1
|
Chen Q, Gao Y, Li F, Yuan L. The role of gut-islet axis in pancreatic islet function and glucose homeostasis. Diabetes Obes Metab 2025; 27:1676-1692. [PMID: 39916498 PMCID: PMC11885102 DOI: 10.1111/dom.16225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 01/20/2025] [Accepted: 01/21/2025] [Indexed: 03/08/2025]
Abstract
The gastrointestinal tract plays a vital role in the occurrence and treatment of metabolic diseases. Recent studies have convincingly demonstrated a bidirectional axis of communication between the gut and islets, enabling the gut to influence glucose metabolism and energy homeostasis in animals strongly. The 'gut-islet axis' is an essential endocrine signal axis that regulates islet function through the dialogue between intestinal microecology and endocrine metabolism. The discovery of glucagon-like peptide-1 (GLP-1), gastric inhibitory peptide (GIP) and other gut hormones has initially set up a bridge between gut and islet cells. However, the influence of other factors remains largely unknown, such as the homeostasis of the gut microbiota and the integrity of the gut barrier. Although gut microbiota primarily resides and affect intestinal function, they also affect extra-intestinal organs by absorbing and transferring metabolites derived from microorganisms. As a result of this transfer, islets may be continuously exposed to gut-derived metabolites and components. Changes in the composition of gut microbiota can damage the intestinal barrier function to varying degrees, resulting in increased intestinal permeability to bacteria and their derivatives. All these changes contribute to the severe disturbance of critical metabolic pathways in peripheral tissues and organs. In this review, we have outlined the different gut-islet axis signalling mechanisms associated with metabolism and summarized the latest progress in the complex signalling molecules of the gut and gut microbiota. In addition, we will discuss the impact of the gut renin-angiotensin system (RAS) on the various components of the gut-islet axis that regulate energy and glucose homeostasis. This work also indicates that therapeutic approaches aiming to restore gut microbial homeostasis, such as probiotics and faecal microbiota transplantation (FMT), have shown great potential in improving treatment outcomes, enhancing patient prognosis and slowing down disease progression. Future research should further uncover the molecular links between the gut-islet axis and the gut microbiota and explore individualized microbial treatment strategies, which will provide an innovative perspective and approach for the diagnosis and treatment of metabolic diseases.
Collapse
Affiliation(s)
- Qi Chen
- Department of Endocrinology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yuanyuan Gao
- Department of Endocrinology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Fangyu Li
- Department of Endocrinology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Li Yuan
- Department of Endocrinology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
2
|
Touhara KK, Rossen ND, Deng F, Castro J, Harrington AM, Chu T, Garcia-Caraballo S, Brizuela M, O'Donnell T, Xu J, Cil O, Brierley SM, Li Y, Julius D. Topological segregation of stress sensors along the gut crypt-villus axis. Nature 2025; 640:732-742. [PMID: 39939779 DOI: 10.1038/s41586-024-08581-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 12/27/2024] [Indexed: 02/14/2025]
Abstract
The crypt-villus structure of the small intestine serves as an essential protective barrier. The integrity of this barrier is monitored by the complex sensory system of the gut, in which serotonergic enterochromaffin (EC) cells play an important part1,2. These rare sensory epithelial cells surveil the mucosal environment for luminal stimuli and transmit signals both within and outside the gut3-6. However, whether EC cells in crypts and villi detect different stimuli or produce distinct physiological responses is unknown. Here we address these questions by developing a reporter mouse model to quantitatively measure the release and propagation of serotonin from EC cells in live intestines. Crypt EC cells exhibit a tonic low-level mode that activates epithelial serotonin 5-HT4 receptors to modulate basal ion secretion and a stimulus-induced high-level mode that activates 5-HT3 receptors on sensory nerve fibres. Both these modes can be initiated by the irritant receptor TRPA1, which is confined to crypt EC cells. The activation of TRPA1 by luminal irritants is enhanced when the protective mucus layer is compromised. Villus EC cells also signal damage through a distinct mechanism, whereby oxidative stress activates TRPM2 channels, which leads to the release of both serotonin and ATP and consequent excitation of sensory nerve fibres. This topological segregation of EC cell functionality along the mucosal architecture constitutes a mechanism for the surveillance, maintenance and protection of gut integrity under diverse physiological conditions.
Collapse
Affiliation(s)
- Kouki K Touhara
- Department of Physiology, University of California San Franscisco, San Francisco, CA, USA.
| | - Nathan D Rossen
- Department of Physiology, University of California San Franscisco, San Francisco, CA, USA
- Tetrad Graduate Program, University of California San Francisco, San Francisco, CA, USA
| | - Fei Deng
- State Key Laboratory of Membrane Biology, New Cornerstone Science Laboratory, School of Life Sciences, Peking University, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China
| | - Joel Castro
- Visceral Pain Research Group, Hopwood Centre for Neurobiology, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
- Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Andrea M Harrington
- Visceral Pain Research Group, Hopwood Centre for Neurobiology, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
- Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Tifany Chu
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
| | - Sonia Garcia-Caraballo
- Visceral Pain Research Group, Hopwood Centre for Neurobiology, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
- Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Mariana Brizuela
- Visceral Pain Research Group, Hopwood Centre for Neurobiology, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
- Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Tracey O'Donnell
- Visceral Pain Research Group, Hopwood Centre for Neurobiology, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
| | - Jinhao Xu
- Department of Physiology, University of California San Franscisco, San Francisco, CA, USA
| | - Onur Cil
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
| | - Stuart M Brierley
- Visceral Pain Research Group, Hopwood Centre for Neurobiology, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia.
- Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia.
| | - Yulong Li
- State Key Laboratory of Membrane Biology, New Cornerstone Science Laboratory, School of Life Sciences, Peking University, Beijing, China.
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China.
| | - David Julius
- Department of Physiology, University of California San Franscisco, San Francisco, CA, USA.
| |
Collapse
|
3
|
James-Okoro PP, Lewis JE, Gribble FM, Reimann F. The role of GIPR in food intake control. Front Endocrinol (Lausanne) 2025; 16:1532076. [PMID: 40166681 PMCID: PMC11955450 DOI: 10.3389/fendo.2025.1532076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 02/25/2025] [Indexed: 04/02/2025] Open
Abstract
Glucose-dependent insulinotropic polypeptide (GIP) is one of two incretin hormones playing key roles in the control of food intake, nutrient assimilation, insulin secretion and whole-body metabolism. Recent pharmacological advances and clinical trials show that unimolecular co-agonists that target the receptors for the incretins - GIP and glucagon-like peptide 1 (GLP-1) - offer more effective treatment strategies for obesity and type 2 diabetes mellitus (T2D) compared with GLP-1 receptor (GLP1R) agonists alone, suggesting previously underappreciated roles of GIP in regulating food intake and body weight. The mechanisms by which GIP regulates energy balance remain controversial as both agonism and antagonism of the GIP receptor (GIPR) produce weight loss and improve metabolic outcomes in preclinical models. Recent studies have shown that GIPR signalling in the central nervous system (CNS), especially in regions of the brain that regulate energy balance, is essential for its action on appetite regulation. This finding has sparked interest in understanding the mechanisms by which GIP engages brain circuits to reduce food intake and body weight. In this review, we present key knowledge around the actions of GIP on food intake regulation and the potential mechanisms by which GIPR and GIPR/GLP1R agonists may regulate energy balance.
Collapse
Affiliation(s)
| | | | - Fiona Mary Gribble
- Institute of Metabolic-Science-Metabolic Research Laboratories and MRC-Metabolic Diseases Unit, University of Cambridge, Cambridge, United Kingdom
| | - Frank Reimann
- Institute of Metabolic-Science-Metabolic Research Laboratories and MRC-Metabolic Diseases Unit, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
4
|
Romaní‐Pérez M, Líebana‐García R, Flor‐Duro A, Bonillo‐Jiménez D, Bullich‐Vilarrubias C, Olivares M, Sanz Y. Obesity and the gut microbiota: implications of neuroendocrine and immune signaling. FEBS J 2025; 292:1397-1420. [PMID: 39159270 PMCID: PMC11927058 DOI: 10.1111/febs.17249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 06/29/2024] [Accepted: 08/06/2024] [Indexed: 08/21/2024]
Abstract
Obesity is a major health challenge due to its high prevalence and associated comorbidities. The excessive intake of a diet rich in fat and sugars leads to a persistent imbalance between energy intake and energy expenditure, which increases adiposity. Here, we provide an update on relevant diet-microbe-host interactions contributing to or protecting from obesity. In particular, we focus on how unhealthy diets shape the gut microbiota and thus impact crucial intestinal neuroendocrine and immune system functions. We describe how these interactions promote dysfunction in gut-to-brain neuroendocrine pathways involved in food intake control and postprandial metabolism and elevate the intestinal proinflammatory tone, promoting obesity and metabolic complications. In addition, we provide examples of how this knowledge may inspire microbiome-based interventions, such as fecal microbiota transplants, probiotics, and biotherapeutics, to effectively combat obesity-related disorders. We also discuss the current limitations and gaps in knowledge of gut microbiota research in obesity.
Collapse
Affiliation(s)
- Marina Romaní‐Pérez
- Institute of Agrochemistry and Food TechnologySpanish National Research Council (IATA‐CSIC)ValenciaSpain
| | - Rebeca Líebana‐García
- Institute of Agrochemistry and Food TechnologySpanish National Research Council (IATA‐CSIC)ValenciaSpain
| | - Alejandra Flor‐Duro
- Institute of Agrochemistry and Food TechnologySpanish National Research Council (IATA‐CSIC)ValenciaSpain
| | - Daniel Bonillo‐Jiménez
- Institute of Agrochemistry and Food TechnologySpanish National Research Council (IATA‐CSIC)ValenciaSpain
| | - Clara Bullich‐Vilarrubias
- Institute of Agrochemistry and Food TechnologySpanish National Research Council (IATA‐CSIC)ValenciaSpain
| | - Marta Olivares
- Institute of Agrochemistry and Food TechnologySpanish National Research Council (IATA‐CSIC)ValenciaSpain
| | - Yolanda Sanz
- Institute of Agrochemistry and Food TechnologySpanish National Research Council (IATA‐CSIC)ValenciaSpain
| |
Collapse
|
5
|
Chao J, Coleman RA, Keating DJ, Martin AM. Gut Microbiome Regulation of Gut Hormone Secretion. Endocrinology 2025; 166:bqaf004. [PMID: 40037297 PMCID: PMC11879239 DOI: 10.1210/endocr/bqaf004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Indexed: 03/06/2025]
Abstract
The gut microbiome, comprising bacteria, viruses, fungi, and bacteriophages, is one of the largest microbial ecosystems in the human body and plays a crucial role in various physiological processes. This review explores the interaction between the gut microbiome and enteroendocrine cells (EECs), specialized hormone-secreting cells within the intestinal epithelium. EECs, which constitute less than 1% of intestinal epithelial cells, are key regulators of gut-brain communication, energy metabolism, gut motility, and satiety. Recent evidence shows that gut microbiota directly influence EEC function, maturation, and hormone secretion. For instance, commensal bacteria regulate the production of hormones like glucagon-like peptide 1 and peptide YY by modulating gene expression and vesicle cycling in EE cells. Additionally, metabolites such as short-chain fatty acids, derived from microbial fermentation, play a central role in regulating EEC signaling pathways that affect metabolism, gut motility, and immune responses. Furthermore, the interplay between gut microbiota, EECs, and metabolic diseases, such as obesity and diabetes, is examined, emphasizing the microbiome's dual role in promoting health and contributing to disease states. This intricate relationship between the gut microbiome and EECs offers new insights into potential therapeutic strategies for metabolic and gut disorders.
Collapse
Affiliation(s)
- Jessica Chao
- Gut Hormones in Health and Disease Lab, Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide 5042, Australia
| | - Rosemary A Coleman
- Gut Hormones in Health and Disease Lab, Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide 5042, Australia
| | - Damien J Keating
- Gut Sensory Systems Group, Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide 5042, Australia
| | - Alyce M Martin
- Gut Hormones in Health and Disease Lab, Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide 5042, Australia
| |
Collapse
|
6
|
Zhang C. Neural pathways of nausea and roles in energy balance. Curr Opin Neurobiol 2025; 90:102963. [PMID: 39765206 PMCID: PMC11839311 DOI: 10.1016/j.conb.2024.102963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/04/2024] [Accepted: 12/06/2024] [Indexed: 01/18/2025]
Abstract
Our internal sensory systems encode various gut-related sensations, such as hunger, feelings of fullness, and nausea. These internal feelings influence our eating behaviors and play a vital role in regulating energy balance. Among them, the neurological basis for nausea has been the least well characterized, which has hindered comprehension of the connection between these sensations. Single-cell sequencing, along with functional mapping, has brought clarity to the neural pathways of nausea involving the brainstem area postrema. In addition, the newly discovered nausea sensory signals have deepened our understanding of the area postrema in regulating feeding behaviors. Nausea has significant clinical implications, especially in developing drugs for weight loss and metabolism. This review summarizes recent research on the neural pathways of nausea, particularly highlighting their contribution to energy balance.
Collapse
Affiliation(s)
- Chuchu Zhang
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
| |
Collapse
|
7
|
Ohara TE, Hsiao EY. Microbiota-neuroepithelial signalling across the gut-brain axis. Nat Rev Microbiol 2025:10.1038/s41579-024-01136-9. [PMID: 39743581 DOI: 10.1038/s41579-024-01136-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2024] [Indexed: 01/04/2025]
Abstract
Research over the past two decades has established a remarkable ability of the gut microbiota to modulate brain activity and behaviour. Conversely, signals from the brain can influence the composition and function of the gut microbiota. This bidirectional communication across the gut microbiota-brain axis, involving multiple biochemical and cellular mediators, is recognized as a major brain-body network that integrates cues from the environment and the body's internal state. Central to this network is the gut sensory system, formed by intimate connections between chemosensory epithelial cells and sensory nerve fibres, that conveys interoceptive signals to the central nervous system. In this Review, we provide a broad overview of the pathways that connect the gut and the brain, and explore the complex dialogue between microorganisms and neurons at this emerging intestinal neuroepithelial interface. We highlight relevant microbial factors, endocrine cells and neural mechanisms that govern gut microbiota-brain interactions and their implications for gastrointestinal and neuropsychiatric health.
Collapse
Affiliation(s)
- Takahiro E Ohara
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, USA.
| | - Elaine Y Hsiao
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, USA.
- UCLA Goodman-Luskin Microbiome Center, Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, UCLA David Geffen School of Medicine, Los Angeles, CA, USA.
| |
Collapse
|
8
|
White AC, Krout IN, Mouhi S, Chang J, Kelly SD, Caudle WM, Sampson TR. The pyrethroid insecticide deltamethrin disrupts neuropeptide and monoamine signaling pathways in the gastrointestinal tract. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.14.628386. [PMID: 39763966 PMCID: PMC11702531 DOI: 10.1101/2024.12.14.628386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Enteroendocrine cells (EECs) are a rare cell type of the intestinal epithelium. Various subtypes of EECs produce distinct repertoires of monoamines and neuropeptides which modulate intestinal motility and other physiologies. EECs also possess neuron-like properties, suggesting a potential vulnerability to ingested environmental neurotoxicants. One such group of toxicants are pyrethroids, a class of prevalent insecticides used residentially and agriculturally. Pyrethroids agonize voltage-gated sodium channels (VGSCs), inducing neuronal excitotoxicity, and affect the function of monoamine-producing neurons. Given their anatomical location at the interface with the environment and their expression of VGSCs, EECs likely represent a vulnerable cell-type to oral pyrethroid exposure. In this study, we used the EEC cell line, STC-1 cells, to evaluate the effects of the common pyrethroid deltamethrin on the functional status of EECs. We find that deltamethrin impacts both expression of serotonergic pathways and inhibits the adrenergic-evoked release of an EEC hormone, GLP-1, in vitro. In a mouse model of oral exposure, we found that deltamethrin induced an acute, yet transient, loss of intestinal motility, in both fed and fasted conditions. This constipation phenotype was accompanied by a significant decrease in peripheral serotonin production and an inhibition of nutrient-evoked intestinal hormone release. Together, these data demonstrate that deltamethrin alters monoaminergic signaling pathways in EECs and regulates intestinal motility. This work demonstrates a mechanistic link between pyrethroid exposure and intestinal impacts relevant to pyrethroid-associated diseases, including inflammatory bowel disease, neurodegenerative disease, and metabolic disorders.
Collapse
Affiliation(s)
- Alexandria C. White
- Dept of Cell Biology; Emory University School of Medicine; Atlanta GA USA 30322
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network; Chevy Chase MD 20815
| | - Ian N. Krout
- Dept of Cell Biology; Emory University School of Medicine; Atlanta GA USA 30322
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network; Chevy Chase MD 20815
| | - Sabra Mouhi
- Dept of Cell Biology; Emory University School of Medicine; Atlanta GA USA 30322
| | - Jianjun Chang
- Dept of Cell Biology; Emory University School of Medicine; Atlanta GA USA 30322
| | - Sean D. Kelly
- Dept of Cell Biology; Emory University School of Medicine; Atlanta GA USA 30322
| | - W. Michael Caudle
- Gangarosa Dept of Environmental Health, Rollins School of Public Health; Emory University; Atlanta GA 30322
| | - Timothy R. Sampson
- Dept of Cell Biology; Emory University School of Medicine; Atlanta GA USA 30322
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network; Chevy Chase MD 20815
| |
Collapse
|
9
|
Smith CA, Lu VB, Bakar RB, Miedzybrodzka E, Davison A, Goldspink D, Reimann F, Gribble FM. Single-cell transcriptomics of human organoid-derived enteroendocrine cell populations from the small intestine. J Physiol 2024:10.1113/JP287463. [PMID: 39639676 PMCID: PMC7617304 DOI: 10.1113/jp287463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/12/2024] [Indexed: 12/07/2024] Open
Abstract
Gut hormones control intestinal function, metabolism and appetite, and have been harnessed therapeutically to treat type 2 diabetes and obesity. Our understanding of the enteroendocrine axis arises largely from animal studies, but intestinal organoid models make it possible to identify, genetically modify and purify human enteroendocrine cells (EECs). This study aimed to map human EECs using single-cell RNA sequencing. Organoids derived from human duodenum and ileum were genetically modified using CRISPR-Cas9 to express the fluorescent protein Venus driven by the chromogranin-A promoter. Fluorescent cells from CHGA-Venus organoids were purified by flow cytometry and analysed by 10X single-cell RNA sequencing. Cluster analysis separated EEC populations, allowing an examination of differentially expressed hormones, nutrient-sensing machinery, transcription factors and exocytotic machinery. Bile acid receptor GPBAR1 was most highly expressed in L-cells (producing glucagon-like peptide 1 and peptide YY), long-chain fatty acid receptor FFAR1 was highest in I-cells (cholecystokinin), K-cells (glucose-dependent insulinotropic polypeptide) and L-cells, short-chain fatty acid receptor FFAR2 was highest in ileal L-cells and enterochromaffin cells, olfactory receptor OR51E1 was notably expressed in ileal enterochromaffin cells, and the glucose-sensing sodium glucose cotransporter SLC5A1 was highly and differentially expressed in K- and L-cells, reflecting their known responsiveness to ingested glucose. The organoid EEC atlas was merged with published data from human intestine and organoids, with good overlap between enteroendocrine datasets. Understanding the similarities and differences between human EEC types will facilitate the development of drugs targeting the enteroendocrine axis for the treatment of conditions such as diabetes, obesity and intestinal disorders. KEY POINTS: Gut hormones regulate intestinal function, nutrient homeostasis and metabolism and form the basis of the new classes of drugs for obesity and diabetes. As enteroendocrine cells (EECs) comprise only ∼1% of the intestinal epithelium, they are under-represented in current single-cell atlases. To identify, compare and characterise human EECs we generated chromogranin-A labelled organoids from duodenal and ileal biopsies by CRISPR-Cas9. Fluorescent chromogranin-A positive EECs were purified and analysed by single-cell RNA sequencing, revealing predominant cell clusters producing different gut hormones. Cell clusters exhibited differential expression of nutrient-sensing machinery including bile acid receptors, long- and short-chain fatty acid receptors and glucose transporters. Organoid-derived EECs mapped well onto data from native intestinal cell populations, extending coverage of EECs.
Collapse
Affiliation(s)
- Christopher A Smith
- Institute of Metabolic Science and MRC Metabolic Diseases Unit, University of Cambridge, Addenbrooke’s Hospital, Cambridge, CB2 0QQ, UK
| | - Van B Lu
- Institute of Metabolic Science and MRC Metabolic Diseases Unit, University of Cambridge, Addenbrooke’s Hospital, Cambridge, CB2 0QQ, UK
| | - Rula Bany Bakar
- Institute of Metabolic Science and MRC Metabolic Diseases Unit, University of Cambridge, Addenbrooke’s Hospital, Cambridge, CB2 0QQ, UK
| | - Emily Miedzybrodzka
- Institute of Metabolic Science and MRC Metabolic Diseases Unit, University of Cambridge, Addenbrooke’s Hospital, Cambridge, CB2 0QQ, UK
| | - Adam Davison
- Institute of Metabolic Science and MRC Metabolic Diseases Unit, University of Cambridge, Addenbrooke’s Hospital, Cambridge, CB2 0QQ, UK
| | - Deborah Goldspink
- Institute of Metabolic Science and MRC Metabolic Diseases Unit, University of Cambridge, Addenbrooke’s Hospital, Cambridge, CB2 0QQ, UK
| | - Frank Reimann
- Institute of Metabolic Science and MRC Metabolic Diseases Unit, University of Cambridge, Addenbrooke’s Hospital, Cambridge, CB2 0QQ, UK
| | - Fiona M Gribble
- Institute of Metabolic Science and MRC Metabolic Diseases Unit, University of Cambridge, Addenbrooke’s Hospital, Cambridge, CB2 0QQ, UK
| |
Collapse
|
10
|
Alcaino C, Reimann F, Gribble FM. Incretin hormones and obesity. J Physiol 2024:10.1113/JP286293. [PMID: 39576749 PMCID: PMC7617301 DOI: 10.1113/jp286293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 10/31/2024] [Indexed: 11/24/2024] Open
Abstract
The incretin hormones glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) play critical roles in co-ordinating postprandial metabolism, including modulation of insulin secretion and food intake. They are secreted from enteroendocrine cells in the intestinal epithelium following food ingestion, and act at multiple target sites including pancreatic islets and the brain. With the recent development of agonists targeting GLP-1 and GIP receptors for the treatment of type 2 diabetes and obesity, and the ongoing development of new incretin-based drugs with improved efficacy, there is great interest in understanding the physiology and pharmacology of these hormones.
Collapse
Affiliation(s)
- Constanza Alcaino
- Institute of Metabolic Science Metabolic Research Laboratories, University of Cambridge, Addenbrooke’s Hospital, CambridgeCB2 0QQ, UK
| | - Frank Reimann
- Institute of Metabolic Science Metabolic Research Laboratories, University of Cambridge, Addenbrooke’s Hospital, CambridgeCB2 0QQ, UK
| | - Fiona M Gribble
- Institute of Metabolic Science Metabolic Research Laboratories, University of Cambridge, Addenbrooke’s Hospital, CambridgeCB2 0QQ, UK
| |
Collapse
|
11
|
Nwako JG, McCauley HA. Enteroendocrine cells regulate intestinal homeostasis and epithelial function. Mol Cell Endocrinol 2024; 593:112339. [PMID: 39111616 PMCID: PMC11401774 DOI: 10.1016/j.mce.2024.112339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/23/2024] [Accepted: 08/04/2024] [Indexed: 08/11/2024]
Abstract
Enteroendocrine cells (EECs) are well-known for their systemic hormonal effects, especially in the regulation of appetite and glycemia. Much less is known about how the products made by EECs regulate their local environment within the intestine. Here, we focus on paracrine interactions between EECs and other intestinal cells as they regulate three essential aspects of intestinal homeostasis and physiology: 1) intestinal stem cell function and proliferation; 2) nutrient absorption; and 3) mucosal barrier function. We also discuss the ability of EECs to express multiple hormones, describe in vitro and in vivo models to study EECs, and consider how EECs are altered in GI disease.
Collapse
Affiliation(s)
- Jennifer G Nwako
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill School of Medicine, 111 Mason Farm Road, Molecular Biology Research Building 5341C, Chapel Hill, NC 27599, USA
| | - Heather A McCauley
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill School of Medicine, 111 Mason Farm Road, Molecular Biology Research Building 5341C, Chapel Hill, NC 27599, USA.
| |
Collapse
|
12
|
Oteng AB, Liu L, Cui Y, Gavrilova O, Lu H, Chen M, Weinstein LS, Campbell JE, Lewis JE, Gribble FM, Reimann F, Wess J. Activation of Gs signaling in mouse enteroendocrine K cells greatly improves obesity- and diabetes-related metabolic deficits. J Clin Invest 2024; 134:e182325. [PMID: 39436694 DOI: 10.1172/jci182325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024] Open
Abstract
Following a meal, glucagon-like peptide 1 (GLP1) and glucose-dependent insulinotropic polypeptide (GIP), the 2 major incretins promoting insulin release, are secreted from specialized enteroendocrine cells (L and K cells, respectively). Although GIP is the dominant incretin in humans, the detailed molecular mechanisms governing its release remain to be explored. GIP secretion is regulated by the activity of G protein-coupled receptors (GPCRs) expressed by K cells. GPCRs couple to 1 or more specific classes of heterotrimeric G proteins. In the present study, we focused on the potential metabolic roles of K cell Gs. First, we generated a mouse model that allowed us to selectively stimulate K cell Gs signaling. Second, we generated a mouse strain harboring an inactivating mutation of Gnas, the gene encoding the α-subunit of Gs, selectively in K cells. Metabolic phenotyping studies showed that acute or chronic stimulation of K cell Gs signaling greatly improved impaired glucose homeostasis in obese mice and in a mouse model of type 2 diabetes, due to enhanced GIP secretion. In contrast, K cell-specific Gnas-KO mice displayed markedly reduced plasma GIP levels. These data strongly suggest that strategies aimed at enhancing K cell Gs signaling may prove useful for the treatment of diabetes and related metabolic diseases.
Collapse
Affiliation(s)
- Antwi-Boasiako Oteng
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, Maryland, USA
- Center for Research on Genomics and Global Health (CRGGH), National Human Genome Research Institute (NHGRI), NIH, Bethesda, Maryland, USA
| | - Liu Liu
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, Maryland, USA
| | - Yinghong Cui
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, Maryland, USA
| | | | - Huiyan Lu
- Mouse Transgenic Core Facility, NIDDK, NIH, Bethesda, Maryland, USA
| | - Min Chen
- Signal Transduction Section, Metabolic Diseases Branch, NIDDK, NIH, Bethesda, Maryland, USA
| | - Lee S Weinstein
- Signal Transduction Section, Metabolic Diseases Branch, NIDDK, NIH, Bethesda, Maryland, USA
| | - Jonathan E Campbell
- Duke Molecular Physiology Institute, Duke University, Durham, North Carolina, USA
| | - Jo E Lewis
- MRC Metabolic Diseases Unit, Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Fiona M Gribble
- MRC Metabolic Diseases Unit, Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Frank Reimann
- MRC Metabolic Diseases Unit, Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Jürgen Wess
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, Maryland, USA
| |
Collapse
|
13
|
Cao N, Merchant W, Gautron L. Limited evidence for anatomical contacts between intestinal GLP-1 cells and vagal neurons in male mice. Sci Rep 2024; 14:23666. [PMID: 39390033 PMCID: PMC11467209 DOI: 10.1038/s41598-024-74000-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 09/23/2024] [Indexed: 10/12/2024] Open
Abstract
The communication between intestinal Glucagon like peptide 1 (GLP-1)-producing cells and the peripheral nervous system has garnered renewed interest considering the availability of anti-obesity and anti-diabetic approaches targeting GLP-1 signaling. While it is well-established that intestinal GLP-1 cells can exert influence through paracrine mechanisms, recent evidence suggests the possible existence of synaptic-like connections between GLP-1 cells and peripheral neurons, including those of the vagus nerve. In this study, using a reporter Phox2b-Cre-Tomato mouse model and super-resolution confocal microscopy, we demonstrated that vagal axons made apparent contacts with less than 0.5% of GLP-1 cells. Moreover, immunohistochemistry combined with super-resolution confocal microscopy revealed abundant post-synaptic density 95 (PSD-95) immunoreactivity within the enteric plexus of the lower intestines of C57/BL6 mice, with virtually none in its mucosa. Lastly, utilizing RNAScope in situ hybridization in the lower intestines of mice, we observed that GLP-1 cells expressed generic markers of secretory cells such as Snap25 and Nefm, but neither synaptic markers such as Syn1 and Nrxn2, nor glutamatergic markers such as Slc17a7. Through theoretical considerations and a critical review of the literature, we concluded that intestinal GLP-1 cells primarily communicate with vagal neurons through paracrine mechanisms, rather than synaptic-like contacts.
Collapse
Affiliation(s)
- Newton Cao
- Department of Internal Medicine, Center for Hypothalamic Research, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Warda Merchant
- Department of Internal Medicine, Center for Hypothalamic Research, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Laurent Gautron
- Department of Internal Medicine, Center for Hypothalamic Research, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
14
|
Smith CA, O’Flaherty EAA, Guccio N, Punnoose A, Darwish T, Lewis JE, Foreman RE, Li J, Kay RG, Adriaenssens AE, Reimann F, Gribble FM. Single-cell transcriptomic atlas of enteroendocrine cells along the murine gastrointestinal tract. PLoS One 2024; 19:e0308942. [PMID: 39378212 PMCID: PMC11460673 DOI: 10.1371/journal.pone.0308942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 08/02/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND Enteroendocrine cells (EECs) produce over 20 gut hormones which contribute to intestinal physiology, nutrient metabolism and the regulation of food intake. The objective of this study was to generate a comprehensive transcriptomic map of mouse EECs from the stomach to the rectum. METHODS EECs were purified by flow-cytometry from the stomach, upper small intestine, lower small intestine, caecum and large intestine of NeuroD1-Cre mice, and analysed by single cell RNA sequencing. Regional datasets were analysed bioinformatically and combined into a large cluster map. Findings were validated by L-cell calcium imaging and measurements of CCK secretion in vitro. RESULTS 20,006 EECs across the full gastrointestinal tract could be subdivided based on their full transcriptome into 10 major clusters, each exhibiting a different pattern of gut hormone expression. EECs from the stomach were largely distinct from those found more distally, even when expressing the same hormone. Cell clustering was also observed when performed only using genes related to GPCR cell signalling, revealing GPCRs predominating in different EEC populations. Mc4r was expressed in 55% of Cck-expressing cells in the upper small intestine, where MC4R agonism was found to stimulate CCK release in primary cultures. Many individual EECs expressed more than one hormone as well as machinery for activation by multiple nutrients, which was supported by the finding that the majority of L-cells exhibited calcium responses to multiple stimuli. CONCLUSIONS This comprehensive transcriptomic map of mouse EECs reveals patterns of GPCR and hormone co-expression that should be helpful in predicting the effects of nutritional and pharmacological stimuli on EECs from different regions of the gut. The finding that MC4R agonism stimulates CCK secretion adds to our understanding of the melanocortin system.
Collapse
Affiliation(s)
- Christopher A. Smith
- Institute of Metabolic Science, Metabolic Research Laboratories, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Elisabeth A. A. O’Flaherty
- Institute of Metabolic Science, Metabolic Research Laboratories, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Nunzio Guccio
- Institute of Metabolic Science, Metabolic Research Laboratories, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Austin Punnoose
- Institute of Metabolic Science, Metabolic Research Laboratories, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Tamana Darwish
- Institute of Metabolic Science, Metabolic Research Laboratories, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Jo E. Lewis
- Institute of Metabolic Science, Metabolic Research Laboratories, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Rachel E. Foreman
- Institute of Metabolic Science, Metabolic Research Laboratories, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Joyce Li
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Richard G. Kay
- Institute of Metabolic Science, Metabolic Research Laboratories, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Alice E. Adriaenssens
- Institute of Metabolic Science, Metabolic Research Laboratories, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Frank Reimann
- Institute of Metabolic Science, Metabolic Research Laboratories, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Fiona M. Gribble
- Institute of Metabolic Science, Metabolic Research Laboratories, Addenbrooke’s Hospital, Cambridge, United Kingdom
| |
Collapse
|
15
|
Morys J, Małecki A, Nowacka-Chmielewska M. Stress and the gut-brain axis: an inflammatory perspective. Front Mol Neurosci 2024; 17:1415567. [PMID: 39092201 PMCID: PMC11292226 DOI: 10.3389/fnmol.2024.1415567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 06/24/2024] [Indexed: 08/04/2024] Open
Abstract
The gut-brain axis (GBA) plays a dominant role in maintaining homeostasis as well as contributes to mental health maintenance. The pathways that underpin the axis expand from macroscopic interactions with the nervous system, to the molecular signals that include microbial metabolites, tight junction protein expression, or cytokines released during inflammation. The dysfunctional GBA has been repeatedly linked to the occurrence of anxiety- and depressive-like behaviors development. The importance of the inflammatory aspects of the altered GBA has recently been highlighted in the literature. Here we summarize current reports on GBA signaling which involves the immune response within the intestinal and blood-brain barrier (BBB). We also emphasize the effect of stress response on altering barriers' permeability, and the therapeutic potential of microbiota restoration by probiotic administration or microbiota transplantation, based on the latest animal studies. Most research performed on various stress models showed an association between anxiety- and depressive-like behaviors, dysbiosis of gut microbiota, and disruption of intestinal permeability with simultaneous changes in BBB integrity. It could be postulated that under stress conditions impaired communication across BBB may therefore represent a significant mechanism allowing the gut microbiota to affect brain functions.
Collapse
Affiliation(s)
| | | | - Marta Nowacka-Chmielewska
- Laboratory of Molecular Biology, Institute of Physiotherapy and Health Sciences, Academy of Physical Education, Katowice, Poland
| |
Collapse
|
16
|
Peng Z, Bao L, Iben J, Wang S, Shi B, Shi YB. Protein arginine methyltransferase 1 regulates mouse enteroendocrine cell development and homeostasis. Cell Biosci 2024; 14:70. [PMID: 38835047 DOI: 10.1186/s13578-024-01257-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 05/28/2024] [Indexed: 06/06/2024] Open
Abstract
BACKGROUND The adult intestinal epithelium is a complex, self-renewing tissue composed of specialized cell types with diverse functions. Intestinal stem cells (ISCs) located at the bottom of crypts, where they divide to either self-renew, or move to the transit amplifying zone to divide and differentiate into absorptive and secretory cells as they move along the crypt-villus axis. Enteroendocrine cells (EECs), one type of secretory cells, are the most abundant hormone-producing cells in mammals and involved in the control of energy homeostasis. However, regulation of EEC development and homeostasis is still unclear or controversial. We have previously shown that protein arginine methyltransferase (PRMT) 1, a histone methyltransferase and transcription co-activator, is important for adult intestinal epithelial homeostasis. RESULTS To investigate how PRMT1 affects adult intestinal epithelial homeostasis, we performed RNA-Seq on small intestinal crypts of tamoxifen-induced intestinal epithelium-specific PRMT1 knockout and PRMT1fl/fl adult mice. We found that PRMT1fl/fl and PRMT1-deficient small intestinal crypts exhibited markedly different mRNA profiles. Surprisingly, GO terms and KEGG pathway analyses showed that the topmost significantly enriched pathways among the genes upregulated in PRMT1 knockout crypts were associated with EECs. In particular, genes encoding enteroendocrine-specific hormones and transcription factors were upregulated in PRMT1-deficient small intestine. Moreover, a marked increase in the number of EECs was found in the PRMT1 knockout small intestine. Concomitantly, Neurogenin 3-positive enteroendocrine progenitor cells was also increased in the small intestinal crypts of the knockout mice, accompanied by the upregulation of the expression levels of downstream targets of Neurogenin 3, including Neuod1, Pax4, Insm1, in PRMT1-deficient crypts. CONCLUSIONS Our finding for the first time revealed that the epigenetic enzyme PRMT1 controls mouse enteroendocrine cell development, most likely via inhibition of Neurogenin 3-mediated commitment to EEC lineage. It further suggests a potential role of PRMT1 as a critical transcriptional cofactor in EECs specification and homeostasis to affect metabolism and metabolic diseases.
Collapse
Affiliation(s)
- Zhaoyi Peng
- Department of Endocrinology, The First Affiliated Hospital of Xi'an JiaoTong University, No. 277, West Yanta Road, Xi'an, 710061, Shaanxi, China
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Lingyu Bao
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - James Iben
- Molecular Genomics Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Shouhong Wang
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Bingyin Shi
- Department of Endocrinology, The First Affiliated Hospital of Xi'an JiaoTong University, No. 277, West Yanta Road, Xi'an, 710061, Shaanxi, China
| | - Yun-Bo Shi
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
17
|
Lewis JE, Nuzzaci D, James-Okoro PP, Montaner M, O'Flaherty E, Darwish T, Hayashi M, Liberles SD, Hornigold D, Naylor J, Baker D, Gribble FM, Reimann F. Stimulating intestinal GIP release reduces food intake and body weight in mice. Mol Metab 2024; 84:101945. [PMID: 38653401 PMCID: PMC11070708 DOI: 10.1016/j.molmet.2024.101945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/08/2024] [Accepted: 04/16/2024] [Indexed: 04/25/2024] Open
Abstract
OBJECTIVE Glucose dependent insulinotropic polypeptide (GIP) is well established as an incretin hormone, boosting glucose-dependent insulin secretion. However, whilst anorectic actions of its sister-incretin glucagon-like peptide-1 (GLP-1) are well established, a physiological role for GIP in appetite regulation is controversial, despite the superior weight loss seen in preclinical models and humans with GLP-1/GIP dual receptor agonists compared with GLP-1R agonism alone. METHODS We generated a mouse model in which GIP expressing K-cells can be activated through hM3Dq Designer Receptor Activated by Designer Drugs (DREADD, GIP-Dq) to explore physiological actions of intestinally-released GIP. RESULTS In lean mice, Dq-stimulation of GIP expressing cells increased plasma GIP to levels similar to those found postprandially. The increase in GIP was associated with improved glucose tolerance, as expected, but also triggered an unexpected robust inhibition of food intake. Validating that this represented a response to intestinally-released GIP, the suppression of food intake was prevented by injecting mice peripherally or centrally with antagonistic GIPR-antibodies, and was reproduced in an intersectional model utilising Gip-Cre/Villin-Flp to limit Dq transgene expression to K-cells in the intestinal epithelium. The effects of GIP cell activation were maintained in diet induced obese mice, in which chronic K-cell activation reduced food intake and attenuated body weight gain. CONCLUSIONS These studies establish a physiological gut-brain GIP-axis regulating food intake in mice, adding to the multi-faceted metabolic effects of GIP which need to be taken into account when developing GIPR-targeted therapies for obesity and diabetes.
Collapse
Affiliation(s)
- Jo E. Lewis
- Institute of Metabolic Science-Metabolic Research Laboratories & MRC-Metabolic Diseases Unit, University of Cambridge, Cambridge, UK
| | - Danae Nuzzaci
- Institute of Metabolic Science-Metabolic Research Laboratories & MRC-Metabolic Diseases Unit, University of Cambridge, Cambridge, UK
| | - Paula-Peace James-Okoro
- Institute of Metabolic Science-Metabolic Research Laboratories & MRC-Metabolic Diseases Unit, University of Cambridge, Cambridge, UK
| | - Mireia Montaner
- Institute of Metabolic Science-Metabolic Research Laboratories & MRC-Metabolic Diseases Unit, University of Cambridge, Cambridge, UK
| | - Elisabeth O'Flaherty
- Institute of Metabolic Science-Metabolic Research Laboratories & MRC-Metabolic Diseases Unit, University of Cambridge, Cambridge, UK
| | - Tamana Darwish
- Institute of Metabolic Science-Metabolic Research Laboratories & MRC-Metabolic Diseases Unit, University of Cambridge, Cambridge, UK
| | - Marito Hayashi
- Howard Hughes Medical Institute, Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Stephen D. Liberles
- Howard Hughes Medical Institute, Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - David Hornigold
- Cardiovascular, Renal and Metabolic Diseases, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Jacqueline Naylor
- Cardiovascular, Renal and Metabolic Diseases, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - David Baker
- Cardiovascular, Renal and Metabolic Diseases, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Fiona M. Gribble
- Institute of Metabolic Science-Metabolic Research Laboratories & MRC-Metabolic Diseases Unit, University of Cambridge, Cambridge, UK
| | - Frank Reimann
- Institute of Metabolic Science-Metabolic Research Laboratories & MRC-Metabolic Diseases Unit, University of Cambridge, Cambridge, UK
| |
Collapse
|
18
|
Xiao S, Li VL, Lyu X, Chen X, Wei W, Abbasi F, Knowles JW, Tung ASH, Deng S, Tiwari G, Shi X, Zheng S, Farrell L, Chen ZZ, Taylor KD, Guo X, Goodarzi MO, Wood AC, Chen YDI, Lange LA, Rich SS, Rotter JI, Clish CB, Tahir UA, Gerszten RE, Benson MD, Long JZ. Lac-Phe mediates the effects of metformin on food intake and body weight. Nat Metab 2024; 6:659-669. [PMID: 38499766 PMCID: PMC11062621 DOI: 10.1038/s42255-024-00999-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 01/30/2024] [Indexed: 03/20/2024]
Abstract
Metformin is a widely prescribed anti-diabetic medicine that also reduces body weight. There is ongoing debate about the mechanisms that mediate metformin's effects on energy balance. Here, we show that metformin is a powerful pharmacological inducer of the anorexigenic metabolite N-lactoyl-phenylalanine (Lac-Phe) in cells, in mice and two independent human cohorts. Metformin drives Lac-Phe biosynthesis through the inhibition of complex I, increased glycolytic flux and intracellular lactate mass action. Intestinal epithelial CNDP2+ cells, not macrophages, are the principal in vivo source of basal and metformin-inducible Lac-Phe. Genetic ablation of Lac-Phe biosynthesis in male mice renders animals resistant to the effects of metformin on food intake and body weight. Lastly, mediation analyses support a role for Lac-Phe as a downstream effector of metformin's effects on body mass index in participants of a large population-based observational cohort, the Multi-Ethnic Study of Atherosclerosis. Together, these data establish Lac-Phe as a critical mediator of the body weight-lowering effects of metformin.
Collapse
Affiliation(s)
- Shuke Xiao
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Stanford Diabetes Research Center, Stanford University, Stanford, CA, USA
| | - Veronica L Li
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Stanford Diabetes Research Center, Stanford University, Stanford, CA, USA
- Department of Chemistry, Stanford University, Stanford, CA, USA
- Wu Tsai Human Performance Alliance, Stanford University, Stanford, CA, USA
| | - Xuchao Lyu
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Stanford Diabetes Research Center, Stanford University, Stanford, CA, USA
- Wu Tsai Human Performance Alliance, Stanford University, Stanford, CA, USA
| | - Xudong Chen
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Wei Wei
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Stanford Diabetes Research Center, Stanford University, Stanford, CA, USA
| | - Fahim Abbasi
- Stanford Diabetes Research Center, Stanford University, Stanford, CA, USA
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Joshua W Knowles
- Stanford Diabetes Research Center, Stanford University, Stanford, CA, USA
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Prevention Research Center, Stanford University School of Medicine, Stanford, CA, USA
| | - Alan Sheng-Hwa Tung
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Stanford Diabetes Research Center, Stanford University, Stanford, CA, USA
| | - Shuliang Deng
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Gaurav Tiwari
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Xu Shi
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Shuning Zheng
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Laurie Farrell
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Zsu-Zsu Chen
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Kent D Taylor
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Xiuqing Guo
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Mark O Goodarzi
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Alexis C Wood
- USDA/ARS Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX, USA
| | - Yii-Der Ida Chen
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Leslie A Lange
- Division of Biomedical Informatics and Personalized Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Stephen S Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Clary B Clish
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Usman A Tahir
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Robert E Gerszten
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Mark D Benson
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Jonathan Z Long
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA.
- Stanford Diabetes Research Center, Stanford University, Stanford, CA, USA.
- Wu Tsai Human Performance Alliance, Stanford University, Stanford, CA, USA.
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
19
|
Raouf Z, Steinway SN, Scheese D, Lopez CM, Duess JW, Tsuboi K, Sampah M, Klerk D, El Baassiri M, Moore H, Tragesser C, Prindle T, Wang S, Wang M, Jang HS, Fulton WB, Sodhi CP, Hackam DJ. Colitis-Induced Small Intestinal Hypomotility Is Dependent on Enteroendocrine Cell Loss in Mice. Cell Mol Gastroenterol Hepatol 2024; 18:53-70. [PMID: 38438014 PMCID: PMC11127033 DOI: 10.1016/j.jcmgh.2024.02.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 03/06/2024]
Abstract
BACKGROUND & AIMS The abdominal discomfort experienced by patients with colitis may be attributable in part to the presence of small intestinal dysmotility, yet mechanisms linking colonic inflammation with small-bowel motility remain largely unexplored. We hypothesize that colitis results in small intestinal hypomotility owing to a loss of enteroendocrine cells (EECs) within the small intestine that can be rescued using serotonergic-modulating agents. METHODS Male C57BL/6J mice, as well as mice that overexpress (EECOVER) or lack (EECDEL) NeuroD1+ enteroendocrine cells, were exposed to dextran sulfate sodium (DSS) colitis (2.5% or 5% for 7 days) and small intestinal motility was assessed by 70-kilodalton fluorescein isothiocyanate-dextran fluorescence transit. EEC number and differentiation were evaluated by immunohistochemistry, terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling staining, and quantitative reverse-transcriptase polymerase chain reaction. Mice were treated with the 5-hydroxytryptamine receptor 4 agonist prucalopride (5 mg/kg orally, daily) to restore serotonin signaling. RESULTS DSS-induced colitis was associated with a significant small-bowel hypomotility that developed in the absence of significant inflammation in the small intestine and was associated with a significant reduction in EEC density. EEC loss occurred in conjunction with alterations in the expression of key serotonin synthesis and transporter genes, including Tph1, Ddc, and Slc6a4. Importantly, mice overexpressing EECs revealed improved small intestinal motility, whereas mice lacking EECs had worse intestinal motility when exposed to DSS. Finally, treatment of DSS-exposed mice with the 5-hydroxytryptamine receptor 4 agonist prucalopride restored small intestinal motility and attenuated colitis. CONCLUSIONS Experimental DSS colitis induces significant small-bowel dysmotility in mice owing to enteroendocrine loss that can be reversed by genetic modulation of EEC or administering serotonin analogs, suggesting novel therapeutic approaches for patients with symptomatic colitis.
Collapse
Affiliation(s)
- Zachariah Raouf
- Division of Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Steve N Steinway
- Division of Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Daniel Scheese
- Division of Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Carla M Lopez
- Division of Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Johannes W Duess
- Division of Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Koichi Tsuboi
- Division of Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Maame Sampah
- Division of Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Daphne Klerk
- Division of Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Mahmoud El Baassiri
- Division of Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Hannah Moore
- Division of Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Cody Tragesser
- Division of Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Thomas Prindle
- Division of Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Sanxia Wang
- Division of Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Menghan Wang
- Division of Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Hee-Seong Jang
- Division of Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - William B Fulton
- Division of Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Chhinder P Sodhi
- Division of Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| | - David J Hackam
- Division of Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| |
Collapse
|
20
|
Mu X, Liu Z, Zhao X, Yuan L, Li Y, Wang C, Xiao G, Mu J, Qiu J, Qian Y. Bisphenol A Analogues Induce Neuroendocrine Disruption via Gut-Brain Regulation in Zebrafish. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:1022-1035. [PMID: 38165294 DOI: 10.1021/acs.est.3c05282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
There is epidemiological evidence in humans that exposure to endocrine-disrupting chemicals such as bisphenol A (BPA) is tied to abnormal neuroendocrine function with both behavioral and intestinal symptoms. However, the underlying mechanism of this effect, particularly the role of gut-brain regulation, is poorly understood. We exposed zebrafish embryos to a concentration series (including environmentally relevant levels) of BPA and its analogues. The analogue bisphenol G (BPG) yielded the strongest behavioral impact on zebrafish larvae and inhibited the largest number of neurotransmitters, with an effective concentration of 0.5 μg/L, followed by bisphenol AF (BPAF) and BPA. In neurod1:EGFP transgenic zebrafish, BPG and BPAF inhibited the distribution of enteroendocrine cells (EECs), which is associated with decreased neurotransmitters level and behavioral activity. Immune staining of ace-α-tubulin suggested that BPAF inhibited vagal neural development at 50 and 500 μg/L. Single-cell RNA-Seq demonstrated that BPG disrupted the neuroendocrine system by inducing inflammatory responses in intestinal epithelial cells via TNFα-trypsin-EEC signaling. BPAF exposure activated apoptosis and inhibited neural developmental pathways in vagal neurons, consistent with immunofluorescence imaging studies. These findings show that both BPG and BPAF affect the neuroendocrine system through the gut-brain axis but by different mechanisms, revealing new insights into the modes of bisphenol-mediated neuroendocrine disruption.
Collapse
Affiliation(s)
- Xiyan Mu
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zaiteng Liu
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaoyu Zhao
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Lilai Yuan
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing 214081, China
| | - Yingren Li
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing 214081, China
| | - Chengju Wang
- College of Sciences, China Agricultural University, Beijing 100083, China
| | - Guohua Xiao
- Hebei Ocean and Fisheries Science Research Institute, Qinhuangdao 066000, China
- Hebei Marine Living Resources and Environment Key Laboratory, Qinhuangdao 066004, China
| | - Jiandong Mu
- Hebei Ocean and Fisheries Science Research Institute, Qinhuangdao 066000, China
- Hebei Marine Living Resources and Environment Key Laboratory, Qinhuangdao 066004, China
| | - Jing Qiu
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yongzhong Qian
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
21
|
Vossen C, Schmidt P, Wunderlich CM, Mittenbühler MJ, Tapken C, Wienand P, Mirabella PN, Cabot L, Schumacher AL, Folz-Donahue K, Kukat C, Voigt I, Brüning JC, Fenselau H, Wunderlich FT. An Approach to Intersectionally Target Mature Enteroendocrine Cells in the Small Intestine of Mice. Cells 2024; 13:102. [PMID: 38201306 PMCID: PMC10778503 DOI: 10.3390/cells13010102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/18/2023] [Accepted: 01/02/2024] [Indexed: 01/12/2024] Open
Abstract
Enteroendocrine cells (EECs) constitute only a small proportion of Villin-1 (Vil1)-expressing intestinal epithelial cells (IECs) of the gastrointestinal tract; yet, in sum, they build the largest endocrine organ of the body, with each of them storing and releasing a distinct set of peptides for the control of feeding behavior, glucose metabolism, and gastrointestinal motility. Like all IEC types, EECs are continuously renewed from intestinal stem cells in the crypt base and terminally differentiate into mature subtypes while moving up the crypt-villus axis. Interestingly, EECs adjust their hormonal secretion according to their migration state as EECs receive altering differentiation signals along the crypt-villus axis and thus undergo functional readaptation. Cell-specific targeting of mature EEC subtypes by specific promoters is challenging because the expression of EEC-derived peptides and their precursors is not limited to EECs but are also found in other organs, such as the brain (e.g., Cck and Sst) as well as in the pancreas (e.g., Sst and Gcg). Here, we describe an intersectional genetic approach that enables cell type-specific targeting of functionally distinct EEC subtypes by combining a newly generated Dre-recombinase expressing mouse line (Vil1-2A-DD-Dre) with multiple existing Cre-recombinase mice and mouse strains with rox and loxP sites flanked stop cassettes for transgene expression. We found that transgene expression in triple-transgenic mice is highly specific in I but not D and L cells in the terminal villi of the small intestine. The targeting of EECs only in terminal villi is due to the integration of a defective 2A separating peptide that, combined with low EEC intrinsic Vil1 expression, restricts our Vil1-2A-DD-Dre mouse line and the intersectional genetic approach described here only applicable for the investigation of mature EEC subpopulations.
Collapse
Affiliation(s)
- Christian Vossen
- Obesity and Cancer Research Group, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931 Cologne, Germany
- Policlinic for Endocrinology, Diabetes, and Preventive Medicine (PEDP), University Hospital Cologne, 50924 Cologne, Germany; (P.N.M.); (J.C.B.); (H.F.)
- Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
- Center of Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Patricia Schmidt
- Obesity and Cancer Research Group, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931 Cologne, Germany
- Policlinic for Endocrinology, Diabetes, and Preventive Medicine (PEDP), University Hospital Cologne, 50924 Cologne, Germany; (P.N.M.); (J.C.B.); (H.F.)
- Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
- Center of Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Claudia Maria Wunderlich
- Obesity and Cancer Research Group, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931 Cologne, Germany
- Policlinic for Endocrinology, Diabetes, and Preventive Medicine (PEDP), University Hospital Cologne, 50924 Cologne, Germany; (P.N.M.); (J.C.B.); (H.F.)
- Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
- Center of Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Melanie Joyce Mittenbühler
- Obesity and Cancer Research Group, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931 Cologne, Germany
- Policlinic for Endocrinology, Diabetes, and Preventive Medicine (PEDP), University Hospital Cologne, 50924 Cologne, Germany; (P.N.M.); (J.C.B.); (H.F.)
- Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
- Center of Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Claas Tapken
- Obesity and Cancer Research Group, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931 Cologne, Germany
- Policlinic for Endocrinology, Diabetes, and Preventive Medicine (PEDP), University Hospital Cologne, 50924 Cologne, Germany; (P.N.M.); (J.C.B.); (H.F.)
- Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
- Center of Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Peter Wienand
- Obesity and Cancer Research Group, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931 Cologne, Germany
- Policlinic for Endocrinology, Diabetes, and Preventive Medicine (PEDP), University Hospital Cologne, 50924 Cologne, Germany; (P.N.M.); (J.C.B.); (H.F.)
- Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
- Center of Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Paul Nicolas Mirabella
- Policlinic for Endocrinology, Diabetes, and Preventive Medicine (PEDP), University Hospital Cologne, 50924 Cologne, Germany; (P.N.M.); (J.C.B.); (H.F.)
- Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
- Research Group Synaptic Transmission in Energy Homeostasis, Max Planck Institute for Metabolism Research, 50931 Cologne, Germany
| | - Leonie Cabot
- Policlinic for Endocrinology, Diabetes, and Preventive Medicine (PEDP), University Hospital Cologne, 50924 Cologne, Germany; (P.N.M.); (J.C.B.); (H.F.)
- Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
- Research Group Synaptic Transmission in Energy Homeostasis, Max Planck Institute for Metabolism Research, 50931 Cologne, Germany
| | - Anna-Lena Schumacher
- FACS & Imaging Core Facility, Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Str. 9b, 50931 Cologne, Germany; (A.-L.S.)
| | - Kat Folz-Donahue
- FACS & Imaging Core Facility, Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Str. 9b, 50931 Cologne, Germany; (A.-L.S.)
| | - Christian Kukat
- FACS & Imaging Core Facility, Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Str. 9b, 50931 Cologne, Germany; (A.-L.S.)
| | - Ingo Voigt
- Transgenic Core Facility, Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Str. 9b, 50931 Cologne, Germany;
| | - Jens C. Brüning
- Policlinic for Endocrinology, Diabetes, and Preventive Medicine (PEDP), University Hospital Cologne, 50924 Cologne, Germany; (P.N.M.); (J.C.B.); (H.F.)
- Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
- Center of Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
- Department of neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, 50931 Cologne, Germany
| | - Henning Fenselau
- Policlinic for Endocrinology, Diabetes, and Preventive Medicine (PEDP), University Hospital Cologne, 50924 Cologne, Germany; (P.N.M.); (J.C.B.); (H.F.)
- Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
- Research Group Synaptic Transmission in Energy Homeostasis, Max Planck Institute for Metabolism Research, 50931 Cologne, Germany
| | - F. Thomas Wunderlich
- Obesity and Cancer Research Group, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931 Cologne, Germany
- Policlinic for Endocrinology, Diabetes, and Preventive Medicine (PEDP), University Hospital Cologne, 50924 Cologne, Germany; (P.N.M.); (J.C.B.); (H.F.)
- Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
- Center of Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| |
Collapse
|
22
|
Reimann F. Dorothy Hodgkin lecture 2023: The enteroendocrine system-Sensors in your guts. Diabet Med 2023; 40:e15212. [PMID: 37638546 PMCID: PMC10946932 DOI: 10.1111/dme.15212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/18/2023] [Accepted: 08/24/2023] [Indexed: 08/29/2023]
Abstract
Glucagon-like peptide-1 (GLP-1)-based medication is now widely employed in the treatment of type 2 diabetes and obesity. Like other gut hormones, GLP-1 is released from eneteroendocrine cells after a meal and in this review, based on the Dorothy Hodgkin lecture delivered during the annual meeting of Diabetes UK in 2023, I argue that there is sufficient spare capacity of GLP-1 and other gut hormone expressing cells that could be recruited therapeutically. Years of research has revealed several receptors expressed in enteroendocrine cells that could be targeted to stimulate hormone release: although from this research it seems unlikely to find agents that selectively boost GLP-1, release of a mixture of hormones might be the more desirable outcome anyway, given the recent promising results of new peptides combining GLP1-receptor with other gut hormone receptor activation. Alternatively, the fact that GLP-1 and peptideYY (PYY) expressing cells are found in greater density in the ileum might be exploited by increasing the delivery of chyme to the distal small intestine.
Collapse
Affiliation(s)
- Frank Reimann
- Department of Clinical BiochemistryInstitute of Metabolic Science & MRC Metabolic Diseases Unit, Addenbrooke's Hospital, University of CambridgeCambridgeUK
| |
Collapse
|
23
|
Mirabella PN, Fenselau H. Advanced neurobiological tools to interrogate metabolism. Nat Rev Endocrinol 2023; 19:639-654. [PMID: 37674015 DOI: 10.1038/s41574-023-00885-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/24/2023] [Indexed: 09/08/2023]
Abstract
Engineered neurobiological tools for the manipulation of cellular activity, such as chemogenetics and optogenetics, have become a cornerstone of modern neuroscience research. These tools are invaluable for the interrogation of the central control of metabolism as they provide a direct means to establish a causal relationship between brain activity and biological processes at the cellular, tissue and organismal levels. The utility of these methods has grown substantially due to advances in cellular-targeting strategies, alongside improvements in the resolution and potency of such tools. Furthermore, the potential to recapitulate endogenous cellular signalling has been enriched by insights into the molecular signatures and activity dynamics of discrete brain cell types. However, each modulatory tool has a specific set of advantages and limitations; therefore, tool selection and suitability are of paramount importance to optimally interrogate the cellular and circuit-based underpinnings of metabolic outcomes within the organism. Here, we describe the key principles and uses of engineered neurobiological tools. We also highlight inspiring applications and outline critical considerations to be made when using these tools within the field of metabolism research. We contend that the appropriate application of these biotechnological advances will enable the delineation of the central circuitry regulating systemic metabolism with unprecedented potential.
Collapse
Affiliation(s)
- Paul Nicholas Mirabella
- Synaptic Transmission in Energy Homeostasis Group, Max Planck Institute for Metabolism Research, Cologne, Germany
- Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Cologne, Germany
| | - Henning Fenselau
- Synaptic Transmission in Energy Homeostasis Group, Max Planck Institute for Metabolism Research, Cologne, Germany.
- Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Cologne, Germany.
- Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), University of Cologne, Cologne, Germany.
| |
Collapse
|
24
|
Brüning JC, Fenselau H. Integrative neurocircuits that control metabolism and food intake. Science 2023; 381:eabl7398. [PMID: 37769095 DOI: 10.1126/science.abl7398] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 08/31/2023] [Indexed: 09/30/2023]
Abstract
Systemic metabolism has to be constantly adjusted to the variance of food intake and even be prepared for anticipated changes in nutrient availability. Therefore, the brain integrates multiple homeostatic signals with numerous cues that predict future deviations in energy supply. Recently, our understanding of the neural pathways underlying these regulatory principles-as well as their convergence in the hypothalamus as the key coordinator of food intake, energy expenditure, and glucose metabolism-have been revealed. These advances have changed our view of brain-dependent control of metabolic physiology. In this Review, we discuss new concepts about how alterations in these pathways contribute to the development of prevalent metabolic diseases such as obesity and type 2 diabetes mellitus and how this emerging knowledge may provide new targets for their treatment.
Collapse
Affiliation(s)
- Jens C Brüning
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, 50931 Cologne, Germany
- Policlinic for Endocrinology, Diabetes, and Preventive Medicine (PEDP), University Hospital Cologne, 50924 Cologne, Germany
- Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
- National Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Henning Fenselau
- Policlinic for Endocrinology, Diabetes, and Preventive Medicine (PEDP), University Hospital Cologne, 50924 Cologne, Germany
- Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
- Research Group Synaptic Transmission in Energy Homeostasis, Max Planck Institute for Metabolism Research, 50931 Cologne, Germany
| |
Collapse
|
25
|
Atanga R, Singh V, In JG. Intestinal Enteroendocrine Cells: Present and Future Druggable Targets. Int J Mol Sci 2023; 24:ijms24108836. [PMID: 37240181 DOI: 10.3390/ijms24108836] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 05/03/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
Enteroendocrine cells are specialized secretory lineage cells in the small and large intestines that secrete hormones and peptides in response to luminal contents. The various hormones and peptides can act upon neighboring cells and as part of the endocrine system, circulate systemically via immune cells and the enteric nervous system. Locally, enteroendocrine cells have a major role in gastrointestinal motility, nutrient sensing, and glucose metabolism. Targeting the intestinal enteroendocrine cells or mimicking hormone secretion has been an important field of study in obesity and other metabolic diseases. Studies on the importance of these cells in inflammatory and auto-immune diseases have only recently been reported. The rapid global increase in metabolic and inflammatory diseases suggests that increased understanding and novel therapies are needed. This review will focus on the association between enteroendocrine changes and metabolic and inflammatory disease progression and conclude with the future of enteroendocrine cells as potential druggable targets.
Collapse
Affiliation(s)
- Roger Atanga
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Varsha Singh
- Department of Medicine, Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Julie G In
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of New Mexico, Albuquerque, NM 87131, USA
| |
Collapse
|