1
|
Miller WD, Mishra AK, Sheedy CJ, Bond A, Gardner BM, Montell DJ, Morrissey MA. CD47 prevents Rac-mediated phagocytosis through Vav1 dephosphorylation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.11.637707. [PMID: 39990418 PMCID: PMC11844498 DOI: 10.1101/2025.02.11.637707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
CD47 is expressed by viable cells to protect against phagocytosis. CD47 is recognized by SIRPα, an inhibitory receptor expressed by macrophages and other myeloid cells. Activated SIRPα recruits SHP-1 and SHP-2 phosphatases but the inhibitory signaling cascade downstream of these phosphatases is not clear. In this study, we used time lapse imaging to measure how CD47 impacts the kinetics of phagocytosis. We found that targets with IgG antibodies were primarily phagocytosed through a Rac-based reaching mechanism. Targets also containing CD47 were only phagocytosed through a less frequent Rho-based sinking mechanism. Hyperactivating Rac2 eliminated the suppressive effect of CD47, suggesting that CD47 prevents activation of Rac and reaching phagocytosis. During IgG-mediated phagocytosis, the tyrosine kinase Syk phosphorylates the GEF Vav, which then activates the GTPase Rac to drive F-actin rearrangement and target internalization. CD47 inhibited Vav1 phosphorylation without impacting Vav1 recruitment to the phagocytic synapse or Syk phosphorylation. Macrophages expressing a hyperactive Vav1 were no longer sensitive to CD47. Together this data suggests that Vav1 is a key target of the CD47 signaling pathway.
Collapse
Affiliation(s)
- Wyatt D Miller
- Interdisciplinary Program in Quantitative Biology, University of California, Santa Barbara, Santa Barbara CA
| | - Abhinava K Mishra
- Molecular Cellular and Developmental Biology Department, University of California, Santa Barbara, Santa Barbara CA
| | - Connor J Sheedy
- Interdisciplinary Program in Quantitative Biology, University of California, Santa Barbara, Santa Barbara CA
| | - Annalise Bond
- Molecular Cellular and Developmental Biology Department, University of California, Santa Barbara, Santa Barbara CA
| | - Brooke M Gardner
- Molecular Cellular and Developmental Biology Department, University of California, Santa Barbara, Santa Barbara CA
| | - Denise J Montell
- Molecular Cellular and Developmental Biology Department, University of California, Santa Barbara, Santa Barbara CA
| | - Meghan A Morrissey
- Molecular Cellular and Developmental Biology Department, University of California, Santa Barbara, Santa Barbara CA
| |
Collapse
|
2
|
Rollins K, Fiaz S, Morrissey M. Target cell adhesion limits macrophage phagocytosis and promotes trogocytosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.06.636906. [PMID: 39975079 PMCID: PMC11839035 DOI: 10.1101/2025.02.06.636906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Macrophage phagocytosis is an essential immune response that eliminates pathogens, antibody-opsonized cancer cells and debris. Macrophages can also trogocytose, or nibble, targets. Trogocytosis and phagocytosis are often activated by the same signal, including IgG antibodies. What makes a macrophage trogocytose instead of phagocytose is not clear. Using both CD47 antibodies and a Her2 Chimeric Antigen Receptor (CAR) to induce phagocytosis, we found that macrophages preferentially trogocytose adherent target cells instead of phagocytose in both 2D cell monolayers and 3D cancer spheroid models. Disrupting target cell integrin using an RGD peptide or through CRISPR-Cas9 knockout of the αV integrin subunit in target cells increased macrophage phagocytosis. Conversely, increasing cell adhesion by ectopically expressing E-Cadherin in Raji B cell targets reduced phagocytosis. Finally, we examined phagocytosis of mitotic cells, a naturally occurring example of cells with reduced adhesion. Arresting target cells in mitosis significantly increased phagocytosis. Together, our data show that target cell adhesion limits phagocytosis and promotes trogocytosis.
Collapse
Affiliation(s)
- Kirstin Rollins
- Molecular Cellular and Developmental Biology Department, University of California, Santa Barbara, Santa Barbara CA
| | - Sareen Fiaz
- Molecular Cellular and Developmental Biology Department, University of California, Santa Barbara, Santa Barbara CA
| | - Meghan Morrissey
- Molecular Cellular and Developmental Biology Department, University of California, Santa Barbara, Santa Barbara CA
| |
Collapse
|
3
|
Cornell CE, Chorlay A, Krishnamurthy D, Martin NR, Baldauf L, Fletcher DA. Target cell tension regulates macrophage trogocytosis. RESEARCH SQUARE 2025:rs.3.rs-5806746. [PMID: 39975908 PMCID: PMC11838726 DOI: 10.21203/rs.3.rs-5806746/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Macrophages are known to engulf small membrane fragments, or trogocytose, target cells and pathogens, rather than fully phagocytose them. However, little is known about what causes macrophages to choose trogocytosis versus phagocytosis. Here, we report that cortical tension of target cells is a key regulator of macrophage trogocytosis. At low tension, macrophages will preferentially trogocytose antibody-opsonized cells, while at high tension they tend towards phagocytosis. Using model vesicles, we demonstrate that macrophages will rapidly switch from trogocytosis to phagocytosis when membrane tension is increased. Stiffening the cortex of target cells also biases macrophages to phagocytose them, a trend that can be countered by increasing antibody surface density and is captured in a mechanical model of trogocytosis. This work suggests that the target cell, rather than the macrophage, determines phagocytosis versus trogocytosis, and that macrophages do not require a distinct molecular pathway for trogocytosis.
Collapse
Affiliation(s)
- Caitlin E. Cornell
- Department of Bioengineering, University of California Berkeley; Berkeley, CA USA
| | - Aymeric Chorlay
- Department of Bioengineering, University of California Berkeley; Berkeley, CA USA
| | - Deepak Krishnamurthy
- Department of Bioengineering, University of California Berkeley; Berkeley, CA USA
| | - Nicholas R. Martin
- Cardiovascular Research Institute, University of California San Francisco; San Francisco, CA USA
| | - Lucia Baldauf
- London Centre for Nanotechnology, University College London; London, UK
| | - Daniel A. Fletcher
- Department of Bioengineering, University of California Berkeley; Berkeley, CA USA
- University of California Berkeley/University of California San Francisco Graduate Group in Bioengineering, CA USA
- Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory; Berkeley CA USA
- Chan Zuckerberg Biohub; San Francisco CA USA
| |
Collapse
|
4
|
Postigo A, Marcuello C, Verstraeten W, Sarasa S, Walther T, Lostao A, Göpfrich K, Del Barrio J, Hernández-Ainsa S. Folding and Functionalizing DNA Origami: A Versatile Approach Using a Reactive Polyamine. J Am Chem Soc 2025; 147:3919-3924. [PMID: 39869392 DOI: 10.1021/jacs.4c12637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
DNA nanotechnology is a powerful synthetic approach to crafting diverse nanostructures through self-assembly. Chemical decoration of such nanostructures is often required to tailor their properties for specific applications. In this Letter, we introduce a pioneering method to direct the assembly and enable the functionalization of DNA nanostructures using an azide-bearing functional polyamine. We first demonstrate the successful polyamine-assisted folding of a scaffolded DNA origami nanostructure equipped with reactive azide groups. Leveraging this reactivity, we next showcase the decoration of the DNA origami via strain-promoted azide-alkyne cycloaddition with dibenzocyclooctyne-containing functional molecules. Specifically, we incorporate a fluorophore (Cy5), polyethylene glycol (PEG), and a hydrophobic phosphatidylethanolamine (PE) tag to tailor the properties of our DNA origami nanostructures. Our approach is expected to streamline and reduce the cost of chemical customization of intricate DNA nanostructures, paving the way for enhanced versatility and applicability.
Collapse
Affiliation(s)
- Alejandro Postigo
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Ed. I+D+i. Mariano Esquillor, Zaragoza 50018, Spain
| | - Carlos Marcuello
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Ed. I+D+i. Mariano Esquillor, Zaragoza 50018, Spain
- Laboratorio de Microscopias Avanzadas (LMA), Universidad de Zaragoza, Ed. I+D+i. Mariano Esquillor, 50018 Zaragoza, Spain
| | - William Verstraeten
- Center for Molecular Biology of Heidelberg University (ZMBH), Heidelberg University, Im Neuenheimer Feld 329, 69120 Heidelberg, Germany
- Biophysical Engineering Group, Max Planck Institute for Medical Research, Jahnstr. 29, 69120 Heidelberg, Germany
| | - Santiago Sarasa
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Ed. I+D+i. Mariano Esquillor, Zaragoza 50018, Spain
| | - Tobias Walther
- Center for Molecular Biology of Heidelberg University (ZMBH), Heidelberg University, Im Neuenheimer Feld 329, 69120 Heidelberg, Germany
- Biophysical Engineering Group, Max Planck Institute for Medical Research, Jahnstr. 29, 69120 Heidelberg, Germany
| | - Anabel Lostao
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Ed. I+D+i. Mariano Esquillor, Zaragoza 50018, Spain
- Fundación ARAID, Av. Ranillas 1-D, 50018 Zaragoza, Spain
- Laboratorio de Microscopias Avanzadas (LMA), Universidad de Zaragoza, Ed. I+D+i. Mariano Esquillor, 50018 Zaragoza, Spain
| | - Kerstin Göpfrich
- Center for Molecular Biology of Heidelberg University (ZMBH), Heidelberg University, Im Neuenheimer Feld 329, 69120 Heidelberg, Germany
- Biophysical Engineering Group, Max Planck Institute for Medical Research, Jahnstr. 29, 69120 Heidelberg, Germany
| | - Jesús Del Barrio
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Ed. I+D+i. Mariano Esquillor, Zaragoza 50018, Spain
| | - Silvia Hernández-Ainsa
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Ed. I+D+i. Mariano Esquillor, Zaragoza 50018, Spain
- Fundación ARAID, Av. Ranillas 1-D, 50018 Zaragoza, Spain
| |
Collapse
|
5
|
Douglas TR, Alexander S, Chou LYT. Patterned Antigens on DNA Origami Controls the Structure and Cellular Uptake of Immune Complexes. ACS NANO 2025; 19:621-637. [PMID: 39757925 DOI: 10.1021/acsnano.4c11183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
Immune complexes (ICs), formed via antibody (Ab)-antigen (Ag) binding, trigger diverse immune responses, which are critical for natural immunity and have uses for vaccines and immunotherapies. While IC-elicited immune responses depend on its structure, existing methods for IC synthesis produce heterogeneous assemblies, which limits control over their cellular interactions and pharmacokinetics. In this study, we demonstrate the use of DNA origami to create synthetic ICs with defined shape, size, and solubility by displaying Ags in prescribed spatial patterns. We find that Ag arrangement relative to the spatial tolerance of IgG Fab arms (∼13-18 nm) determines IC formation into "monomeric" versus "multimeric" regimes. When Ag spacing matches Fab arm tolerance, ICs are exclusively monomeric, while spacing mismatches favor the formation of multimeric ICs. Within each IC regime, parameters such as the number of Ags and Ab-Ag ratios, as well as DNA origami shape, further fine-tune IC size, shape, and Fc valency. These parameters influenced IC interactions with FcγR-expressing immune cells, with uptake by macrophages showing greater sensitivity to IC cross-linking while dendritic cells were more responsive to Ab valency. Our findings thus provide design principles for controlling the structure and cellular interactions of synthetic ICs and highlight DNA origami-scaffolded ICs as a programmable platform for investigating IC immunology and developing FcγR-targeted therapeutics and vaccines.
Collapse
Affiliation(s)
- Travis R Douglas
- Institute of Biomedical Engineering, University of Toronto, Toronto M5S 2E3, Canada
| | - Shana Alexander
- Institute of Biomedical Engineering, University of Toronto, Toronto M5S 2E3, Canada
| | - Leo Y T Chou
- Institute of Biomedical Engineering, University of Toronto, Toronto M5S 2E3, Canada
| |
Collapse
|
6
|
Bond A, Morrissey MA. Biochemical and biophysical mechanisms macrophages use to tune phagocytic appetite. J Cell Sci 2025; 138:JCS263513. [PMID: 39749603 PMCID: PMC11828473 DOI: 10.1242/jcs.263513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025] Open
Abstract
Macrophages phagocytose, or eat, pathogens, dead cells and cancer cells. To activate phagocytosis, macrophages recognize 'eat me' signals like IgG and phosphatidylserine on the target cell surface. Macrophages must carefully adjust their phagocytic appetite to ignore non-specific or transient eat me signal exposure on healthy cells while still rapidly recognizing pathogens and debris. Depending on the context, macrophages can increase their appetite for phagocytosis, to prioritize an effective immune response, or decrease their appetite, to avoid damage to healthy tissue during homeostasis. In this Review, we discuss the biochemical and biophysical mechanisms that macrophages employ to increase or decrease their sensitivity or capacity for phagocytosis. We discuss evidence that macrophages tune their sensitivity via several mechanisms, including altering the balance of activating and inhibitory receptor expression, altering the availability of activating receptors, as well as influencing their clustering and mobility, and modulating inhibitory receptor location. We also highlight how membrane availability limits the capacity of macrophages for phagocytosis and discuss potential mechanisms to promote membrane recycling and increase phagocytic capacity. Overall, this Review highlights recent work detailing the molecular toolkit that macrophages use to alter their appetite.
Collapse
Affiliation(s)
- Annalise Bond
- Molecular Cellular and Developmental Biology Department, University of California, Santa Barbara, CA 93106, USA
| | - Meghan A. Morrissey
- Molecular Cellular and Developmental Biology Department, University of California, Santa Barbara, CA 93106, USA
| |
Collapse
|
7
|
Sarkhel S, Shuvo SM, Ansari MA, Mondal S, Kapat P, Ghosh A, Sarkar T, Biswas R, Atanase LI, Carauleanu A. Nanotechnology-Based Approaches for the Management of Diabetes Mellitus: An Innovative Solution to Long-Lasting Challenges in Antidiabetic Drug Delivery. Pharmaceutics 2024; 16:1572. [PMID: 39771551 PMCID: PMC11678074 DOI: 10.3390/pharmaceutics16121572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/04/2024] [Accepted: 12/04/2024] [Indexed: 01/11/2025] Open
Abstract
Diabetes is a widespread metabolic illness. Mismanagement of diabetes can lead to severe complications that tremendously impact patients' quality of life. The assimilation of nanotechnology in diabetes care holds the potential to revolutionize treatment paradigms, improve patient outcomes, and reduce the economic burden associated with this pervasive disease. This manuscript explores the multifaceted utilization of nanomaterials in diabetes care, emphasizing the unique features of nano-based medication delivery methods and smart drug delivery mechanisms. Additionally, this paper talks about research on nanocarrier-integrated oral, transdermal, and inhalable insulin delivery; dendrimer- and nanocarrier-coupled antisense oligonucleotide-driven gene therapy; the implementation of gold nanoparticles and quantum dots for glucose surveillance; and nucleic acid therapies. There are certain restrictions when using medication delivery methods that are commonly available to handle diabetes. In order to increase efficacy and safety, the rapidly developing science of nanotechnology is also being explored and employed in medical biology. Nanomaterials like liposomes, dendrimers, niosomes, polymeric and metallic nanocarriers, and solid lipid nanoparticles are among the nanocarriers that have been developed for better delivery of various oral hypoglycemic agents in comparison to conventional therapies. These nanocarriers provide great control over elevated blood glucose levels, making them one of the most intriguing and promising technologies available today. Furthermore, adding additional ligands to nanocarriers allows for more focused distribution while protecting the encapsulated hypoglycemic drugs.
Collapse
Affiliation(s)
- Shounak Sarkhel
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, WB, India; (S.S.); (M.A.A.); (S.M.); (P.K.); (A.G.); (T.S.)
| | - Saikat Mollick Shuvo
- Department of Pharmaceutical Technology, JIS University, Agarpara, Kolkata 700109, WB, India;
| | - Md Ahesan Ansari
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, WB, India; (S.S.); (M.A.A.); (S.M.); (P.K.); (A.G.); (T.S.)
| | - Sourav Mondal
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, WB, India; (S.S.); (M.A.A.); (S.M.); (P.K.); (A.G.); (T.S.)
| | - Pritam Kapat
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, WB, India; (S.S.); (M.A.A.); (S.M.); (P.K.); (A.G.); (T.S.)
| | - Arindam Ghosh
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, WB, India; (S.S.); (M.A.A.); (S.M.); (P.K.); (A.G.); (T.S.)
| | - Tanima Sarkar
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, WB, India; (S.S.); (M.A.A.); (S.M.); (P.K.); (A.G.); (T.S.)
| | - Ranu Biswas
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, WB, India; (S.S.); (M.A.A.); (S.M.); (P.K.); (A.G.); (T.S.)
| | - Leonard Ionut Atanase
- Faculty of Medicine, “Apollonia” University of Iasi, 700511 Iasi, Romania
- Academy of Romanian Scientists, 050045 Bucharest, Romania
| | - Alexandru Carauleanu
- Department of Obstetrics and Gynecology, Grigore T. Popa University of Medicine and Pharmacy, 700111 Iasi, Romania;
| |
Collapse
|
8
|
Young OJ, Dembele H, Rajwar A, Kwon IC, Ryu JH, Shih WM, Zeng YC. Cargo Quantification of Functionalized DNA Origami for Therapeutic Application. SMALL METHODS 2024:e2401376. [PMID: 39651835 DOI: 10.1002/smtd.202401376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/25/2024] [Indexed: 12/18/2024]
Abstract
In recent years, notable advances in nanotechnology-based drug delivery have emerged. A particularly promising platform in this field is DNA origami-based nanoparticles, which offer highly programmable surfaces, providing precise control over the nanoscale spacing and stoichiometry of various cargo. These versatile particles are finding diverse applications ranging from basic molecular biology to diagnostics and therapeutics. This growing interest creates the need for effective methods to quantify cargo on DNA origami nanoparticles. The study consolidates several previously validated methods focusing on gel-based and fluorescence-based techniques, including multiplexed quantification of protein, peptide, and nucleic acid cargo on these nanoparticles. In this work, how gel band intensity and nanodrop fluorescence readings can be used to quantify protein, peptide, and RNA cargo on a DNA origami nanoparticle is demonstrated. This work may serve as a valuable resource for groups of researchers keen on utilizing DNA origami-based nanoparticles in therapeutic applications.
Collapse
Affiliation(s)
- Olivia J Young
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
- Harvard-Massachusetts Institute of Technology (MIT) Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Hawa Dembele
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA, 02115, USA
| | - Anjali Rajwar
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| | - Ick Chan Kwon
- Medicinal Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Ju Hee Ryu
- Medicinal Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - William M Shih
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| | - Yang C Zeng
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
9
|
Cornell CE, Chorlay A, Krishnamurthy D, Martin NR, Baldauf L, Fletcher DA. Target cell tension regulates macrophage trogocytosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.02.626490. [PMID: 39677802 PMCID: PMC11642796 DOI: 10.1101/2024.12.02.626490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Macrophages are known to engulf small membrane fragments, or trogocytose, target cells and pathogens, rather than fully phagocytose them. However, little is known about what causes macrophages to choose trogocytosis versus phagocytosis. Here, we report that cortical tension of target cells is a key regulator of macrophage trogocytosis. At low tension, macrophages will preferentially trogocytose antibody-opsonized cells, while at high tension they tend towards phagocytosis. Using model vesicles, we demonstrate that macrophages will rapidly switch from trogocytosis to phagocytosis when membrane tension is increased. Stiffening the cortex of target cells also biases macrophages to phagocytose them, a trend that can be countered by increasing antibody surface density and is captured in a mechanical model of trogocytosis. This work suggests that a distinct molecular pathway for trogocytosis is not required to explain differences in trogocytosis among target cell types and points to a mechanism for target cells to modulate trogocytosis.
Collapse
|
10
|
Bond A, Fiaz S, Rollins K, Nario JEQ, Snyder ET, Atkins DJ, Rosen SJ, Granados A, Dey SS, Wilson MZ, Morrissey MA. Prior Fc receptor activation primes macrophages for increased sensitivity to IgG via long-term and short-term mechanisms. Dev Cell 2024; 59:2882-2896.e7. [PMID: 39137774 PMCID: PMC11537821 DOI: 10.1016/j.devcel.2024.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 04/17/2024] [Accepted: 07/16/2024] [Indexed: 08/15/2024]
Abstract
Macrophages measure the "eat-me" signal immunoglobulin G (IgG) to identify targets for phagocytosis. We tested whether prior encounters with IgG influence macrophage appetite. IgG is recognized by the Fc receptor. To temporally control Fc receptor activation, we engineered an Fc receptor that is activated by the light-induced oligomerization of Cry2, triggering phagocytosis. Using this tool, we demonstrate that subthreshold Fc receptor activation primes mouse bone-marrow-derived macrophages to be more sensitive to IgG in future encounters. Macrophages that have previously experienced subthreshold Fc receptor activation eat more IgG-bound human cancer cells. Increased phagocytosis occurs by two discrete mechanisms-a short- and long-term priming. Long-term priming requires new protein synthesis and Erk activity. Short-term priming does not require new protein synthesis and correlates with an increase in Fc receptor mobility. Our work demonstrates that IgG primes macrophages for increased phagocytosis, suggesting that therapeutic antibodies may become more effective after initial priming doses.
Collapse
Affiliation(s)
- Annalise Bond
- Molecular Cellular and Developmental Biology Department, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Sareen Fiaz
- Molecular Cellular and Developmental Biology Department, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Kirstin Rollins
- Molecular Cellular and Developmental Biology Department, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Jazz Elaiza Q Nario
- Molecular Cellular and Developmental Biology Department, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Erika T Snyder
- Biomolecular Science and Engineering, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Dixon J Atkins
- Biomolecular Science and Engineering, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Samuel J Rosen
- Biomolecular Science and Engineering, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Alyssa Granados
- Molecular Cellular and Developmental Biology Department, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Siddharth S Dey
- Chemical Engineering Department, University of California, Santa Barbara, Santa Barbara, CA, USA; Bioengineering Department, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Maxwell Z Wilson
- Molecular Cellular and Developmental Biology Department, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Meghan A Morrissey
- Molecular Cellular and Developmental Biology Department, University of California, Santa Barbara, Santa Barbara, CA, USA.
| |
Collapse
|
11
|
Göpfrich K, Platten M, Frischknecht F, Fackler OT. Bottom-up synthetic immunology. NATURE NANOTECHNOLOGY 2024; 19:1587-1596. [PMID: 39187581 DOI: 10.1038/s41565-024-01744-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 07/02/2024] [Indexed: 08/28/2024]
Abstract
Infectious diseases and cancer evade immune surveillance using similar mechanisms. Targeting immune mechanisms using common strategies thus represents a promising avenue to improve prevention and treatment. Synthetic immunology can provide such strategies by applying engineering principles from synthetic biology to immunology. Synthetic biologists engineer cells by top-down genetic manipulation or bottom-up assembly from nanoscale building blocks. Recent successes in treating advanced tumours and diseases using genetically engineered immune cells highlight the power of the top-down synthetic immunology approach. However, genetic immune engineering is mostly limited to ex vivo applications and is subject to complex counter-regulation inherent to immune functions. Bottom-up synthetic biology can harness the rich nanotechnology toolbox to engineer molecular and cellular systems from scratch and equip them with desired functions. These are beginning to be tailored to perform targeted immune functions and should hence allow intervention strategies by rational design. In this Perspective we conceptualize bottom-up synthetic immunology as a new frontier field that uses nanotechnology for crucial innovations in therapy and the prevention of infectious diseases and cancer.
Collapse
Affiliation(s)
- Kerstin Göpfrich
- Center for Molecular Biology of Heidelberg University (ZMBH), Heidelberg University, Heidelberg, Germany.
- Biophysical Engineering Group, Max Planck Institute for Medical Research, Heidelberg, Germany.
| | - Michael Platten
- Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), Core Center Heidelberg, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neuroscience (MCTN), Heidelberg University, Mannheim, Germany
- DKFZ Hector Cancer Institute, University Medical Center Mannheim, Mannheim, Germany
| | - Friedrich Frischknecht
- Parasitology, Department of Infectious Diseases, Department of Infectious Diseases, Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany
- German Center for Infection Research, DZIF, Partner Site Heidelberg, Heidelberg, Germany
| | - Oliver T Fackler
- German Center for Infection Research, DZIF, Partner Site Heidelberg, Heidelberg, Germany.
- Integrative Virology, Center of Integrative Infectious Disease Research, Department of Infectious Diseases, Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
12
|
Young OJ, Dembele H, Rajwar A, Kwon IC, Ryu JH, Shih WM, Zeng YC. Cargo quantification of functionalized DNA origami for therapeutic application. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.27.609963. [PMID: 39253502 PMCID: PMC11383041 DOI: 10.1101/2024.08.27.609963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
In recent years, notable advances in nanotechnology-based drug delivery have emerged. A particularly promising platform in this field is DNA origami-based nanoparticles, which offer highly programmable surfaces, providing precise control over the nanoscale spacing and stoichiometry of various cargo. These versatile particles are finding diverse applications ranging from basic molecular biology to diagnostics and therapeutics. This growing interest creates the need for effective methods to quantify cargo on DNA origami nanoparticles. Our study consolidates several previously validated methods focusing on gel-based and fluorescence-based techniques, including multiplexed quantification of protein, peptide, and nucleic acid cargo on these nanoparticles. This work may serve as a valuable resource for groups researchers keen on utilizing DNA origami-based nanoparticles in therapeutic applications.
Collapse
Affiliation(s)
- Olivia J. Young
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
- Harvard-Massachusetts Institute of Technology (MIT) Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Hawa Dembele
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Anjali Rajwar
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Ick Chan Kwon
- Medicinal Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
| | - Ju Hee Ryu
- Medicinal Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - William M. Shih
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Yang C. Zeng
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
13
|
Jo S, Fischer BR, Cronin NM, Nurmalasari NPD, Loyd YM, Kerkvliet JG, Bailey EM, Anderson RB, Scott BL, Hoppe AD. Antibody surface mobility amplifies FcγR signaling via Arp2/3 during phagocytosis. Biophys J 2024; 123:2312-2327. [PMID: 38321740 PMCID: PMC11331046 DOI: 10.1016/j.bpj.2024.01.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/07/2023] [Accepted: 01/29/2024] [Indexed: 02/08/2024] Open
Abstract
We report herein that the anti-CD20 therapeutic antibody, rituximab, is rearranged into microclusters within the phagocytic synapse by macrophage Fcγ receptors (FcγR) during antibody-dependent cellular phagocytosis. These microclusters were observed to potently recruit Syk and to undergo rearrangements that were limited by the cytoskeleton of the target cell, with depolymerization of target-cell actin filaments leading to modest increases in phagocytic efficiency. Total internal reflection fluorescence analysis revealed that FcγR total phosphorylation, Syk phosphorylation, and Syk recruitment were enhanced when IgG-FcγR microclustering was enabled on fluid bilayers relative to immobile bilayers in a process that required Arp2/3. We conclude that on fluid surfaces, IgG-FcγR microclustering promotes signaling through Syk that is amplified by Arp2/3-driven actin rearrangements. Thus, the surface mobility of antigens bound by IgG shapes the signaling of FcγR with an unrecognized complexity beyond the zipper and trigger models of phagocytosis.
Collapse
Affiliation(s)
- Seongwan Jo
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, South Dakota; BioSNTRii, South Dakota State University, Brookings, South Dakota
| | - Brady R Fischer
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, South Dakota; BioSNTRii, South Dakota State University, Brookings, South Dakota
| | - Nicholas M Cronin
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, South Dakota; BioSNTRii, South Dakota State University, Brookings, South Dakota
| | - Ni Putu Dewi Nurmalasari
- Department of Nanoscience & Biomedical Engineering, South Dakota School of Mines and Technology, Rapid City, South Dakota; BioSNTRii, South Dakota School of Mines and Technology, Rapid City, South Dakota
| | - Yoseph M Loyd
- Department of Nanoscience & Biomedical Engineering, South Dakota School of Mines and Technology, Rapid City, South Dakota; BioSNTRii, South Dakota School of Mines and Technology, Rapid City, South Dakota
| | - Jason G Kerkvliet
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, South Dakota; BioSNTRii, South Dakota State University, Brookings, South Dakota
| | - Elizabeth M Bailey
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, South Dakota; BioSNTRii, South Dakota State University, Brookings, South Dakota
| | - Robert B Anderson
- Department of Nanoscience & Biomedical Engineering, South Dakota School of Mines and Technology, Rapid City, South Dakota; BioSNTRii, South Dakota School of Mines and Technology, Rapid City, South Dakota
| | - Brandon L Scott
- Department of Nanoscience & Biomedical Engineering, South Dakota School of Mines and Technology, Rapid City, South Dakota; BioSNTRii, South Dakota School of Mines and Technology, Rapid City, South Dakota
| | - Adam D Hoppe
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, South Dakota; BioSNTRii, South Dakota State University, Brookings, South Dakota.
| |
Collapse
|
14
|
Hou Y, Treanor B. DNA origami: Interrogating the nano-landscape of immune receptor activation. Biophys J 2024; 123:2211-2223. [PMID: 37838832 PMCID: PMC11331043 DOI: 10.1016/j.bpj.2023.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/22/2023] [Accepted: 10/12/2023] [Indexed: 10/16/2023] Open
Abstract
The immune response is orchestrated by elaborate protein interaction networks that interweave ligand-mediated receptor reorganization with signaling cascades. While the biochemical processes have been extensively investigated, delineating the biophysical principles governing immune receptor activation has remained challenging due to design limitations of traditional ligand display platforms. These constraints have been overcome by advances in DNA origami nanotechnology, enabling unprecedented control over ligand geometry on configurable scaffolds. It is now possible to systematically dissect the independent roles of ligand stoichiometry, spatial distribution, and rigidity in immune receptor activation, signaling, and cooperativity. In this review, we highlight pioneering efforts in manipulating the ligand presentation landscape to understand immune receptor triggering and to engineer functional immune responses.
Collapse
Affiliation(s)
- Yuchen Hou
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario.
| | - Bebhinn Treanor
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario; Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario; Department of Immunology, University of Toronto, Toronto, Ontario.
| |
Collapse
|
15
|
Zeng YC, Young OJ, Wintersinger CM, Anastassacos FM, MacDonald JI, Isinelli G, Dellacherie MO, Sobral M, Bai H, Graveline AR, Vernet A, Sanchez M, Mulligan K, Choi Y, Ferrante TC, Keskin DB, Fell GG, Neuberg D, Wu CJ, Mooney DJ, Kwon IC, Ryu JH, Shih WM. Fine tuning of CpG spatial distribution with DNA origami for improved cancer vaccination. NATURE NANOTECHNOLOGY 2024; 19:1055-1065. [PMID: 38491184 DOI: 10.1038/s41565-024-01615-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 01/18/2024] [Indexed: 03/18/2024]
Abstract
Multivalent presentation of ligands often enhances receptor activation and downstream signalling. DNA origami offers a precise nanoscale spacing of ligands, a potentially useful feature for therapeutic nanoparticles. Here we use a square-block DNA origami platform to explore the importance of the spacing of CpG oligonucleotides. CpG engages Toll-like receptors and therefore acts to activate dendritic cells. Through in vitro cell culture studies and in vivo tumour treatment models, we demonstrate that square blocks induce Th1 immune polarization when CpG is spaced at 3.5 nm. We observe that this DNA origami vaccine enhances DC activation, antigen cross-presentation, CD8 T-cell activation, Th1-polarized CD4 activation and natural-killer-cell activation. The vaccine also effectively synergizes with anti-PD-L1 for improved cancer immunotherapy in melanoma and lymphoma models and induces long-term T-cell memory. Our results suggest that DNA origami may serve as a platform for controlling adjuvant spacing and co-delivering antigens in vaccines.
Collapse
Affiliation(s)
- Yang C Zeng
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Olivia J Young
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
- Harvard-Massachusetts Institute of Technology (MIT) Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Christopher M Wintersinger
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Frances M Anastassacos
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - James I MacDonald
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
| | - Giorgia Isinelli
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
| | - Maxence O Dellacherie
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Miguel Sobral
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Haiqing Bai
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
| | - Amanda R Graveline
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
| | - Andyna Vernet
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
| | - Melinda Sanchez
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
| | - Kathleen Mulligan
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Youngjin Choi
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Thomas C Ferrante
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
| | - Derin B Keskin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Geoffrey G Fell
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Donna Neuberg
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Catherine J Wu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - David J Mooney
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Ick Chan Kwon
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Republic of Korea
| | - Ju Hee Ryu
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea.
| | - William M Shih
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA.
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
16
|
Francis EA, Rangamani P. Particle-based simulations shed light on cytoskeleton-membrane dynamics in phagocytosis. Biophys J 2024; 123:1031-1033. [PMID: 38549374 PMCID: PMC11079863 DOI: 10.1016/j.bpj.2024.03.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/12/2024] Open
Affiliation(s)
- Emmet A Francis
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, California.
| | - Padmini Rangamani
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, California.
| |
Collapse
|
17
|
Wang Y, Xiong Y, Shi K, Effah CY, Song L, He L, Liu J. DNA nanostructures for exploring cell-cell communication. Chem Soc Rev 2024; 53:4020-4044. [PMID: 38444346 DOI: 10.1039/d3cs00944k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
The process of coordinating between the same or multiple types of cells to jointly execute various instructions in a controlled and carefully regulated environment is a very appealing field. In order to provide clearer insight into the role of cell-cell interactions and the cellular communication of this process in their local communities, several interdisciplinary approaches have been employed to enhance the core understanding of this phenomenon. DNA nanostructures have emerged in recent years as one of the most promising tools in exploring cell-cell communication and interactions due to their programmability and addressability. Herein, this review is dedicated to offering a new perspective on using DNA nanostructures to explore the progress of cell-cell communication. After briefly outlining the anchoring strategy of DNA nanostructures on cell membranes and the subsequent dynamic regulation of DNA nanostructures, this paper highlights the significant contribution of DNA nanostructures in monitoring cell-cell communication and regulating its interactions. Finally, we provide a quick overview of the current challenges and potential directions for the application of DNA nanostructures in cellular communication and interactions.
Collapse
Affiliation(s)
- Ya Wang
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China.
| | - Yamin Xiong
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Kangqi Shi
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China.
| | - Clement Yaw Effah
- The First Affiliated Hospital of Zhengzhou University, Henan Key Laboratory of Critical Care Medicine, Zhengzhou Key Laboratory of Sepsis, Henan Engineering Research Center for Critical Care Medicine, Zhengzhou 450003, China
| | - Lulu Song
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China.
| | - Leiliang He
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China.
| | - Jianbo Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China.
| |
Collapse
|
18
|
Iinuma R, Chen X, Masubuchi T, Ueda T, Tadakuma H. Size-Selective Capturing of Exosomes Using DNA Tripods. J Am Chem Soc 2024; 146:10293-10298. [PMID: 38569597 PMCID: PMC11027911 DOI: 10.1021/jacs.3c11067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 03/09/2024] [Accepted: 03/12/2024] [Indexed: 04/05/2024]
Abstract
Fractionating and characterizing target samples are fundamental to the analysis of biomolecules. Extracellular vesicles (EVs), containing information regarding the cellular birthplace, are promising targets for biology and medicine. However, the requirement for multiple-step purification in conventional methods hinders analysis of small samples. Here, we apply a DNA origami tripod with a defined aperture of binders (e.g., antibodies against EV biomarkers), which allows us to capture the target molecule. Using exosomes as a model, we show that our tripod nanodevice can capture a specific size range of EVs with cognate biomarkers from a broad distribution of crude EV mixtures. We further demonstrate that the size of captured EVs can be controlled by changing the aperture of the tripods. This simultaneous selection with the size and biomarker approach should simplify the EV purification process and contribute to the precise analysis of target biomolecules from small samples.
Collapse
Affiliation(s)
- Ryosuke Iinuma
- Graduate
School of Frontier Science, The University
of Tokyo, Chiba 277-8562, Japan
- JSR
Corporation, Ibaraki, 305-0841, Japan
| | - Xiaoxia Chen
- School
of Life Science and Technology, ShanghaiTech
University, Shanghai 201210, People’s Republic of China
| | - Takeya Masubuchi
- Graduate
School of Frontier Science, The University
of Tokyo, Chiba 277-8562, Japan
- Department
of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, California 92093, United States
| | - Takuya Ueda
- Graduate
School of Frontier Science, The University
of Tokyo, Chiba 277-8562, Japan
- Graduate
School of Science and Engineering, Waseda
University, Tokyo 162-8480, Japan
| | - Hisashi Tadakuma
- Graduate
School of Frontier Science, The University
of Tokyo, Chiba 277-8562, Japan
- School
of Life Science and Technology, ShanghaiTech
University, Shanghai 201210, People’s Republic of China
- Gene Editing
Center, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, People’s Republic
of China
| |
Collapse
|
19
|
Mikkelsen JH, Stødkilde K, Jensen MP, Hansen AG, Wu Q, Lorentzen J, Graversen JH, Andersen GR, Fenton RA, Etzerodt A, Thiel S, Andersen CBF. Trypanosoma brucei Invariant Surface Glycoprotein 75 Is an Immunoglobulin Fc Receptor Inhibiting Complement Activation and Antibody-Mediated Cellular Phagocytosis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1334-1344. [PMID: 38391367 DOI: 10.4049/jimmunol.2300862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/05/2024] [Indexed: 02/24/2024]
Abstract
Various subspecies of the unicellular parasite Trypanosoma brucei cause sleeping sickness, a neglected tropical disease affecting millions of individuals and domestic animals. Immune evasion mechanisms play a pivotal role in parasite survival within the host and enable the parasite to establish a chronic infection. In particular, the rapid switching of variant surface glycoproteins covering a large proportion of the parasite's surface enables the parasite to avoid clearance by the adaptive immune system of the host. In this article, we present the crystal structure and discover an immune-evasive function of the extracellular region of the T. brucei invariant surface gp75 (ISG75). Structural analysis determined that the ISG75 ectodomain is organized as a globular head domain and a long slender coiled-coil domain. Subsequent ligand screening and binding analysis determined that the head domain of ISG75 confers interaction with the Fc region of all subclasses of human IgG. Importantly, the ISG75-IgG interaction strongly inhibits both activation of the classical complement pathway and Ab-dependent cellular phagocytosis by competing with C1q and host cell FcγR CD32. Our data reveal a novel immune evasion mechanism of T. brucei, with ISG75 able to inactivate the activities of Abs recognizing the parasite surface proteins.
Collapse
Affiliation(s)
| | | | | | | | - Qi Wu
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Josefine Lorentzen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Jonas Heilskov Graversen
- Department of Cancer and Inflammation, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Gregers Rom Andersen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | | | - Anders Etzerodt
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Steffen Thiel
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | |
Collapse
|
20
|
Cui H, Zhang L, Shi Y. Biomaterials-mediated ligation of immune cell surface receptors for immunoengineering. IMMUNO-ONCOLOGY TECHNOLOGY 2024; 21:100695. [PMID: 38405432 PMCID: PMC10891334 DOI: 10.1016/j.iotech.2023.100695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
A wide variety of cell surface receptors found on immune cells are essential to the body's immunological defense mechanisms. Cell surface receptors enable immune cells to sense extracellular stimuli and identify pathogens, transmitting activating or inhibitory signals that regulate the immune cell state and coordinate immunological responses. These receptors can dynamically aggregate or disperse due to the fluidity of the cell membrane, particularly during interactions between cells or between cells and pathogens. At the contact surface, cell surface receptors form microclusters, facilitating the recruitment and amplification of downstream signals. The strength of the immune signal is influenced by both the quantity and the specific types of participating receptors. Generally, receptor cross-linking, meaning multivalent ligation of receptors on one cell, leads to greater interface connectivity and more robust signaling. However, intercellular interactions are often spatially restricted by other cellular structures. Therefore, it is essential to comprehend these receptors' features for developing effective immunoengineering approaches. Biomaterials can stimulate and simulate interactions between immune cells and their targets. Biomaterials can activate immune cells to act against pathogenic organisms or cancer cells, thereby offering a valuable immunoengineering toolset for vaccination and immunotherapy. In this review, we systematically summarize biomaterial-based immunoengineering strategies that consider the biology of diverse immune cell surface receptors and the structural attributes of pathogens. By combining this knowledge, we aim to advance the development of rational and effective approaches for immune modulation and therapeutic interventions.
Collapse
Affiliation(s)
- H. Cui
- Department of Polymer Therapeutics, Institute for Experimental Molecular Imaging, Uniklinik RWTH Aachen and Helmholtz Institute for Biomedical Engineering, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - L. Zhang
- Department of Mechanical and Production Engineering, Aarhus University, Aarhus N, Denmark
| | - Y. Shi
- Department of Polymer Therapeutics, Institute for Experimental Molecular Imaging, Uniklinik RWTH Aachen and Helmholtz Institute for Biomedical Engineering, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
21
|
Mikdar M, Azouzi S. AMIS RBC antigen loss: nibble or devour? Blood 2024; 143:742-744. [PMID: 38421815 DOI: 10.1182/blood.2023023058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024] Open
|
22
|
Spratt J, Dias JM, Kolonelou C, Kiriako G, Engström E, Petrova E, Karampelias C, Cervenka I, Papanicolaou N, Lentini A, Reinius B, Andersson O, Ambrosetti E, Ruas JL, Teixeira AI. Multivalent insulin receptor activation using insulin-DNA origami nanostructures. NATURE NANOTECHNOLOGY 2024; 19:237-245. [PMID: 37813939 PMCID: PMC10873203 DOI: 10.1038/s41565-023-01507-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 08/15/2023] [Indexed: 10/11/2023]
Abstract
Insulin binds the insulin receptor (IR) and regulates anabolic processes in target tissues. Impaired IR signalling is associated with multiple diseases, including diabetes, cancer and neurodegenerative disorders. IRs have been reported to form nanoclusters at the cell membrane in several cell types, even in the absence of insulin binding. Here we exploit the nanoscale spatial organization of the IR to achieve controlled multivalent receptor activation. To control insulin nanoscale spatial organization and valency, we developed rod-like insulin-DNA origami nanostructures carrying different numbers of insulin molecules with defined spacings. Increasing the insulin valency per nanostructure markedly extended the residence time of insulin-DNA origami nanostructures at the receptors. Both insulin valency and spacing affected the levels of IR activation in adipocytes. Moreover, the multivalent insulin design associated with the highest levels of IR activation also induced insulin-mediated transcriptional responses more effectively than the corresponding monovalent insulin nanostructures. In an in vivo zebrafish model of diabetes, treatment with multivalent-but not monovalent-insulin nanostructures elicited a reduction in glucose levels. Our results show that the control of insulin multivalency and spatial organization with nanoscale precision modulates the IR responses, independent of the insulin concentration. Therefore, we propose insulin nanoscale organization as a design parameter in developing new insulin therapies.
Collapse
Affiliation(s)
- Joel Spratt
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - José M Dias
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Christina Kolonelou
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Georges Kiriako
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Enya Engström
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Ekaterina Petrova
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Christos Karampelias
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Igor Cervenka
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Natali Papanicolaou
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Antonio Lentini
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Björn Reinius
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Olov Andersson
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Elena Ambrosetti
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- Center for Life Nano- and Neuro-Science, Istituto Italiano di Tecnologia, Rome, Italy
| | - Jorge L Ruas
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Ana I Teixeira
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
23
|
Wang WX, Douglas TR, Zhang H, Bhattacharya A, Rothenbroker M, Tang W, Sun Y, Jia Z, Muffat J, Li Y, Chou LYT. Universal, label-free, single-molecule visualization of DNA origami nanodevices across biological samples using origamiFISH. NATURE NANOTECHNOLOGY 2024; 19:58-69. [PMID: 37500778 DOI: 10.1038/s41565-023-01449-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 06/09/2023] [Indexed: 07/29/2023]
Abstract
Structural DNA nanotechnology enables the fabrication of user-defined DNA origami nanostructures (DNs) for biological applications. However, the role of DN design during cellular interactions and subsequent biodistribution remain poorly understood. Current methods for tracking DN fates in situ, including fluorescent-dye labelling, suffer from low sensitivity and dye-induced artifacts. Here we present origamiFISH, a label-free and universal method for the single-molecule fluorescence detection of DNA origami nanostructures in cells and tissues. origamiFISH targets pan-DN scaffold sequences with hybridization chain reaction probes to achieve 1,000-fold signal amplification. We identify cell-type- and DN shape-specific spatiotemporal distribution patterns within a minute of uptake and at picomolar DN concentrations, 10,000× lower than field standards. We additionally optimize compatibility with immunofluorescence and tissue clearing to visualize DN distribution within tissue cryo-/vibratome sections, slice cultures and whole-mount organoids. Together, origamiFISH enables the accurate mapping of DN distribution across subcellular and tissue barriers for guiding the development of DN-based therapeutics.
Collapse
Affiliation(s)
- Wendy Xueyi Wang
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Travis R Douglas
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Haiwang Zhang
- Department of Neurosurgery, Guizhou Provincial People's Hospital, Guiyang, China
- Program in Neurosciences and Mental Health, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Afrin Bhattacharya
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Meghan Rothenbroker
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Wentian Tang
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Yu Sun
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, Canada
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, Canada
- Department of Computer Science, University of Toronto, Toronto, Ontario, Canada
| | - Zhengping Jia
- Program in Neurosciences and Mental Health, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Julien Muffat
- Program in Neurosciences and Mental Health, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Yun Li
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Leo Y T Chou
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
24
|
Bond A, Fiaz S, Rollins KR, Nario JEQ, Rosen SJ, Granados A, Wilson MZ, Morrissey MA. Prior Fc Receptor activation primes macrophages for increased sensitivity to IgG via long term and short term mechanisms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.14.567059. [PMID: 38014172 PMCID: PMC10680729 DOI: 10.1101/2023.11.14.567059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Macrophages measure the 'eat-me' signal IgG to identify targets for phagocytosis. We wondered if prior encounters with IgG influence macrophage appetite. IgG is recognized by the Fc Receptor. To temporally control Fc Receptor activation, we engineered an Fc Receptor that is activated by light-induced oligomerization of Cry2, triggering phagocytosis. Using this tool, we demonstrate that Fc Receptor activation primes macrophages to be more sensitive to IgG in future encounters. Macrophages that have previously experienced Fc Receptor activation eat more IgG-bound cancer cells. Increased phagocytosis occurs by two discrete mechanisms - a short- and long-term priming. Long term priming requires new protein synthesis and Erk activity. Short term priming does not require new protein synthesis and correlates with an increase in Fc Receptor mobility. Our work demonstrates that IgG primes macrophages for increased phagocytosis, suggesting that therapeutic antibodies may become more effective after initial priming doses.
Collapse
Affiliation(s)
- Annalise Bond
- Molecular Cellular and Developmental Biology Department, University of California, Santa Barbara, Santa Barbara CA
| | - Sareen Fiaz
- Molecular Cellular and Developmental Biology Department, University of California, Santa Barbara, Santa Barbara CA
| | - Kirstin R Rollins
- Molecular Cellular and Developmental Biology Department, University of California, Santa Barbara, Santa Barbara CA
| | - Jazz Elaiza Q Nario
- Molecular Cellular and Developmental Biology Department, University of California, Santa Barbara, Santa Barbara CA
| | - Samuel J Rosen
- Molecular Cellular and Developmental Biology Department, University of California, Santa Barbara, Santa Barbara CA
| | - Alyssa Granados
- Molecular Cellular and Developmental Biology Department, University of California, Santa Barbara, Santa Barbara CA
| | - Maxwell Z Wilson
- Molecular Cellular and Developmental Biology Department, University of California, Santa Barbara, Santa Barbara CA
| | - Meghan A Morrissey
- Molecular Cellular and Developmental Biology Department, University of California, Santa Barbara, Santa Barbara CA
- Lead contact
| |
Collapse
|
25
|
Zhang Y, Tian X, Wang Z, Wang H, Liu F, Long Q, Jiang S. Advanced applications of DNA nanostructures dominated by DNA origami in antitumor drug delivery. Front Mol Biosci 2023; 10:1239952. [PMID: 37609372 PMCID: PMC10440542 DOI: 10.3389/fmolb.2023.1239952] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 07/27/2023] [Indexed: 08/24/2023] Open
Abstract
DNA origami is a cutting-edge DNA self-assembly technique that neatly folds DNA strands and creates specific structures based on the complementary base pairing principle. These innovative DNA origami nanostructures provide numerous benefits, including lower biotoxicity, increased stability, and superior adaptability, making them an excellent choice for transporting anti-tumor agents. Furthermore, they can considerably reduce side effects and improve therapy success by offering precise, targeted, and multifunctional drug delivery system. This comprehensive review looks into the principles and design strategies of DNA origami, providing valuable insights into this technology's latest research achievements and development trends in the field of anti-tumor drug delivery. Additionally, we review the key function and major benefits of DNA origami in cancer treatment, some of these approaches also involve aspects related to DNA tetrahedra, aiming to provide novel ideas and effective solutions to address drug delivery challenges in cancer therapy.
Collapse
Affiliation(s)
- Yiming Zhang
- Clinical Medical Laboratory Center, Jining First People’s Hospital, Shandong First Medical University, Jining, Shandong, China
| | - Xinchen Tian
- Clinical Medical Laboratory Center, Jining First People’s Hospital, Shandong First Medical University, Jining, Shandong, China
| | - Zijian Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Haochen Wang
- Clinical Medical Laboratory Center, Jining First People’s Hospital, Shandong First Medical University, Jining, Shandong, China
| | - Fen Liu
- Clinical Medical Laboratory Center, Jining First People’s Hospital, Shandong First Medical University, Jining, Shandong, China
| | - Qipeng Long
- Clinical Medical Laboratory Center, Jining First People’s Hospital, Shandong First Medical University, Jining, Shandong, China
| | - Shulong Jiang
- Clinical Medical Laboratory Center, Jining First People’s Hospital, Shandong First Medical University, Jining, Shandong, China
| |
Collapse
|
26
|
Alexander S, Moghadam MG, Rothenbroker M, Y T Chou L. Addressing the in vivo delivery of nucleic-acid nanostructure therapeutics. Adv Drug Deliv Rev 2023; 199:114898. [PMID: 37230305 DOI: 10.1016/j.addr.2023.114898] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/02/2023] [Accepted: 05/18/2023] [Indexed: 05/27/2023]
Abstract
DNA and RNA nanostructures are being investigated as therapeutics, vaccines, and drug delivery systems. These nanostructures can be functionalized with guests ranging from small molecules to proteins with precise spatial and stoichiometric control. This has enabled new strategies to manipulate drug activity and to engineer devices with novel therapeutic functionalities. Although existing studies have offered encouraging in vitro or pre-clinical proof-of-concepts, establishing mechanisms of in vivo delivery is the new frontier for nucleic-acid nanotechnologies. In this review, we first provide a summary of existing literature on the in vivo uses of DNA and RNA nanostructures. Based on their application areas, we discuss current models of nanoparticle delivery, and thereby highlight knowledge gaps on the in vivo interactions of nucleic-acid nanostructures. Finally, we describe techniques and strategies for investigating and engineering these interactions. Together, we propose a framework to establish in vivo design principles and advance the in vivo translation of nucleic-acid nanotechnologies.
Collapse
Affiliation(s)
- Shana Alexander
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
| | | | - Meghan Rothenbroker
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
| | - Leo Y T Chou
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada.
| |
Collapse
|
27
|
Sun L, Shen F, Qu Y, Liu Z. Functional DNA as a Molecular Tool in Regulating Immunoreceptor-Ligand Interactions. JACS AU 2023; 3:1820-1834. [PMID: 37502159 PMCID: PMC10369416 DOI: 10.1021/jacsau.3c00291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/24/2023] [Accepted: 06/27/2023] [Indexed: 07/29/2023]
Abstract
During immune responses, activating ligands would trigger dynamic spatiotemporal organization of immunoreceptors at the cell interface, governing the fate and effector functions of immune cells. To understand the biophysical mechanisms of immunoreceptor signaling, diverse tools, including DNA technologies, have been developed to manipulate receptor-ligand interactions during the immune activation process. With great capability in the controllable assembly of biomolecules, functional DNA-based precise arrangement of immune molecules at cell interfaces has provided a powerful means in revealing the principles of immunoreceptor triggering, even at the single-molecule level. In addition, precisely regulating immunoreceptor-ligand interactions with functional DNA has been applied in immunotherapies of major diseases. This Perspective will focus on the recent advances in exploring immunoreceptor signaling with functional DNA as the molecular tool as well as the applications of functional DNA mediated regulation of immunoreceptor activation. We also outline the challenges and opportunities of applying functional DNA in immune modulation and immunotherapy.
Collapse
Affiliation(s)
- Lele Sun
- Institute
of Materiobiology, Department of Chemistry, College of Science, Shanghai University, Shanghai 200444, China
| | - Fengyun Shen
- School
of Chemistry and Chemical Engineering, Shanghai
Jiao Tong University, Shanghai 201240, China
| | - Yanfei Qu
- Institute
of Materiobiology, Department of Chemistry, College of Science, Shanghai University, Shanghai 200444, China
| | - Zhuang Liu
- Institute
of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Lab
Carbon Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, China
| |
Collapse
|
28
|
Eisentraut M, Sabri A, Kress H. The spatial resolution limit of phagocytosis. Biophys J 2023; 122:868-879. [PMID: 36703557 PMCID: PMC10027436 DOI: 10.1016/j.bpj.2023.01.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/05/2023] [Accepted: 01/23/2023] [Indexed: 01/27/2023] Open
Abstract
Antibody-opsonized bacteria interact with Fc receptors in macrophages and trigger signaling cascades, which induce phagocytosis. The signaling pathways ultimately lead to actin polymerization that induces the protrusion of the membrane around the bacterium until it is completely engulfed. Although many proteins involved in the phagocytic cup formation have already been identified, it is still unclear how far the initial stimulus created by the bacterium-cell contact propagates in the cell. We hypothesize that this spreading distance is closely related to the spatial resolution limit of phagocytosis, the smallest distance in which two stimuli can be differentiated. Here, we probe this resolution limit by using holographic optical tweezers to attach pairs of immunoglobulin G-coated polystyrene microparticles (as models for opsonized bacteria) to murine macrophages in distances ranging from zero to several micrometers. By using 2-μm-sized particles, we found that the particles can be internalized jointly into one phagosome if they are attached to the cell very close together, but that they are taken up separately if they are attached far from each other. To explain this, we developed a model of the signaling process, which predicts the probabilities for separate uptake for different particle sizes and distances using cellular parameters including the average receptor distance. We tested the model by measuring the separate uptake probabilities for particles with a diameter of 1 to 3 μm and for cells with reduced numbers of Fcγ receptors and found very good agreement. Our model shows that the phagocytic uptake behavior can be explained by assuming an effective phagocytic signaling range of about 500 nm. Interestingly, this value corresponds to the lower size limit of phagocytosis. Our work provides quantitative access to spatial parameters of cellular signaling during phagocytosis and thereby contributes to a more quantitative understanding of cellular information processing.
Collapse
Affiliation(s)
| | - Adal Sabri
- Biological Physics, University of Bayreuth, Bayreuth, Germany
| | - Holger Kress
- Biological Physics, University of Bayreuth, Bayreuth, Germany.
| |
Collapse
|
29
|
Tanzer MC. You are what you eat and how you digest it! A discussion on inflammatory efferocytosis. Front Cell Dev Biol 2023; 11:1132696. [PMID: 36846584 PMCID: PMC9947526 DOI: 10.3389/fcell.2023.1132696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 01/31/2023] [Indexed: 02/11/2023] Open
Abstract
Efferocytosis is a process by which phagocytes remove dead or dying cells. It is considered anti-inflammatory, as the removal process reduces potential inflammatory molecules originating from dead cells and results in the reprogramming of macrophages to an anti-inflammatory state. However, engulfment of infected dead cells, deregulated phagocytosis and perturbed digestion of apoptotic bodies induce inflammatory signalling pathways during efferocytosis. The affected inflammatory signalling molecules and the mechanism of activation are largely unknown. I discuss how the choice of dead cell cargo, the type of ingestion, and the digestion efficiency can influence phagocyte programming in the context of disease. I also present the latest findings, highlight knowledge gaps, and propose selected experimental approaches to fill them.
Collapse
|
30
|
Mathur D, Galvan AR, Green CM, Liu K, Medintz IL. Uptake and stability of DNA nanostructures in cells: a cross-sectional overview of the current state of the art. NANOSCALE 2023; 15:2516-2528. [PMID: 36722508 PMCID: PMC10407680 DOI: 10.1039/d2nr05868e] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The physical and chemical properties of synthetic DNA have transformed this prototypical biopolymer into a versatile nanoscale building block material in the form of DNA nanotechnology. DNA nanotechnology is, in turn, providing unprecedented precision bioengineering for numerous biomedical applications at the nanoscale including next generation immune-modulatory materials, vectors for targeted delivery of nucleic acids, drugs, and contrast agents, intelligent sensors for diagnostics, and theranostics, which combines several of these functionalities into a single construct. Assembling a DNA nanostructure to be programmed with a specific number of targeting moieties on its surface to imbue it with concomitant cellular uptake and retention capabilities along with carrying a specific therapeutic dose is now eminently feasible due to the extraordinary self-assembling properties and high formation efficiency of these materials. However, what remains still only partially addressed is how exactly this class of materials is taken up into cells in both the native state and as targeted or chemically facilitated, along with how stable they are inside the cellular cytosol and other cellular organelles. In this minireview, we summarize what is currently reported in the literature about how (i) DNA nanostructures are taken up into cells along with (ii) what is understood about their subsequent stability in the complex multi-organelle environment of the cellular milieu along with biological fluids in general. This allows us to highlight the many challenges that still remain to overcome in understanding DNA nanostructure-cellular interactions in order to fully translate these exciting new materials.
Collapse
Affiliation(s)
- Divita Mathur
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106, USA.
| | - Angelica Rose Galvan
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
- Center for Bio/Molecular Science and Engineering, Code 6900, US Naval Research Laboratory, Washington, DC 20375, USA
| | - Christopher M Green
- Center for Bio/Molecular Science and Engineering, Code 6900, US Naval Research Laboratory, Washington, DC 20375, USA
| | - Kevin Liu
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106, USA.
| | - Igor L Medintz
- Center for Bio/Molecular Science and Engineering, Code 6900, US Naval Research Laboratory, Washington, DC 20375, USA
| |
Collapse
|
31
|
Sánchez MF, Tampé R. Ligand-independent receptor clustering modulates transmembrane signaling: a new paradigm. Trends Biochem Sci 2023; 48:156-171. [PMID: 36115755 DOI: 10.1016/j.tibs.2022.08.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/22/2022] [Accepted: 08/02/2022] [Indexed: 01/25/2023]
Abstract
Cell-surface receptors mediate communication between cells and their environment. Lateral membrane organization and dynamic receptor cluster formation are fundamental in signal transduction and cell signaling. However, it is not yet fully understood how receptor clustering modulates a wide variety of physiologically relevant processes. Recent growing evidence indicates that biological responses triggered by membrane receptors can be modulated even in the absence of the natural receptor ligand. We review the most recent findings on how ligand-independent receptor clustering can regulate transmembrane signaling. We discuss the latest technologies to control receptor assembly, such as DNA nanotechnology, optogenetics, and optochemistry, focusing on the biological relevance and unraveling of ligand-independent signaling.
Collapse
Affiliation(s)
- M Florencia Sánchez
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue-Strasse 9, 60438 Frankfurt am Main, Germany
| | - Robert Tampé
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue-Strasse 9, 60438 Frankfurt am Main, Germany.
| |
Collapse
|
32
|
Knappe GA, Wamhoff EC, Bathe M. Functionalizing DNA origami to investigate and interact with biological systems. NATURE REVIEWS. MATERIALS 2023; 8:123-138. [PMID: 37206669 PMCID: PMC10191391 DOI: 10.1038/s41578-022-00517-x] [Citation(s) in RCA: 71] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/11/2022] [Indexed: 05/21/2023]
Abstract
DNA origami has emerged as a powerful method to generate DNA nanostructures with dynamic properties and nanoscale control. These nanostructures enable complex biophysical studies and the fabrication of next-generation therapeutic devices. For these applications, DNA origami typically needs to be functionalized with bioactive ligands and biomacromolecular cargos. Here, we review methods developed to functionalize, purify, and characterize DNA origami nanostructures. We identify remaining challenges, such as limitations in functionalization efficiency and characterization. We then discuss where researchers can contribute to further advance the fabrication of functionalized DNA origami.
Collapse
Affiliation(s)
- Grant A. Knappe
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States of America
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States of America
- Address correspondence to or
| | - Eike-Christian Wamhoff
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States of America
| | - Mark Bathe
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States of America
- Address correspondence to or
| |
Collapse
|
33
|
Miller WD, Kern N, Douglas SM, Morrissey MA. Leveraging DNA Origami to Study Phagocytosis. Methods Mol Biol 2023; 2654:303-312. [PMID: 37106190 DOI: 10.1007/978-1-0716-3135-5_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Many plasma membrane receptors and ligands form nanoscale clusters on the plasma membrane surface. However, methods for directly and precisely manipulating nanoscale protein localization are limited, making understanding the effects of this clustering difficult. DNA origami allows precise control over nanoscale protein localization with high fidelity and adaptability. Here, we describe how we have used this technique to study how nanoscale protein clustering affects phagocytosis. We provide protocols for conjugating DNA origami structures to supported lipid bilayer-coated beads to assay phagocytosis and planar glass coverslips for TIRF microscopy. The core aspects of this protocol can be translated to study other immune signaling pathways and should enable the implementation of previously inaccessible investigations.
Collapse
Affiliation(s)
- Wyatt D Miller
- Department of Molecular, Cellular and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA, USA
- Department of Biomolecular Science and Engineering, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Nadja Kern
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Shawn M Douglas
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Meghan A Morrissey
- Department of Molecular, Cellular and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA, USA.
| |
Collapse
|
34
|
Wang M, Yang D, Lu Q, Liu L, Cai Z, Wang Y, Wang HH, Wang P, Nie Z. Spatially Reprogramed Receptor Organization to Switch Cell Behavior Using a DNA Origami-Templated Aptamer Nanoarray. NANO LETTERS 2022; 22:8445-8454. [PMID: 36255126 DOI: 10.1021/acs.nanolett.2c02489] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Receptor oligomerization is a highly complex molecular process that modulates divergent cell signaling. However, there is a lack of molecular tools for systematically interrogating how receptor oligomerization governs the signaling response. Here, we developed a DNA origami-templated aptamer nanoarray (DOTA) that enables precise programming of the oligomerization of receptor tyrosine kinases (RTK) with defined valency, distribution, and stoichiometry at the ligand-receptor interface. The DOTA allows for advanced receptor manipulations by arraying either monomeric aptamer ligands (mALs) that oligamerize receptor monomers to elicit artificial signaling or dimeric aptamer ligands (dALs) that preorganize the receptor dimer to recapitulate natural activation. We demonstrated that the multivalency and nanoscale spacing of receptor oligomerization coordinately influence the activation level of receptor tyrosine kinase signaling. Furthermore, we illustrated that DOTA-modulated receptor oligomerization could function as a signaling switch to promote the transition from epithelia to mesenchymal-like cells, demonstrating robust control over cellular behaviors. Together, we present a versatile all-in-one DNA nanoplatform for the systematical investigation and regulation of receptor-mediated cellular response.
Collapse
Affiliation(s)
- Miao Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Donglei Yang
- Institute of Molecular Medicine, Department of Laboratory Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Qin Lu
- GeneMind Biosciences Company Limited, Shenzhen, Guangdong 518000, China
| | - Lin Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Zixin Cai
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Yirong Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Hong-Hui Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Pengfei Wang
- Institute of Molecular Medicine, Department of Laboratory Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Zhou Nie
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha, Hunan 410082, P. R. China
| |
Collapse
|
35
|
Buchberger A, Riker K, Bernal-Chanchavac J, Narayanan RP, Simmons CR, Fahmi NE, Freeman R, Stephanopoulos N. Bioactive Fibronectin-III 10-DNA Origami Nanofibers Promote Cell Adhesion and Spreading. ACS APPLIED BIO MATERIALS 2022; 5:10.1021/acsabm.2c00303. [PMID: 36108278 PMCID: PMC10014493 DOI: 10.1021/acsabm.2c00303] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The integration of proteins with DNA nanotechnology would enable materials with diverse applications in biology, medicine, and engineering. Here, we describe a method for the incorporation of bioactive fibronectin domain proteins with DNA nanostructures using two orthogonal coiled-coil peptides. One peptide from each coiled-coil pair is attached to a DNA origami cuboid in a multivalent fashion by attaching the peptides to DNA handles. These structures can then be assembled into one-dimensional arrays through the addition of a fibronectin domain linker genetically fused with the complementary peptides to those on the origami. We validate array formation using two different self-assembly protocols and characterize the fibers by atomic force and electron microscopy. Finally, we demonstrate that surfaces coated with the protein-DNA nanofibers can serve as biomaterial substrates for fibroblast adhesion and spreading with the nanofibers showing enhanced bioactivity compared to that of the monomeric protein.
Collapse
Affiliation(s)
- Alex Buchberger
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85281, United States
- Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe, Arizona 85281, United States
| | - Kyle Riker
- Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, North Carolina 27514, United States
| | - Julio Bernal-Chanchavac
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85281, United States
- Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe, Arizona 85281, United States
| | - Raghu Pradeep Narayanan
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85281, United States
- Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe, Arizona 85281, United States
| | - Chad R Simmons
- Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe, Arizona 85281, United States
| | - Nour Eddine Fahmi
- Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe, Arizona 85281, United States
| | - Ronit Freeman
- Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, North Carolina 27514, United States
| | - Nicholas Stephanopoulos
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85281, United States
- Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe, Arizona 85281, United States
| |
Collapse
|
36
|
Griffiths G, Gruenberg J, Marsh M, Wohlmann J, Jones AT, Parton RG. Nanoparticle entry into cells; the cell biology weak link. Adv Drug Deliv Rev 2022; 188:114403. [PMID: 35777667 DOI: 10.1016/j.addr.2022.114403] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 12/22/2022]
Abstract
Nanoparticles (NP) are attractive options for the therapeutic delivery of active pharmaceutical drugs, proteins and nucleic acids into cells, tissues and organs. Research into the development and application of NP most often starts with a diverse group of scientists, including chemists, bioengineers and material and pharmaceutical scientists, who design, fabricate and characterize NP in vitro (Stage 1). The next step (Stage 2) generally investigates cell toxicity as well as the processes by which NP bind, are internalized and deliver their cargo to appropriate model tissue culture cells. Subsequently, in Stage 3, selected NP are tested in animal systems, mostly mouse. Whereas the chemistry-based development and analysis in Stage 1 is increasingly sophisticated, the investigations in Stage 2 are not what could be regarded as 'state-of-the-art' for the cell biology field and the quality of research into NP interactions with cells is often sub-standard. In this review we describe our current understanding of the mechanisms by which particles gain entry into mammalian cells via endocytosis. We summarize the most important areas for concern, highlight some of the most common mis-conceptions, and identify areas where NP scientists could engage with trained cell biologists. Our survey of the different mechanisms of uptake into cells makes us suspect that claims for roles for caveolae, as well as macropinocytosis, in NP uptake into cells have been exaggerated, whereas phagocytosis has been under-appreciated.
Collapse
Affiliation(s)
- Gareth Griffiths
- Department Biosciences, University of Oslo, Blindernveien 31, PO Box 1041, 0316 Oslo, Norway.
| | - Jean Gruenberg
- Department of Biochemistry, University of Geneva, 30 quai E. Ansermet, 1211-Geneva-4, Switzerland
| | - Mark Marsh
- Laboratory for Molecular Cell Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Jens Wohlmann
- Department Biosciences, University of Oslo, Blindernveien 31, PO Box 1041, 0316 Oslo, Norway
| | - Arwyn T Jones
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Redwood Building, Cardiff, Wales CF103NB, UK
| | - Robert G Parton
- Institute for Molecular Bioscience and Centre for Microscopy and Microanalysis, The University of Queensland, Qld 4072, Australia
| |
Collapse
|
37
|
Vu TQ, Peruzzi JA, Sant'Anna LE, Roth EW, Kamat NP. Lipid Phase Separation in Vesicles Enhances TRAIL-Mediated Cytotoxicity. NANO LETTERS 2022; 22:2627-2634. [PMID: 35298184 PMCID: PMC9680886 DOI: 10.1021/acs.nanolett.1c04365] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Ligand spatial presentation and density play important roles in signaling pathways mediated by cell receptors and are critical parameters when designing protein-conjugated therapeutic nanoparticles. Here, we harness lipid phase separation to spatially control the protein presentation on lipid vesicles. We use this system to improve the cytotoxicity of TNF-related apoptosis inducing ligand (TRAIL), a therapeutic anticancer protein. Vesicles with phase-separated TRAIL presentation induce more cell death in Jurkat cancer cells than vesicles with uniformly presented TRAIL, and cytotoxicity is dependent on TRAIL density. We assess this relationship in other cancer cell lines and demonstrate that phase-separated vesicles with TRAIL only enhance cytotoxicity through one TRAIL receptor, DR5, while another TRAIL receptor, DR4, is less sensitive to TRAIL density. This work demonstrates a rapid and accessible method to control protein conjugation and density on vesicles that can be adopted to other nanoparticle systems to improve receptor signaling by nanoparticles.
Collapse
Affiliation(s)
- Timothy Q Vu
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Justin A Peruzzi
- Department of Chemical and Biological Engineering, McCormick School of Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Lucas E Sant'Anna
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Eric W Roth
- Northwestern University Atomic and Nanoscale Characterization and Experimentation Center, Northwestern University, Evanston, Illinois 60208, United States
| | - Neha P Kamat
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, McCormick School of Engineering, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
38
|
Tseng CY, Wang WX, Douglas TR, Chou LYT. Engineering DNA Nanostructures to Manipulate Immune Receptor Signaling and Immune Cell Fates. Adv Healthc Mater 2022; 11:e2101844. [PMID: 34716686 DOI: 10.1002/adhm.202101844] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/14/2021] [Indexed: 12/19/2022]
Abstract
Immune cells sense, communicate, and logically integrate a multitude of environmental signals to make important cell-fate decisions and fulfill their effector functions. These processes are initiated and regulated by a diverse array of immune receptors and via their dynamic spatiotemporal organization upon ligand binding. Given the widespread relevance of the immune system to health and disease, there have been significant efforts toward understanding the biophysical principles governing immune receptor signaling and activation, as well as the development of biomaterials which exploit these principles for therapeutic immune engineering. Here, how advances in the field of DNA nanotechnology constitute a growing toolbox for further pursuit of these endeavors is discussed. Key cellular players involved in the induction of immunity against pathogens or diseased cells are first summarized. How the ability to design DNA nanostructures with custom shapes, dynamics, and with site-specific incorporation of diverse guests can be leveraged to manipulate the signaling pathways that regulate these processes is then presented. It is followed by highlighting emerging applications of DNA nanotechnology at the crossroads of immune engineering, such as in vitro reconstitution platforms, vaccines, and adjuvant delivery systems. Finally, outstanding questions that remain for further advancing immune-modulatory DNA nanodevices are outlined.
Collapse
Affiliation(s)
- Chung Yi Tseng
- Institute of Biomedical Engineering University of Toronto Toronto Ontario M5S 3G9 Canada
| | - Wendy Xueyi Wang
- Institute of Biomedical Engineering University of Toronto Toronto Ontario M5S 3G9 Canada
| | - Travis Robert Douglas
- Institute of Biomedical Engineering University of Toronto Toronto Ontario M5S 3G9 Canada
| | - Leo Y. T. Chou
- Institute of Biomedical Engineering University of Toronto Toronto Ontario M5S 3G9 Canada
| |
Collapse
|