1
|
Gu S, Bodai Z, Anderson RA, So HYA, Cowan QT, Komor AC. Elucidating the genetic mechanisms governing cytosine base editing outcomes through CRISPRi screens. Nat Commun 2025; 16:4685. [PMID: 40394064 DOI: 10.1038/s41467-025-59948-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/09/2025] [Indexed: 05/22/2025] Open
Abstract
Cytosine base editors enable programmable and efficient genome editing using an intermediate featuring a U•G mismatch across from a DNA nick. This intermediate facilitates two major outcomes, C•G to T•A and C•G to G•C point mutations, and it is not currently well-understood which DNA repair factors are involved. Here, we couple reporters for cytosine base editing activity with knockdown of 2015 DNA processing genes to identify genes involved in these two outcomes. Our data suggest that mismatch repair factors facilitate C•G to T•A outcomes, while C•G to G•C outcomes are mediated by RFWD3, an E3 ubiquitin ligase. We also propose that XPF, a 3'-flap endonuclease, and LIG3, a DNA ligase, are involved in repairing the intermediate back to the original C•G base pair. Our results demonstrate that competition and collaboration among different DNA repair pathways shape cytosine base editing outcomes.
Collapse
Affiliation(s)
- Sifeng Gu
- Department of Chemistry and Biochemistry, University of California, San Diego, CA, USA
| | - Zsolt Bodai
- Department of Chemistry and Biochemistry, University of California, San Diego, CA, USA
| | - Rachel A Anderson
- Department of Chemistry and Biochemistry, University of California, San Diego, CA, USA
| | - Hei Yu Annika So
- Department of Chemistry and Biochemistry, University of California, San Diego, CA, USA
| | - Quinn T Cowan
- Department of Chemistry and Biochemistry, University of California, San Diego, CA, USA
| | - Alexis C Komor
- Department of Chemistry and Biochemistry, University of California, San Diego, CA, USA.
- Moores UCSD Cancer Center, University of California, San Diego, CA, USA.
- Sanford Stem Cell Institute, University of California, San Diego, CA, USA.
| |
Collapse
|
2
|
Akers JF, LaScola M, Bothe A, Suh H, Jung C, Stolp ZD, Ghosh T, Yan LL, Wang Y, Macurak M, Devan A, McKinney MC, Grismer TS, Reyes AV, Ross EJ, Hu T, Xu SL, Ban N, Kostova KK. ZNF574 is a quality control factor for defective ribosome biogenesis intermediates. Mol Cell 2025; 85:2048-2060.e9. [PMID: 40328246 DOI: 10.1016/j.molcel.2025.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 03/08/2025] [Accepted: 04/15/2025] [Indexed: 05/08/2025]
Abstract
Eukaryotic ribosome assembly is an intricate process that involves four ribosomal RNAs, 80 ribosomal proteins, and over 200 biogenesis factors that participate in numerous interdependent steps. The complexity and essentiality of this process create opportunities for deleterious mutations to occur, accumulate, and impact downstream cellular processes. "Dead-end" ribosome intermediates that result from biogenesis errors are rapidly degraded, affirming the existence of quality control (QC) pathway(s) that monitor ribosome assembly. However, the factors that differentiate between on-path and dead-end intermediates are unknown. We engineered a system to perturb ribosome assembly in human cells and discovered that faulty ribosomes are degraded via the ubiquitin-proteasome system. We identified ZNF574 as a key component of a QC pathway, which we term the ribosome assembly surveillance pathway (RASP). In an animal model, loss of ZNF574 leads to developmental defects, emphasizing the importance of RASP in organismal health.
Collapse
Affiliation(s)
- Jared F Akers
- Carnegie Institution for Science, Department of Embryology, Baltimore, MD 21218, USA
| | - Michael LaScola
- Carnegie Institution for Science, Department of Embryology, Baltimore, MD 21218, USA
| | - Adrian Bothe
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, 8093 Zurich, Switzerland
| | - Hanna Suh
- Carnegie Institution for Science, Department of Embryology, Baltimore, MD 21218, USA
| | - Carmen Jung
- Carnegie Institution for Science, Department of Embryology, Baltimore, MD 21218, USA
| | - Zachary D Stolp
- Carnegie Institution for Science, Department of Embryology, Baltimore, MD 21218, USA; Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Tanushree Ghosh
- Carnegie Institution for Science, Department of Embryology, Baltimore, MD 21218, USA; Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Liewei L Yan
- Carnegie Institution for Science, Department of Embryology, Baltimore, MD 21218, USA; Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Yuming Wang
- Carnegie Institution for Science, Department of Embryology, Baltimore, MD 21218, USA
| | - Michelle Macurak
- Carnegie Institution for Science, Department of Embryology, Baltimore, MD 21218, USA
| | - Amisha Devan
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Mary C McKinney
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Tarabryn S Grismer
- Carnegie Institution for Science, Department of Plant Biology, Stanford, CA 94305, USA
| | - Andres V Reyes
- Carnegie Institution for Science, Department of Plant Biology, Stanford, CA 94305, USA
| | - Eric J Ross
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Tianyi Hu
- Carnegie Institution for Science, Department of Embryology, Baltimore, MD 21218, USA
| | - Shou-Ling Xu
- Carnegie Institution for Science, Department of Plant Biology, Stanford, CA 94305, USA
| | - Nenad Ban
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, 8093 Zurich, Switzerland
| | - Kamena K Kostova
- Carnegie Institution for Science, Department of Embryology, Baltimore, MD 21218, USA; Stowers Institute for Medical Research, Kansas City, MO 64110, USA.
| |
Collapse
|
3
|
Murley A, Popovici AC, Hu XS, Lund A, Wickham K, Durieux J, Joe L, Koronyo E, Zhang H, Genuth NR, Dillin A. Quiescent cell re-entry is limited by macroautophagy-induced lysosomal damage. Cell 2025; 188:2670-2686.e14. [PMID: 40203825 DOI: 10.1016/j.cell.2025.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 01/14/2025] [Accepted: 03/06/2025] [Indexed: 04/11/2025]
Abstract
To maintain tissue homeostasis, many cells reside in a quiescent state until prompted to divide. The reactivation of quiescent cells is perturbed with aging and may underlie declining tissue homeostasis and resiliency. The unfolded protein response regulators IRE-1 and XBP-1 are required for the reactivation of quiescent cells in developmentally L1-arrested C. elegans. Utilizing a forward genetic screen in C. elegans, we discovered that macroautophagy targets protein aggregates to lysosomes in quiescent cells, leading to lysosome damage. Genetic inhibition of macroautophagy and stimulation of lysosomes via the overexpression of HLH-30 (TFEB/TFE3) synergistically reduces lysosome damage. Damaged lysosomes require IRE-1/XBP-1 for their repair following prolonged L1 arrest. Protein aggregates are also targeted to lysosomes by macroautophagy in quiescent cultured mammalian cells and are associated with lysosome damage. Thus, lysosome damage is a hallmark of quiescent cells, and limiting lysosome damage by restraining macroautophagy can stimulate their reactivation.
Collapse
Affiliation(s)
- Andrew Murley
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Ann Catherine Popovici
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Xiwen Sophie Hu
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Anina Lund
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Kevin Wickham
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Jenni Durieux
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Larry Joe
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Etai Koronyo
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Hanlin Zhang
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Naomi R Genuth
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Andrew Dillin
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA; Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
4
|
Nadig A, Replogle JM, Pogson AN, Murthy M, McCarroll SA, Weissman JS, Robinson EB, O'Connor LJ. Transcriptome-wide analysis of differential expression in perturbation atlases. Nat Genet 2025; 57:1228-1237. [PMID: 40259084 DOI: 10.1038/s41588-025-02169-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 03/17/2025] [Indexed: 04/23/2025]
Abstract
Single-cell CRISPR screens such as Perturb-seq enable transcriptomic profiling of genetic perturbations at scale. However, the data produced by these screens are noisy, and many effects may go undetected. Here we introduce transcriptome-wide analysis of differential expression (TRADE)-a statistical model for the distribution of true differential expression effects that accounts for estimation error appropriately. TRADE estimates the 'transcriptome-wide impact', which quantifies the total effect of a perturbation across the transcriptome. Analyzing several large Perturb-seq datasets, we show that many transcriptional effects remain undetected in standard analyses but emerge in aggregate using TRADE. A typical gene perturbation affects an estimated 45 genes, whereas a typical essential gene affects over 500. We find moderate consistency of perturbation effects across cell types, identify perturbations where transcriptional responses vary qualitatively across dosage levels and clarify the relationship between genetic and transcriptomic correlations across neuropsychiatric disorders.
Collapse
Affiliation(s)
- Ajay Nadig
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA.
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA.
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA.
| | - Joseph M Replogle
- Department of Medicine, Massachusetts General Hospital, Boston, MA, USA.
- Medical Scientist Training Program, University of California San Francisco, San Francisco, CA, USA.
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Angela N Pogson
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Mukundh Murthy
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Steven A McCarroll
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Cambridge, MA, USA
| | - Jonathan S Weissman
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Howard Hughes Medical Institute, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Elise B Robinson
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Luke J O'Connor
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA.
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
5
|
Cancer vulnerabilities exposed by finding interactions among DNA repair factors. Nature 2025:10.1038/d41586-025-01049-4. [PMID: 40205104 DOI: 10.1038/d41586-025-01049-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
|
6
|
Natarajan P, Koupourtidou C, de Resseguier T, Thorwirth M, Bocchi R, Fischer‐Sternjak J, Gleiss S, Rodrigues D, Myoga MH, Ninkovic J, Masserdotti G, Götz M. Single Cell Deletion of the Transcription Factors Trps1 and Sox9 in Astrocytes Reveals Novel Functions in the Adult Cerebral Cortex. Glia 2025; 73:737-758. [PMID: 39610085 PMCID: PMC11845849 DOI: 10.1002/glia.24645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 11/02/2024] [Accepted: 11/05/2024] [Indexed: 11/30/2024]
Abstract
Astrocytes play key roles in brain function, but how these are orchestrated by transcription factors (TFs) in the adult brain and aligned with astrocyte heterogeneity is largely unknown. Here we examined the localization and function of the novel astrocyte TF Trps1 (Transcriptional Repressor GATA Binding 1) and the well-known astrocyte TF Sox9 by Cas9-mediated deletion using Mokola-pseudotyped lentiviral delivery into the adult cerebral cortex. Trps1 and Sox9 levels showed heterogeneity among adult cortical astrocytes, which prompted us to explore the effects of deleting either Sox9 or Trps1 alone or simultaneously at the single-cell (by patch-based single-cell transcriptomics) and tissue levels (by spatial transcriptomics). This revealed TF-specific functions in astrocytes, such as synapse maintenance with the strongest effects on synapse number achieved by Trps1 deletion and a common effect on immune response. In addition, spatial transcriptomics showed non-cell-autonomous effects on the surrounding cells, such as oligodendrocytes and other immune cells with TF-specific differences on the type of immune cells: Trps1 deletion affecting monocytes specifically, while Sox9 deletion acting mostly on microglia and deletion of both TF affecting mostly B cells. Taken together, this study reveals novel roles of Trps1 and Sox9 in adult astrocytes and their communication with other glial and immune cells.
Collapse
Affiliation(s)
- Poornemaa Natarajan
- Biomedical Center Munich, Department of Physiological GenomicsLMU MunichMartinsriedGermany
- Institute for Stem Cell Research, Helmholtz Center MunichGerman Research Center for Environmental Health (GmbH)NeuherbergGermany
- Graduate School of Systemic Neurosciences, BiocenterMartinsriedGermany
- Max‐Planck‐Institute for BiochemistryInternational Max Planck Research School for Life SciencesMunichGermany
| | - Christina Koupourtidou
- Institute for Stem Cell Research, Helmholtz Center MunichGerman Research Center for Environmental Health (GmbH)NeuherbergGermany
- Graduate School of Systemic Neurosciences, BiocenterMartinsriedGermany
- Max Planck Institute for Biological IntelligenceMartinsriedGermany
| | - Thibault de Resseguier
- Biomedical Center Munich, Department of Physiological GenomicsLMU MunichMartinsriedGermany
| | - Manja Thorwirth
- Biomedical Center Munich, Department of Physiological GenomicsLMU MunichMartinsriedGermany
- Institute for Stem Cell Research, Helmholtz Center MunichGerman Research Center for Environmental Health (GmbH)NeuherbergGermany
| | - Riccardo Bocchi
- Biomedical Center Munich, Department of Physiological GenomicsLMU MunichMartinsriedGermany
- Institute for Stem Cell Research, Helmholtz Center MunichGerman Research Center for Environmental Health (GmbH)NeuherbergGermany
| | - Judith Fischer‐Sternjak
- Biomedical Center Munich, Department of Physiological GenomicsLMU MunichMartinsriedGermany
- Institute for Stem Cell Research, Helmholtz Center MunichGerman Research Center for Environmental Health (GmbH)NeuherbergGermany
| | - Sarah Gleiss
- Biomedical Center Munich, Department of Physiological GenomicsLMU MunichMartinsriedGermany
| | - Diana Rodrigues
- Biomedical Center Munich, Department of Physiological GenomicsLMU MunichMartinsriedGermany
- Max Planck Institute for Biological IntelligenceMartinsriedGermany
| | - Michael H. Myoga
- Biomedical Center Munich, Department of Physiological GenomicsLMU MunichMartinsriedGermany
- Max Planck Institute for Biological IntelligenceMartinsriedGermany
| | - Jovica Ninkovic
- Institute for Stem Cell Research, Helmholtz Center MunichGerman Research Center for Environmental Health (GmbH)NeuherbergGermany
- Biomedical Center Munich, Department of Cell Biology and AnatomyLMU MunichMartinsriedGermany
- Excellence Cluster of Systems Neurology (SYNERGY)MunichGermany
| | - Giacomo Masserdotti
- Biomedical Center Munich, Department of Physiological GenomicsLMU MunichMartinsriedGermany
- Institute for Stem Cell Research, Helmholtz Center MunichGerman Research Center for Environmental Health (GmbH)NeuherbergGermany
| | - Magdalena Götz
- Biomedical Center Munich, Department of Physiological GenomicsLMU MunichMartinsriedGermany
- Institute for Stem Cell Research, Helmholtz Center MunichGerman Research Center for Environmental Health (GmbH)NeuherbergGermany
- Excellence Cluster of Systems Neurology (SYNERGY)MunichGermany
| |
Collapse
|
7
|
Fielden J, Siegner SM, Gallagher DN, Schröder MS, Dello Stritto MR, Lam S, Kobel L, Schlapansky MF, Jackson SP, Cejka P, Jost M, Corn JE. Comprehensive interrogation of synthetic lethality in the DNA damage response. Nature 2025; 640:1093-1102. [PMID: 40205037 PMCID: PMC12018271 DOI: 10.1038/s41586-025-08815-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 02/19/2025] [Indexed: 04/11/2025]
Abstract
The DNA damage response (DDR) is a multifaceted network of pathways that preserves genome stability1,2. Unravelling the complementary interplay between these pathways remains a challenge3,4. Here we used CRISPR interference (CRISPRi) screening to comprehensively map the genetic interactions required for survival during normal human cell homeostasis across all core DDR genes. We captured known interactions and discovered myriad new connections that are available online. We defined the molecular mechanism of two of the strongest interactions. First, we found that WDR48 works with USP1 to restrain PCNA degradation in FEN1/LIG1-deficient cells. Second, we found that SMARCAL1 and FANCM directly unwind TA-rich DNA cruciforms, preventing catastrophic chromosome breakage by the ERCC1-ERCC4 complex. Our data yield fundamental insights into genome maintenance, provide a springboard for mechanistic investigations into new connections between DDR factors and pinpoint synthetic vulnerabilities that could be exploited in cancer therapy.
Collapse
Affiliation(s)
- John Fielden
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Sebastian M Siegner
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Danielle N Gallagher
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Markus S Schröder
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Maria Rosaria Dello Stritto
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera italiana (USI), Bellinzona, Switzerland
| | - Simon Lam
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Lena Kobel
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Moritz F Schlapansky
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Stephen P Jackson
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Petr Cejka
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera italiana (USI), Bellinzona, Switzerland
| | - Marco Jost
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Jacob E Corn
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland.
| |
Collapse
|
8
|
Liu D, Cao D, Han R. Recent advances in therapeutic gene-editing technologies. Mol Ther 2025:S1525-0016(25)00200-X. [PMID: 40119516 DOI: 10.1016/j.ymthe.2025.03.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/26/2025] [Accepted: 03/17/2025] [Indexed: 03/24/2025] Open
Abstract
The advent of gene-editing technologies, particularly CRISPR-based systems, has revolutionized the landscape of biomedical research and gene therapy. Ongoing research in gene editing has led to the rapid iteration of CRISPR technologies, such as base and prime editors, enabling precise nucleotide changes without the need for generating harmful double-strand breaks (DSBs). Furthermore, innovations such as CRISPR fusion systems with DNA recombinases, DNA polymerases, and DNA ligases have expanded the size limitations for edited sequences, opening new avenues for therapeutic development. Beyond the CRISPR system, mobile genetic elements (MGEs) and epigenetic editors are emerging as efficient alternatives for precise large insertions or stable gene manipulation in mammalian cells. These advances collectively set the stage for next-generation gene therapy development. This review highlights recent developments of genetic and epigenetic editing tools and explores preclinical innovations poised to advance the field.
Collapse
Affiliation(s)
- Dongqi Liu
- Department of Pediatrics, Department of Molecular and Medical Genetics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Di Cao
- Department of Pediatrics, Department of Molecular and Medical Genetics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Renzhi Han
- Department of Pediatrics, Department of Molecular and Medical Genetics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
9
|
Suh K, Thornton RH, Nguyen L, Farahani PE, Cohen DJ, Toettcher JE. Large-scale control over collective cell migration using light-activated epidermal growth factor receptors. Cell Syst 2025; 16:101203. [PMID: 40037348 DOI: 10.1016/j.cels.2025.101203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 11/26/2024] [Accepted: 02/04/2025] [Indexed: 03/06/2025]
Abstract
Receptor tyrosine kinases (RTKs) play key roles in coordinating cell movement at both single-cell and tissue scales. The recent development of optogenetic tools for controlling RTKs and their downstream signaling pathways suggests that these responses may be amenable to engineering-based control for sculpting tissue shape and function. Here, we report that a light-controlled epidermal growth factor (EGF) receptor (OptoEGFR) can be deployed in epithelial cells for precise, programmable control of long-range tissue movements. We show that in OptoEGFR-expressing tissues, light can drive millimeter-scale cell rearrangements to densify interior regions or produce rapid outgrowth at tissue edges. Light-controlled tissue movements are driven primarily by phosphoinositide 3-kinase (PI3K) signaling, rather than diffusible ligands, tissue contractility, or ERK kinase signaling as seen in other RTK-driven migration contexts. Our study suggests that synthetic, light-controlled RTKs could serve as a powerful platform for controlling cell positions and densities for diverse applications, including wound healing and tissue morphogenesis.
Collapse
Affiliation(s)
- Kevin Suh
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA; Omenn-Darling Bioengineering Institute, Princeton University, Princeton, NJ 08544, USA
| | - Richard H Thornton
- Omenn-Darling Bioengineering Institute, Princeton University, Princeton, NJ 08544, USA; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Long Nguyen
- Omenn-Darling Bioengineering Institute, Princeton University, Princeton, NJ 08544, USA
| | - Payam E Farahani
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Daniel J Cohen
- Omenn-Darling Bioengineering Institute, Princeton University, Princeton, NJ 08544, USA; Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, USA.
| | - Jared E Toettcher
- Omenn-Darling Bioengineering Institute, Princeton University, Princeton, NJ 08544, USA; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
10
|
Hsiung CCS, Wilson CM, Sambold NA, Dai R, Chen Q, Teyssier N, Misiukiewicz S, Arab A, O'Loughlin T, Cofsky JC, Shi J, Gilbert LA. Engineered CRISPR-Cas12a for higher-order combinatorial chromatin perturbations. Nat Biotechnol 2025; 43:369-383. [PMID: 38760567 PMCID: PMC11919711 DOI: 10.1038/s41587-024-02224-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/28/2024] [Indexed: 05/19/2024]
Abstract
Multiplexed genetic perturbations are critical for testing functional interactions among coding or non-coding genetic elements. Compared to double-stranded DNA cutting, repressive chromatin formation using CRISPR interference (CRISPRi) avoids genotoxicity and is more effective for perturbing non-coding regulatory elements in pooled assays. However, current CRISPRi pooled screening approaches are limited to targeting one to three genomic sites per cell. We engineer an Acidaminococcus Cas12a (AsCas12a) variant, multiplexed transcriptional interference AsCas12a (multiAsCas12a), that incorporates R1226A, a mutation that stabilizes the ribonucleoprotein-DNA complex via DNA nicking. The multiAsCas12a-KRAB fusion improves CRISPRi activity over DNase-dead AsCas12a-KRAB fusions, often rescuing the activities of lentivirally delivered CRISPR RNAs (crRNA) that are inactive when used with the latter. multiAsCas12a-KRAB supports CRISPRi using 6-plex crRNA arrays in high-throughput pooled screens. Using multiAsCas12a-KRAB, we discover enhancer elements and dissect the combinatorial function of cis-regulatory elements in human cells. These results instantiate a group testing framework for efficiently surveying numerous combinations of chromatin perturbations for biological discovery and engineering.
Collapse
Affiliation(s)
- C C-S Hsiung
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Urology, University of California, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Arc Institute, Palo Alto, CA, USA
| | - C M Wilson
- Department of Urology, University of California, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Arc Institute, Palo Alto, CA, USA
- Tetrad Graduate Program, University of California, San Francisco, CA, USA
| | | | - R Dai
- Department of Urology, University of California, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Arc Institute, Palo Alto, CA, USA
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Q Chen
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - N Teyssier
- Biological and Medical Informatics Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - S Misiukiewicz
- Department of Urology, University of California, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - A Arab
- Arc Institute, Palo Alto, CA, USA
| | - T O'Loughlin
- Department of Urology, University of California, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - J C Cofsky
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - J Shi
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - L A Gilbert
- Department of Urology, University of California, San Francisco, CA, USA.
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.
- Arc Institute, Palo Alto, CA, USA.
| |
Collapse
|
11
|
Jiang L, Dalgarno C, Papalexi E, Mascio I, Wessels HH, Yun H, Iremadze N, Lithwick-Yanai G, Lipson D, Satija R. Systematic reconstruction of molecular pathway signatures using scalable single-cell perturbation screens. Nat Cell Biol 2025; 27:505-517. [PMID: 40011560 PMCID: PMC12083445 DOI: 10.1038/s41556-025-01622-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 01/21/2025] [Indexed: 02/28/2025]
Abstract
Recent advancements in functional genomics have provided an unprecedented ability to measure diverse molecular modalities, but predicting causal regulatory relationships from observational data remains challenging. Here, we leverage pooled genetic screens and single-cell sequencing (Perturb-seq) to systematically identify the targets of signalling regulators in diverse biological contexts. We demonstrate how Perturb-seq is compatible with recent and commercially available advances in combinatorial indexing and next-generation sequencing, and perform more than 1,500 perturbations split across six cell lines and five biological signalling contexts. We introduce an improved computational framework (Mixscale) to address cellular variation in perturbation efficiency, alongside optimized statistical methods to learn differentially expressed gene lists and conserved molecular signatures. Finally, we demonstrate how our Perturb-seq derived gene lists can be used to precisely infer changes in signalling pathway activation for in vivo and in situ samples. Our work enhances our understanding of signalling regulators and their targets, and lays a computational framework towards the data-driven inference of an 'atlas' of perturbation signatures.
Collapse
Affiliation(s)
| | | | - Efthymia Papalexi
- New York Genome Center, New York, NY, USA
- Center for Genomics and Systems Biology, New York University, New York, NY, USA
| | - Isabella Mascio
- New York Genome Center, New York, NY, USA
- Center for Genomics and Systems Biology, New York University, New York, NY, USA
| | | | | | | | | | | | - Rahul Satija
- New York Genome Center, New York, NY, USA.
- Center for Genomics and Systems Biology, New York University, New York, NY, USA.
| |
Collapse
|
12
|
Thayer JA, Petersen JD, Huang X, Hawrot J, Ramos DM, Sekine S, Li Y, Ward ME, Narendra DP. Novel reporter of the PINK1-Parkin mitophagy pathway identifies its damage sensor in the import gate. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.19.639160. [PMID: 40027798 PMCID: PMC11870511 DOI: 10.1101/2025.02.19.639160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Damaged mitochondria can be cleared from the cell by mitophagy, using a pathway formed by the recessive Parkinson's disease genes PINK1 and Parkin. How mitochondrial damage is sensed by the PINK1-Parkin pathway, however, remains uncertain. Here, using a Parkin substrate-based reporter in genome-wide screens, we identified that diverse forms of mitochondrial damage converge on loss of mitochondrial membrane potential (MMP) to activate PINK1. Consistently, the MMP but not the presequence translocase-associated motor (PAM) import motor provided the essential driving force for endogenous PINK1 import through the inner membrane translocase TIM23. In the absence of TIM23, PINK1 arrested in the translocase of the outer membrane (TOM) during import. The energy-state outside of the mitochondria further modulated the pathway by controlling the rate of new PINK1 synthesis. Our results identify separation of PINK1 from TOM by the MMP, as the key damage-sensing switch in the PINK1-Parkin mitophagy pathway. Highlights MFN2-Halo is a quantitative single-cell reporter of PINK1-Parkin activation.Diverse forms of mitochondrial damage, identified in whole-genome screens, activate the PINK1-Parkin pathway by disrupting the mitochondrial membrane potential (MMP).The primary driving force for endogenous PINK1 import through the TIM23 translocase is the MMP with the PAM import motor playing a supporting role.Loss of TIM23 is sufficient to stabilize PINK1 in the TOM complex and activate Parkin.
Collapse
Affiliation(s)
- Julia A. Thayer
- Mitochondrial Biology and Neurodegeneration Unit, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jennifer D. Petersen
- Mitochondrial Biology and Neurodegeneration Unit, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
- Equal-author contribution
| | - Xiaoping Huang
- Mitochondrial Biology and Neurodegeneration Unit, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
- Equal-author contribution
| | - James Hawrot
- Inherited Neurodegenerative Diseases Section, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
- Department of Neuroscience, Brown University, Providence, RI 02912,USA
| | - Daniel M. Ramos
- iPSC Neurodegenerative Disease Initiative, National Institute of Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shiori Sekine
- Aging Institute, Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Yan Li
- Proteomics Core Facility, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michael E. Ward
- Inherited Neurodegenerative Diseases Section, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Derek P. Narendra
- Mitochondrial Biology and Neurodegeneration Unit, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
13
|
Yang B, Zhang M, Shi Y, Zheng BQ, Shi C, Lu D, Yang ZZ, Dong YM, Zhu L, Ma X, Zhang J, He J, Zhang Y, Hu K, Lin H, Liao JY, Yin D. PerturbDB for unraveling gene functions and regulatory networks. Nucleic Acids Res 2025; 53:D1120-D1131. [PMID: 39265120 PMCID: PMC11701683 DOI: 10.1093/nar/gkae777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/26/2024] [Accepted: 09/05/2024] [Indexed: 09/14/2024] Open
Abstract
Perturb-Seq combines CRISPR (clustered regularly interspaced short palindromic repeats)-based genetic screens with single-cell RNA sequencing readouts for high-content phenotypic screens. Despite the rapid accumulation of Perturb-Seq datasets, there remains a lack of a user-friendly platform for their efficient reuse. Here, we developed PerturbDB (http://research.gzsys.org.cn/perturbdb), a platform to help users unveil gene functions using Perturb-Seq datasets. PerturbDB hosts 66 Perturb-Seq datasets, which encompass 4 518 521 single-cell transcriptomes derived from the knockdown of 10 194 genes across 19 different cell lines. All datasets were uniformly processed using the Mixscape algorithm. Genes were clustered by their perturbed transcriptomic phenotypes derived from Perturb-Seq data, resulting in 421 gene clusters, 157 of which were stable across different cellular contexts. Through integrating chemically perturbed transcriptomes with Perturb-Seq data, we identified 552 potential inhibitors targeting 1409 genes, including an mammalian target of rapamycin (mTOR) signaling inhibitor, retinol, which was experimentally verified. Moreover, we developed a 'Cancer' module to facilitate the understanding of the regulatory role of genes in cancer using Perturb-Seq data. An interactive web interface has also been developed, enabling users to visualize, analyze and download all the comprehensive datasets available in PerturbDB. PerturbDB will greatly drive gene functional studies and enhance our understanding of the regulatory roles of genes in diseases such as cancer.
Collapse
Affiliation(s)
- Bing Yang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong–Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan Jiang West Road, Guangzhou, Guangdong, 510120, China
| | - Man Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong–Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan Jiang West Road, Guangzhou, Guangdong, 510120, China
| | - Yanmei Shi
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong–Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan Jiang West Road, Guangzhou, Guangdong, 510120, China
| | - Bing-Qi Zheng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong–Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan Jiang West Road, Guangzhou, Guangdong, 510120, China
| | - Chuanping Shi
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong–Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan Jiang West Road, Guangzhou, Guangdong, 510120, China
| | - Daning Lu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong–Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan Jiang West Road, Guangzhou, Guangdong, 510120, China
| | - Zhi-Zhi Yang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong–Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan Jiang West Road, Guangzhou, Guangdong, 510120, China
| | - Yi-Ming Dong
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong–Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan Jiang West Road, Guangzhou, Guangdong, 510120, China
| | - Liwen Zhu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong–Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan Jiang West Road, Guangzhou, Guangdong, 510120, China
| | - Xingyu Ma
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong–Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan Jiang West Road, Guangzhou, Guangdong, 510120, China
| | - Jingyuan Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong–Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan Jiang West Road, Guangzhou, Guangdong, 510120, China
| | - Jiehua He
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong–Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan Jiang West Road, Guangzhou, Guangdong, 510120, China
| | - Yin Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong–Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan Jiang West Road, Guangzhou, Guangdong, 510120, China
| | - Kaishun Hu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong–Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan Jiang West Road, Guangzhou, Guangdong, 510120, China
| | - Haoming Lin
- HBP Surgery Department, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan Jiang West Road, Guangzhou, Guangdong, 510120, China
| | - Jian-You Liao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong–Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan Jiang West Road, Guangzhou, Guangdong, 510120, China
- Center for Precision Medicine, Shenshan Central Hospital, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 1 Heng Er Road, Dongyong Town, Shanwei, Guangdong, 516621, China
| | - Dong Yin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong–Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan Jiang West Road, Guangzhou, Guangdong, 510120, China
| |
Collapse
|
14
|
Yin JA, Frick L, Scheidmann MC, Liu T, Trevisan C, Dhingra A, Spinelli A, Wu Y, Yao L, Vena DL, Knapp B, Guo J, De Cecco E, Ging K, Armani A, Oakeley EJ, Nigsch F, Jenzer J, Haegele J, Pikusa M, Täger J, Rodriguez-Nieto S, Bouris V, Ribeiro R, Baroni F, Bedi MS, Berry S, Losa M, Hornemann S, Kampmann M, Pelkmans L, Hoepfner D, Heutink P, Aguzzi A. Arrayed CRISPR libraries for the genome-wide activation, deletion and silencing of human protein-coding genes. Nat Biomed Eng 2025; 9:127-148. [PMID: 39633028 PMCID: PMC11754104 DOI: 10.1038/s41551-024-01278-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 10/04/2024] [Indexed: 12/07/2024]
Abstract
Arrayed CRISPR libraries extend the scope of gene-perturbation screens to non-selectable cell phenotypes. However, library generation requires assembling thousands of vectors expressing single-guide RNAs (sgRNAs). Here, by leveraging massively parallel plasmid-cloning methodology, we show that arrayed libraries can be constructed for the genome-wide ablation (19,936 plasmids) of human protein-coding genes and for their activation and epigenetic silencing (22,442 plasmids), with each plasmid encoding an array of four non-overlapping sgRNAs designed to tolerate most human DNA polymorphisms. The quadruple-sgRNA libraries yielded high perturbation efficacies in deletion (75-99%) and silencing (76-92%) experiments and substantial fold changes in activation experiments. Moreover, an arrayed activation screen of 1,634 human transcription factors uncovered 11 novel regulators of the cellular prion protein PrPC, screening with a pooled version of the ablation library led to the identification of 5 novel modifiers of autophagy that otherwise went undetected, and 'post-pooling' individually produced lentiviruses eliminated template-switching artefacts and enhanced the performance of pooled screens for epigenetic silencing. Quadruple-sgRNA arrayed libraries are a powerful and versatile resource for targeted genome-wide perturbations.
Collapse
Grants
- A.A. is supported by institutional core funding by the University of Zurich and the University Hospital of Zurich, and is the recipient of grants from the Nomis Foundation, the Swiss National Research Foundation (grant ID 179040 and grant ID 207872, Sinergia grant ID 183563), the Swiss Personal-ized Health Network (SPHN, 2017DRI17), an Advanced Grant of the European Research Council (ERC Prion2020 No. 670958), the HMZ ImmunoTarget grant, the Human Frontiers Science Pro-gram (grant ID RGP0001/2022), the Michael J. Fox Foundation (grant ID MJFF-022156), Swissuni-versities (CRISPR4ALL), and a donation from the estate of Dr. Hans Salvisberg.
- J-A.Y. is the recip-ient of the postdoc grant Forschungskredit from University of Zurich and the Career Development Awards grant of the Synapsis Foundation – Alzheimer Research Switzerland ARS (Grant ID 2021-CDA02).
- China Scholarship Council
Collapse
Affiliation(s)
- Jiang-An Yin
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland.
| | - Lukas Frick
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Manuel C Scheidmann
- Novartis Institutes for Biomedical Research, Novartis Campus, Basel, Switzerland
| | - Tingting Liu
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Chiara Trevisan
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Ashutosh Dhingra
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Anna Spinelli
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Yancheng Wu
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Longping Yao
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Dalila Laura Vena
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Britta Knapp
- Novartis Institutes for Biomedical Research, Novartis Campus, Basel, Switzerland
| | - Jingjing Guo
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Elena De Cecco
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Kathi Ging
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Andrea Armani
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
- Department of Biomedical Sciences, University of Padua, Padova, Italy
| | - Edward J Oakeley
- Novartis Institutes for Biomedical Research, Novartis Campus, Basel, Switzerland
| | - Florian Nigsch
- Novartis Institutes for Biomedical Research, Novartis Campus, Basel, Switzerland
| | - Joel Jenzer
- Novartis Institutes for Biomedical Research, Novartis Campus, Basel, Switzerland
| | - Jasmin Haegele
- Novartis Institutes for Biomedical Research, Novartis Campus, Basel, Switzerland
| | - Michal Pikusa
- Novartis Institutes for Biomedical Research, Novartis Campus, Basel, Switzerland
| | - Joachim Täger
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | | | - Vangelis Bouris
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Rafaela Ribeiro
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Federico Baroni
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Manmeet Sakshi Bedi
- Novartis Institutes for Biomedical Research, Novartis Campus, Basel, Switzerland
| | - Scott Berry
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Marco Losa
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Simone Hornemann
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Martin Kampmann
- Institute for Neurodegenerative Diseases, Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - Lucas Pelkmans
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Dominic Hoepfner
- Novartis Institutes for Biomedical Research, Novartis Campus, Basel, Switzerland
| | - Peter Heutink
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Adriano Aguzzi
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
15
|
Xu D, Besselink S, Ramadoss GN, Dierks PH, Lubin JP, Pattali RK, Brim JI, Christenson AE, Colias PJ, Ornelas IJ, Nguyen CD, Chasins SE, Conklin BR, Nuñez JK. Programmable epigenome editing by transient delivery of CRISPR epigenome editor ribonucleoproteins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.26.625496. [PMID: 39651312 PMCID: PMC11623636 DOI: 10.1101/2024.11.26.625496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Programmable epigenome editors modify gene expression in mammalian cells by altering the local chromatin environment at target loci without inducing DNA breaks. However, the large size of CRISPR-based epigenome editors poses a challenge to their broad use in biomedical research and as future therapies. Here, we present Robust ENveloped Delivery of Epigenome-editor Ribonucleoproteins (RENDER) for transiently delivering programmable epigenetic repressors (CRISPRi, DNMT3A-3L-dCas9, CRISPRoff) and activator (TET1-dCas9) as ribonucleoprotein complexes into human cells to modulate gene expression. After rational engineering, we show that RENDER induces durable epigenetic silencing of endogenous genes across various human cell types, including primary T cells. Additionally, we apply RENDER to epigenetically repress endogenous genes in human stem cell-derived neurons, including the reduction of the neurodegenerative disease associated V337M-mutated Tau protein. Together, our RENDER platform advances the delivery of CRISPR-based epigenome editors into human cells, broadening the use of epigenome editing in fundamental research and therapeutic applications.
Collapse
|
16
|
Allen J, Meglan A, Vaccaro K, Velarde J, Chen V, Ribeiro J, Blandin J, Gupta S, Mishra R, Ho R, Love J, Reinhardt F, Bell GW, Chen J, Weinberg R, Yang D, Weissman J, Weiskopf K. CD47 predominates over CD24 as a macrophage immune checkpoint in cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.25.625185. [PMID: 39651307 PMCID: PMC11623506 DOI: 10.1101/2024.11.25.625185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Macrophages hold tremendous promise as effectors of cancer immunotherapy, but the best strategies to provoke these cells to attack tumors remain unknown. Here, we evaluated the therapeutic potential of targeting two distinct macrophage immune checkpoints: CD47 and CD24. We found that antibodies targeting these antigens could elicit maximal levels of phagocytosis when combined together in vitro. However, to our surprise, via unbiased genome-wide CRISPR screens, we found that CD24 primarily acts as a target of opsonization rather than an immune checkpoint. In a series of in vitro and in vivo genetic validation studies, we found that CD24 was neither necessary nor sufficient to protect cancer cells from macrophage phagocytosis in most mouse and human tumor models. Instead, anti-CD24 antibodies exhibit robust Fc-dependent activity, and as a consequence, they cause significant on-target hematologic toxicity in mice. To overcome these challenges and leverage our findings for therapeutic purposes, we engineered a collection of 77 novel bispecific antibodies that bind to a tumor antigen with one arm and engage macrophages with the second arm. We discovered multiple novel bispecifics that maximally activate macrophage-mediated cytotoxicity and reduce binding to healthy blood cells, including bispecifics targeting macrophage immune checkpoint molecules in combination with EGFR, TROP2, and CD71. Overall, our findings indicate that CD47 predominates over CD24 as a macrophage immune checkpoint in cancer, and that the novel bispecifics we created may be optimal immunotherapies to direct myeloid cells to eradicate solid tumors.
Collapse
|
17
|
Tycko J, Van MV, Aradhana, DelRosso N, Ye H, Yao D, Valbuena R, Vaughan-Jackson A, Xu X, Ludwig C, Spees K, Liu K, Gu M, Khare V, Mukund AX, Suzuki PH, Arana S, Zhang C, Du PP, Ornstein TS, Hess GT, Kamber RA, Qi LS, Khalil AS, Bintu L, Bassik MC. Development of compact transcriptional effectors using high-throughput measurements in diverse contexts. Nat Biotechnol 2024:10.1038/s41587-024-02442-6. [PMID: 39487265 PMCID: PMC12043968 DOI: 10.1038/s41587-024-02442-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 09/20/2024] [Indexed: 11/04/2024]
Abstract
Transcriptional effectors are protein domains known to activate or repress gene expression; however, a systematic understanding of which effector domains regulate transcription across genomic, cell type and DNA-binding domain (DBD) contexts is lacking. Here we develop dCas9-mediated high-throughput recruitment (HT-recruit), a pooled screening method for quantifying effector function at endogenous target genes and test effector function for a library containing 5,092 nuclear protein Pfam domains across varied contexts. We also map context dependencies of effectors drawn from unannotated protein regions using a larger library tiling chromatin regulators and transcription factors. We find that many effectors depend on target and DBD contexts, such as HLH domains that can act as either activators or repressors. To enable efficient perturbations, we select context-robust domains, including ZNF705 KRAB, that improve CRISPRi tools to silence promoters and enhancers. We engineer a compact human activator called NFZ, by combining NCOA3, FOXO3 and ZNF473 domains, which enables efficient CRISPRa with better viral delivery and inducible control of chimeric antigen receptor T cells.
Collapse
Affiliation(s)
- Josh Tycko
- Department of Genetics, Stanford University, Stanford, CA, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Mike V Van
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Aradhana
- Department of Genetics, Stanford University, Stanford, CA, USA
| | | | - Hanrong Ye
- Department of Biomedical Engineering and Biological Design Center, Boston University, Boston, MA, USA
| | - David Yao
- Department of Genetics, Stanford University, Stanford, CA, USA
| | | | - Alun Vaughan-Jackson
- Department of Genetics, Stanford University, Stanford, CA, USA
- Chan Zuckerberg Biohub-San Francisco, San Francisco, CA, USA
| | - Xiaoshu Xu
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Connor Ludwig
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Kaitlyn Spees
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Katherine Liu
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Mingxin Gu
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Venya Khare
- Department of Biomedical Engineering and Biological Design Center, Boston University, Boston, MA, USA
| | | | - Peter H Suzuki
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Sophia Arana
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Catherine Zhang
- Department of Cancer Biology, Stanford University, Stanford, CA, USA
| | - Peter P Du
- Department of Cancer Biology, Stanford University, Stanford, CA, USA
| | - Thea S Ornstein
- Department of Biomedical Engineering and Biological Design Center, Boston University, Boston, MA, USA
| | - Gaelen T Hess
- Department of Biomolecular Chemistry and Center for Human Genomics and Precision Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Roarke A Kamber
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Lei S Qi
- Chan Zuckerberg Biohub-San Francisco, San Francisco, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | - Ahmad S Khalil
- Department of Biomedical Engineering and Biological Design Center, Boston University, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Lacramioara Bintu
- Department of Bioengineering, Stanford University, Stanford, CA, USA.
| | - Michael C Bassik
- Department of Genetics, Stanford University, Stanford, CA, USA.
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA.
| |
Collapse
|
18
|
Liu SJ, Zou C, Pak J, Morse A, Pang D, Casey-Clyde T, Borah AA, Wu D, Seo K, O'Loughlin T, Lim DA, Ozawa T, Berger MS, Kamber RA, Weiss WA, Raleigh DR, Gilbert LA. In vivo perturb-seq of cancer and microenvironment cells dissects oncologic drivers and radiotherapy responses in glioblastoma. Genome Biol 2024; 25:256. [PMID: 39375777 PMCID: PMC11457336 DOI: 10.1186/s13059-024-03404-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 09/26/2024] [Indexed: 10/09/2024] Open
Abstract
BACKGROUND Genetic perturbation screens with single-cell readouts have enabled rich phenotyping of gene function and regulatory networks. These approaches have been challenging in vivo, especially in adult disease models such as cancer, which include mixtures of malignant and microenvironment cells. Glioblastoma (GBM) is a fatal cancer, and methods of systematically interrogating gene function and therapeutic targets in vivo, especially in combination with standard of care treatment such as radiotherapy, are lacking. RESULTS Here, we iteratively develop a multiplex in vivo perturb-seq CRISPRi platform for single-cell genetic screens in cancer and tumor microenvironment cells that leverages intracranial convection enhanced delivery of sgRNA libraries into mouse models of GBM. Our platform enables potent silencing of drivers of in vivo growth and tumor maintenance as well as genes that sensitize GBM to radiotherapy. We find radiotherapy rewires transcriptional responses to genetic perturbations in an in vivo-dependent manner, revealing heterogenous patterns of treatment sensitization or resistance in GBM. Furthermore, we demonstrate targeting of genes that function in the tumor microenvironment, enabling alterations of ligand-receptor interactions between immune and stromal cells following in vivo CRISPRi perturbations that can affect tumor cell phagocytosis. CONCLUSION In sum, we demonstrate the utility of multiplexed perturb-seq for in vivo single-cell dissection of adult cancer and normal tissue biology across multiple cell types in the context of therapeutic intervention, a platform with potential for broad application.
Collapse
Affiliation(s)
- S John Liu
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, 94143, USA
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, 94143, USA
- Arc Institute, Palo Alto, CA, 94304, USA
| | - Christopher Zou
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, 94143, USA
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Joanna Pak
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, 94143, USA
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Alexandra Morse
- Department of Anatomy, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Dillon Pang
- Department of Anatomy, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Timothy Casey-Clyde
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, 94143, USA
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, 94143, USA
- Department of Pathology, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Ashir A Borah
- Arc Institute, Palo Alto, CA, 94304, USA
- Biological and Medical Informatics Graduate Program, University of California San Francisco, San Francisco, CA, 94143, USA
| | - David Wu
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Kyounghee Seo
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, 94143, USA
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, 94143, USA
- Department of Pathology, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Thomas O'Loughlin
- Department of Neuroscience, Icahn School of Medicine, Mount Sinai, New York, NY, 10029, USA
| | - Daniel A Lim
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Tomoko Ozawa
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Mitchel S Berger
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Roarke A Kamber
- Department of Anatomy, University of California San Francisco, San Francisco, CA, 94143, USA
| | - William A Weiss
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, 94143, USA
- Departments of Pediatrics, Neurology, and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, 94143, USA
| | - David R Raleigh
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, 94143, USA.
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, 94143, USA.
- Department of Pathology, University of California San Francisco, San Francisco, CA, 94143, USA.
| | - Luke A Gilbert
- Arc Institute, Palo Alto, CA, 94304, USA.
- Department of Urology, University of California San Francisco, San Francisco, CA, 94143, USA.
| |
Collapse
|
19
|
Ryan VH, Lawton S, Reyes JF, Hawrot J, Frankenfield AM, Seddighi S, Ramos DM, Faghri F, Johnson NL, Zou J, Kampmann M, Replogle J, Yuan H, Johnson KR, Maric D, Hao L, Nalls MA, Ward ME. Maintenance of neuronal TDP-43 expression requires axonal lysosome transport. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.30.615241. [PMID: 39803527 PMCID: PMC11722429 DOI: 10.1101/2024.09.30.615241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/21/2025]
Abstract
TDP-43 mislocalization and pathology occurs across a range of neurodegenerative diseases, but the pathways that modulate TDP-43 in neurons are not well understood. We generated a Halo-TDP-43 knock-in iPSC line and performed a genome-wide CRISPR interference FACS-based screen to identify modifiers of TDP-43 levels in neurons. A meta-analysis of our screen and publicly available screens identified both specific hits and pathways present across multiple screens, the latter likely responsible for generic protein level maintenance. We identified BORC, a complex required for anterograde lysosome transport, as a specific modifier of TDP-43 protein, but not mRNA, levels in neurons. BORC loss led to longer half-life of TDP-43 and other proteins, suggesting lysosome location is required for proper protein turnover. As such, lysosome location and function are crucial for maintaining TDP-43 protein levels in neurons.
Collapse
Affiliation(s)
- Veronica H Ryan
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- Center for Alzheimer's and Related Dementias, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Sydney Lawton
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Joel F Reyes
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - James Hawrot
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | | | - Sahba Seddighi
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Daniel M Ramos
- Center for Alzheimer's and Related Dementias, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Faraz Faghri
- Center for Alzheimer's and Related Dementias, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- DataTecnica, Washington, DC, USA
| | - Nicholas L Johnson
- Center for Alzheimer's and Related Dementias, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- DataTecnica, Washington, DC, USA
| | - Jizhong Zou
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Martin Kampmann
- Institute for Neurodegenerative Diseases, Weill Institute for Neurosciences, and Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - John Replogle
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Hebao Yuan
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Kory R Johnson
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Dragan Maric
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Ling Hao
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, USA
| | - Mike A Nalls
- Center for Alzheimer's and Related Dementias, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- DataTecnica, Washington, DC, USA
| | - Michael E Ward
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
20
|
Wang X, Lalli M, Thopte U, Buxbaum JD. A scalable, high-throughput neural development platform identifies shared impact of ASD genes on cell fate and differentiation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.25.614184. [PMID: 39386704 PMCID: PMC11463611 DOI: 10.1101/2024.09.25.614184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Background Deleterious mutations in hundreds of genes confer high risk for neurodevelopmental disorders (NDDs), posing significant challenges for therapeutic development. Identifying convergent pathways shared across NDD genes could reveal high-impact therapeutic targets. Methods To identity convergent pathways in NDD genes, we optimized Perturb-seq, a method combining CRISPR perturbation with single-cell RNA sequencing (scRNA-seq), and applied structural topic modeling (STM) to simultaneously assess impact on cell fate and developmental stage. We then studied a subset of autism spectrum disorder (ASD) genes implicated in regulation of gene expression using these improved molecular and analytical approaches. Results Results from targeting 60 high-confidence ASD risk genes revealed significant effects on neural development. As expected, ASD risk genes impacted both progenitor fate and/or neuronal differentiation. Using STM, we could identify latent topics jointly capturing cell types, cell fate, and differentiation stages. Repression of ASD risk genes led to changes in topic proportions and effects of four genes (DEAF1, KMT2A, MED13L, and MYT1L) were validated in an independent dataset. Conclusions Our optimized Perturb-seq method, combined with a novel analytical approach, provides a powerful, cost-effective framework for uncovering convergent mechanisms among genes involved in complex neurodevelopmental processes. Application of these methods advanced understanding of the impact of ASD mutations on multiple dimensions of neural development, and provides a framework for a broader examination of the function of NDD risk genes.
Collapse
Affiliation(s)
- Xuran Wang
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York NY, USA; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York NY, USA
| | - Matthew Lalli
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Urvashi Thopte
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Joseph D. Buxbaum
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York NY, USA; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York NY, USA
| |
Collapse
|
21
|
Kim J, Muller RY, Bondra ER, Ingolia NT. CRISPRi with barcoded expression reporters dissects regulatory networks in human cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.06.611573. [PMID: 39282439 PMCID: PMC11398470 DOI: 10.1101/2024.09.06.611573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
Genome-wide CRISPR screens have emerged as powerful tools for uncovering the genetic underpinnings of diverse biological processes. Incisive screens often depend on directly measuring molecular phenotypes, such as regulated gene expression changes, provoked by CRISPR-mediated genetic perturbations. Here, we provide quantitative measurements of transcriptional responses in human cells across genome-scale perturbation libraries by coupling CRISPR interference (CRISPRi) with barcoded expression reporter sequencing (CiBER-seq). To enable CiBER-seq in mammalian cells, we optimize the integration of highly complex, barcoded sgRNA libraries into a defined genomic context. CiBER-seq profiling of a nuclear factor kappa B (NF-κB) reporter delineates the canonical signaling cascade linking the transmembrane TNF-alpha receptor to inflammatory gene activation and highlights cell-type-specific factors in this response. Importantly, CiBER-seq relies solely on bulk RNA sequencing to capture the regulatory circuit driving this rapid transcriptional response. Our work demonstrates the accuracy of CiBER-seq and its potential for dissecting genetic networks in mammalian cells with superior time resolution.
Collapse
Affiliation(s)
- Jinyoung Kim
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Ryan Y. Muller
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Eliana R. Bondra
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Nicholas T. Ingolia
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
- Center for Computational Biology, University of California, Berkeley, Berkeley, CA 94720, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
22
|
Leng K, Rooney B, McCarthy F, Xia W, Rose IVL, Bax S, Chin M, Fathi S, Herrington KA, Leonetti M, Kao A, Fancy SPJ, Elias JE, Kampmann M. mTOR activation induces endolysosomal remodeling and nonclassical secretion of IL-32 via exosomes in inflammatory reactive astrocytes. J Neuroinflammation 2024; 21:198. [PMID: 39118084 PMCID: PMC11312292 DOI: 10.1186/s12974-024-03165-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/03/2024] [Indexed: 08/10/2024] Open
Abstract
Astrocytes respond and contribute to neuroinflammation by adopting inflammatory reactive states. Although recent efforts have characterized the gene expression signatures associated with these reactive states, the cell biology underlying inflammatory reactive astrocyte phenotypes remains under-explored. Here, we used CRISPR-based screening in human iPSC-derived astrocytes to identify mTOR activation a driver of cytokine-induced endolysosomal system remodeling, manifesting as alkalinization of endolysosomal compartments, decreased autophagic flux, and increased exocytosis of certain endolysosomal cargos. Through endolysosomal proteomics, we identified and focused on one such cargo-IL-32, a disease-associated pro-inflammatory cytokine not present in rodents, whose secretion mechanism is not well understood. We found that IL-32 was partially secreted in extracellular vesicles likely to be exosomes. Furthermore, we found that IL-32 was involved in the polarization of inflammatory reactive astrocyte states and was upregulated in astrocytes in multiple sclerosis lesions. We believe that our results advance our understanding of cell biological pathways underlying inflammatory reactive astrocyte phenotypes and identify potential therapeutic targets.
Collapse
Affiliation(s)
- Kun Leng
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA.
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA.
- Medical Scientist Training Program, University of California, San Francisco, San Francisco, CA, USA.
| | - Brendan Rooney
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA
| | | | - Wenlong Xia
- Departments of Neurology and Pediatrics, School of Medicine, University of California, San Francisco, CA, USA
| | - Indigo V L Rose
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA, USA
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Sophie Bax
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Marcus Chin
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
- Small Molecule Discovery Center, Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
| | - Saeed Fathi
- Medical Scientist Training Program, University of California, San Francisco, San Francisco, CA, USA
| | - Kari A Herrington
- Center for Advanced Microscopy, University of California, San Francisco, San Francisco, CA, USA
| | | | - Aimee Kao
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Stephen P J Fancy
- Departments of Neurology and Pediatrics, School of Medicine, University of California, San Francisco, CA, USA
| | | | - Martin Kampmann
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA.
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA.
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
23
|
Danac JMC, Matthews RE, Gungi A, Qin C, Parsons H, Antrobus R, Timms RT, Tchasovnikarova IA. Competition between two HUSH complexes orchestrates the immune response to retroelement invasion. Mol Cell 2024; 84:2870-2881.e5. [PMID: 39013473 DOI: 10.1016/j.molcel.2024.06.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/31/2024] [Accepted: 06/20/2024] [Indexed: 07/18/2024]
Abstract
The human silencing hub (HUSH) preserves genome integrity through the epigenetic repression of invasive genetic elements. However, despite our understanding of HUSH as an obligate complex of three subunits, only loss of MPP8 or Periphilin, but not TASOR, triggers interferon signaling following derepression of endogenous retroelements. Here, we resolve this paradox by characterizing a second HUSH complex that shares MPP8 and Periphilin but assembles around TASOR2, an uncharacterized paralog of TASOR. Whereas HUSH represses LINE-1 retroelements marked by the repressive histone modification H3K9me3, HUSH2 is recruited by the transcription factor IRF2 to repress interferon-stimulated genes. Mechanistically, HUSH-mediated retroelement silencing sequesters the limited pool of the shared subunits MPP8 and Periphilin, preventing TASOR2 from forming HUSH2 complexes and hence relieving the HUSH2-mediated repression of interferon-stimulated genes. Thus, competition between two HUSH complexes intertwines retroelement silencing with the induction of an immune response, coupling epigenetic and immune aspects of genome defense.
Collapse
Affiliation(s)
- Joshua Miguel C Danac
- The Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK; Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Rachael E Matthews
- The Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK; Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Akhila Gungi
- The Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK; Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Chuyan Qin
- The Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK; Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Harriet Parsons
- Department of Medicine, Cambridge Institute for Medical Research, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0XY, UK
| | - Robin Antrobus
- Department of Medicine, Cambridge Institute for Medical Research, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0XY, UK
| | - Richard T Timms
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, Cambridge CB2 0AW, UK
| | - Iva A Tchasovnikarova
- The Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK; Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK.
| |
Collapse
|
24
|
Southard KM, Ardy RC, Tang A, O’Sullivan DD, Metzner E, Guruvayurappan K, Norman TM. Comprehensive transcription factor perturbations recapitulate fibroblast transcriptional states. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.31.606073. [PMID: 39131349 PMCID: PMC11312553 DOI: 10.1101/2024.07.31.606073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Cell atlas projects have nominated recurrent transcriptional states as drivers of biological processes and disease, but their origins, regulation, and properties remain unclear. To enable complementary functional studies, we developed a scalable approach for recapitulating cell states in vitro using CRISPR activation (CRISPRa) Perturb-seq. Aided by a novel multiplexing method, we activated 1,836 transcription factors in two cell types. Measuring 21,958 perturbations showed that CRISPRa activated targets within physiological ranges, that epigenetic features predicted activatable genes, and that the protospacer seed region drove an off-target effect. Perturbations recapitulated in vivo fibroblast states, including universal and inflammatory states, and identified KLF4 and KLF5 as key regulators of the universal state. Inducing the universal state suppressed disease-associated states, highlighting its therapeutic potential. Our findings cement CRISPRa as a tool for perturbing differentiated cells and indicate that in vivo states can be elicited via perturbation, enabling studies of clinically relevant states ex vivo.
Collapse
Affiliation(s)
- Kaden M. Southard
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Rico C. Ardy
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Anran Tang
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Deirdre D. O’Sullivan
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Tri-Institutional Training Program in Computational Biology and Medicine, New York, NY, USA
| | - Eli Metzner
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Tri-Institutional Training Program in Computational Biology and Medicine, New York, NY, USA
| | - Karthik Guruvayurappan
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Tri-Institutional Training Program in Computational Biology and Medicine, New York, NY, USA
| | - Thomas M. Norman
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
25
|
Rodríguez TC, Yurkovetskiy L, Nagalekshmi K, Lam CHO, Jazbec E, Maitland SA, Wolfe SA, Sontheimer EJ, Luban J. PRC1.6 localizes on chromatin with the human silencing hub (HUSH) complex for promoter-specific silencing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.12.603173. [PMID: 39026796 PMCID: PMC11257501 DOI: 10.1101/2024.07.12.603173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
An obligate step in the life cycle of HIV-1 and other retroviruses is the establishment of the provirus in target cell chromosomes. Transcriptional regulation of proviruses is complex, and understanding the mechanisms underlying this regulation has ramifications for fundamental biology, human health, and gene therapy implementation. The three core components of the Human Silencing Hub (HUSH) complex, TASOR, MPHOSPH8 (MPP8), and PPHLN1 (Periphilin 1), were identified in forward genetic screens for host genes that repress provirus expression. Subsequent loss-of-function screens revealed accessory proteins that collaborate with the HUSH complex to silence proviruses in particular contexts. To identify proteins associated with a HUSH complex-repressed provirus in human cells, we developed a technique, Provirus Proximal Proteomics, based on proximity labeling with C-BERST (dCas9-APEX2 biotinylation at genomic elements by restricted spatial tagging). Our screen exploited a lentiviral reporter that is silenced by the HUSH complex in a manner that is independent of the integration site in chromatin. Our data reveal that proviruses silenced by the HUSH complex are associated with DNA repair, mRNA processing, and transcriptional silencing proteins, including L3MBTL2, a member of the non-canonical polycomb repressive complex 1.6 (PRC1.6). A forward genetic screen confirmed that PRC1.6 components L3MBTL2 and MGA contribute to HUSH complex-mediated silencing. PRC1.6 was then shown to silence HUSH-sensitive proviruses in a promoter-specific manner. Genome wide profiling showed striking colocalization of the PRC1.6 and HUSH complexes on chromatin, primarily at sites of active promoters. Finally, PRC1.6 binding at a subset of genes that are silenced by the HUSH complex was dependent on the core HUSH complex component MPP8. These studies offer new tools with great potential for studying the transcriptional regulation of proviruses and reveal crosstalk between the HUSH complex and PRC1.6.
Collapse
Affiliation(s)
- Tomás C. Rodríguez
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Leonid Yurkovetskiy
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Karthika Nagalekshmi
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Chin Hung Oscar Lam
- Graduate School of Biomedical Sciences, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Eva Jazbec
- Graduate School of Biomedical Sciences, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Stacy A. Maitland
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Scot A. Wolfe
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Erik J. Sontheimer
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Jeremy Luban
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
- Massachusetts Consortium on Pathogen Readiness, Boston, MA 02115, USA
| |
Collapse
|
26
|
Edenhofer FC, Térmeg A, Ohnuki M, Jocher J, Kliesmete Z, Briem E, Hellmann I, Enard W. Generation and characterization of inducible KRAB-dCas9 iPSCs from primates for cross-species CRISPRi. iScience 2024; 27:110090. [PMID: 38947524 PMCID: PMC11214527 DOI: 10.1016/j.isci.2024.110090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 03/28/2024] [Accepted: 05/21/2024] [Indexed: 07/02/2024] Open
Abstract
Comparisons of molecular phenotypes across primates provide unique information to understand human biology and evolution, and single-cell RNA-seq CRISPR interference (CRISPRi) screens are a powerful approach to analyze them. Here, we generate and validate three human, three gorilla, and two cynomolgus iPS cell lines that carry a dox-inducible KRAB-dCas9 construct at the AAVS1 locus. We show that despite variable expression levels of KRAB-dCas9 among lines, comparable downregulation of target genes and comparable phenotypic effects are observed in a single-cell RNA-seq CRISPRi screen. Hence, we provide valuable resources for performing and further extending CRISPRi in human and non-human primates.
Collapse
Affiliation(s)
- Fiona C. Edenhofer
- Anthropology and Human Genomics, Faculty of Biology, Ludwig-Maximilians-Universität München, 82152 Planegg, Germany
| | - Anita Térmeg
- Anthropology and Human Genomics, Faculty of Biology, Ludwig-Maximilians-Universität München, 82152 Planegg, Germany
| | - Mari Ohnuki
- Anthropology and Human Genomics, Faculty of Biology, Ludwig-Maximilians-Universität München, 82152 Planegg, Germany
- Institute for the Advanced Study of Human Biology, Kyoto University, Kyoto 606-8501, Japan
- Hakubi Center, Kyoto University, Kyoto 606-8501, Japan
| | - Jessica Jocher
- Anthropology and Human Genomics, Faculty of Biology, Ludwig-Maximilians-Universität München, 82152 Planegg, Germany
| | - Zane Kliesmete
- Anthropology and Human Genomics, Faculty of Biology, Ludwig-Maximilians-Universität München, 82152 Planegg, Germany
| | - Eva Briem
- Anthropology and Human Genomics, Faculty of Biology, Ludwig-Maximilians-Universität München, 82152 Planegg, Germany
| | - Ines Hellmann
- Anthropology and Human Genomics, Faculty of Biology, Ludwig-Maximilians-Universität München, 82152 Planegg, Germany
| | - Wolfgang Enard
- Anthropology and Human Genomics, Faculty of Biology, Ludwig-Maximilians-Universität München, 82152 Planegg, Germany
| |
Collapse
|
27
|
Villiger L, Joung J, Koblan L, Weissman J, Abudayyeh OO, Gootenberg JS. CRISPR technologies for genome, epigenome and transcriptome editing. Nat Rev Mol Cell Biol 2024; 25:464-487. [PMID: 38308006 DOI: 10.1038/s41580-023-00697-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2023] [Indexed: 02/04/2024]
Abstract
Our ability to edit genomes lags behind our capacity to sequence them, but the growing understanding of CRISPR biology and its application to genome, epigenome and transcriptome engineering is narrowing this gap. In this Review, we discuss recent developments of various CRISPR-based systems that can transiently or permanently modify the genome and the transcriptome. The discovery of further CRISPR enzymes and systems through functional metagenomics has meaningfully broadened the applicability of CRISPR-based editing. Engineered Cas variants offer diverse capabilities such as base editing, prime editing, gene insertion and gene regulation, thereby providing a panoply of tools for the scientific community. We highlight the strengths and weaknesses of current CRISPR tools, considering their efficiency, precision, specificity, reliance on cellular DNA repair mechanisms and their applications in both fundamental biology and therapeutics. Finally, we discuss ongoing clinical trials that illustrate the potential impact of CRISPR systems on human health.
Collapse
Affiliation(s)
- Lukas Villiger
- McGovern Institute for Brain Research, Massachusetts Institute of Technology Cambridge, Cambridge, MA, USA
| | - Julia Joung
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Luke Koblan
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jonathan Weissman
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Omar O Abudayyeh
- McGovern Institute for Brain Research, Massachusetts Institute of Technology Cambridge, Cambridge, MA, USA.
| | - Jonathan S Gootenberg
- McGovern Institute for Brain Research, Massachusetts Institute of Technology Cambridge, Cambridge, MA, USA.
| |
Collapse
|
28
|
Mowery CT, Freimer JW, Chen Z, Casaní-Galdón S, Umhoefer JM, Arce MM, Gjoni K, Daniel B, Sandor K, Gowen BG, Nguyen V, Simeonov DR, Garrido CM, Curie GL, Schmidt R, Steinhart Z, Satpathy AT, Pollard KS, Corn JE, Bernstein BE, Ye CJ, Marson A. Systematic decoding of cis gene regulation defines context-dependent control of the multi-gene costimulatory receptor locus in human T cells. Nat Genet 2024; 56:1156-1167. [PMID: 38811842 PMCID: PMC11176074 DOI: 10.1038/s41588-024-01743-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 04/04/2024] [Indexed: 05/31/2024]
Abstract
Cis-regulatory elements (CREs) interact with trans regulators to orchestrate gene expression, but how transcriptional regulation is coordinated in multi-gene loci has not been experimentally defined. We sought to characterize the CREs controlling dynamic expression of the adjacent costimulatory genes CD28, CTLA4 and ICOS, encoding regulators of T cell-mediated immunity. Tiling CRISPR interference (CRISPRi) screens in primary human T cells, both conventional and regulatory subsets, uncovered gene-, cell subset- and stimulation-specific CREs. Integration with CRISPR knockout screens and assay for transposase-accessible chromatin with sequencing (ATAC-seq) profiling identified trans regulators influencing chromatin states at specific CRISPRi-responsive elements to control costimulatory gene expression. We then discovered a critical CCCTC-binding factor (CTCF) boundary that reinforces CRE interaction with CTLA4 while also preventing promiscuous activation of CD28. By systematically mapping CREs and associated trans regulators directly in primary human T cell subsets, this work overcomes longstanding experimental limitations to decode context-dependent gene regulatory programs in a complex, multi-gene locus critical to immune homeostasis.
Collapse
Grants
- P30 DK063720 NIDDK NIH HHS
- R01 HG008140 NHGRI NIH HHS
- T32 GM007618 NIGMS NIH HHS
- S10 OD028511 NIH HHS
- F99 CA234842 NCI NIH HHS
- S10 OD021822 NIH HHS
- K00 CA234842 NCI NIH HHS
- P01 AI138962 NIAID NIH HHS
- U01 HL157989 NHLBI NIH HHS
- R01 DK129364 NIDDK NIH HHS
- T32 DK007418 NIDDK NIH HHS
- R01 AI136972 NIAID NIH HHS
- F30 AI157167 NIAID NIH HHS
- R01 HG011239 NHGRI NIH HHS
- NIH grants 1R01DK129364-01A1, P01AI138962, and R01HG008140; the Larry L. Hillblom Foundation (grant no. 2020-D-002-NET); and Northern California JDRF Center of Excellence. A.M. is a member of the Parker Institute for Cancer Immunotherapy (PICI), and has received funding from the Arc Institute, Chan Zuckerberg Biohub, Innovative Genomics Institute (IGI), Cancer Research Institute (CRI) Lloyd J. Old STAR award, a gift from the Jordan Family, a gift from the Byers family and a gift from B. Bakar.
- UCSF ImmunoX Computational Immunology Fellow, is supported by NIH grant F30AI157167, and has received support from NIH grants T32DK007418 and T32GM007618
- NIH grant R01HG008140
- Career Award for Medical Scientists from the Burroughs Wellcome Fund, a Lloyd J. Old STAR Award from the Cancer Research Institute, and the Parker Institute for Cancer Immunotherapy
- NIH grant U01HL157989
Collapse
Affiliation(s)
- Cody T Mowery
- Medical Scientist Training Program, University of California, San Francisco, San Francisco, CA, USA
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
| | - Jacob W Freimer
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Zeyu Chen
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Departments of Cell Biology and Pathology, Harvard Medical School, Boston, MA, USA
| | - Salvador Casaní-Galdón
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Departments of Cell Biology and Pathology, Harvard Medical School, Boston, MA, USA
| | - Jennifer M Umhoefer
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
| | - Maya M Arce
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Ketrin Gjoni
- Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA
| | - Bence Daniel
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Department of Pathology, Stanford University, Stanford, CA, USA
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, USA
- Department of Microchemistry, Proteomics, Lipidomics and Next Generation Sequencing, Genentech, South San Francisco, CA, USA
| | - Katalin Sandor
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Benjamin G Gowen
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Vinh Nguyen
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
- Diabetes Center, University of California, San Francisco, San Francisco, CA, USA
- Department of Surgery, University of California, San Francisco, San Francisco, CA, USA
- UCSF CoLabs, University of California, San Francisco, San Francisco, CA, USA
| | - Dimitre R Simeonov
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
| | - Christian M Garrido
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
| | - Gemma L Curie
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Ralf Schmidt
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Zachary Steinhart
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
| | - Ansuman T Satpathy
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Department of Pathology, Stanford University, Stanford, CA, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
- Program in Immunology, Stanford University, Stanford, CA, USA
| | - Katherine S Pollard
- Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA
- Chan Zuckerberg Biohub SF, San Francisco, CA, USA
| | - Jacob E Corn
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Bradley E Bernstein
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Departments of Cell Biology and Pathology, Harvard Medical School, Boston, MA, USA
| | - Chun Jimmie Ye
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA.
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA.
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA.
- Chan Zuckerberg Biohub SF, San Francisco, CA, USA.
- Rosalind Russell/Ephraim P. Engleman Rheumatology Research Center, University of California, San Francisco, San Francisco, CA, USA.
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA.
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA.
| | - Alexander Marson
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA.
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA.
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA.
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA.
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA.
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA.
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
29
|
Suh K, Thornton R, Farahani PE, Cohen D, Toettcher J. Large-scale control over collective cell migration using light-controlled epidermal growth factor receptors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.30.596676. [PMID: 38853934 PMCID: PMC11160748 DOI: 10.1101/2024.05.30.596676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Receptor tyrosine kinases (RTKs) are thought to play key roles in coordinating cell movement at single-cell and tissue scales. The recent development of optogenetic tools for controlling RTKs and their downstream signaling pathways suggested these responses may be amenable to engineering-based control for sculpting tissue shape and function. Here, we report that a light-controlled EGF receptor (OptoEGFR) can be deployed in epithelial cell lines for precise, programmable control of long-range tissue movements. We show that in OptoEGFR-expressing tissues, light can drive millimeter-scale cell rearrangements to densify interior regions or produce rapid outgrowth at tissue edges. Light-controlled tissue movements are driven primarily by PI 3-kinase signaling, rather than diffusible signals, tissue contractility, or ERK kinase signaling as seen in other RTK-driven migration contexts. Our study suggests that synthetic, light-controlled RTKs could serve as a powerful platform for controlling cell positions and densities for diverse applications including wound healing and tissue morphogenesis.
Collapse
Affiliation(s)
- Kevin Suh
- Department of Chemical and Biological Engineering, Princeton University, Princeton 08544
- Omenn-Darling Bioengineering Institutes, Princeton University, Princeton 08544
| | - Richard Thornton
- Omenn-Darling Bioengineering Institutes, Princeton University, Princeton 08544
- Department of Molecular Biology, Princeton University, Princeton 08544
| | - Payam E Farahani
- Department of Chemical and Biological Engineering, Princeton University, Princeton 08544
| | - Daniel Cohen
- Omenn-Darling Bioengineering Institutes, Princeton University, Princeton 08544
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton 08544
| | - Jared Toettcher
- Omenn-Darling Bioengineering Institutes, Princeton University, Princeton 08544
- Department of Molecular Biology, Princeton University, Princeton 08544
| |
Collapse
|
30
|
Mihaljevic A, Rubin PD, Chouvardas P, Esposito R. Cell type specific long non-coding RNA targets identified by integrative analysis of single-cell and bulk colorectal cancer transcriptomes. Sci Rep 2024; 14:10939. [PMID: 38740871 DOI: 10.1038/s41598-024-61430-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 05/06/2024] [Indexed: 05/16/2024] Open
Abstract
Long non-coding RNAs (lncRNAs) represent an emerging class of genes which play significant and diverse roles in human cancers. Nevertheless, the functional repertoires of lncRNAs in cancer cell subtypes remains unknown since most studies are focused on protein coding genes. Here, we explored the contribution of lncRNAs in Colorectal Cancer (CRC) heterogeneity. We analyzed 49'436 single-cells from 29 CRC patients and showed that lncRNAs are significantly more cell type specific compared to protein-coding genes. We identified 996 lncRNAs strongly enriched in epithelial cells. Among these, 98 were found to be differentially expressed in tumor samples compared to normal controls, when integrating 270 bulk CRC profiles. We validated the upregulation of two of them (CASC19 and LINC00460) in CRC cell lines and showed their involvement in CRC proliferation by CRISPR-Cas9 knock down experiments. This study highlights a list of novel RNA targets for potential CRC therapeutics, substantiated through experimental validation.
Collapse
Affiliation(s)
- Ante Mihaljevic
- Department for BioMedical Research, University of Bern, 3008, Bern, Switzerland
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, 3010, Bern, Switzerland
| | - Philip D Rubin
- Department for BioMedical Research, University of Bern, 3008, Bern, Switzerland
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, 3010, Bern, Switzerland
| | - Panagiotis Chouvardas
- Urology Research Laboratory, Department for BioMedical Research, University of Bern, 3008, Bern, Switzerland.
- Department of Urology, Inselspital, Bern University Hospital, University of Bern, 3010, Bern, Switzerland.
| | - Roberta Esposito
- Department for BioMedical Research, University of Bern, 3008, Bern, Switzerland.
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, 3010, Bern, Switzerland.
- Institute of Genetics and Biophysics Adriano Buzzati-Traverso (IGB-ABT), National Research Council (CNR), Naples, Italy.
| |
Collapse
|
31
|
Franks SN, Heon-Roberts R, Ryan BJ. CRISPRi: a way to integrate iPSC-derived neuronal models. Biochem Soc Trans 2024; 52:539-551. [PMID: 38526223 PMCID: PMC11088925 DOI: 10.1042/bst20230190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 02/28/2024] [Accepted: 03/13/2024] [Indexed: 03/26/2024]
Abstract
The genetic landscape of neurodegenerative diseases encompasses genes affecting multiple cellular pathways which exert effects in an array of neuronal and glial cell-types. Deconvolution of the roles of genes implicated in disease and the effects of disease-associated variants remains a vital step in the understanding of neurodegeneration and the development of therapeutics. Disease modelling using patient induced pluripotent stem cells (iPSCs) has enabled the generation of key cell-types associated with disease whilst maintaining the genomic variants that predispose to neurodegeneration. The use of CRISPR interference (CRISPRi), alongside other CRISPR-perturbations, allows the modelling of the effects of these disease-associated variants or identifying genes which modify disease phenotypes. This review summarises the current applications of CRISPRi in iPSC-derived neuronal models, such as fluorescence-activated cell sorting (FACS)-based screens, and discusses the future opportunities for disease modelling, identification of disease risk modifiers and target/drug discovery in neurodegeneration.
Collapse
Affiliation(s)
- Sarah N.J. Franks
- Oxford Parkinson's Disease Centre and Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QU, UK
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, Oxford OX1 3QU, UK
| | - Rachel Heon-Roberts
- Oxford Parkinson's Disease Centre and Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QU, UK
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, Oxford OX1 3QU, UK
| | - Brent J. Ryan
- Oxford Parkinson's Disease Centre and Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QU, UK
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, Oxford OX1 3QU, UK
| |
Collapse
|
32
|
Muthukumar G, Stevens TA, Inglis AJ, Esantsi TK, Saunders RA, Schulte F, Voorhees RM, Guna A, Weissman JS. Triaging of α-helical proteins to the mitochondrial outer membrane by distinct chaperone machinery based on substrate topology. Mol Cell 2024; 84:1101-1119.e9. [PMID: 38428433 DOI: 10.1016/j.molcel.2024.01.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 12/08/2023] [Accepted: 01/31/2024] [Indexed: 03/03/2024]
Abstract
Mitochondrial outer membrane ⍺-helical proteins play critical roles in mitochondrial-cytoplasmic communication, but the rules governing the targeting and insertion of these biophysically diverse proteins remain unknown. Here, we first defined the complement of required mammalian biogenesis machinery through genome-wide CRISPRi screens using topologically distinct membrane proteins. Systematic analysis of nine identified factors across 21 diverse ⍺-helical substrates reveals that these components are organized into distinct targeting pathways that act on substrates based on their topology. NAC is required for the efficient targeting of polytopic proteins, whereas signal-anchored proteins require TTC1, a cytosolic chaperone that physically engages substrates. Biochemical and mutational studies reveal that TTC1 employs a conserved TPR domain and a hydrophobic groove in its C-terminal domain to support substrate solubilization and insertion into mitochondria. Thus, the targeting of diverse mitochondrial membrane proteins is achieved through topological triaging in the cytosol using principles with similarities to ER membrane protein biogenesis systems.
Collapse
Affiliation(s)
- Gayathri Muthukumar
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Taylor A Stevens
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Avenue, Pasadena, CA 91125, USA
| | - Alison J Inglis
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Avenue, Pasadena, CA 91125, USA
| | - Theodore K Esantsi
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Reuben A Saunders
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Tetrad Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Fabian Schulte
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Rebecca M Voorhees
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Avenue, Pasadena, CA 91125, USA
| | - Alina Guna
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Avenue, Pasadena, CA 91125, USA.
| | - Jonathan S Weissman
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.
| |
Collapse
|
33
|
Walton RT, Qin Y, Blainey PC. CROPseq-multi: a versatile solution for multiplexed perturbation and decoding in pooled CRISPR screens. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.17.585235. [PMID: 38558968 PMCID: PMC10979941 DOI: 10.1101/2024.03.17.585235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Forward genetic screens seek to dissect complex biological systems by systematically perturbing genetic elements and observing the resulting phenotypes. While standard screening methodologies introduce individual perturbations, multiplexing perturbations improves the performance of single-target screens and enables combinatorial screens for the study of genetic interactions. Current tools for multiplexing perturbations are incompatible with pooled screening methodologies that require mRNA-embedded barcodes, including some microscopy and single cell sequencing approaches. Here, we report the development of CROPseq-multi, a CROPseq1-inspired lentiviral system to multiplex Streptococcus pyogenes (Sp) Cas9-based perturbations with mRNA-embedded barcodes. CROPseq-multi has equivalent per-guide activity to CROPseq and low lentiviral recombination frequencies. CROPseq-multi is compatible with enrichment screening methodologies and optical pooled screens, and is extensible to screens with single-cell sequencing readouts. For optical pooled screens, an optimized and multiplexed in situ detection protocol improves barcode detection efficiency 10-fold, enables detection of recombination events, and increases decoding efficiency 3-fold relative to CROPseq. CROPseq-multi is a widely applicable multiplexing solution for diverse SpCas9-based genetic screening approaches.
Collapse
Affiliation(s)
- Russell T. Walton
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biological Engineering, MIT, Cambridge, MA, USA
| | - Yue Qin
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Eric and Wendy Schmidt Center, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Paul C. Blainey
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biological Engineering, MIT, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
| |
Collapse
|
34
|
Apostolopoulos A, Kawamoto N, Chow SYA, Tsuiji H, Ikeuchi Y, Shichino Y, Iwasaki S. dCas13-mediated translational repression for accurate gene silencing in mammalian cells. Nat Commun 2024; 15:2205. [PMID: 38467613 PMCID: PMC10928199 DOI: 10.1038/s41467-024-46412-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 02/27/2024] [Indexed: 03/13/2024] Open
Abstract
Current gene silencing tools based on RNA interference (RNAi) or, more recently, clustered regularly interspaced short palindromic repeats (CRISPR)‒Cas13 systems have critical drawbacks, such as off-target effects (RNAi) or collateral mRNA cleavage (CRISPR‒Cas13). Thus, a more specific method of gene knockdown is needed. Here, we develop CRISPRδ, an approach for translational silencing, harnessing catalytically inactive Cas13 proteins (dCas13). Owing to its tight association with mRNA, dCas13 serves as a physical roadblock for scanning ribosomes during translation initiation and does not affect mRNA stability. Guide RNAs covering the start codon lead to the highest efficacy regardless of the translation initiation mechanism: cap-dependent, internal ribosome entry site (IRES)-dependent, or repeat-associated non-AUG (RAN) translation. Strikingly, genome-wide ribosome profiling reveals the ultrahigh gene silencing specificity of CRISPRδ. Moreover, the fusion of a translational repressor to dCas13 further improves the performance. Our method provides a framework for translational repression-based gene silencing in eukaryotes.
Collapse
Grants
- JP20H05784 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- JP21H05278 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- JP21H05734 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- JP23H04268 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- JP20H05786 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- JP23H02415 MEXT | Japan Society for the Promotion of Science (JSPS)
- JP20K07016 MEXT | Japan Society for the Promotion of Science (JSPS)
- JP23K05648 MEXT | Japan Society for the Promotion of Science (JSPS)
- JP21K15023 MEXT | Japan Society for the Promotion of Science (JSPS)
- JP23KJ2175 MEXT | Japan Society for the Promotion of Science (JSPS)
- JP20gm1410001 Japan Agency for Medical Research and Development (AMED)
- JP20gm1410001 Japan Agency for Medical Research and Development (AMED)
- JP23gm6910005h0001 Japan Agency for Medical Research and Development (AMED)
- JP23gm6910005 Japan Agency for Medical Research and Development (AMED)
- JP20gm1410001 Japan Agency for Medical Research and Development (AMED)
- Pioneering Projects MEXT | RIKEN
- Pioneering Projects MEXT | RIKEN
- Exploratory Research Center on Life and Living Systems (ExCELLS), 23EX601
Collapse
Affiliation(s)
- Antonios Apostolopoulos
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, 277-8561, Japan
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, 351-0198, Japan
| | - Naohiro Kawamoto
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, 351-0198, Japan
| | - Siu Yu A Chow
- Institute of Industrial Science, The University of Tokyo, Meguro-ku, Tokyo, 153-8505, Japan
| | - Hitomi Tsuiji
- Education and Research Division of Pharmacy, School of Pharmacy, Aichi Gakuin University, Nagoya, Aichi, 464-8650, Japan
| | - Yoshiho Ikeuchi
- Institute of Industrial Science, The University of Tokyo, Meguro-ku, Tokyo, 153-8505, Japan
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
- Institute for AI and Beyond, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Yuichi Shichino
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, 351-0198, Japan.
| | - Shintaro Iwasaki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, 277-8561, Japan.
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, 351-0198, Japan.
| |
Collapse
|
35
|
Hsiung CC, Wilson CM, Sambold NA, Dai R, Chen Q, Misiukiewicz S, Arab A, Teyssier N, O'Loughlin T, Cofsky JC, Shi J, Gilbert LA. Higher-order combinatorial chromatin perturbations by engineered CRISPR-Cas12a for functional genomics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.18.558350. [PMID: 37781594 PMCID: PMC10541102 DOI: 10.1101/2023.09.18.558350] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Multiplexed genetic perturbations are critical for testing functional interactions among coding or non-coding genetic elements. Compared to double-stranded DNA cutting, repressive chromatin formation using CRISPR interference (CRISPRi) avoids genotoxicity and is more effective for perturbing non-coding regulatory elements in pooled assays. However, current CRISPRi pooled screening approaches are limited to targeting 1-3 genomic sites per cell. To develop a tool for higher-order ( > 3) combinatorial targeting of genomic sites with CRISPRi in functional genomics screens, we engineered an Acidaminococcus Cas12a variant -- referred to as mul tiplexed transcriptional interference AsCas12a (multiAsCas12a). multiAsCas12a incorporates a key mutation, R1226A, motivated by the hypothesis of nicking-induced stabilization of the ribonucleoprotein:DNA complex for improving CRISPRi activity. multiAsCas12a significantly outperforms prior state-of-the-art Cas12a variants in combinatorial CRISPRi targeting using high-order multiplexed arrays of lentivirally transduced CRISPR RNAs (crRNA), including in high-throughput pooled screens using 6-plex crRNA array libraries. Using multiAsCas12a CRISPRi, we discover new enhancer elements and dissect the combinatorial function of cis-regulatory elements. These results instantiate a group testing framework for efficiently surveying potentially numerous combinations of chromatin perturbations for biological discovery and engineering.
Collapse
|
36
|
Saliba-Gustafsson P, Justesen JM, Ranta A, Sharma D, Bielczyk-Maczynska E, Li J, Najmi LA, Apodaka M, Aspichueta P, Björck HM, Eriksson P, Franco-Cereceda A, Gloudemans M, Mujica E, den Hoed M, Assimes TL, Quertermous T, Carcamo-Orive I, Park CY, Knowles JW. A functional genomic framework to elucidate novel causal non-alcoholic fatty liver disease genes. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.02.03.24302258. [PMID: 38352379 PMCID: PMC10863038 DOI: 10.1101/2024.02.03.24302258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Background & Aims Non-alcoholic fatty liver disease (NAFLD) is the most prevalent chronic liver pathology in western countries, with serious public health consequences. Efforts to identify causal genes for NAFLD have been hampered by the relative paucity of human data from gold-standard magnetic resonance quantification of hepatic fat. To overcome insufficient sample size, genome-wide association studies using NAFLD surrogate phenotypes have been used, but only a small number of loci have been identified to date. In this study, we combined GWAS of NAFLD composite surrogate phenotypes with genetic colocalization studies followed by functional in vitro screens to identify bona fide causal genes for NAFLD. Approach & Results We used the UK Biobank to explore the associations of our novel NAFLD score, and genetic colocalization to prioritize putative causal genes for in vitro validation. We created a functional genomic framework to study NAFLD genes in vitro using CRISPRi. Our data identify VKORC1, TNKS, LYPLAL1 and GPAM as regulators of lipid accumulation in hepatocytes and suggest the involvement of VKORC1 in the lipid storage related to the development of NAFLD. Conclusions Complementary genetic and genomic approaches are useful for the identification of NAFLD genes. Our data supports VKORC1 as a bona fide NAFLD gene. We have established a functional genomic framework to study at scale putative novel NAFLD genes from human genetic association studies.
Collapse
Affiliation(s)
- Peter Saliba-Gustafsson
- Department of Medicine, Division of Cardiovascular Medicine and Cardiovascular Institute, Stanford University, Stanford, CA, USA
- CardioMetabolic Unit at the Department of Medicine, Huddinge, Karolinska Institutet, Stockholm, Sweden
- Stanford Diabetes Research Center, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, CA, USA
| | - Johanne M. Justesen
- Department of Medicine, Division of Cardiovascular Medicine and Cardiovascular Institute, Stanford University, Stanford, CA, USA
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Denmark
| | - Amanda Ranta
- Department of Medicine, Division of Cardiovascular Medicine and Cardiovascular Institute, Stanford University, Stanford, CA, USA
- Stanford Diabetes Research Center, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, CA, USA
| | - Disha Sharma
- Department of Medicine, Division of Cardiovascular Medicine and Cardiovascular Institute, Stanford University, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, CA, USA
| | - Ewa Bielczyk-Maczynska
- Department of Medicine, Division of Cardiovascular Medicine and Cardiovascular Institute, Stanford University, Stanford, CA, USA
- Stanford Diabetes Research Center, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, CA, USA
- The Hormel Institute, University of Minnesota, MN, USA
| | - Jiehan Li
- Department of Medicine, Division of Cardiovascular Medicine and Cardiovascular Institute, Stanford University, Stanford, CA, USA
- Stanford Diabetes Research Center, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, CA, USA
| | - Laeya A. Najmi
- Department of Medicine, Division of Cardiovascular Medicine and Cardiovascular Institute, Stanford University, Stanford, CA, USA
- Stanford Diabetes Research Center, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, CA, USA
| | - Maider Apodaka
- University of the Basque Country (UPV/EHU), Faculty of Medicine and Nursing, Department of Physiology, Leioa, Spain
| | - Patricia Aspichueta
- University of the Basque Country (UPV/EHU), Faculty of Medicine and Nursing, Department of Physiology, Leioa, Spain
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Instituto de Salud Carlos III)
| | - Hanna M. Björck
- Division of Cardiovascular Medicine, Centre for Molecular Medicine, Department of Medicine, Solna, Karolinska Inistitutet, Stockholm, Karolinska University Hospital, Solna, Sweden
| | - Per Eriksson
- Division of Cardiovascular Medicine, Centre for Molecular Medicine, Department of Medicine, Solna, Karolinska Inistitutet, Stockholm, Karolinska University Hospital, Solna, Sweden
| | | | - Mike Gloudemans
- Department of Pathology, Stanford University School of Medicine, CA, USA
| | - Endrina Mujica
- Department of Immunology, Genetics and Pathology, Uppsala University, Sweden
| | - Marcel den Hoed
- Department of Immunology, Genetics and Pathology, Uppsala University, Sweden
| | - Themistocles L. Assimes
- Department of Medicine, Division of Cardiovascular Medicine and Cardiovascular Institute, Stanford University, Stanford, CA, USA
- VA Palo Alto Health Care System, Palo Alto CA, USA
| | - Thomas Quertermous
- Department of Medicine, Division of Cardiovascular Medicine and Cardiovascular Institute, Stanford University, Stanford, CA, USA
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Denmark
| | - Ivan Carcamo-Orive
- Department of Medicine, Division of Cardiovascular Medicine and Cardiovascular Institute, Stanford University, Stanford, CA, USA
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Chong Y. Park
- Department of Medicine, Division of Cardiovascular Medicine and Cardiovascular Institute, Stanford University, Stanford, CA, USA
| | - Joshua W. Knowles
- Department of Medicine, Division of Cardiovascular Medicine and Cardiovascular Institute, Stanford University, Stanford, CA, USA
- Stanford Diabetes Research Center, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, CA, USA
- Stanford Prevention Research Center, Stanford, CA, USA
| |
Collapse
|
37
|
Heo SJ, Enriquez LD, Federman S, Chang AY, Mace R, Shevade K, Nguyen P, Litterman AJ, Shafer S, Przybyla L, Chow ED. Compact CRISPR genetic screens enabled by improved guide RNA library cloning. Genome Biol 2024; 25:25. [PMID: 38243310 PMCID: PMC10797759 DOI: 10.1186/s13059-023-03132-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 11/29/2023] [Indexed: 01/21/2024] Open
Abstract
CRISPR genome editing approaches theoretically enable researchers to define the function of each human gene in specific cell types, but challenges remain to efficiently perform genetic perturbations in relevant models. In this work, we develop a library cloning protocol that increases sgRNA uniformity and greatly reduces bias in existing genome-wide libraries. We demonstrate that our libraries can achieve equivalent or better statistical power compared to previously reported screens using an order of magnitude fewer cells. This improved cloning protocol enables genome-scale CRISPR screens in technically challenging cell models and screen formats.
Collapse
Affiliation(s)
- Seok-Jin Heo
- Laboratory for Genomics Research, San Francisco, CA, 94158, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Lauren D Enriquez
- Laboratory for Genomics Research, San Francisco, CA, 94158, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Scot Federman
- Laboratory for Genomics Research, San Francisco, CA, 94158, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Amy Y Chang
- Laboratory for Genomics Research, San Francisco, CA, 94158, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Rachel Mace
- Laboratory for Genomics Research, San Francisco, CA, 94158, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Kaivalya Shevade
- Laboratory for Genomics Research, San Francisco, CA, 94158, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Phuong Nguyen
- Laboratory for Genomics Research, San Francisco, CA, 94158, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Adam J Litterman
- Laboratory for Genomics Research, San Francisco, CA, 94158, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Shawn Shafer
- Laboratory for Genomics Research, San Francisco, CA, 94158, USA
- GSK, San Francisco, CA, 94158, USA
| | - Laralynne Przybyla
- Laboratory for Genomics Research, San Francisco, CA, 94158, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Eric D Chow
- Laboratory for Genomics Research, San Francisco, CA, 94158, USA.
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, 94158, USA.
| |
Collapse
|
38
|
Liu SJ, Casey-Clyde T, Cho NW, Swinderman J, Pekmezci M, Dougherty MC, Foster K, Chen WC, Villanueva-Meyer JE, Swaney DL, Vasudevan HN, Choudhury A, Pak J, Breshears JD, Lang UE, Eaton CD, Hiam-Galvez KJ, Stevenson E, Chen KH, Lien BV, Wu D, Braunstein SE, Sneed PK, Magill ST, Lim D, McDermott MW, Berger MS, Perry A, Krogan NJ, Hansen MR, Spitzer MH, Gilbert L, Theodosopoulos PV, Raleigh DR. Epigenetic reprogramming shapes the cellular landscape of schwannoma. Nat Commun 2024; 15:476. [PMID: 38216587 PMCID: PMC10786948 DOI: 10.1038/s41467-023-40408-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 05/25/2023] [Indexed: 01/14/2024] Open
Abstract
Mechanisms specifying cancer cell states and response to therapy are incompletely understood. Here we show epigenetic reprogramming shapes the cellular landscape of schwannomas, the most common tumors of the peripheral nervous system. We find schwannomas are comprised of 2 molecular groups that are distinguished by activation of neural crest or nerve injury pathways that specify tumor cell states and the architecture of the tumor immune microenvironment. Moreover, we find radiotherapy is sufficient for interconversion of neural crest schwannomas to immune-enriched schwannomas through epigenetic and metabolic reprogramming. To define mechanisms underlying schwannoma groups, we develop a technique for simultaneous interrogation of chromatin accessibility and gene expression coupled with genetic and therapeutic perturbations in single-nuclei. Our results elucidate a framework for understanding epigenetic drivers of tumor evolution and establish a paradigm of epigenetic and metabolic reprograming of cancer cells that shapes the immune microenvironment in response to radiotherapy.
Collapse
Affiliation(s)
- S John Liu
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, 94143, USA
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, 94143, USA
- Department of Pathology, University of California San Francisco, San Francisco, CA, 94143, USA
- Arc Institute, Palo Alto, CA, 94304, USA
| | - Tim Casey-Clyde
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, 94143, USA
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, 94143, USA
- Department of Pathology, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Nam Woo Cho
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, 94143, USA
- Parker Institute for Cancer Immunotherapy, Chan Zuckerberg Biohub, and Departments of Otolaryngology, and Microbiology and Immunology, University of California San Francisco, San Francisco, CA, 94115, USA
| | - Jason Swinderman
- Arc Institute, Palo Alto, CA, 94304, USA
- Department of Urology, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Melike Pekmezci
- Department of Pathology, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Mark C Dougherty
- Departments of Otolaryngology and Neurosurgery, University of Iowa, Iowa City, IA, 52242, USA
| | - Kyla Foster
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, 94143, USA
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, 94143, USA
- Department of Pathology, University of California San Francisco, San Francisco, CA, 94143, USA
| | - William C Chen
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, 94143, USA
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, 94143, USA
- Department of Pathology, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Javier E Villanueva-Meyer
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Danielle L Swaney
- J. David Gladstone Institutes, California Institute for Quantitative Biosciences, Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Harish N Vasudevan
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, 94143, USA
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Abrar Choudhury
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, 94143, USA
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, 94143, USA
- Department of Pathology, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Joanna Pak
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, 94143, USA
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, 94143, USA
- Department of Pathology, University of California San Francisco, San Francisco, CA, 94143, USA
- Arc Institute, Palo Alto, CA, 94304, USA
| | - Jonathan D Breshears
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Ursula E Lang
- Department of Pathology, University of California San Francisco, San Francisco, CA, 94143, USA
- Department of Dermatology, University of California San Francisco, San Francisco, CA, 94115, USA
| | - Charlotte D Eaton
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, 94143, USA
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, 94143, USA
- Department of Pathology, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Kamir J Hiam-Galvez
- Parker Institute for Cancer Immunotherapy, Chan Zuckerberg Biohub, and Departments of Otolaryngology, and Microbiology and Immunology, University of California San Francisco, San Francisco, CA, 94115, USA
| | - Erica Stevenson
- J. David Gladstone Institutes, California Institute for Quantitative Biosciences, Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Kuei-Ho Chen
- J. David Gladstone Institutes, California Institute for Quantitative Biosciences, Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Brian V Lien
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, 94143, USA
| | - David Wu
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Steve E Braunstein
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Penny K Sneed
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Stephen T Magill
- Department of Neurological Surgery, Northwestern University, Chicago, IL, 60611, USA
| | - Daniel Lim
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, 94143, USA
| | | | - Mitchel S Berger
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Arie Perry
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, 94143, USA
- Department of Pathology, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Nevan J Krogan
- J. David Gladstone Institutes, California Institute for Quantitative Biosciences, Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Marlan R Hansen
- Departments of Otolaryngology and Neurosurgery, University of Iowa, Iowa City, IA, 52242, USA
| | - Matthew H Spitzer
- Parker Institute for Cancer Immunotherapy, Chan Zuckerberg Biohub, and Departments of Otolaryngology, and Microbiology and Immunology, University of California San Francisco, San Francisco, CA, 94115, USA
| | - Luke Gilbert
- Arc Institute, Palo Alto, CA, 94304, USA
- Department of Urology, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Philip V Theodosopoulos
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, 94143, USA
| | - David R Raleigh
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, 94143, USA.
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, 94143, USA.
- Department of Pathology, University of California San Francisco, San Francisco, CA, 94143, USA.
| |
Collapse
|
39
|
Vasudevan HN, Payne E, Delley CL, John Liu S, Mirchia K, Sale MJ, Lastella S, Nunez MS, Lucas CHG, Eaton CD, Casey-Clyde T, Magill ST, Chen WC, Braunstein SE, Perry A, Jacques L, Reddy AT, Pekmezci M, Abate AR, McCormick F, Raleigh DR. Functional interactions between neurofibromatosis tumor suppressors underlie Schwann cell tumor de-differentiation and treatment resistance. Nat Commun 2024; 15:477. [PMID: 38216572 PMCID: PMC10786885 DOI: 10.1038/s41467-024-44755-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 01/03/2024] [Indexed: 01/14/2024] Open
Abstract
Schwann cell tumors are the most common cancers of the peripheral nervous system and can arise in patients with neurofibromatosis type-1 (NF-1) or neurofibromatosis type-2 (NF-2). Functional interactions between NF1 and NF2 and broader mechanisms underlying malignant transformation of the Schwann lineage are unclear. Here we integrate bulk and single-cell genomics, biochemistry, and pharmacology across human samples, cell lines, and mouse allografts to identify cellular de-differentiation mechanisms driving malignant transformation and treatment resistance. We find DNA methylation groups of Schwann cell tumors can be distinguished by differentiation programs that correlate with response to the MEK inhibitor selumetinib. Functional genomic screening in NF1-mutant tumor cells reveals NF2 loss and PAK activation underlie selumetinib resistance, and we find that concurrent MEK and PAK inhibition is effective in vivo. These data support a de-differentiation paradigm underlying malignant transformation and treatment resistance of Schwann cell tumors and elucidate a functional link between NF1 and NF2.
Collapse
Affiliation(s)
- Harish N Vasudevan
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA.
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA.
| | - Emily Payne
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Cyrille L Delley
- Department of Bioengineering, University of California San Francisco, San Francisco, CA, USA
| | - S John Liu
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
| | - Kanish Mirchia
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
| | - Matthew J Sale
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Sydney Lastella
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
| | - Maria Sacconi Nunez
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | | | - Charlotte D Eaton
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
| | - Tim Casey-Clyde
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
| | - Stephen T Magill
- Department of Neurological Surgery, Northwestern University, Chicago, IL, USA
| | - William C Chen
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
| | - Steve E Braunstein
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
| | - Arie Perry
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
| | - Line Jacques
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Alyssa T Reddy
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Melike Pekmezci
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
| | - Adam R Abate
- Department of Bioengineering, University of California San Francisco, San Francisco, CA, USA
| | - Frank McCormick
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA.
| | - David R Raleigh
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA.
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA.
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
40
|
Botsch JJ, Junker R, Sorgenfrei M, Ogger PP, Stier L, von Gronau S, Murray PJ, Seeger MA, Schulman BA, Bräuning B. Doa10/MARCH6 architecture interconnects E3 ligase activity with lipid-binding transmembrane channel to regulate SQLE. Nat Commun 2024; 15:410. [PMID: 38195637 PMCID: PMC10776854 DOI: 10.1038/s41467-023-44670-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 12/19/2023] [Indexed: 01/11/2024] Open
Abstract
Transmembrane E3 ligases play crucial roles in homeostasis. Much protein and organelle quality control, and metabolic regulation, are determined by ER-resident MARCH6 E3 ligases, including Doa10 in yeast. Here, we present Doa10/MARCH6 structural analysis by cryo-EM and AlphaFold predictions, and a structure-based mutagenesis campaign. The majority of Doa10/MARCH6 adopts a unique circular structure within the membrane. This channel is established by a lipid-binding scaffold, and gated by a flexible helical bundle. The ubiquitylation active site is positioned over the channel by connections between the cytosolic E3 ligase RING domain and the membrane-spanning scaffold and gate. Here, by assaying 95 MARCH6 variants for effects on stability of the well-characterized substrate SQLE, which regulates cholesterol levels, we reveal crucial roles of the gated channel and RING domain consistent with AlphaFold-models of substrate-engaged and ubiquitylation complexes. SQLE degradation further depends on connections between the channel and RING domain, and lipid binding sites, revealing how interconnected Doa10/MARCH6 elements could orchestrate metabolic signals, substrate binding, and E3 ligase activity.
Collapse
Affiliation(s)
- J Josephine Botsch
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany
- Technical University of Munich, School of Natural Sciences, Munich, Germany
| | - Roswitha Junker
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany
| | - Michèle Sorgenfrei
- Institute of Medical Microbiology, University of Zurich, Gloriastrasse 28/30, 8006, Zurich, Switzerland
| | - Patricia P Ogger
- Research Group of Immunoregulation, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany
| | - Luca Stier
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany
- Technical University of Munich, School of Natural Sciences, Munich, Germany
| | - Susanne von Gronau
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany
| | - Peter J Murray
- Research Group of Immunoregulation, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany
| | - Markus A Seeger
- Institute of Medical Microbiology, University of Zurich, Gloriastrasse 28/30, 8006, Zurich, Switzerland
| | - Brenda A Schulman
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany.
| | - Bastian Bräuning
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany.
| |
Collapse
|
41
|
Tyumentseva M, Tyumentsev A, Akimkin V. CRISPR/Cas9 Landscape: Current State and Future Perspectives. Int J Mol Sci 2023; 24:16077. [PMID: 38003266 PMCID: PMC10671331 DOI: 10.3390/ijms242216077] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/06/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 is a unique genome editing tool that can be easily used in a wide range of applications, including functional genomics, transcriptomics, epigenetics, biotechnology, plant engineering, livestock breeding, gene therapy, diagnostics, and so on. This review is focused on the current CRISPR/Cas9 landscape, e.g., on Cas9 variants with improved properties, on Cas9-derived and fusion proteins, on Cas9 delivery methods, on pre-existing immunity against CRISPR/Cas9 proteins, anti-CRISPR proteins, and their possible roles in CRISPR/Cas9 function improvement. Moreover, this review presents a detailed outline of CRISPR/Cas9-based diagnostics and therapeutic approaches. Finally, the review addresses the future expansion of genome editors' toolbox with Cas9 orthologs and other CRISPR/Cas proteins.
Collapse
Affiliation(s)
- Marina Tyumentseva
- Central Research Institute of Epidemiology, Novogireevskaya Str., 3a, 111123 Moscow, Russia; (A.T.); (V.A.)
| | | | | |
Collapse
|
42
|
Guna A, Page KR, Replogle JM, Esantsi TK, Wang ML, Weissman JS, Voorhees RM. A dual sgRNA library design to probe genetic modifiers using genome-wide CRISPRi screens. BMC Genomics 2023; 24:651. [PMID: 37904134 PMCID: PMC10614335 DOI: 10.1186/s12864-023-09754-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 10/19/2023] [Indexed: 11/01/2023] Open
Abstract
Mapping genetic interactions is essential for determining gene function and defining novel biological pathways. We report a simple to use CRISPR interference (CRISPRi) based platform, compatible with Fluorescence Activated Cell Sorting (FACS)-based reporter screens, to query epistatic relationships at scale. This is enabled by a flexible dual-sgRNA library design that allows for the simultaneous delivery and selection of a fixed sgRNA and a second randomized guide, comprised of a genome-wide library, with a single transduction. We use this approach to identify epistatic relationships for a defined biological pathway, showing both increased sensitivity and specificity than traditional growth screening approaches.
Collapse
Affiliation(s)
- Alina Guna
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California Ave, Pasadena, CA, 91125, USA
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
| | - Katharine R Page
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California Ave, Pasadena, CA, 91125, USA
| | - Joseph M Replogle
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
- Medical Scientist Training Program, University of California, San Francisco, San Francisco, CA, 94158, USA
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
| | - Theodore K Esantsi
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
| | - Maxine L Wang
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California Ave, Pasadena, CA, 91125, USA
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
| | - Jonathan S Weissman
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
| | - Rebecca M Voorhees
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California Ave, Pasadena, CA, 91125, USA.
- Howard Hughes Medical Institute Freeman Hrabowski Scholar, California Institute of Technology, Pasadena, CA, 91125, USA.
| |
Collapse
|
43
|
Sunshine S, Puschnik AS, Replogle JM, Laurie MT, Liu J, Zha BS, Nuñez JK, Byrum JR, McMorrow AH, Frieman MB, Winkler J, Qiu X, Rosenberg OS, Leonetti MD, Ye CJ, Weissman JS, DeRisi JL, Hein MY. Systematic functional interrogation of SARS-CoV-2 host factors using Perturb-seq. Nat Commun 2023; 14:6245. [PMID: 37803001 PMCID: PMC10558542 DOI: 10.1038/s41467-023-41788-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 09/15/2023] [Indexed: 10/08/2023] Open
Abstract
Genomic and proteomic screens have identified numerous host factors of SARS-CoV-2, but efficient delineation of their molecular roles during infection remains a challenge. Here we use Perturb-seq, combining genetic perturbations with a single-cell readout, to investigate how inactivation of host factors changes the course of SARS-CoV-2 infection and the host response in human lung epithelial cells. Our high-dimensional data resolve complex phenotypes such as shifts in the stages of infection and modulations of the interferon response. However, only a small percentage of host factors showed such phenotypes upon perturbation. We further identified the NF-κB inhibitor IκBα (NFKBIA), as well as the translation factors EIF4E2 and EIF4H as strong host dependency factors acting early in infection. Overall, our study provides massively parallel functional characterization of host factors of SARS-CoV-2 and quantitatively defines their roles both in virus-infected and bystander cells.
Collapse
Affiliation(s)
- Sara Sunshine
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | | | - Joseph M Replogle
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - Matthew T Laurie
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - Jamin Liu
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
- University of California, Berkeley-UCSF Joint Graduate Program in Bioengineering, San Francisco, CA, USA
| | - Beth Shoshana Zha
- Department of Medicine, Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - James K Nuñez
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
- Department of Molecular & Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Janie R Byrum
- Chan Zuckerberg Biohub, San Francisco, San Francisco, CA, USA
| | | | - Matthew B Frieman
- Department of Microbiology and Immunology, Center for Pathogen Research, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Juliane Winkler
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, USA
- Center for Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Xiaojie Qiu
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Oren S Rosenberg
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
| | | | - Chun Jimmie Ye
- Division of Rheumatology, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Institute of Human Genetics, University of California San Francisco, San Francisco, CA, USA
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | - Jonathan S Weissman
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Joseph L DeRisi
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, San Francisco, CA, USA.
| | - Marco Y Hein
- Chan Zuckerberg Biohub, San Francisco, San Francisco, CA, USA.
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA.
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA, USA.
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria.
- Medical University of Vienna, Center for Medical Biochemistry, Vienna, Austria.
| |
Collapse
|
44
|
Cai R, Lv R, Shi X, Yang G, Jin J. CRISPR/dCas9 Tools: Epigenetic Mechanism and Application in Gene Transcriptional Regulation. Int J Mol Sci 2023; 24:14865. [PMID: 37834313 PMCID: PMC10573330 DOI: 10.3390/ijms241914865] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/29/2023] [Accepted: 10/01/2023] [Indexed: 10/15/2023] Open
Abstract
CRISPR/Cas9-mediated cleavage of DNA, which depends on the endonuclease activity of Cas9, has been widely used for gene editing due to its excellent programmability and specificity. However, the changes to the DNA sequence that are mediated by CRISPR/Cas9 affect the structures and stability of the genome, which may affect the accuracy of results. Mutations in the RuvC and HNH regions of the Cas9 protein lead to the inactivation of Cas9 into dCas9 with no endonuclease activity. Despite the loss of endonuclease activity, dCas9 can still bind the DNA strand using guide RNA. Recently, proteins with active/inhibitory effects have been linked to the end of the dCas9 protein to form fusion proteins with transcriptional active/inhibitory effects, named CRISPRa and CRISPRi, respectively. These CRISPR tools mediate the transcription activity of protein-coding and non-coding genes by regulating the chromosomal modification states of target gene promoters, enhancers, and other functional elements. Here, we highlight the epigenetic mechanisms and applications of the common CRISPR/dCas9 tools, by which we hope to provide a reference for future related gene regulation, gene function, high-throughput target gene screening, and disease treatment.
Collapse
Affiliation(s)
- Ruijie Cai
- Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Runyu Lv
- Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Xin'e Shi
- Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Gongshe Yang
- Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Jianjun Jin
- Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
45
|
Tanaka M, Nakamura T. Targeting epigenetic aberrations of sarcoma in CRISPR era. Genes Chromosomes Cancer 2023; 62:510-525. [PMID: 36967299 DOI: 10.1002/gcc.23142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
Sarcomas are rare malignancies that exhibit diverse biological, genetic, morphological, and clinical characteristics. Genetic alterations, such as gene fusions, mutations in transcriptional machinery components, histones, and DNA methylation regulatory molecules, play an essential role in sarcomagenesis. These mutations induce and/or cooperate with specific epigenetic aberrations required for the growth and maintenance of sarcomas. Appropriate mouse models have been developed to clarify the significance of genetic and epigenetic interactions in sarcomas. Studies using the mouse models for human sarcomas have demonstrated major advances in our understanding the developmental processes as well as tumor microenvironment of sarcomas. Recent technological progresses in epigenome editing will not only improve the studies using animal models but also provide a direct clue for epigenetic therapies. In this manuscript, we review important epigenetic aberrations in sarcomas and their representative mouse models, current methods of epigenetic editing using CRISPR/dCas9 systems, and potential applications in sarcoma studies and therapeutics.
Collapse
Affiliation(s)
- Miwa Tanaka
- Project for Cancer Epigenomics, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
- Department of Experimental Pathology, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Takuro Nakamura
- Department of Experimental Pathology, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| |
Collapse
|
46
|
Muthukumar G, Stevens TA, Inglis AJ, Esantsi TK, Saunders RA, Schulte F, Voorhees RM, Guna A, Weissman JS. Triaging of α-helical proteins to the mitochondrial outer membrane by distinct chaperone machinery based on substrate topology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.16.553624. [PMID: 37645817 PMCID: PMC10462106 DOI: 10.1101/2023.08.16.553624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Mitochondrial outer membrane α-helical proteins play critical roles in mitochondrial-cytoplasmic communication, but the rules governing the targeting and insertion of these biophysically diverse substrates remain unknown. Here, we first defined the complement of required mammalian biogenesis machinery through genome-wide CRISPRi screens using topologically distinct membrane proteins. Systematic analysis of nine identified factors across 21 diverse α-helical substrates reveals that these components are organized into distinct targeting pathways which act on substrates based on their topology. NAC is required for efficient targeting of polytopic proteins whereas signal-anchored proteins require TTC1, a novel cytosolic chaperone which physically engages substrates. Biochemical and mutational studies reveal that TTC1 employs a conserved TPR domain and a hydrophobic groove in its C-terminal domain to support substrate solubilization and insertion into mitochondria. Thus, targeting of diverse mitochondrial membrane proteins is achieved through topological triaging in the cytosol using principles with similarities to ER membrane protein biogenesis systems.
Collapse
Affiliation(s)
- Gayathri Muthukumar
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Taylor A. Stevens
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Avenue, Pasadena, CA 91125, USA
| | - Alison J. Inglis
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Avenue, Pasadena, CA 91125, USA
| | - Theodore K. Esantsi
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Reuben A. Saunders
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
- Tetrad Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Fabian Schulte
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - Rebecca M. Voorhees
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Avenue, Pasadena, CA 91125, USA
| | - Alina Guna
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Avenue, Pasadena, CA 91125, USA
| | - Jonathan S. Weissman
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute Technology, Cambridge 02142, MA
| |
Collapse
|
47
|
Guna A, Page KR, Replogle JM, Esantsi TK, Wang ML, Weissman JS, Voorhees RM. A dual sgRNA library design to probe genetic modifiers using genome-wide CRISPRi screens. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.22.525086. [PMID: 36711738 PMCID: PMC9882262 DOI: 10.1101/2023.01.22.525086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Mapping genetic interactions is essential for determining gene function and defining novel biological pathways. We report a simple to use CRISPR interference (CRISPRi) based platform, compatible with Fluorescence Activated Cell Sorting (FACS)-based reporter screens, to query epistatic relationships at scale. This is enabled by a flexible dual-sgRNA library design that allows for the simultaneous delivery and selection of a fixed sgRNA and a second randomized guide, comprised of a genome-wide library, with a single transduction. We use this approach to identify epistatic relationships for a defined biological pathway, showing both increased sensitivity and specificity than traditional growth screening approaches.
Collapse
Affiliation(s)
- Alina Guna
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California Ave., Pasadena, CA 91125, USA
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Katharine R Page
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California Ave., Pasadena, CA 91125, USA
| | - Joseph M Replogle
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
- Medical Scientist Training Program, University of California, San Francisco, San Francisco, CA 94158, USA
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Theodore K Esantsi
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Maxine L Wang
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California Ave., Pasadena, CA 91125, USA
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Jonathan S Weissman
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA,02142, USA
| | - Rebecca M Voorhees
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California Ave., Pasadena, CA 91125, USA
| |
Collapse
|
48
|
She R, Fair T, Schaefer NK, Saunders RA, Pavlovic BJ, Weissman JS, Pollen AA. Comparative landscape of genetic dependencies in human and chimpanzee stem cells. Cell 2023; 186:2977-2994.e23. [PMID: 37343560 PMCID: PMC10461406 DOI: 10.1016/j.cell.2023.05.043] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 03/14/2023] [Accepted: 05/26/2023] [Indexed: 06/23/2023]
Abstract
Comparative studies of great apes provide a window into our evolutionary past, but the extent and identity of cellular differences that emerged during hominin evolution remain largely unexplored. We established a comparative loss-of-function approach to evaluate whether human cells exhibit distinct genetic dependencies. By performing genome-wide CRISPR interference screens in human and chimpanzee pluripotent stem cells, we identified 75 genes with species-specific effects on cellular proliferation. These genes comprised coherent processes, including cell-cycle progression and lysosomal signaling, which we determined to be human-derived by comparison with orangutan cells. Human-specific robustness to CDK2 and CCNE1 depletion persisted in neural progenitor cells and cerebral organoids, supporting the G1-phase length hypothesis as a potential evolutionary mechanism in human brain expansion. Our findings demonstrate that evolutionary changes in human cells reshaped the landscape of essential genes and establish a platform for systematically uncovering latent cellular and molecular differences between species.
Collapse
Affiliation(s)
- Richard She
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - Tyler Fair
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA; Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Nathan K Schaefer
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Reuben A Saunders
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA; Department of Cellular and Molecular Pharmacology, University of California at San Francisco, San Francisco, CA, USA
| | - Bryan J Pavlovic
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Jonathan S Weissman
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA; Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, USA; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute Technology, Cambridge, MA 02142, USA.
| | - Alex A Pollen
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
49
|
Chen X, Moran Torres JP, Li Y, Lugones LG, Wösten HAB. Inheritable CRISPR based epigenetic modification in a fungus. Microbiol Res 2023; 272:127397. [PMID: 37141850 DOI: 10.1016/j.micres.2023.127397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/26/2023] [Accepted: 04/26/2023] [Indexed: 05/06/2023]
Abstract
The CRISPRoff system was recently introduced as a programmable epigenetic memory writer that can be used to silence genes in human cells. The system makes use of a dead Cas9 protein (dCas9) that is fused with the ZNF10 KRAB, Dnmt3A, and Dnmt3L protein domains. The DNA methylation resulting from the CRISPRoff system can be removed by the CRISPRon system that consists of dCas9 fused to the catalytic domain of Tet1. Here, the CRISPRoff and CRISPRon systems were applied for the first time in a fungus. The CRISPRoff system resulted in an inactivation up to 100 % of the target genes flbA and GFP in Aspergillus niger. Phenotypes correlated with the degree of gene silencing in the transformants and were stable when going through a conidiation cycle, even when the CRISPRoff plasmid was removed from the flbA silenced strain. Introducing the CRISPRon system in a strain in which the CRISPRoff plasmid was removed fully reactivated flbA showing a phenotype similar to that of the wildtype. Together, the CRISPRoff and CRISPRon systems can be used to study gene function in A. niger.
Collapse
Affiliation(s)
- Xiaoyi Chen
- Microbiology, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Juan P Moran Torres
- Microbiology, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Yiling Li
- Microbiology, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Luis G Lugones
- Microbiology, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Han A B Wösten
- Microbiology, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands.
| |
Collapse
|
50
|
Samuel RM, Navickas A, Maynard A, Gaylord EA, Garcia K, Bhat S, Majd H, Richter MN, Elder N, Le D, Nguyen P, Shibata B, Llabata ML, Selleri L, Laird DJ, Darmanis S, Goodarzi H, Fattahi F. Generation of Schwann cell derived melanocytes from hPSCs identifies pro-metastatic factors in melanoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.06.531220. [PMID: 36945537 PMCID: PMC10028814 DOI: 10.1101/2023.03.06.531220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
The neural crest (NC) is highly multipotent and generates diverse lineages in the developing embryo. However, spatiotemporally distinct NC populations display differences in fate potential, such as increased gliogenic and parasympathetic potential from later migrating, nerve-associated Schwann cell precursors (SCPs). Interestingly, while melanogenic potential is shared by both early migrating NC and SCPs, differences in melanocyte identity resulting from differentiation through these temporally distinct progenitors have not been determined. Here, we leverage a human pluripotent stem cell (hPSC) model of NC temporal patterning to comprehensively characterize human NC heterogeneity, fate bias, and lineage development. We captured the transition of NC differentiation between temporally and transcriptionally distinct melanogenic progenitors and identified modules of candidate transcription factor and signaling activity associated with this transition. For the first time, we established a protocol for the directed differentiation of melanocytes from hPSCs through a SCP intermediate, termed trajectory 2 (T2) melanocytes. Leveraging an existing protocol for differentiating early NC-derived melanocytes, termed trajectory 1 (T1), we performed the first comprehensive comparison of transcriptional and functional differences between these distinct melanocyte populations, revealing differences in pigmentation and unique expression of transcription factors, ligands, receptors and surface markers. We found a significant link between the T2 melanocyte transcriptional signature and decreased survival in melanoma patients in the cancer genome atlas (TCGA). We performed an in vivo CRISPRi screen of T1 and T2 melanocyte signature genes in a human melanoma cell line and discovered several T2-specific markers that promote lung metastasis in mice. We further demonstrated that one of these factors, SNRPB, regulates the splicing of transcripts involved in metastasis relevant functions such as migration, cell adhesion and proliferation. Overall, this study identifies distinct developmental trajectories as a source of diversity in melanocytes and implicates the unique molecular signature of SCP-derived melanocytes in metastatic melanoma.
Collapse
Affiliation(s)
- Ryan M. Samuel
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Albertas Navickas
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Current address: Institut Curie, CNRS UMR3348, INSERM U1278, Orsay, France
| | - Ashley Maynard
- Chan Zuckerberg Biohub, San Francisco, CA, USA
- Current address: Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Eliza A. Gaylord
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Kristle Garcia
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Samyukta Bhat
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Homa Majd
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Mikayla N. Richter
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Nicholas Elder
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Daniel Le
- Chan Zuckerberg Biohub, San Francisco, CA, USA
- Current address: Department of Microchemistry, Proteomics, Lipidomics and Next Generation Sequencing, Genentech Inc, South San Francisco, CA
| | - Phi Nguyen
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Bradley Shibata
- Biological Electron Microscopy Facility, University of California, Davis, CA 95616, USA
- Department of Cell Biology and Human Anatomy, School of Medicine, University of California, Davis, CA 95616, USA
| | - Marta Losa Llabata
- Program in Craniofacial Biology, University of California, San Francisco, San Francisco, CA 94110, USA
- Current address: Caribou Biosciences, Berkley, CA 94710
| | - Licia Selleri
- Program in Craniofacial Biology, University of California, San Francisco, San Francisco, CA 94110, USA
- Department of Orofacial Sciences, University of California San Francisco, San Francisco, CA 94143, USA
- Department of Anatomy, University of California San Francisco, San Francisco, CA 94143, USA
- Institute of Human Genetics, University of California San Francisco, San Francisco, CA 94143, USA
| | - Diana J. Laird
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, 94143, USA
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of California, San Francisco, San Francisco, CA, USA
- Center for Reproductive Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Spyros Darmanis
- Chan Zuckerberg Biohub, San Francisco, CA, USA
- Current address: Department of Microchemistry, Proteomics, Lipidomics and Next Generation Sequencing, Genentech Inc, South San Francisco, CA
| | - Hani Goodarzi
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Faranak Fattahi
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, 94143, USA
- Program in Craniofacial Biology, University of California, San Francisco, San Francisco, CA 94110, USA
| |
Collapse
|