1
|
Jaber N, Emond C, Cazier F, Billet S. Toxicological Response of the BEAS-2B Cell After Acute Exposure at the Air-Liquid Interface to Ethylbenzene and m-Xylene Alone and in Binary Mixtures. J Appl Toxicol 2025. [PMID: 40344288 DOI: 10.1002/jat.4806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 03/31/2025] [Accepted: 04/14/2025] [Indexed: 05/11/2025]
Abstract
Benzene, toluene, ethylbenzene, and xylenes (o-, m-, and p-xylenes) constitute a family, named BTEX, of volatile organic compounds (VOCs) known for its toxicity. This study aimed to study the acute in vitro toxicity of ethylbenzene and m-xylene on human bronchial epithelial cells exposed at the air-liquid interface (ALI). The cells were exposed to VOCs alone and in a mixture for 1 h, followed by 5, 23, and 47 h of incubation. The kinetics of the cell response was characterized, including cytotoxicity, xenobiotic biotransformation, antioxidant defense system, inflammatory response, and apoptosis. The gene expression results showed major differences between these two compounds, even though their chemical structure is very similar. Ethylbenzene did not appear to be metabolized in BEAS-2B cells, as it inhibited gene expression of xenobiotic metabolizing enzymes (XME) and did not induce antioxidant defense systems or apoptosis. However, a slight inflammatory response was observed after exposure. m-Xylene was metabolized in BEAS-2B cells, inducing several XMEs and upregulating enzymes involved in the antioxidant defense system, as well as markers of inflammation and apoptosis. Co-exposure to the binary mixture resulted in an inhibition phenomenon, resulting in the inhibition of toxic action mechanisms studied. The results provide new information on the toxicity of ethylbenzene and m-xylene and highlight the importance of conducting ALI exposures to mixtures of toxicants.
Collapse
Affiliation(s)
- Nour Jaber
- UR4492, Unité de Chimie Environnementale et Interactions sur le Vivant, Université du Littoral Côte d'Opale, Dunkerque, France
| | | | - Fabrice Cazier
- CCM, Centre Commun de Mesures, Université du Littoral Côte d'Opale, Dunkerque, France
| | - Sylvain Billet
- UR4492, Unité de Chimie Environnementale et Interactions sur le Vivant, Université du Littoral Côte d'Opale, Dunkerque, France
| |
Collapse
|
2
|
Iizuka T, Zuberi A, Wei H, Coon V JS, Anton ML, Buyukcelebi K, Adli M, Bulun SE, Yin P. Therapeutic targeting of the tryptophan-kynurenine-aryl hydrocarbon receptor pathway with apigenin in MED12-mutant leiomyoma cells. Cancer Gene Ther 2025; 32:393-402. [PMID: 40025195 DOI: 10.1038/s41417-025-00881-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 01/27/2025] [Accepted: 02/19/2025] [Indexed: 03/04/2025]
Abstract
Approximately 77.4% of uterine leiomyomas carry MED12 gene mutations (mut-MED12), which are specifically associated with strikingly upregulated expression and activity of the tryptophan 2,3-dioxygenase (TDO2) enzyme, leading to increased conversion of tryptophan to kynureine. Kynurenine increases leiomyoma cell survival by activating the aryl hydrocarbon receptor (AHR). We used a leiomyoma-relevant model, in which a MED12 Gly44 mutation was knocked in by CRISPR in a human uterine myometrial smooth muscle (UtSM) cell line, in addition to primary leiomyoma cells from 26 patients to ascertain the mechanisms responsible for therapeutic effects of apigenin, a natural compound. Apigenin treatment significantly decreased cell viability, inhibited cell cycle progression, and induced apoptosis preferentially in mut-MED12 versus wild-type primary leiomyoma and UtSM cells. Apigenin not only blocked AHR action but also decreased TDO2 expression and kynurenine production, preferentially in mut-MED12 cells. Apigenin did not alter TDO2 enzyme activity. TNF and IL-1β, cytokines upregulated in leiomyoma, strikingly induced TDO2 expression levels via activating the NF-κB and JNK pathways, which were abolished by apigenin. Apigenin or a TDO2 inhibitor decreased UtSM cell viability induced by TNF/IL-1β. We provide proof-of-principle evidence that apigenin is a potential therapeutic agent for mut-MED12 leiomyomas.
Collapse
Affiliation(s)
- Takashi Iizuka
- Division of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine at Northwestern University, Chicago, IL, USA
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Azna Zuberi
- Division of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine at Northwestern University, Chicago, IL, USA
| | - Helen Wei
- Division of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine at Northwestern University, Chicago, IL, USA
| | - John S Coon V
- Division of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine at Northwestern University, Chicago, IL, USA
| | - Melania Lidia Anton
- Division of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine at Northwestern University, Chicago, IL, USA
| | - Kadir Buyukcelebi
- Division of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine at Northwestern University, Chicago, IL, USA
| | - Mazhar Adli
- Division of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine at Northwestern University, Chicago, IL, USA
| | - Serdar E Bulun
- Division of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine at Northwestern University, Chicago, IL, USA
| | - Ping Yin
- Division of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine at Northwestern University, Chicago, IL, USA.
| |
Collapse
|
3
|
Snyder M, Wang Z, Lara B, Fimbres J, Pichardo T, Mazzilli S, Khan MM, Duggineni VK, Monti S, Sherr DH. The aryl hydrocarbon receptor controls IFN-γ-induced immune checkpoints PD-L1 and IDO via the JAK/STAT pathway in lung adenocarcinoma. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2025:vkae023. [PMID: 40073102 DOI: 10.1093/jimmun/vkae023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 11/12/2024] [Indexed: 03/14/2025]
Abstract
While immunotherapy has shown some efficacy in lung adenocarcinoma (LUAD) patients, many respond only partially or not at all. One limitation in improving outcomes is the lack of a complete understanding of immune checkpoint regulation. Here, we investigated a possible link between an environmental chemical receptor implicated in lung cancer and immune regulation, the AhR, a known but counterintuitive mediator of immunosuppression (interferon (IFN)-γ), and regulation of two immune checkpoints (PD-L1 and IDO). AhR gene-edited LUAD cell lines, a syngeneic LUAD mouse model, bulk and scRNA sequencing of LUADs and tumor-infiltrating T cells were used to map out a signaling pathway leading from IFN-γ through the AhR to JAK/STAT, PD-L1, IDO, and tumor-mediated immunosuppression. The data demonstrate that: (1) IFN-γ activation of the JAK/STAT pathway leading to PD-L1 and IDO1 up-regulation is mediated by the AhR in murine and human LUAD cells, (2) AhR-driven IDO1 induction results in the production of Kynurenine (Kyn), an AhR ligand, which likely mediates an AhR→IDO1→Kyn→AhR amplification loop, (3) transplantation of AhR-knockout LUAD cells results in long-term tumor immunity in most recipients. (4) The 23% of AhR-knockout tumors that do grow do so at a much slower pace than controls and exhibit higher densities of CD8+ T cells expressing markers of immunocompetence, increased activity, and increased cell-cell communication. The data definitively link the AhR to IFN-γ-induced JAK/STAT pathway and immune checkpoint-mediated immunosuppression and support the targeting of the AhR in the context of LUAD.
Collapse
Affiliation(s)
- Megan Snyder
- Graduate Program in Genetics and Genomics, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, United States
| | - Zhongyan Wang
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, United States
| | - Brian Lara
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, United States
| | - Jocelyn Fimbres
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, United States
| | - Táchira Pichardo
- Department of Medicine, Section of Computational Biomedicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, United States
| | - Sarah Mazzilli
- Department of Medicine, Section of Computational Biomedicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, United States
| | - Mohammed Muzamil Khan
- Department of Medicine, Section of Computational Biomedicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, United States
| | - Vinay K Duggineni
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, United States
| | - Stefano Monti
- Department of Medicine, Section of Computational Biomedicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, United States
| | - David H Sherr
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, United States
| |
Collapse
|
4
|
Shen G, Xu S, Zhu A, Zheng Z, Chen W, Jiang S. AHR suppresses cisplatin-induced apoptosis in ovarian cancer cells by regulating XIAP. Biochem Pharmacol 2025; 231:116640. [PMID: 39571919 DOI: 10.1016/j.bcp.2024.116640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/27/2024] [Accepted: 11/18/2024] [Indexed: 11/26/2024]
Abstract
X-linked inhibitor of apoptosis protein (XIAP) plays a crucial role in cisplatin-induced apoptosis in ovarian cancer, whereas the molecular mechanism of how its expression is dysregulated remains unclear. Here, we report that the aryl hydrocarbon receptor (AHR) acts as a competitive endogenous RNA (ceRNA) of XIAP and can regulate its expression. Overexpression of AHR 3'UTR decreased, while AHR knockdown increased, the cisplatin-induced apoptotic rate in ovarian cancer cells. We also found that one microRNA (miRNA), miR-142-5p, can bind to both AHR and XIAP 3'UTRs and regulate their expression levels. Furthermore, AHR 3'UTR and miR-142-5p can occupy the same Ago2 to form an RNA-induced silencing complex (RISC). In addition, we showed that the effect of AHR overexpression on cisplatin-induced apoptosis could be rescued by either XIAP siRNA or miR-142-5p mimic. Thus, our findings reveal important insights into the molecular mechanism underlying the dysregulation of XIAP in ovarian cancer, indicating that AHR serves as the ceRNA that competes miR-142-5p with XIAP and subsequently affects the platinum-based chemotherapy.
Collapse
Affiliation(s)
- Geng Shen
- Department of Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou, China; School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Surong Xu
- Department of Gynecology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Anqi Zhu
- Department of Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhipeng Zheng
- Department of General Surgery, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wei Chen
- Department of Gynecology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Songshan Jiang
- Department of Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
5
|
Das A, Bhattacharya B, Gayen S, Roy S. Unraveling the chemotherapeutic potential of taxifolin ruthenium-p-cymene complex in breast carcinoma: Insights into AhR signaling pathway in vitro and in vivo. Transl Oncol 2024; 49:102107. [PMID: 39181115 PMCID: PMC11388270 DOI: 10.1016/j.tranon.2024.102107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 01/21/2024] [Accepted: 08/18/2024] [Indexed: 08/27/2024] Open
Abstract
BACKGROUND Mammary carcinoma is the most frequently diagnosed form of carcinoma in women worldwide. The organometallic compounds showed a prospective anticancer activity. This research explored the anticancer efficacy of taxifolin ruthenium-p-cymene counter to breast cancer. METHODS The anticancer efficacy of the novel organometallic compound was investigated via various in vitro and in vivo techniques using breast cancer cell lines and breast cancer model of rat. RESULTS Target proteins were identified via pharmacophore analysis, which revealed a high binding affinity towards AhR, EGFR, and β-catenin. The compound induced apoptotic events and prevented cancer cell colony formation. Furthermore, decreased expression of AhR, EGFR, and N-cadherin inhibited cancer cell growth, migration, and proliferation. The compound provoked the cell cycle arrest at sub G0/G1 phase, S phase and G2/M phase and inaugurated the caspase-3 dependent apoptotic events. The in-vivo experimentation displayed the fruitful restoration of breast tissue since the complex treatment in DMBA persuaded breast carcinoma in rat. Moreover, the upstream of p53 and caspase-3 expression along with substantially downstream of vimentin, β-catenin, m-TOR and Akt expression. CONCLUSIONS In conclusion, the compound repressed the cancerous cellular viability, migration, and EMT via modulating the AhR/EGFR/ PI3K transduction pathway and the expression of EMT biomarkers such as N-cadherin, E-cadherin, thus eventually revoked the EMT facilitated metastasis of malignant cells.
Collapse
Affiliation(s)
- Abhijit Das
- Department of Pharmacy, NSHM Knowledge Campus- Kolkata, 124 BL. Saha Road, Kolkata, West Bengal 700053, India
| | - Barshana Bhattacharya
- Department of Pharmacy, NSHM Knowledge Campus- Kolkata, 124 BL. Saha Road, Kolkata, West Bengal 700053, India
| | - Sakuntala Gayen
- Department of Pharmacy, NSHM Knowledge Campus- Kolkata, 124 BL. Saha Road, Kolkata, West Bengal 700053, India
| | - Souvik Roy
- Department of Pharmacy, NSHM Knowledge Campus- Kolkata, 124 BL. Saha Road, Kolkata, West Bengal 700053, India.
| |
Collapse
|
6
|
Snyder M, Wang Z, Lara B, Fimbres J, Pichardo T, Mazzilli S, Khan MM, Duggineni VK, Monti S, Sherr DH. The Aryl Hydrocarbon Receptor Controls IFNγ-Induced Immune Checkpoints PD-L1 and IDO via the JAK/STAT Pathway in Lung Adenocarcinoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.12.607602. [PMID: 39185148 PMCID: PMC11343147 DOI: 10.1101/2024.08.12.607602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
While immunotherapy has shown efficacy in lung adenocarcinoma (LUAD) patients, many respond only partially or not at all. One limitation in improving outcomes is the lack of a complete understanding of immune checkpoint regulation. Here, we investigated a possible link between an environmental chemical receptor implicated in lung cancer and immune regulation, (the aryl hydrocarbon receptor/AhR), a known but counterintuitive mediator of immunosuppression (IFNγ), and regulation of two immune checkpoints (PD-L1 and IDO). AhR gene-edited LUAD cell lines, a syngeneic LUAD mouse model, bulk- and scRNA sequencing of LUADs and tumor-infiltrating leukocytes were used to map out a signaling pathway leading from IFNγ through the AhR to JAK/STAT, PD-L1, IDO, and tumor-mediated immunosuppression. The data demonstrate that: 1) IFNγ activation of the JAK/STAT pathway leading to PD-L1 and IDO1 upregulation is mediated by the AhR in murine and human LUAD cells, 2) AhR-driven IDO1 induction results in the production of Kynurenine (Kyn), an AhR ligand, which likely mediates an AhR→IDO1→Kyn→AhR amplification loop, 3) transplantation of AhR-knockout LUAD cells results in long-term tumor immunity in most recipients. 4) The 23% of AhR-knockout tumors that do grow do so at a much slower pace than controls and exhibit higher densities of CD8+ T cells expressing markers of immunocompetence, increased activity, and increased cell-cell communication. The data definitively link the AhR to IFNγ-induced JAK/STAT pathway and immune checkpoint-mediated immunosuppression and support the targeting of the AhR in the context of LUAD.
Collapse
Affiliation(s)
- Megan Snyder
- Graduate Program in Genetics and Genomics, Boston University School of Medicine
| | - Zhongyan Wang
- Department of Environmental Health, Boston University School of Public Health
| | - Brian Lara
- Department of Environmental Health, Boston University School of Public Health
| | - Jocelyn Fimbres
- Department of Environmental Health, Boston University School of Public Health
| | | | | | - Mohammed Muzamil Khan
- Section of Computational Biomedicine, Boston University Chobanian & Avedisian School of Medicine
| | - Vinay K. Duggineni
- Department of Environmental Health, Boston University School of Public Health
| | - Stefano Monti
- Section of Computational Biomedicine, Boston University Chobanian & Avedisian School of Medicine
| | - David H. Sherr
- Department of Environmental Health, Boston University School of Public Health
| |
Collapse
|
7
|
Chatterjee P, Karn R, Emerson. I A, Banerjee S. Deciphering the Chemotherapeutic Role of the Aryl Hydrocarbon Receptor Antagonist Resveratrol against the High-Penetrance Genes of Triple-Negative Breast Cancer. ACS OMEGA 2024; 9:30350-30363. [PMID: 39035954 PMCID: PMC11256332 DOI: 10.1021/acsomega.4c01317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 06/04/2024] [Accepted: 06/07/2024] [Indexed: 07/23/2024]
Abstract
In addition to several other malignancies, the ligand-activated aryl hydrocarbon receptor (AhR) signaling pathway has been found to enhance the risk of triple-negative breast cancer (TNBC). Many natural compounds of pharmaceutical importance are identified as antagonistic exogenous ligands of AhR. The expressional lack of hormone receptors coupled with adverse prognosis leads to the absence of molecular-targeted therapy in TNBC. Hence, discovering low-cost therapeutic alternatives involving the identification of effective biomarkers is an urgent necessity. This study investigates the binding mechanism of resveratrol, a dietary exogenous AhR ligand against the high-penetrance genes in TNBC, viz., PALB2, TP53, PTEN, STK11, BRCA1, and BRCA2. Post-pharmacokinetic evaluation, molecular docking revealed the binding energy scores of resveratrol against the six TNBC high-penetrance receptors. The results obtained from docking were confirmed by molecular dynamics simulation including principal component analysis, calculation of total interaction energy, and free-energy landscape computation. PALB2 emerged as a promising therapeutic receptor of resveratrol. Furthermore, the PALB2-resveratrol binding dynamics were evaluated against olaparib, an FDA-approved standardized TNBC inhibitor. Our study reveals comparatively better chemistry of PALB2-resveratrol than PALB2-olaparib. Considering the current surge in the discovery of precision medicine in biomarker-based cancer therapeutics, this study proposes PALB2-resveratrol as a unique drug-receptor combination thus awaiting validation through in vitro studies.
Collapse
Affiliation(s)
| | | | - Arnold Emerson. I
- School of BioSciences and
Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Satarupa Banerjee
- School of BioSciences and
Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| |
Collapse
|
8
|
Joruiz SM, Von Muhlinen N, Horikawa I, Gilbert MR, Harris CC. Distinct functions of wild-type and R273H mutant Δ133p53α differentially regulate glioblastoma aggressiveness and therapy-induced senescence. Cell Death Dis 2024; 15:454. [PMID: 38937431 PMCID: PMC11211456 DOI: 10.1038/s41419-024-06769-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 05/10/2024] [Accepted: 05/22/2024] [Indexed: 06/29/2024]
Abstract
Despite being mutated in 92% of TP53 mutant cancers, how mutations on p53 isoforms affect their activities remain largely unknown. Therefore, exploring the effect of mutations on p53 isoforms activities is a critical, albeit unexplored area in the p53 field. In this article, we report for the first time a mutant Δ133p53α-specific pathway which increases IL4I1 and IDO1 expression and activates AHR, a tumor-promoting mechanism. Accordingly, while WT Δ133p53α reduces apoptosis to promote DNA repair, mutant R273H also reduces apoptosis but fails to maintain genomic stability, increasing the risks of accumulation of mutations and tumor's deriving towards a more aggressive phenotype. Furthermore, using 2D and 3D spheroids culture, we show that WT Δ133p53α reduces cell proliferation, EMT, and invasion, while the mutant Δ133p53α R273H enhances all three processes, confirming its oncogenic potential and strongly suggesting a similar in vivo activity. Importantly, the effects on cell growth and invasion are independent of mutant full-length p53α, indicating that these activities are actively carried by mutant Δ133p53α R273H. Furthermore, both WT and mutant Δ133p53α reduce cellular senescence in a senescence inducer-dependent manner (temozolomide or radiation) because they regulate different senescence-associated target genes. Hence, WT Δ133p53α rescues temozolomide-induced but not radiation-induced senescence, while mutant Δ133p53α R273H rescues radiation-induced but not temozolomide-induced senescence. Lastly, we determined that IL4I1, IDO1, and AHR are significantly higher in GBMs compared to low-grade gliomas. Importantly, high expression of all three genes in LGG and IL4I1 in GBM is significantly associated with poorer patients' survival, confirming the clinical relevance of this pathway in glioblastomas. These data show that, compared to WT Δ133p53α, R273H mutation reorientates its activities toward carcinogenesis and activates the oncogenic IL4I1/IDO1/AHR pathway, a potential prognostic marker and therapeutic target in GBM by combining drugs specifically modulating Δ133p53α expression and IDO1/Il4I1/AHR inhibitors.
Collapse
Affiliation(s)
- Sebastien M Joruiz
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institute of Health, Bethesda, MD, USA
| | - Natalia Von Muhlinen
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institute of Health, Bethesda, MD, USA
| | - Izumi Horikawa
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institute of Health, Bethesda, MD, USA
| | - Mark R Gilbert
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Curtis C Harris
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institute of Health, Bethesda, MD, USA.
| |
Collapse
|
9
|
Basson C, Serem JC, Bipath P, Hlophe YN. L-kynurenine and quinolinic acid inhibited markers of cell survival in B16 F10 melanoma cells in vitro. Cell Biol Int 2024. [PMID: 38570921 DOI: 10.1002/cbin.12163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/06/2024] [Accepted: 03/17/2024] [Indexed: 04/05/2024]
Abstract
Melanoma is an aggressive malignancy and remains a major cause of skin cancer mortality, highlighting the need for new treatment strategies. Recent findings revealed that L-kynurenine and quinolinic acid induce cytotoxicity and morphological changes in B16 F10 melanoma cells in vitro. This paper highlights the effects of L-kynurenine and quinolinic acid at previously determined half-maximal inhibitory concentrations on cell cycle progression, cell death and extracellular signal-regulated protein kinase inhibition. Melanoma, B16 F10 and murine macrophages, RAW 264.7 cells were used in this study, as both cell lines express all the enzymes associated with the kynurenine pathway. Post exposure to the compounds at half-maximal inhibitory concentrations, transmission electron microscopy was used to assess intracellular morphological changes. Flow cytometry was used to analyse cell cycle progression and quantify apoptosis via the dual staining of Annexin V and propidium iodide and cell survival via extracellular signal-regulated protein kinase. L-kynurenine and quinolinic acid at half-maximal inhibitory concentrations induced intracellular morphological changes representative of cell death. Flow cytometry revealed alterations in cell cycle distribution, increased apoptosis and significantly inhibition of cell survival. L-kynurenine and quinolinic acid are exogenous kynurenine compounds which inhibited cell survival through extracellular signal-regulated protein kinase inhibition, induced cell cycle alterations and induced apoptosis in B16 F10 melanoma cells.
Collapse
Affiliation(s)
- Charlise Basson
- Department of Physiology, School of Medicine, University of Pretoria, Pretoria, South Africa
| | - June Cheptoo Serem
- Department of Anatomy, School of Medicine, University of Pretoria, Pretoria, South Africa
| | - Priyesh Bipath
- Department of Physiology, School of Medicine, University of Pretoria, Pretoria, South Africa
| | - Yvette Nkondo Hlophe
- Department of Physiology, School of Medicine, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
10
|
Sanchez Y, Vasquez Callejas MA, Miret NV, Rolandelli G, Costas C, Randi AS, Español A. Hexachlorobenzene as a differential modulator of the conventional and metronomic chemotherapy response in triple negative breast cancer cells. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2024; 5:278-295. [PMID: 38745771 PMCID: PMC11090688 DOI: 10.37349/etat.2024.00218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 11/27/2023] [Indexed: 05/16/2024] Open
Abstract
Aim Triple negative breast cancer (TNBC) is usually treated with high doses of paclitaxel, whose effectiveness may be modulated by the action of environmental contaminants such as hexachlorobenzene. High doses of paclitaxel cause adverse effects such as low cellular selectivity and the generation of resistance to treatment due to an increase in the expression of multidrug resistance proteins (MRPs). These effects can be reduced using a metronomic administration scheme with low doses. This study aimed to investigate whether hexachlorobenzene modulates the response of cells to conventional chemotherapy with paclitaxel or metronomic chemotherapy with paclitaxel plus carbachol, as well as to study the participation of the MRP ATP-binding cassette transporter G2 (ABCG2) in human TNBC MDA-MB231 cells. Methods Cells were treated with hexachlorobenzene alone or in combination with conventional or metronomic chemotherapies. The effects of treatments on cell viability were determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and the nuclear factor kappa B pathway participation was evaluated using a selective inhibitor. ABCG2 expression and its modulation were determined by western blot. Results Results confirmed that paclitaxel reduces MDA-MB231 cell viability in a concentration-dependent manner. Results also showed that both conventional and metronomic chemotherapies reduced cell viability with similar efficacy. Although hexachlorobenzene did not modify cell viability per se, it did reverse the effect induced by the conventional chemotherapy, without affecting the efficacy of the metronomic chemotherapy. Additionally, a differential modulation of ABCG2 expression was determined, mediated by the nuclear factor kappa B pathway, which was directly related to the modulation of cell sensitivity to another cycle of paclitaxel treatment. Conclusions The findings indicate that, in human TNBC MDA-MB231 cells, in the presence of hexachlorobenzene, the metronomic combination of paclitaxel plus carbachol is more effective in affecting the tumor biology than the conventional therapeutic administration scheme of paclitaxel.
Collapse
Affiliation(s)
- Yamila Sanchez
- Center of Pharmacological and Botanical Studies (CEFYBO)-National Council for Science and Technology (CONICET)-University of Buenos Aires, Buenos Aires C1121ABG, Argentina
| | - Mariana Abigail Vasquez Callejas
- Center of Pharmacological and Botanical Studies (CEFYBO)-National Council for Science and Technology (CONICET)-University of Buenos Aires, Buenos Aires C1121ABG, Argentina
| | - Noelia Victoria Miret
- Laboratory of Biological Effects of Environmental Pollutants, Department of Human Biochemistry, School of Medicine, University of Buenos Aires, Buenos Aires C1121ABG, Argentina
| | - Gabino Rolandelli
- Center of Pharmacological and Botanical Studies (CEFYBO)-National Council for Science and Technology (CONICET)-University of Buenos Aires, Buenos Aires C1121ABG, Argentina
| | - Catalina Costas
- Center of Pharmacological and Botanical Studies (CEFYBO)-National Council for Science and Technology (CONICET)-University of Buenos Aires, Buenos Aires C1121ABG, Argentina
| | - Andrea Silvana Randi
- Laboratory of Biological Effects of Environmental Pollutants, Department of Human Biochemistry, School of Medicine, University of Buenos Aires, Buenos Aires C1121ABG, Argentina
| | - Alejandro Español
- Center of Pharmacological and Botanical Studies (CEFYBO)-National Council for Science and Technology (CONICET)-University of Buenos Aires, Buenos Aires C1121ABG, Argentina
- Department of Pharmacology, School of Medicine, University of Buenos Aires, Buenos Aires C1121ABG, Argentina
| |
Collapse
|
11
|
Martin JC, da Silva Fernandes T, Chaudhry KA, Oshi M, Abrams SI, Takabe K, Rosario SR, Bianchi-Smiraglia A. Aryl hydrocarbon receptor suppresses STING-mediated type I IFN expression in triple-negative breast cancer. Sci Rep 2024; 14:5731. [PMID: 38459088 PMCID: PMC10923803 DOI: 10.1038/s41598-024-54732-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 02/15/2024] [Indexed: 03/10/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is one of the most aggressive types of cancer. Despite decades of intense investigation, treatment options remain limited, and rapid recurrence with distant metastases remains a significant challenge. Cancer cell-intrinsic production of cytokines such as type I interferons (IFN-I) is a known potent modulator of response to therapy in many cancers, including TNBC, and can influence therapeutic outcome. Here, we report that, in TNBC systems, the aryl hydrocarbon receptor (AhR) suppresses IFN-I expression via inhibition of STImulator of Interferon Genes (STING), a key mediator of interferon production. Intratumoral STING activity is essential in mediating the efficacy of PARP inhibitors (PARPi) which are used in the treatment of cancers harboring BRCA1 deficiency. We find that, in TNBC cells, PARPi treatment activates AhR in a BRCA1 deficiency-dependent manner, thus suggesting the presence of a negative feedback loop aimed at modulating PARPi efficacy. Importantly, our results indicate that the combined inhibition of PARP and AhR is superior in elevating IFN-I expression as compared to PARPi-alone. Thus, AhR inhibition may allow for enhanced IFN-I production upon PARPi in BRCA1-deficient breast cancers, most of which are of TNBC origin, and may represent a therapeutically viable strategy to enhance PARPi efficacy.
Collapse
Affiliation(s)
- Jeffrey C Martin
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | | | - Kanita A Chaudhry
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
- Department of Breast Surgery, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Masanori Oshi
- Department of Breast Surgery, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Scott I Abrams
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Kazuaki Takabe
- Department of Breast Surgery, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Spencer R Rosario
- Department of Breast Surgery, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Anna Bianchi-Smiraglia
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA.
- Department of Breast Surgery, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA.
| |
Collapse
|
12
|
Liu J, Hou W, Zong Z, Chen Y, Liu X, Zhang R, Deng H. Supplementation of nicotinamide mononucleotide diminishes COX-2 associated inflammatory responses in macrophages by activating kynurenine/AhR signaling. Free Radic Biol Med 2024; 214:69-79. [PMID: 38336100 DOI: 10.1016/j.freeradbiomed.2024.01.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/25/2024] [Accepted: 01/27/2024] [Indexed: 02/12/2024]
Abstract
Cyclooxygenase-2 (COX-2) is an inducible enzyme responsible for prostaglandin synthesis during inflammation and immune responses. Our previous results show that NAD+ level decreased in activated macrophages while nicotinamide mononucleotide (NMN) supplementation suppressed the inflammatory responses via restoring NAD+ level and downregulating COX-2. However, whether NMN downregulates COX-2 in mouse model of inflammation, and its underlying mechanism needs to be further explored. In the present study, we established LPS- and alum-induced inflammation model and demonstrated that NMN suppressed the inflammatory responses in vivo. Quantitative proteomics in mouse peritoneal macrophages identified that NMN activated AhR signaling pathway in activated macrophages. Furthermore, we revealed that NMN supplementation led to IDO1 activation and kynurenine accumulation, which caused AhR nuclear translocation and activation. On the other hand, AhR or IDO1 knockout abolished the effects of NMN on suppressing COX-2 expression and inflammatory responses in macrophages. In summary, our results demonstrated that NMN suppresses inflammatory responses by activating IDO-kynurenine-AhR pathway, and suggested that administration of NMN in early-stage immuno-activation may cause an adverse health effect.
Collapse
Affiliation(s)
- Jing Liu
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systematic Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Wenxuan Hou
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systematic Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Zhaoyun Zong
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systematic Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yuling Chen
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systematic Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Xiaohui Liu
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systematic Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Ran Zhang
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systematic Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Haiteng Deng
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systematic Biology, School of Life Sciences, Tsinghua University, Beijing, China.
| |
Collapse
|
13
|
Engin AB, Engin A. Tryptophan Metabolism in Obesity: The Indoleamine 2,3-Dioxygenase-1 Activity and Therapeutic Options. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:629-655. [PMID: 39287867 DOI: 10.1007/978-3-031-63657-8_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Obesity activates both innate and adaptive immune responses in adipose tissue. Adipose tissue macrophages are functional antigen-presenting cells that promote the proliferation of interferon-gamma (IFN-γ)-producing cluster of differentiation (CD)4+ T cells in adipose tissue of obese subjects. The increased formation of neopterin and degradation of tryptophan may result in decreased T-cell responsiveness and lead to immunodeficiency. The activity of inducible indoleamine 2,3-dioxygenase-1 (IDO1) plays a major role in pro-inflammatory, IFN-γ-dominated settings. The expression of several kynurenine pathway enzyme genes is significantly increased in obesity. IDO1 in obesity shifts tryptophan metabolism from serotonin and melatonin synthesis to the formation of kynurenines and increases the ratio of kynurenine to tryptophan as well as with neopterin production. Reduction in serotonin (5-hydroxytryptamine; 5-HT) production provokes satiety dysregulation that leads to increased caloric uptake and obesity. According to the monoamine-deficiency hypothesis, a deficiency of cerebral serotonin is involved in neuropsychiatric symptomatology of depression, mania, and psychosis. Indeed, bipolar disorder (BD) and related cognitive deficits are accompanied by a higher prevalence of overweight and obesity. Furthermore, the accumulation of amyloid-β in Alzheimer's disease brains has several toxic effects as well as IDO induction. Hence, abdominal obesity is associated with vascular endothelial dysfunction. kynurenines and their ratios are prognostic parameters in coronary artery disease. Increased kynurenine/tryptophan ratio correlates with increased intima-media thickness and represents advanced atherosclerosis. However, after bariatric surgery, weight reduction does not lead to the normalization of IDO1 activity and atherosclerosis. IDO1 is involved in the mechanisms of immune tolerance and in the concept of tumor immuno-editing process in cancer development. Serum IDO1 activity is still used as a parameter in cancer development and growth. IDO-producing tumors show a high total IDO immunostaining score, and thus, using IDO inhibitors, such as Epacadostat, Navoximod, and L isomer of 1-methyl-tryptophan, seems an important modality for cancer treatment. There is an inverse correlation between serum folate concentration and body mass index, thus folate deficiency leads to hyperhomocysteinemia-induced oxidative stress. Immune checkpoint blockade targeting cytotoxic T-lymphocyte-associated protein-4 synergizes with imatinib, which is an inhibitor of mitochondrial folate-mediated one-carbon (1C) metabolism. Antitumor effects of imatinib are enhanced by increasing T-cell effector function in the presence of IDO inhibition. Combining IDO targeting with chemotherapy, radiotherapy and/or immunotherapy, may be an effective tool against a wide range of malignancies. However, there are some controversial results regarding the efficacy of IDO1 inhibitors in cancer treatment.
Collapse
Affiliation(s)
- Ayse Basak Engin
- Faculty of Pharmacy, Department of Toxicology, Gazi University, Hipodrom, Ankara, Turkey.
| | - Atilla Engin
- Faculty of Medicine, Department of General Surgery, Gazi University, Besevler, Ankara, Turkey
- Mustafa Kemal Mah. 2137. Sok. 8/14, 06520, Cankaya, Ankara, Turkey
| |
Collapse
|
14
|
Alluli A, Fonseca G, Matthews J, Eidelman DH, Baglole CJ. Regulation of long non-coding RNA expression by aryl hydrocarbon receptor activation. Toxicol Lett 2024; 391:13-25. [PMID: 38036013 DOI: 10.1016/j.toxlet.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 10/27/2023] [Accepted: 11/13/2023] [Indexed: 12/02/2023]
Abstract
The aryl hydrocarbon receptor (AhR) is a cytosolic transcription factor that can be activated by endogenous or xenobiotic ligands. Upon activation, the AhR translocates to the nucleus, dimerizes with the AhR nuclear translator (ARNT), and binds to specific DNA sequences called xenobiotic response elements (XRE) to promote target gene transcription, including cytochrome P450 (e.g., CYP1A1) expression. In addition to mRNA, the AhR may also regulate long non-coding RNA (lncRNA) expression. lncRNA are transcripts more than 200 nucleotides in length that do not encode a protein. Herein, we tested whether AhR activation regulates the expression of lncRNA in response to benzo[a]pyrene (B[a]P) using RNA sequencing (RNA-seq). We found that many lncRNA (e.g., SATB1-AS1, MIR4290HG, AC008969.1, LINC01533, VIPR1-AS1) and protein-coding RNA (e.g., CYP1A1, BX005266.2, AQP3, BTG2, DCX, and AhRR) were differentially expressed (DE) in A549 cells treated with B[a]P; many of these genes were dependent on AhR expression including CYP1A1, CYP1B1 and TiPARP. GO analyses indicated that DE protein-coding RNAs in A549WT cells are associated with distinct molecular functions compared to A549KO cells. KEGG analyses showed the hsa01100 pathway was associated with DE lncRNA only in A549WT cells. A549KO cells treated with B[a]P exhibited a distinct set of differentially-regulated lncRNA including upregulation of HOTAIR. We further confirmed that despite AhR activation in A549WT cells, B[a]P did not alter the expression of many well-characterized lncRNA including NEAT1, HOTTIP, SOX2OT, MALAT1, H19, and Linc00673. Thus, there is control over select lncRNA expression in A549 cells exposed to B[a]P, a finding which could yield insight into the molecular function of the AhR.
Collapse
Affiliation(s)
- Aeshah Alluli
- Meakins-Christie Laboratories, McGill University, Montreal, Canada; Translational Research in Respiratory Diseases Program at the Research Institute of the McGill University Health Centre, Montreal, Canada; Department of Pathology, McGill University, Montreal, Canada
| | - Gregory Fonseca
- Meakins-Christie Laboratories, McGill University, Montreal, Canada; Translational Research in Respiratory Diseases Program at the Research Institute of the McGill University Health Centre, Montreal, Canada; Department of Medicine, McGill University, Montreal, Canada
| | - Jason Matthews
- Department of Nutrition, University of Oslo, Oslo, Norway; Department of Pharmacology & Toxicology, University of Toronto, Toronto, Canada
| | - David H Eidelman
- Meakins-Christie Laboratories, McGill University, Montreal, Canada; Department of Medicine, McGill University, Montreal, Canada
| | - Carolyn J Baglole
- Meakins-Christie Laboratories, McGill University, Montreal, Canada; Translational Research in Respiratory Diseases Program at the Research Institute of the McGill University Health Centre, Montreal, Canada; Department of Pathology, McGill University, Montreal, Canada; Department of Medicine, McGill University, Montreal, Canada; Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada.
| |
Collapse
|
15
|
Chatterjee P, Banerjee S. Unveiling the mechanistic role of the Aryl hydrocarbon receptor in environmentally induced Breast cancer. Biochem Pharmacol 2023; 218:115866. [PMID: 37863327 DOI: 10.1016/j.bcp.2023.115866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/25/2023] [Accepted: 10/17/2023] [Indexed: 10/22/2023]
Abstract
The aryl hydrocarbon receptor (AhR) is a crucial cytosolic evolutionary conserved ligand-activated transcription factor and a pleiotropic signal transducer. The biosensor activity of the AhR is attributed to the promiscuity of its ligand-binding domain. Evidence suggests exposure to environmental toxins such as polycyclic aromatic hydrocarbons, polychlorinated biphenyls and halogenated aromatic hydrocarbons activates the AhR signaling pathway. The constitutive activation of the receptor signaling system leads to multiple health adversities and enhances the risk of several cancers, including breast cancer (BC). This review evaluates several mechanisms that integrate the tumor-inducing property of such environmental contaminants with the AhR pathway assisting in BC tumorigenesis, progress and metastasis. Intriguingly, immune evasion is identified as a prominent hallmark in BC. Several emerging pieces of evidence have identified AhR as a potent immunosuppressive effector in several cancers. Through AhR signaling pathways, some tumors can avoid immune detection. Thus the relevance of AhR in the immunomodulation of breast tumors and its putative mode of action in the breast tumor microenvironment are discussed in this review. Additionally, the work also explores BC stemness and its associated inflammation in response to several environmental cues. The review elucidates the context-dependent ambiguous behavior of AhR either as an oncogene or a tumor suppressor with respect to its ligand. Conclusively, this holistic piece of literature attempts to potentiate AhR as a promising pharmacological target in BC and updates on the therapeutic manipulation of its various exogenous and endogenous ligands.
Collapse
Affiliation(s)
- Prarthana Chatterjee
- School of BioSciences and Technology, Vellore Institute of Technology, Vellore- 632014, Tamil Nadu, India
| | - Satarupa Banerjee
- School of BioSciences and Technology, Vellore Institute of Technology, Vellore- 632014, Tamil Nadu, India.
| |
Collapse
|
16
|
Harris C, Joruiz S, Von Muhlinen N, Horikawa I, Gilbert M. Distinct functions of wild-type and R273H mutant Δ133p53α differentially regulate glioblastoma aggressiveness and therapy-induced senescence. RESEARCH SQUARE 2023:rs.3.rs-3370608. [PMID: 37986881 PMCID: PMC10659536 DOI: 10.21203/rs.3.rs-3370608/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Mutations effects on p53 isoforms' activities remain largely unknown, although they are mutated in 92% of TP53 mutant cancers. Therefore, exploring the effect of mutations on p53 isoforms activities is a critical, albeit unexplored area in the p53 field. In this article, we report for the first time a mutant Δ133p53α-specific pathway which increases IL4I1 and IDO1 expression and activates AHR, a tumor-promoting mechanism. Accordingly, mutant Δ133p53α R273H increases glioblastoma cancer cells proliferation and invasion while the WT does not. Furthermore, while WT Δ133p53α reduces apoptosis to promote DNA repair, the mutant also reduces apoptosis but fails to maintain genomic stability.Furthermore, both WT and mutant Δ133p53α reduce cellular senescence in a senescence inducer-dependent manner (temozolomide or radiation) because they regulate different senescence-associated target genes. Hence, WT Δ133p53α rescues temozolomide-induced but not radiation-induced senescence, while mutant Δ133p53α R273H rescues radiation-induced but not temozolomide-induced senescence. Lastly, using TCGA data, we determined that IL4I1, IDO1 and AHR are significantly higher in GBMs compared to LGGs. IL4I1 expression is increased in mutant TP53 LGGs and GBMs, although only significantly in LGG. Importantly, high expression of all three genes in LGG and IL4I1 in GBM is significantly associated with poorer patients' survival. These data show that, compared to WT Δ133p53α, R273H mutation reorientates its activities toward carcinogenesis and activates the oncogenic IL4I1/IDO1/AHR pathway, a potential prognostic marker and therapeutic target in GBM by combining drugs specifically modulating Δ133p53α expression and IDO1/Il4I1/AHR inhibitors.
Collapse
Affiliation(s)
| | | | | | | | - Mark Gilbert
- Center for Cancer Research, National Cancer Institute
| |
Collapse
|
17
|
Pacheco JHL, Elizondo G. Interplay between Estrogen, Kynurenine, and AHR Pathways: An immunosuppressive axis with therapeutic potential for breast cancer treatment. Biochem Pharmacol 2023; 217:115804. [PMID: 37716620 DOI: 10.1016/j.bcp.2023.115804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/11/2023] [Accepted: 09/11/2023] [Indexed: 09/18/2023]
Abstract
Breast cancer is one of the most common malignancies among women worldwide. Estrogen exposure via endogenous and exogenous sources during a lifetime, together with environmental exposure to estrogenic compounds, represent the most significant risk factor for breast cancer development. As breast tumors establish, multiple pathways are deregulated. Among them is the aryl hydrocarbon receptor (AHR) signaling pathway. AHR, a ligand-activated transcription factor associated with the metabolism of polycyclic aromatic hydrocarbons and estrogens, is overexpressed in breast cancer. Furthermore, AHR and estrogen receptor (ER) cross-talk pathways have been observed. Additionally, the Tryptophan (Trp) catabolizing enzymes indolamine-2,3-dioxygenase (IDO) and tryptophan-2,3-dioxygenase (TDO) are overexpressed in breast cancer. IDO/TDO catalyzes the formation of Kynurenine (KYN) and other tryptophan-derived metabolites, which are ligands of AHR. Once KYN activates AHR, it stimulates the expression of the IDO enzyme, increases the level of KYN, and activates non-canonical pathways to control inflammation and immunosuppression in breast tumors. The interplay between E2, AHR, and IDO/TDO/KYN pathways and their impact on the immune system represents an immunosuppressive axis on breast cancer. The potential modulation of the immunosuppressive E2-AHR-IDO/TDO/KYN axis has aroused great expectations in oncotherapy. The present article will review the mechanisms implicated in generating the immunosuppressive axis E2-AHR-IDO/TDO/KYN in breast cancer and the current state of knowledge as a potential therapeutic target.
Collapse
Affiliation(s)
| | - Guillermo Elizondo
- Departamento de Biología Celular, CINVESTAV-IPN, Av. IPN 2508, C.P. 07360 Ciudad de México, México.
| |
Collapse
|
18
|
Diedrich JD, Cole CE, Pianko MJ, Colacino JA, Bernard JJ. Non-Toxicological Role of Aryl Hydrocarbon Receptor in Obesity-Associated Multiple Myeloma Cell Growth and Survival. Cancers (Basel) 2023; 15:5255. [PMID: 37958428 PMCID: PMC10649826 DOI: 10.3390/cancers15215255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/27/2023] [Accepted: 10/29/2023] [Indexed: 11/15/2023] Open
Abstract
Obesity is not only a risk factor for multiple myeloma (MM) incidence, but it is also associated with an increased risk of progression from myeloma precursors-monoclonal gammopathy of undetermined significance-and smoldering myeloma. Adipocytes in the bone marrow (BMAs) microenvironment have been shown to facilitate MM cell growth via secreted factors, but the nature of these secreted factors and their mechanism of action have not been fully elucidated. The elevated expression of aryl hydrocarbon receptor (AhR) is associated with a variety of different cancers, including MM; however, the role of AhR activity in obesity-associated MM cell growth and survival has not been explored. Indeed, this is of particular interest as it has been recently shown that bone marrow adipocytes are a source of endogenous AhR ligands. Using multiple in vitro models of tumor-adipocyte crosstalk to mimic the bone microenvironment, we identified a novel, non-toxicological role of the adipocyte-secreted factors in the suppression of AhR activity in MM cells. A panel of six MM cell lines were cultured in the presence of bone marrow adipocytes in (1) a direct co-culture, (2) a transwell co-culture, or (3) an adipocyte-conditioned media to interrogate the effects of the secreted factors on MM cell AhR activity. Nuclear localization and the transcriptional activity of the AhR, as measured by CYP1A1 and CYP1B1 gene induction, were suppressed by exposure to BMA-derived factors. Additionally, decreased AhR target gene expression was associated with worse clinical outcomes. The knockdown of AhR resulted in reduced CYP1B1 expression and increased cellular growth. This tumor-suppressing role of CYP1A1 and CYP1B1 was supported by patient data which demonstrated an association between reduced target gene expression and worse overall survival. These data demonstrated a novel mechanism by which bone marrow adipocytes promote MM progression.
Collapse
Affiliation(s)
- Jonathan D. Diedrich
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA;
| | - Craig E. Cole
- Department of Medicine, Division of Hematology/Oncology, Michigan State University, East Lansing, MI 48910, USA;
- Karmanos Cancer Institute, McLaren Greater Lansing, Lansing, MI 48910, USA
- Department of Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Matthew J. Pianko
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Justin A. Colacino
- Department of Nutritional Sciences, University of Michigan, Ann Arbor, MI 48109, USA;
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jamie J. Bernard
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA;
- Department of Medicine, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
19
|
Liu K, Jia N, Shi H, Ran Y. Current and future research on the association between gut microbiota and breast cancer. Front Microbiol 2023; 14:1272275. [PMID: 38029117 PMCID: PMC10646191 DOI: 10.3389/fmicb.2023.1272275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 10/09/2023] [Indexed: 12/01/2023] Open
Abstract
Breast cancer (BC) is a prevalent malignancy. There exists a strong association between gut microbiota (GM) and the development of BC. The GM composition in individuals with BC significantly differs from that in their healthy counterparts. Furthermore, the distribution of GM varies significantly among individuals with different types of BC. The GM can impact BC through metabolite secretion, the gut-mammary axis, and other pathways. Modulating the GM can serve as a very promising potential therapeutic strategy in the treatment of BC. This article will summarize existing research, focusing on the relationship between intestinal microbiota and BC. At the same time, the project will also analyze the application value of intestinal microorganisms in BC intervention work, so as to provide a reference for the further development of BC prevention and treatment work.
Collapse
Affiliation(s)
| | - Nan Jia
- Affiliated Hospital of Hebei University, Baoding, China
| | - Hongyun Shi
- Affiliated Hospital of Hebei University, Baoding, China
| | - Yuge Ran
- Affiliated Hospital of Hebei University, Baoding, China
| |
Collapse
|
20
|
Vázquez-Gómez G, Petráš J, Dvořák Z, Vondráček J. Aryl hydrocarbon receptor (AhR) and pregnane X receptor (PXR) play both distinct and common roles in the regulation of colon homeostasis and intestinal carcinogenesis. Biochem Pharmacol 2023; 216:115797. [PMID: 37696457 DOI: 10.1016/j.bcp.2023.115797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/13/2023]
Abstract
Both aryl hydrocarbon receptor (AhR) and pregnane X receptor (PXR) belong among key regulators of xenobiotic metabolism in the intestinal tissue. AhR in particular is activated by a wide range of environmental and dietary carcinogens. The data accumulated over the last two decades suggest that both of these transcriptional regulators play a much wider role in the maintenance of gut homeostasis, and that both transcription factors may affect processes linked with intestinal tumorigenesis. Intestinal epithelium is continuously exposed to a wide range of AhR, PXR and dual AhR/PXR ligands formed by intestinal microbiota or originating from diet. Current evidence suggests that specific ligands of both AhR and PXR can protect intestinal epithelium against inflammation and assist in the maintenance of epithelial barrier integrity. AhR, and to a lesser extent also PXR, have been shown to play a protective role against inflammation-induced colon cancer, or, in mouse models employing overactivation of Wnt/β-catenin signaling. In contrast, other evidence suggests that both receptors may contribute to modulation of transformed colon cell behavior, with a potential to promote cancer progression and/or chemoresistance. The review focuses on both overlapping and separate roles of the two receptors in these processes, and on possible implications of their activity within the context of intestinal tissue.
Collapse
Affiliation(s)
- Gerardo Vázquez-Gómez
- Department of Cytokinetics, Institute of Biophysics of the CAS, Královopolská 135, 61265 Brno, Czech Republic
| | - Jiří Petráš
- Department of Cytokinetics, Institute of Biophysics of the CAS, Královopolská 135, 61265 Brno, Czech Republic; Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | - Zdeněk Dvořák
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Jan Vondráček
- Department of Cytokinetics, Institute of Biophysics of the CAS, Královopolská 135, 61265 Brno, Czech Republic.
| |
Collapse
|
21
|
Alluli A, Rijnbout St James W, Eidelman DH, Baglole CJ. Dynamic relationship between the aryl hydrocarbon receptor and long noncoding RNA balances cellular and toxicological responses. Biochem Pharmacol 2023; 216:115745. [PMID: 37597813 DOI: 10.1016/j.bcp.2023.115745] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 08/21/2023]
Abstract
The aryl hydrocarbon receptor (AhR) is a cytosolic transcription factor activated by endogenous ligands and xenobiotic chemicals. Once the AhR is activated, it translocates to the nucleus, dimerizes with the AhR nuclear translator (ARNT) and binds to xenobiotic response elements (XRE) to promote gene transcription, notably the cytochrome P450 CYP1A1. The AhR not only mediates the toxic effects of environmental chemicals, but also has numerous putative physiological functions. This dichotomy in AhR biology may be related to reciprocal regulation of long non-coding RNA (lncRNA). lncRNA are defined as transcripts more than 200 nucleotides in length that do not encode a protein but are implicated in many physiological processes such as cell differentiation, cell proliferation, and apoptosis. lncRNA are also linked to disease pathogenesis, particularly the development of cancer. Recent studies have revealed that AhR activation by environmental chemicals affects the expression and function of lncRNA. In this article, we provide an overview of AhR signaling pathways activated by diverse ligands and highlight key differences in the putative biological versus toxicological response of AhR activation. We also detail the functions of lncRNA and provide current data on their regulation by the AhR. Finally, we outline how overlap in function between AhR and lncRNA may be one way in which AhR can be both a regulator of endogenous functions but also a mediator of toxicological responses to environmental chemicals. Overall, more research is still needed to fully understand the dynamic interplay between the AhR and lncRNA.
Collapse
Affiliation(s)
- Aeshah Alluli
- Meakins-Christie Laboratories, McGill University, Canada; Translational Research in Respiratory Diseases Program at the Research Institute of the McGill University Health Centre, Canada; Department of Pathology, McGill University, Canada
| | - Willem Rijnbout St James
- Meakins-Christie Laboratories, McGill University, Canada; Translational Research in Respiratory Diseases Program at the Research Institute of the McGill University Health Centre, Canada; Department of Pathology, McGill University, Canada
| | - David H Eidelman
- Meakins-Christie Laboratories, McGill University, Canada; Department of Medicine, McGill University, Canada
| | - Carolyn J Baglole
- Meakins-Christie Laboratories, McGill University, Canada; Translational Research in Respiratory Diseases Program at the Research Institute of the McGill University Health Centre, Canada; Department of Pathology, McGill University, Canada; Department of Medicine, McGill University, Canada; Department of Pharmacology and Therapeutics, McGill University, Canada.
| |
Collapse
|
22
|
Miret NV, Pontillo CA, Buján S, Chiappini FA, Randi AS. Mechanisms of breast cancer progression induced by environment-polluting aryl hydrocarbon receptor agonists. Biochem Pharmacol 2023; 216:115773. [PMID: 37659737 DOI: 10.1016/j.bcp.2023.115773] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/23/2023] [Accepted: 08/30/2023] [Indexed: 09/04/2023]
Abstract
Breast cancer is the most common invasive malignancy among women worldwide and constitutes a complex and heterogeneous disease. Interest has recently grown in the role of the aryl hydrocarbon receptor (AhR) in breast cancer and the contribution of environment-polluting AhR agonists. Here, we present a literature review addressing AhR ligands, including pesticides hexachlorobenzene and chlorpyrifos, polycyclic aromatic hydrocarbons, polychlorinated dibenzo-p-dioxins and dibenzofurans, polychlorinated biphenyls, parabens, and phthalates. The objectives of this review are a) to summarize recent original experimental, preclinical, and clinical studies on the biological mechanisms of AhR agonists which interfere with the regulation of breast endocrine functions, and b) to examine the biological effects of AhR ligands and their impact on breast cancer development and progression. We discuss biological mechanisms of action in cell viability, cell cycle, proliferation, epigenetic changes, epithelial to mesenchymal transition, and cell migration and invasion. In addition, we examine the effects of AhR ligands on angiogenic processes, metastasis, chemoresistance, and stem cell renewal. We conclude that exposure to AhR agonists stimulates pathways that promote breast cancer development and may contribute to tumor progression. Given the massive use of industrial and agricultural chemicals, ongoing evaluation of their effects in laboratory assays and preclinical studies in breast cancer at environmentally relevant doses is deemed essential. Likewise, awareness should be raised in the population regarding the most harmful toxicants to eradicate or minimize their use.
Collapse
Affiliation(s)
- Noelia V Miret
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Paraguay 2155, Piso 5, (CP 1121), Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Físico-Matemática, Laboratorio de Radioisótopos, Junín 954, 1er subsuelo (CP1113), Buenos Aires, Argentina.
| | - Carolina A Pontillo
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Paraguay 2155, Piso 5, (CP 1121), Buenos Aires, Argentina
| | - Sol Buján
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Paraguay 2155, Piso 5, (CP 1121), Buenos Aires, Argentina
| | - Florencia A Chiappini
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Paraguay 2155, Piso 5, (CP 1121), Buenos Aires, Argentina
| | - Andrea S Randi
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Paraguay 2155, Piso 5, (CP 1121), Buenos Aires, Argentina.
| |
Collapse
|
23
|
Diedrich JD, Gonzalez-Pons R, Medeiros HCD, Ensink E, Liby KT, Wellberg EA, Lunt SY, Bernard JJ. Adipocyte-derived kynurenine stimulates malignant transformation of mammary epithelial cells through the aryl hydrocarbon receptor. Biochem Pharmacol 2023; 216:115763. [PMID: 37625554 PMCID: PMC10587895 DOI: 10.1016/j.bcp.2023.115763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/17/2023] [Accepted: 08/21/2023] [Indexed: 08/27/2023]
Abstract
Anti-hormone therapies are not efficacious for reducing the incidence of triple negative breast cancer (TNBC), which lacks both estrogen and progesterone receptors. While the etiology of this aggressive breast cancer subtype is unclear, visceral obesity is a strong risk factor for both pre- and post-menopausal cases. The mechanism by which excessive deposition of visceral adipose tissue (VAT) promotes the malignant transformation of hormone receptor-negative mammary epithelial cells is currently unknown. We developed a novel in vitro system of malignant transformation in which non-tumorigenic human breast epithelial cells (MCF-10A) grow in soft agar when cultured with factors released from VAT. These cells, which acquire the capacity for 3D growth, show elevated aryl hydrocarbon receptor (AhR) protein and AhR target genes, suggesting that AhR activity may drive malignant transformation by VAT. AhR is a ligand-dependent transcription factor that generates biological responses to exogenous carcinogens and to the endogenous tryptophan pathway metabolite, kynurenine. The serum kynurenine to tryptophan ratio has been shown to be elevated in patients with obesity. Herein, we demonstrate that AhR inhibitors or knockdown of AhR in MCF-10A cells prevents VAT-induced malignant transformation. Specifically, VAT-induced transformation is inhibited by Kyn-101, an inhibitor for the endogenous ligand binding site of AhR. Mass spectrometry analysis demonstrates that adipocytes metabolize tryptophan and release kynurenine, which is taken up by MCF-10A cells and activates the AhR to induce CYP1B1 and promote malignant transformation. This novel hormone receptor-independent mechanism of malignant transformation suggests targeting AhR for TNBC prevention in the context of visceral adiposity.
Collapse
Affiliation(s)
- Jonathan D Diedrich
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824 USA
| | - Romina Gonzalez-Pons
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824 USA
| | - Hyllana C D Medeiros
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824 USA
| | - Elliot Ensink
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824 USA
| | - Karen T Liby
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824 USA
| | - Elizabeth A Wellberg
- Department of Pathology, University of Oklahoma Health Sciences Center, Stephenson Cancer Center, Harold Hamm Diabetes Center, Oklahoma City, OK, USA
| | - Sophia Y Lunt
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824 USA; Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI 48824 USA
| | - Jamie J Bernard
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824 USA; Department of Medicine, Michigan State University, East Lansing, MI 48824 USA.
| |
Collapse
|
24
|
Mandal A, Biswas N, Alam MN. Implications of xenobiotic-response element(s) and aryl hydrocarbon receptor in health and diseases. Hum Cell 2023; 36:1638-1655. [PMID: 37329424 DOI: 10.1007/s13577-023-00931-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/01/2023] [Indexed: 06/19/2023]
Abstract
The effect of air pollution on public health is severely detrimental. In humans; the physiological response against pollutants is mainly elicited via the activation of aryl hydrocarbon receptor (AhR). It acts as a prime sensor of xenobiotic chemicals, also functioning as a transcription factor regulating a variety of gene expressions. Along with AhR, another pivotal element of the pollution stress pathway is Xenobiotic Response Elements (XREs). XRE, as studied are some conserved sequences in the DNA, responsible for the physiological response against pollutants. XRE is present at the upstream of the inducible target genes of AhR and it regulates the function of the AhR. XRE(s) are highly conserved in species as it has only eight specific sequences found so far in humans, mice, and rats. Inhalation of toxicants like dioxins, gaseous industrial effluents, and smoke from burning fuel and tobacco leads to predominant damage to the lungs. However, scientists are exploring the involvement of AhR in chronic diseases for example chronic obstructive pulmonary disease (COPD) and also other lethal diseases like lung cancer. In this review, we summarise what is known at this time about the roles played by the XRE and AhR in our molecular systems that have a defined control in the normal maintenance of homeostasis as well as dysfunctions.
Collapse
Affiliation(s)
- Avijit Mandal
- Department of Life Sciences, Presidency University, Kolkata, 700073, India
| | - Nabendu Biswas
- Department of Life Sciences, Presidency University, Kolkata, 700073, India
| | - Md Nur Alam
- Department of Life Sciences, Presidency University, Kolkata, 700073, India.
| |
Collapse
|
25
|
Chong ZX, Yong CY, Ong AHK, Yeap SK, Ho WY. Deciphering the roles of aryl hydrocarbon receptor (AHR) in regulating carcinogenesis. Toxicology 2023; 495:153596. [PMID: 37480978 DOI: 10.1016/j.tox.2023.153596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/13/2023] [Accepted: 07/16/2023] [Indexed: 07/24/2023]
Abstract
Aryl hydrocarbon receptor (AHR) is a ligand-dependent receptor that belongs to the superfamily of basic helix-loop-helix (bHLH) transcription factors. The activation of the canonical AHR signaling pathway is known to induce the expression of cytochrome P450 enzymes, facilitating the detoxification metabolism in the human body. Additionally, AHR could interact with various signaling pathways such as epidermal growth factor receptor (EGFR), signal transducer and activator of transcription 3 (STAT3), hypoxia-inducible factor-1α (HIF-1α), nuclear factor ekappa B (NF-κβ), estrogen receptor (ER), and androgen receptor (AR) signaling pathways. Over the past 30 years, several studies have reported that various chemical, physical, or biological agents, such as tobacco, hydrocarbon compounds, industrial and agricultural chemical wastes, drugs, UV, viruses, and other toxins, could affect AHR expression or activity, promoting cancer development. Thus, it is valuable to overview how these factors regulate AHR-mediated carcinogenesis. Current findings have reported that many compounds could act as AHR ligands to drive the expressions of AHR-target genes, such as CYP1A1, CYP1B1, MMPs, and AXL, and other targets that exert a pro-proliferation or anti-apoptotic effect, like XIAP. Furthermore, some other physical and chemical agents, such as UV and 3-methylcholanthrene, could promote AHR signaling activities, increasing the signaling activities of a few oncogenic pathways, such as the phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) and mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) pathways. Understanding how various factors regulate AHR-mediated carcinogenesis processes helps clinicians and scientists plan personalized therapeutic strategies to improve anti-cancer treatment efficacy. As many studies that have reported the roles of AHR in regulating carcinogenesis are preclinical or observational clinical studies that did not explore the detailed mechanisms of how different chemical, physical, or biological agents promote AHR-mediated carcinogenesis processes, future studies should focus on conducting large-scale and functional studies to unravel the underlying mechanism of how AHR interacts with different factors in regulating carcinogenesis processes.
Collapse
Affiliation(s)
- Zhi Xiong Chong
- Faculty of Science and Engineering, University of Nottingham Malaysia, 43500 Semenyih, Selangor, Malaysia
| | - Chean Yeah Yong
- China-ASEAN College of Marine Sciences, Xiamen University Malaysia, 43900 Sepang, Selangor, Malaysia
| | - Alan Han Kiat Ong
- Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, 43000 Kajang, Malaysia
| | - Swee Keong Yeap
- China-ASEAN College of Marine Sciences, Xiamen University Malaysia, 43900 Sepang, Selangor, Malaysia.
| | - Wan Yong Ho
- Faculty of Science and Engineering, University of Nottingham Malaysia, 43500 Semenyih, Selangor, Malaysia.
| |
Collapse
|
26
|
Girithar HN, Staats Pires A, Ahn SB, Guillemin GJ, Gluch L, Heng B. Involvement of the kynurenine pathway in breast cancer: updates on clinical research and trials. Br J Cancer 2023; 129:185-203. [PMID: 37041200 PMCID: PMC10338682 DOI: 10.1038/s41416-023-02245-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 03/04/2023] [Accepted: 03/17/2023] [Indexed: 04/13/2023] Open
Abstract
Breast cancer (BrCa) is the leading cause of cancer incidence and mortality in women worldwide. While BrCa treatment has been shown to be highly successful if detected at an early stage, there are few effective strategies to treat metastatic tumours. Hence, metastasis remains the main cause in most of BrCa deaths, highlighting the need for new approaches in this group of patients. Immunotherapy has been gaining attention as a new treatment for BrCa metastasis and the kynurenine pathway (KP) has been suggested as one of the potential targets. The KP is the major biochemical pathway in tryptophan (TRP) metabolism, catabolising TRP to nicotinamide adenine dinucleotide (NAD+). The KP has been reported to be elevated under inflammatory conditions such as cancers and that its activity suppresses immune surveillance. Dysregulation of the KP has previously been reported implicated in BrCa. This review aims to discuss and provide an update on the current mechanisms involved in KP-mediated immune suppression and cancer growth. Furthermore, we also provide a summary on 58 studies about the involvement of the KP and BrCa and five clinical trials targeting KP enzymes and their outcome.
Collapse
Affiliation(s)
- Hemaasri-Neya Girithar
- Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Ananda Staats Pires
- Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Seong Beom Ahn
- Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Gilles J Guillemin
- Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Laurence Gluch
- The Strathfield Breast Centre, Strathfield, NSW, Australia
| | - Benjamin Heng
- Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia.
| |
Collapse
|
27
|
Plaza-Diaz J, Álvarez-Mercado AI. The Interplay between Microbiota and Chemotherapy-Derived Metabolites in Breast Cancer. Metabolites 2023; 13:703. [PMID: 37367861 PMCID: PMC10301694 DOI: 10.3390/metabo13060703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/23/2023] [Accepted: 05/26/2023] [Indexed: 06/28/2023] Open
Abstract
The most common cancer in women is breast cancer, which is also the second leading cause of death in this group. It is, however, important to note that some women will develop or will not develop breast cancer regardless of whether certain known risk factors are present. On the other hand, certain compounds are produced by bacteria in the gut, such as short-chain fatty acids, secondary bile acids, and other metabolites that may be linked to breast cancer development and mediate the chemotherapy response. Modeling the microbiota through dietary intervention and identifying metabolites directly associated with breast cancer and its complications may be useful to identify actionable targets and improve the effect of antiangiogenic therapies. Metabolomics is therefore a complementary approach to metagenomics for this purpose. As a result of the combination of both techniques, a better understanding of molecular biology and oncogenesis can be obtained. This article reviews recent literature about the influence of bacterial metabolites and chemotherapy metabolites in breast cancer patients, as well as the influence of diet.
Collapse
Affiliation(s)
- Julio Plaza-Diaz
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain;
- Instituto de Investigación Biosanitaria ibs.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
| | - Ana Isabel Álvarez-Mercado
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain;
- Instituto de Investigación Biosanitaria ibs.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain
- Institute of Nutrition and Food Technology, Biomedical Research Center, University of Granada, 18016 Armilla, Spain
| |
Collapse
|
28
|
Kado SY, Bein K, Castaneda AR, Pouraryan AA, Garrity N, Ishihara Y, Rossi A, Haarmann-Stemmann T, Sweeney CA, Vogel CFA. Regulation of IDO2 by the Aryl Hydrocarbon Receptor (AhR) in Breast Cancer. Cells 2023; 12:1433. [PMID: 37408267 PMCID: PMC10216785 DOI: 10.3390/cells12101433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/15/2023] [Accepted: 05/18/2023] [Indexed: 07/07/2023] Open
Abstract
Indoleamine 2,3-dioxygenase 2 (IDO2) is a tryptophan-catabolizing enzyme and a homolog of IDO1 with a distinct expression pattern compared with IDO1. In dendritic cells (DCs), IDO activity and the resulting changes in tryptophan level regulate T-cell differentiation and promote immune tolerance. Recent studies indicate that IDO2 exerts an additional, non-enzymatic function and pro-inflammatory activity, which may play an important role in diseases such as autoimmunity and cancer. Here, we investigated the impact of aryl hydrocarbon receptor (AhR) activation by endogenous compounds and environmental pollutants on the expression of IDO2. Treatment with AhR ligands induced IDO2 in MCF-7 wildtype cells but not in CRISPR-cas9 AhR-knockout MCF-7 cells. Promoter analysis with IDO2 reporter constructs revealed that the AhR-dependent induction of IDO2 involves a short-tandem repeat containing four core sequences of a xenobiotic response element (XRE) upstream of the start site of the human ido2 gene. The analysis of breast cancer datasets revealed that IDO2 expression increased in breast cancer compared with normal samples. Our findings suggest that the AhR-mediated expression of IDO2 in breast cancer could contribute to a pro-tumorigenic microenvironment in breast cancer.
Collapse
Affiliation(s)
- Sarah Y. Kado
- Center for Health and the Environment, University of California, One Shields Avenue, Davis, CA 95616, USA; (S.Y.K.); (K.B.); (A.R.C.); (A.A.P.); (N.G.)
| | - Keith Bein
- Center for Health and the Environment, University of California, One Shields Avenue, Davis, CA 95616, USA; (S.Y.K.); (K.B.); (A.R.C.); (A.A.P.); (N.G.)
| | - Alejandro R. Castaneda
- Center for Health and the Environment, University of California, One Shields Avenue, Davis, CA 95616, USA; (S.Y.K.); (K.B.); (A.R.C.); (A.A.P.); (N.G.)
| | - Arshia A. Pouraryan
- Center for Health and the Environment, University of California, One Shields Avenue, Davis, CA 95616, USA; (S.Y.K.); (K.B.); (A.R.C.); (A.A.P.); (N.G.)
| | - Nicole Garrity
- Center for Health and the Environment, University of California, One Shields Avenue, Davis, CA 95616, USA; (S.Y.K.); (K.B.); (A.R.C.); (A.A.P.); (N.G.)
| | - Yasuhiro Ishihara
- Graduate School of Integrated Arts and Sciences, Hiroshima University, Hiroshima 739-8521, Japan;
| | - Andrea Rossi
- Leibniz Research Institute for Environmental Medicine, 40225 Düsseldorf, Germany; (A.R.); (T.H.-S.)
| | - Thomas Haarmann-Stemmann
- Leibniz Research Institute for Environmental Medicine, 40225 Düsseldorf, Germany; (A.R.); (T.H.-S.)
| | - Colleen A. Sweeney
- Department of Biochemistry & Molecular Medicine, School of Medicine, University of California, Davis, CA 95817, USA;
| | - Christoph F. A. Vogel
- Center for Health and the Environment, University of California, One Shields Avenue, Davis, CA 95616, USA; (S.Y.K.); (K.B.); (A.R.C.); (A.A.P.); (N.G.)
- Department of Environmental Toxicology, University of California, One Shields Avenue, Davis, CA 95616, USA
| |
Collapse
|
29
|
Zárate LV, Miret NV, Nicola Candia AJ, Zappia CD, Pontillo CA, Chiappini FA, Monczor F, Candolfi M, Randi AS. Breast cancer progression and kynurenine pathway enzymes are induced by hexachlorobenzene exposure in a Her2-positive model. Food Chem Toxicol 2023; 177:113822. [PMID: 37169060 DOI: 10.1016/j.fct.2023.113822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/05/2023] [Accepted: 05/08/2023] [Indexed: 05/13/2023]
Abstract
Breast cancer is one of the leading cancers among women worldwide. Given the evidence that pesticides play an important role in breast cancer, interest has grown in pesticide impact on disease progression. Hexachlorobenzene (HCB), an aryl hydrocarbon receptor (AhR) ligand, promotes triple-negative breast cancer cell migration and invasion. Estrogen receptor β (ERβ) inhibits cancer motility, while G protein-coupled ER (GPER) modulates the neoplastic transformation. Tryptophan is metabolized through the kynurenine pathway by indoleamine-2,3-dioxygenase (IDO) and tryptophan-2,3-dioxygenase (TDO), with kynurenine signaling activation often predicting worse prognosis in cancer. In this context, we examined the HCB (0.005; 0.05; 0.5 and 5 μM) effect on LM3 cells, a human epidermal growth factor receptor 2 (HER2)-positive breast cancer model. Results show that HCB increases IDO and TDO mRNA levels and promotes cell viability, proliferation and migration through the AhR pathway. Moreover, HCB boosts mammosphere formation, vascular endothelial growth factor and cyclooxygenase-2 expression and reduces IL-10 levels. For some parameters, U-shaped or inverted U-shaped dose-response curves are shown. HCB alters ER levels, reducing ERβ while increasing GPER. These results demonstrate that exposure to environmentally relevant concentrations of HCB up-regulates the kynurenine pathway and dysregulates ERβ and GPER levels, collaborating in HER2-positive breast cancer progression.
Collapse
Affiliation(s)
- Lorena V Zárate
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminants Ambientales, Paraguay 2155, Piso 5, (CP 1121), Buenos Aires, Argentina.
| | - Noelia V Miret
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminants Ambientales, Paraguay 2155, Piso 5, (CP 1121), Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Físico-Matemática, Laboratorio de Radioisótopos, Junín 954, 1er Subsuelo, (CP 1121), Buenos Aires, Argentina.
| | - Alejandro J Nicola Candia
- Universidad de Buenos Aires, Facultad de Medicina, Instituto de Investigaciones Biomédicas, Laboratorio de Inmunoterapia Antitumoral, Paraguay 2155, Piso 10, (CP 1121), Buenos Aires, Argentina.
| | - C Daniel Zappia
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Investigaciones Farmacológicas (UBA-CONICET), Laboratorio de Farmacología de Receptors, Junín 954, Planta Baja, (CP1113), Buenos Aires, Argentina.
| | - Carolina A Pontillo
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminants Ambientales, Paraguay 2155, Piso 5, (CP 1121), Buenos Aires, Argentina.
| | - Florencia A Chiappini
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminants Ambientales, Paraguay 2155, Piso 5, (CP 1121), Buenos Aires, Argentina.
| | - Federico Monczor
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Investigaciones Farmacológicas (UBA-CONICET), Laboratorio de Farmacología de Receptors, Junín 954, Planta Baja, (CP1113), Buenos Aires, Argentina.
| | - Marianela Candolfi
- Universidad de Buenos Aires, Facultad de Medicina, Instituto de Investigaciones Biomédicas, Laboratorio de Inmunoterapia Antitumoral, Paraguay 2155, Piso 10, (CP 1121), Buenos Aires, Argentina.
| | - Andrea S Randi
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminants Ambientales, Paraguay 2155, Piso 5, (CP 1121), Buenos Aires, Argentina.
| |
Collapse
|
30
|
Rhee J, Medgyesi DN, Fisher JA, White AJ, Sampson JN, Sandler DP, Ward MH, Jones RR. Residential proximity to dioxin emissions and risk of breast cancer in the sister study cohort. ENVIRONMENTAL RESEARCH 2023; 222:115297. [PMID: 36642125 PMCID: PMC10246344 DOI: 10.1016/j.envres.2023.115297] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 01/11/2023] [Accepted: 01/11/2023] [Indexed: 06/09/2023]
Abstract
Some dioxins are carcinogenic, but few studies have investigated the relationship between ambient polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/F) and risk of breast cancer. We evaluated associations between proximity-based residential exposure to industrial emissions of PCDD/F and breast cancer risk in a large U.S. cohort. Sister Study participants at enrollment (2003-2009) were followed for incident breast cancer through September 2018. After restricting to participants with ≥10 years of residential history prior to enrollment (n = 35,908), we generated 10-year distance- and toxic equivalency quotient (TEQ)-weighted average emissions indices (AEI [g TEQ/km2]) within 3, 5, or 10 km of participants' residences, overall and by facility type. Multivariable Cox regression models were used to estimate hazard ratios (HRs) and 95% confidence intervals (CIs) for the association between AEI quartiles (vs. zero AEI) and risk of breast cancer [invasive or ductal carcinoma in situ]. There were 2670 incident breast cancer cases over 11 years (median) of follow-up. Breast cancer risk was increased for those in the highest quartile [Q] of AEI exposure within 3 km (HRQ4:1.18, 95% CI: 0.99,1.40, Ptrend = 0.03). The HR was higher for the 10-year AEI at 3 km from municipal solid waste facilities (HR ≥ median.vs.0:1.50, 95% CI: 0.98, 2.29; Ptrend = 0.07). Risk was higher among ever smokers (vs. never smokers) in the top quartile of the 3 km AEI (HRQ4:1.41, 95% CI:1.12,1.77, Ptrend = 0.003; Pinteraction = 0.03) and higher risk for ER negative tumors was suggested (HRQ4:1.47, 95% CI: 0.95, 2.28, Ptrend = 0.07, Pheterogeneity = 0.17). Our findings suggest that residential exposure to PCDD/F emissions may confer an increased risk of breast cancer.
Collapse
Affiliation(s)
- Jongeun Rhee
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics (DCEG), National Cancer Institute (NCI), National Institutes of Health (NIH), 9609 Medical Center Drive, Rockville, MD, United States.
| | - Danielle N Medgyesi
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics (DCEG), National Cancer Institute (NCI), National Institutes of Health (NIH), 9609 Medical Center Drive, Rockville, MD, United States
| | - Jared A Fisher
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics (DCEG), National Cancer Institute (NCI), National Institutes of Health (NIH), 9609 Medical Center Drive, Rockville, MD, United States
| | - Alexandra J White
- Epidemiology Branch, National Institute of Environmental Health Sciences (NIEHS), NIH, A323, David P Rall Building, 111 Tw Alexander Drive, Research Triangle Park, NC, United States
| | - Joshua N Sampson
- Biostatistics Branch, DCEG, NCI, NIH, 9609 Medical Center Drive, Rockville, MD, United States
| | - Dale P Sandler
- Epidemiology Branch, National Institute of Environmental Health Sciences (NIEHS), NIH, A323, David P Rall Building, 111 Tw Alexander Drive, Research Triangle Park, NC, United States
| | - Mary H Ward
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics (DCEG), National Cancer Institute (NCI), National Institutes of Health (NIH), 9609 Medical Center Drive, Rockville, MD, United States
| | - Rena R Jones
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics (DCEG), National Cancer Institute (NCI), National Institutes of Health (NIH), 9609 Medical Center Drive, Rockville, MD, United States
| |
Collapse
|
31
|
Kinnel B, Singh SK, Oprea-Ilies G, Singh R. Targeted Therapy and Mechanisms of Drug Resistance in Breast Cancer. Cancers (Basel) 2023; 15:1320. [PMID: 36831661 PMCID: PMC9954028 DOI: 10.3390/cancers15041320] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
Breast cancer is the most common cause of cancer-related death in women worldwide. Multidrug resistance (MDR) has been a large hurdle in reducing BC death rates. The drug resistance mechanisms include increased drug efflux, enhanced DNA repair, senescence escape, epigenetic alterations, tumor heterogeneity, tumor microenvironment (TME), and the epithelial-to-mesenchymal transition (EMT), which make it challenging to overcome. This review aims to explain the mechanisms of resistance in BC further, identify viable drug targets, and elucidate how those targets relate to the progression of BC and drug resistance.
Collapse
Affiliation(s)
- Briana Kinnel
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Santosh Kumar Singh
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Gabriela Oprea-Ilies
- Department of Pathology & Laboratory Medicine, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Rajesh Singh
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA
- Cancer Health Equity Institute, Morehouse School of Medicine, Atlanta, GA 30310, USA
| |
Collapse
|
32
|
Zgarbová E, Vrzal R. Skatole: A thin red line between its benefits and toxicity. Biochimie 2022; 208:1-12. [PMID: 36586563 DOI: 10.1016/j.biochi.2022.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 12/30/2022]
Abstract
Skatole (3-methylindole) is a heterocyclic compound naturally found in the feces of vertebrates and is produced by certain flowers. Skatole has been used in specific products of the perfume industry or as a flavor additive in ice cream. Additionally, skatole is formed by tryptophan pyrolysis of tobacco and has been demonstrated to be a mutagen. Skatole-induced pulmonotoxicity was reliably described in ruminants and rodents, but no studies have been conducted in humans. Initially, we provide basic knowledge and a historical overview of skatole. Then, skatole bacterial formation in the intestine is described, and the importance of the microbiome during this process is evaluated. Increased skatole concentrations could serve as a marker for intestinal disease development. Therefore, the human molecular targets of skatole that may have significant effects on various processes in the human body are described. Ultimately, we suggest a link between skatole intestinal formation in humans and skatole-induced pulmonotoxicity, which should be explored further in the future.
Collapse
Affiliation(s)
- Eliška Zgarbová
- Department of Cell Biology and Genetics, Faculty of Science, Palacky University, Slechtitelu 27, 783 71, Olomouc, Czech Republic
| | - Radim Vrzal
- Department of Cell Biology and Genetics, Faculty of Science, Palacky University, Slechtitelu 27, 783 71, Olomouc, Czech Republic.
| |
Collapse
|
33
|
Sweeney C, Lazennec G, Vogel CFA. Environmental exposure and the role of AhR in the tumor microenvironment of breast cancer. Front Pharmacol 2022; 13:1095289. [PMID: 36588678 PMCID: PMC9797527 DOI: 10.3389/fphar.2022.1095289] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Activation of the aryl hydrocarbon receptor (AhR) through environmental exposure to chemicals including polycyclic aromatic hydrocarbons (PAHs) and polychlorinated dibenzo-p-dioxins (PCDDs) can lead to severe adverse health effects and increase the risk of breast cancer. This review considers several mechanisms which link the tumor promoting effects of environmental pollutants with the AhR signaling pathway, contributing to the development and progression of breast cancer. We explore AhR's function in shaping the tumor microenvironment, modifying immune tolerance, and regulating cancer stemness, driving breast cancer chemoresistance and metastasis. The complexity of AhR, with evidence for both oncogenic and tumor suppressor roles is discussed. We propose that AhR functions as a "molecular bridge", linking disproportionate toxin exposure and policies which underlie environmental injustice with tumor cell behaviors which drive poor patient outcomes.
Collapse
Affiliation(s)
- Colleen Sweeney
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Sacramento, CA, United States
| | - Gwendal Lazennec
- Centre National de la Recherche Scientifique, SYS2DIAG-ALCEN, Cap Delta, Montpellier, France
| | - Christoph F. A. Vogel
- Center for Health and the Environment, University of California Davis, Davis, CA, United States
- Department of Environmental Toxicology, University of California Davis, Davis, CA, United States
| |
Collapse
|
34
|
Iizuka T, Yin P, Zuberi A, Kujawa S, Coon JS, Björvang RD, Damdimopoulou P, Pacyga DC, Strakovsky RS, Flaws JA, Bulun SE. Mono-(2-ethyl-5-hydroxyhexyl) phthalate promotes uterine leiomyoma cell survival through tryptophan-kynurenine-AHR pathway activation. Proc Natl Acad Sci U S A 2022; 119:e2208886119. [PMID: 36375056 PMCID: PMC9704719 DOI: 10.1073/pnas.2208886119] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 10/03/2022] [Indexed: 11/15/2022] Open
Abstract
Uterine leiomyoma is the most common tumor in women and causes severe morbidity in 15 to 30% of reproductive-age women. Epidemiological studies consistently indicate a correlation between leiomyoma development and exposure to endocrine-disrupting chemical phthalates, especially di-(2-ethylhexyl) phthalate (DEHP); however, the underlying mechanisms are unknown. Here, among the most commonly encountered phthalate metabolites, we found the strongest association between the urine levels of mono(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP), the principal DEHP metabolite, and the risk of uterine leiomyoma diagnosis (n = 712 patients). The treatment of primary leiomyoma and smooth muscle cells (n = 29) with various mixtures of phthalate metabolites, at concentrations equivalent to those detected in urine samples, significantly increased cell viability and decreased apoptosis. MEHHP had the strongest effects on both cell viability and apoptosis. MEHHP increased cellular tryptophan and kynurenine levels strikingly and induced the expression of the tryptophan transporters SLC7A5 and SLC7A8, as well as, tryptophan 2,3-dioxygenase (TDO2), the key enzyme catalyzing the conversion of tryptophan to kynurenine that is the endogenous ligand of aryl hydrocarbon receptor (AHR). MEHHP stimulated nuclear localization of AHR and up-regulated the expression of CYP1A1 and CYP1B1, two prototype targets of AHR. siRNA knockdown or pharmacological inhibition of SLC7A5/SLC7A8, TDO2, or AHR abolished MEHHP-mediated effects on leiomyoma cell survival. These findings indicate that MEHHP promotes leiomyoma cell survival by activating the tryptophan-kynurenine-AHR pathway. This study pinpoints MEHHP exposure as a high-risk factor for leiomyoma growth, uncovers a mechanism by which exposure to environmental phthalate impacts leiomyoma pathogenesis, and may lead to the development of novel druggable targets.
Collapse
Affiliation(s)
- Takashi Iizuka
- Division of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60610
| | - Ping Yin
- Division of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60610
| | - Azna Zuberi
- Division of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60610
| | - Stacy Kujawa
- Division of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60610
| | - John S. Coon
- Division of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60610
| | - Richelle D. Björvang
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institute and Karolinska University Hospital, 171 64 Stockholm, Sweden
| | - Pauliina Damdimopoulou
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institute and Karolinska University Hospital, 171 64 Stockholm, Sweden
| | - Diana C. Pacyga
- Department of Food Science and Human Nutrition, Institute for Integrative Toxicology, Michigan State University, East Lansing, MI 48824
| | - Rita S. Strakovsky
- Department of Food Science and Human Nutrition, Institute for Integrative Toxicology, Michigan State University, East Lansing, MI 48824
| | - Jodi A. Flaws
- Department of Comparative Bioscience, University of Illinois at Urbana–Champagne, Urbana, IL 61802
| | - Serdar E. Bulun
- Division of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60610
| |
Collapse
|
35
|
Safe S, Zhang L. The Role of the Aryl Hydrocarbon Receptor (AhR) and Its Ligands in Breast Cancer. Cancers (Basel) 2022; 14:5574. [PMID: 36428667 PMCID: PMC9688153 DOI: 10.3390/cancers14225574] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 10/27/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
Breast cancer is a complex disease which is defined by numerous cellular and molecular markers that can be used to develop more targeted and successful therapies. The aryl hydrocarbon receptor (AhR) is overexpressed in many breast tumor sub-types, including estrogen receptor -positive (ER+) tumors; however, the prognostic value of the AhR for breast cancer patient survival is not consistent between studies. Moreover, the functional role of the AhR in various breast cancer cell lines is also variable and exhibits both tumor promoter- and tumor suppressor- like activity and the AhR is expressed in both ER-positive and ER-negative cells/tumors. There is strong evidence demonstrating inhibitory AhR-Rα crosstalk where various AhR ligands induce ER degradation. It has also been reported that different structural classes of AhR ligands, including halogenated aromatics, polynuclear aromatics, synthetic drugs and other pharmaceuticals, health promoting phytochemical-derived natural products and endogenous AhR-active compounds inhibit one or more of breast cancer cell proliferation, survival, migration/invasion, and metastasis. AhR-dependent mechanisms for the inhibition of breast cancer by AhR agonists are variable and include the downregulation of multiple genes/gene products such as CXCR4, MMPs, CXCL12, SOX4 and the modulation of microRNA levels. Some AhR ligands, such as aminoflavone, have been investigated in clinical trials for their anticancer activity against breast cancer. In contrast, several publications have reported that AhR agonists and antagonists enhance and inhibit mammary carcinogenesis, respectively, and differences between the anticancer activities of AhR agonists in breast cancer may be due in part to cell context and ligand structure. However, there are reports showing that the same AhR ligand in the same breast cancer cell line gives opposite results. These differences need to be resolved in order to further develop and take advantage of promising agents that inhibit mammary carcinogenesis by targeting the AhR.
Collapse
Affiliation(s)
- Stephen Safe
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | | |
Collapse
|
36
|
Therachiyil L, Hussein OJ, Uddin S, Korashy HM. Regulation of the aryl hydrocarbon receptor in cancer and cancer stem cells of gynecological malignancies: An update on signaling pathways. Semin Cancer Biol 2022; 86:1186-1202. [PMID: 36252938 DOI: 10.1016/j.semcancer.2022.10.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 10/04/2022] [Accepted: 10/12/2022] [Indexed: 01/27/2023]
Abstract
Gynecological malignancies are a female type of cancers that affects the reproductive system. Cancer metastasis or recurrence mediated by cellular invasiveness occurs at advanced stages of cancer progression. Cancer Stem Cells (CSCs) enrichment in tumors leads to chemoresistance, which results in cancer mortality. Exposure to environmental pollutants such as polycyclic aromatic hydrocarbons is associated with an increased the risk of CSC enrichment in gynecological cancers. One of the important pathways that mediates the metabolism and bioactivation of these environmental chemicals is the transcription factor, aryl hydrocarbon receptor (AhR). The present review explores the molecular mechanisms regulating the crosstalk and interaction of the AhR with cancer-related signaling pathways, such as apoptosis, epithelial-mesenchymal transition, immune checkpoints, and G-protein-coupled receptors in several gynecological malignancies such as ovarian, uterine, endometrial, and cervical cancers. The review also discusses the potential of targeting the AhR pathway as a novel chemotherapy for gynecological cancers.
Collapse
Affiliation(s)
- Lubna Therachiyil
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha, Qatar; Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar.
| | - Ola J Hussein
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha, Qatar.
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar.
| | - Hesham M Korashy
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha, Qatar.
| |
Collapse
|
37
|
Salminen A. Aryl hydrocarbon receptor (AhR) reveals evidence of antagonistic pleiotropy in the regulation of the aging process. Cell Mol Life Sci 2022; 79:489. [PMID: 35987825 PMCID: PMC9392714 DOI: 10.1007/s00018-022-04520-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/14/2022] [Accepted: 08/08/2022] [Indexed: 11/24/2022]
Abstract
The antagonistic pleiotropy hypothesis is a well-known evolutionary theory to explain the aging process. It proposes that while a particular gene may possess beneficial effects during development, it can exert deleterious properties in the aging process. The aryl hydrocarbon receptor (AhR) has a significant role during embryogenesis, but later in life, it promotes several age-related degenerative processes. For instance, AhR factor (i) controls the pluripotency of stem cells and the stemness of cancer stem cells, (ii) it enhances the differentiation of embryonal stem cells, especially AhR signaling modulates the differentiation of hematopoietic stem cells and progenitor cells, (iii) it also stimulates the differentiation of immunosuppressive Tregs, Bregs, and M2 macrophages, and finally, (iv) AhR signaling participates in the differentiation of many peripheral tissues. On the other hand, AhR signaling is involved in many processes promoting cellular senescence and pathological processes, e.g., osteoporosis, vascular dysfunction, and the age-related remodeling of the immune system. Moreover, it inhibits autophagy and aggravates extracellular matrix degeneration. AhR signaling also stimulates oxidative stress, promotes excessive sphingolipid synthesis, and disturbs energy metabolism by catabolizing NAD+ degradation. The antagonistic pleiotropy of AhR signaling is based on the complex and diverse connections with major signaling pathways in a context-dependent manner. The major regulatory steps include, (i) a specific ligand-dependent activation, (ii) modulation of both genetic and non-genetic responses, (iii) a competition and crosstalk with several transcription factors, such as ARNT, HIF-1α, E2F1, and NF-κB, and (iv) the epigenetic regulation of target genes with binding partners. Thus, not only mTOR signaling but also the AhR factor demonstrates antagonistic pleiotropy in the regulation of the aging process.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland.
| |
Collapse
|
38
|
Benoit L, Jornod F, Zgheib E, Tomkiewicz C, Koual M, Coustillet T, Barouki R, Audouze K, Vinken M, Coumoul X. Adverse outcome pathway from activation of the AhR to breast cancer-related death. ENVIRONMENT INTERNATIONAL 2022; 165:107323. [PMID: 35660951 DOI: 10.1016/j.envint.2022.107323] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/03/2022] [Accepted: 05/24/2022] [Indexed: 05/15/2023]
Abstract
Adverse outcome pathways (AOPs) are formalized and structured linear concepts that connect one molecular initiating event (MIE) to an adverse outcome (AO) via different key events (KE) through key event relationships (KER). They are mainly used in eco-toxicology toxicology, and regulatory health issues. AOPs must respond to specific guidelines from the Organization for Economic Co-operation and Development (OECD) to weight the evidence between each KE. Breast cancer is the deadliest cancer in women with a poor prognosis in case of metastatic breast cancer. The role of the environments in the formation of metastasis has been suggested. We hypothesized that activation of the AhR (MIE), a xenobiotic receptor, could lead to breast cancer related death (AO), through different KEs, constituting a new AOP. An artificial intelligence tool (AOP-helpfinder), which screens the available literature, was used to collect all existing scientific abstracts to build a novel AOP, using a list of key words. Four hundred and seven abstracts were found containing at least a word from our MIE list and either one word from our AO or KE list. A manual curation retained 113 pertinent articles, which were also screened using PubTator. From these analyses, an AOP was created linking the activation of the AhR to breast cancer related death through decreased apoptosis, inflammation, endothelial cell migration, angiogenesis, and invasion. These KEs promote an increased tumor growth, angiogenesis and migration which leads to breast cancer metastasis and breast cancer related death. The evidence of the proposed AOP was weighted using the tailored Bradford Hill criteria and the OECD guidelines. The confidence in our AOP was considered strong. An in vitro validation must be carried out, but our review proposes a strong relationship between AhR activation and breast cancer-related death with an innovative use of an artificial intelligence literature search.
Collapse
Affiliation(s)
- Louise Benoit
- Université Paris Cité, T3S, INSERM UMR-S 1124, 45 rue des Saints Pères, Paris, France; Assistance Publique-Hôpitaux de Paris, European Hospital Georges-Pompidou, Gynecologic and Breast Oncologic Surgery Department, Paris, France.
| | - Florence Jornod
- Université Paris Cité, T3S, INSERM UMR-S 1124, 45 rue des Saints Pères, Paris, France
| | - Elias Zgheib
- Université Paris Cité, T3S, INSERM UMR-S 1124, 45 rue des Saints Pères, Paris, France
| | - Celine Tomkiewicz
- Université Paris Cité, T3S, INSERM UMR-S 1124, 45 rue des Saints Pères, Paris, France
| | - Meriem Koual
- Université Paris Cité, T3S, INSERM UMR-S 1124, 45 rue des Saints Pères, Paris, France; Assistance Publique-Hôpitaux de Paris, European Hospital Georges-Pompidou, Gynecologic and Breast Oncologic Surgery Department, Paris, France
| | - Thibaut Coustillet
- Université Paris Cité, T3S, INSERM UMR-S 1124, 45 rue des Saints Pères, Paris, France
| | - Robert Barouki
- Université Paris Cité, T3S, INSERM UMR-S 1124, 45 rue des Saints Pères, Paris, France; Assistance Publique-Hôpitaux de Paris, European Hospital Georges-Pompidou, Gynecologic and Breast Oncologic Surgery Department, Paris, France
| | - Karine Audouze
- Université Paris Cité, T3S, INSERM UMR-S 1124, 45 rue des Saints Pères, Paris, France
| | - Mathieu Vinken
- Entity of In Vitro Toxicology and Dermato-Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Xavier Coumoul
- Université Paris Cité, T3S, INSERM UMR-S 1124, 45 rue des Saints Pères, Paris, France
| |
Collapse
|
39
|
Therachiyil L, Krishnankutty R, Ahmad F, Mateo JM, Uddin S, Korashy HM. Aryl Hydrocarbon Receptor Promotes Cell Growth, Stemness Like Characteristics, and Metastasis in Human Ovarian Cancer via Activation of PI3K/Akt, β-Catenin, and Epithelial to Mesenchymal Transition Pathways. Int J Mol Sci 2022; 23:6395. [PMID: 35742838 PMCID: PMC9223661 DOI: 10.3390/ijms23126395] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 12/15/2022] Open
Abstract
Ovarian cancer (OC) ranks first in cancer-related deaths out of all female reproductive malignancies with high-pitched tumor relapse and chemoresistance. Several reports correlate cancer occurrences with exposure to xenobiotics via induction of a protein receptor named aryl hydrocarbon receptor (AhR). However, the effect of AhR on OC proliferation, expansion, and chemoresistance remains unrevealed. For this purpose, OC cells A2780 and A2780cis cells were treated with AhR activator, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), and the effects were determined by Real-Time Cell Analyzer, clonogenic assay, flow cytometry, immunoblotting and wound healing assay. Our results showed that activation of AhR by TCDD in A2780 cells induced the PI3K/AKT pathway followed by induction of anti-apoptotic proteins BCL-2, BCL-xl, and MCL-1. In addition, a significant increase in stemness marker aldehyde dehydrogenase (ALDH1) was observed. This effect was also associated with an accumulation of β-catenin, a Wnt transcription factor. Moreover, we observed induction of epithelial to mesenchymal transition (EMT) upon AhR activation. In conclusion, the results from the current study confirm that AhR mediates OC progression, stemness characteristics, and metastatic potential via activation of PI3K/Akt, Wnt/β-catenin, and EMT. This study provides a better insight into the modulatory role of AhR that might help in developing novel therapeutic strategies for OC treatment.
Collapse
Affiliation(s)
- Lubna Therachiyil
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha P.O. Box 2713, Qatar;
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha P.O. Box 2713, Qatar; (R.K.); (F.A.); (J.M.M.); (S.U.)
| | - Roopesh Krishnankutty
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha P.O. Box 2713, Qatar; (R.K.); (F.A.); (J.M.M.); (S.U.)
| | - Fareed Ahmad
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha P.O. Box 2713, Qatar; (R.K.); (F.A.); (J.M.M.); (S.U.)
- Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha P.O. Box 2713, Qatar
| | - Jericha M. Mateo
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha P.O. Box 2713, Qatar; (R.K.); (F.A.); (J.M.M.); (S.U.)
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha P.O. Box 2713, Qatar; (R.K.); (F.A.); (J.M.M.); (S.U.)
- Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha P.O. Box 2713, Qatar
| | - Hesham M. Korashy
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha P.O. Box 2713, Qatar;
| |
Collapse
|
40
|
Maharjan CK, Mo J, Wang L, Kim MC, Wang S, Borcherding N, Vikas P, Zhang W. Natural and Synthetic Estrogens in Chronic Inflammation and Breast Cancer. Cancers (Basel) 2021; 14:cancers14010206. [PMID: 35008370 PMCID: PMC8744660 DOI: 10.3390/cancers14010206] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/17/2021] [Accepted: 12/19/2021] [Indexed: 12/17/2022] Open
Abstract
The oncogenic role of estrogen receptor (ER) signaling in breast cancer has long been established. Interaction of estrogen with estrogen receptor (ER) in the nucleus activates genomic pathways of estrogen signaling. In contrast, estrogen interaction with the cell membrane-bound G-protein-coupled estrogen receptor (GPER) activates the rapid receptor-mediated signaling transduction cascades. Aberrant estrogen signaling enhances mammary epithelial cell proliferation, survival, and angiogenesis, hence is an important step towards breast cancer initiation and progression. Meanwhile, a growing number of studies also provide evidence for estrogen's pro- or anti-inflammatory roles. As other articles in this issue cover classic ER and GPER signaling mediated by estrogen, this review will discuss the crucial mechanisms by which estrogen signaling influences chronic inflammation and how that is involved in breast cancer. Xenoestrogens acquired from plant diet or exposure to industrial products constantly interact with and alter innate estrogen signaling at various levels. As such, they can modulate chronic inflammation and breast cancer development. Natural xenoestrogens generally have anti-inflammatory properties, which is consistent with their chemoprotective role in breast cancer. In contrast, synthetic xenoestrogens are proinflammatory and carcinogenic compounds that can increase the risk of breast cancer. This article also highlights important xenoestrogens with a particular focus on their role in inflammation and breast cancer. Improved understanding of the complex relationship between estrogens, inflammation, and breast cancer will guide clinical research on agents that could advance breast cancer prevention and therapy.
Collapse
Affiliation(s)
- Chandra K. Maharjan
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL 32610, USA; (C.K.M.); (J.M.); (L.W.); (M.-C.K.)
| | - Jiao Mo
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL 32610, USA; (C.K.M.); (J.M.); (L.W.); (M.-C.K.)
| | - Lei Wang
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL 32610, USA; (C.K.M.); (J.M.); (L.W.); (M.-C.K.)
| | - Myung-Chul Kim
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL 32610, USA; (C.K.M.); (J.M.); (L.W.); (M.-C.K.)
| | - Sameul Wang
- Canyonoak Consulting LLC, San Diego, CA 92127, USA;
| | - Nicholas Borcherding
- Department of Pathology and Immunology, School of Medicine, Washington University, St. Louis, MO 63110, USA;
| | - Praveen Vikas
- Department of Internal Medicine, Carver College of Medicine, Iowa City, IA 52242, USA;
| | - Weizhou Zhang
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL 32610, USA; (C.K.M.); (J.M.); (L.W.); (M.-C.K.)
- Mechanism of Oncogenesis Program, University of Florida Health Cancer Center, University of Florida, Gainesville, FL 32610, USA
- Correspondence: to: ; Tel.: +1-352-273-6748
| |
Collapse
|
41
|
Alhoshani A, Alotaibi M, As Sobeai HM, Alharbi N, Alhazzani K, Al-Dhfyan A, Alanazi FE, Korashy HM. In vivo and in vitro studies evaluating the chemopreventive effect of metformin on the aryl hydrocarbon receptor-mediated breast carcinogenesis. Saudi J Biol Sci 2021; 28:7396-7403. [PMID: 34867043 PMCID: PMC8626299 DOI: 10.1016/j.sjbs.2021.08.051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/12/2021] [Accepted: 08/15/2021] [Indexed: 01/02/2023] Open
Abstract
Metformin (MET) is a clinically used anti-hyperglycemic agent that shows activities against chemically-induced animal models of cancer. A study from our laboratory showed that MET protectes against 7, 12-dimethylbenz[a]anthracene (DMBA)-induced carcinogenesis in vitro human non-cancerous epithelial breast cells (MCF10A) via activation of the aryl hydrocarbon receptor (AhR). However, it is unclear whether MET can prevent the initiation of breast carcinogenesis in an in vivo rat model of AhR-induced breast carcinogenesis. Therefore, the main aims of this study are to examine the effect of MET on protecting against rat breast carcinogenesis induced by DMBA and to explore whether this effect is medicated through the AhR pathway. In this study, treatment of female rats with DMBA initiated breast carcinogenesis though inhibiting apoptosis and tumor suppressor genes while inducing oxidative DNA damage and cell cycle proliferative markers. This effect was associated with activation of AhR and its downstream target genes; cytochrome P4501A1 (CYP1A1) and CYP1B1. Importantly, MET treatment protected against DMBA-induced breast carcinogenesis by restoring DMBA effects on apoptosis, tumor suppressor genes, DNA damage, and cell proliferation. Mechanistically using in vitro human breast cancer MCF-7 cells, MET inhibited breast cancer stem cells spheroids formation and development by DMBA, which was accompanied by a proportional inhibition in CYP1A1 gene expression. In conclusion, the study reports evidence that MET is an effective chemopreventive therapy for breast cancer by inhibiting the activation of CYP1A1/CYP1B1 pathway in vivo rat model.
Collapse
Affiliation(s)
- Ali Alhoshani
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Moureq Alotaibi
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Homood M As Sobeai
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Naif Alharbi
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Khalid Alhazzani
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Abdullah Al-Dhfyan
- Stem Cell & Tissue Re-Engineering, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| | - Fawaz E Alanazi
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Hesham M Korashy
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha 2713, Qatar
| |
Collapse
|
42
|
Wang J, Mijiti Y, Chen Y, Liu Z. Aryl hydrocarbon receptor is a prognostic biomarker and is correlated with immune responses in cervical cancer. Bioengineered 2021; 12:11922-11935. [PMID: 34784845 PMCID: PMC8810191 DOI: 10.1080/21655979.2021.2006953] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Aryl hydrocarbon receptor (AHR) plays an important role in tumor development. However, its function in cervical cancer has not been fully elucidated. We evaluated the ten genes that are predicted to associate with AHR protein interaction. The comprehensive scores were: CYP1A1, ARNT2, HSP90AA1, ARNT, AIP, PTGES3, HSP90AB1, CYP1B1, ESR1, MAF, respectively. In addition, we showed that levels of AHR and its related genes were correlated with the immune infiltration and expression of immuno-regulators (immunoinhibitors, immunostimulators, MHC molecules) levels in cervical cancer. High expression of AHR, CYP1A1, HSP90AA1, and HSP90AB1 and low expression of ESR1 were negatively correlated with the prognoses of cervical cancer patients. The Cox multivariate regression showed that high expression of AHR (HR = 1.874, 95% CI = 1.069–3.285, P= 0.028) and CYP1A1 (HR = 1.822, 95%CI = 1.077–3.080, P= 0.025) were risk factors for prognosis in patients with cervical cancer. IHC results indicated that AHR and CYP1A1 were widely expressed in cervical cancer. These findings suggest that AHR and CYP1A1 may serve as prognostic biomarkers for determining prognosis and immune infiltration in cervical cancer.
Collapse
Affiliation(s)
- Jiasui Wang
- School of Public Health, Xinjiang Medical University, Urumqi, China
| | - Yilidana Mijiti
- The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Yalin Chen
- The Sixth Division Hospital of Xinjiang Production and Construction Corps, China
| | - Zaoling Liu
- School of Public Health, Xinjiang Medical University, Urumqi, China
| |
Collapse
|
43
|
Sahebnasagh A, Hashemi J, Khoshi A, Saghafi F, Avan R, Faramarzi F, Azimi S, Habtemariam S, Sureda A, Khayatkashani M, Safdari M, Rezai Ghaleno H, Soltani H, Khayat Kashani HR. Aromatic hydrocarbon receptors in mitochondrial biogenesis and function. Mitochondrion 2021; 61:85-101. [PMID: 34600156 DOI: 10.1016/j.mito.2021.09.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 09/17/2021] [Accepted: 09/27/2021] [Indexed: 12/11/2022]
Abstract
Mitochondria are ubiquitous membrane-bound organelles that not only play a key role in maintaining cellular energy homeostasis and metabolism but also in signaling and apoptosis. Aryl hydrocarbons receptors (AhRs) are ligand-activated transcription factors that recognize a wide variety of xenobiotics, including polyaromatic hydrocarbons and dioxins, and activate diverse detoxification pathways. These receptors are also activated by natural dietary compounds and endogenous metabolites. In addition, AhRs can modulate the expression of a diverse array of genes related to mitochondrial biogenesis and function. The aim of the present review is to analyze scientific data available on the AhR signaling pathway and its interaction with the intracellular signaling pathways involved in mitochondrial functions, especially those related to cell cycle progression and apoptosis. Various evidence have reported the crosstalk between the AhR signaling pathway and the nuclear factor κB (NF-κB), tyrosine kinase receptor signaling and mitogen-activated protein kinases (MAPKs). The AhR signaling pathway seems to promote cell cycle progression in the absence of exogenous ligands, whereas the presence of exogenous ligands induces cell cycle arrest. However, its effects on apoptosis are controversial since activation or overexpression of AhR has been observed to induce or inhibit apoptosis depending on the cell type. Regarding the mitochondria, although activation by endogenous ligands is related to mitochondrial dysfunction, the effects of endogenous ligands are not well understood but point towards antiapoptotic effects and inducers of mitochondrial biogenesis.
Collapse
Affiliation(s)
- Adeleh Sahebnasagh
- Clinical Research Center, Department of Internal Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Javad Hashemi
- Department of Pathobiology and Laboratory Sciences, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Amirhosein Khoshi
- Department of Clinical Biochemistry, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Fatemeh Saghafi
- Department of Clinical Pharmacy, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Razieh Avan
- Assistant Professor of Clinical Pharmacy, Department of Clinical Pharmacy, Medical Toxicology and Drug Abuse Research Center (MTDRC), Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Fatemeh Faramarzi
- Clinical Pharmacy Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Saeed Azimi
- Student Research Committee, Department of Clinical Pharmacy, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Solomon Habtemariam
- Pharmacognosy Research Laboratories and Herbal Analysis Services, School of Science, University of Greenwich, Central Avenue, Chatham-Maritime, Kent ME4 4TB, United Kingdom
| | - Antoni Sureda
- Research Group in Community Nutrition and Oxidative Stress, University of the Balearic Islands and Health Research Institute of Balearic Islands (IdISBa), Palma de Mallorca, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Maryam Khayatkashani
- School of Iranian Traditional Medicine, Tehran University of Medical Sciences, 14155-6559 Tehran, Iran
| | - Mohammadreza Safdari
- Department of Orthopedic Surgery, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Hassan Rezai Ghaleno
- Department of Surgery, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Hosseinali Soltani
- Department of General Surgery, Imam Ali Hospital, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Hamid Reza Khayat Kashani
- Department of Neurosurgery, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
44
|
Rao Malla R, Marni R, Kumari S, Chakraborty A, Lalitha P. Microbiome Assisted Tumor Microenvironment: Emerging Target of Breast Cancer. Clin Breast Cancer 2021; 22:200-211. [PMID: 34625387 DOI: 10.1016/j.clbc.2021.09.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/21/2021] [Accepted: 09/07/2021] [Indexed: 02/08/2023]
Abstract
The microbiome assisted tumor microenvironment (TME) supports the tumors by modulating multiple mechanisms. Recent studies reported that microbiome dysbiosis is the main culprit of immune suppressive phenotypes of TME. Further, it has been documented that immune suppressive stimulate metastatic phenotype in TME via modulating signaling pathways, cell differentiation, and innate immune response. This review aims at providing comprehensive developments in microbiome and breast TME interface. The combination of microbiome and breast cancer, breast TME and microbiome or microbial dysbiosis, microbiome and risk of breast cancer, microbiome and phytochemicals or anticancer drugs were as used keywords to retrieve literature from PubMed, Google scholar, Scopus, Web of Science from 2015 onwards. Based on the literature, we presented the impact of TME assisted microbiome dysbiosis and estrobolome in breast cancer risk, drug resistance, and antitumor immunity. We have discussed the influence of antibiotics on the breast microbiome. we also presented the possible dietary phytochemicals that target microbiome dysbiosis to restore the tumor suppression immune environment in breast TME. We presented the microbiome as a possible marker for breast cancer diagnosis. This study will help in the identification of microbiome as a novel target and diagnostic markers and phytochemicals and microbiome metabolites for breast cancer treatment.
Collapse
Affiliation(s)
- Rama Rao Malla
- Cancer Biology Laboratory, Department of Biochemistry and Bioinformatics, GIS, GITAM (Deemed to be University), Visakhapatnam, Andhra Pradesh, India.
| | - Rakshmitha Marni
- Cancer Biology Laboratory, Department of Biochemistry and Bioinformatics, GIS, GITAM (Deemed to be University), Visakhapatnam, Andhra Pradesh, India
| | - Seema Kumari
- Cancer Biology Laboratory, Department of Biochemistry and Bioinformatics, GIS, GITAM (Deemed to be University), Visakhapatnam, Andhra Pradesh, India
| | | | - Pappu Lalitha
- Department of Microbiology and FST, GIS, GITAM (Deemed to be University), Visakhapatnam, Andhra Pradesh, India
| |
Collapse
|
45
|
Kwiatkowska I, Hermanowicz JM, Przybyszewska-Podstawka A, Pawlak D. Not Only Immune Escape-The Confusing Role of the TRP Metabolic Pathway in Carcinogenesis. Cancers (Basel) 2021; 13:2667. [PMID: 34071442 PMCID: PMC8198784 DOI: 10.3390/cancers13112667] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/20/2021] [Accepted: 05/26/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The recently discovered phenomenon that cancer cells can avoid immune response has gained scientists' interest. One of the pathways involved in this process is tryptophan (TRP) metabolism through the kynurenine pathway (KP). Individual components involved in TRP conversion seem to contribute to cancerogenesis both through a direct impact on cancer cells and the modulation of immune cell functionality. Due to this fact, this pathway may serve as a target for immunotherapy and attempts are being made to create novel compounds effective in cancer treatment. However, the results obtained from clinical trials are not satisfactory, which raises questions about the exact role of KP elements in tumorigenesis. An increasing number of experiments reveal that TRP metabolites may either be tumor promoters and suppressors and this is why further research in this field is highly needed. The aim of this study is to present KP as a modulator of cancer development through multiple mechanisms and to point to its ambiguity, which may be a reason for failures in treatment based on the inhibition of tryptophan metabolism.
Collapse
Affiliation(s)
- Iwona Kwiatkowska
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland; (J.M.H.); (D.P.)
| | - Justyna Magdalena Hermanowicz
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland; (J.M.H.); (D.P.)
- Department of Clinical Pharmacy, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland
| | | | - Dariusz Pawlak
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland; (J.M.H.); (D.P.)
| |
Collapse
|
46
|
Vogel CFA, Lazennec G, Kado SY, Dahlem C, He Y, Castaneda A, Ishihara Y, Vogeley C, Rossi A, Haarmann-Stemmann T, Jugan J, Mori H, Borowsky AD, La Merrill MA, Sweeney C. Targeting the Aryl Hydrocarbon Receptor Signaling Pathway in Breast Cancer Development. Front Immunol 2021; 12:625346. [PMID: 33763068 PMCID: PMC7982668 DOI: 10.3389/fimmu.2021.625346] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 02/11/2021] [Indexed: 01/09/2023] Open
Abstract
Activation of the aryl hydrocarbon receptor (AhR) through environmental exposure to known human carcinogens including dioxins can lead to the promotion of breast cancer. While the repressor protein of the AhR (AhRR) blocks the canonical AhR pathway, the function of AhRR in the development of breast cancer is not well-known. In the current study we examined the impact of suppressing AhR activity using its dedicated repressor protein AhRR. AhRR is a putative tumor suppressor and is silenced in several cancer types, including breast, where its loss correlates with shorter patient survival. Using the AhRR transgenic mouse, we demonstrate that AhRR overexpression opposes AhR-driven and inflammation-induced growth of mammary tumors in two different murine models of breast cancer. These include a syngeneic model using E0771 mammary tumor cells as well as the Polyoma Middle T antigen (PyMT) transgenic model. Further AhRR overexpression or knockout of AhR in human breast cancer cells enhanced apoptosis induced by chemotherapeutics and inhibited the growth of mouse mammary tumor cells. This study provides the first in vivo evidence that AhRR suppresses mammary tumor development and suggests that strategies which lead to its functional restoration and expression may have therapeutic benefit.
Collapse
MESH Headings
- Animals
- Animals, Genetically Modified
- Antigens, Polyomavirus Transforming/genetics
- Antineoplastic Agents/pharmacology
- Apoptosis
- Basic Helix-Loop-Helix Transcription Factors/genetics
- Basic Helix-Loop-Helix Transcription Factors/metabolism
- Breast Neoplasms/drug therapy
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Cell Proliferation
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/pathology
- Doxorubicin/pharmacology
- Drug Resistance, Neoplasm
- Etoposide/pharmacology
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- MCF-7 Cells
- Mice, Inbred C57BL
- Receptors, Aryl Hydrocarbon/genetics
- Receptors, Aryl Hydrocarbon/metabolism
- Repressor Proteins/genetics
- Repressor Proteins/metabolism
- Signal Transduction/drug effects
- Time Factors
- Tumor Burden
- Tumor Cells, Cultured
- Mice
Collapse
Affiliation(s)
- Christoph F. A. Vogel
- Department of Environmental Toxicology, University of California, Davis, Davis, CA, United States
- Center for Health and the Environment, University of California, Davis, Davis, CA, United States
| | | | - Sarah Y. Kado
- Center for Health and the Environment, University of California, Davis, Davis, CA, United States
| | - Carla Dahlem
- Center for Health and the Environment, University of California, Davis, Davis, CA, United States
| | - Yi He
- Center for Health and the Environment, University of California, Davis, Davis, CA, United States
| | - Alejandro Castaneda
- Center for Health and the Environment, University of California, Davis, Davis, CA, United States
| | - Yasuhiro Ishihara
- Center for Health and the Environment, University of California, Davis, Davis, CA, United States
- Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Christian Vogeley
- Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Andrea Rossi
- Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | | | - Juliann Jugan
- Department of Environmental Toxicology, University of California, Davis, Davis, CA, United States
| | - Hidetoshi Mori
- Center for Comparative Medicine, University of California, Davis, Davis, CA, United States
| | - Alexander D. Borowsky
- Center for Comparative Medicine, University of California, Davis, Davis, CA, United States
| | - Michele A. La Merrill
- Department of Environmental Toxicology, University of California, Davis, Davis, CA, United States
| | - Colleen Sweeney
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Davis, CA, United States
| |
Collapse
|
47
|
Ala M. The footprint of kynurenine pathway in every cancer: a new target for chemotherapy. Eur J Pharmacol 2021; 896:173921. [PMID: 33529725 DOI: 10.1016/j.ejphar.2021.173921] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 01/08/2021] [Accepted: 01/26/2021] [Indexed: 02/06/2023]
Abstract
Treatment of cancers has always been a challenge for physicians. Typically, several groups of anti-cancer medications are needed for effective management of an invasive and metastatic cancer. Recently, therapeutic potentiation of immune system markedly improved treatment of cancers. Kynurenine pathway has an interwoven correlation with immune system. Kynurenine promotes T Reg (regulatory) differentiation, which leads to increased production of anti-inflammatory cytokines and suppression of cytotoxic activity of T cells. Overactivation of kynurenine pathway in cancers provides an immunologically susceptible microenvironment for mutant cells to survive and invade surrounding tissues. Interestingly, kynurenine pathway vigorously interacts with other molecular pathways involved in tumorigenesis. For instance, kynurenine pathway interacts with phospoinosisitide-3 kinase (PI3K), extracellular signal-regulated kinase (ERK), Wnt/β-catenin, P53, bridging integrator 1 (BIN-1), cyclooxygenase 2 (COX-2), cyclin-dependent kinase (CDK) and collagen type XII α1 chain (COL12A1). Overactivation of kynurenine pathway, particularly overactivation of indoleamine 2,3-dioxygenase (IDO) predicts poor prognosis of several cancers such as gastrointestinal cancers, gynecological cancers, hematologic malignancies, breast cancer, lung cancer, glioma, melanoma, prostate cancer and pancreatic cancer. Furthermore, kynurenine increases the invasion, metastasis and chemoresistance of cancer cells. Recently, IDO inhibitors entered clinical trials and successfully passed their safety tests and showed promising therapeutic efficacy for cancers such as melanoma, brain cancer, renal cell carcinoma, prostate cancer and pancreatic cancer. However, a phase III trial of epacadostat, an IDO inhibitor, could not increase the efficacy of treatment with pembrolizumab for melanoma. In this review the expanding knowledge towards kynurenine pathway and its application in each cancer is discussed separately.
Collapse
Affiliation(s)
- Moein Ala
- School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran.
| |
Collapse
|
48
|
Engin AB, Engin A. Indoleamine 2,3-Dioxygenase Activity-Induced Acceleration of Tumor Growth, and Protein Kinases-Related Novel Therapeutics Regimens. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1275:339-356. [PMID: 33539022 DOI: 10.1007/978-3-030-49844-3_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Indoleamine 2,3-dioxygenase (IDO) is overexpressed in response to interferon-gamma (IFN-γ). IDO-mediated degradation of tryptophan (Trp) along the kynurenine (Kyn) pathway by immune cells is associated with the anti-microbial, and anti-tumor defense mechanisms. In contrast, IDO is constitutively expressed by various tumors and creates an immunosuppressive microenvironment around the tumor tissue both by depletion of the essential amino acid Trp and by formation of Kyn, which is immunosuppressive metabolite of Trp. IDO may activate its own expression in human cancer cells via an autocrine aryl hydrocarbon receptor (AhR)- interleukin 6 (IL-6)-signal transducer and activator of transcription 3 (STAT3) signaling loop. Although IDO is not a unique marker, in many clinical trials serum IDO activity is suggested to be an important parameter in the pathogenesis of cancer development and growth. Measuring IDO activity in serum seems to be an indicator of cancer growth rate, however, it is controversial whether this approach can be used as a reliable guide in cancer patients treated with IDO inhibitors. Thus, IDO immunostaining is strongly recommended for the identification of higher IDO producing tumors, and IDO inhibitors should be included in post-operative complementary therapy in IDO positive cancer cases only. Novel therapies that target the IDO pathway cover checkpoint protein kinases related combination regimens. Currently, multi-modal therapies combining IDO inhibitors and checkpoint kinase blockers in addition to T regulatory (Treg) cell-modifying treatments seem promising.
Collapse
Affiliation(s)
- Ayse Basak Engin
- Department of Toxicology, Faculty of Pharmacy, Gazi University, Ankara, Turkey.
| | - Atilla Engin
- Department of General Surgery, Faculty of Medicine, Gazi University, Ankara, Turkey
| |
Collapse
|
49
|
Wang Z, Snyder M, Kenison JE, Yang K, Lara B, Lydell E, Bennani K, Novikov O, Federico A, Monti S, Sherr DH. How the AHR Became Important in Cancer: The Role of Chronically Active AHR in Cancer Aggression. Int J Mol Sci 2020; 22:ijms22010387. [PMID: 33396563 PMCID: PMC7795223 DOI: 10.3390/ijms22010387] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/25/2020] [Accepted: 12/28/2020] [Indexed: 12/13/2022] Open
Abstract
For decades, the aryl hydrocarbon receptor (AHR) was studied for its role in environmental chemical toxicity i.e., as a quirk of nature and a mediator of unintended consequences of human pollution. During that period, it was not certain that the AHR had a “normal” physiological function. However, the ongoing accumulation of data from an ever-expanding variety of studies on cancer, cancer immunity, autoimmunity, organ development, and other areas bears witness to a staggering array of AHR-controlled normal and pathological activities. The objective of this review is to discuss how the AHR has gone from a likely contributor to genotoxic environmental carcinogen-induced cancer to a master regulator of malignant cell progression and cancer aggression. Particular focus is placed on the association between AHR activity and poor cancer outcomes, feedback loops that control chronic AHR activity in cancer, and the role of chronically active AHR in driving cancer cell invasion, migration, cancer stem cell characteristics, and survival.
Collapse
Affiliation(s)
- Zhongyan Wang
- Department of Environmental Health, Boston University School of Public Health, Boston, MA 02118, USA; (Z.W.); (K.Y.); (E.L.)
| | - Megan Snyder
- Graduate Program in Genetics and Genomics, Division of Graduate Medical Sciences, Boston University School of Medicine, Boston, MA 02118, USA;
| | - Jessica E. Kenison
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA 02118, USA;
| | - Kangkang Yang
- Department of Environmental Health, Boston University School of Public Health, Boston, MA 02118, USA; (Z.W.); (K.Y.); (E.L.)
| | - Brian Lara
- Department of Environmental Health, Boston University, Boston, MA 02118, USA; (B.L.); (K.B.)
| | - Emily Lydell
- Department of Environmental Health, Boston University School of Public Health, Boston, MA 02118, USA; (Z.W.); (K.Y.); (E.L.)
| | - Kawtar Bennani
- Department of Environmental Health, Boston University, Boston, MA 02118, USA; (B.L.); (K.B.)
| | | | - Anthony Federico
- Division of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA; (A.F.); (S.M.)
| | - Stefano Monti
- Division of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA; (A.F.); (S.M.)
| | - David H. Sherr
- Department of Environmental Health, Boston University School of Public Health, Boston, MA 02118, USA; (Z.W.); (K.Y.); (E.L.)
- Correspondence: ; Tel.: +1-617-358-1707
| |
Collapse
|
50
|
Eve L, Fervers B, Le Romancer M, Etienne-Selloum N. Exposure to Endocrine Disrupting Chemicals and Risk of Breast Cancer. Int J Mol Sci 2020; 21:E9139. [PMID: 33266302 PMCID: PMC7731339 DOI: 10.3390/ijms21239139] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/23/2020] [Accepted: 11/25/2020] [Indexed: 02/07/2023] Open
Abstract
Breast cancer (BC) is the second most common cancer and the fifth deadliest in the world. Exposure to endocrine disrupting pollutants has been suggested to contribute to the increase in disease incidence. Indeed, a growing number of researchershave investigated the effects of widely used environmental chemicals with endocrine disrupting properties on BC development in experimental (in vitro and animal models) and epidemiological studies. The complex effects of endocrine disrupting chemicals (EDCs) on hormonal pathways, involving carcinogenic effects and an increase in mammary gland susceptibility to carcinogenesis-together with the specific characteristics of the mammary gland evolving over the course of life and the multifactorial etiology of BC-make the evaluation of these compounds a complex issue. Among the many EDCs suspected of increasing the risk of BC, strong evidence has only been provided for few EDCs including diethylstilbestrol, dichlorodiphenyltrichloroethane, dioxins and bisphenol A. However, given the ubiquitous nature and massive use of EDCs, it is essential to continue to assess their long-term health effects, particularly on carcinogenesis, to eradicate the worst of them and to sensitize the population to minimize their use.
Collapse
Affiliation(s)
- Louisane Eve
- Faculté de Pharmacie, Université de Strasbourg, F-67000 Strasbourg, France;
- Université Claude Bernard Lyon 1, F-69000 Lyon, France
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
| | - Béatrice Fervers
- Centre de Lutte Contre le Cancer Léon-Bérard, F-69000 Lyon, France;
- Inserm UA08, Radiations, Défense, Santé, Environnement, Center Léon Bérard, F-69000 Lyon, France
| | - Muriel Le Romancer
- Université Claude Bernard Lyon 1, F-69000 Lyon, France
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
| | - Nelly Etienne-Selloum
- Faculté de Pharmacie, Université de Strasbourg, F-67000 Strasbourg, France;
- Service de Pharmacie, Institut de Cancérologie Strasbourg Europe, F-67000 Strasbourg, France
- CNRS UMR7021/Unistra, Laboratoire de Bioimagerie et Pathologies, Faculté de Pharmacie, Université de Strasbourg, F-67000 Strasbourg, France
| |
Collapse
|