1
|
Chen L, Tian R, Wei S, Yang H, Zhu C, Li Z. Activation of orexin receptor 2 plays anxiolytic effect in male mice. Brain Res 2025; 1859:149646. [PMID: 40246189 DOI: 10.1016/j.brainres.2025.149646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 04/01/2025] [Accepted: 04/14/2025] [Indexed: 04/19/2025]
Abstract
Anxiety disorders are the most common psychiatric illnesses. Present drugs can provide temporary relief for anxiety, however, they also come with side effects and safety concerns such as dependence, suicide, overdose and so on. Therefore, it is critical to discover new anxiolytic targets. An ongoing area of interest in the field of psychiatric diseases is the orexin system. Emerging body of evidences show that orexin receptor 1 (OX1R) has promising potential as novel anxiolytic target. However, little attention has been paid to orexin receptor 2 (OX2R) in anxiety. In this study, by using behavioral test, stereotaxic surgery and microinjection, virus-mediated knockdown of OX2R and pharmacological method, we found that: (1) Intraperitoneal injection of OX2R antagonist Seltorexant induced increased baseline anxiety-like behaviors in male mice. (2) Intraperitoneal injection of OX2R agonist YNT-185 reduced baseline anxiety-like behaviors in male mice. (3) Intraperitoneal injection of YNT-185 alleviated morphine withdrawal-induced anxiety-like behaviors in male mice. (4) Microinjection of YNT-185 into the VTA played anxiolytic effect in male mice. (5) Virus-mediated OX2R knockdown in the VTA induced anxiety-like behaviors in male mice.
Collapse
Affiliation(s)
- Lihua Chen
- The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, China
| | - Rui Tian
- College of Basic Medical Science, China Three Gorges University, Yichang, China; Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China
| | - Siqi Wei
- College of Basic Medical Science, China Three Gorges University, Yichang, China; Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China
| | - Hongwei Yang
- College of Basic Medical Science, China Three Gorges University, Yichang, China; Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China
| | - Chenchen Zhu
- College of Basic Medical Science, China Three Gorges University, Yichang, China; Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China
| | - Zicheng Li
- College of Basic Medical Science, China Three Gorges University, Yichang, China; Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China.
| |
Collapse
|
2
|
de Brito MC, Costa BY, Souza Lima TAD, Camarini R. Environmental enrichment induces depressive- and anxiety-like behaviors in male Balb/C mice. Behav Brain Res 2025; 483:115462. [PMID: 39892654 DOI: 10.1016/j.bbr.2025.115462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/19/2024] [Accepted: 01/20/2025] [Indexed: 02/04/2025]
Abstract
Depression and anxiety disorders are prevalent neuropsychiatric conditions worldwide that impose substantial economic and social burdens worldwide. Environmental enrichment (EE) has been employed to investigate how the environment can influence these disorders. While EE is known to mitigate depressive and anxiety phenotypes across various mouse strains, the Balb/C strain exhibits greater sensitivity to different environmental stimuli. In this study, we aimed to assess the long-term effects of EE introduced after weaning on emotional behaviors in adulthood. Balb/C mice were weaned on postnatal day (PND) 21 and exposed to chronic EE for 3, 12, or 24 hours daily until PND 66. Depressive- and anxiety-like behaviors were assessed using the open field, elevated plus maze, and tail suspension tests, along with measurements of corticosterone plasma levels. EE exposure induced emotional dysregulation, evidenced by an increase in anxiety- and depressive-like behaviors. Shorter length of EE (3 h) had less impact on these behaviors compared to longer periods (12 and 24 h). These findings highlight the need for caution when employing the Balb/C strain in EE models, particularly in studies exploring emotional behaviors.
Collapse
Affiliation(s)
- Malcon Carneiro de Brito
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-900, Brazil
| | - Beatriz Yamada Costa
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-900, Brazil
| | - Thiago Amorim de Souza Lima
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-900, Brazil
| | - Rosana Camarini
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-900, Brazil.
| |
Collapse
|
3
|
Bahi A. Hippocampal microRNA-181a overexpression participates in anxiety and ethanol related behaviors via regulating the expression of SIRT-1. Physiol Behav 2025; 292:114839. [PMID: 39920909 DOI: 10.1016/j.physbeh.2025.114839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/27/2025] [Accepted: 02/04/2025] [Indexed: 02/10/2025]
Abstract
Understanding the molecular mechanisms underlying anxiety and ethanol-related behaviors is crucial for developing effective therapeutic interventions. This study identifies a novel role for microRNA miR-181a and its target, Sirtuin 1 (SIRT-1), in the hippocampus as contributors to anxiety-like behavior and voluntary ethanol intake. Using male and female C57BL/6 mice, we explored the causal relationship between hippocampal miR-181a expression and these behaviors. Lentivirus vectors were delivered into the hippocampus for focal miR-181a overexpression in mice. Then behaviors were observed by elevated plus maze (EPM) and open field (OF) tests. Results showed that the viral approach employed to overexpress miR-181a, in the hippocampus, resulted in increased anxiety-like behavior in the EPM and OF tests. Additionally, miR-181a overexpression exacerbated voluntary ethanol intake and preference in the two-bottle choice paradigm without affecting saccharin or quinine consumption. Mechanistically, miR-181a gain-of-function reduced SIRT-1 expression in the hippocampus. These findings demonstrate that miR-181a upregulation in the hippocampus promotes anxiety and ethanol-related behaviors, likely through SIRT-1 repression. This work highlights miR-181a as a key molecular mediator in the epigenetic regulation of mood disorders and ethanol consumption.
Collapse
Affiliation(s)
- Amine Bahi
- Department of Basic Medical Sciences, College of Medicine, Ajman University, Ajman, UAE; Center of Medical & Bio-Allied Health Sciences Research, Ajman University, Ajman, UAE; College of Medicine & Health Sciences, UAEU, Al Ain, UAE.
| |
Collapse
|
4
|
Yang Z, Killian MO. A Systematic Review of Anxiety Measurement Scales in Pediatric Organ Transplantation Patients. Prog Transplant 2025; 35:22-40. [PMID: 39748704 DOI: 10.1177/15269248241305018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
INTRODUCTION Anxiety symptoms influence health outcomes in pediatric organ transplant recipients. Assessing the quality of anxiety scales is critical to address the psychological challenges these patients face. Variability in how anxiety is conceptualized across scales highlights the need for selecting appropriate instruments. OBJECTIVE This systematic review aimed to search and synthesize anxiety scales used in pediatric organ transplant studies, evaluate their reliability and validity, examine factors and group differences related to anxiety, and identify promising scales for this population. METHODS A systematic search was conducted using the terms "(Anxiety) AND (organ transplant) AND (child* OR youth OR pediatric* OR adolescen*)." Ten electronic databases were accessed. RESULTS Eighteen anxiety scales from 30 articles were identified. Fourteen scales measured specific anxiety types. Most scales demonstrated good to excellent reliability and validity. Associations between anxiety and demographics, psychological well-being, factors related to illness and treatment were observed. Five types of anxiety-related differences among groups and 6 promising anxiety scales for the target population were identified. DISCUSSION General and specialized anxiety scales were identified. Incomplete reporting of psychometric evidence restricted the quality assessment. Limitations include cultural and publication biases. Future research should focus on transplant-specific scales with psychometric validation across culturally diverse settings to ensure their quality and applicability. CONCLUSION This review identified well-validated scales, such as State-Trait Anxiety Inventory for Children and Generalized Anxiety Disorder-7, effective for quick screening. Specialized instruments were used for nuanced anxiety concepts such as needle-related anxiety, illness-specific anxiety, and anxiety during the transition to adult care, but further psychometric validation is needed.
Collapse
Affiliation(s)
- Zhe Yang
- College of Social Work, Florida State University, Tallahassee, FL, USA
| | - Michael O Killian
- College of Social Work, Florida State University, Tallahassee, FL, USA
- College of Medicine, Florida State University, Tallahassee, FL, USA
| |
Collapse
|
5
|
Barranco-Palma CI, González-Trujano ME, Martínez-Vargas D, Narváez-González HF, Conde-Martínez V, Vibrans H, López-Upton J, Soto-Hernández M. Phytochemical profile of Taxus globosa Schltdl. and its anxiolytic, antinociceptive, and toxicological evaluation in mice. JOURNAL OF ETHNOPHARMACOLOGY 2025; 342:119383. [PMID: 39864605 DOI: 10.1016/j.jep.2025.119383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/18/2024] [Accepted: 01/16/2025] [Indexed: 01/28/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Taxus globosa Schltdl. (Taxaceae) is commonly named "Tejo mexicano". It's a Mexican plant known in folk medicine as a remedy for pain such as stomachache and headache, arthritis, gout, and other inflammatory conditions. It belongs to the Taxus genus and contains one of the most successful natural anticancer drugs, paclitaxel, among other bioactive compounds. OBJECTIVE OF THE STUDY To provide preclinical evidence of its phytochemical, toxicological, and pharmacological properties at central and peripheral levels for analgesia, as well as anxiolytic, due to its central nervous system (CNS) depressant properties. MATERIAL AND METHODS Initially, the median lethal dose (LD50) of a polar extract of T. globosa was calculated to determine the doses for evaluating anxiolytic and antinociceptive activities, where the possible participation of endogenous opioids and serotonin 5-HT1A inhibitory receptors was explored, including electrocorticographic analysis. Phytochemical screening was also included using different chromatographic techniques to compare samples from wild and cultivated sources. RESULTS The acute toxicity was estimated to be greater than 316.23 mg/kg, i.p. in mice. The T. globosa extract produced a significant anxiolytic effect at 30 mg/kg, i.p., and an antinociceptive effect at a dosage of 56.2 mg/kg, i.p., mainly as anti-inflammatory, where both endogenous opioids and 5-HT1A serotonin receptors participated due to the presence of several known bioactive metabolites. No evidence of gastric, hepatic, renal, or cerebral damage was observed at therapeutic doses. CONCLUSION Our results provide preclinical evidence for the pharmacological medicinal properties of T. globosa in producing CNS depressant activity, useful as a remedy for anxiety and pain therapy in folk medicine.
Collapse
Affiliation(s)
- Claudia Isabel Barranco-Palma
- Posgrado en Botánica, Colegio Postgraduados Campus Montecillo, Km. 36.5 Carretera México-Texcoco, Montecillo, C.P. 56264, Texcoco Estado de México, Mexico.
| | - María Eva González-Trujano
- Laboratorio de Neurofarmacología de Productos Naturales, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría "Ramón de la Fuente Muñiz". Calz, México-Xochimilco 101, Col. San Lorenzo Huipulco, Tlalpan, C.P. 14370, Ciudad de México, Mexico.
| | - David Martínez-Vargas
- Laboratorio de Neurofisiología del Control y la Regulación, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría "Ramón de la Fuente Muñiz", Calz. México-Xochimilco 101, Col. San Lorenzo Huipulco, C.P. 14370, Ciudad de México, Mexico.
| | - Hugo Fernando Narváez-González
- Hospital de Especialidades Dr. Belisario Domínguez, Av. Tláhuac 4866, San Lorenzo Tezonco, Iztapalapa, Ciudad de México, C.P. 09930, Mexico; Centro Médico Nacional 20 de Noviembre, Félix Cuevas 540, Col. Del Valle Sur, Benito Juárez, C.P. 03104, Ciudad de México, Mexico.
| | - Víctor Conde-Martínez
- Posgrado en Botánica, Colegio Postgraduados Campus Montecillo, Km. 36.5 Carretera México-Texcoco, Montecillo, C.P. 56264, Texcoco Estado de México, Mexico.
| | - Heike Vibrans
- Posgrado en Botánica, Colegio Postgraduados Campus Montecillo, Km. 36.5 Carretera México-Texcoco, Montecillo, C.P. 56264, Texcoco Estado de México, Mexico.
| | - Javier López-Upton
- Posgrado en Botánica, Colegio Postgraduados Campus Montecillo, Km. 36.5 Carretera México-Texcoco, Montecillo, C.P. 56264, Texcoco Estado de México, Mexico.
| | - Marcos Soto-Hernández
- Posgrado en Botánica, Colegio Postgraduados Campus Montecillo, Km. 36.5 Carretera México-Texcoco, Montecillo, C.P. 56264, Texcoco Estado de México, Mexico.
| |
Collapse
|
6
|
Möller JEL, Schmitt FW, Günther D, Stöver A, Bouter Y. The synthetic cannabinoid WIN 55,212-2 attenuates cognitive and motor deficits and reduces amyloid load in 5XFAD Alzheimer mice. Pharmacol Biochem Behav 2025; 247:173944. [PMID: 39675388 DOI: 10.1016/j.pbb.2024.173944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 11/05/2024] [Accepted: 12/07/2024] [Indexed: 12/17/2024]
Abstract
BACKGROUND Alzheimer's disease (AD) is characterized by cognitive decline, with pathological features including amyloid β (Aβ) plaques and inflammation. Despite recent approvals of anti-amyloid antibodies, there remains a need for disease-modifying and easily accessible therapies. The endocannabinoid system presents a promising target for AD treatment, as it regulates various processes implicated in AD pathogenesis. AIMS This study assesses the effects of the synthetic cannabinoid WIN 55,212-2 on AD pathology and behavior deficits in aged 5XFAD mice, a well-established AD model. METHODS Male 9-month-old 5XFAD mice received either 0.2 mg/kg WIN 55,212-2 or a vehicle solution for 42 days. Memory, anxiety, and motor tests were conducted at 10 months to identify potential changes in behavior and cognition following WIN 55,212-2 treatment. Additionally, the effects of prolonged WIN 55,212-2 treatment on Aβ pathology and neuroinflammation in the brain were quantified immunohistochemically. RESULTS Therapeutic WIN 55,212-2 treatment improved the motor performance of 5XFAD mice on the rotarod and rescued memory deficits in the water maze. However, WIN 55,212-2 treatment did not significantly affect anxiety-like behavior in 5XFAD mice. Additionally, prolonged treatment with WIN 55,212-2 reduced Aβ plaque pathology and astrogliosis in the cortex and hippocampus. CONCLUSIONS This study highlights the therapeutic potential of WIN 55,212-2 in AD by ameliorating cognitive and motor deficits and reducing neuropathology. These findings support a cannabinoid-based therapy as a promising strategy for AD treatment, with WIN 55,212-2 emerging as a potential candidate.
Collapse
Affiliation(s)
- Johanna E L Möller
- Department of Psychiatry and Psychotherapy, University Medical Center, Georg-August-University, Goettingen, Germany
| | - Franziska W Schmitt
- Department of Psychiatry and Psychotherapy, University Medical Center, Georg-August-University, Goettingen, Germany
| | - Daniel Günther
- Department of Psychiatry and Psychotherapy, University Medical Center, Georg-August-University, Goettingen, Germany
| | - Alicia Stöver
- Department of Psychiatry and Psychotherapy, University Medical Center, Georg-August-University, Goettingen, Germany
| | - Yvonne Bouter
- Department of Psychiatry and Psychotherapy, University Medical Center, Georg-August-University, Goettingen, Germany; Department of Nuclear Medicine, University Medical Center Göttingen, Goettingen, Germany.
| |
Collapse
|
7
|
Gálvez I, Navarro M, Torres-Piles S, Martín-Cordero L, Hinchado M, Ortega E. Exercise-induced anxiety impairs local and systemic inflammatory response and glucose metabolism in C57BL/6J mice. Brain Behav Immun Health 2025; 43:100910. [PMID: 39686921 PMCID: PMC11648794 DOI: 10.1016/j.bbih.2024.100910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
Introduction The complex physiological and psychological responses to regular exercise are yet to be fully elucidated. Exercise strongly modulates the immune system, inducing a plethora of dynamic responses involving the innate immune cell function and inflammatory processes that contribute to both potential health benefits and harmful side effects. Indeed, the relationship between physical exercise, stress, immunity, and metabolism serves as a paramount model of neuroimmunoendocrine interaction. Thus, the objective of this study was to conduct a comprehensive analysis of both systemic and local immunophysiological responses together with behavioral responses to a protocol of anxiety-inducing exercise. Material and methods C57BL/6J mice were randomly allocated into sedentary or exercised groups, where the anxiety-inducing exercise protocol was based on a 14-day consecutive program of swimming in water at 38 °C. Anxiety-like behavior was corroborated through the elevated plus maze test. Systemic biomarkers of the stress response were assessed using ELISA technique and the expression of systemic inflammatory cytokines with Bio-Plex system. Phagocytic/microbicide activity, the expression of M1/M2 phenotype markers (CD11c, iNOS, CD206, ARG-1) and cytokines of the inflammatory response (MCP-1, IL-8, IL-6, TNF-α, TGF-β, IL-10) of peritoneal macrophages were determined via flow cytometry. Adipose tissue macrophage infiltration was studied through fluorescence immunohistochemistry. Results Anxiety-like behavior, elevated circulating glucose concentrations, systemic stress and inflammatory responses, together with increased oxidative stress and inflammatory profile of peritoneal macrophages, and macrophage infiltration in white adipose tissue were observed in exercised animals. Conclusions A protocol of exercise that induces anxiety is associated with a neuroimmunoendocrine dysregulation affecting the feedback between the inflammatory and the stress responses, together with detrimental metabolic effects in glucose modulation. Systemic inflammatory alterations are accompanied by detrimental inflammatory responses in tissue macrophage populations. Altogether, these results show that exercise associated with anxiety, stress, pro-inflammatory responses, and hyperglycaemia represents a model of 'dangerous exercise'.
Collapse
Affiliation(s)
- I. Gálvez
- Immunophysiology Research Group, Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), 06071, Badajoz, Spain
- Immunophysiology Research Group, Nursing Department, Faculty of Medicine and Health Sciences, University of Extremadura, 06071, Badajoz, Spain
| | - M.C. Navarro
- Immunophysiology Research Group, Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), 06071, Badajoz, Spain
- Immunophysiology Research Group, Physiology Department, Faculty of Sciences, University of Extremadura, 06071, Badajoz, Spain
| | - S. Torres-Piles
- Immunophysiology Research Group, Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), 06071, Badajoz, Spain
- Immunophysiology Research Group, Department of Medical-Surgical Therapy, Faculty of Medicine, University of Extremadura, 06071, Badajoz, Spain
| | - L. Martín-Cordero
- Immunophysiology Research Group, Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), 06071, Badajoz, Spain
- Immunophysiology Research Group, Nursing Department, University Center of Plasencia, University of Extremadura, 10600, Plasencia, Spain
| | - M.D. Hinchado
- Immunophysiology Research Group, Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), 06071, Badajoz, Spain
- Immunophysiology Research Group, Physiology Department, Faculty of Sciences, University of Extremadura, 06071, Badajoz, Spain
| | - E. Ortega
- Immunophysiology Research Group, Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), 06071, Badajoz, Spain
- Immunophysiology Research Group, Physiology Department, Faculty of Sciences, University of Extremadura, 06071, Badajoz, Spain
| |
Collapse
|
8
|
Kougias DG, Atillasoy E, Southall MD, Scialli AR, Ejaz S, Chu C, Jeminiwa BO, Massarsky A, Unice KM, Schaeffer TH, Kovochich M. A quantitative weight-of-evidence review of preclinical studies examining the potential developmental neurotoxicity of acetaminophen. Crit Rev Toxicol 2025; 55:124-178. [PMID: 39982125 DOI: 10.1080/10408444.2024.2442344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/21/2024] [Accepted: 12/05/2024] [Indexed: 02/22/2025]
Abstract
Acetaminophen [paracetamol; N-acetyl-para-aminophenol (APAP)] is an antipyretic/analgesic commonly used in the treatment of fever and mild to moderate pain, headache, myalgia, and dysmenorrhea. Recent literature has questioned the safety of acetaminophen use during pregnancy, with an emphasis on whether exposure to the developing nervous system results in behavioral changes consistent with autism spectrum disorder (ASD), attention-deficit/hyperactivity disorder (ADHD), and/or other cognitive deficits in the offspring. No previous review has used a fully detailed, quantitative weight-of-evidence (QWoE) approach to critically examine the preclinical acetaminophen data with regards to potential developmental neurotoxicity (DNT). Following regulatory guidance, a QWoE framework using prespecified scoring criteria was developed consistent with previous approaches to characterize potential adverse DNT outcomes with considerations for biological relevance of the response to adverse outcomes (outcome score) and the strength of methods and study design (methods score). Considerations for the methods score included (1) experimental design, (2) details/reliability of measurement(s), (3) data transparency, and (4) translational/methodological relevance. Considerations for the outcome score included response-related (1) statistical significance, (2) dose-response, (3) relevance/reliability/magnitude, (4) plausibility, and (5) translational relevance, including consideration of systemic toxicity/hepatotoxicity and therapeutic and/or non-systemically toxic doses and durations of use. Application of this QWoE framework to the 34 in vivo studies identified that assess the potential DNT of acetaminophen resulted in 188 QWoE entries documented across 11 DNT endpoints: social behavior, stereotypic behavior, behavioral rigidity, attention/impulsivity, hyperactivity, anxiety-like behavior, sensorimotor function, spatial learning/memory, nonspatial learning/memory, neuroanatomy, and neurotransmission. For each endpoint, the mean outcome score and methods score were calculated for total entries and for entries segregated by sex to assist in determining data quality and potential adversity. Informed by all 188 entries, the QWoE analysis demonstrated data of moderate quality showing no consistent evidence of DNT in male and female rodents following exposure to acetaminophen at therapeutic and/or nonsystemically toxic doses. Although some of the DNT endpoints (behavioral rigidity, attention/impulsivity, spatial learning/memory, neuroanatomy, and neurotransmission) generally displayed a more limited dataset and/or relatively lower data quality, similar conclusions were drawn based on results indicating a lack of biological relevance and reliability of reported adverse effects. Overall, this QWoE analysis on the preclinical in vivo data demonstrates no consistent evidence of adverse effects following developmental exposure to acetaminophen at therapeutic and/or non-systemically toxic doses on the structure and function of the nervous system, including neuroanatomical, neurotransmission, and behavioral endpoints.
Collapse
Affiliation(s)
| | - Evren Atillasoy
- Kenvue Medical Clinical and Safety Sciences, Fort Washington, PA, USA
| | | | - Anthony R Scialli
- Reproductive Toxicology Center, A Non-Profit Foundation, Washington, DC, USA
| | - Sadaff Ejaz
- Kenvue Medical Clinical and Safety Sciences, Skillman, NJ, USA
| | - Christopher Chu
- Kenvue Medical Clinical and Safety Sciences, Skillman, NJ, USA
| | | | | | | | | | | |
Collapse
|
9
|
N P, M M G, C RR, D P, E H, A G, M MÁ, C G, V LM, E M SR, R G. Modulation of morphine antinociceptive and rewarding effect by mirtazapine in an animal model of osteoarthritic pain. Eur J Pharmacol 2025; 987:177165. [PMID: 39615867 DOI: 10.1016/j.ejphar.2024.177165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 10/31/2024] [Accepted: 11/28/2024] [Indexed: 12/10/2024]
Abstract
People with chronic pain mitigate their suffering by the action of opioids. Adverse reactions aside, opioids are not exempt from potential complications like addiction and abuse, which have posed a global public health problem lately. Finding new therapeutic strategies to improve analgesia and to reduce opioid side effects has become a priority. In this regard, the association of different adjuvant therapies has been postulated. Despite preclinical and clinical evidence supporting the use of antidepressants as analgesics, it is not clear whether they could help reduce the risk of addiction in combination with opioids. To further explore this idea a model of chronic osteoarthritis pain was employed, and a combination of mirtazapine and morphine was used in a chronic regimen in male and female rats. The effects on the development of tactile allodynia, movement-evoked pain, reward, analgesic tolerance, naloxone-induced withdrawal symptoms, impaired locomotor activity and anxiety were evaluated under a 25-day experimental protocol. Additionally, protein expression of μ-opioid receptors and clusterin (related with substance abuse) was evaluated in plasma and in brain structures of the reward system. Chronic morphine caused analgesic tolerance, reward and naloxone-induced withdrawal symptoms. The combination reduced the analgesic tolerance and prevented the development of withdrawal symptoms but showed sex-based differences regarding reward. Increased levels of clusterin in plasma were observed in females treated with morphine, but not with combined therapy. The combination of mirtazapine and morphine could be a promising strategy to improve the management of long-term opioid treatment and its risk of abuse, especially in females.
Collapse
Affiliation(s)
- Paniagua N
- Area of Pharmacology, Nutrition and Bromatology, Department of Basic Health Sciences, Rey Juan Carlos University (URJC), Associated R+D+i Unit to the Institute of Medicinal Chemistry (IQM), Scientific Research Superior Council (CSIC), Alcorcón, Spain; High Performance Research Group in Experimental Pharmacology (PHARMAKOM) of the Rey Juan Carlos University, Alcorcón, Spain
| | - García M M
- Area of Pharmacology, Nutrition and Bromatology, Department of Basic Health Sciences, Rey Juan Carlos University (URJC), Associated R+D+i Unit to the Institute of Medicinal Chemistry (IQM), Scientific Research Superior Council (CSIC), Alcorcón, Spain; High Performance Research Group in Experimental Pharmacology (PHARMAKOM) of the Rey Juan Carlos University, Alcorcón, Spain
| | - Rodríguez Rivera C
- Area of Pharmacology, Nutrition and Bromatology, Department of Basic Health Sciences, Rey Juan Carlos University (URJC), Associated R+D+i Unit to the Institute of Medicinal Chemistry (IQM), Scientific Research Superior Council (CSIC), Alcorcón, Spain; High Performance Research Group in Experimental Pharmacology (PHARMAKOM) of the Rey Juan Carlos University, Alcorcón, Spain
| | - Pascual D
- Area of Pharmacology, Nutrition and Bromatology, Department of Basic Health Sciences, Rey Juan Carlos University (URJC), Associated R+D+i Unit to the Institute of Medicinal Chemistry (IQM), Scientific Research Superior Council (CSIC), Alcorcón, Spain; High Performance Research Group in Experimental Pharmacology (PHARMAKOM) of the Rey Juan Carlos University, Alcorcón, Spain
| | - Herradón E
- Area of Pharmacology, Nutrition and Bromatology, Department of Basic Health Sciences, Rey Juan Carlos University (URJC), Associated R+D+i Unit to the Institute of Medicinal Chemistry (IQM), Scientific Research Superior Council (CSIC), Alcorcón, Spain; High Performance Research Group in Experimental Pharmacology (PHARMAKOM) of the Rey Juan Carlos University, Alcorcón, Spain
| | - González A
- Area of Pharmacology, Nutrition and Bromatology, Department of Basic Health Sciences, Rey Juan Carlos University (URJC), Associated R+D+i Unit to the Institute of Medicinal Chemistry (IQM), Scientific Research Superior Council (CSIC), Alcorcón, Spain; High Performance Research Group in Experimental Pharmacology (PHARMAKOM) of the Rey Juan Carlos University, Alcorcón, Spain
| | - Molina-Álvarez M
- Area of Pharmacology, Nutrition and Bromatology, Department of Basic Health Sciences, Rey Juan Carlos University (URJC), Associated R+D+i Unit to the Institute of Medicinal Chemistry (IQM), Scientific Research Superior Council (CSIC), Alcorcón, Spain; High Performance Research Group in Experimental Pharmacology (PHARMAKOM) of the Rey Juan Carlos University, Alcorcón, Spain
| | - Goicoechea C
- Area of Pharmacology, Nutrition and Bromatology, Department of Basic Health Sciences, Rey Juan Carlos University (URJC), Associated R+D+i Unit to the Institute of Medicinal Chemistry (IQM), Scientific Research Superior Council (CSIC), Alcorcón, Spain; High Performance Research Group in Experimental Pharmacology (PHARMAKOM) of the Rey Juan Carlos University, Alcorcón, Spain
| | - López-Miranda V
- Area of Pharmacology, Nutrition and Bromatology, Department of Basic Health Sciences, Rey Juan Carlos University (URJC), Associated R+D+i Unit to the Institute of Medicinal Chemistry (IQM), Scientific Research Superior Council (CSIC), Alcorcón, Spain; High Performance Research Group in Experimental Pharmacology (PHARMAKOM) of the Rey Juan Carlos University, Alcorcón, Spain
| | - Sánchez-Robles E M
- Area of Pharmacology, Nutrition and Bromatology, Department of Basic Health Sciences, Rey Juan Carlos University (URJC), Associated R+D+i Unit to the Institute of Medicinal Chemistry (IQM), Scientific Research Superior Council (CSIC), Alcorcón, Spain; High Performance Research Group in Experimental Pharmacology (PHARMAKOM) of the Rey Juan Carlos University, Alcorcón, Spain.
| | - Girón R
- Area of Pharmacology, Nutrition and Bromatology, Department of Basic Health Sciences, Rey Juan Carlos University (URJC), Associated R+D+i Unit to the Institute of Medicinal Chemistry (IQM), Scientific Research Superior Council (CSIC), Alcorcón, Spain; High Performance Research Group in Experimental Pharmacology (PHARMAKOM) of the Rey Juan Carlos University, Alcorcón, Spain
| |
Collapse
|
10
|
Luo Y, Bei X, Zhang Y, Sun X, Zhao Y, Chen F, Pan R, Chang Q, He Q, Liu X, Jiang N. Cichorium intybus L. Oligo-Polysaccharides (CIO) Exerts Antianxiety and Antidepressant Effects on Mice Experiencing Behavioral Despair and Chronic Unpredicted Mild Stress. Foods 2025; 14:135. [PMID: 39796425 PMCID: PMC11720489 DOI: 10.3390/foods14010135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/02/2024] [Accepted: 12/04/2024] [Indexed: 01/13/2025] Open
Abstract
Cichorium intybus L. oligo-polysaccharides (CIOs), obtained from Cichorium intybus L., is a mixture of oligosaccharides and polysaccharides. This study explores the antianxiety and antidepressant effects and mechanisms of CIOs by using acute behavioral despair and chronic unpredictable mild stress mice models and measuring the levels of 5-HT and the expression of proteins related to the BDNF/ERK and PI3K/Akt/mTOR pathways. Moreover, 56 male C57BL/6N mice were used to test behavioral despair. They were randomized into seven groups (Control, Citalopram, CIO 12.5 mg/kg, CIO 25 mg/kg, CIO 100 mg/kg, and CIO 200 mg/kg) based on body weight; they were administered with the corresponding medication daily for 7 days; and behavioral tests were conducted on them (forced swimming test (FST) and tail suspension test (TST)) after 7 days. Seventy male C57BL/6N mice were adopted in the next part of the experiment and randomly divided into seven groups (Control, CUMS, Fluoxetine, MOO, CIO 25 mg/kg, and CIO 100 mg/kg) based on the sucrose preference index. Except for the control group, the other groups were subjected to 6 weeks of CUMS. From the fifth week of stress, the corresponding drugs were administered by gavage until the end of the behavioral tests. In the behavioral despair tests, the immobility time was significantly reduced in the FST and TST after the CIO (25 and 100 mg/kg) treatment of 7 days. After 6 weeks of chronic unpredicted mild stress (CUMS) treatment, CIO (25, 50, and 100 mg/kg) administration significantly reduced the number of buried beads in the marble burying test (MBT), decreased the latency in the novelty-suppressed feeding test (NSFT), and shortened the immobility time in the FST and TST. CIO administration significantly increased the sucrose preference index in the sucrose preference test (SPT). Additionally, CIO treatment increased hippocampal 5-HT levels while upregulating the expression of BDNF, P-PI3K/PI3K, P-ERK/ERK, P-Akt/Akt, and P-mTOR/mTOR. In summary, CIO exerted promising antidepressant effects in behavioral despair and antianxiety and antidepressant effects in CUMS-induced depressive mice. Moreover, CIO therapy was facilitated by increasing the 5-HT content, alleviating the damage of hippocampal neurons, and upregulating the BDNF/ERK and PI3K/AKT/mTOR cascade. Thus, CIO is a substance with the potential to treat anxiety and depression.
Collapse
Affiliation(s)
- Yanqin Luo
- Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China; (Y.L.)
- Sino-Pakistan Center on Traditional Chinese Medicine, Hunan University of Medicine, Huaihua 418000, China
- Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science, Shihezi University, Shihezi 832000, China
| | - Xueyi Bei
- Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China; (Y.L.)
- Sino-Pakistan Center on Traditional Chinese Medicine, Hunan University of Medicine, Huaihua 418000, China
| | - Yiwen Zhang
- Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China; (Y.L.)
| | - Xinran Sun
- Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China; (Y.L.)
| | - Yongzhi Zhao
- Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China; (Y.L.)
- Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science, Shihezi University, Shihezi 832000, China
| | - Fang Chen
- Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China; (Y.L.)
| | - Ruile Pan
- Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China; (Y.L.)
| | - Qi Chang
- Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China; (Y.L.)
| | - Qinghu He
- Sino-Pakistan Center on Traditional Chinese Medicine, Hunan University of Medicine, Huaihua 418000, China
| | - Xinmin Liu
- Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China; (Y.L.)
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China
| | - Ning Jiang
- Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China; (Y.L.)
| |
Collapse
|
11
|
Kishi T, Kobayashi K, Sasagawa K, Sakimura K, Minato T, Kida M, Hata T, Kitagawa Y, Okuma C, Murata T. Automated analysis of a novel object recognition test in mice using image processing and machine learning. Behav Brain Res 2025; 476:115278. [PMID: 39357746 DOI: 10.1016/j.bbr.2024.115278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/22/2024] [Accepted: 09/29/2024] [Indexed: 10/04/2024]
Abstract
The novel object recognition test (NORT) is one of the most commonly employed behavioral tests in experimental animals designed to evaluate an animal's interest in and recognition of novelty. However, manual procedures, which rely on researchers' observations, prevent high throughput analysis. In this study, we developed an automated analysis method for NORT utilizing machine learning-assisted exploratory behavior detection. We recorded the exploratory behavior of the mice using a video camera. The coordinates of the mouse nose and tail base in recorded video files were detected using a pre-trained machine learning model, DeepLabCut. Each video was then segmented into frame images, which were categorized into "exploratory," or "non-exploratory" frames based on manual observation. Mouse feature vectors were calculated as vectors from the nose to the vertices of the object and were utilized for SVM training. The trained SVM effectively detected exploratory behaviors, showing a strong correlation with human observer assessments. Upon application to NORT, the duration of mouse exploratory behavior towards objects predicted by the SVM exhibited a significant correlation with the assessments made by human observers. The novelty discrimination index derived from the SVM predictions also aligned well with that from human observations.
Collapse
Affiliation(s)
- Takuya Kishi
- Food and Animal Systemics, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Koji Kobayashi
- Food and Animal Systemics, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kazuo Sasagawa
- Biological/Pharmacological Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc., 1-1 Murasaki-cho, Takatsuki, Osaka, Japan
| | - Katsuya Sakimura
- Biological/Pharmacological Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc., 1-1 Murasaki-cho, Takatsuki, Osaka, Japan
| | - Takashi Minato
- Food and Animal Systemics, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Misato Kida
- Food and Animal Systemics, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Takahiro Hata
- Innovation to implementation Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc., 1-1 Murasaki-cho, Takatsuki, Osaka, Japan
| | - Yoshihiro Kitagawa
- Research Planning, Central Pharmaceutical Research Institute, Japan Tobacco Inc., 1-1 Murasaki-cho, Takatsuki, Osaka, Japan
| | - Chihiro Okuma
- Biological/Pharmacological Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc., 1-1 Murasaki-cho, Takatsuki, Osaka, Japan
| | - Takahisa Murata
- Food and Animal Systemics, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan; Animal Radiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan; Veterinary Pharmacology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
12
|
Zhou Y, Wang G, Liang X, Xu Z. Hindbrain networks: Exploring the hidden anxiety circuits in rodents. Behav Brain Res 2025; 476:115281. [PMID: 39374875 DOI: 10.1016/j.bbr.2024.115281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/23/2024] [Accepted: 10/01/2024] [Indexed: 10/09/2024]
Abstract
Anxiety disorders are multifaceted conditions that engage numerous brain regions and circuits. While the hindbrain is pivotal in fundamental biological functions, its role in modulating emotions has been underappreciated. This review will uncover critical targets and circuits within the hindbrain that are essential for both anxiety and anxiolytic effects, expanding on research obtained through behavioral tests. The bidirectional neural pathways between the hindbrain and other brain regions, with a spotlight on vagal afferent signaling, provide a crucial framework for unraveling the neural mechanisms underlying anxiety. Exploring neural circuits within the hindbrain can help to unravel the neurobiological mechanisms of anxiety and elucidate differences in the expression of these circuits between genders, thereby providing valuable insights for the development of future anxiolytic drugs.
Collapse
Affiliation(s)
- Yifu Zhou
- Department of Neurosurgery, Affiliated Hospital of Shaoxing University, Shaoxing, China
| | - Gang Wang
- Department of Neurosurgery, Affiliated Hospital of Shaoxing University, Shaoxing, China
| | - Xiaosong Liang
- Department of Neurosurgery, Affiliated Hospital of Shaoxing University, Shaoxing, China
| | - Zhidi Xu
- Department of Anesthesia and Surgery, Affiliated Hospital of Shaoxing University, Shaoxing, China.
| |
Collapse
|
13
|
Júnior REM, Pedersen ASB, Ferreira RM, de Asevedo GH, Mendes GL, Ribeiro K, Maioli TU, de Faria AMC, Brunialti-Godard AL. Behavioral changes and transcriptional regulation of mesolimbic dopaminergic genes in a mouse model of binge eating disorder by diet intermittent access. J Nutr Biochem 2025; 135:109784. [PMID: 39426552 DOI: 10.1016/j.jnutbio.2024.109784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 08/02/2024] [Accepted: 10/12/2024] [Indexed: 10/21/2024]
Abstract
Binge Eating Disorder (BED) is among the most prevalent eating disorders worldwide. It is characterized by recurrent episodes of excessive consumption of palatable foods in short periods, accompanied by a sense of loss of control and distress around the episode, which tends to worsen over time. The mesolimbic dopaminergic system influences on reinforcement and reward-seeking behaviors is implicated in the disorder's pathogenesis. Animal models that replicate the clinical conditions observed in humans, including the disorder progression, are essential for understanding the underlying physiological mechanisms of BED. This study aimed to evaluate binge eating behavior induced by intermittent High Sugar and Butter (HSB) diet access in mice, their phenotypes, transcriptional regulation of mesolimbic dopaminergic system genes, and behavior. Thus, mice were subdivided into three groups: CHOW (maintenance diet only), HSB-i (maintenance diet with thrice-weekly access to HSB), and HSB (continuous access to HSB). Animals were subjected to marble-burying and light-dark box behavioral tests, and transcriptional regulation was evaluated by RT-qPCR. The results indicated that the HSB-i group established a feeding pattern of significantly more kilocalories on days when HSB was available and reduced intake on non-HSB days similar to human binge eating. Over time, binge episodes intensified, potentially indicating a tolerance effect. Additionally, these animals behave differently towards preferring the HSB diet and exhibited altered transcriptional regulation of the Drd1, Slc6a3, and Lrrk2 genes. Our study provides a mouse model that reflects human BED, showing a progression in binge episodes and mesolimbic dopamine pathway involvement, suggesting targets for future therapeutic interventions.
Collapse
Affiliation(s)
- Renato Elias Moreira Júnior
- Laboratório de Genética Animal e Humana, Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| | - Agatha Sondertoft Braga Pedersen
- Laboratório de Genética Animal e Humana, Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Raquel Mary Ferreira
- Laboratório de Genética Animal e Humana, Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Guilherme Henrique de Asevedo
- Laboratório de Genética Animal e Humana, Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Grazielle Laudares Mendes
- Laboratório de Genética Animal e Humana, Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Karine Ribeiro
- Laboratório de Genética Animal e Humana, Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Tatiani Uceli Maioli
- Laboratório de Imunobiologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ana Maria Caetano de Faria
- Laboratório de Imunobiologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ana Lúcia Brunialti-Godard
- Laboratório de Genética Animal e Humana, Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
14
|
Klap J. A cross-sectional examination of the relationship between learning environment and anxiety among dental hygiene students. J Dent Educ 2025; 89:17-24. [PMID: 39177150 PMCID: PMC11783341 DOI: 10.1002/jdd.13694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/18/2024] [Accepted: 07/29/2024] [Indexed: 08/24/2024]
Abstract
OBJECTIVE This study's purpose was to determine if the learning environment impacts student anxiety in a dental hygiene program by evaluating the two main learning environments: the dental clinic and the traditional classroom. This study also examined educational tasks and their association with anxiety in each learning environment. METHODS A web-based survey was conducted using a convenience sample of dental hygiene students enrolled in a two or four year CODA-accredited dental hygiene program in the United States. The Beck Anxiety Inventory was used to determine each participant's anxiety levels in both learning environments. Data analysis included descriptive statistics, correlation, and an analysis of variance. RESULTS According to the Beck Anxiety Inventory scoring, dental hygiene students experience a moderate level of anxiety when learning in the dental clinic and a low level of anxiety when learning in the classroom. Nervousness was the most reported anxiety symptom in both the dental clinic and the traditional classroom. Test results from the Spearman correlation show that all dental clinic and classroom educational tasks have a significant correlation (p < 0.01) to a student's anxiety level. Anxiety reported by students did not statistically differ by the year in which they were in the dental hygiene program. CONCLUSION Findings suggest anxiety does exist at a moderate level in dental hygiene students. The dental clinic learning environment is associated with greater anxiety among dental hygiene students. Results from this study will be beneficial in understanding how to facilitate student success in a dental hygiene program.
Collapse
Affiliation(s)
- Jamie Klap
- Department of DentalGrand Rapids Community CollegeGrand RapidsMichiganUSA
| |
Collapse
|
15
|
Ott FW, Sichler ME, Bouter C, Enayati M, Wiltfang J, Bayer TA, Beindorff N, Löw MJ, Bouter Y. Chronic exposure to a synthetic cannabinoid improves cognition and increases locomotor activity in Tg4-42 Alzheimer's disease mice. J Alzheimers Dis Rep 2025; 9:25424823241306770. [PMID: 40034517 PMCID: PMC11869267 DOI: 10.1177/25424823241306770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 11/17/2024] [Indexed: 03/05/2025] Open
Abstract
Background Alzheimer's disease (AD) is a neurodegenerative disorder characterized by cognitive decline and behavior impairments. Despite recent approvals of anti-amyloid antibodies, there remains a need for disease modifying and easily accessible therapies. Emerging evidence suggests that targeting the endocannabinoid system may hold promise for AD therapy as it plays a crucial role in different physiological processes, including learning, memory and anxiety, as well as inflammatory and immune responses. Objective In this study, we investigated the therapeutic potential of the synthetic cannabinoid WIN 55,212-2 on memory deficits in Tg4-42 transgenic mice. Methods Tg4-42 mice were assigned to two treatment groups to investigate the preventive effects of WIN 55,212-2 after a prolonged washout period, as well as the therapeutic effects of WIN 55,212-2 on behavior. Furthermore, the effects of WIN 55,212-2 treatment on AD pathology, including inflammation, amyloid-β load, neurogenesis, and brain glucose metabolism, were evaluated. Results Therapeutic WIN 55,212-2 treatment rescued recognition memory and spatial reference deficits in Tg4-42 mice. Furthermore, therapeutic WIN 55,212-2 administration improved motor performance. In addition, preventative WIN 55,212-2 treatment rescued spatial learning and reference memory deficits. Importantly, WIN 55,212-2 treatment did not affect anxiety-like behavior. However, therapeutic and preventative WIN 55,212-2 treatment resulted in an increase locomotor activity and swimming speed in Tg4-42 mice. WIN-treatment reduced microgliosis in the hippocampus of preventively treated mice and rescued brain glucose metabolism in therapeutically treated Tg4-42 mice. Conclusions Our findings emphasize the therapeutic promise of the synthetic cannabinoid WIN 55,212-2 in alleviating behavioral and cognitive deficits linked to AD.
Collapse
Affiliation(s)
- Frederik W Ott
- Department of Psychiatry and Psychotherapy, University Medical Center, Georg-August-University, Goettingen, Germany
| | - Marius E Sichler
- Department of Psychiatry and Psychotherapy, University Medical Center, Georg-August-University, Goettingen, Germany
| | - Caroline Bouter
- Department of Nuclear Medicine, University Medical Center Göttingen, Goettingen, Germany
| | - Marzieh Enayati
- Department of Psychiatry and Psychotherapy, University Medical Center, Georg-August-University, Goettingen, Germany
| | - Jens Wiltfang
- Department of Psychiatry and Psychotherapy, University Medical Center, Georg-August-University, Goettingen, Germany
- Clincal Science Group, German Center for Neurodegenerative Diseases (DZNE), Goettingen, Germany
- Neurosciences and Signaling Group, Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Thomas A Bayer
- Department of Psychiatry and Psychotherapy, University Medical Center, Georg-August-University, Goettingen, Germany
| | - Nicola Beindorff
- Berlin Experimental Radionuclide Imaging Center (BERIC), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Maximilian J Löw
- Department of Psychiatry and Psychotherapy, University Medical Center, Georg-August-University, Goettingen, Germany
| | - Yvonne Bouter
- Department of Psychiatry and Psychotherapy, University Medical Center, Georg-August-University, Goettingen, Germany
- Department of Nuclear Medicine, University Medical Center Göttingen, Goettingen, Germany
| |
Collapse
|
16
|
Cavalcante GRG, Moreno MC, Pirih FQ, Soares VDP, Silveira ÉJDD, Silva JSPD, Pereira HSG, Klein KP, Lopes MLDDS, Araujo AAD, Martins AA, Lins RDAU. Thermogenic preworkout supplement induces alveolar bone loss in a rat model of tooth movement via RANK/RANKL/OPG pathway. Braz Oral Res 2024; 38:e131. [PMID: 39775419 DOI: 10.1590/1807-3107bor-2024.vol38.0131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 08/13/2024] [Indexed: 01/11/2025] Open
Abstract
The aim of this study was to investigate the effect of thermogenic supplementation on the bone tissue of rats subjected to orthodontic movement. A total of 38 male Wistar rats underwent orthodontic movement of the left permanent maxillary first molars for 21 days. The rats were assigned to three groups: Control group: water; Thermogenic 1: C4 Beta Pump thermogenic; or Thermogenic 2: PRE-HD/Pre-workout. Micro-computed tomography (micro-CT) was used to investigate the dynamic changes in the microstructure of alveolar bone during orthodontic tooth movement in rats. Histopathologic analysis was performed by hematoxylin and eosin (H&E) staining, whereas tartrate-resistant acid phosphatase (TRAP) was employed for osteoclast count. Maxillary tissue was collected and evaluated by immunohistochemistry for receptor activator of NF-κB (RANK), receptor activator of NF-κB ligand (RANKL), and osteoprotegerin (OPG). The Thermogenic 2 group exhibited a significantly lower percentage of bone volume fraction (BV/TV) (68.21% ± 17.70%) compared to the control (86.84% + 12.91%) and Thermogenic 1 groups (86.84% + 15.94%) (p < 0.05). The control group had a significantly higher mean orthodontic movement in the mesial direction (0.2143 mm + 0.1513 mm) than the Thermogenic 2 group (0.0420 mm + 0.05215 mm) (p < 0.05). The Thermogenic 2 and Thermogenic 1 groups showed a stronger immunostaining for RANKL when compared to the control group (p < 0.05). The supplementation used in the Thermogenic 2 group (PRE-HD/Pre-workout) induced alveolar bone loss in rats subjected to orthodontic movement, which can be related to the regulation of the RANK/RANKL/OPG signaling pathway. This suggests the influence of thermogenic supplements on bone metabolism seems to depend on their composition.
Collapse
Affiliation(s)
| | - Mariana Cabral Moreno
- Universidade Federal do Rio Grande do Norte - UFRN, Graduate Program in Dental Sciences, Department of Dentistry, Natal, Brazil
| | | | - Vanessa de Paula Soares
- Universidade Federal do Rio Grande do Norte - UFRN, Department of Biophysical and Pharmacology, Natal, RN, Brazil
| | | | - José Sandro Pereira da Silva
- Universidade Federal do Rio Grande do Norte - UFRN, Graduate Program in Dental Sciences, Department of Dentistry, Natal, Brazil
| | | | | | | | - Aurigena Antunes de Araujo
- Universidade Federal do Rio Grande do Norte - UFRN, Graduate Program in Dental Sciences, Department of Dentistry, Natal, Brazil
| | - Agnes Andrade Martins
- Universidade Federal do Rio Grande do Norte - UFRN, Graduate Program in Dental Sciences, Department of Dentistry, Natal, Brazil
| | | |
Collapse
|
17
|
Xu Y, Yang Y, Shi Y, Li B, Xie Y, Le G. Dietary methionine supplementation improves cognitive dysfunction associated with transsulfuration pathway upregulation in subacute aging mice. NPJ Sci Food 2024; 8:104. [PMID: 39702349 DOI: 10.1038/s41538-024-00348-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 11/25/2024] [Indexed: 12/21/2024] Open
Abstract
To explore the effects of methionine (Met) supplementation on cognitive dysfunction and the associated mechanisms in aging mice. The mice were administrated 0.15 g/kg/day D-galactose subcutaneously and fed a normal (0.86% Met) or a Met-supplemented diet (1.72% Met) for 11 weeks. Behavioral experiments were conducted, and we measured the plasma metabolite levels, hippocampal and plasma redox and inflammatory states, and hippocampal transsulfuration pathway-related parameters. Met supplementation prevented aging-induced anxiety and cognitive deficiencies, and normalized the plasma levels of multiple systemic metabolites (e.g., betaine, taurine, and choline). Furthermore, dietary Met supplementation abolished oxidative stress and inflammation, selectively modulated the expression of multiple cognition-related genes and proteins, and increased flux via the transsulfuration pathway in the hippocampi of aging mice, with significant increase in H2S and glutathione production. Our findings suggest that dietary Met supplementation prevented cognitive deficiencies in aging mice, probably because of increased flux via the transsulfuration pathway.
Collapse
Affiliation(s)
- Yuncong Xu
- Henan Key Laboratory of cereal and Oil Food Safety Inspection and Control, College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan, China
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
| | - Yuhui Yang
- Henan Key Laboratory of cereal and Oil Food Safety Inspection and Control, College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan, China.
| | - Yonghui Shi
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
| | - Bowen Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
| | - Yanli Xie
- Henan Key Laboratory of cereal and Oil Food Safety Inspection and Control, College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan, China
| | - Guowei Le
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
18
|
Battivelli D, Fan Z, Hu H, Gross CT. How can ethology inform the neuroscience of fear, aggression and dominance? Nat Rev Neurosci 2024; 25:809-819. [PMID: 39402310 DOI: 10.1038/s41583-024-00858-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2024] [Indexed: 11/20/2024]
Abstract
The study of behaviour is dominated by two approaches. On the one hand, ethologists aim to understand how behaviour promotes adaptation to natural contexts. On the other, neuroscientists aim to understand the molecular, cellular, circuit and psychological origins of behaviour. These two complementary approaches must be combined to arrive at a full understanding of behaviour in its natural setting. However, methodological limitations have restricted most neuroscientific research to the study of how discrete sensory stimuli elicit simple behavioural responses under controlled laboratory conditions that are only distantly related to those encountered in real life. Fortunately, the recent advent of neural monitoring and manipulation tools adapted for use in freely behaving animals has enabled neuroscientists to incorporate naturalistic behaviours into their studies and to begin to consider ethological questions. Here, we examine the promises and pitfalls of this trend by describing how investigations of rodent fear, aggression and dominance behaviours are changing to take advantage of an ethological appreciation of behaviour. We lay out current impediments to this approach and propose a framework for the evolution of the field that will allow us to take maximal advantage of an ethological approach to neuroscience and to increase its relevance for understanding human behaviour.
Collapse
Affiliation(s)
- Dorian Battivelli
- Epigenetics & Neurobiology Unit, EMBL Rome, European Molecular Biology Laboratory, Monterotondo, Italy
| | - Zhengxiao Fan
- School of Brain Science and Brain Medicine, New Cornerstone Science Laboratory, Zhejiang University School of Medicine, Hangzhou, China
| | - Hailan Hu
- School of Brain Science and Brain Medicine, New Cornerstone Science Laboratory, Zhejiang University School of Medicine, Hangzhou, China.
| | - Cornelius T Gross
- Epigenetics & Neurobiology Unit, EMBL Rome, European Molecular Biology Laboratory, Monterotondo, Italy.
| |
Collapse
|
19
|
Burgett LA, Alexander TB, Moya HA, Kingsbury MA. A revision to marble burying: video analysis during the marble burying task is imperative to understanding rodent behavior. Lab Anim (NY) 2024; 53:387-389. [PMID: 39578594 DOI: 10.1038/s41684-024-01459-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 10/14/2024] [Indexed: 11/24/2024]
Abstract
The translational value of the marble burying task (MBT) is debatable. Here we performed video analysis of behaviors during the MBT to accurately capture the details of all behaviors displayed during this task. Our results show that a count of marbles buried at the end of the task may not be a good translational correlate of the 'intentional marble burying' that the task is assumed to measure. Rather, the number of marbles buried may be measuring accidental marble burying due to 'rapid digging'. Video analysis during MBT provides a novel approach to characterize the many behaviors displayed during this task and may explain inconsistencies reported in the literature. However, the number of marbles buried at the end of the MBT may still have value as a screening test for anxiogenic or anxiolytic interventions. Any interventions that show significant alterations in the number of marbles buried can be pursued further through more robust and comprehensive behavior scoring methods.
Collapse
Affiliation(s)
- Lauren A Burgett
- Department of Pediatrics, Harvard Medical School, Massachusetts General Hospital, Lurie Center for Autism, Charlestown, MA, USA.
- Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA.
| | - Theres B Alexander
- Department of Pediatrics, Harvard Medical School, Massachusetts General Hospital, Lurie Center for Autism, Charlestown, MA, USA
| | - Haley A Moya
- Department of Pediatrics, Harvard Medical School, Massachusetts General Hospital, Lurie Center for Autism, Charlestown, MA, USA
| | - Marcy A Kingsbury
- Department of Pediatrics, Harvard Medical School, Massachusetts General Hospital, Lurie Center for Autism, Charlestown, MA, USA.
| |
Collapse
|
20
|
Islam MT, Malik A, Alshememry AK, Chowdhury R, Bhuia MS, Fatima S, Hossen MS, Rakib AI, Mollah F, Akbor MS, Bappi MH, Saim MA, Islam MT. Anxiolytic Effect of Sesamol, Possibly Through the GABAkine Interaction Pathway. Drug Dev Res 2024; 85:e70028. [PMID: 39635782 DOI: 10.1002/ddr.70028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/25/2024] [Accepted: 11/19/2024] [Indexed: 12/07/2024]
Abstract
Plant-based components have helped generate novel lead molecules and scaffolds for anxiety research in psychopharmacology. The present study examined the anxiolytic properties of sesamol (SES), a phenolic lignan derived from Sesamum indicum, employing both in vivo and computational methods to understand its mechanisms of action. In this experiment, adult Swiss albino mice received various doses of SES (25 and 50 mg/kg, p.o.) orally. Afterward, a series of behavioral assessments, including open field, swing, hole cross, and light-dark testing, were conducted. The impact of the GABAergic agonist diazepam (DZP-1 mg/kg, i.p.) along with the antagonist flumazenil (FLU-0.1 mg/kg, i.p.) has been studied as provided concurrently with the SES-50 group. Computational studies were performed to comprehend the interaction between SES and GABAA receptor subunits (α2 and α3). The results of our investigation revealed that SES dose-dependently and significantly (p < 0.05) reduced the number of square crosses, hole crosses, swings, grooming, and rearing along with a reduction of light residence time in animals. When combined with DZP, SES-50 significantly reduced all these parameters, while altering with FLU-0.1. The molecular docking analysis showed that the SES has a relatively good binding score (-5.03 ± 0.15 and -5.25 ± 0.23 kcal/mol) with GABAA receptor α2 and α3 subunits, respectively. The SES triggers anxiolytic effects via GABAA receptor α2 and α3 subunit interactions. Furthermore, precise and comprehensive preclinical research must be considered to validate potential SES targets for anxiolytic impact, clinical trial efficacy, and safety.
Collapse
Affiliation(s)
- Md Tahajul Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
| | - Abdul Malik
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abdullah K Alshememry
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Raihan Chowdhury
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
- Bioinformatice and Drug Innovation Laboratory, BioLuster Research Center Ltd., Gopalganj, Dhaka, Bangladesh
| | - Md Shimul Bhuia
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
- Bioinformatice and Drug Innovation Laboratory, BioLuster Research Center Ltd., Gopalganj, Dhaka, Bangladesh
| | - Sabiha Fatima
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Md Samim Hossen
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
| | - Asraful Islam Rakib
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
- Bioinformatice and Drug Innovation Laboratory, BioLuster Research Center Ltd., Gopalganj, Dhaka, Bangladesh
| | - Faysal Mollah
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
- Bioinformatice and Drug Innovation Laboratory, BioLuster Research Center Ltd., Gopalganj, Dhaka, Bangladesh
| | - Md Showkoth Akbor
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
- Bioinformatice and Drug Innovation Laboratory, BioLuster Research Center Ltd., Gopalganj, Dhaka, Bangladesh
| | - Mehedi Hasan Bappi
- School of Pharmacy, Jeonbuk National University, Jeonju, Republic of Korea
| | - Md Abu Saim
- Bioinformatice and Drug Innovation Laboratory, BioLuster Research Center Ltd., Gopalganj, Dhaka, Bangladesh
| | - Muhammad Torequl Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
- Bioinformatice and Drug Innovation Laboratory, BioLuster Research Center Ltd., Gopalganj, Dhaka, Bangladesh
- Pharmacy Discipline, Khulna University, Khulna, Bangladesh
| |
Collapse
|
21
|
Volkweis MCC, Tomasi LA, Santos GC, Dagnino APA, Estrázulas M, Campos MM. Induction of orofacial pain potentiates fibromyalgia symptoms in mice: Relevance of nociceptin system. Life Sci 2024; 358:123183. [PMID: 39471900 DOI: 10.1016/j.lfs.2024.123183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 10/14/2024] [Accepted: 10/22/2024] [Indexed: 11/01/2024]
Abstract
AIMS Fibromyalgia patients might experience temporomandibular disorder (TMD) as a comorbidity. However, the connection between these two syndromes is not fully understood. Nociceptin (N/OFQ) and NOP receptors are implicated in both conditions, but their relevance in the comorbidity needs investigation. This study featured a comorbidity model of fibromyalgia plus TMD in mice, attempting to evaluate the significance of the N/OFQ-NOP receptor in this paradigm. MATERIALS AND METHODS Female CF-1 mice were submitted to the fibromyalgia model induced by three daily consecutive injections of reserpine (0.25 mg/kg) and received an intra-masseter injection of complete Freund's adjuvant (CFA; 10 μl; diluted 1:1) on day four. KEY FINDINGS There was a rise in nocifensive and depression-like behaviors in the comorbidity group, as evaluated by the Grimace scores and the tail suspension test (TST). This group displayed anxiogenic-like effects in the hole board and the elevated plus maze tests. The comorbidity group showed an increment of c-Fos immunopositivity in the ipsilateral side of CFA injection, in the trigeminal ganglion (TG) and thalamus. The administration of N/OFQ (1 nmol/kg, i.p.) boosted the Grimace scores in the comorbidity group, with no effect for the NOP receptor antagonist UFP-101 (1 nmol/kg, i.p.). Either NOP ligand failed to alter depression or anxiety behavioral changes. Alternatively, pregabalin (30 mg/kg; i.p.) reduced the nociceptive responses and the number of head dips in the hole board. SIGNIFICANCE Data reveal new evidence suggesting that inducing TMD with CFA may worsen fibromyalgia symptoms in reserpine-treated mice, an effect partially regulated by systemic N/OFQ.
Collapse
Affiliation(s)
- Maria C C Volkweis
- PUCRS, Programa de Pós-Graduação em Odontologia, Escola de Ciências da Saúde e da Vida, Porto Alegre, RS, Brazil; PUCRS, Centro de Pesquisa em Toxicologia e Farmacologia, Escola de Ciências da Saúde e da Vida, Porto Alegre, RS, Brazil
| | - Luisa A Tomasi
- PUCRS, Centro de Pesquisa em Toxicologia e Farmacologia, Escola de Ciências da Saúde e da Vida, Porto Alegre, RS, Brazil; PUCRS, Curso de Graduação em Farmácia, Escola de Ciências da Saúde e da Vida, Porto Alegre, RS, Brazil
| | - Gabriella C Santos
- PUCRS, Centro de Pesquisa em Toxicologia e Farmacologia, Escola de Ciências da Saúde e da Vida, Porto Alegre, RS, Brazil; PUCRS, Curso de Graduação em Odontologia, Escola de Ciências da Saúde e da Vida, Porto Alegre, RS, Brazil
| | - Ana P A Dagnino
- PUCRS, Centro de Pesquisa em Toxicologia e Farmacologia, Escola de Ciências da Saúde e da Vida, Porto Alegre, RS, Brazil; PUCRS, Programa de Pós-Graduação em Medicina e Ciências da Saúde, Escola de Medicina, Porto Alegre, RS, Brazil
| | - Marina Estrázulas
- PUCRS, Centro de Pesquisa em Toxicologia e Farmacologia, Escola de Ciências da Saúde e da Vida, Porto Alegre, RS, Brazil; PUCRS, Programa de Pós-Graduação em Medicina e Ciências da Saúde, Escola de Medicina, Porto Alegre, RS, Brazil
| | - Maria M Campos
- PUCRS, Programa de Pós-Graduação em Odontologia, Escola de Ciências da Saúde e da Vida, Porto Alegre, RS, Brazil; PUCRS, Centro de Pesquisa em Toxicologia e Farmacologia, Escola de Ciências da Saúde e da Vida, Porto Alegre, RS, Brazil; PUCRS, Curso de Graduação em Odontologia, Escola de Ciências da Saúde e da Vida, Porto Alegre, RS, Brazil; PUCRS, Programa de Pós-Graduação em Medicina e Ciências da Saúde, Escola de Medicina, Porto Alegre, RS, Brazil.
| |
Collapse
|
22
|
Bove M, Sikora V, Santoro M, Agosti LP, Palmieri MA, Dimonte S, Tucci P, Schiavone S, Morgese MG, Trabace L. Sex differences in the BTBR idiopathic mouse model of autism spectrum disorders: Behavioural and redox-related hippocampal alterations. Neuropharmacology 2024; 260:110134. [PMID: 39208979 DOI: 10.1016/j.neuropharm.2024.110134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/24/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Autism spectrum disorders (ASD) are highly heterogeneous neurodevelopmental diseases. Epidemiological data report that males have been diagnosed with autism more frequently than females. However, recent studies hypothesize that females' low incidence might be underestimated due to standard clinical measures of ASD behavioural symptoms, mostly derived from males. Indeed, up to now, ASD mouse models focused mainly on males, considering the prevalence of the diagnosis in that sex. Regarding ASD aetiopathogenesis, it has been recently reported that oxidative stress might be implicated in its onset and development, suggesting an association with ASD typical repetitive behaviours that still need to be disentangled. Here, we investigated possible behavioural and molecular sex-related differences by using the BTBR mouse model of idiopathic ASD. To this aim, animals were exposed to behavioural tests related to different ASD core symptoms and comorbidities, i.e. stereotyped repertoire, social dysfunctions, hyperlocomotion and risk-taking behaviours. Moreover, we analyzed hippocampal levels of pro-oxidant and anti-oxidant enzymes, together with biomarkers of oxidative stress and lipid peroxidation. Our results showed that BTBR females did not display the same patterns for repetitive behaviours as the male counterpart. From a biomolecular point of view, we found an increase in oxidative stress and pro-oxidant enzymes, accompanied by deficient enzymatic anti-oxidant response, only in BTBR males compared to C57BL/6 male mice, while no differences were retrieved in females. Overall, our study suggests that in females there is an urgent need to depict the distinct ASD symptomatology, accompanied by the identification of sex-specific pharmacological targets.
Collapse
Affiliation(s)
- Maria Bove
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli 20, 71122, Foggia, Italy
| | - Vladyslav Sikora
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli 20, 71122, Foggia, Italy; Department of Pathology, Sumy State University, 40007, Sumy, Ukraine
| | - Martina Santoro
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, 00185, Rome, Italy
| | - Lisa Pia Agosti
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli 20, 71122, Foggia, Italy
| | - Maria Adelaide Palmieri
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli 20, 71122, Foggia, Italy
| | - Stefania Dimonte
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli 20, 71122, Foggia, Italy
| | - Paolo Tucci
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli 20, 71122, Foggia, Italy
| | - Stefania Schiavone
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli 20, 71122, Foggia, Italy
| | - Maria Grazia Morgese
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli 20, 71122, Foggia, Italy
| | - Luigia Trabace
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli 20, 71122, Foggia, Italy.
| |
Collapse
|
23
|
Ma K, An C, Li M, Zhang Y, Ren M, Wei Y, Xu W, Wang R, Bai Y, Zhang H, Liu X, Ji S, Chen X, Zhu K. Dexmedetomidine Attenuated Neuron Death, Cognitive Decline, and Anxiety-Like Behavior by Inhibiting CXCL2 in CA1 Region of AD Mice. Drug Des Devel Ther 2024; 18:5351-5365. [PMID: 39605963 PMCID: PMC11600949 DOI: 10.2147/dddt.s489860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/16/2024] [Indexed: 11/29/2024] Open
Abstract
Purpose β-amyloid overload-induced neuroinflammation and neuronal loss are key pathological changes that occur during the progression of Alzheimer's disease (AD). Dexmedetomidine (Dex) exhibits neuroprotective and anti-inflammatory effects on the nervous system. However, the effect of Dex in AD mice remains unclear, and its neuroprotective regulatory mechanism requires further investigation. This study aimed to reveal how Dex protects against Aβ induced neuropathological changes and behavior dysfunction in AD mice. Methods An AD mouse model was established by the injection of Aβ into the brains of mice, followed by intraperitoneal injection with Dex. CXCL2 overexpression and Yohimbine, a Dex inhibitor, were used to investigate the role of Dex and CXCL2 in the regulation of neuronal loss, cognitive decline, and anxiety-like behavior in AD mice. Behavioral tests were performed to evaluate the cognitive and anxiety status of the mice. Nissl staining and immunofluorescence experiments were conducted to evaluate the status of the hippocampal neurons and astrocytes. qRT-PCR was performed to detect the expression of CXCL2, IL-1β, INOS, SPHK1, Bcl2, IFN-γ, and Caspase 1. The malondialdehyde (MDA) level was detected using an ELISA kit. Terminal TUNEL and Fluoro-Jade C (FJC) staining were used to measure the cell apoptosis rate. Results In AD mice, cognitive decline and anxiety-like behaviors were significantly improved by the Dex treatment. The number of neurons was increased in mice in the Dex + AD group compared to those in the AD group, and the number of astrocytes was not significantly different between the two groups. CXCL2, IL-1β, iNOS, and SPHK1 levels were significantly lower in Dex-treated AD mice than those in AD mice. Overloading of CXCL2 or Yohimbine reversed the protective effect of Dex on neuron number and cognitive and anxiety symptoms in AD mice. Conclusion Our results suggest that Dex exerts neuroprotective effects by downregulating CXCL2. Dex shows potential as a therapeutic drug for AD.
Collapse
Affiliation(s)
- Kaige Ma
- Department/Institute of Neurobiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, 710061, People’s Republic of China
| | - Chanyuan An
- Department/Institute of Neurobiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, 710061, People’s Republic of China
| | - Mai Li
- Department/Institute of Neurobiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, 710061, People’s Republic of China
| | - Yuming Zhang
- Department of Anesthesiology, Shaanxi Provincial People’s Hospital, Xi’an, 710068, People’s Republic of China
| | - Minghe Ren
- Department/Institute of Neurobiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, 710061, People’s Republic of China
| | - Yuyang Wei
- School of Forensic Medicine, Southern Medical University, Guangdong, 510515, People’s Republic of China
| | - Wenting Xu
- Department/Institute of Neurobiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, 710061, People’s Republic of China
| | - Ruoxi Wang
- Department of Optometry, Fenyang College Shanxi Medical University, Fenyang, 032200, People’s Republic of China
| | - Yudan Bai
- Department/Institute of Neurobiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, 710061, People’s Republic of China
| | - Hanyue Zhang
- Department/Institute of Neurobiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, 710061, People’s Republic of China
| | - Xiyue Liu
- Department/Institute of Neurobiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, 710061, People’s Republic of China
| | - Shengfeng Ji
- Department of Optometry, Fenyang College Shanxi Medical University, Fenyang, 032200, People’s Republic of China
| | - Xinlin Chen
- Department/Institute of Neurobiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, 710061, People’s Republic of China
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, 710061, People’s Republic of China
| | - Kun Zhu
- Department of Neurology, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061, People’s Republic of China
| |
Collapse
|
24
|
Shirokov A, Zlatogosrkaya D, Adushkina V, Vodovozova E, Kardashevskaya K, Sultanov R, Kasyanov S, Blokhina I, Terskov A, Tzoy M, Evsyukova A, Dubrovsky A, Tuzhilkin M, Elezarova I, Dmitrenko A, Manzhaeva M, Krupnova V, Semiachkina-Glushkovskaia A, Ilyukov E, Myagkov D, Tuktarov D, Popov S, Inozemzev T, Navolokin N, Fedosov I, Semyachkina-Glushkovskaya O. Plasmalogens Improve Lymphatic Clearance of Amyloid Beta from Mouse Brain and Cognitive Functions. Int J Mol Sci 2024; 25:12552. [PMID: 39684263 DOI: 10.3390/ijms252312552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/16/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
Amyloid beta (Aβ) is a neuronal metabolic product that plays an important role in maintaining brain homeostasis. Normally, intensive brain Aβ formation is accompanied by its effective lymphatic removal. However, the excessive accumulation of brain Aβ is observed with age and during the development of Alzheimer's disease (AD) leading to cognitive impairment and memory deficits. There is emerging evidence that plasmalogens (Pls), as one of the key brain lipids, may be beneficial for AD and cognitive aging. Here, we studied the effects of Pls on cognitive functions and the lymphatic clearance of Aβ from the brain of AD mice and mice of different ages. The results showed that Pls effectively reduce brain Aβ levels and facilitate learning in aged but not old mice. In AD mice, Pls improve the lymphatic clearance of Aβ that is accompanied by an increase in general motor activity and an improvement of the emotional status and learning ability. Thus, these findings suggest that Pls could be a promising candidate for the alternative or concomitant therapy of AD and age-related brain diseases to enhance the lymphatic clearance of Aβ from the brain and cognitive functions.
Collapse
Affiliation(s)
- Alexander Shirokov
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, Prospekt Entuziastov 13, 410049 Saratov, Russia
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia
| | - Daria Zlatogosrkaya
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia
| | - Viktoria Adushkina
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia
| | - Elena Vodovozova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Ul. Miklukho-Maklaya, 16/10, 117997 Moscow, Russia
| | - Kristina Kardashevskaya
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Ul. Miklukho-Maklaya, 16/10, 117997 Moscow, Russia
| | - Ruslan Sultanov
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Palchevskogo Str. 17, 690041 Vladivostok, Russia
| | - Sergey Kasyanov
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Palchevskogo Str. 17, 690041 Vladivostok, Russia
| | - Inna Blokhina
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia
| | - Andrey Terskov
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia
| | - Maria Tzoy
- Physics Department, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia
| | - Arina Evsyukova
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia
| | - Alexander Dubrovsky
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Ul. Miklukho-Maklaya, 16/10, 117997 Moscow, Russia
| | - Matvey Tuzhilkin
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia
| | - Inna Elezarova
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia
| | - Alexander Dmitrenko
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia
| | - Maria Manzhaeva
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia
| | - Valeria Krupnova
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia
| | | | - Egor Ilyukov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Ul. Miklukho-Maklaya, 16/10, 117997 Moscow, Russia
| | - Dmitry Myagkov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Ul. Miklukho-Maklaya, 16/10, 117997 Moscow, Russia
| | - Dmitry Tuktarov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Ul. Miklukho-Maklaya, 16/10, 117997 Moscow, Russia
| | - Sergey Popov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Ul. Miklukho-Maklaya, 16/10, 117997 Moscow, Russia
| | - Tymophey Inozemzev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Ul. Miklukho-Maklaya, 16/10, 117997 Moscow, Russia
| | - Nikita Navolokin
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia
- Department of Pathological Anatomy, Saratov Medical State University, Bolshaya Kazachaya Str. 112, 410012 Saratov, Russia
| | - Ivan Fedosov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Ul. Miklukho-Maklaya, 16/10, 117997 Moscow, Russia
| | | |
Collapse
|
25
|
Ren L, Fan Y, Wu W, Qian Y, He M, Li X, Wang Y, Yang Y, Wen X, Zhang R, Li C, Chen X, Hu J. Anxiety disorders: Treatments, models, and circuitry mechanisms. Eur J Pharmacol 2024; 983:176994. [PMID: 39271040 DOI: 10.1016/j.ejphar.2024.176994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 09/05/2024] [Accepted: 09/11/2024] [Indexed: 09/15/2024]
Abstract
Anxiety disorders are one of the most prevalent mental health conditions worldwide, imposing a significant burden on individuals affected by them and society in general. Current research endeavors aim to enhance the effectiveness of existing anxiolytic drugs and reduce their side effects through optimization or the development of new treatments. Several anxiolytic novel drugs have been produced as a result of discovery-focused research. However, many drug candidates that show promise in preclinical rodent model studies fail to offer any substantive clinical benefits to patients. This review provides an overview of the diagnosis and classification of anxiety disorders together with a systematic review of anxiolytic drugs with a focus on their targets, therapeutic applications, and side effects. It also provides a concise overview of the constraints and disadvantages associated with frequently administered anxiolytic drugs. Additionally, the study comprehensively reviews animal models used in anxiety studies and their associated molecular mechanisms, while also summarizing the brain circuitry related to anxiety. In conclusion, this article provides a valuable foundation for future anxiolytic drug discovery efforts.
Collapse
Affiliation(s)
- Li Ren
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Sichuan Chengdu, 611137, China.
| | - Yue Fan
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Sichuan Chengdu, 611137, China
| | - Wenjian Wu
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Sichuan Chengdu, 611137, China
| | - Yuanxin Qian
- Acupuncture and Massage College, Chengdu University of Traditional Chinese Medicine, Sichuan Chengdu, 611137, China
| | - Miao He
- College of Life Sciences and Medicine, Chengdu University of Traditional Chinese Medicine, Sichuan Chengdu, 611137, China
| | - Xinlong Li
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Sichuan Chengdu, 611137, China
| | - Yizhu Wang
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Sichuan Chengdu, 611137, China
| | - Yu Yang
- Acupuncture and Massage College, Chengdu University of Traditional Chinese Medicine, Sichuan Chengdu, 611137, China
| | - Xuetong Wen
- Acupuncture and Massage College, Chengdu University of Traditional Chinese Medicine, Sichuan Chengdu, 611137, China
| | - Ruijia Zhang
- Acupuncture and Massage College, Chengdu University of Traditional Chinese Medicine, Sichuan Chengdu, 611137, China
| | - Chenhang Li
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Sichuan Chengdu, 611137, China
| | - Xin Chen
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Sichuan Chengdu, 611137, China
| | - Jingqing Hu
- Institute of Basic Theory of Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
26
|
Hsieh CM, Hsu CH, Chen JK, Liao LD. AI-powered home cage system for real-time tracking and analysis of rodent behavior. iScience 2024; 27:111223. [PMID: 39605925 PMCID: PMC11600061 DOI: 10.1016/j.isci.2024.111223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/13/2024] [Accepted: 10/18/2024] [Indexed: 11/29/2024] Open
Abstract
Researchers in animal behavior and neuroscience devote considerable time to observing rodents behavior and physiological responses, with AI monitoring systems reducing personnel workload. This study presents the RodentWatch (RW) system, which leverages deep learning to automatically identify experimental animal behaviors in home cage environments. A single multifunctional camera and edge device are installed inside the animal's home cage, allowing continuous real-time monitoring of the animal's behavior, position, and body temperature for extended periods. We investigated identifying the drinking and resting behaviors of rats, with recognition accuracy enhanced through contextual object labeling and modified non-maximum suppression (NMS) schemes. Two tests-a light cycle change test and a sucrose preference test-were conducted to evaluate the usability of this system in rat behavioral experiments. This system enables notable advancements in image-based behavior recognition for living rodents.
Collapse
Affiliation(s)
- Chia-Ming Hsieh
- Laboratory Animal Center, National Health Research Institutes, 35, Keyan Road, Zhunan Town, Miaoli County 350401, Taiwan
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu City 300044, Taiwan
| | - Ching-Han Hsu
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu City 300044, Taiwan
| | - Jen-Kun Chen
- Laboratory Animal Center, National Health Research Institutes, 35, Keyan Road, Zhunan Town, Miaoli County 350401, Taiwan
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, 35, Keyan Road, Zhunan Town, Miaoli County 350401, Taiwan
| | - Lun-De Liao
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, 35, Keyan Road, Zhunan Town, Miaoli County 350401, Taiwan
| |
Collapse
|
27
|
Porras A, Rodney-Hernández P, Jackson J, Nguyen CH, Rincón-Cortés M. Sex-dependent effects of early life sensory overstimulation on later life behavioral function in rats. Sci Rep 2024; 14:27650. [PMID: 39532944 PMCID: PMC11557974 DOI: 10.1038/s41598-024-78928-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024] Open
Abstract
Children today are immersed in electronic technology shortly after birth as they now begin regularly watching television earlier than they did in the past. Many new programs geared towards infants contain lots of lights, color, and sounds, which may constitute a form of sensory overstimulation (SOS) that leads to cognitive and behavioral changes in children and adolescents. Here, we examined the impact of early life SOS exposure on later life behavioral and cognitive function in rodents by exposing developing male and female rats to excessive audiovisual stimulation from postnatal days (PND) 10-40 and assessing anxiety-like behavior, social motivation, compulsive behavior, and spatial learning/cognition from PND 50-60. To evaluate potential SOS effects on hypothalamic-pituitary-adrenal (HPA)-axis function, levels of the stress hormone corticosterone (CORT) were measured at 3 timepoints (e.g., PND 23, 41, 61) post-SOS exposure. Sensory overstimulated males exhibited reduced anxiety-like and compulsive behavior compared to controls, whereas females exhibited reduced social motivation but enhanced spatial learning/cognition compared to controls. No differences in baseline CORT levels were found at any age tested, suggesting no impact of early life SOS on later life basal HPA-axis function. Our results demonstrate sex-specific effects of early life SOS on distinct behavioral domains in early adult rats.
Collapse
Affiliation(s)
- Abishag Porras
- Department of Neuroscience, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, 75080, USA.
| | - Paolaenid Rodney-Hernández
- Department of Neuroscience, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Jeffy Jackson
- Department of Neuroscience, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Christine H Nguyen
- Department of Neuroscience, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Millie Rincón-Cortés
- Department of Neuroscience, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, 75080, USA.
| |
Collapse
|
28
|
Reddy DS, Li Y, Qamari T, Ramakrishnan S. Behavioral Assays for Comprehensive Evaluation of Cognitive and Neuropsychiatric Comorbidities of Traumatic Brain Injury and Chronic Neurological Disorders. Curr Protoc 2024; 4:e70019. [PMID: 39422165 DOI: 10.1002/cpz1.70019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Neurological deficits, psychiatric disorders, and cognitive impairments often accompany stroke, brain injury, epilepsy, and many neurological disorders, which present intricate comorbidities that challenge recognition and management. There are many tools and paradigms for evaluating learning, memory, anxiety, and depression-like behaviors in lab animal models of brain disorders. However, there is a significant gap between clinical observations and experimental models, which limit understanding of the complex interplay between chronic brain conditions and their impact on cognitive dysfunction and psychiatric impairments. This article describes an overview of experimental rationale, methods, protocols, and strategies for evaluating sensorimotor, affective and cognitive-associated comorbid behaviors in epilepsy, traumatic brain injury (TBI), stroke, spinal cord injury (SCI), and many other neurological disorders. First, we delve into clinical evidence elucidating the profound impact of comorbidities, e.g., psychiatric disorders and cognitive deficits, in individuals with epilepsy. Then, we discuss diverse approaches to assess these comorbidities in experimental models of brain diseases. Finally, we explore the methodologies for assessing motor function, sensorimotor, behavior, and psychiatric health. We cover strategies and protocols enabling these assays, including implementing behavioral paradigms to assess learning and memory, anxiety, and depression-like behaviors in rodents in health and disease conditions. It is essential to consider a comprehensive battery of tests to investigate various behavioral deficits, considering environment, age, and sex differences relevant to the disease, such as TBI, SCI, epilepsy, stroke, and other complex neurological conditions. © 2024 The Author(s). Current Protocols published by Wiley Periodicals LLC.
Collapse
Affiliation(s)
- Doodipala Samba Reddy
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas
- Institute of Pharmacology and Neurotherapeutics, Texas A&M University Health Science Center, Bryan, Texas
| | - Yue Li
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas
| | - Taha Qamari
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas
| | - Sreevidhya Ramakrishnan
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas
| |
Collapse
|
29
|
Furukawa M, Izumo N, Aoki R, Nagashima D, Ishibashi Y, Matsuzaki H. Behavioural changes in young ovariectomized mice via GPR30-dependent serotonergic nervous system. Eur J Neurosci 2024; 60:5658-5670. [PMID: 39189108 DOI: 10.1111/ejn.16516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 06/05/2024] [Accepted: 08/12/2024] [Indexed: 08/28/2024]
Abstract
Fluctuations in estradiol levels at each stage of life in women are considered one of the causes of mental diseases through their effects on the central nervous system. During menopause, a decrease in estradiol levels has been reported to affect the serotonin nervous system and induce depression-like and anxiety symptoms. However, the regulation of brain and behaviour during childhood and adolescence is poorly understood. Moreover, the role of oestrogen receptors α and β in the regulation of the serotonergic nervous system has been reported, but little is known about the involvement of G protein-coupled receptor 30. Therefore, in this study, we used an ovariectomized childhood mouse model to analyse behaviour and investigate the effects on the serotonin nervous system. We showed that ovariectomy surgery at 4 weeks of age, which is the weaning period, induced a decrease in spontaneous locomotor activity during the active period and a preference for novel mice over familiar mice in the three-chamber social test at 10 weeks of age. In addition, the administration of G-1, a protein-coupled receptor 30 agonist, to ovariectomized mice suppressed spontaneous locomotor activity and the preference for novel mice. Furthermore, we demonstrated that childhood ovariectomy induces increased tryptophan hydroxylase gene expression in the raphe nucleus and increased serotonin release in the amygdaloid nucleus, and administration of G-1 ameliorated these effects. Our study suggests that G protein-coupled receptor 30-mediated regulation of serotonin synthesis is involved in changes in activity and social-cognitive behaviour due to decreased estradiol levels during childhood.
Collapse
Affiliation(s)
- Megumi Furukawa
- Department of Functional Brain Activities, United Graduate School of Child Development, Osaka University, Suita, Japan
- Center for Pharmaceutical Education, Yokohama University of Pharmacy, Yokohama, Japan
- Research Center for Child Mental Development, University of Fukui, Eiheiji, Japan
| | - Nobuo Izumo
- Laboratory of Pharmacotherapy, Yokohama University of Pharmacy, Yokohama, Japan
- General Health Medical Research Center, Yokohama University of Pharmacy, Yokohama, Japan
| | - Ryoken Aoki
- Department of Functional Brain Activities, United Graduate School of Child Development, Osaka University, Suita, Japan
- Center for Pharmaceutical Education, Yokohama University of Pharmacy, Yokohama, Japan
- Research Center for Child Mental Development, University of Fukui, Eiheiji, Japan
| | - Daichi Nagashima
- General Health Medical Research Center, Yokohama University of Pharmacy, Yokohama, Japan
- Laboratory of Clinical Pharmaceutics, Yokohama University of Pharmacy, Yokohama, Japan
| | - Yukiko Ishibashi
- Laboratory of Drug Analysis, Yokohama University of Pharmacy, Yokohama, Japan
| | - Hideo Matsuzaki
- Department of Functional Brain Activities, United Graduate School of Child Development, Osaka University, Suita, Japan
- Research Center for Child Mental Development, University of Fukui, Eiheiji, Japan
| |
Collapse
|
30
|
Ahmadi E, Pourmotabbed A, Aghaz N, Nedaei SE, Veisi M, Salimi Z, Zarei F, Jalili C, Moradpour F, Zeinivand M. Curcumin and exercise prevent depression via alleviating hippocampus injury and improve depressive-like behaviors in chronically stressed depression rats. Res Pharm Sci 2024; 19:509-519. [PMID: 39691296 PMCID: PMC11648346 DOI: 10.4103/rps.rps_94_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 12/13/2023] [Accepted: 09/07/2024] [Indexed: 12/19/2024] Open
Abstract
Background and purpose Depression is a growing public health concern worldwide, characterized by cognitive impairment and structural abnormalities of the hippocampus. Current antidepressant treatment sometimes causes the late onset of results and the much faster occurrence of side effects. For this reason, the interest in new treatment strategies including exercise and natural products such as curcumin has increased to treat depression. The present study investigated the role of curcumin and exercise in improving depressive-like behavior and hippocampal damage induced by mild unpredictable chronic stress in male rats. Experimental approach This study analyzed the effects of curcumin (100 mg/kg/day, P.O for 14 days) and exercise (treadmill running, 45 min/day for 14 days) on immobility behavior (forced swimming test), locomotor activity (open field test), anhedonia (sucrose preference test) and cell survival (Nissl staining) of the hippocampal CA3 region in chronically stressed depression rats. Findings/Results In the current study, curcumin treatment combined with exercise effectively improved immobility behavior, locomotor activity, and increased hippocampal cell survival resulted in preventing the development of hippocampus dysfunction and depressive-like behaviors. Conclusion and implications This study demonstrated a new prospect for treating depression. The current findings give researchers the confidence to continue the investigations on the effects of curcumin accompanied with exercise as a novel therapy for the treatment of depression.
Collapse
Affiliation(s)
- Elaheh Ahmadi
- Department of Physiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, I.R. Iran
| | - Ali Pourmotabbed
- Department of Physiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, I.R. Iran
| | - Nilofar Aghaz
- Department of Physiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, I.R. Iran
| | - Seyed Ershad Nedaei
- Department of Physiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, I.R. Iran
| | - Mojgan Veisi
- Department of Physiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, I.R. Iran
| | - Zahra Salimi
- Department of Biology, Faculty of Science, University of Qom, Qom, I.R. Iran
| | - Fatemeh Zarei
- Department of Biology, Faculty of Science, Razi University, Kermanshah, I.R. Iran
| | - Cyrus Jalili
- Department of Anatomical Sciences, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, I.R. Iran
| | - Farshad Moradpour
- Department of Physiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, I.R. Iran
| | - Motahareh Zeinivand
- Department of Physiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, I.R. Iran
| |
Collapse
|
31
|
Çalışkan H, Akat F, Dursun AD, Zaloğlu N. Chronic pregabalin treatment reduced anxiety, and acute pregabalin treatment increased depression-like behaviors in rats. BMC Pharmacol Toxicol 2024; 25:72. [PMID: 39354569 PMCID: PMC11443739 DOI: 10.1186/s40360-024-00794-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 09/18/2024] [Indexed: 10/03/2024] Open
Abstract
BACKGROUND Pregabalin is an antiepileptic drug that binds to the alpha-2/delta unit at presynaptic voltage-dependent calcium channels. We aimed to investigate the effect of acute and chronic pregabalin administration on anxiety and depression-like behaviors. METHODS Fifty-six male Wistar albino rats were divided into seven groups: control, vehicle, and five different dose groups (5, 10, 30, 60, and 100 mg/kg). Pregabalin was administered for two weeks. Depression-like behaviors were evaluated by Forced swimming test. Anxiety-like behavior (ALB) was evaluated by Open field test (OFT), Elevated Plus Maze (EPM), and light-dark box. Subjects underwent the forced swimming test (FST) after the first dose, while the open field test (OFT), elevated plus maze (EPM), and light-dark box (LDB) were performed after two weeks of treatment. Further sucrose preference test was conducted to evaluate anhedonia until the end of the experiment. RESULTS In the forced swimming test, depression-like behaviors increased after acute single-dose administration of 10, 30, 60, 100 mg/kg pregabalin. According to OFT results, chronic 100 mg/kg pregabalin showed anxiolytic effects by decreasing grooming, and freezing behaviors. In addition, 100 mg/kg chronic pregabalin administration significantly increased the time spent in the central region, the number of entries to the center, and the unsupported rearing number without causing any change in locomotor activity. According to EPM results, both chronic 60 and 100 mg/kg pregabalin treatments showed anxiolytic effects by increasing open arm time and head dipping behavior. In addition, 60 and 100 mg/kg chronic pregabalin administration significantly decreased stretch attend posture. All pregabalin administrations between 5 and 100 mg/kg displayed anxiolytic effects in the LDB. Sucrose preference was above 65% for the duration of all experiments and subjects did not show anhedonia. CONCLUSION Acute pregabalin treatment triggered depression-like behaviors. Anhedonia, which may be associated with depression, was not observed during chronic treatment. Moreover, chronic treatment with pregabalin revealed potent anxiolytic effects in different behavior patterns and doses for all tests of unconditional anxiety. In particular, 100 mg/kg chronic pregabalin administration decreased anxiety-like behaviors in all experiment setups. Although the anxiolytic effect was demonstrated in chronic treatment, acute treatment of pregabalin induced depression-like behaviors, and thus in clinical practice should be done with caution, especially in patients with anxiety-depression comorbidity.
Collapse
Affiliation(s)
- Hasan Çalışkan
- Department of Physiology, School of Medicine, Balıkesir University, Balıkesir, Turkey.
| | - Fırat Akat
- Department of Physiology, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - Ali Doğan Dursun
- Department of Physiology, Faculty of Medicine, Atılım University, Ankara, Turkey
| | - Nezahet Zaloğlu
- Department of Physiology, Faculty of Medicine, Ankara University, Ankara, Turkey
| |
Collapse
|
32
|
Teixeira-Silva B, de Mattos GVRM, Carvalho VDF, Campello-Costa P. Caffeine intake during lactation has a sex-dependent effect on the hippocampal excitatory/inhibitory balance and pups' behavior. Brain Res 2024; 1846:149247. [PMID: 39304106 DOI: 10.1016/j.brainres.2024.149247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/03/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
During early life, disruptions in glutamatergic and GABAergic synapse development in the hippocampus may contribute to several neurodevelopmental disorders, including cognitive deficits and psychiatric disorders. Caffeine is the most consumed psychoactive drug in the world, and previous work from our group has shown that caffeine disrupts visual system connections at different stages of development. This work aimed to investigate the effects of caffeine consumption during lactation in the glutamatergic and GABAergic synaptic markers in the hippocampus and on the behavior of rat offspring. We found that maternal caffeine intake significantly reduced GluN1 subunits of the NMDA receptor, increased the GluA1/GluA2 ratio of AMPA receptor in the dorsal hippocampus, and decreased GAD content in female pups' ventral hippocampus. On the other hand, an increase in GluN1/GluN2b subunits, a decrease in GAD content in the dorsal hippocampus, and a reduction of the GluA1 content in the ventral hippocampus were observed in male pups. In addition, changes in the behavior of the offspring submitted to indirect caffeine consumption were also sex-dependent, with females developing anxiety-like behavior and males showing anxiety-like behavior and hyper-locomotion. These results highlight that maternal caffeine intake promotes changes in the hippocampal excitatory and inhibitory balance and offspring behavior in a sex-dependent manner, suggesting that the population should be alerted to reduced caffeine consumption by breastfeeding mothers.
Collapse
Affiliation(s)
- Bruna Teixeira-Silva
- Programa de Pós-graduação em Neurociências, Departamento de Neurobiologia, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | | | - Vinicius de Frias Carvalho
- Programa de Pós-graduação em Neurociências, Departamento de Neurobiologia, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil; Laboratório de Inflamação, Centro de Pesquisa, Inovação e Vigilância em Covid-19 e Emergências Sanitárias, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av. Brasil, n° 4036, Manguinhos, CEP 21041-361 Rio de Janeiro, Brazil; Instituto Nacional de Ciência e Tecnologia em Neuroimunomodulação (INCT-NIM), Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av. Brasil, n° 4365, Manguinhos, CEP 21045-900 Rio de Janeiro, Brazil
| | - Paula Campello-Costa
- Programa de Pós-graduação em Neurociências, Departamento de Neurobiologia, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil.
| |
Collapse
|
33
|
Smiley CE, Pate BS, Bouknight SJ, Harrington EN, Jasnow AM, Wood SK. The functional role of locus coeruleus microglia in the female stress response. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.10.575076. [PMID: 38260568 PMCID: PMC10802589 DOI: 10.1101/2024.01.10.575076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Neuropsychiatric disorders that result from stress exposure are highly associated with central inflammation. Our previous work established that females selectively exhibit heightened proinflammatory cytokine production within the noradrenergic locus coeruleus (LC) along with a hypervigilant behavioral phenotype in response to witnessing social stress, and ablation of microglia using pharmacological techniques prevents this behavioral response. These studies were designed to further investigate the impact of stress-induced neuroimmune signaling on the long-term behavioral and neuronal consequences of social stress exposure in females using chemogenetics. We first characterized the use of an AAV-CD68-Gi-DREADD virus targeted to microglia within the LC and confirmed viral transduction, selectivity, and efficacy. Clozapine-n-oxide (CNO) was used for the suppression of microglial reactivity during acute and chronic exposure to vicarious/witness social defeat in female rats. Chemogenetic-mediated inhibition of microglial reactivity during stress blunted the neuroimmune response to stress and prevented both acute and long-term hypervigilant behavioral responses. Further, a history of microglial suppression during stress prevented the heightened LC activity typically observed in response to stress cues. These studies are among the first to use a chemogenetic approach to inhibit microglia within the female brain in vivo and establish LC inflammation as a key mechanism underlying the behavioral and neuronal responses to social stress in females.
Collapse
Affiliation(s)
- Cora E. Smiley
- Department of Pharmacology, Physiology, and Neuroscience; University of South Carolina School of Medicine, Columbia, SC 29209
- WJB Dorn Veterans Administration Medical Center, Columbia, SC 29209
| | - Brittany S. Pate
- Department of Pharmacology, Physiology, and Neuroscience; University of South Carolina School of Medicine, Columbia, SC 29209
- University of South Carolina, Department of Exercise Science, Columbia, SC 29209
| | - Samantha J. Bouknight
- Department of Pharmacology, Physiology, and Neuroscience; University of South Carolina School of Medicine, Columbia, SC 29209
| | - Evelynn N. Harrington
- Department of Pharmacology, Physiology, and Neuroscience; University of South Carolina School of Medicine, Columbia, SC 29209
- WJB Dorn Veterans Administration Medical Center, Columbia, SC 29209
| | - Aaron M. Jasnow
- Department of Pharmacology, Physiology, and Neuroscience; University of South Carolina School of Medicine, Columbia, SC 29209
| | - Susan K. Wood
- Department of Pharmacology, Physiology, and Neuroscience; University of South Carolina School of Medicine, Columbia, SC 29209
- WJB Dorn Veterans Administration Medical Center, Columbia, SC 29209
| |
Collapse
|
34
|
Chen Z, Lu N, Li X, Liu Q, Li Y, Li X, Yu X, Zhao H, Liu C, Tang X, Wang X, Huang W. The Effect of a Caffeine and Nicotine Combination on Nicotine Withdrawal Syndrome in Mice. Nutrients 2024; 16:3048. [PMID: 39339647 PMCID: PMC11435009 DOI: 10.3390/nu16183048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 08/29/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
Nicotine dependence is an important cause of excessive exposure to tobacco combustion compounds in most smokers. Nicotine replacement therapy is the main method to treat nicotine dependence, but it still has its shortcomings, such as the inability to mitigate withdrawal effects and limited applicability. It has been hypothesized that a combination of low-dose nicotine and caffeine could achieve the same psychological stimulation effect as a high dose of nicotine without causing nicotine withdrawal effects. To establish a model of nicotine dependence, male C57BL/6J mice were subcutaneously injected four times a day with nicotine (2 mg/kg) for 15 days and fed with water containing nicotine at the same time. They were randomly divided into four groups. After 24 h of withdrawal, different groups were injected with saline, nicotine (0.25 mg/kg or 0.1 mg/kg), or nicotine (0.1 mg/kg) and caffeine (20 mg/kg). Behavioral and physiological changes were evaluated by an assessment of physical signs, open field tests, elevated plus maze experiments, forced swimming tests, hot plate tests, and new-object-recognition tests. The changes in dopamine release in the prefrontal cortex (PFC) and ventral tegmental area (VTA) in the midbrain were analyzed using ELISA. The results showed that a combination of caffeine and nicotine could effectively relieve nicotine withdrawal syndrome, increase movement ability and pain thresholds, reduce anxiety and depression, enhance memory and cognitive ability, and increase the level of dopamine release in the PFC and VTA. Thus, caffeine combined with nicotine has potential as a stable and effective treatment option to help humans with smoking cessation.
Collapse
Affiliation(s)
- Zhe Chen
- Department of Oncology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi 214023, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Naiyan Lu
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Sports and Health Research Institute, Jiangnan University, Wuxi 214122, China
| | - Xu Li
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Qingrun Liu
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yujie Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Xiyue Li
- Department of Pulmonary and Critical Care Medicine, Jiangnan University Medical Center, Jiangnan University, Wuxi 214126, China
| | - Ximiao Yu
- Department of Pulmonary and Critical Care Medicine, Jiangnan University Medical Center, Jiangnan University, Wuxi 214126, China
| | - Haotian Zhao
- Sports and Health Research Institute, Jiangnan University, Wuxi 214122, China
| | - Chang Liu
- School of Sport Science, Beijing Sport University, Beijing 100084, China
| | - Xue Tang
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xun Wang
- Department of Pulmonary and Critical Care Medicine, Jiangnan University Medical Center, Jiangnan University, Wuxi 214126, China
| | - Weisun Huang
- Department of Oncology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi 214023, China
| |
Collapse
|
35
|
Themann A, Rodriguez M, Reyes-Arce J, Iñiguez SD. Chlordiazepoxide reduces anxiety-like behavior in the adolescent mouse elevated plus maze: A pharmacological validation study. Pharmacol Biochem Behav 2024; 242:173819. [PMID: 38986686 DOI: 10.1016/j.pbb.2024.173819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/03/2024] [Accepted: 07/07/2024] [Indexed: 07/12/2024]
Abstract
This report evaluates the effects of chlordiazepoxide, a benzodiazepine commonly prescribed to manage anxiety-related disorders in adolescent/pediatric populations, on elevated plus maze (EPM) performance in juvenile mice. This approach was taken because chlordiazepoxide produces anxiolytic-like effects in multiple models in adult rodents, however, less is known about the behavioral effects of this benzodiazepine in juveniles. Thus, we administered a single intraperitoneal injection of chlordiazepoxide (0, 5, or 10 mg/kg) to postnatal day 35 male C57BL/6 mice. Thirty minutes later, mice were allowed to explore the EPM for 5-min. We found that chlordiazepoxide-treated mice (5 and 10 mg/kg) spent more time exploring the open arms of the EPM. No differences in velocity (cm/s) or distance traveled (cm) were observed between the groups. These results indicate that chlordiazepoxide induces anxiolytic-related behavior in adolescent male mice.
Collapse
Affiliation(s)
- Anapaula Themann
- Department of Psychology, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Minerva Rodriguez
- Department of Psychology, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Joselynn Reyes-Arce
- Department of Psychology, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Sergio D Iñiguez
- Department of Psychology, The University of Texas at El Paso, El Paso, TX 79968, USA.
| |
Collapse
|
36
|
Fernandes E Mendonça LM, Joshi AB, Bhandarkar A, Shaikh S, Fernandes S, Joshi H, Joshi S. Potential anxiolytic therapeutics from Hybanthus enneaspermus (L.) F. Muell. - mitigate anxiety by plausibly modulating the GABA A-Cl - channel. Neurochem Int 2024; 178:105804. [PMID: 39002759 DOI: 10.1016/j.neuint.2024.105804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/13/2024] [Accepted: 07/09/2024] [Indexed: 07/15/2024]
Abstract
Anxiety is a commonly prevailing psychological disorder that requires effective treatment, wherein phytopharmaceuticals and nutraceuticals could offer a desirable therapeutic profile. Hybanthus enneaspermus (L.) F. Muell. is a powerful medicinal herb, reportedly effective against several ailments, including psychological disorders. The current research envisaged evaluating the anxiolytic potential of the ethanolic extract of Hybanthus enneaspermus (EEHE) and its toluene insoluble biofraction (ITHE) employing experimental and computational approaches. Elevated Plus Maze, Light and Dark Transition, Mirror Chamber, Hole board and Open field tests were used as screening models to assess the antianxiety potential of 100, 200 and 400 mg/kg body weight of EEHE and ITHE in rats subjected to social isolation, using Diazepam as standard. The brains of rats exhibiting significant anxiolytic activity were dissected for histopathological and biochemical studies. Antioxidant enzymes like catalase, superoxide dismutase, glutathione-S-transferase, glutathione peroxidase, glutathione reductase; and neurotransmitters viz. monoamines (serotonin, noradrenaline, dopamine), Gamma-aminobutyric acid (GABA), and glutamate were quantified in the different regions of rats' brain (cortex, hippocampus, pons, medulla oblongata, cerebellum). Chromatographic techniques were used to isolate phytoconstituents from the fraction exhibiting significant activity that were characterized by spectroscopic methods and subjected to in silico molecular docking. ITHE at 400 mg/kg body weight significantly mitigated anxiety in all the screening models (p < 0.05), reduced the inflammatory vacuoles and necrosis (p < 0.05) and potentiated the antioxidant enzymes (p < 0.05). It enhanced the monoamines and GABA levels while attenuating glutamate levels (p < 0.01) in the brain. Three significant flavonoids viz. Quercitrin, Rutin and Hesperidin were isolated from ITHE. In silico docking studies of these flavonoids revealed that the compounds exhibited substantial binding to the GABAA receptor. ITHE displayed a promising pharmacological profile in combating anxiety and modulating oxidative stress, attributing its therapeutic virtues to the flavonoids present.
Collapse
Affiliation(s)
| | - Arun Bhimrao Joshi
- Department of Pharmacognosy and Phytochemistry, Goa College of Pharmacy, 18th June Road, Panaji, Goa, 403001, India.
| | - Anant Bhandarkar
- Department of Pharmacognosy and Phytochemistry, Goa College of Pharmacy, 18th June Road, Panaji, Goa, 403001, India.
| | - Shamshad Shaikh
- School of Biological Sciences and Biotechnology, Goa University, Taleigao Plateau, Taleigao, Goa, 403206, India.
| | - Samantha Fernandes
- School of Biological Sciences and Biotechnology, Goa University, Taleigao Plateau, Taleigao, Goa, 403206, India.
| | - Himanshu Joshi
- Department of Pharmacology, College of Pharmacy, Graphic Era Hill University, Bhimtal Campus, Uttarakhand, 263156, India.
| | - Shrinivas Joshi
- Department of Pharmaceutical Chemistry, S.E.T.'s College of Pharmacy, Sangolli Rayanna Nagar, Dharwad, Karnataka, 580002, India.
| |
Collapse
|
37
|
Czarzasta K, Sztechman D, Zera T, Wojciechowska M, Segiet-Swiecicka A, Puchalska L, Momot K, Joniec-Maciejak I, Machaj E, Sajdel-Sulkowska EM. Age- and sex-dependent cardiovascular impact of maternal perinatal stress and altered dopaminergic metabolism in the medulla oblongata of the offspring. Am J Physiol Heart Circ Physiol 2024; 327:H614-H630. [PMID: 39028279 DOI: 10.1152/ajpheart.00548.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 07/01/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024]
Abstract
Maternal major depressive disorder with peripartum onset presents health risks to the mother and the developing fetus. Using a rat model of chronic mild stress, we previously reported on the neurodevelopmental impact of maternal perinatal stress on their offspring. This study examined the cardiovascular impact of maternal perinatal stress on their offspring. The cardiovascular impact was assessed in terms of blood pressure and echocardiographic parameters. The results examined by a three-way ANOVA showed a significant association of cardiovascular parameters with maternal perinatal stress and offspring sex and age. Increased blood pressure was observed in adolescent female and adult male offspring of stress-exposed dams. Echocardiography showed an increase in left atrial dimension and a reduction in left ventricular systolic function in adolescent stress-exposed female offspring. Increased interventricular septum thickness at end-diastole and left ventricular diastolic dysfunction were observed in adult stress-exposed male offspring. The underlying mechanisms of cardiovascular impact were examined in stress-exposed adult offspring by assessing the levels of neurotransmitters and their metabolites in the medulla oblongata using high-performance liquid chromatography. A significant decrease in homovanillic acid, a dopamine metabolite and indicator of dopaminergic activity, was observed in adult stress-exposed female offspring. These results suggest a significant sex- and age-dependent impact of maternal stress during the peripartum period on the cardiovascular system in the offspring that extends to adulthood and suggests a multigenerational effect. The presented data urgently need follow-up to confirm their potential clinical and public health relevance.NEW & NOTEWORTHY We demonstrate that maternal perinatal stress is associated with sex- and age-dependent impact on the cardiovascular system in their offspring. The effect was most significant in adolescent female and adult male offspring. Observed changes in hemodynamic parameters and dopaminergic activity of the medulla oblongata are novel results relevant to understanding the cardiovascular impact of maternal perinatal stress on the offspring. The cardiovascular changes observed in adult offspring suggest a potential long-term, multigenerational impact of maternal perinatal stress.
Collapse
Affiliation(s)
- Katarzyna Czarzasta
- Laboratory of Centre for Preclinical Research, Department of Experimental and Clinical Physiology, Medical University of Warsaw, Warsaw, Poland
| | - Dorota Sztechman
- Laboratory of Centre for Preclinical Research, Department of Experimental and Clinical Physiology, Medical University of Warsaw, Warsaw, Poland
| | - Tymoteusz Zera
- Laboratory of Centre for Preclinical Research, Department of Experimental and Clinical Physiology, Medical University of Warsaw, Warsaw, Poland
| | - Malgorzata Wojciechowska
- Laboratory of Centre for Preclinical Research, Department of Experimental and Clinical Physiology, Medical University of Warsaw, Warsaw, Poland
| | - Agnieszka Segiet-Swiecicka
- Department of Coronary Artery Disease and Cardiac Rehabilitation, National Institute of Cardiology, Warsaw, Poland
| | - Liana Puchalska
- Laboratory of Centre for Preclinical Research, Department of Experimental and Clinical Physiology, Medical University of Warsaw, Warsaw, Poland
| | - Karol Momot
- Laboratory of Centre for Preclinical Research, Department of Experimental and Clinical Physiology, Medical University of Warsaw, Warsaw, Poland
| | - Ilona Joniec-Maciejak
- Laboratory of Centre for Preclinical Research, Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Warsaw, Poland
| | - Ewa Machaj
- Laboratory of Centre for Preclinical Research, Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Warsaw, Poland
| | | |
Collapse
|
38
|
Nyberg H, Bogen IL, Nygaard E, Andersen JM. Effects of prenatal exposure to methadone or buprenorphine and maternal separation on anxiety-like behavior in rats. Drug Alcohol Depend 2024; 262:111367. [PMID: 39003831 DOI: 10.1016/j.drugalcdep.2024.111367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/06/2024] [Accepted: 06/06/2024] [Indexed: 07/16/2024]
Abstract
BACKGROUND The use of medications for opioid use disorder such as methadone or buprenorphine is increasing among pregnant women. However, long-term effects of this treatment on the children's health are not well understood. A key challenge is distinguishing the effects of opioid exposure from other confounding factors associated with human opioid use, such as reduced maternal care. In this study, we therefore used a multi-risk factor design to examine anxiety-like behavior in rats prenatally exposed to methadone or buprenorphine, with or without maternal separation the first two weeks after birth. METHODS Female Sprague Dawley rats were exposed to methadone (10mg/kg/day), buprenorphine (1mg/kg/day) or sterile water throughout gestation. Half of the offspring in each litter experienced maternal separation for 3h per day from postnatal day 2 to 12. Male and female offspring (6-9 weeks) were tested in the open field, light-dark transition and elevated plus maze tests to assess anxiety-like behavior. RESULTS Offspring exposed to buprenorphine and not subjected to maternal separation displayed increased anxiety-like behavior in 3 out of 6 outcomes in the light-dark transition and elevated plus maze tests. Maternal separation did not exacerbate, but rather diminished this behavior. Males and females responded differently to methadone, with a trend towards reduced anxiety for males and increased anxiety for females. CONCLUSIONS Prenatal exposure to methadone or buprenorphine may increase the risk of developing anxiety-like behavior later in life, but the effect depends on specific subgroup characteristics. Further research is required to draw definitive conclusions.
Collapse
Affiliation(s)
- Henriette Nyberg
- Section of Forensic Research, Department of Forensic Sciences, Oslo University Hospital, P.O. Box 4950 Nydalen, Oslo 0424, Norway; Department of Pharmacy, Faculty of Mathematics and Natural Sciences, University of Oslo, P.O. Box 1068 Blindern, Oslo 0316, Norway.
| | - Inger Lise Bogen
- Section of Forensic Research, Department of Forensic Sciences, Oslo University Hospital, P.O. Box 4950 Nydalen, Oslo 0424, Norway; Department of Pharmacy, Faculty of Mathematics and Natural Sciences, University of Oslo, P.O. Box 1068 Blindern, Oslo 0316, Norway
| | - Egil Nygaard
- PROMENTA, Department of Psychology, Faculty of Social Sciences, University of Oslo, P.O. Box 1094 Blindern, Oslo 0317, Norway
| | - Jannike Mørch Andersen
- Section of Forensic Research, Department of Forensic Sciences, Oslo University Hospital, P.O. Box 4950 Nydalen, Oslo 0424, Norway; Department of Pharmacy, Faculty of Mathematics and Natural Sciences, University of Oslo, P.O. Box 1068 Blindern, Oslo 0316, Norway
| |
Collapse
|
39
|
Li X, Kong Z, Cai K, Qi F, Zhu S. Neopterin mediates sleep deprivation-induced microglial activation resulting in neuronal damage by affecting YY1/HDAC1/TOP1/IL-6 signaling. J Adv Res 2024:S2090-1232(24)00301-1. [PMID: 39029901 DOI: 10.1016/j.jare.2024.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/16/2024] [Accepted: 07/16/2024] [Indexed: 07/21/2024] Open
Abstract
INTRODUCTION Sleep deprivation (SD) is a common disorder in modern society. Hippocampus is an important region of the brain for learning, memory, and emotions. Dysfunction of hippocampus can lead to severe learning and memory disorder, significantly affecting quality of life. SD is accompanied by hippocampal microglia activation and a surge in inflammatory factors, but the precise mechanism remains unclear. Moreover, the ongoing unknown persists regarding how activated microglia in SD lead to neuronal damage. Topoisomerase 1 (TOP1) plays an essential role in the inflammatory process, including the tumor system and viral infection. In this study, we observed a significant elevation in TOP1 levels in the hippocampus of mice subjected to SD. Therefore, we hypothesize that TOP1 may be implicated in SD-induced microglia activation and neuronal damage. OBJECTIVES To investigate the role of TOP1 in SD-induced microglial activation, neuronal damage, and neurobehavioral impairments, and the molecular basis of SD-induced elevated TOP1 levels. METHODS TOP1-specific knockout mice in microglia were used to study the effects of TOP1 on microglial activation and neuronal damage. Transcription factor prediction, RNA interference, ChIP-qPCR, ChIP-seq database analysis, and luciferase reporter assays were performed to explore the molecular mechanisms of YY1 transcriptional activation. Untargeted metabolic profiling was employed to investigate the material basis of YY1 transcriptional activation. RESULTS Knockdown of TOP1 in hippocampal microglia ameliorates SD-induced microglial activation, inflammatory response, and neuronal damage. Mechanistically, TOP1 mediates the release of IL-6 from microglia, which consequently leads to neuronal dysfunction. Moreover, elevated TOP1 due to SD were associated with neopterin, which was attributed to its promotion of elevated levels of H3K27ac in the TOP1 promoter region by disrupting the binding of YY1 and HDAC1. CONCLUSION The present study reveals that TOP1-mediated microglial activation is critical for SD induced hippocampal neuronal damage and behavioral impairments.
Collapse
Affiliation(s)
- Xuan Li
- Lanzhou University Second Hospital, Lanzhou University, 730030 Lanzhou, China
| | - Ziyu Kong
- School of Basic Medicine, Wuhan University, Wuhan 430071, China
| | - Ke Cai
- Lanzhou University Second Hospital, Lanzhou University, 730030 Lanzhou, China
| | - Fujian Qi
- School of Life Sciences, Lanzhou University, 730030 Lanzhou, China
| | - Sen Zhu
- School of Life Sciences, Lanzhou University, 730030 Lanzhou, China; The First Affiliated Hospital of Medical College, Zhejiang University, Zhejiang 310000, China.
| |
Collapse
|
40
|
Navarro MDC, Gálvez I, Hinchado MD, Otero E, Torres-Piles S, Francisco-Morcillo J, de La Fuente M, Martín-Cordero L, Ortega E. Immunoneuroendocrine, Stress, Metabolic, and Behavioural Responses in High-Fat Diet-Induced Obesity. Nutrients 2024; 16:2209. [PMID: 39064652 PMCID: PMC11279988 DOI: 10.3390/nu16142209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/02/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Obesity has reached global epidemic proportions, and even though its effects are well-documented, studying the interactions among all influencing factors is crucial for a better understanding of its physiopathology. In a high-fat-diet-induced obesity animal model using C57BL/6J mice, behavioural responses were assessed through a battery of tests, while stress biomarkers and systemic inflammatory cytokines were measured using an Enzyme-Linked ImmunoSorbent Assay and a Bio-Plex Multiplex System. The peritoneal macrophage microbicide capacity was analysed via flow cytometry, and crown-like structures (CLSs) in white adipose tissue (WAT) were evaluated through staining techniques. Results indicated that obese mice exhibited increased body weight, hyperglycaemia, and hyperlipidaemia after 18 weeks on a high-fat diet, as well as worse physical conditions, poorer coordination and balance, and anxiety-like behaviour. Differences in corticosterone and noradrenaline concentrations were also found in obese animals, revealing a stress response and noradrenergic dysregulation, along with a weakened innate immune response characterized by a lower microbicide capacity, and the presence of an underlying inflammation evidenced by more CLSs in WAT. Altogether, these findings indicate that obesity deteriorates the entire stress, inflammatory, metabolic, sensorimotor and anxiety-like behavioural axis. This demonstrates that jointly evaluating all these aspects allows for a deeper and better exploration of this disease and its associated comorbidities, emphasizing the need for individualized and context-specific strategies for its management.
Collapse
Affiliation(s)
- María del Carmen Navarro
- Immunophyisiology Research Group, Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), 06071 Badajoz, Spain; (M.d.C.N.); (I.G.); (M.D.H.); (E.O.)
- Immunophysiology Research Group, Physiology Department, Faculty of Sciences, University of Extremadura, 06071 Badajoz, Spain
| | - Isabel Gálvez
- Immunophyisiology Research Group, Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), 06071 Badajoz, Spain; (M.d.C.N.); (I.G.); (M.D.H.); (E.O.)
- Immunophysiology Research Group, Nursing Department, Faculty of Medicine and Health Sciences, University of Extremadura, 06071 Badajoz, Spain
| | - María Dolores Hinchado
- Immunophyisiology Research Group, Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), 06071 Badajoz, Spain; (M.d.C.N.); (I.G.); (M.D.H.); (E.O.)
- Immunophysiology Research Group, Physiology Department, Faculty of Sciences, University of Extremadura, 06071 Badajoz, Spain
| | - Eduardo Otero
- Immunophyisiology Research Group, Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), 06071 Badajoz, Spain; (M.d.C.N.); (I.G.); (M.D.H.); (E.O.)
- Immunophysiology Research Group, Physiology Department, Faculty of Sciences, University of Extremadura, 06071 Badajoz, Spain
| | - Silvia Torres-Piles
- Immunophysiology Research Group, Department of Medical-Surgical Therapy, Faculty of Medicine, University of Extremadura, 06071 Badajoz, Spain;
| | - Javier Francisco-Morcillo
- Anatomy, Cell Biology and Zoology Department, Faculty of Sciences, University of Extremadura, 06071 Badajoz, Spain;
| | - Mónica de La Fuente
- Unit of Animal Physiology, Department of Genetics, Physiology, and Microbiology, Faculty of Biology, Complutense University of Madrid, 28040 Madrid, Spain;
| | - Leticia Martín-Cordero
- Immunophyisiology Research Group, Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), 06071 Badajoz, Spain; (M.d.C.N.); (I.G.); (M.D.H.); (E.O.)
- Immunophysiology Research Group, Nursing Department, University Center of Plasencia, University of Extremadura, 10600 Plasencia, Spain
| | - Eduardo Ortega
- Immunophyisiology Research Group, Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), 06071 Badajoz, Spain; (M.d.C.N.); (I.G.); (M.D.H.); (E.O.)
- Immunophysiology Research Group, Physiology Department, Faculty of Sciences, University of Extremadura, 06071 Badajoz, Spain
| |
Collapse
|
41
|
Yount ST, Wang S, Allen AT, Shapiro LP, Butkovich LM, Gourley SL. A molecularly defined orbitofrontal cortical neuron population controls compulsive-like behavior, but not inflexible choice or habit. Prog Neurobiol 2024; 238:102632. [PMID: 38821345 PMCID: PMC11332912 DOI: 10.1016/j.pneurobio.2024.102632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/11/2024] [Accepted: 05/20/2024] [Indexed: 06/02/2024]
Abstract
Habits are familiar behaviors triggered by cues, not outcome predictability, and are insensitive to changes in the environment. They are adaptive under many circumstances but can be considered antecedent to compulsions and intrusive thoughts that drive persistent, potentially maladaptive behavior. Whether compulsive-like and habit-like behaviors share neural substrates is still being determined. Here, we investigated mice bred to display inflexible reward-seeking behaviors that are insensitive to action consequences. We found that these mice demonstrate habitual response biases and compulsive-like grooming behavior that was reversible by fluoxetine and ketamine. They also suffer dendritic spine attrition on excitatory neurons in the orbitofrontal cortex (OFC). Nevertheless, synaptic melanocortin 4 receptor (MC4R), a factor implicated in compulsive behavior, is preserved, leading to the hypothesis that Mc4r+ OFC neurons may drive aberrant behaviors. Repeated chemogenetic stimulation of Mc4r+ OFC neurons triggered compulsive and not inflexible or habitual response biases in otherwise typical mice. Thus, Mc4r+ neurons within the OFC appear to drive compulsive-like behavior that is dissociable from habitual behavior. Understanding which neuron populations trigger distinct behaviors may advance efforts to mitigate harmful compulsions.
Collapse
Affiliation(s)
- Sophie T Yount
- Graduate Program in Molecular and Systems Pharmacology, USA; Emory National Primate Research Center, USA; Departments of Pediatrics and Psychiatry and Behavioral Sciences, Emory University School of Medicine, USA
| | - Silu Wang
- Emory National Primate Research Center, USA; Departments of Pediatrics and Psychiatry and Behavioral Sciences, Emory University School of Medicine, USA; Graduate Program in Neuroscience, Emory University, Atlanta, GA, USA
| | - Aylet T Allen
- Emory National Primate Research Center, USA; Departments of Pediatrics and Psychiatry and Behavioral Sciences, Emory University School of Medicine, USA
| | - Lauren P Shapiro
- Graduate Program in Molecular and Systems Pharmacology, USA; Emory National Primate Research Center, USA; Departments of Pediatrics and Psychiatry and Behavioral Sciences, Emory University School of Medicine, USA
| | - Laura M Butkovich
- Emory National Primate Research Center, USA; Departments of Pediatrics and Psychiatry and Behavioral Sciences, Emory University School of Medicine, USA
| | - Shannon L Gourley
- Graduate Program in Molecular and Systems Pharmacology, USA; Emory National Primate Research Center, USA; Departments of Pediatrics and Psychiatry and Behavioral Sciences, Emory University School of Medicine, USA; Graduate Program in Neuroscience, Emory University, Atlanta, GA, USA; Children's Healthcare of Atlanta, Atlanta, GA, USA.
| |
Collapse
|
42
|
Rodrigues P, Frare JM, Peres DS, Viero FT, Ruviaro NA, Dos Santos Stein C, da Silva Brum E, Moresco RN, Oliveira SM, Bochi GV, Trevisan G. Increased levels of advanced oxidation protein products (AOPPs) were associated with nociceptive behavior and clinical scores in an experimental progressive autoimmune encephalomyelitis model (PMS-EAE). J Neurochem 2024; 168:1143-1156. [PMID: 38372436 DOI: 10.1111/jnc.16081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/17/2024] [Accepted: 01/22/2024] [Indexed: 02/20/2024]
Abstract
Multiple sclerosis (MS) is a neurodegenerative disease that affects the central nervous system (CNS) generating neuropathic pain and anxiety. Primary progressive MS (PPMS) is the most disabling clinical form, and the patients present an intense neurodegenerative process. In this context, the advanced oxidation protein products (AOPPs) are oxidized compounds and their accumulation in plasma has been related to clinical disability in MS patients. However, the involvement of AOPPs in neuropathic pain- and anxiety-like symptoms was not previously evaluated. To assess this, female mice C57BL/6J were used to induce progressive experimental autoimmune encephalomyelitis (PMS-EAE). Clinical score, weight, strength of plantar pressure, rotarod test, mechanical allodynia, and cold hypersensitivity were evaluated before induction (baseline) and on days 7th, 10th, and 14th post-immunization. We assessed nest building, open field, and elevated plus-maze tests 13 days post-immunization. Animals were killed at 14 days post-immunization; then, AOPPs levels, NADPH oxidase, and myeloperoxidase (MPO) activity were measured in the prefrontal cortex, hippocampus, and spinal cord samples. The clinical score increased 14th post-immunization without changes in weight and mobility. Reduced paw strength, mechanical allodynia, and cold allodynia increased in the PMS-EAE animals. PMS-EAE mice showed spontaneous nociception and anxiety-like behavior. AOPPs concentration, NADPH oxidase, and MPO activity increase in CNS structures. Multivariate analyses indicated that the rise of AOPPs levels, NADPH oxidase, and MPO activity influenced the clinical score and cold allodynia. Thus, we indicated the association between non-stimuli painful perception, anxiety-like, and CNS oxidative damage in the PMS-EAE model.
Collapse
Affiliation(s)
- Patrícia Rodrigues
- Graduate Program in Pharmacology, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Julia Maria Frare
- Graduate Program in Pharmacology, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Diulle Spat Peres
- Graduate Program in Pharmacology, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Fernanda Tibolla Viero
- Graduate Program in Pharmacology, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Náthaly Andrighetto Ruviaro
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Carolina Dos Santos Stein
- Graduate Program in Pharmaceutical Sciences, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Evelyne da Silva Brum
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Rafael Noal Moresco
- Graduate Program in Pharmaceutical Sciences, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Sara Marchesan Oliveira
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Guilherme Vargas Bochi
- Graduate Program in Pharmacology, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Gabriela Trevisan
- Graduate Program in Pharmacology, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil
| |
Collapse
|
43
|
Soberanes-Chávez P, Trujillo-Barrera J, de Gortari P. Circadian Synchronization of Feeding Attenuates Rats' Food Restriction-Induced Anxiety and Amygdalar Thyrotropin-Releasing Hormone Downregulation. Int J Mol Sci 2024; 25:5857. [PMID: 38892044 PMCID: PMC11172148 DOI: 10.3390/ijms25115857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 04/29/2024] [Accepted: 05/02/2024] [Indexed: 06/21/2024] Open
Abstract
Anxiety is a common comorbidity of obesity, resulting from prescribing long-term caloric restriction diets (CRDs); patients with a reduced food intake lose weight but present anxious behaviors, poor treatment adherence, and weight regain in the subsequent 5 years. Intermittent fasting (IF) restricts feeding time to 8 h during the activity phase, reducing patients' weight even with no caloric restriction; it is unknown whether an IF regime with ad libitum feeding avoids stress and anxiety development. We compared the corticosterone blood concentration between male Wistar rats fed ad libitum or calorie-restricted with all-day or IF food access after 4 weeks, along with their anxiety parameters when performing the elevated plus maze (EPM). As the amygdalar thyrotropin-releasing hormone (TRH) is believed to have anxiolytic properties, we evaluated its expression changes in association with anxiety levels. The groups formed were the following: a control which was offered food ad libitum (C-adlib) or 30% of C-adlib's energy requirements (C-CRD) all day, and IF groups provided food ad libitum (IF-adlib) or 30% of C-adlib's requirements (IF-CRD) with access from 9:00 to 17:00 h. On day 28, the rats performed the EPM and, after 30 min, were decapitated to analyze their amygdalar TRH mRNA expression by in situ hybridization and corticosterone serum levels. Interestingly, circadian feeding synchronization reduced the body weight, food intake, and animal anxiety levels in both IF groups, with ad libitum (IF-adlib) or restricted (IF-CRD) food access. The anxiety levels of the experimental groups resulted to be negatively associated with TRH expression, which supported its anxiolytic role. Therefore, the low anxiety levels induced by synchronizing feeding with the activity phase would help patients who are dieting to improve their diet therapy adherence.
Collapse
Affiliation(s)
- Paulina Soberanes-Chávez
- Laboratorio de Neurofisiología Molecular, Dirección de Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México 14370, Mexico; (P.S.-C.); (J.T.-B.)
| | - Jariz Trujillo-Barrera
- Laboratorio de Neurofisiología Molecular, Dirección de Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México 14370, Mexico; (P.S.-C.); (J.T.-B.)
- Escuela de Dietética y Nutrición del ISSSTE, Ciudad de México 14070, Mexico
| | - Patricia de Gortari
- Laboratorio de Neurofisiología Molecular, Dirección de Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México 14370, Mexico; (P.S.-C.); (J.T.-B.)
| |
Collapse
|
44
|
Takahashi K, Tsuji M, Nakagawasai O, Miyagawa K, Kurokawa K, Mochida-Saito A, Iwasa M, Iwasa H, Suzuki S, Takeda H, Tadano T. Anxiolytic effects of Enterococcus faecalis 2001 on a mouse model of colitis. Sci Rep 2024; 14:11519. [PMID: 38769131 PMCID: PMC11106339 DOI: 10.1038/s41598-024-62309-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/15/2024] [Indexed: 05/22/2024] Open
Abstract
Ulcerative colitis (UC) is a refractory inflammatory bowel disease, which is known to cause psychiatric disorders such as anxiety and depression at a high rate in addition to peripheral inflammatory symptoms. However, the pathogenesis of these psychiatric disorders remains mostly unknown. While prior research revealed that the Enterococcus faecalis 2001 (EF-2001) suppressed UC-like symptoms and accompanying depressive-like behaviors, observed in a UC model using dextran sulfate sodium (DSS), whether it has an anxiolytic effect remains unclear. Therefore, we examined whether EF-2001 attenuates DSS-induced anxiety-like behaviors. Treatment with 2% DSS for seven days induced UC-like symptoms and anxiety-like behavior through the hole-board test, increased serum lipopolysaccharide (LPS) and corticosterone concentration, and p-glucocorticoid receptor (GR) in the prefrontal cortex (PFC), and decreased N-methyl-D-aspartate receptor subunit (NR) 2A and NR2B expression levels in the PFC. Interestingly, these changes were reversed by EF-2001 administration. Further, EF-2001 administration enhanced CAMKII/CREB/BDNF-Drebrin pathways in the PFC of DSS-treated mice, and labeling of p-GR, p-CAMKII, and p-CREB showed colocalization with neurons. EF-2001 attenuated anxiety-like behavior by reducing serum LPS and corticosterone levels linked to the improvement of UC symptoms and by facilitating the CAMKII/CREB/BDNF-Drebrin pathways in the PFC. Our findings suggest a close relationship between UC and anxiety.
Collapse
Affiliation(s)
- Kohei Takahashi
- Department of Pharmacology, School of Pharmacy, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara, Tochigi, 324-8501, Japan
| | - Minoru Tsuji
- Department of Pharmacology, School of Pharmacy, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara, Tochigi, 324-8501, Japan.
| | - Osamu Nakagawasai
- Division of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-Ku, Sendai, Miyagi, 981-8558, Japan
| | - Kazuya Miyagawa
- Department of Pharmacology, School of Pharmacy, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara, Tochigi, 324-8501, Japan
| | - Kazuhiro Kurokawa
- Department of Pharmacology, School of Pharmacy, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara, Tochigi, 324-8501, Japan
| | - Atsumi Mochida-Saito
- Department of Pharmacology, School of Pharmacy, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara, Tochigi, 324-8501, Japan
| | - Masahiro Iwasa
- Nihon Berm Co., Ltd., 16-12, Nihonbashi-Kodenmacho, Chuo-Ku, Tokyo, 103-0001, Japan
| | - Hiroyuki Iwasa
- Nihon Berm Co., Ltd., 16-12, Nihonbashi-Kodenmacho, Chuo-Ku, Tokyo, 103-0001, Japan
| | - Shigeo Suzuki
- Nihon Berm Co., Ltd., 16-12, Nihonbashi-Kodenmacho, Chuo-Ku, Tokyo, 103-0001, Japan
| | - Hiroshi Takeda
- Department of Pharmacology, School of Pharmacy at Fukuoka, International University of Health and Welfare, 137-1 Enokizu, Okawa, Fukuoka, 831-8501, Japan
| | - Takeshi Tadano
- Division of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-Ku, Sendai, Miyagi, 981-8558, Japan
- Department of Environment and Preventive Medicine, Graduate School of Medicine Sciences, Kanazawa University, 13-1 Takaramachi, Kanazawa, Ishikawa, 920-8640, Japan
| |
Collapse
|
45
|
Ommati MM, Nozhat Z, Sabouri S, Kong X, Retana-Márquez S, Eftekhari A, Ma Y, Evazzadeh F, Juárez-Rojas L, Heidari R, Wang HW. Pesticide-Induced Alterations in Locomotor Activity, Anxiety, and Depression-like Behavior Are Mediated through Oxidative Stress-Related Autophagy: A Persistent Developmental Study in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:11205-11220. [PMID: 38708789 DOI: 10.1021/acs.jafc.4c02299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
Chlorpyrifos (CPF), dichlorvos (DDV), and cypermethrin (CP), as commonly used pesticides, have been implicated in inducing neuropsychiatric disorders, such as anxiety, depression-like behaviors, and locomotor activity impairment. However, the exact molecular mechanisms of these adverse effects, particularly in both sexes and their next-generation effects, remain unclear. In this study, we conducted behavioral analysis, along with cellular assays (monodansylcadaverine staining) and molecular investigations (qRT-PCR and western blotting of mTOR, P62, and Beclin-1) to clear the potential role of autophagy in pesticide-induced behavioral alterations. For this purpose, 42 adult female and 21 male inbred ICR mice (F0) were distributed into seven groups. Maternal mice (F0) and 112 F1 offspring were exposed to 0.5 and 1 ppm of CPF, DDV, and CP through drinking water. F1 male and female animals were studied to assess the sex-specific effects of pesticides on brain tissue. Our findings revealed pronounced anxiogenic effects and impaired locomotor activity in mice. F1 males exposed to CPF (1 ppm) exhibited significantly elevated depression-like behaviors compared to other groups. Moreover, pesticide exposure reduced mTOR and P62 levels, while enhancing the Beclin-1 gene and protein expression. These changes in autophagy signaling pathways, coupled with oxidative and neurogenic damage in the cerebral cortex and hippocampus, potentially contribute to heightened locomotor activity, anxiety, and depression-like behaviors following pesticide exposure. This study underscores the substantial impact of pesticides on both physiological and behavioral aspects, emphasizing the necessity for comprehensive assessments and regulatory considerations for pesticide use. Additionally, the identification of sex-specific responses presents a crucial dimension for pharmaceutical sciences, highlighting the need for tailored therapeutic interventions and further research in this field.
Collapse
Affiliation(s)
- Mohammad Mehdi Ommati
- Henan Key Laboratory of Environmental and Animal Product Safety, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471000, China
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz 71468 64685, Iran
| | - Zahra Nozhat
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Samira Sabouri
- College of Animal Science and Veterinary, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Xiangdong Kong
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Socorro Retana-Márquez
- Department of Reproductive Biology, Universidad Autónoma Metropolitana-Iztapalapa, México City 09340, Mexico
| | - Aziz Eftekhari
- Department of Biochemistry, Faculty of Science, Ege University, Izmir 35100, Turkey
| | - Yanqin Ma
- College of Life Sciences, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Fatemeh Evazzadeh
- Department of Psychology, Science & Research Branch, Islamic Azad University, Tehran 1477893855, Iran
| | - Lizbeth Juárez-Rojas
- Department of Reproductive Biology, Universidad Autónoma Metropolitana-Iztapalapa, México City 09340, Mexico
| | - Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz 71468 64685, Iran
| | - Hong-Wei Wang
- Henan Key Laboratory of Environmental and Animal Product Safety, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471000, China
| |
Collapse
|
46
|
del Carmen Díaz-Torres R, Yáñez-Barrientos E, Montes-Rocha JÁ, Morales-Tirado DJ, Alba-Betancourt C, Gasca-Martínez D, Gonzalez-Rivera ML, del Carmen Juárez-Vázquez M, Deveze-Álvarez MA, Isiordia-Espinoza MA, Carranza-Álvarez C, Alonso-Castro AJ. Ethnomedicinal Study and Evaluation of the Anxiolytic-like and Diuretic Effects of the Orchid Stanhopea tigrina Bateman ex Lindl-(Orchidaceae). Pharmaceuticals (Basel) 2024; 17:588. [PMID: 38794158 PMCID: PMC11124363 DOI: 10.3390/ph17050588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/21/2024] [Accepted: 05/04/2024] [Indexed: 05/26/2024] Open
Abstract
Stanhopea tigrina Bateman ex Lindl. (Orchidaceae) is an orchid endemic to Mexico, known as "Calavera" or "calaverita", in the Huasteca Potosina (central region of Mexico). This plant species is used for the folk treatment of mental disorders and urological kidney disorders, according to the ethnomedicinal information obtained in this study. Ethanolic extracts of leaves (HE) and pseudobulb (PE) were obtained by microwave-assisted extraction (MAE). Gas Chromatography coupled with Mass Spectrometry (GC-MS) was used to carry out the chemical characterization of HE and PE. The pharmacological effects (antioxidant, diuretic, anxiolytic, locomotor, hypnotic, and sedative) of HE and PE were evaluated. The possible mechanism of action of the anxiolytic-like activity induced by HE was assessed using inhibitors of the GABAergic, adrenergic, and serotonergic systems. The possible mechanism of the diuretic action of HE was assessed using prostaglandin inhibitory antagonists and nitric oxide synthase (NOS) blockers. HE at 50 and 100 mg/kg exerted anxiolytic-like activity without inducing hypnosis or sedation. Flumazenil, prazosin, and ketanserin inhibited the anxiolytic-like activity shown by HE, which suggests the participation of GABA, α1-adrenergic receptors, and 5-HT2 receptors, respectively. The diuretic effect was reversed by the non-selective NOS inhibitor L-NAME, which caused the reduction in nitric oxide (NO). These results demonstrate that the ethanolic extract of S. tigrina leaves exhibited anxiolytic-like activity and diuretic effects without inducing hypnosis or sedation. This work validates the medicinal uses of this orchid species.
Collapse
Affiliation(s)
- Rocío del Carmen Díaz-Torres
- Multidisciplinary Graduate Program in Environmental Sciences, Autonomous University of San Luis Potosí, San Luís Potosí 78000, Mexico;
| | - Eunice Yáñez-Barrientos
- Department of Chemistry, University of Guanajuato, Guanajuato 36200, Mexico; (E.Y.-B.); (D.J.M.-T.)
| | - José Ángel Montes-Rocha
- School of Professional Studies Huasteca Zone, Autonomous University of San Luis Potosí, Ciudad Valles, San Luís Potosí 79059, Mexico;
| | | | - Clara Alba-Betancourt
- Department of Pharmacy, Division of Natural and Exact Sciences, University of Guanajuato, Guanajuato 36200, Mexico; (C.A.-B.); (M.L.G.-R.); (M.d.C.J.-V.); (M.A.D.-Á.)
| | - Deisy Gasca-Martínez
- Institute of Neurobiology, National Autonomous University of Mexico, Juriquilla 76230, Mexico;
| | - Maria L. Gonzalez-Rivera
- Department of Pharmacy, Division of Natural and Exact Sciences, University of Guanajuato, Guanajuato 36200, Mexico; (C.A.-B.); (M.L.G.-R.); (M.d.C.J.-V.); (M.A.D.-Á.)
| | - María del Carmen Juárez-Vázquez
- Department of Pharmacy, Division of Natural and Exact Sciences, University of Guanajuato, Guanajuato 36200, Mexico; (C.A.-B.); (M.L.G.-R.); (M.d.C.J.-V.); (M.A.D.-Á.)
| | - Martha Alicia Deveze-Álvarez
- Department of Pharmacy, Division of Natural and Exact Sciences, University of Guanajuato, Guanajuato 36200, Mexico; (C.A.-B.); (M.L.G.-R.); (M.d.C.J.-V.); (M.A.D.-Á.)
| | | | - Candy Carranza-Álvarez
- School of Professional Studies Huasteca Zone, Autonomous University of San Luis Potosí, Ciudad Valles, San Luís Potosí 79059, Mexico;
| | - Angel Josabad Alonso-Castro
- Department of Pharmacy, Division of Natural and Exact Sciences, University of Guanajuato, Guanajuato 36200, Mexico; (C.A.-B.); (M.L.G.-R.); (M.d.C.J.-V.); (M.A.D.-Á.)
| |
Collapse
|
47
|
Sadek M, Stover KR, Liu X, Reed MA, Weaver DF, Reid AY. IDO-1 inhibition improves outcome after fluid percussion injury in adult male rats. J Neurosci Res 2024; 102:e25338. [PMID: 38706427 DOI: 10.1002/jnr.25338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 03/15/2024] [Accepted: 04/19/2024] [Indexed: 05/07/2024]
Abstract
The enzyme indoleamine 2,3 dioxygenase 1 (IDO1) catalyzes the rate-limiting step in the kynurenine pathway (KP) which produces both neuroprotective and neurotoxic metabolites. Neuroinflammatory signals produced as a result of pathological conditions can increase production of IDO1 and boost its enzymatic capacity. IDO1 and the KP have been implicated in behavioral recovery after human traumatic brain injury (TBI), but their roles in experimental models of TBI are for the most part unknown. We hypothesized there is an increase in KP activity in the fluid percussion injury (FPI) model of TBI, and that administration of an IDO1 inhibitor will improve neurological recovery. In this study, adult male Sprague Dawley rats were subjected to FPI or sham injury and received twice-daily oral administration of the IDO1 inhibitor PF-06840003 (100 mg/kg) or vehicle control. FPI resulted in a significant increase in KP activity, as demonstrated by an increased ratio of kynurenine: tryptophan, in the perilesional neocortex and ipsilateral hippocampus 3 days postinjury (DPI), which normalized by 7 DPI. The increase in KP activity was prevented by PF-06840003. IDO1 inhibition also improved memory performance as assessed in the Barnes maze and anxiety behaviors as assessed in open field testing in the first 28 DPI. These results suggest increased KP activity after FPI may mediate neurological dysfunction, and IDO1 inhibition should be further investigated as a potential therapeutic target to improve recovery.
Collapse
Affiliation(s)
- Marawan Sadek
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Kurt R Stover
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Xiaojing Liu
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Mark A Reed
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Donald F Weaver
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
- Division of Neurology, University of Toronto, Toronto, Ontario, Canada
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Aylin Y Reid
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Division of Neurology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
48
|
Liu Y, Xia P, Zong S, Zheng N, Cui X, Wang C, Wang M, Wang X, Yu S, Zhao H, Lu Z. Inhibition of Alzheimer's disease by 4-octyl itaconate revealed by RNA-seq transcriptome analysis. Eur J Pharmacol 2024; 968:176432. [PMID: 38369275 DOI: 10.1016/j.ejphar.2024.176432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 02/15/2024] [Accepted: 02/15/2024] [Indexed: 02/20/2024]
Abstract
AIMS This study aimed to examine the therapeutic effects and response mechanisms of 4-OI in Alzheimer's disease (AD). METHODS In this study, network pharmacology was employed to analyze potential targets for AD drug therapy. Immunofluorescence and quantitative reverse transcription polymerase chain reaction (qRT-PCR) techniques were utilized to detect inflammatory phenotypes in a 4-OI-resistant mouse microglia cell line (BV2). We conducted four classical behavioral experiments, namely the open field test, new object recognition test, Y maze test, and Morris water maze, to assess the emotional state and cognitive level of APPswe/PS1dE9 (referred to as APP/PS1) mice after 4-OI treatment. Hematoxylin and eosin (HE) staining, along with immunofluorescence staining, were performed to detect amyloid (Aβ) deposition in mouse brain tissue. To explore the potential molecular mechanisms regulating the effects of 4-OI treatment, we performed RNA-SEQ and transcription factor prediction analyses. Additionally, mouse BV2 cells underwent Western blotting analysis to elucidate potential molecular mechanisms underlying the observed effects. RESULTS We discovered that 4-OI exerts an inhibitory effect on neuroinflammation by promoting autophagy. This effect is attributed to the activation of the AMPK/mTOR/ULK1 pathway, achieved through enhanced phosphorylation of AMPK and ULK1, coupled with a reduction in mTOR phosphorylation. Furthermore, 4-OI significantly enhances neuronal recovery in the hippocampus and diminishes Aβ plaque deposition in APP/PS1 mice, improved anxiety in mice, and ultimately led to improved cognitive function. CONCLUSIONS Overall, the results of this study demonstrated that 4-OI improved cognitive deficits in AD mice, confirming the therapeutic effect of 4-OI on AD.
Collapse
Affiliation(s)
- Yingchao Liu
- Department of Clinical Laboratory Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Pengcheng Xia
- Department of Clinical Laboratory Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Shuai Zong
- Department of Clinical Laboratory Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Ni Zheng
- Department of Clinical Laboratory Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Xiaolin Cui
- School of Medicine, Shandong University, Jinan, Shandong, China
| | - Cuicui Wang
- Department of Clinical Laboratory Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Miaomiao Wang
- Department of Clinical Laboratory Medicine, Jining No. 1 People's Hospital, Jining, 272029, Shandong, China
| | - Xueying Wang
- Department of Clinical Laboratory Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Shuyi Yu
- Department of Clinical Laboratory Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Hao Zhao
- Department of Otolaryngology, Head and Neck Surgery, People's Hospital, Peking University, Beijing, China
| | - Zhiming Lu
- Department of Clinical Laboratory Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
| |
Collapse
|
49
|
Chen S, Xu Q, Zhao L, Zhang M, Xu H. The prenatal use of agmatine prevents social behavior deficits in VPA-exposed mice by activating the ERK/CREB/BDNF signaling pathway. Birth Defects Res 2024; 116:e2336. [PMID: 38624050 DOI: 10.1002/bdr2.2336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 03/20/2024] [Accepted: 03/27/2024] [Indexed: 04/17/2024]
Abstract
BACKGROUND According to reports, prenatal exposure to valproic acid can induce autism spectrum disorder (ASD)-like symptoms in both humans and rodents. However, the exact cause and therapeutic method of ASD is not fully understood. Agmatine (AGM) is known for its neuroprotective effects, and this study aims to explore whether giving agmatine hydrochloride before birth can prevent autism-like behaviors in mouse offspring exposed prenatally to valproic acid. METHODS In this study, we investigated the effects of AGM prenatally on valproate (VPA)-exposed mice. We established a mouse model of ASD by prenatally administering VPA. From birth to weaning, we evaluated mouse behavior using the marble burying test, open-field test, and three-chamber social interaction test on male offspring. RESULTS The results showed prenatal use of AGM relieved anxiety and hyperactivity behaviors as well as ameliorated sociability of VPA-exposed mice in the marble burying test, open-field test, and three-chamber social interaction test, and this protective effect might be attributed to the activation of the ERK/CREB/BDNF signaling pathway. CONCLUSION Therefore, AGM can effectively reduce the likelihood of offspring developing autism to a certain extent when exposed to VPA during pregnancy, serving as a potential therapeutic drug.
Collapse
Affiliation(s)
- Shihao Chen
- Department of Neurology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qi Xu
- Department of Neurology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Linqian Zhao
- Department of Neurology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Mulan Zhang
- Department of Neurology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Huiqin Xu
- Department of Neurology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
50
|
Feizolahi F, Arabzadeh E, Sarshin A, Falahi F, Dehghannayeri Z, Ali Askari A, Wong A, Aghaei F, Zargani M. Effects of Exercise Training and L-Arginine Loaded Chitosan Nanoparticles on Hippocampus Histopathology, β-Secretase Enzyme Function, APP, Tau, Iba1and APOE-4 mRNA in Aging Rats. Neurotox Res 2024; 42:21. [PMID: 38441819 DOI: 10.1007/s12640-024-00699-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 02/19/2024] [Accepted: 02/26/2024] [Indexed: 03/07/2024]
Abstract
The objective of this study was to evaluate the combined and independent effects of exercise training and L-Arginine loaded chitosan nanoparticles (LA CNPs) supplementation on hippocampal Tau, App, Iba1, and ApoE gene expression, oxidative stress, β-secretase enzyme activity, and hippocampus histopathology in aging rats. Thirty-five male Wistar rats were randomly assigned to five groups (n = 7 in each): Young (8 weeks old), Old (20 months old), old + L-arginine supplementation (Old Sup), old + exercise (Old Exe) and old + L-arginine supplementation + exercise (Old Sup + Exe). LA CNPs were administered to the supplement groups through gavage at a dosage of 500 mg/kg/day for 6-weeks. Exercise groups were subjected to a swimming exercise program five days/week for the same duration. Upon the completion of their interventions, the animals underwent behavioral and open-field task tests and were subsequently sacrificed for hippocampus genetic and histopathological evaluation. For histopathological analysis of brain, Cresyl violet staining was used. Congo Red staining was employed to confirm amyloid plaques in the hippocampus. Expressions of Tau, App, Iba1, and ApoE genes were determined by real-time PCR. In contrast to the Old group, Old Exe and Old Sup + Exe groups spent more time in the central space in the open field task (p < 0.05) and have more live cells in the hippocampus. Old rats (Old, Old Sup and Old Exe groups) exhibited a significant Aβ peptide accumulation and increases in APP, Tau, Iba1, APOE-4 mRNA and MDA, along with decreases in SOD compared to the young group (p < 0.05). However, LA CNPs supplementation, exercise, and their combination (Old Sup, Old Exe and Old Sup + Exe) significantly reduced MDA, Aβ plaque as well as APP, Tau, Iba1, and APOE-4 mRNA compared to the Old group (p < 0.05). Consequently, the administration of LA CNPs supplements and exercise might regulate the risk factors of hippocampus cell and tissue.
Collapse
Affiliation(s)
- Foad Feizolahi
- Clinical Care and Health Promotion Research Center, Karaj branch, Islamic Azad University, Karaj, Iran
| | - Ehsan Arabzadeh
- Exercise Physiology Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Amir Sarshin
- Clinical Care and Health Promotion Research Center, Karaj branch, Islamic Azad University, Karaj, Iran
| | - Farshad Falahi
- Department of Exercise Physiology, Karaj Branch, Islamic Azad University, Karaj, Iran
| | - Zahra Dehghannayeri
- Department of Exercise Physiology, Karaj Branch, Islamic Azad University, Karaj, Iran
| | - Ali Ali Askari
- Department of Exercise Physiology, Karaj Branch, Islamic Azad University, Karaj, Iran
| | - Alexei Wong
- Department of Health and Human Performance, Marymount University, Arlington, VA, USA
| | - Fariba Aghaei
- Department of Exercise Physiology, Karaj Branch, Islamic Azad University, Karaj, Iran
| | - Mehdi Zargani
- Department of Exercise Physiology, Karaj Branch, Islamic Azad University, Karaj, Iran.
| |
Collapse
|