping Zhu
- Department of Breast and Thyroid Surgery, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing 401147, P.R. China
| | - Fan Zhang
- Department of Breast and Thyroid Surgery, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing 401147, P.R. China
| |
Collapse
|
33
|
mTORC1 and mTORC2 coordinate early NK cell development by differentially inducing E4BP4 and T-bet. Cell Death Differ 2021; 28:1900-1909. [PMID: 33462410 DOI: 10.1038/s41418-020-00715-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 11/29/2020] [Accepted: 12/16/2020] [Indexed: 12/30/2022] Open
Abstract
Natural killer (NK) cell development is a multistep process that requires a variety of signals and transcription factors. The lack of mammalian target of rapamycin (mTOR) kinase severely impairs NK cell development in mice. mTOR binds to Raptor and Rictor to form two complexes, mTORC1 and mTORC2, respectively. How mTOR and its two complexes regulate NK cell development is not fully understood. Here, we developed two methods to inactivate mTOR, Raptor, or Rictor in early stage NK cells (using CD122-Cre) or in late-stage NK cells (using Ncr1-CreTg). First, we found that when mTOR was deleted by CD122-Cre during and after NK cell commitment, NK cell development was severely impaired, while Ncr1-CreTg mediated mTOR deletion slightly affected NK cell terminal differentiation, suggesting that mTOR is essential for early NK cell differentiation. Second, we found that CD122-mediated deletion of Raptor significantly limited the differentiation of CD27+CD11b- immature NK (iNK) cell into mature NK cells. In contrast, the absence of Rictor significantly interfered with the differentiation of CD27-CD11b- early iNK cells. Third, Ncr1-mediated deletion of Raptor, rather than Rictor, moderately affected NK cell terminal differentiation. In terms of mechanism, mTORC1 mainly promotes the expression of NK cell-specific transcription factor E4 promoter-binding protein 4 (E4BP4), while both mTORC1 and mTORC2 can enhance the expression of T-bet. Therefore, mTORC1 and mTORC2 subtly coordinate NK cell development by differentially inducing E4BP4 and T-bet.
Collapse
|
34
|
Yang C, Malarkannan S. Transcriptional Regulation of NK Cell Development by mTOR Complexes. Front Cell Dev Biol 2020; 8:566090. [PMID: 33240877 PMCID: PMC7683515 DOI: 10.3389/fcell.2020.566090] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 10/16/2020] [Indexed: 11/13/2022] Open
Abstract
The mechanistic target of Rapamycin (mTOR) is essential for multiple cellular processes. The unique roles of mTOR complex 1 (mTORC1) or mTOR2 in regulating immune functions are emerging. NK cells are the major lymphocyte subset of innate immunity, and their development and effector functions require metabolic reprogramming. Recent studies demonstrate that in NK cells, conditionally disrupting the formation of mTORC1 or mTOR complex 2 (mTORC2) alters their development significantly. Transcriptomic profiling of NK cells at the single-cell level demonstrates that mTORC1 was critical for the early developmental progression, while mTORC2 regulated the terminal maturation. In this review, we summarize the essential roles of mTOR complexes in NK development and functions.
Collapse
Affiliation(s)
- Chao Yang
- Laboratory of Molecular Immunology and Immunotherapy, Versiti Blood Research Institute, Milwaukee, WI, United States.,Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Subramaniam Malarkannan
- Laboratory of Molecular Immunology and Immunotherapy, Versiti Blood Research Institute, Milwaukee, WI, United States.,Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States.,Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States.,Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
35
|
Gerbec ZJ, Hashemi E, Nanbakhsh A, Holzhauer S, Yang C, Mei A, Tsaih SW, Lemke A, Flister MJ, Riese MJ, Thakar MS, Malarkannan S. Conditional Deletion of PGC-1α Results in Energetic and Functional Defects in NK Cells. iScience 2020; 23:101454. [PMID: 32858341 PMCID: PMC7474003 DOI: 10.1016/j.isci.2020.101454] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 12/30/2019] [Accepted: 08/10/2020] [Indexed: 01/07/2023] Open
Abstract
During an immune response, natural killer (NK) cells activate specific metabolic pathways to meet the increased energetic and biosynthetic demands associated with effector functions. Here, we found in vivo activation of NK cells during Listeria monocytogenes infection-augmented transcription of genes encoding mitochondria-associated proteins in a manner dependent on the transcriptional coactivator PGC-1α. Using an Ncr1Cre-based conditional knockout mouse, we found that PGC-1α was crucial for optimal NK cell effector functions and bioenergetics, as the deletion of PGC-1α was associated with decreased cytotoxic potential and cytokine production along with altered ADP/ATP ratios. Lack of PGC-1α also significantly impaired the ability of NK cells to control B16F10 tumor growth in vivo, and subsequent gene expression analysis showed that PGC-1α mediates transcription required to maintain mitochondrial activity within the tumor microenvironment. Together, these data suggest that PGC-1α-dependent transcription of specific target genes is required for optimal NK cell function during the response to infection or tumor growth.
Collapse
Affiliation(s)
- Zachary J. Gerbec
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Versiti, Milwaukee, WI 53226, USA
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Elaheh Hashemi
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Versiti, Milwaukee, WI 53226, USA
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Arash Nanbakhsh
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Versiti, Milwaukee, WI 53226, USA
| | - Sandra Holzhauer
- Laboratory of Lymphocyte Signaling, Blood Research Institute, Versiti, Milwaukee, WI 53226, USA
| | - Chao Yang
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Versiti, Milwaukee, WI 53226, USA
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Ao Mei
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Versiti, Milwaukee, WI 53226, USA
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Shirng-Wern Tsaih
- Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Angela Lemke
- Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Michael J. Flister
- Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Matthew J. Riese
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Laboratory of Lymphocyte Signaling, Blood Research Institute, Versiti, Milwaukee, WI 53226, USA
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Monica S. Thakar
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Versiti, Milwaukee, WI 53226, USA
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Subramaniam Malarkannan
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Versiti, Milwaukee, WI 53226, USA
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
36
|
Intra-lineage Plasticity and Functional Reprogramming Maintain Natural Killer Cell Repertoire Diversity. Cell Rep 2020; 29:2284-2294.e4. [PMID: 31747601 DOI: 10.1016/j.celrep.2019.10.058] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 08/28/2019] [Accepted: 10/14/2019] [Indexed: 12/17/2022] Open
Abstract
Natural killer (NK) cell repertoires are made up of phenotypically distinct subsets with different functional properties. The molecular programs involved in maintaining NK cell repertoire diversity under homeostatic conditions remain elusive. Here, we show that subset-specific NK cell proliferation kinetics correlate with mTOR activation, and global repertoire diversity is maintained through a high degree of intra-lineage subset plasticity during interleukin (IL)-15-driven homeostatic proliferation in vitro. Slowly cycling sorted KIR+CD56dim NK cells with an induced CD57 phenotype display increased functional potential associated with increased transcription of genes involved in adhesion and immune synapse formation. Rapidly cycling cells upregulate NKG2A, display a general loss of functionality, and a transcriptional signature associated with increased apoptosis/cellular stress, actin-remodeling, and nuclear factor κB (NF-κB) activation. These results shed light on the role of intra-lineage plasticity during NK cell homeostasis and suggest that the functional fate of the cell is tightly linked to the acquired phenotype and transcriptional reprogramming.
Collapse
|
37
|
Cook SA, Comrie WA, Poli MC, Similuk M, Oler AJ, Faruqi AJ, Kuhns DB, Yang S, Vargas-Hernández A, Carisey AF, Fournier B, Anderson DE, Price S, Smelkinson M, Abou Chahla W, Forbes LR, Mace EM, Cao TN, Coban-Akdemir ZH, Jhangiani SN, Muzny DM, Gibbs RA, Lupski JR, Orange JS, Cuvelier GDE, Al Hassani M, Al Kaabi N, Al Yafei Z, Jyonouchi S, Raje N, Caldwell JW, Huang Y, Burkhardt JK, Latour S, Chen B, ElGhazali G, Rao VK, Chinn IK, Lenardo MJ. HEM1 deficiency disrupts mTORC2 and F-actin control in inherited immunodysregulatory disease. Science 2020; 369:202-207. [PMID: 32647003 PMCID: PMC8383235 DOI: 10.1126/science.aay5663] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 01/21/2020] [Accepted: 05/29/2020] [Indexed: 12/22/2022]
Abstract
Immunodeficiency often coincides with hyperactive immune disorders such as autoimmunity, lymphoproliferation, or atopy, but this coincidence is rarely understood on a molecular level. We describe five patients from four families with immunodeficiency coupled with atopy, lymphoproliferation, and cytokine overproduction harboring mutations in NCKAP1L, which encodes the hematopoietic-specific HEM1 protein. These mutations cause the loss of the HEM1 protein and the WAVE regulatory complex (WRC) or disrupt binding to the WRC regulator, Arf1, thereby impairing actin polymerization, synapse formation, and immune cell migration. Diminished cortical actin networks caused by WRC loss led to uncontrolled cytokine release and immune hyperresponsiveness. HEM1 loss also blocked mechanistic target of rapamycin complex 2 (mTORC2)-dependent AKT phosphorylation, T cell proliferation, and selected effector functions, leading to immunodeficiency. Thus, the evolutionarily conserved HEM1 protein simultaneously regulates filamentous actin (F-actin) and mTORC2 signaling to achieve equipoise in immune responses.
Collapse
Affiliation(s)
- Sarah A Cook
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, and Clinical Genomics Program, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - William A Comrie
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, and Clinical Genomics Program, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
- Neomics Pharmaceuticals, LLC, Gaithersburg, MD, USA
| | - M Cecilia Poli
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Section of Pediatric Immunology, Allergy, and Retrovirology, Texas Children's Hospital, Houston, TX, USA
- Program of Immunogenetics and Translational Immunology, Instituto de Ciencias e Innovación en Medicina, Facultad de Medicina, Clínica Alemana-Universidad del Desarrollo, Santiago, Chile
| | - Morgan Similuk
- Division of Intramural Research, NIAID, NIH, Bethesda, MD, USA
| | - Andrew J Oler
- Bioinformatics and Computational Biosciences Branch, Office of Cyber Infrastructure and Computational Biology, NIAID, NIH, Bethesda, MD, USA
| | - Aiman J Faruqi
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, and Clinical Genomics Program, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Douglas B Kuhns
- Neutrophil Monitoring Laboratory, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Sheng Yang
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, USA
| | - Alexander Vargas-Hernández
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Section of Pediatric Immunology, Allergy, and Retrovirology, Texas Children's Hospital, Houston, TX, USA
| | - Alexandre F Carisey
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Section of Pediatric Immunology, Allergy, and Retrovirology, Texas Children's Hospital, Houston, TX, USA
| | - Benjamin Fournier
- Laboratory of Lymphocyte Activation and Susceptibility to EBV, INSERM UMR 1163, Paris, France
- University Paris Descartes Sorbonne Paris Cité, Institut des Maladies Génétiques-IMAGINE, Paris, France
| | - D Eric Anderson
- Advanced Mass Spectrometry Facility, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, MD, USA
| | - Susan Price
- Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD, USA
| | - Margery Smelkinson
- Biological Imaging Section, Research Technologies Branch, NIAID, NIH, Bethesda, MD, USA
| | - Wadih Abou Chahla
- Department of Pediatric Hematology, Jeanne de Flandre Hospital, Centre Hospitalier Universitaire (CHU), Lille, France
| | - Lisa R Forbes
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Section of Pediatric Immunology, Allergy, and Retrovirology, Texas Children's Hospital, Houston, TX, USA
| | - Emily M Mace
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA
| | - Tram N Cao
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Section of Pediatric Immunology, Allergy, and Retrovirology, Texas Children's Hospital, Houston, TX, USA
| | - Zeynep H Coban-Akdemir
- Baylor-Hopkins Center for Mendelian Genomics, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Shalini N Jhangiani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Donna M Muzny
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Richard A Gibbs
- Baylor-Hopkins Center for Mendelian Genomics, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - James R Lupski
- Baylor-Hopkins Center for Mendelian Genomics, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Jordan S Orange
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA
| | - Geoffrey D E Cuvelier
- Section of Pediatric Hematology/Oncology/BMT, CancerCare Manitoba, University of Manitoba, Winnipeg, MB, Canada
| | - Moza Al Hassani
- Sheikh Khalifa Medical City, Abu Dhabi Healthcare Company (SEHA), Abu Dhabi, United Arab Emirates
| | - Nawal Al Kaabi
- Sheikh Khalifa Medical City, Abu Dhabi Healthcare Company (SEHA), Abu Dhabi, United Arab Emirates
| | - Zain Al Yafei
- Sheikh Khalifa Medical City, Abu Dhabi Healthcare Company (SEHA), Abu Dhabi, United Arab Emirates
| | - Soma Jyonouchi
- Division of Allergy and Immunology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Nikita Raje
- Division of Allergy, Immunology, Pulmonary, and Sleep Medicine, Children's Mercy Hospital, Kansas City, MO, USA
- Department of Internal Medicine and Pediatrics, University of Missouri Kansas City, Kansas City, MO, USA
| | - Jason W Caldwell
- Section of Pulmonary, Critical Care, Allergy and Immunological Diseases, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Yanping Huang
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia Research Institute and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Janis K Burkhardt
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia Research Institute and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sylvain Latour
- Laboratory of Lymphocyte Activation and Susceptibility to EBV, INSERM UMR 1163, Paris, France
- University Paris Descartes Sorbonne Paris Cité, Institut des Maladies Génétiques-IMAGINE, Paris, France
| | - Baoyu Chen
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, USA
| | - Gehad ElGhazali
- Sheikh Khalifa Medical City, Abu Dhabi Healthcare Company (SEHA), Abu Dhabi, United Arab Emirates
| | - V Koneti Rao
- Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD, USA
| | - Ivan K Chinn
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Section of Pediatric Immunology, Allergy, and Retrovirology, Texas Children's Hospital, Houston, TX, USA
| | - Michael J Lenardo
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, and Clinical Genomics Program, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA.
| |
Collapse
|
38
|
Transcriptional Regulation of Natural Killer Cell Development and Functions. Cancers (Basel) 2020; 12:cancers12061591. [PMID: 32560225 PMCID: PMC7352776 DOI: 10.3390/cancers12061591] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 05/30/2020] [Accepted: 06/13/2020] [Indexed: 02/08/2023] Open
Abstract
Natural killer (NK) cells are the major lymphocyte subset of the innate immune system. Their ability to mediate anti-tumor cytotoxicity and produce cytokines is well-established. However, the molecular mechanisms associated with the development of human or murine NK cells are not fully understood. Knowledge is being gained about the environmental cues, the receptors that sense the cues, signaling pathways, and the transcriptional programs responsible for the development of NK cells. Specifically, a complex network of transcription factors (TFs) following microenvironmental stimuli coordinate the development and maturation of NK cells. Multiple TFs are involved in the development of NK cells in a stage-specific manner. In this review, we summarize the recent advances in the understandings of TFs involved in the regulation of NK cell development, maturation, and effector function, in the aspects of their mechanisms, potential targets, and functions.
Collapse
|
39
|
Liu Y, Feng M, Chen H, Yang G, Qiu J, Zhao F, Cao Z, Luo W, Xiao J, You L, Zheng L, Zhang T. Mechanistic target of rapamycin in the tumor microenvironment and its potential as a therapeutic target for pancreatic cancer. Cancer Lett 2020; 485:1-13. [PMID: 32428662 DOI: 10.1016/j.canlet.2020.05.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 04/21/2020] [Accepted: 05/04/2020] [Indexed: 02/07/2023]
Abstract
Pancreatic cancer(PC) is a devastating disease with a poor prognosis; however, few treatment options are available and the search continues for feasible molecular therapeutic targets, both in the tumor itself and in the tumor microenvironment. The mechanistic target of rapamycin (mTOR) signaling pathway has emerged as an attractive target due to its regulatory role in multiple cellular processes, including metabolism, proliferation, survival, and differentiation, under physiological and pathological conditions. Although mTOR-regulated events in tumor cells and the tumor microenvironment are known to restrict the development and growth of tumor cells, monotherapy with mTOR inhibitors has shown limited efficacy against PC to date, suggesting the need for alternative approaches. In this review, we describe the mechanisms by which mTOR modulates the PC microenvironment and suggest ways its function in immune cells might be exploited for the treatment of PC. We also discuss preclinical and clinical studies with mTOR inhibitors in combination with other therapeutic strategies, most notably immunotherapy. Finally, we highlight the promise that mTOR combinatorial therapy may hold for the treatment of PC in the near future.
Collapse
Affiliation(s)
- Yueze Liu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Mengyu Feng
- Department of Gastrointestinal Surgery, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, 100142, China; Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Hao Chen
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Gang Yang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Jiangdong Qiu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Fangyu Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Zhe Cao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Wenhao Luo
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Jianchun Xiao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Lei You
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Lianfang Zheng
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Taiping Zhang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China; Clinical Immunology Center, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| |
Collapse
|
40
|
Yang C, Siebert JR, Burns R, Zheng Y, Mei A, Bonacci B, Wang D, Urrutia RA, Riese MJ, Rao S, Carlson KS, Thakar MS, Malarkannan S. Single-cell transcriptome reveals the novel role of T-bet in suppressing the immature NK gene signature. eLife 2020; 9:51339. [PMID: 32406817 PMCID: PMC7255804 DOI: 10.7554/elife.51339] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Accepted: 05/08/2020] [Indexed: 12/26/2022] Open
Abstract
The transcriptional activation and repression during NK cell ontology are poorly understood. Here, using single-cell RNA-sequencing, we reveal a novel role for T-bet in suppressing the immature gene signature during murine NK cell development. Based on transcriptome, we identified five distinct NK cell clusters and define their relative developmental maturity in the bone marrow. Transcriptome-based machine-learning classifiers revealed that half of the mTORC2-deficient NK cells belongs to the least mature NK cluster. Mechanistically, loss of mTORC2 results in an increased expression of signature genes representing immature NK cells. Since mTORC2 regulates the expression of T-bet through AktS473-FoxO1 axis, we further characterized the T-bet-deficient NK cells and found an augmented immature transcriptomic signature. Moreover, deletion of Foxo1 restores the expression of T-bet and corrects the abnormal expression of immature NK genes. Collectively, our study reveals a novel role for mTORC2-AktS473-FoxO1-T-bet axis in suppressing the transcriptional signature of immature NK cells.
Collapse
Affiliation(s)
- Chao Yang
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Blood Center of Wisconsin, Milwaukee, United States.,Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, United States
| | - Jason R Siebert
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Blood Center of Wisconsin, Milwaukee, United States.,Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, United States
| | - Robert Burns
- Bioinfomatics Core, Blood Research Institute, Blood Center of Wisconsin, Milwaukee, United States
| | - Yongwei Zheng
- Laboratory of B-Cell Lymphopoiesis, Blood Research Institute, Blood Center of Wisconsin, Milwaukee, United States
| | - Ao Mei
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Blood Center of Wisconsin, Milwaukee, United States.,Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, United States
| | - Benedetta Bonacci
- Flow Cytometry Core, Blood Research Institute, Blood Center of Wisconsin, Milwaukee, United States
| | - Demin Wang
- Laboratory of B-Cell Lymphopoiesis, Blood Research Institute, Blood Center of Wisconsin, Milwaukee, United States
| | - Raul A Urrutia
- Department of Surgery, Medical College of Wisconsin, Milwaukee, United States
| | - Matthew J Riese
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, United States.,Laboratory of Lymphocyte Biology, Blood Research Institute, Blood Center of Wisconsin, Milwaukee, United States.,Department of Medicine, Medical College of Wisconsin, Milwaukee, United States
| | - Sridhar Rao
- Laboratory of Stem Cell Transcriptional Regulation, Blood Research Institute, Blood Center of Wisconsin, Milwaukee, United States
| | - Karen-Sue Carlson
- Department of Medicine, Medical College of Wisconsin, Milwaukee, United States.,Laboratory of Coagulation Biology, Blood Research Institute, Blood Center of Wisconsin, Milwaukee, United States
| | - Monica S Thakar
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Blood Center of Wisconsin, Milwaukee, United States.,Department of Pediatrics, Medical College of Wisconsin, Milwaukee, United States
| | - Subramaniam Malarkannan
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Blood Center of Wisconsin, Milwaukee, United States.,Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, United States.,Department of Medicine, Medical College of Wisconsin, Milwaukee, United States.,Department of Pediatrics, Medical College of Wisconsin, Milwaukee, United States
| |
Collapse
|
41
|
Kee BL, Morman RE, Sun M. Transcriptional regulation of natural killer cell development and maturation. Adv Immunol 2020; 146:1-28. [PMID: 32327150 DOI: 10.1016/bs.ai.2020.01.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Natural killer cells are lymphocytes that respond rapidly to intracellular pathogens or cancer/stressed cells by producing pro-inflammatory cytokines or chemokines and by killing target cells through direct cytolysis. NK cells are distinct from B and T lymphocytes in that they become activated through a series of broadly expressed germ line encoded activating and inhibitory receptors or through the actions of inflammatory cytokines. They are the founding member of the innate lymphoid cell family, which mirror the functions of T lymphocytes, with NK cells being the innate counterpart to CD8 T lymphocytes. Despite the functional relationship between NK cells and CD8 T cells, the mechanisms controlling their specification, differentiation and maturation are distinct, with NK cells emerging from multipotent lymphoid progenitors in the bone marrow under the control of a unique transcriptional program. Over the past few years, substantial progress has been made in understanding the developmental pathways and the factors involved in generating mature and functional NK cells. NK cells have immense therapeutic potential and understanding how to acquire large numbers of functional cells and how to endow them with potent activity to control hematopoietic and non-hematopoietic malignancies and autoimmunity is a major clinical goal. In this review, we examine basic aspects of conventional NK cell development in mice and humans and discuss multiple transcription factors that are known to guide the development of these cells.
Collapse
Affiliation(s)
- Barbara L Kee
- Department of Pathology and Committee on Immunology, The University of Chicago, Chicago, IL, United States.
| | - Rosmary E Morman
- Department of Pathology and Committee on Immunology, The University of Chicago, Chicago, IL, United States
| | - Mengxi Sun
- Department of Pathology and Committee on Immunology, The University of Chicago, Chicago, IL, United States
| |
Collapse
|
42
|
Slattery K, Gardiner CM. NK Cell Metabolism and TGFβ - Implications for Immunotherapy. Front Immunol 2019; 10:2915. [PMID: 31921174 PMCID: PMC6927492 DOI: 10.3389/fimmu.2019.02915] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 11/27/2019] [Indexed: 12/18/2022] Open
Abstract
NK cells are innate lymphocytes which play an essential role in protection against cancer and viral infection. Their functions are dictated by many factors including the receptors they express, cytokines they respond to and changes in the external environment. These cell processes are regulated within NK cells at many levels including genetic, epigenetic and expression (RNA and protein) levels. The last decade has revealed cellular metabolism as another level of immune regulation. Specific immune cells adopt metabolic configurations that support their functions, and this is a dynamic process with cells undergoing metabolic reprogramming during the course of an immune response. Upon activation with pro-inflammatory cytokines, NK cells upregulate both glycolysis and oxphos metabolic pathways and this supports their anti-cancer functions. Perturbation of these pathways inhibits NK cell effector functions. Anti-inflammatory cytokines such as TGFβ can inhibit metabolic changes and reduce functional outputs. Although a lot remains to be learned, our knowledge of potential molecular mechanisms involved is growing quickly. This review will discuss our current knowledge on the role of TGFβ in regulating NK cell metabolism and will draw on a wider knowledge base regarding TGFβ regulation of cellular metabolic pathways, in order to highlight potential ways in which TGFβ might be targeted to contribute to the exciting progress that is being made in terms of adoptive NK cell therapies for cancer.
Collapse
Affiliation(s)
- Karen Slattery
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College, Dublin, Ireland
| | - Clair M Gardiner
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College, Dublin, Ireland
| |
Collapse
|
43
|
Irelli A, Sirufo MM, Scipioni T, De Pietro F, Pancotti A, Ginaldi L, De Martinis M. mTOR Links Tumor Immunity and Bone Metabolism: What are the Clinical Implications? Int J Mol Sci 2019; 20:ijms20235841. [PMID: 31766386 PMCID: PMC6928935 DOI: 10.3390/ijms20235841] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/19/2019] [Accepted: 11/19/2019] [Indexed: 12/20/2022] Open
Abstract
Phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) plays a crucial role in the control of cellular growth, proliferation, survival, metabolism, angiogenesis, transcription, and translation. In most human cancers, alterations to this pathway are common and cause activation of other downstream signaling pathways linked with oncogenesis. The mTOR pathway modulates the interactions between the stroma and the tumor, thereby affecting both tumor immunity and angiogenesis. Inflammation is a hallmark of cancer, playing a central role in the tumor dynamics, and immune cells can exert antitumor functions or promote the growth of cancer cells. In this context, mTOR may regulate the activity of macrophages and T cells by regulating the expression of cytokines/chemokines, such as interleukin (IL)-10 and transforming growth factor (TGF-β), and/or membrane receptors, such as cytotoxic T-Lymphocyte protein 4 (CTLA-4) and Programmed Death 1 (PD-1). Furthermore, inhibitors of mammalian target of rapamycin are demonstrated to actively modulate osteoclastogenesis, exert antiapoptotic and pro-differentiative activities in osteoclasts, and reduce the number of lytic bone metastases, increasing bone mass in tumor-bearing mice. With regard to the many actions in which mTOR is involved, the aim of this review is to describe its role in the immune system and bone metabolism in an attempt to identify the best strategy for therapeutic opportunities in the metastatic phase of solid tumors.
Collapse
Affiliation(s)
- Azzurra Irelli
- Medical Oncology Unit, Department of Oncology, AUSL 04 Teramo, 64100 Teramo, Italy; (A.I.); (T.S.); (A.P.)
| | - Maria Maddalena Sirufo
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.M.S.); (F.D.P.); (L.G.)
- Allergy and Clinical Immunology Unit, Center for the diagnosis and treatment of Osteoporosis, AUSL 04 Teramo, 64100 Teramo, Italy
| | - Teresa Scipioni
- Medical Oncology Unit, Department of Oncology, AUSL 04 Teramo, 64100 Teramo, Italy; (A.I.); (T.S.); (A.P.)
| | - Francesca De Pietro
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.M.S.); (F.D.P.); (L.G.)
- Allergy and Clinical Immunology Unit, Center for the diagnosis and treatment of Osteoporosis, AUSL 04 Teramo, 64100 Teramo, Italy
| | - Amedeo Pancotti
- Medical Oncology Unit, Department of Oncology, AUSL 04 Teramo, 64100 Teramo, Italy; (A.I.); (T.S.); (A.P.)
| | - Lia Ginaldi
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.M.S.); (F.D.P.); (L.G.)
- Allergy and Clinical Immunology Unit, Center for the diagnosis and treatment of Osteoporosis, AUSL 04 Teramo, 64100 Teramo, Italy
| | - Massimo De Martinis
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.M.S.); (F.D.P.); (L.G.)
- Allergy and Clinical Immunology Unit, Center for the diagnosis and treatment of Osteoporosis, AUSL 04 Teramo, 64100 Teramo, Italy
- Correspondence: ; Tel.: +39-08-6142-9548; Fax: +39-08-6121-1395
| |
Collapse
|
44
|
Saparbay J, Tanaka Y, Tanimine N, Ohira M, Ohdan H. Everolimus enhances TRAIL‐mediated anti‐tumor activity of liver resident natural killer cells in mice. Transpl Int 2019; 33:229-243. [DOI: 10.1111/tri.13536] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 06/04/2019] [Accepted: 09/21/2019] [Indexed: 11/29/2022]
Affiliation(s)
- Jamilya Saparbay
- Department of Gastroenterological and Transplant Surgery Applied Life Sciences Institute of Biomedical & Health Sciences Hiroshima University Hiroshima Japan
| | - Yuka Tanaka
- Department of Gastroenterological and Transplant Surgery Applied Life Sciences Institute of Biomedical & Health Sciences Hiroshima University Hiroshima Japan
| | - Naoki Tanimine
- Department of Gastroenterological and Transplant Surgery Applied Life Sciences Institute of Biomedical & Health Sciences Hiroshima University Hiroshima Japan
- Department of Surgery Center for Transplantation Sciences Massachusetts General Hospital Boston MA USA
| | - Masahiro Ohira
- Department of Gastroenterological and Transplant Surgery Applied Life Sciences Institute of Biomedical & Health Sciences Hiroshima University Hiroshima Japan
- Division of Regeneration and Medicine Medical Center for Translational and Clinical Research Hiroshima University Hospital Hiroshima Japan
| | - Hideki Ohdan
- Department of Gastroenterological and Transplant Surgery Applied Life Sciences Institute of Biomedical & Health Sciences Hiroshima University Hiroshima Japan
| |
Collapse
|
45
|
Piñeiro Fernández J, Luddy KA, Harmon C, O'Farrelly C. Hepatic Tumor Microenvironments and Effects on NK Cell Phenotype and Function. Int J Mol Sci 2019; 20:E4131. [PMID: 31450598 PMCID: PMC6747260 DOI: 10.3390/ijms20174131] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 08/16/2019] [Accepted: 08/20/2019] [Indexed: 02/07/2023] Open
Abstract
The liver is a complex organ with critical physiological functions including metabolism, glucose storage, and drug detoxification. Its unique immune profile with large numbers of cytotoxic CD8+ T cells and significant innate lymphoid population, including natural killer cells, γ δ T cells, MAIT cells, and iNKTcells, suggests an important anti-tumor surveillance role. Despite significant immune surveillance in the liver, in particular large NK cell populations, hepatic cell carcinoma (HCC) is a relatively common outcome of chronic liver infection or inflammation. The liver is also the second most common site of metastatic disease. This discordance suggests immune suppression by the environments of primary and secondary liver cancers. Classic tumor microenvironments (TME) are poorly perfused, leading to accumulation of tumor cell metabolites, diminished O2, and decreased nutrient levels, all of which impact immune cell phenotype and function. Here, we focus on changes in the liver microenvironment associated with tumor presence and how they affect NK function and phenotype.
Collapse
Affiliation(s)
| | - Kimberly A Luddy
- School of Biochemistry and Immunology, Trinity College Dublin, D02 PN40 Dublin, Ireland.
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center, Tampa, FL 33626, USA.
| | - Cathal Harmon
- Brigham and Women's Hospital, Harvard Institutes of Medicine, Harvard Medical School, Boston, MA 02138, USA
| | - Cliona O'Farrelly
- School of Biochemistry and Immunology, Trinity College Dublin, D02 PN40 Dublin, Ireland.
- School of Medicine, Trinity College Dublin, D02 PN40 Dublin, Ireland.
| |
Collapse
|
46
|
Dai H, Thomson AW. The "other" mTOR complex: New insights into mTORC2 immunobiology and their implications. Am J Transplant 2019; 19:1614-1621. [PMID: 30801921 PMCID: PMC6538441 DOI: 10.1111/ajt.15320] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 02/10/2019] [Accepted: 02/15/2019] [Indexed: 01/25/2023]
Abstract
A central role of the mechanistic target of rapamycin (mTOR) in regulation of fundamental cell processes is well recognized. mTOR functions in two distinct complexes: rapamycin-sensitive mTOR complex (C) 1 and rapamycin-insensitive mTORC2. While the role of mTORC1 in shaping immune responses, including transplant rejection, and the influence of its antagonism in promoting allograft tolerance have been studied extensively using rapamycin, lack of selective small molecule inhibitors has limited understanding of mTORC2 biology. Within the past few years, however, intracellular localization of mTORC2, its contribution to mitochondrial fitness, cell metabolism, cytoskeletal modeling and cell migration, and its role in differentiation and function of immune cells have been described. Studies in mTORC2 knockdown/knockout mouse models and a new class of dual mTORC1/2 inhibitors, have shed light on the immune regulatory functions of mTORC2. These include regulation of antigen-presenting cell, NK cell, T cell subset, and B cell differentiation and function. mTORC2 has been implicated in regulation of ischemia/reperfusion injury and graft rejection. Potential therapeutic benefits of antagonizing mTORC2 to inhibit chronic rejection have also been described, while selective in vivo targeting strategies using nanotechnology have been developed. We briefly review and discuss these developments and their implications.
Collapse
Affiliation(s)
- Helong Dai
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA,Department of Urological Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Angus W. Thomson
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| |
Collapse
|
47
|
The IRE1 endoplasmic reticulum stress sensor activates natural killer cell immunity in part by regulating c-Myc. Nat Immunol 2019; 20:865-878. [PMID: 31086333 PMCID: PMC6588410 DOI: 10.1038/s41590-019-0388-z] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 03/29/2019] [Indexed: 01/04/2023]
Abstract
Natural killer (NK) cells are critical mediators of host immunity to pathogens. Here, we demonstrate that the endoplasmic reticulum stress sensor inositol-requiring enzyme 1 (IRE1α) and its substrate transcription factor X-box-binding protein 1 (XBP1) drive NK cell responses against viral infection and tumors in vivo. IRE1α-XBP1 were essential for expansion of activated mouse and human NK cells and are situated downstream of the mammalian target of rapamycin signaling pathway. Transcriptome and chromatin immunoprecipitation analysis revealed c-Myc as a new and direct downstream target of XBP1 for regulation of NK cell proliferation. Genetic ablation or pharmaceutical blockade of IRE1α downregulated c-Myc, and NK cells with c-Myc haploinsufficency phenocopied IRE1α-XBP1 deficiency. c-Myc overexpression largely rescued the proliferation defect in IRE1α-/- NK cells. Like c-Myc, IRE1α-XBP1 also promotes oxidative phosphorylation in NK cells. Overall, our study identifies a IRE1α-XBP1-cMyc axis in NK cell immunity, providing insight into host protection against infection and cancer.
Collapse
|
48
|
Niogret C, Miah SMS, Rota G, Fonta NP, Wang H, Held W, Birchmeier W, Sexl V, Yang W, Vivier E, Ho PC, Brossay L, Guarda G. Shp-2 is critical for ERK and metabolic engagement downstream of IL-15 receptor in NK cells. Nat Commun 2019; 10:1444. [PMID: 30926899 PMCID: PMC6441079 DOI: 10.1038/s41467-019-09431-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 03/12/2019] [Indexed: 12/11/2022] Open
Abstract
The phosphatase Shp-2 was implicated in NK cell development and functions due to its interaction with NK inhibitory receptors, but its exact role in NK cells is still unclear. Here we show, using mice conditionally deficient for Shp-2 in the NK lineage, that NK cell development and responsiveness are largely unaffected. Instead, we find that Shp-2 serves mainly to enforce NK cell responses to activation by IL-15 and IL-2. Shp-2-deficient NK cells have reduced proliferation and survival when treated with high dose IL-15 or IL-2. Mechanistically, Shp-2 deficiency hampers acute IL-15 stimulation-induced raise in glycolytic and respiration rates, and causes a dramatic defect in ERK activation. Moreover, inhibition of the ERK and mTOR cascades largely phenocopies the defect observed in the absence of Shp-2. Together, our data reveal a critical function of Shp-2 as a molecular nexus bridging acute IL-15 signaling with downstream metabolic burst and NK cell expansion.
Collapse
Affiliation(s)
- Charlène Niogret
- Department of Biochemistry, University of Lausanne, 1066, Epalinges, Switzerland
| | - S M Shahjahan Miah
- Department of Molecular Microbiology and Immunology and Graduate Program in Pathobiology, Division of Biology and Medicine, Brown University Alpert Medical School, Providence, RI, 02912, USA
| | - Giorgia Rota
- Department of Biochemistry, University of Lausanne, 1066, Epalinges, Switzerland
| | - Nicolas P Fonta
- Department of Biochemistry, University of Lausanne, 1066, Epalinges, Switzerland.,Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, Institute for Research in Biomedicine, 6500, Bellinzona, Switzerland
| | - Haiping Wang
- Department of Oncology UNIL CHUV, University of Lausanne, 1066, Epalinges, Switzerland.,Department of Fundamental Oncology, University of Lausanne, 1066, Epalinges, Switzerland
| | - Werner Held
- Department of Oncology UNIL CHUV, University of Lausanne, 1066, Epalinges, Switzerland
| | - Walter Birchmeier
- Max-Delbrueck-Center for Molecular Medicine (MDC) in the Helmholtz Society, 13125, Berlin, Germany
| | - Veronica Sexl
- Department for Biomedical Sciences, Institute of Pharmacology and Toxicology, University of Veterinary Medicine, 1210, Vienna, Austria
| | - Wentian Yang
- Department of Orthopaedics, Rhode Island Hospital and Brown University Alpert Medical School, 1 Hoppin Street, Providence, RI, 02903, USA
| | - Eric Vivier
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, Inserm, CNRS, Avenue de Luminy, 13288, Marseille, France.,Service d'Immunologie, Hôpital de la Timone, Assistance Publique-Hôpitaux de Marseille, 13385, Marseille, France.,Innate Pharma Research Labs., Innate Pharma, 117 Avenue de Luminy, 13276, Marseille, France
| | - Ping-Chih Ho
- Department of Oncology UNIL CHUV, University of Lausanne, 1066, Epalinges, Switzerland.,Department of Fundamental Oncology, University of Lausanne, 1066, Epalinges, Switzerland
| | - Laurent Brossay
- Department of Molecular Microbiology and Immunology and Graduate Program in Pathobiology, Division of Biology and Medicine, Brown University Alpert Medical School, Providence, RI, 02912, USA.
| | - Greta Guarda
- Department of Biochemistry, University of Lausanne, 1066, Epalinges, Switzerland. .,Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, Institute for Research in Biomedicine, 6500, Bellinzona, Switzerland.
| |
Collapse
|
49
|
|
50
|
Wang F, Meng M, Mo B, Yang Y, Ji Y, Huang P, Lai W, Pan X, You T, Luo H, Guan X, Deng Y, Yuan S, Chu J, Namaka M, Hughes T, Ye L, Yu J, Li X, Deng Y. Crosstalks between mTORC1 and mTORC2 variagate cytokine signaling to control NK maturation and effector function. Nat Commun 2018; 9:4874. [PMID: 30451838 PMCID: PMC6242843 DOI: 10.1038/s41467-018-07277-9] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 10/23/2018] [Indexed: 01/06/2023] Open
Abstract
The metabolic checkpoint kinase mechanistic/mammalian target of rapamycin (mTOR) regulates natural killer (NK) cell development and function, but the exact underlying mechanisms remain unclear. Here, we show, via conditional deletion of Raptor (mTORC1) or Rictor (mTORC2), that mTORC1 and mTORC2 promote NK cell maturation in a cooperative and non-redundant manner, mainly by controlling the expression of Tbx21 and Eomes. Intriguingly, mTORC1 and mTORC2 regulate cytolytic function in an opposing way, exhibiting promoting and inhibitory effects on the anti-tumor ability and metabolism, respectively. mTORC1 sustains mTORC2 activity by maintaining CD122-mediated IL-15 signaling, whereas mTORC2 represses mTORC1-modulated NK cell effector functions by restraining STAT5-mediated SLC7A5 expression. These positive and negative crosstalks between mTORC1 and mTORC2 signaling thus variegate the magnitudes and kinetics of NK cell activation, and help define a paradigm for the modulation of NK maturation and effector functions. The metabolic regulator protein family, mTOR, regulate natural killer (NK) cell development and function, but the underlying mechanism is unclear. Here, the authors show that Raptor/mTORC1 and Rictor/mTORC2 form a feedback crosstalk network to variegate cytokine and cellular signaling and modulate NK maturation and effector functions.
Collapse
Affiliation(s)
- Fangjie Wang
- Institute of Materia Medica, College of Pharmacy, Army Medical University (Third Military Medical University), 30# Gaotanyan Road, Shapingba District, Chongqing, 400038, China
| | - Meng Meng
- Institute of Materia Medica, College of Pharmacy, Army Medical University (Third Military Medical University), 30# Gaotanyan Road, Shapingba District, Chongqing, 400038, China
| | - Banghui Mo
- Institute of Materia Medica, College of Pharmacy, Army Medical University (Third Military Medical University), 30# Gaotanyan Road, Shapingba District, Chongqing, 400038, China
| | - Yao Yang
- Institute of Materia Medica, College of Pharmacy, Army Medical University (Third Military Medical University), 30# Gaotanyan Road, Shapingba District, Chongqing, 400038, China
| | - Yan Ji
- Institute of Materia Medica, College of Pharmacy, Army Medical University (Third Military Medical University), 30# Gaotanyan Road, Shapingba District, Chongqing, 400038, China
| | - Pei Huang
- Institute of Materia Medica, College of Pharmacy, Army Medical University (Third Military Medical University), 30# Gaotanyan Road, Shapingba District, Chongqing, 400038, China
| | - Wenjing Lai
- Institute of Materia Medica, College of Pharmacy, Army Medical University (Third Military Medical University), 30# Gaotanyan Road, Shapingba District, Chongqing, 400038, China
| | - Xiaodong Pan
- Institute of Materia Medica, College of Pharmacy, Army Medical University (Third Military Medical University), 30# Gaotanyan Road, Shapingba District, Chongqing, 400038, China
| | - Tingting You
- Institute of Materia Medica, College of Pharmacy, Army Medical University (Third Military Medical University), 30# Gaotanyan Road, Shapingba District, Chongqing, 400038, China
| | - Hongqin Luo
- Institute of Materia Medica, College of Pharmacy, Army Medical University (Third Military Medical University), 30# Gaotanyan Road, Shapingba District, Chongqing, 400038, China
| | - Xiao Guan
- Institute of Materia Medica, College of Pharmacy, Army Medical University (Third Military Medical University), 30# Gaotanyan Road, Shapingba District, Chongqing, 400038, China
| | - Yafei Deng
- Institute of Materia Medica, College of Pharmacy, Army Medical University (Third Military Medical University), 30# Gaotanyan Road, Shapingba District, Chongqing, 400038, China
| | - Shunzong Yuan
- Department of Laboratory Medicine, PLA 307 Hospital, Dongdajie 8, Fengtai District, Beijing, 100071, China
| | - Jianhong Chu
- Institute of Blood and Marrow Transplantation, Soochow University, No. 199 Renai Road, Suzhou, 215123, China
| | - Michael Namaka
- Institute of Materia Medica, College of Pharmacy, Army Medical University (Third Military Medical University), 30# Gaotanyan Road, Shapingba District, Chongqing, 400038, China.,Colleges of Pharmacy and Medicine, Rady Faculty of Health Sciences, University of Manitoba, 750 McDermot Avenue, Winnipeg, MB, R3E 0T5, Canada
| | - Tiffany Hughes
- The Ohio State University Comprehensive Cancer Center and the James Cancer Hospital, 460 West 12th Ave, BRT 816, Columbus, 43210, OH, USA
| | - Lilin Ye
- Institute of Immunology, Army Medical University (Third Military Medical University), 30# Gaotanyan Road, Shapingba District, Chongqing, 400038, China
| | - Jianhua Yu
- The Ohio State University Comprehensive Cancer Center and the James Cancer Hospital, 460 West 12th Ave, BRT 816, Columbus, 43210, OH, USA.,Division of Hematology, Department of Internal Medicine, The Ohio State University, 460 West 12th Ave, BRT 816, Columbus, OH, 43210, USA
| | - Xiaohui Li
- Institute of Materia Medica, College of Pharmacy, Army Medical University (Third Military Medical University), 30# Gaotanyan Road, Shapingba District, Chongqing, 400038, China.
| | - Youcai Deng
- Institute of Materia Medica, College of Pharmacy, Army Medical University (Third Military Medical University), 30# Gaotanyan Road, Shapingba District, Chongqing, 400038, China.
| |
Collapse
|