1
|
Wang Y, Wu G, Wan Q, Wang J, Wen G. Comparisons on the evaluation methods of chlorine resistance fungi in drinking water. ENVIRONMENTAL RESEARCH 2025; 278:121650. [PMID: 40258467 DOI: 10.1016/j.envres.2025.121650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 04/07/2025] [Accepted: 04/18/2025] [Indexed: 04/23/2025]
Abstract
Chlorine disinfection is fundamental for ensuring microbial safety in drinking water systems. However, fungi pose significant pathogenic risks due to their substantially higher chlorine resistance compared to bacteria. Existing approaches for evaluating fungal chlorine resistance face challenges, including the absence of standardized protocols, labor-intensive procedures, prolonged experimental durations, and limited real-time detection capabilities. Moreover, the mechanisms underlying fungal chlorine resistance remain inadequately understood. This study provides a comprehensive and systematic comparison of the primary methods used to assess fungal chlorine resistance, including log reduction, concentration-time (CT) values, and minimum inhibitory concentration (MIC). The CT value method incorporates disinfectant decay, contact time, and experimental conditions to reflect the dynamics of the disinfection process. In contrast, the log reduction method focuses on endpoint inactivation, while MIC provides a retrospective evaluation. Therefore, the CT method is recommended as the most effective method. This study investigates the underlying mechanisms of fungal chlorine resistance, emphasizing the critical roles played by fungal cell wall components, such as melanin and chitosan, the antioxidant enzyme systems, and the formation of biofilms in conferring enhanced resistance to chlorine exposure. The findings provide a theoretical foundation for the development of standardized methods and more effective strategies for controlling fungal contamination in water treatment process.
Collapse
Affiliation(s)
- Yihan Wang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Gehui Wu
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Qiqi Wan
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Jingyi Wang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Gang Wen
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| |
Collapse
|
2
|
Živančev J, Bulut S, Kocić-Tanackov S, Jović D, Fišteš A, Antić I, Djordjevic A. The impact of fullerenol nanoparticles on the growth of toxigenic Aspergillus flavus and aflatoxins production in vitro and in corn flour. J Food Sci 2024; 89:1814-1827. [PMID: 38317383 DOI: 10.1111/1750-3841.16952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 12/16/2023] [Accepted: 01/07/2024] [Indexed: 02/07/2024]
Abstract
Antifungal and antimycotoxigenic activity of fullerenol nanoparticles (FNPs) were investigated on Aspergillus flavus growth isolated from a real food sample and aflatoxins (AFs) (AFB1 and AFB2 ) production. The final FNPs concentrations in in vitro and in commercial corn flour after the stationary incubation period of 7 and 14 days were in the range 0.16-80 µg/mL and 0.16-80 µg/g, respectively. Nanocharacterization of FNPs revealed an average size of 5-20 nm and a zeta potential of -35 mV. The highest degree of A. flavus mycelium growth inhibition (28%) after 7 days was observed for applied FNP concentration of 8.0 µg/mL, while after 14 days FNP concentration of 0.32 µg/mL led to the maximal inhibition of A. flavus mycelium growth (36%). Spearman's correlations analysis revealed a strong positive correlation between AFB1 and AFB2 concentrations in YES broth after 7 (R = 0.994, p < 0.05) and 14 days (R = 0.976), as well as between AFs concentrations and A. flavus mycelium mass after 7 (R = 0.786 for AFB1 and R = 0.766 for AFB2 ) and 14 days (R = 0.810 for AFB1 and R = 0.833 for AFB2 ). Paired samples t-test showed the existence of a statistically significant difference (p < 0.05) between the produced AFs concentrations after the incubation of 7 and 14 days. Regarding the artificially inoculated corn flour the lower applied FNP concentrations (0.16-0.8 µg/g) achieved a reduction of AFB1 up to 42% and 60% after 7 and 14 days, respectively.
Collapse
Affiliation(s)
- Jelena Živančev
- Faculty of Technology Novi Sad, University of Novi Sad, Novi Sad, Serbia
| | - Sandra Bulut
- Faculty of Technology Novi Sad, University of Novi Sad, Novi Sad, Serbia
| | | | - Danica Jović
- Faculty of Sciences, Department of Chemistry, Biochemistry, and Environmental Protection, University of Novi Sad, Novi Sad, Serbia
| | - Aleksandar Fišteš
- Faculty of Technology Novi Sad, University of Novi Sad, Novi Sad, Serbia
| | - Igor Antić
- Faculty of Technology Novi Sad, University of Novi Sad, Novi Sad, Serbia
| | - Aleksandar Djordjevic
- Faculty of Sciences, Department of Chemistry, Biochemistry, and Environmental Protection, University of Novi Sad, Novi Sad, Serbia
| |
Collapse
|
3
|
Li S, Feng X, Zhang X, Xie S, Ma F. Phospholipid and antioxidant responses of oleaginous fungus Cunninghamella echinulata against hydrogen peroxide stress. Arch Biochem Biophys 2022; 731:109447. [DOI: 10.1016/j.abb.2022.109447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 11/02/2022]
|
4
|
Wu H, Wong JWC. Mechanisms of indoor mold survival under moisture dynamics, a special water treatment approach within the indoor context. CHEMOSPHERE 2022; 302:134748. [PMID: 35523294 DOI: 10.1016/j.chemosphere.2022.134748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/11/2022] [Accepted: 04/24/2022] [Indexed: 06/14/2023]
Abstract
Mold contamination is one of the most important causes for indoor air pollution. Previous studies have indicated the feasibility of employing wet-dry cycles, a special water treatment approach in indoor environments, to control indoor mold contamination. However, the underlying mechanisms regulating the responses of indoor molds to changing moisture conditions remains to be elucidated. Here, we studied the mechanisms regulating the responses to wet-dry cycles (termed as moisture dynamics) in Aspergillus penicillioides, Cladosporium cladosporioides, and Aspergillus niger. First, the dormant spores of each mold species were grown to the swollen stage. Next, swollen spores were incubated at different water activity (aw) levels (0.4, 0.6 and 0.8 aw) for up to 15 days. Afterward, the viability, lipid peroxidation and antioxidant activities (both enzymatic and non-enzymatic) of treated molds were determined. Our results show that the mold species that survived better under moisture dynamics also encountered less oxidative damage and exhibited stronger antioxidant activities. Moreover, lower RH imposed severer oxidative stress to C. cladosporioides and A. niger. Pearson correlation coefficient indicate significant correlations between oxidative stress and aw of dry periods, oxidative damage and mold survival, as well as oxidative responses and mold survival. Collectively, these results imply that oxidative stress adaptation regulates the viability of A. penicillioides, C. cladosporioides, and A. niger in response to moisture dynamics. Our findings facilitate the development of novel engineering solutions for indoor air pollution.
Collapse
Affiliation(s)
- Haoxiang Wu
- Department of Biology, Hong Kong Baptist University, Hong Kong Special Administrative Region, China; Institute of Bioresource and Agriculture, Hong Kong Baptist University, Hong Kong Special Administrative Region, China
| | - Jonathan Woon Chung Wong
- Department of Biology, Hong Kong Baptist University, Hong Kong Special Administrative Region, China; Institute of Bioresource and Agriculture, Hong Kong Baptist University, Hong Kong Special Administrative Region, China.
| |
Collapse
|
5
|
Cellular Responses Required for Oxidative Stress Tolerance of the Necrotrophic Fungus Alternaria alternata, Causal Agent of Pear Black Spot. Microorganisms 2022; 10:microorganisms10030621. [PMID: 35336198 PMCID: PMC8951605 DOI: 10.3390/microorganisms10030621] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/11/2022] [Accepted: 03/12/2022] [Indexed: 01/02/2023] Open
Abstract
To establish successful infections in host plants, pathogenic fungi must sense and respond to an array of stresses, such as oxidative stress. In this study, we systematically analyzed the effects of 30 mM H2O2 treatment on reactive oxygen species (ROS) metabolism in Alternaria alternata. Results showed that 30 mM H2O2 treatment lead to increased O2− generation rate and H2O2 content, and simultaneously, increased the activities and transcript levels of NADPH oxidase (NOX). The activities and gene expression levels of enzymes related with ascorbic acid-glutathione cycle (AsA-GSH cycle) and thioredoxin systems, including superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR), ascorbate peroxidase (AXP) and thioredoxin (TrxR), were remarkably enhanced by 30 mM H2O2 stress treatment. Additionally, 30 mM H2O2 treatment decreased the glutathione (GSH) content, whereas it increased the amount of oxidized glutathione (GSSG), dehydroascorbate (DHA) and ascorbic acid (AsA). These results revealed that cellular responses are required for oxidative stress tolerance of the necrotrophic fungus A. alternata.
Collapse
|
6
|
Lu H, Liu S, Zhang S, Chen Q. Light Irradiation Coupled with Exogenous Metal Ions to Enhance Exopolysaccharide Synthesis from Agaricus sinodeliciosus ZJU-TP-08 in Liquid Fermentation. J Fungi (Basel) 2021; 7:jof7110992. [PMID: 34829279 PMCID: PMC8618256 DOI: 10.3390/jof7110992] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/14/2021] [Accepted: 11/18/2021] [Indexed: 12/13/2022] Open
Abstract
To promote Agaricus sinodeliciosus var. Chaidam ZJU-TP-08 growth and metabolites accumulation, a novel integrated strategy was developed by adopting high levels of metal ions coupled with light treatment. The results revealed that yellow and blue light could significantly promote biomass and exopolysaccharides production, respectively. Furthermore, the yellow–blue light shift strategy could stimulate exopolysaccharides formation. Ca2+ ions coupled with blue light mostly promoted exopolysaccharides production related to oxidative stress, which was 42.00% and 58.26% higher than that of Ca2+ ions coupled with the non-light and dark cultivation without Ca2+ ions in 5-L bioreactor. RNA-seq was performed to uncover the underlined molecular mechanism regulated by light-induced gene expressions in exopolysaccharides biosynthesis and oxidative stress. The findings of this work provide valuable insights into adopting metal ions coupled with the light-assisted method for the macrofungus submerged fermentation for exopolysaccharides production.
Collapse
|
7
|
Mazheika IS, Semenova MA, Voronko OV, Psurtseva NV, Kolomiets OL, Kamzolkina OV. Evaluation of the carbonylation of filamentous fungi proteins by dry immune dot blotting. Fungal Biol 2021; 125:923-933. [PMID: 34649679 DOI: 10.1016/j.funbio.2021.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 06/21/2021] [Accepted: 06/24/2021] [Indexed: 11/28/2022]
Abstract
The development of mycological gerontology requires effective methods for assessing the biological age of fungal cells. This assessment is based on the analysis of a complex of aging and oxidative stress markers. One of the most powerful such markers is the protein carbonylation. In this study, the already known method of dry immune dot blotting is adapted for mycological studies of the content of protein carbonyl groups. After testing the method on a number of filamentous fungi species, some features of the accumulation of carbonylated proteins in mycelium were established. Among these features: (i) a weak effect of exogenous oxidative stress on the accumulation of carbonyls in a number of fungi, (ii) reversibility of the carbonyl accumulation, (iii) possibility of arbitrary regulation of carbonyl content by fungus itself and (iv) the influence of hormesis. In addition, two polar strategies for the accumulation of carbonyl modification were revealed, named Id-strategy (Indifferent) and Cn-strategy (Concern). Thus, even the analysis of one marker allows making some preliminary general assumptions and conclusions. For example, the idea that fungi can freely regulate their biological age is confirmed. This feature makes fungi very flexible in terms of responding to environmental influences and promising objects for gerontology.
Collapse
Affiliation(s)
- Igor S Mazheika
- Department of Mycology and Algology, Lomonosov Moscow State University, Moscow, 119991, Russia; Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 117971, Russia.
| | - Marina A Semenova
- Department of Mycology and Algology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Oxana V Voronko
- Department of Mycology and Algology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Nadezhda V Psurtseva
- Komarov Botanical Institute, Russian Academy of Sciences, St. Petersburg, 197376, Russia
| | - Oxana L Kolomiets
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 117971, Russia
| | - Olga V Kamzolkina
- Department of Mycology and Algology, Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
8
|
Cao R, Wan Q, Tan L, Xu X, Wu G, Wang J, Xu H, Huang T, Wen G. Evaluation of the vital viability and their application in fungal spores' disinfection with flow cytometry. CHEMOSPHERE 2021; 269:128700. [PMID: 33127110 DOI: 10.1016/j.chemosphere.2020.128700] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 10/16/2020] [Accepted: 10/18/2020] [Indexed: 05/14/2023]
Abstract
More attention was focused on fungi contamination in drinking water. Most researches about the inactivation of fungal spores has been conducted on disinfection efficiency and the leakage of intracellular substances. However, the specific structural damage of fungal spores treated by different disinfectants is poorly studied. In this study, the viability assessment methods of esterase activities and intracellular reactive oxygen species (ROS) were optimized, and the effects of chlorine-based disinfectants on fungal spores were evaluated by flow cytometry (FCM) and plating. The optimal staining conditions for esterase activity detection were as follows: fungal spores (106 cells/mL) were stained with 10 μM carboxyfluorescein diacetate and 50 mM ethylene diamine tetraacetic acid at 33 °C for 10 min (in dark). The optimal staining conditions for intracellular ROS detection were as follows: dihydroethidium (the final concentration of 2 μg/mL) was added into fungal suspensions (106 cells/mL), and then samples were incubated at 35 °C for 20 min (in dark). The cell culturability, membrane integrity, esterase activities, and intracellular ROS were examined to reveal the structural damage of fungal spores and underlying inactivation mechanisms. Disinfectants would cause the loss of the cell viability via five main steps: altered the morphology of fungal spores; increased the intracellular ROS levels; decreased the culturability, esterase activities and membrane integrity, thus leading to the irreversible death. It is appropriate to assess the effects of disinfectants on fungal spores and investigate their inactivation mechanisms using FCM.
Collapse
Affiliation(s)
- Ruihua Cao
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China
| | - Qiqi Wan
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China
| | - Lili Tan
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China
| | - Xiangqian Xu
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China
| | - Gehui Wu
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China
| | - Jingyi Wang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China
| | - Huining Xu
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China
| | - Tinglin Huang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China
| | - Gang Wen
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China.
| |
Collapse
|
9
|
A review of the methods used to determine the target site or the mechanism of action of essential oils and their components against fungi. SN APPLIED SCIENCES 2021. [DOI: 10.1007/s42452-020-04102-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
AbstractEssential oils (EOs) are complex mixtures of compounds derived from plants that exhibit antimicrobial activity. Several studies have demonstrated their antifungal activity in food matrices or in vitro via vapor phase or direct addition. Recently, researchers are focusing on elucidating the target site or the mechanism of action of various EOs. Past research has suggested evidence of how EOs act in the fungal cells via assays assessed from cell wall alterations or gene expression modifications. However, no previous reports have summarized most methods for finding the target site of the mechanism of action for EOs. Therefore, this review presents the methods and assays used to discover the target site or the mechanism of action of EOs against fungal cells. Researchers commonly analyze the plasma membrane integrity using various techniques as well as the changes in cell morphology. Meanwhile, the quantification of the activity of the mitochondrial enzymes, ROS species, and gene expression are less assayed.
Collapse
|
10
|
Badr AN, Ali HS, Abdel-Razek AG, Shehata MG, Albaridi NA. Bioactive Components of Pomegranate Oil and Their Influence on Mycotoxin Secretion. Toxins (Basel) 2020; 12:toxins12120748. [PMID: 33260849 PMCID: PMC7759867 DOI: 10.3390/toxins12120748] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 10/22/2020] [Accepted: 10/30/2020] [Indexed: 12/17/2022] Open
Abstract
Pomegranate, similar to other fruits, has juice-extraction by-products. Pomegranate seed oil (PGO) is a non-traditional oil with health benefits, rich in bioactive components. This study was aimed to assess PGO phytochemicals and their influence as bioactive components to reduce mycotoxin secretion. The encapsulation was applied in micro and nanoforms to protect the quality and enhance the efficacy of the oil. The PGO was extracted using ultrasound-assisted methods. Carotenoids, tocochromanols, sterols, phenolic, flavonoid, antioxidant, and antimicrobial activity were determined. The fatty acid profile was analyzed by the GC-MS, while mycotoxin was determined utilizing the HPLC apparatus. The toxicity and protective action of oil were examined using the hepatocytes' cell line. The resultant oil acts as oleoresin that is rich in bioactive molecules. Phenolics and antioxidant potency recorded higher values compared to traditional vegetable oils, whereas polyunsaturated fatty acids were 87.51%. The major fatty acid was conjugated punicic acid (81.29%), which has high biological effects. Application of the PGO on fungal media reduced aflatoxins secretion up to 63%, and zearalenone up to 78.5%. These results confirm the bio-functionality of oil to regulate the fungal secondary metabolites process. The PGO is a unique prospective non-traditional oil and has several functionalities in food, which achieve nutritional, antioxidant, and anti-mycotoxigenic activities.
Collapse
Affiliation(s)
- Ahmed Noah Badr
- National Research Centre, Department of Food Toxicology and Contaminants, Cairo 12622, Egypt
- Correspondence: (A.N.B.); (H.S.A.); Tel.: +2-01000-327-640 (A.N.B.); +966-56513-327-0841 (H.S.A.)
| | - Hatem Salama Ali
- Department of Food Science and Nutrition, College of Food Science and Agriculture, King Saud University, Riyadh 11451, Saudi Arabia
- National Research Centre, Department of Food Technology, Cairo 12622, Egypt
- Correspondence: (A.N.B.); (H.S.A.); Tel.: +2-01000-327-640 (A.N.B.); +966-56513-327-0841 (H.S.A.)
| | | | - Mohamed Gamal Shehata
- Department of Food Technology, Arid Lands Cultivation Research Institute, the City of Scientific Research and Technological Application (SRTA-City), New Borg El-Arab 21934, Alexandria, Egypt;
| | - Najla A. Albaridi
- Department of Physical Sport Science, Nutrition and Food Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| |
Collapse
|
11
|
Romanholo Ferreira LF, Torres NH, de Armas RD, Fernandes CD, Vilar DDS, Aguiar MM, Pompeu GB, Monteiro RTR, Iqbal HM, Bilal M, Bharagava RN. Fungal lignin-modifying enzymes induced by vinasse mycodegradation and its relationship with oxidative stress. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020; 27:101691. [DOI: 10.1016/j.bcab.2020.101691] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
12
|
Wu H, Wong JWC. Current challenges for shaping the sustainable and mold-free hygienic indoor environment in humid regions. Lett Appl Microbiol 2020; 70:396-406. [PMID: 32180231 DOI: 10.1111/lam.13291] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 03/13/2020] [Accepted: 03/13/2020] [Indexed: 11/26/2022]
Abstract
Indoor mold grows ubiquitously in humid areas and can affect occupants' health. To prevent indoor mold contamination, one of the key measures suggested by the World Health Organisation and United States Environmental Protection Agency is to maintain an indoor relative humidity (RH) level below 75% or at 30-60%, respectively. However, in tropical and subtropical areas, maintaining these suggested RH levels is equivalent to operating a 24-h air-conditioner (AC) or dehumidifier, which is energy-consuming. As a large part of building expense, the operation time of ACs has been regularly proposed to be cut down because of the requirement of building sustainability. This leads to a trade-off between sustainable building performance and indoor mold hygiene. To balance this trade-off, more sustainable alternatives, such as those that target physical environments (e.g. nutrient and temperature level) or apply new surface coating technologies to inhibit mold growth, have been launched. Despite these initiatives, indoor mold contamination remains an unresolved issue, mainly because these alternative measures only exhibit limited effectiveness or require extra effort. This review aims to summarize the currently adopted mold control measures and discuss their limitations as well as the direction for the future development of sustainable mold control strategies. SIGNIFICANCE AND IMPACT OF THE STUDY: People spend most of their time indoors and hence the presence of indoor mold contamination can compromise the occupants' health. With the wake of climate change which is expected to see an increase in RH and temperature, tropical and subtropical areas are even more prone to mold contamination than they used to be. This study may help facilitate the development of sustainable and effective mold control strategies in the indoor environment.
Collapse
Affiliation(s)
- H Wu
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region, China.,Institute of Bioresource and Agriculture, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region, China
| | - J W C Wong
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region, China.,Institute of Bioresource and Agriculture, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region, China
| |
Collapse
|
13
|
Wu H, Wong JWC. The role of oxidative stress in the growth of the indoor mold Cladosporium cladosporioides under water dynamics. INDOOR AIR 2020; 30:117-125. [PMID: 31618482 DOI: 10.1111/ina.12613] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/01/2019] [Accepted: 10/14/2019] [Indexed: 06/10/2023]
Abstract
Moisture is one of the critical abiotic factors that can affect mold growth. Indoor humidity is typically fluctuating, which renders a transient water supply for mold growth. Understanding mold growth under water dynamics and its underlying mechanisms can help in the development of novel and sustainable mold prevention strategies. In this study, pre-germination and germinated spores of Cladosporium cladosporioides were exposed to daily wet-dry cycles with different combinations of wetting and drying duration. Afterward, growth delay, cellular H2 O2 concentration, and catalase (CAT) activity were measured and compared. We found that under daily wet-dry cycles, the longer the growth delay was observed, the higher the cellular H2 O2 concentration was detected, with the 12-12 wet-dry cycle (12-hour wet and 12-hour dry) showing the longest growth delay and highest cellular H2 O2 production. A positive correlation between cellular H2 O2 concentration and growth delay was suggested by Pearson correlation coefficient and linear regression analysis (P < .0001, R2 = 0.85). Furthermore, under daily wet-dry cycles, molds derived from pre-germination spores generally exhibited shorter growth delay, lower cellular H2 O2 concentration, and higher CAT activity than molds developed from germinated spores. These results together suggest that the growth delay of C. cladosporioides under water dynamics is associated with oxidative stress.
Collapse
Affiliation(s)
- Haoxiang Wu
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, China
- Institute of Bioresource and Agriculture, Hong Kong Baptist University, Kowloon Tong, China
| | - Jonathan Woon Chung Wong
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, China
- Institute of Bioresource and Agriculture, Hong Kong Baptist University, Kowloon Tong, China
| |
Collapse
|
14
|
Nykiel-Szymańska J, Różalska S, Bernat P, Słaba M. Assessment of oxidative stress and phospholipids alterations in chloroacetanilides-degrading Trichoderma spp. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 184:109629. [PMID: 31509783 DOI: 10.1016/j.ecoenv.2019.109629] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 08/31/2019] [Accepted: 09/01/2019] [Indexed: 06/10/2023]
Abstract
To investigate the induction of oxidative stress and antioxidant response in the chloroacetanilides-degrading Trichoderma spp. under alachlor and metolachlor exposure, a comparative analysis using popular biomarkers was employed. An increased intracellular level of reactive oxygen species (ROS; especially superoxide anion [O2-]) as well as products of lipid and protein oxidation after 24 h incubation with the herbicides confirmed chloroacetanilide-induced oxidative stress in tested Trichoderma strains. However, the considerable decline in the ROS levels and the carbonyl group content (biomarkers of protein peroxidation) in a time-dependent manner and changes in the antioxidant enzyme activities indicated an active response against chloroacetanilide-induced oxidative stress and the mechanism of tolerance in tested fungi. Moreover, the tested herbicides clearly modified the phospholipids (PLs) content in Trichoderma spp. in the stationary phase of growth, which was manifested through the difference in phosphatidic acid (PA), phosphatidylethanolamine (PE) and phosphatidylcholines (PC) levels. Despite enhanced lipid peroxidation and changes in PLs in most tested fungi, only a slight modification in membrane integrity of Trichoderma spp. under chloroacetanilides exposure was noted. The obtained results suggest that the alterations in the antioxidant system and the PLs profile of Trichoderma spp. might be useful biomarkers of chloroacetanilide-induced oxidative stress.
Collapse
Affiliation(s)
- Justyna Nykiel-Szymańska
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha Street 12/16, 90-237, Lodz, Poland
| | - Sylwia Różalska
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha Street 12/16, 90-237, Lodz, Poland
| | - Przemysław Bernat
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha Street 12/16, 90-237, Lodz, Poland
| | - Mirosława Słaba
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha Street 12/16, 90-237, Lodz, Poland.
| |
Collapse
|
15
|
Bioremediation of Dichlorodiphenyltrichloroethane (DDT)-Contaminated Agricultural Soils: Potential of Two Autochthonous Saprotrophic Fungal Strains. Appl Environ Microbiol 2019; 85:AEM.01720-19. [PMID: 31444208 DOI: 10.1128/aem.01720-19] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 08/19/2019] [Indexed: 12/16/2022] Open
Abstract
DDT (dichlorodiphenyltrichloroethane) was used worldwide as an organochlorine insecticide to control agricultural pests and vectors of several insect-borne human diseases. It was banned in most industrialized countries; however, due to its persistence in the environment, DDT residues remain in environmental compartments, becoming long-term sources of exposure. To identify and select fungal species suitable for bioremediation of DDT-contaminated sites, soil samples were collected from DDT-contaminated agricultural soils in Poland, and 38 fungal taxa among 18 genera were isolated. Two of them, Trichoderma hamatum FBL 587 and Rhizopus arrhizus FBL 578, were tested for tolerance in the presence of 1-mg liter-1 DDT concentration by using two indices based on fungal growth rate and biomass production (the tolerance indices Rt:Rc and TI), showing a clear tolerance to DDT. The two selected strains were studied to evaluate catabolic versatility on 95 carbon sources with or without DDT by using the Phenotype MicroArray system and to investigate the induced oxidative stress responses. The two strains were able to use most of the substrates provided, resulting in both high metabolic versatility and ecological functionality in the use of carbon sources, despite the presence of DDT. The activation of specific metabolic responses with species-dependent antioxidant enzymes to cope with the induced chemical stress has been hypothesized, since the presence of DDT promoted a higher formation of reactive oxygen species in fungal cells than the controls. The tested fungi represent attractive potential candidates for bioremediation of DDT-contaminated soil and are worthy of further investigations.IMPORTANCE The spread and environmental accumulation of DDT over the years represent not only a threat to human health and ecological security but also a major challenge because of the complex chemical processes and technologies required for remediation. Saprotrophic fungi, isolated from contaminated sites, hold promise for their bioremediation potential toward toxic organic compounds, since they might provide an environment-friendly solution to contamination. Once we verified the high tolerance of autochthonous fungal strains to high concentrations of DDT, we showed how fungi from different phyla demonstrate a high metabolic versatility in the presence of DDT. The isolates showed the singular ability to keep their functionality, despite the DDT-induced production of reactive oxygen species.
Collapse
|
16
|
Pilgaard B, Wilkens C, Herbst FA, Vuillemin M, Rhein-Knudsen N, Meyer AS, Lange L. Proteomic enzyme analysis of the marine fungus Paradendryphiella salina reveals alginate lyase as a minimal adaptation strategy for brown algae degradation. Sci Rep 2019; 9:12338. [PMID: 31451726 PMCID: PMC6710412 DOI: 10.1038/s41598-019-48823-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 08/13/2019] [Indexed: 01/31/2023] Open
Abstract
We set out to investigate the genetic adaptations of the marine fungus Paradendryphiella salina CBS112865 for degradation of brown macroalgae. We performed whole genome and transcriptome sequencing and shotgun proteomic analysis of the secretome of P. salina grown on three species of brown algae and under carbon limitation. Genome comparison with closely related terrestrial fungi revealed that P. salina had a similar but reduced CAZyme profile relative to the terrestrial fungi except for the presence of three putative alginate lyases from Polysaccharide Lyase (PL) family 7 and a putative PL8 with similarity to ascomycete chondroitin AC lyases. Phylogenetic and homology analyses place the PL7 sequences amongst mannuronic acid specific PL7 proteins from marine bacteria. Recombinant expression, purification and characterization of one of the PL7 genes confirmed the specificity. Proteomic analysis of the P. salina secretome when growing on brown algae, revealed the PL7 and PL8 enzymes abundantly secreted together with enzymes necessary for degradation of laminarin, cellulose, lipids and peptides. Our findings indicate that the basic CAZyme repertoire of saprobic and plant pathogenic ascomycetes, with the addition of PL7 alginate lyases, provide P. salina with sufficient enzymatic capabilities to degrade several types of brown algae polysaccharides.
Collapse
Affiliation(s)
- Bo Pilgaard
- Enzyme Technology, Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark.
| | - Casper Wilkens
- Enzyme Technology, Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Florian-Alexander Herbst
- Center for Microbial Communities, Department of Chemistry and Bioscience Aalborg University, Aalborg, Denmark
| | - Marlene Vuillemin
- Enzyme Technology, Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Nanna Rhein-Knudsen
- Enzyme Technology, Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Anne S Meyer
- Enzyme Technology, Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Lene Lange
- BioEconomy, Research & Advisory, Copenhagen, Denmark
| |
Collapse
|
17
|
Russo F, Ceci A, Maggi O, Siciliano A, Guida M, Petrangeli Papini M, Černík M, Persiani AM. Understanding fungal potential in the mitigation of contaminated areas in the Czech Republic: tolerance, biotransformation of hexachlorocyclohexane (HCH) and oxidative stress analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:24445-24461. [PMID: 31228071 DOI: 10.1007/s11356-019-05679-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 06/04/2019] [Indexed: 06/09/2023]
Abstract
The study of the soil microbial community represents an important step in better understanding the environmental context. Therefore, biological characterisation and physicochemical integration are keys when defining contaminated sites. Fungi play a fundamental role in the soil, by providing and supporting ecological services for ecosystems and human wellbeing. In this research, 52 soil fungal taxa were isolated from in situ pilot reactors installed to a contaminated site in Czech Republic with a high concentration of hexachlorocyclohexane (HCH). Among the identified isolates, 12 strains were selected to evaluate their tolerance to different isomers of HCH by using specific indices (Rt:Rc; T.I.) and to test their potential in xenobiotic biotransformation. Most of the selected taxa was not significantly affected by exposure to HCH, underlining the elevated tolerance of all the tested fungal taxa, and different metabolic intermediates of HCH dechlorination were observed. The oxidative stress responses to HCH for two selected species, Penicillium simplicissimum and Trichoderma harzianum, were investigated in order to explore their toxic responses and to evaluate their potential functioning in bioremediation of contaminated environments. This research suggests that the isolated fungal species may provide opportunities for new eco-friendly, integrated and cost-effective solutions for environmental management and remediation, considering their efficient adaptation to stressful conditions.
Collapse
Affiliation(s)
- Fabiana Russo
- Department of Environmental Biology, Sapienza University of Rome, Piazzale A. Moro 5, 00185, Rome, Italy.
| | - Andrea Ceci
- Department of Environmental Biology, Sapienza University of Rome, Piazzale A. Moro 5, 00185, Rome, Italy
| | - Oriana Maggi
- Department of Environmental Biology, Sapienza University of Rome, Piazzale A. Moro 5, 00185, Rome, Italy
| | - Antonietta Siciliano
- Department of Biology, University of Naples Federico II, Via Cinthia, 80126, Naples, Italy
| | - Marco Guida
- Department of Biology, University of Naples Federico II, Via Cinthia, 80126, Naples, Italy
| | - Marco Petrangeli Papini
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Miroslav Černík
- Department of Nanomaterials in Natural Sciences, Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 1402/2, 461 17, Liberec 1, Czech Republic
| | - Anna Maria Persiani
- Department of Environmental Biology, Sapienza University of Rome, Piazzale A. Moro 5, 00185, Rome, Italy
| |
Collapse
|
18
|
Shao H, Tu Y, Wang Y, Jiang C, Ma L, Hu Z, Wang J, Zeng B, He B. Oxidative Stress Response of Aspergillus oryzae Induced by Hydrogen Peroxide and Menadione Sodium Bisulfite. Microorganisms 2019; 7:E225. [PMID: 31366149 PMCID: PMC6724031 DOI: 10.3390/microorganisms7080225] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 07/18/2019] [Accepted: 07/29/2019] [Indexed: 12/27/2022] Open
Abstract
Oxidative stress response protects organisms from deleterious effects of reactive oxygen species (ROS), which can damage cellular components and cause disturbance of the cellular homeostasis. Although the defensive biochemical mechanisms have been extensively studied in yeast and other filamentous fungi, little information is available about Aspergillus oryzae. We investigated the effect of two oxidant agents (menadione sodium bisulfite, MSB, and hydrogen peroxide, H2O2) on cellular growth and antioxidant enzyme induction in A. oryzae. Results indicated severe inhibition of biomass and conidia production when high concentration of oxidants was used. Transcriptomic analysis showed an up-regulated expression of genes involved in oxidoreduction, such as catalase, glutathione peroxidase, and superoxide dismutase. In addition, it was observed that oxidative stress stimuli enhanced the expression of Yap1 and Skn7 transcription factors. Further, metabolomic analysis showed that glutathione content was increased in the oxidative treatments when compared with the control. Moreover, the content of unsaturated fatty acid decreased with oxidative treatment accompanying with the down-regulated expression of genes involved in linoleic acid biosynthesis. This study provided a global transcriptome characterization of oxidative stress response in A. oryzae, and can offer multiple target genes for oxidative tolerance improvement via genetic engineering.
Collapse
Affiliation(s)
- Huanhuan Shao
- Jiangxi Key Laboratory of Bioprocess Engineering and Co-Innovation Center for In-vitro Diagnostic Reagents and Devices of Jiangxi Province, College of Life Sciences, Jiangxi Science & Technology Normal University, Nanchang 330013, China
- College of Life Sciences, Sichuan Normal University, Chengdu 610101, China
| | - Yayi Tu
- Jiangxi Key Laboratory of Bioprocess Engineering and Co-Innovation Center for In-vitro Diagnostic Reagents and Devices of Jiangxi Province, College of Life Sciences, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Yijing Wang
- Jiangxi Key Laboratory of Bioprocess Engineering and Co-Innovation Center for In-vitro Diagnostic Reagents and Devices of Jiangxi Province, College of Life Sciences, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Chunmiao Jiang
- Jiangxi Key Laboratory of Bioprocess Engineering and Co-Innovation Center for In-vitro Diagnostic Reagents and Devices of Jiangxi Province, College of Life Sciences, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Long Ma
- Jiangxi Key Laboratory of Bioprocess Engineering and Co-Innovation Center for In-vitro Diagnostic Reagents and Devices of Jiangxi Province, College of Life Sciences, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Zhihong Hu
- Jiangxi Key Laboratory of Bioprocess Engineering and Co-Innovation Center for In-vitro Diagnostic Reagents and Devices of Jiangxi Province, College of Life Sciences, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Jiangfan Wang
- Jiangxi Key Laboratory of Bioprocess Engineering and Co-Innovation Center for In-vitro Diagnostic Reagents and Devices of Jiangxi Province, College of Life Sciences, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Bin Zeng
- Jiangxi Key Laboratory of Bioprocess Engineering and Co-Innovation Center for In-vitro Diagnostic Reagents and Devices of Jiangxi Province, College of Life Sciences, Jiangxi Science & Technology Normal University, Nanchang 330013, China.
| | - Bin He
- Jiangxi Key Laboratory of Bioprocess Engineering and Co-Innovation Center for In-vitro Diagnostic Reagents and Devices of Jiangxi Province, College of Life Sciences, Jiangxi Science & Technology Normal University, Nanchang 330013, China.
| |
Collapse
|
19
|
Deng H, Gao R, Liao X, Cai Y. Characterisation of a monooxygenase in Shiraia bambusicola. MICROBIOLOGY-SGM 2018; 164:1180-1188. [PMID: 30028664 DOI: 10.1099/mic.0.000694] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A monooxygenase-encoding gene (Mono) is located in the hypocrellin gene cluster of Shiraia sp. SUPER-H168 and was targeted by a clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 system. The ΔMono mutant abolished hypocrellin production, whereas the ΔMono complement mutant restored hypocrellin production. Relative expression levels of the Mono and its adjacent genes were abolished in the ΔMono mutant compared with the wild-type strain. These results indicate the essential role of Mono in hypocrellin biosynthesis. The Mono gene of Shiraia bambusicola was further expressed in Pichia pastoris and salicylate monooxygenase activity was detected, which suggested that this monooxygenase has the ability to catalyse decarboxylative hydroxylation. The relative growth ratio of the ΔMono mutant was significantly improved compared with the wild-type strain. In contrast to the wild-type strain, the ΔMono mutant also represented excellent oxidative stress tolerance after exposure to high concentrations of H2O2 (16 mM) based on the increasing activities of superoxide dismutase, catalase, and glutathione peroxidase. These results suggest that ΔMono mutants could be used as microbial cell factories to produce metabolites that will cause oxidative stress. This study also enhances our understanding of hypocrellin biosynthesis and opens an avenue for decoding the hypocrellin pathway.
Collapse
Affiliation(s)
- Huaxiang Deng
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, PR China
| | - Ruijie Gao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, PR China
| | - Xiangru Liao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, PR China
| | - Yujie Cai
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, PR China
| |
Collapse
|
20
|
Transcriptome-wide survey of gene expression changes and alternative splicing in Trichophyton rubrum in response to undecanoic acid. Sci Rep 2018; 8:2520. [PMID: 29410524 PMCID: PMC5802734 DOI: 10.1038/s41598-018-20738-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 01/18/2018] [Indexed: 12/29/2022] Open
Abstract
While fatty acids are known to be toxic to dermatophytes, key physiological aspects of the Trichophyton rubrum response to undecanoic acid (UDA), a medium chain saturated fatty acid (C11:0), are not well understood. Thus, we analysed RNA-seq data from T. rubrum exposed to sub-lethal doses of UDA for 3 and 12 h. Three putative pathways were primarily involved in UDA detoxification: lipid metabolism and cellular membrane composition, oxidative stress, and pathogenesis. Biochemical assays showed cell membrane impairment, reductions in ergosterol content, and an increase in keratinolytic activity following UDA exposure. Moreover, we assessed differential exon usage and intron retention following UDA exposure. A key enzyme supplying guanine nucleotides to cells, inosine monophosphate dehydrogenase (IMPDH), showed high levels of intron 2 retention. Additionally, phosphoglucomutase (PGM), which is involved in the glycogen synthesis and degradation as well as cell wall biosynthesis, exhibited a significant difference in exon 4 usage following UDA exposure. Owing to the roles of these enzymes in fungal cells, both have emerged as promising antifungal targets. We showed that intron 2 retention in impdh and exon 4 skipping in pgm might be related to an adaptive strategy to combat fatty acid toxicity. Thus, the general effect of UDA fungal toxicity involves changes to fungal metabolism and mechanisms for regulating pre-mRNA processing events.
Collapse
|
21
|
Bi ZQ, Ren LJ, Hu XC, Sun XM, Zhu SY, Ji XJ, Huang H. Transcriptome and gene expression analysis of docosahexaenoic acid producer Schizochytrium sp. under different oxygen supply conditions. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:249. [PMID: 30245741 PMCID: PMC6142690 DOI: 10.1186/s13068-018-1250-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 09/06/2018] [Indexed: 05/09/2023]
Abstract
BACKGROUND Schizochytrium sp. is a promising strain for the production of docosahexaenoic acid (DHA)-rich oil and biodiesel, and has been widely used in the food additive and bioenergy industries. Oxygen is a particularly important environmental factor for cell growth and DHA synthesis. In general, higher oxygen supply favors lipid accumulation, but could lead to a reduction of the DHA percentage in total fatty acids in Schizochytrium sp. To tackle this problem, it is essential to understand the mechanisms regulating the response of Schizochytrium sp. to oxygen. In this study, we aimed to explore the acclimatization of this DHA producer to different oxygen supply conditions by examining the transcriptome changes. RESULTS Two different fermentation processes, namely normal oxygen supply condition (shift agitation speeds from 400 rpm to 300 rpm) and high oxygen supply condition (constant agitation speeds: 400 rpm), were designed to study how the fermentation characteristics of Schizochytrium sp. HX-308 were affected by different oxygen supply conditions. The results indicated that high oxygen supply condition resulted in 49% and 37.5% improvement in the maximum cell dry weight (CDW) and total lipid concentration, respectively. However, the DHA percentage in total fatty acids decreased to 35%, which was 31.4% lower than that produced by normal oxygen supply condition. Moreover, transcriptome analysis was performed to explore the effect of the oxygen supply condition on genetic expression and metabolism. The results showed that glycolysis and pentose phosphate pathway metabolism-associated genes (hexokinase, phosphofructokinase, fructose-bisphosphate aldolase, glucose-6-phosphate dehydrogenase, and 6-phosphogluconate dehydrogenase) were substantially upregulated in response to high oxygen supply, resulting in more NADPH was available for Schizochytrium. Specially, high oxygen supply condition also led to genes (Δ6 desaturase, Δ12 desaturase, FAS, ORFA, ORFB, and ORFC) involved in fatty acid biosynthesis upregulation. In addition, a transcriptional upregulation of catalase (CAT) became apparent under high oxygen supply condition, while superoxide dismutase (SOD) and ascorbate peroxidase (APX) were found to be down-regulated. CONCLUSIONS This study is the first to investigate the differences of gene expression at different levels of oxygen availability in the DHA producer Schizochytrium. The results of transcriptome analyses indicated that high oxygen supply condition resulting in more NADPH and acetyl-CoA production for cell growth and lipid synthesis in Schizochytrium. Δ12 desaturase and ORFC showed higher expression levels at high oxygen supply condition, which might be the key regulators for enhancing fatty acid biosynthesis in the future. These results enrich the current knowledge regarding genetic expression and provide important information to enhance DHA production in Schizochytrium sp.
Collapse
Affiliation(s)
- Zhi-Qian Bi
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816 People’s Republic of China
| | - Lu-Jing Ren
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), No. 30 South Puzhu Road, Nanjing, 211816 People’s Republic of China
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816 People’s Republic of China
| | - Xue-Chao Hu
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), No. 30 South Puzhu Road, Nanjing, 211816 People’s Republic of China
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816 People’s Republic of China
| | - Xiao-Man Sun
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816 People’s Republic of China
| | - Si-Yu Zhu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816 People’s Republic of China
| | - Xiao-Jun Ji
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), No. 30 South Puzhu Road, Nanjing, 211816 People’s Republic of China
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816 People’s Republic of China
| | - He Huang
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), No. 30 South Puzhu Road, Nanjing, 211816 People’s Republic of China
- School of Pharmaceutical Sciences, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816 People’s Republic of China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, No. 5 Xinmofan Road, Nanjing, 210009 People’s Republic of China
| |
Collapse
|
22
|
Kovač T, Šarkanj B, Klapec T, Borišev I, Kovač M, Nevistić A, Strelec I. Fullerol C 60(OH) 24 nanoparticles and mycotoxigenic fungi: a preliminary investigation into modulation of mycotoxin production. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:16673-16681. [PMID: 28560625 DOI: 10.1007/s11356-017-9214-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 05/08/2017] [Indexed: 06/07/2023]
Abstract
Increased use of fullerols in various fields and expected increase of their environmental spread impose the necessity for testing fullerol nanoparticles (FNP) effects on microbiota. There is little information available on the interaction of mycotoxigenic fungi and FNP, despite FNP having a great potential of modifying mycotoxin production. Namely, FNP exhibit both ROS-quenching and ROS-producing properties, while oxidative stress stimulates mycotoxin synthesis in the fungi. In order to shed some light on the extent of interaction between FNP and mycotoxigenic fungi, the effects of fullerol C60(OH)24 nanoparticles (10, 100, 1000 ng/mL) on mycelial growth, aflatoxin production and oxidative stress modulation in an aflatoxigenic strain of Aspergillus flavus (NRRL 3251) during 168 h of incubation in a liquid culture medium were examined. FNP slightly reduced mycelial biomass weight, but significantly decreased aflatoxin concentration in media. Lipid peroxide content, superoxide dismutase, catalase and glutathione peroxidase activities suggest that FNP treatments hormetically reduced oxidative stress within fungal cells in turn suppressing aflatoxin production. These findings contribute to the assessment of environmental risk and application potential of fullerols.
Collapse
Affiliation(s)
- Tihomir Kovač
- Faculty of Food Technology, Department of Applied Chemistry and Ecology, Josip Juraj Strossmayer University of Osijek, Franje Kuhača 20, 31000, Osijek, Croatia.
| | - Bojan Šarkanj
- Faculty of Food Technology, Department of Applied Chemistry and Ecology, Josip Juraj Strossmayer University of Osijek, Franje Kuhača 20, 31000, Osijek, Croatia
| | - Tomislav Klapec
- Faculty of Food Technology, Department of Applied Chemistry and Ecology, Josip Juraj Strossmayer University of Osijek, Franje Kuhača 20, 31000, Osijek, Croatia
| | - Ivana Borišev
- Department of Chemistry, Biochemistry and Environmental protection, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, Novi Sad, 21000, Serbia
| | - Marija Kovač
- Inspecto d.o.o, Električne centrale 1, 31400, Đakovo, Croatia
| | - Ante Nevistić
- Inspecto d.o.o, Električne centrale 1, 31400, Đakovo, Croatia
| | - Ivica Strelec
- Faculty of Food Technology, Department of Applied Chemistry and Ecology, Josip Juraj Strossmayer University of Osijek, Franje Kuhača 20, 31000, Osijek, Croatia
| |
Collapse
|
23
|
Esterhuizen-Londt M, Schwartz K, Pflugmacher S. Using aquatic fungi for pharmaceutical bioremediation: Uptake of acetaminophen by Mucor hiemalis does not result in an enzymatic oxidative stress response. Fungal Biol 2016; 120:1249-57. [DOI: 10.1016/j.funbio.2016.07.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 07/11/2016] [Accepted: 07/21/2016] [Indexed: 12/14/2022]
|
24
|
Adaptive Responses to Oxidative Stress in the Filamentous Fungal Shiraia bambusicola. Molecules 2016; 21:molecules21091118. [PMID: 27563871 PMCID: PMC6273880 DOI: 10.3390/molecules21091118] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 08/01/2016] [Accepted: 08/19/2016] [Indexed: 01/24/2023] Open
Abstract
Shiraia bambusicola can retain excellent physiological activity when challenged with maximal photo-activated hypocrellin, which causes cellular oxidative stress. The protective mechanism of this fungus against oxidative stress has not yet been reported. We evaluated the biomass and hypocrellin biosynthesis of Shiraia sp. SUPER-H168 when treated with high concentrations of H2O2. Hypocrellin production was improved by nearly 27% and 25% after 72 h incubation with 10 mM and 20 mM H2O2, respectively, while the inhibition ratios of exogenous 20 mM H2O2 on wild S. bambusicola and a hypocrellin-deficient strain were 20% and 33%, respectively. Under exogenous oxidative stress, the specific activities of catalase, glutathione reductase, and superoxide dismutase were significantly increased. These changes may allow Shiraia to maintain normal life activities under oxidative stress. Moreover, sufficient glutathione peroxidase was produced in the SUPER-H168 and hypocrellin-deficient strains, to further ensure that S. bambusicola has excellent protective abilities against oxidative stress. This study creates the possibility that the addition of high H2O2 concentrations can stimulate fungal secondary metabolism, and will lead to a comprehensive and coherent understanding of mechanisms against oxidative stresses from high hydrogen peroxide concentrations in the filamentous fungal Shiraia sp. SUPER-H168.
Collapse
|
25
|
Yu Z, Zheng H, Zhao X, Li S, Xu J, Song H. High level extracellular production of a recombinant alkaline catalase in E. coli BL21 under ethanol stress and its application in hydrogen peroxide removal after cotton fabrics bleaching. BIORESOURCE TECHNOLOGY 2016; 214:303-310. [PMID: 27151682 DOI: 10.1016/j.biortech.2016.04.110] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 04/21/2016] [Accepted: 04/22/2016] [Indexed: 06/05/2023]
Abstract
The effects of induction parameters, osmolytes and ethanol stress on the productivity of the recombinant alkaline catalase (KatA) in Escherichia coli BL21 (pET26b-KatA) were investigated. The yield of soluble KatA was significantly enhanced by 2% ethanol stress. And a certain amount of Triton X-100 supplementation could markedly improved extracellular ratio of KatA. A total soluble catalase activity of 78,762U/mL with the extracellular ratio of 92.5% was achieved by fed-batch fermentation in a 10L fermentor, which was the highest yield so far. The purified KatA showed high stability at 50°C and pH 6-10. Application of KatA for elimination of H2O2 after cotton fabrics bleaching led to less consumption of water, steam and electric power by 25%, 12% and 16.7% respectively without productivity and quality losing of cotton fabrics. Thus, the recombinant KatA is a promising candidate for industrial production and applications.
Collapse
Affiliation(s)
- Zhenxiao Yu
- Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Hongchen Zheng
- Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Xingya Zhao
- Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Shufang Li
- Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Jianyong Xu
- Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Hui Song
- Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
| |
Collapse
|
26
|
Ianutsevich EA, Danilova OA, Groza NV, Tereshina VM. Membrane lipids and cytosol carbohydrates in Aspergillus niger under osmotic, oxidative, and cold impact. Microbiology (Reading) 2016. [DOI: 10.1134/s0026261716030152] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
27
|
Xu Q, Liu Y, Li S, Jiang L, Huang H, Wen J. Transcriptome analysis of Rhizopus oryzae in response to xylose during fumaric acid production. Bioprocess Biosyst Eng 2016; 39:1267-80. [DOI: 10.1007/s00449-016-1605-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Accepted: 04/04/2016] [Indexed: 12/20/2022]
|
28
|
Andries M, Pricop D, Oprica L, Creanga DE, Iacomi F. The effect of visible light on gold nanoparticles and some bioeffects on environmental fungi. Int J Pharm 2016; 505:255-61. [DOI: 10.1016/j.ijpharm.2016.04.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 03/29/2016] [Accepted: 04/01/2016] [Indexed: 12/14/2022]
|
29
|
Wang G, Wang H, Xiong X, Chen S, Zhang D. Mitochondria thioredoxin's backup role in oxidative stress resistance in Trichoderma reesei. Microbiol Res 2015; 171:32-8. [DOI: 10.1016/j.micres.2015.01.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 01/01/2015] [Accepted: 01/03/2015] [Indexed: 10/24/2022]
|
30
|
Roukas T. The role of oxidative stress on carotene production by Blakeslea trispora in submerged fermentation. Crit Rev Biotechnol 2015; 36:424-33. [PMID: 25600464 DOI: 10.3109/07388551.2014.989424] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In aerobic metabolism, reactive oxygen species (ROS) are formed during the fermentation that can cause oxidative stress in microorganisms. Microbial cells possess both enzymatic and non-enzymatic defensive systems that may protect cells from oxidative damage. The antioxidant enzymes superoxide dismutase and catalase are the two key defensive enzymes to oxidative stress. The factors that induce oxidative stress in microorganisms include butylated hydroxytoluene (BHT), hydrogen peroxide, metal ions, dissolved oxygen tension, elevated temperature, menadione, junglone, paraquat, liquid paraffin, introduction to bioreactors of shake flask inocula and synthetic medium sterilized at initial pH 11.0. Carotenes are highly unsaturated isoprene derivatives. They are used as antioxidants and as coloring agents for food products. In fungi, carotenes are derived via the mevalonate biosynthesis pathway. The key genes in carotene biosynthesis are hmgR, ipi, isoA, carG, carRA and carB. Among microorganisms, Βlakeslea trispora is the main microorganism used for the production of carotenes on the industrial scale. Currently, the synthetic medium is considered the superior substrate for the production of carotenes in a pilot plant scale. The fermentation systems used for the production of carotenes include shake flasks, stirred tank fermentor, bubble column reactor and flat panel photobioreactor. This review summarizes the oxidative stresses in microorganisms and it is focused on the current status of carotene production by B. trispora including oxidative stress induced by BHT, enhanced dissolved oxygen levels, iron ions, liquid paraffin and synthetic medium sterilized at an initial pH 11.0. The oxidative stress induced by the above factors increases significantly the production of carotenes. However, to further reduce the cost of carotene production, new biotechnological methods with higher productivity still need to be explored.
Collapse
Affiliation(s)
- Triantafyllos Roukas
- a Laboratory of Food Engineering and Processing, Department of Food Science and Technology , Aristotle University , Thessaloniki , Greece
| |
Collapse
|
31
|
Chen A, Zeng G, Chen G, Liu L, Shang C, Hu X, Lu L, Chen M, Zhou Y, Zhang Q. Plasma membrane behavior, oxidative damage, and defense mechanism in Phanerochaete chrysosporium under cadmium stress. Process Biochem 2014. [DOI: 10.1016/j.procbio.2014.01.014] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
32
|
Wei Q, Huang H, Yang L, Yuan J, Yang X, Liu Y, Zhuang Z. Hydrogen peroxide induces adaptive response and differential gene expression in human embryo lung fibroblast cells. ENVIRONMENTAL TOXICOLOGY 2014; 29:478-485. [PMID: 22489041 DOI: 10.1002/tox.21775] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Revised: 02/06/2012] [Accepted: 02/07/2012] [Indexed: 05/31/2023]
Abstract
Hydrogen peroxide (H2 O2 ), a substance involved in cellular oxidative stress, has been observed to induce an adaptive response, which is characterized by a protection against the toxic effect of H2 O2 at higher concentrations. However, the molecular mechanism for the adaptive response remains unclear. In particular, the existing reports on H2 O2 -induced adaptive response are limited to animal cells and human tumor cells, and relatively normal human cells have never been observed for an adaptive response to H2 O2 . In this study, a human embryo lung fibroblast (MRC-5) cell line was used to model an adaptive response to H2 O2 , and the relevant differential gene expressions by using fluoro mRNA differential display RT-PCR. The results showed significant suppression of cytotoxicity of H2 O2 (1100 μM, 1 h) after pretreatment of the cells with H2 O2 at lower concentrations (0.088-8.8 μM, 24 h), as indicated by cell survival, lactate dehydrogenase release, and the rate of apoptotic cells. Totally 60 mRNA components were differentially expressed compared to untreated cells, and five of them (sizing 400-600 bp) which demonstrated the greatest increase in expression were cloned and sequenced. They showed identity with known genes, such as BCL-2, eIF3S5, NDUFS4, and RPS10. Real time RT-PCR analysis of the five genes displayed a pattern of differential expression consistent with that by the last method. These five genes may be involved in the induction of adaptive response by H2 O2 in human cells, at least in this particular cell type.
Collapse
Affiliation(s)
- Qinzhi Wei
- Department of Toxicology, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou 510515, People's Republic of China; Department of Toxicology, Faculty of Preventive Medicine, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, People's Republic of China; Toxicology Laboratory, Shenzhen Center for Disease Control and Prevention, Shenzhen, 21 TianBei 1st Road, Shenzhen 518020, Guangdong Province, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
33
|
Bento T, Torres L, Fialho M, Bononi V. Growth inhibition and antioxidative response of wood decay fungi exposed to plant extracts of Casearia
species. Lett Appl Microbiol 2013; 58:79-86. [DOI: 10.1111/lam.12159] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 08/28/2013] [Accepted: 09/09/2013] [Indexed: 11/26/2022]
Affiliation(s)
- T.S. Bento
- Instituto de Botânica de São Paulo; Núcleo de Pesquisa em Micologia; São Paulo Brazil
| | - L.M.B. Torres
- Instituto de Botânica de São Paulo; Núcleo de Pesquisa em Fisiologia e Bioquímica de Plantas; São Paulo Brazil
| | - M.B. Fialho
- Instituto de Botânica de São Paulo; Núcleo de Pesquisa em Fisiologia e Bioquímica de Plantas; São Paulo Brazil
| | - V.L.R. Bononi
- Instituto de Botânica de São Paulo; Núcleo de Pesquisa em Micologia; São Paulo Brazil
| |
Collapse
|
34
|
Montibus M, Pinson-Gadais L, Richard-Forget F, Barreau C, Ponts N. Coupling of transcriptional response to oxidative stress and secondary metabolism regulation in filamentous fungi. Crit Rev Microbiol 2013; 41:295-308. [PMID: 24041414 DOI: 10.3109/1040841x.2013.829416] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
To survive sudden and potentially lethal changes in their environment, filamentous fungi must sense and respond to a vast array of stresses, including oxidative stresses. The generation of reactive oxygen species, or ROS, is an inevitable aspect of existence under aerobic conditions. In addition, in the case of fungi with pathogenic lifestyles, ROS are produced by the infected hosts and serve as defense weapons via direct toxicity, as well as effectors in fungal cell death mechanisms. Filamentous fungi have thus developed complex and sophisticated responses to evade oxidative killing. Several steps are determinant in these responses, including the activation of transcriptional regulators involved in the control of the antioxidant machinery. Gathering and integrating the most recent advances in knowledge of oxidative stress responses in fungi are the main objectives of this review. Most of the knowledge coming from two models, the yeast Saccharomyces cerevisiae and fungi of the genus Aspergillus, is summarized. Nonetheless, recent information on various other fungi is delivered when available. Finally, special attention is given on the potential link between the functional interaction between oxidative stress and secondary metabolism that has been suggested in recent reports, including the production of mycotoxins.
Collapse
|
35
|
Gomaa OM, Selim NS, Linz JE. A Possible Role of Aspergillus niger Mitochondrial Cytochrome c in Malachite Green Reduction Under Calcium Chloride Stress. Cell Biochem Biophys 2013; 67:1291-9. [DOI: 10.1007/s12013-013-9661-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
36
|
de Arruda Grossklaus D, Bailão AM, Vieira Rezende TC, Borges CL, de Oliveira MAP, Parente JA, de Almeida Soares CM. Response to oxidative stress in Paracoccidioides yeast cells as determined by proteomic analysis. Microbes Infect 2013; 15:347-64. [DOI: 10.1016/j.micinf.2012.12.002] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 12/19/2012] [Accepted: 12/20/2012] [Indexed: 11/28/2022]
|
37
|
Antioxidant defence system during exponential and stationary growth phases of Phycomyces blakesleeanus: Response to oxidative stress by hydrogen peroxide. Fungal Biol 2013; 117:275-87. [DOI: 10.1016/j.funbio.2013.03.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 02/27/2013] [Accepted: 03/04/2013] [Indexed: 11/23/2022]
|
38
|
Prates RA, Fuchs BB, Mizuno K, Naqvi Q, Kato IT, Ribeiro MS, Mylonakis E, Tegos GP, Hamblin MR. Effect of virulence factors on the photodynamic inactivation of Cryptococcus neoformans. PLoS One 2013; 8:e54387. [PMID: 23349872 PMCID: PMC3548784 DOI: 10.1371/journal.pone.0054387] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 12/11/2012] [Indexed: 02/07/2023] Open
Abstract
Opportunistic fungal pathogens may cause an array of superficial infections or serious invasive infections, especially in immunocompromised patients. Cryptococcus neoformans is a pathogen causing cryptococcosis in HIV/AIDS patients, but treatment is limited due to the relative lack of potent antifungal agents. Photodynamic inactivation (PDI) uses the combination of non-toxic dyes called photosensitizers and harmless visible light, which produces singlet oxygen and other reactive oxygen species that produce cell inactivation and death. We report the use of five structurally unrelated photosensitizers (methylene blue, Rose Bengal, selenium derivative of a Nile blue dye, a cationic fullerene and a conjugate between poly-L-lysine and chlorin(e6)) combined with appropriate wavelengths of light to inactivate C. neoformans. Mutants lacking capsule and laccase, and culture conditions that favoured melanin production were used to probe the mechanisms of PDI and the effect of virulence factors. The presence of cell wall, laccase and melanin tended to protect against PDI, but the choice of the appropriate photosensitizers and dosimetry was able to overcome this resistance.
Collapse
Affiliation(s)
- Renato A. Prates
- Center for Lasers and Applications, Nuclear and Energy Research Institute, São Paulo, SP, Brazil
- School of Dentistry, Health Department, Universidade Nove de Julho, São Paulo, SP, Brazil
- Wellman Center of Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Dermatology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Beth Burgwyn Fuchs
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Kazue Mizuno
- Wellman Center of Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Dermatology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Qurat Naqvi
- Wellman Center of Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Ilka T. Kato
- Center for Lasers and Applications, Nuclear and Energy Research Institute, São Paulo, SP, Brazil
| | - Martha S. Ribeiro
- Center for Lasers and Applications, Nuclear and Energy Research Institute, São Paulo, SP, Brazil
| | - Eleftherios Mylonakis
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - George P. Tegos
- Wellman Center of Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Dermatology, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Pathology, University of New Mexico School of Medicine, New Mexico, United States of America
- * E-mail: (GPT); (MH)
| | - Michael R. Hamblin
- Wellman Center of Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Dermatology, Harvard Medical School, Boston, Massachusetts, United States of America
- Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Cambridge, Massachusetts, United States of America
- * E-mail: (GPT); (MH)
| |
Collapse
|
39
|
Liu J, Qi Z, Huang Q, Wei X, Ke Z, Fang Y, Tian Y, Yu Z. Study of energetic-particle-irradiation induced biological effect on Rhizopus oryzae through synchrotron-FTIR micro-spectroscopy. J Mol Struct 2013. [DOI: 10.1016/j.molstruc.2012.07.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
40
|
Hintz W, Pinchback M, de la Bastide P, Burgess S, Jacobi V, Hamelin R, Breuil C, Bernier L. Functional categorization of unique expressed sequence tags obtained from the yeast-like growth phase of the elm pathogen Ophiostoma novo-ulmi. BMC Genomics 2011; 12:431. [PMID: 21864383 PMCID: PMC3176262 DOI: 10.1186/1471-2164-12-431] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Accepted: 08/24/2011] [Indexed: 11/13/2022] Open
Abstract
Background The highly aggressive pathogenic fungus Ophiostoma novo-ulmi continues to be a serious threat to the American elm (Ulmus americana) in North America. Extensive studies have been conducted in North America to understand the mechanisms of virulence of this introduced pathogen and its evolving population structure, with a view to identifying potential strategies for the control of Dutch elm disease. As part of a larger study to examine the genomes of economically important Ophiostoma spp. and the genetic basis of virulence, we have constructed an expressed sequence tag (EST) library using total RNA extracted from the yeast-like growth phase of O. novo-ulmi (isolate H327). Results A total of 4,386 readable EST sequences were annotated by determining their closest matches to known or theoretical sequences in public databases by BLASTX analysis. Searches matched 2,093 sequences to entries found in Genbank, including 1,761 matches with known proteins and 332 matches with unknown (hypothetical/predicted) proteins. Known proteins included a collection of 880 unique transcripts which were categorized to obtain a functional profile of the transcriptome and to evaluate physiological function. These assignments yielded 20 primary functional categories (FunCat), the largest including Metabolism (FunCat 01, 20.28% of total), Sub-cellular localization (70, 10.23%), Protein synthesis (12, 10.14%), Transcription (11, 8.27%), Biogenesis of cellular components (42, 8.15%), Cellular transport, facilitation and routes (20, 6.08%), Classification unresolved (98, 5.80%), Cell rescue, defence and virulence (32, 5.31%) and the unclassified category, or known sequences of unknown metabolic function (99, 7.5%). A list of specific transcripts of interest was compiled to initiate an evaluation of their impact upon strain virulence in subsequent studies. Conclusions This is the first large-scale study of the O. novo-ulmi transcriptome. The expression profile obtained from the yeast-like growth phase of this species will facilitate a multigenic approach to gene expression studies to assess their role in the determination of pathogenicity for this species. The identification and evaluation of gene targets in such studies will be a prerequisite to the development of biological control strategies for this pathogen.
Collapse
Affiliation(s)
- William Hintz
- Biology Department, University of Victoria, BC, V8W 3N5, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Wong Sak Hoi J, Lamarre C, Beau R, Meneau I, Berepiki A, Barre A, Mellado E, Read ND, Latgé JP. A novel family of dehydrin-like proteins is involved in stress response in the human fungal pathogen Aspergillus fumigatus. Mol Biol Cell 2011; 22:1896-906. [PMID: 21490150 PMCID: PMC3103405 DOI: 10.1091/mbc.e10-11-0914] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
During a search for genes controlling conidial dormancy in Aspergillus fumigatus, two dehydrin-like genes, DprA and DprB, were identified. The deduced proteins had repeated stretches of 23 amino acids that contained a conserved dehydrin-like protein (DPR) motif. Disrupted DprAΔ mutants were hypersensitive to oxidative stress and to phagocytic killing, whereas DprBΔ mutants were impaired in osmotic and pH stress responses. However, no effect was observed on their pathogenicity in our experimental models of invasive aspergillosis. Molecular dissection of the signaling pathways acting upstream showed that expression of DprA was dependent on the stress-activated kinase SakA and the cyclic AMP-protein kinase A (cAMP-PKA) pathways, which activate the bZIP transcription factor AtfA, while expression of DprB was dependent on the SakA mitogen-activated protein kinase (MAPK) pathway, and the zinc finger transcription factor PacC. Fluorescent protein fusions showed that both proteins were associated with peroxisomes and the cytosol. Accordingly, DprA and DprB were important for peroxisome function. Our findings reveal a novel family of stress-protective proteins in A. fumigatus and, potentially, in filamentous ascomycetes.
Collapse
|
42
|
Comparison of transcriptional and translational changes caused by long-term menadione exposure in Aspergillus nidulans. Fungal Genet Biol 2011; 48:92-103. [DOI: 10.1016/j.fgb.2010.08.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Revised: 06/08/2010] [Accepted: 08/19/2010] [Indexed: 01/14/2023]
|
43
|
O'Donnell A, Harvey LM, McNeil B. The roles of the alternative NADH dehydrogenases during oxidative stress in cultures of the filamentous fungus Aspergillus niger. Fungal Biol 2011; 115:359-69. [PMID: 21530918 DOI: 10.1016/j.funbio.2011.01.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Revised: 01/24/2011] [Accepted: 01/25/2011] [Indexed: 10/18/2022]
Abstract
Despite the importance of filamentous fungi in the biotechnology industry, little is known about their metabolism under the stressful conditions experienced in typical production fermenters. In the present study, oxygen enrichment was used to recreate an industrial batch process, and the effects of the increasing dissolved oxygen tension were studied as regards the cellular metabolism. It was found that elevated dissolved oxygen tension led to an oxidatively stressful environment, as detailed by rapid initial increases in reactive oxygen species (ROS) concentrations and antioxidant enzyme activities. Intracellular protein concentrations also decreased in oxygenated cultures; this appeared to be concomitant with a decrease in the adenosine-5'-triphosphate (ATP) pool in these cultures. Oxygenated cultures showed early senescence and death compared to aerated control cultures. Despite earlier studies proposing various mechanisms for such findings in fungal cultures subjected to oxidative stress, these findings can best be explained by the fact that in such cultures the activity of alternative NADH dehydrogenases was significantly increased, which served to maintain lower ROS concentrations throughout the duration of the process but in doing so also reduced the ability of the organism to create a proton motive force by which to drive ATP synthesis. The findings of the present study help further our understanding of the central roles of these highly conserved enzymes within fungal metabolism under oxidative stress.
Collapse
Affiliation(s)
- Andrew O'Donnell
- Merck-Millipore, 2 Fleming Road, Kirkton Campus, Livingston, EH54 BT, United Kingdom
| | | | | |
Collapse
|
44
|
Seviour RJ, McNeil B, Fazenda ML, Harvey LM. Operating bioreactors for microbial exopolysaccharide production. Crit Rev Biotechnol 2010; 31:170-85. [DOI: 10.3109/07388551.2010.505909] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
45
|
Modulation of enzyme activities of a lead-adapted strain of Rhizopus arrhizus during bioaccumulation of lead. Folia Microbiol (Praha) 2010; 54:505-8. [PMID: 20140717 DOI: 10.1007/s12223-009-0072-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Revised: 06/24/2009] [Indexed: 10/19/2022]
Abstract
Activity of some enzymes of a Pb-adapted strain of Rhizopus arrhizus augmented significantly during bioaccumulation of Pb from a chemically defined medium. The mycelium of a Pb-adapted strain exposed to 1 microg/mL Pb in a defined medium for 10 d at 28 +/- 2 degrees C exhibited, relative to a wild-type strain, increased activities of antioxidant enzymes, i.e. SOD, CAT and GPX and of enzymes like AP and PPO involved in defense against pathogens. Another response is a significant increase in the cellular thiol content after 4 d. The responses to Pb exposure thus include an increase in the antioxidant and anti-pathogen defense, and an increased metal-chelating ability.
Collapse
|
46
|
Abstract
Fungi are amongst the most industrially important microorganisms in current use within the biotechnology industry. Most such fungal cultures are highly aerobic in nature, a character that has been frequently referred to in both reactor design and fungal physiology. The most fundamentally significant outcome of the highly aerobic growth environment in fermenter vessels is the need for the fungal culture to effectively combat in the intracellular environment the negative consequences of high oxygen transfer rates. The use of oxygen as the respiratory substrate is frequently reported to lead to the development of oxidative stress, mainly due to oxygen-derived free radicals, which are collectively termed as reactive oxygen species (ROS). Recently, there has been extensive research on the occurrence, extent, and consequences of oxidative stress in microorganisms, and the underlying mechanisms through which cells prevent and repair the damage caused by ROS. In the present study, we critically review the current understanding of oxidative stress events in industrially relevant fungi. The review first describes the current state of knowledge of ROS concisely, and then the various antioxidant strategies employed by fungal cells to counteract the deleterious effects, together with their implications in fungal bioprocessing are also discussed. Finally, some recommendations for further research are made.
Collapse
Affiliation(s)
- Qiang Li
- Strathclyde Fermentation Centre, Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | | | | |
Collapse
|
47
|
Murali Achary VM, Panda BB. Aluminium-induced DNA damage and adaptive response to genotoxic stress in plant cells are mediated through reactive oxygen intermediates. Mutagenesis 2009; 25:201-9. [DOI: 10.1093/mutage/gep063] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
48
|
Sichel C, Fernández-Ibáñez P, de Cara M, Tello J. Lethal synergy of solar UV-radiation and H(2)O(2) on wild Fusarium solani spores in distilled and natural well water. WATER RESEARCH 2009; 43:1841-1850. [PMID: 19217637 DOI: 10.1016/j.watres.2009.01.017] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2008] [Revised: 01/18/2009] [Accepted: 01/21/2009] [Indexed: 05/27/2023]
Abstract
Environmentally-friendly disinfection methods are needed in many industrial applications. As a natural metabolite of many organisms, hydrogen peroxide (H(2)O(2))-based disinfection may be such a method as long as H(2)O(2) is used in non-toxic concentrations. Nevertheless, when applied alone as a disinfectant, H(2)O(2) concentrations need to be high enough to achieve significant pathogen reduction, and this may lead to phytotoxicity. This paper shows how H(2)O(2) disinfection concentrations could be significantly reduced by using the synergic lethality of H(2)O(2) and sunlight the first time for fungi and disinfection. Experiments were performed on spores of Fusarium solani, the ubiquitous, pytho- and human pathogenic fungus. Laboratory (250-mL bottles) and pilot plant solar reactors (2 x 14 L compound parabolic collectors, CPCs) were employed with distilled water and real well water under natural sunlight. This opens the way to applications for agricultural water resources, seed disinfection, curing of fungal skin infections, etc.
Collapse
Affiliation(s)
- C Sichel
- Plataforma Solar de Almería, 04200 Tabernas, Almería, Spain
| | | | | | | |
Collapse
|
49
|
Nakagawa Y. [Oxidative stress responses in pathogenic fungi]. Nihon Saikingaku Zasshi 2009; 63:417-24. [PMID: 19317231 DOI: 10.3412/jsb.63.417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Yoshiyuki Nakagawa
- Division of Molecular Mycology and Medicine, Center for Neurological Disease and Cancer, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Syowa-ku, Nagoya 466-8550
| |
Collapse
|
50
|
The effects of elevated process temperature on the protein carbonyls in the filamentous fungus, Aspergillus niger B1-D. Process Biochem 2008. [DOI: 10.1016/j.procbio.2008.04.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|