1
|
Kang Y, Kim DS, Hwang H, Kim Y, Seo YJ, Hinterdorfer P, Ko K. Plant-derived recombinant macromolecular PAP-IgG Fc as a novel prostate cancer vaccine candidate eliciting robust immune responses. Transgenic Res 2025; 34:16. [PMID: 40140219 DOI: 10.1007/s11248-025-00433-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 02/17/2025] [Indexed: 03/28/2025]
Abstract
Prostatic acid phosphatase (PAP) is a specific protein that is highly expressed in prostate cancer. In this study, we constructed two recombinant PAP fusion genes: PAP fused to the immunoglobulin G (IgG) Fc fragment (designated PAP-Fc) and PAP-Fc fused to the endoplasmic reticulum retention sequence KDEL (designated PAP-FcK). Transgenic Nicotiana tabacum plants expressing these recombinant macromolecular proteins (MPs) were generated using Agrobacterium-mediated transformation, and the presence of both genes was confirmed through genomic PCR. Western blot analysis validated the expression of PAP-Fc and PAP-FcK MPs, which were successfully purified via protein A affinity chromatography. Size-exclusion high-performance liquid chromatography revealed dimeric peaks for PAP-Fc (PAP-FcP) and PAP-FcK (PAP-FcKP). Bio-transmission electron microscopy demonstrated 'Y'-shaped protein particles resembling antibody structures. Moreover, PAP-FcP and PAP-FcKP exhibited a high association rate with human FcγR and FcRn. Vaccination of mice with both PAP-FcP and PAP-FcKP resulted in increased total IgG against PAP and enhanced activation of CD4+ T cells, comparable to mice immunized with PAP, which served as a positive control. These findings indicate that both plant-derived MPs can effectively induce adaptive immunity, positioning them as promising candidates for prostate cancer vaccines. Overall, plants expressing PAP-Fc and PAP-FcK represent a viable production system for antigenic macromolecule-based prostate cancer vaccines.
Collapse
Affiliation(s)
- Yangjoo Kang
- Department of Medicine, Medicine of College, Chung-Ang University, Seoul, South Korea
| | - Deuk-Su Kim
- Department of Medicine, Medicine of College, Chung-Ang University, Seoul, South Korea
| | - Hyunjoo Hwang
- Department of Medicine, Medicine of College, Chung-Ang University, Seoul, South Korea
| | - Yerin Kim
- Department of Medicine, Medicine of College, Chung-Ang University, Seoul, South Korea
| | - Young-Jin Seo
- Department of Life Science, Chung-Ang University, Seoul, South Korea
| | - Peter Hinterdorfer
- Department of Applied Experimental Biophysics, Johannes Kepler University Linz, 4040, Linz, Austria
| | - Kisung Ko
- Department of Medicine, Medicine of College, Chung-Ang University, Seoul, South Korea.
| |
Collapse
|
2
|
Trujillo E, Angulo C. Plant-Made Vaccines Targeting Enteric Pathogens-Safe Alternatives for Vaccination in Developing Countries. Biotechnol Bioeng 2025; 122:457-480. [PMID: 39620322 DOI: 10.1002/bit.28876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/03/2024] [Accepted: 10/18/2024] [Indexed: 02/11/2025]
Abstract
Enteric diseases by pathogenic organisms are one of the leading causes of death worldwide, particularly in low-income countries. Despite antibiotics, access to clean water and vaccination are the most economically affordable options to prevent those infections and their health consequences. Vaccines, such as those approved for rotavirus and cholera, have played a key role in preventing several enteric diseases. However, vaccines for other pathogens are still in clinical trials. Distribution and cost remain significant barriers to vaccine access in developing regions due to poor healthcare infrastructure, cold-chain requirements, and high production costs. Plant-made vaccines offer a promising alternative to address these challenges. Plants can be easily grown, lowering production costs, and can be administered in oral forms, potentially eliminating cold-chain dependency. Although there are some promising prototypes of vaccines produced in plants, challenges remain, including yields and achieving sufficient immunogenicity. This review aims to describe common enteric pathogens and available vaccines, followed by a strategic summary of plant-made vaccine development and a discussion of plant-made enteric vaccine prototypes. Trends to overcome the key challenges for plant-made vaccines are identified and placed in perspective for the development of affordable and effective vaccines for populations at the highest risk of enteric diseases.
Collapse
Affiliation(s)
- Edgar Trujillo
- Immunology & Vaccinology Group. Centro de Investigaciones Biológicas del Noroeste, S.C. (CIBNOR). Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, B.C.S., México
| | - Carlos Angulo
- Immunology & Vaccinology Group. Centro de Investigaciones Biológicas del Noroeste, S.C. (CIBNOR). Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, B.C.S., México
| |
Collapse
|
3
|
Lim S, Chung HJ, Oh YJ, Hinterdorfer P, Myung SC, Seo Y, Ko K. Modification of Fc-fusion protein structures to enhance efficacy of cancer vaccine in plant expression system. PLANT BIOTECHNOLOGY JOURNAL 2025; 23:960-982. [PMID: 39724301 PMCID: PMC11869200 DOI: 10.1111/pbi.14552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 12/03/2024] [Indexed: 12/28/2024]
Abstract
Epithelial cell adhesion molecule (EpCAM) fused to IgG, IgA and IgM Fc domains was expressed to create IgG, IgA and IgM-like structures as anti-cancer vaccines in Nicotiana tabacum. High-mannose glycan structures were generated by adding a C-terminal endoplasmic reticulum (ER) retention motif (KDEL) to the Fc domain (FcK) to produce EpCAM-Fc and EpCAM-FcK proteins in transgenic plants via Agrobacterium-mediated transformation. Cross-fertilization of EpCAM-Fc (FcK) transgenic plants with Joining chain (J-chain, J and JK) transgenic plants led to stable expression of large quaternary EpCAM-IgA Fc (EpCAM-A) and IgM-like (EpCAM-M) proteins. Immunoblotting, SDS-PAGE and ELISA analyses demonstrated that proteins with KDEL had higher expression levels and binding activity to anti-EpCAM IgGs. IgM showed the strongest binding among the fusion proteins, followed by IgA and IgG. Sera from BALB/c mice immunized with these vaccines produced anti-EpCAM IgGs. Flow cytometry indicated that the EpCAM-Fc fusion proteins significantly activated CD8+ cytotoxic T cells, CD4+ helper T cells and B cells, particularly with EpCAM-FcKP and EpCAM-FcP (FcKP) × JP (JKP). The induced anti-EpCAM IgGs captured human prostate cancer PC-3 and colorectal cancer SW620 cells. Sera from immunized mice inhibited cancer cell proliferation, migration and invasion; down-regulated proliferation markers (PCNA, Ki-67) and epithelial-mesenchymal transition markers (Vimentin); and up-regulated E-cadherin. These findings suggest that N. tabacum can produce effective vaccine candidates to induce anti-cancer immune responses.
Collapse
Affiliation(s)
- Sohee Lim
- BioSystems Design Lab, Department of Medicine, College of MedicineChung‐Ang UniversitySeoulKorea
| | - Hyun Joo Chung
- Department of Urology, College of MedicineChung‐Ang UniversitySeoulKorea
| | - Yoo Jin Oh
- Department of Applied Experimental BiophysicsJohannes Kepler UniversityLinzAustria
| | - Peter Hinterdorfer
- Department of Applied Experimental BiophysicsJohannes Kepler UniversityLinzAustria
| | - Soon Chul Myung
- Department of Urology, College of MedicineChung‐Ang UniversitySeoulKorea
| | - Young‐Jin Seo
- Department of Life ScienceChung‐Ang UniversitySeoulKorea
| | - Kisung Ko
- BioSystems Design Lab, Department of Medicine, College of MedicineChung‐Ang UniversitySeoulKorea
| |
Collapse
|
4
|
Vo DK, Trinh KTL. Molecular Farming for Immunization: Current Advances and Future Prospects in Plant-Produced Vaccines. Vaccines (Basel) 2025; 13:191. [PMID: 40006737 PMCID: PMC11860421 DOI: 10.3390/vaccines13020191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/07/2025] [Accepted: 02/13/2025] [Indexed: 02/27/2025] Open
Abstract
Using plants as bioreactors, molecular farming has emerged as a versatile and sustainable platform for producing recombinant vaccines, therapeutic proteins, industrial enzymes, and nutraceuticals. This innovative approach leverages the unique advantages of plants, including scalability, cost-effectiveness, and reduced risk of contamination with human pathogens. Recent advancements in gene editing, transient expression systems, and nanoparticle-based delivery technologies have significantly enhanced the efficiency and versatility of plant-based systems. Particularly in vaccine development, molecular farming has demonstrated its potential with notable successes such as Medicago's Covifenz for COVID-19, illustrating the capacity of plant-based platforms to address global health emergencies rapidly. Furthermore, edible vaccines have opened new avenues in the delivery of vaccines, mainly in settings with low resources where the cold chain used for conventional logistics is a challenge. However, optimization of protein yield and stability, the complexity of purification processes, and regulatory hurdles are some of the challenges that still remain. This review discusses the current status of vaccine development using plant-based expression systems, operational mechanisms for plant expression platforms, major applications in the prevention of infectious diseases, and new developments, such as nanoparticle-mediated delivery and cancer vaccines. The discussion will also touch on ethical considerations, the regulatory framework, and future trends with respect to the transformative capacity of plant-derived vaccines in ensuring greater global accessibility and cost-effectiveness of the vaccination. This field holds great promise for the infectious disease area and, indeed, for applications in personalized medicine and biopharmaceuticals in the near future.
Collapse
Affiliation(s)
- Dang-Khoa Vo
- College of Pharmacy, Gachon University, 191 Hambakmoe-ro, Yeonsu-gu, Incheon 21936, Republic of Korea
| | - Kieu The Loan Trinh
- Bionano Applications Research Center, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Gyeonggi-do, Republic of Korea
| |
Collapse
|
5
|
Mane V, Mehta R, Alvarez N, Sharma V, Park S, Fox A, DeCarlo C, Yang X, Perlin DS, Powell RLR. In vivo antiviral efficacy of LCTG-002, a pooled, purified human milk secretory IgA product, against SARS-CoV-2 in a murine model of COVID-19. Hum Vaccin Immunother 2024; 20:2303226. [PMID: 38251677 PMCID: PMC10807469 DOI: 10.1080/21645515.2024.2303226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/05/2024] [Indexed: 01/23/2024] Open
Abstract
Immunoglobulin A (IgA) is the most abundant antibody (Ab) in human mucosae, with secretory form (sIgA) being dominant and uniquely stable. sIgA is challenging to produce recombinantly but is naturally found in human milk, which could be considered a global resource for this biologic, justifying its development as a mucosal therapeutic. Presently, SARS-CoV-2 was utilized as a model mucosal pathogen, and methods were developed to efficiently extract human milk sIgA from donors who were naïve to SARS-CoV-2 or had recovered from infection that elicited high-titer anti-SARS-CoV-2 Spike sIgA in their milk (pooled to make LCTG-002). Mass spectrometry determined that proteins with a relative abundance of 1% or greater were all associated with sIgA. Western blot demonstrated that all batches consisted predominantly of sIgA. Compared to control IgA, LCTG-002 demonstrated significantly higher Spike binding (mean endpoint of 0.87 versus 5.87). LCTG-002 was capable of blocking the Spike receptor-binding domain - angiotensin-converting enzyme 2 (ACE2) interaction with significantly greater potency compared to control (mean LCTG-002 IC50 154ug/mL versus 50% inhibition not achieved for control), and exhibited significant neutralization activity against Spike-pseudotyped virus infection (mean LCTG-002 IC50 49.8ug/mL versus 114.5ug/mL for control). LCTG-002 was tested for its capacity to reduce viral lung burden in K18+hACE2 transgenic mice inoculated with SARS-CoV-2. LCTG-002 significantly reduced SARS-CoV-2 titers compared to control when administered at 0.25 mg/day or 1 mg/day, with a maximum TCID50 reduction of 4.9 logs. This innovative study demonstrates that LCTG-002 is highly pure and efficacious in vivo, supporting further development of milk-derived, polyclonal sIgA therapeutics.
Collapse
Affiliation(s)
- Viraj Mane
- Lactiga US, Inc. 675 US-1, North Brunswick, NJ, USA
| | - Rikin Mehta
- Lactiga US, Inc. 675 US-1, North Brunswick, NJ, USA
| | - Nadine Alvarez
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA
| | - Vijeta Sharma
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA
| | - Steven Park
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA
| | - Alisa Fox
- Icahn School of Medicine at Mount Sinai, Department of Medicine, Division of Infectious Diseases, New York, NY, USA
| | - Claire DeCarlo
- Icahn School of Medicine at Mount Sinai, Department of Medicine, Division of Infectious Diseases, New York, NY, USA
| | - Xiaoqi Yang
- Icahn School of Medicine at Mount Sinai, Department of Medicine, Division of Infectious Diseases, New York, NY, USA
| | - David S. Perlin
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA
| | - Rebecca L. R. Powell
- Icahn School of Medicine at Mount Sinai, Department of Medicine, Division of Infectious Diseases, New York, NY, USA
| |
Collapse
|
6
|
Bharathi JK, Suresh P, Prakash MAS, Muneer S. Exploring recent progress of molecular farming for therapeutic and recombinant molecules in plant systems. Heliyon 2024; 10:e37634. [PMID: 39309966 PMCID: PMC11416299 DOI: 10.1016/j.heliyon.2024.e37634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/10/2024] [Accepted: 09/06/2024] [Indexed: 09/25/2024] Open
Abstract
An excellent technique for producing pharmaceuticals called "molecular farming" enables the industrial mass production of useful recombinant proteins in genetically modified organisms. Protein-based pharmaceuticals are rising in significance because of a variety of factors, including their bioreactivity, precision, safety, and efficacy rate. Heterologous expression methods for the manufacturing of pharmaceutical products have been previously employed using yeast, bacteria, and animal cells. However, the high cost of mammalian cell system, and production, the chance for product complexity, and contamination, and the hurdles of scaling up to commercial production are the limitations of these traditional expression methods. Plants have been raised as a hopeful replacement system for the expression of biopharmaceutical products due to their potential benefits, which include low production costs, simplicity in scaling up to commercial manufacturing levels, and a lower threat of mammalian toxin contaminations and virus infections. Since plants are widely utilized as a source of therapeutic chemicals, molecular farming offers a unique way to produce molecular medicines such as recombinant antibodies, enzymes, growth factors, plasma proteins, and vaccines whose molecular basis for use in therapy is well established. Biopharming provides more economical and extensive pharmaceutical drug supplies, including vaccines for contagious diseases and pharmaceutical proteins for the treatment of conditions like heart disease and cancer. To assess its technical viability and the efficacy resulting from the adoption of molecular farming products, the following review explores the various methods and methodologies that are currently employed to create commercially valuable molecules in plant systems.
Collapse
Affiliation(s)
- Jothi Kanmani Bharathi
- Department of Genetics and Plant Breeding, Faculty of Agriculture, Annamalai University, Annamalai Nagar, 608002, Tamil Nadu, India
| | - Preethika Suresh
- School of Bioscience and Biotechnology, Vellore Institute of Technology, Vellore, Tamil-Nadu, India
- Department of Horticulture and Food Science, School of Agricultural Innovations and Advanced Learning, Vellore Institute of Technology, Vellore, Tamil-Nadu, India
| | - Muthu Arjuna Samy Prakash
- Department of Genetics and Plant Breeding, Faculty of Agriculture, Annamalai University, Annamalai Nagar, 608002, Tamil Nadu, India
| | - Sowbiya Muneer
- Department of Horticulture and Food Science, School of Agricultural Innovations and Advanced Learning, Vellore Institute of Technology, Vellore, Tamil-Nadu, India
| |
Collapse
|
7
|
Mirzaee M, Leung A, Parulekar M, Candia A, Matsuoka A, Lutz KA, Maliga P. Seed plastids: A novel platform for recombinant protein expression. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:2575-2577. [PMID: 38803087 PMCID: PMC11331780 DOI: 10.1111/pbi.14369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/11/2024] [Accepted: 04/22/2024] [Indexed: 05/29/2024]
Affiliation(s)
- Malihe Mirzaee
- Waksman Institute of Microbiology, Rutgers UniversityPiscatawayNew JerseyUSA
| | - Alyssa Leung
- Waksman Institute of Microbiology, Rutgers UniversityPiscatawayNew JerseyUSA
| | - Mugdha Parulekar
- Waksman Institute of Microbiology, Rutgers UniversityPiscatawayNew JerseyUSA
| | - Ana Candia
- Department of Biology, Farmingdale State CollegeFarmingdaleNew YorkUSA
| | - Aki Matsuoka
- Waksman Institute of Microbiology, Rutgers UniversityPiscatawayNew JerseyUSA
| | - Kerry A. Lutz
- Department of Biology, Farmingdale State CollegeFarmingdaleNew YorkUSA
| | - Pal Maliga
- Waksman Institute of Microbiology, Rutgers UniversityPiscatawayNew JerseyUSA
| |
Collapse
|
8
|
Hammel A, Cucos LM, Caras I, Ionescu I, Tucureanu C, Tofan V, Costache A, Onu A, Hoepfner L, Hippler M, Neupert J, Popescu CI, Stavaru C, Branza-Nichita N, Bock R. The red alga Porphyridium as a host for molecular farming: Efficient production of immunologically active hepatitis C virus glycoprotein. Proc Natl Acad Sci U S A 2024; 121:e2400145121. [PMID: 38833465 PMCID: PMC11181018 DOI: 10.1073/pnas.2400145121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 05/03/2024] [Indexed: 06/06/2024] Open
Abstract
Microalgae are promising production platforms for the cost-effective production of recombinant proteins. We have recently established that the red alga Porphyridium purpureum provides superior transgene expression properties, due to the episomal maintenance of transformation vectors as multicopy plasmids in the nucleus. Here, we have explored the potential of Porphyridium to synthesize complex pharmaceutical proteins to high levels. Testing expression constructs for a candidate subunit vaccine against the hepatitis C virus (HCV), we show that the soluble HCV E2 glycoprotein can be produced in transgenic algal cultures to high levels. The antigen undergoes faithful posttranslational modification by N-glycosylation and is recognized by conformationally selective antibodies, suggesting that it adopts a proper antigenic conformation in the endoplasmic reticulum of red algal cells. We also report the experimental determination of the structure of the N-glycan moiety that is attached to glycosylated proteins in Porphyridium. Finally, we demonstrate the immunogenicity of the HCV antigen produced in red algae when administered by injection as pure protein or by feeding of algal biomass.
Collapse
Affiliation(s)
- Alexander Hammel
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Department of Organelle Biology, Biotechnology and Molecular Ecophysiology, D-14476Potsdam-Golm, Germany
| | - Lia-Maria Cucos
- Institute of Biochemistry of the Romanian Academy, Department of Viral Glycoproteins, 060031Bucharest, Romania
| | - Iuliana Caras
- ”Cantacuzino” Medico-Military National Research Institute, 050096Bucharest, Romania
| | - Irina Ionescu
- ”Cantacuzino” Medico-Military National Research Institute, 050096Bucharest, Romania
| | - Catalin Tucureanu
- ”Cantacuzino” Medico-Military National Research Institute, 050096Bucharest, Romania
| | - Vlad Tofan
- ”Cantacuzino” Medico-Military National Research Institute, 050096Bucharest, Romania
| | - Adriana Costache
- ”Cantacuzino” Medico-Military National Research Institute, 050096Bucharest, Romania
| | - Adrian Onu
- ”Cantacuzino” Medico-Military National Research Institute, 050096Bucharest, Romania
| | - Lara Hoepfner
- Institute of Plant Biology and Biotechnology, University of Münster, D-48143Münster, Germany
| | - Michael Hippler
- Institute of Plant Biology and Biotechnology, University of Münster, D-48143Münster, Germany
- Institute of Plant Science and Resources, Okayama University, Kurashiki710-0046, Japan
| | - Juliane Neupert
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Department of Organelle Biology, Biotechnology and Molecular Ecophysiology, D-14476Potsdam-Golm, Germany
| | - Costin-Ioan Popescu
- Institute of Biochemistry of the Romanian Academy, Department of Viral Glycoproteins, 060031Bucharest, Romania
| | - Crina Stavaru
- ”Cantacuzino” Medico-Military National Research Institute, 050096Bucharest, Romania
| | - Norica Branza-Nichita
- Institute of Biochemistry of the Romanian Academy, Department of Viral Glycoproteins, 060031Bucharest, Romania
| | - Ralph Bock
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Department of Organelle Biology, Biotechnology and Molecular Ecophysiology, D-14476Potsdam-Golm, Germany
- NIBIO, Norwegian Institute of Bioeconomy Research, NO-1431 Ås, Norway
| |
Collapse
|
9
|
Reggi S, Dell'Anno M, Baldi A, Rossi L. Seed-specific expression of porcine verotoxigenic Escherichia coli antigens in tobacco plants as a potential model of edible vaccines. Vet Res Commun 2024; 48:1435-1447. [PMID: 38319502 PMCID: PMC11147939 DOI: 10.1007/s11259-024-10318-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/27/2024] [Indexed: 02/07/2024]
Abstract
Vaccines can reduce the use of antibiotics by preventing specific infective diseases in pigs. Plant-based edible vaccines are particularly attractive because, upon oral ingestion via feed, they can elicit the local immune system against a foreign disease-causing organism. The aim of this study was to engineer two different independent lines of tobacco plants for the seed-specific expression of immunogenic proteins of VTEC as a model of an edible vaccine. For each antigen, fifty Nicotiana tabacum L. cv Xanthi leaf disks were transformed by agroinfection for the seed-specific expression of the structural parts of the fimbrial subunit FedF of F18 and the B-subunit of Vt2e genes. The synthetic genes, optimized by the codon adaptation index for their expression in tobacco, were inserted into expression cassettes under the control of β-conglycinin promoter. Regenerated tobacco plants (T0) were characterized by molecular and immunoenzymatic techniques. Our results showed that both FedF and Vt2eB genes were integrated into tobacco genome efficiently (> 80%) and they are also maintained in the second generation (T1). Western blotting analyses carried out on the positive producing lines, showed the tissue-specific expression in seeds and the temporal protein accumulation in the mid-late maturation phases. The enzyme-linked immunosorbent assay showed seed expression levels of 0.09 to 0.29% (from 138 to 444 µg/g of seeds) and 0.21 to 0.43% (from 321 to 658 µg/g of seeds) of total soluble protein for the FedF and Vt2eB antigens, respectively. This study confirmed the seed-specific expression of the selected antigens in plant seeds. The expression level is suitable for seed-based edible vaccination systems, which could represent a cost-effective way to prevent VTEC infection. Our findings encourage further in vivo studies focused on the activation of the local immune response.
Collapse
Affiliation(s)
- Serena Reggi
- Department of Veterinary Medicine and Animal Sciences - DIVAS, University of Milan, Lodi, 26900, Italy
| | - Matteo Dell'Anno
- Department of Veterinary Medicine and Animal Sciences - DIVAS, University of Milan, Lodi, 26900, Italy
| | - Antonella Baldi
- Department of Veterinary Medicine and Animal Sciences - DIVAS, University of Milan, Lodi, 26900, Italy
| | - Luciana Rossi
- Department of Veterinary Medicine and Animal Sciences - DIVAS, University of Milan, Lodi, 26900, Italy.
| |
Collapse
|
10
|
Kawecki NS, Chen KK, Smith CS, Xie Q, Cohen JM, Rowat AC. Scalable Processes for Culturing Meat Using Edible Scaffolds. Annu Rev Food Sci Technol 2024; 15:241-264. [PMID: 38211941 DOI: 10.1146/annurev-food-072023-034451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
There is increasing consumer demand for alternative animal protein products that are delicious and sustainably produced to address concerns about the impacts of mass-produced meat on human and planetary health. Cultured meat has the potential to provide a source of nutritious dietary protein that both is palatable and has reduced environmental impact. However, strategies to support the production of cultured meats at the scale required for food consumption will be critical. In this review, we discuss the current challenges and opportunities of using edible scaffolds for scaling up the production of cultured meat. We provide an overview of different types of edible scaffolds, scaffold fabrication techniques, and common scaffold materials. Finally, we highlight potential advantages of using edible scaffolds to advance cultured meat production by accelerating cell growth and differentiation, providing structure to build complex 3D tissues, and enhancing the nutritional and sensory properties of cultured meat.
Collapse
Affiliation(s)
- N Stephanie Kawecki
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, California, USA;
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California, USA
| | - Kathleen K Chen
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, California, USA;
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California, USA
| | - Corinne S Smith
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, California, USA;
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California, USA
| | - Qingwen Xie
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, California, USA;
| | - Julian M Cohen
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, California, USA;
| | - Amy C Rowat
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California, USA
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California, USA
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, California, USA;
- Broad Stem Cell Center, University of California, Los Angeles, Los Angeles, California, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California, USA
| |
Collapse
|
11
|
Puertas-Bartolomé M, Venegas-Bustos D, Acosta S, Rodríguez-Cabello JC. Contribution of the ELRs to the development of advanced in vitro models. Front Bioeng Biotechnol 2024; 12:1363865. [PMID: 38650751 PMCID: PMC11033926 DOI: 10.3389/fbioe.2024.1363865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 03/18/2024] [Indexed: 04/25/2024] Open
Abstract
Developing in vitro models that accurately mimic the microenvironment of biological structures or processes holds substantial promise for gaining insights into specific biological functions. In the field of tissue engineering and regenerative medicine, in vitro models able to capture the precise structural, topographical, and functional complexity of living tissues, prove to be valuable tools for comprehending disease mechanisms, assessing drug responses, and serving as alternatives or complements to animal testing. The choice of the right biomaterial and fabrication technique for the development of these in vitro models plays an important role in their functionality. In this sense, elastin-like recombinamers (ELRs) have emerged as an important tool for the fabrication of in vitro models overcoming the challenges encountered in natural and synthetic materials due to their intrinsic properties, such as phase transition behavior, tunable biological properties, viscoelasticity, and easy processability. In this review article, we will delve into the use of ELRs for molecular models of intrinsically disordered proteins (IDPs), as well as for the development of in vitro 3D models for regenerative medicine. The easy processability of the ELRs and their rational design has allowed their use for the development of spheroids and organoids, or bioinks for 3D bioprinting. Thus, incorporating ELRs into the toolkit of biomaterials used for the fabrication of in vitro models, represents a transformative step forward in improving the accuracy, efficiency, and functionality of these models, and opening up a wide range of possibilities in combination with advanced biofabrication techniques that remains to be explored.
Collapse
Affiliation(s)
- María Puertas-Bartolomé
- Technical Proteins Nanobiotechnology, S.L. (TPNBT), Valladolid, Spain
- Bioforge Lab (Group for Advanced Materials and Nanobiotechnology), CIBER's Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Edificio LUCIA, Universidad de Valladolid, Valladolid, Spain
| | - Desiré Venegas-Bustos
- Bioforge Lab (Group for Advanced Materials and Nanobiotechnology), CIBER's Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Edificio LUCIA, Universidad de Valladolid, Valladolid, Spain
| | - Sergio Acosta
- Bioforge Lab (Group for Advanced Materials and Nanobiotechnology), CIBER's Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Edificio LUCIA, Universidad de Valladolid, Valladolid, Spain
| | - José Carlos Rodríguez-Cabello
- Bioforge Lab (Group for Advanced Materials and Nanobiotechnology), CIBER's Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Edificio LUCIA, Universidad de Valladolid, Valladolid, Spain
| |
Collapse
|
12
|
Niederau PA, Eglé P, Willig S, Parsons J, Hoernstein SNW, Decker EL, Reski R. Multifactorial analysis of terminator performance on heterologous gene expression in Physcomitrella. PLANT CELL REPORTS 2024; 43:43. [PMID: 38246952 PMCID: PMC10800305 DOI: 10.1007/s00299-023-03088-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 11/02/2023] [Indexed: 01/23/2024]
Abstract
KEY MESSAGE Characterization of Physcomitrella 3'UTRs across different promoters yields endogenous single and double terminators for usage in molecular pharming. The production of recombinant proteins for health applications accounts for a large share of the biopharmaceutical market. While many drugs are produced in microbial and mammalian systems, plants gain more attention as expression hosts to produce eukaryotic proteins. In particular, the good manufacturing practice (GMP)-compliant moss Physcomitrella (Physcomitrium patens) has outstanding features, such as excellent genetic amenability, reproducible bioreactor cultivation, and humanized protein glycosylation patterns. In this study, we selected and characterized novel terminators for their effects on heterologous gene expression. The Physcomitrella genome contains 53,346 unique 3'UTRs (untranslated regions) of which 7964 transcripts contain at least one intron. Over 91% of 3'UTRs exhibit more than one polyadenylation site, indicating the prevalence of alternative polyadenylation in Physcomitrella. Out of all 3'UTRs, 14 terminator candidates were selected and characterized via transient Dual-Luciferase assays, yielding a collection of endogenous terminators performing equally high as established heterologous terminators CaMV35S, AtHSP90, and NOS. High performing candidates were selected for testing as double terminators which impact reporter levels, dependent on terminator identity and positioning. Testing of 3'UTRs among the different promoters NOS, CaMV35S, and PpActin5 showed an increase of more than 1000-fold between promoters PpActin5 and NOS, whereas terminators increased reporter levels by less than tenfold, demonstrating the stronger effect promoters play as compared to terminators. Among selected terminator attributes, the number of polyadenylation sites as well as polyadenylation signals were found to influence terminator performance the most. Our results improve the biotechnology platform Physcomitrella and further our understanding of how terminators influence gene expression in plants in general.
Collapse
Affiliation(s)
| | - Pauline Eglé
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Sandro Willig
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Juliana Parsons
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | | | - Eva L Decker
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Ralf Reski
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Freiburg, Germany.
- Signalling Research Centre BIOSS and CIBSS, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
13
|
Santoni M, Gutierrez-Valdes N, Pivotto D, Zanichelli E, Rosa A, Sobrino-Mengual G, Balieu J, Lerouge P, Bardor M, Cecchetto R, Compri M, Mazzariol A, Ritala A, Avesani L. Performance of plant-produced RBDs as SARS-CoV-2 diagnostic reagents: a tale of two plant platforms. FRONTIERS IN PLANT SCIENCE 2024; 14:1325162. [PMID: 38239207 PMCID: PMC10794598 DOI: 10.3389/fpls.2023.1325162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/04/2023] [Indexed: 01/22/2024]
Abstract
The COVID-19 pandemic has underscored the need for rapid and cost-effective diagnostic tools. Serological tests, particularly those measuring antibodies targeting the receptor-binding domain (RBD) of the virus, play a pivotal role in tracking infection dynamics and vaccine effectiveness. In this study, we aimed to develop a simple enzyme-linked immunosorbent assay (ELISA) for measuring RBD-specific antibodies, comparing two plant-based platforms for diagnostic reagent production. We chose to retain RBD in the endoplasmic reticulum (ER) to prevent potential immunoreactivity issues associated with plant-specific glycans. We produced ER-retained RBD in two plant systems: a stable transformation of BY-2 plant cell culture (BY2-RBD) and a transient transformation in Nicotiana benthamiana using the MagnICON system (NB-RBD). Both systems demonstrated their suitability, with varying yields and production timelines. The plant-made proteins revealed unexpected differences in N-glycan profiles, with BY2-RBD displaying oligo-mannosidic N-glycans and NB-RBD exhibiting a more complex glycan profile. This difference may be attributed to higher recombinant protein synthesis in the N. benthamiana system, potentially overloading the ER retention signal, causing some proteins to traffic to the Golgi apparatus. When used as diagnostic reagents in ELISA, BY2-RBD outperformed NB-RBD in terms of sensitivity, specificity, and correlation with a commercial kit. This discrepancy may be due to the distinct glycan profiles, as complex glycans on NB-RBD may impact immunoreactivity. In conclusion, our study highlights the potential of plant-based systems for rapid diagnostic reagent production during emergencies. However, transient expression systems, while offering shorter timelines, introduce higher heterogeneity in recombinant protein forms, necessitating careful consideration in serological test development.
Collapse
Affiliation(s)
| | | | - Denise Pivotto
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Elena Zanichelli
- Department of Biotechnology, University of Verona, Verona, Italy
| | | | - Guillermo Sobrino-Mengual
- Université de Rouen Normandie, Normandie Univ, GlycoMEV UR 4358, SFR Normandie Végétal FED 4277, Innovation Chimie Carnot, IRIB, GDR CNRS Chemobiologie, RMT BESTIM, Rouen, France
- Applied Plant Biotechnology Group, Department of Plant Production and Forestry Science, University of Lleida-Agrotecnio CERCA Center, Lleida, Spain
| | - Juliette Balieu
- Université de Rouen Normandie, Normandie Univ, GlycoMEV UR 4358, SFR Normandie Végétal FED 4277, Innovation Chimie Carnot, IRIB, GDR CNRS Chemobiologie, RMT BESTIM, Rouen, France
| | - Patrice Lerouge
- Université de Rouen Normandie, Normandie Univ, GlycoMEV UR 4358, SFR Normandie Végétal FED 4277, Innovation Chimie Carnot, IRIB, GDR CNRS Chemobiologie, RMT BESTIM, Rouen, France
| | - Muriel Bardor
- Université de Rouen Normandie, Normandie Univ, GlycoMEV UR 4358, SFR Normandie Végétal FED 4277, Innovation Chimie Carnot, IRIB, GDR CNRS Chemobiologie, RMT BESTIM, Rouen, France
| | - Riccardo Cecchetto
- Department of Diagnostics and Public Health, Microbiology Section, University of Verona, Verona, Italy
| | - Monica Compri
- Azienda Ospedaliera Universitaria, UOC Microbiologia e Virologia, Verona, Italy
| | - Annarita Mazzariol
- Department of Diagnostics and Public Health, Microbiology Section, University of Verona, Verona, Italy
| | - Anneli Ritala
- VTT Technical Research Centre of Finland Ltd., Espoo, Finland
| | - Linda Avesani
- Department of Biotechnology, University of Verona, Verona, Italy
| |
Collapse
|
14
|
Hadj Hassine I, Ben M'hadheb M, Almalki MA, Gharbi J. Virus-like particles as powerful vaccination strategy against human viruses. Rev Med Virol 2024; 34:e2498. [PMID: 38116958 DOI: 10.1002/rmv.2498] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/25/2023] [Accepted: 12/08/2023] [Indexed: 12/21/2023]
Abstract
Nowadays, viruses are not only seen as causative agents of viral infectious diseases but also as valuable research materials for various biomedical purposes, including recombinant protein production. When expressed in living or cell-free expression systems, viral structural proteins self-assemble into virus-like particles (VLPs). Mimicking the native form and size of viruses and lacking the genetic material, VLPs are safe and highly immunogenic and thus can be exploited to develop antiviral vaccines. Some vaccines based on VLPs against various infectious pathogens have already been licenced for human use and are available in the commercial market, the latest of which is a VLP-based vaccine to protect against the novel Coronavirus. Despite the success and popularity of VLP subunit vaccines, many more VLPs are still in different stages of design, production, and approval. There are still many challenges that require to be addressed in the future before this surface display system can be widely used as an effective vaccine strategy in combating infectious diseases. In this review, we highlight the use of structural viral proteins to produce VLPs, emphasising their intrinsic properties, structural classification, and main expression host systems. We also compiled the recent scientific literature about VLP-based vaccines to underline the recent advances in their application as a vaccine strategy for preventing and fighting virulent human pathogens. Finally, we presented the key challenges and possible solutions for VLP-based vaccine production.
Collapse
Affiliation(s)
- Ikbel Hadj Hassine
- Virology and Antiviral Strategies Research Unit UR17ES30, Higher Institute of Biotechnology, University of Monastir, Monastir, Tunisia
- USCR-SAG Unit, Higher Institute of Biotechnology, University of Monastirs, Monastir, Tunisia
| | - Manel Ben M'hadheb
- Virology and Antiviral Strategies Research Unit UR17ES30, Higher Institute of Biotechnology, University of Monastir, Monastir, Tunisia
- USCR-SAG Unit, Higher Institute of Biotechnology, University of Monastirs, Monastir, Tunisia
| | - Mohammed A Almalki
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Jawhar Gharbi
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa, Saudi Arabia
| |
Collapse
|
15
|
Verdú-Navarro F, Moreno-Cid JA, Weiss J, Egea-Cortines M. The advent of plant cells in bioreactors. FRONTIERS IN PLANT SCIENCE 2023; 14:1310405. [PMID: 38148861 PMCID: PMC10749943 DOI: 10.3389/fpls.2023.1310405] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/01/2023] [Indexed: 12/28/2023]
Abstract
Ever since agriculture started, plants have been bred to obtain better yields, better fruits, or sustainable products under uncertain biotic and abiotic conditions. However, a new way to obtain products from plant cells emerged with the development of recombinant DNA technologies. This led to the possibility of producing exogenous molecules in plants. Furthermore, plant chemodiversity has been the main source of pharmacological molecules, opening a field of plant biotechnology directed to produce high quality plant metabolites. The need for different products by the pharma, cosmetics agriculture and food industry has pushed again to develop new procedures. These include cell production in bioreactors. While plant tissue and cell culture are an established technology, beginning over a hundred years ago, plant cell cultures have shown little impact in biotechnology projects, compared to bacterial, yeasts or animal cells. In this review we address the different types of bioreactors that are currently used for plant cell production and their usage for quality biomolecule production. We make an overview of Nicotiana tabacum, Nicotiana benthamiana, Oryza sativa, Daucus carota, Vitis vinifera and Physcomitrium patens as well-established models for plant cell culture, and some species used to obtain important metabolites, with an insight into the type of bioreactor and production protocols.
Collapse
Affiliation(s)
- Fuensanta Verdú-Navarro
- Bioprocessing R&D Department, Bionet, Parque Tecnológico Fuente Álamo, Fuente Álamo, Spain
- Genética Molecular, Instituto de Biotecnología Vegetal, Universidad Politécnica de Cartagena, Cartagena, Spain
| | - Juan A. Moreno-Cid
- Bioprocessing R&D Department, Bionet, Parque Tecnológico Fuente Álamo, Fuente Álamo, Spain
| | - Julia Weiss
- Genética Molecular, Instituto de Biotecnología Vegetal, Universidad Politécnica de Cartagena, Cartagena, Spain
| | - Marcos Egea-Cortines
- Genética Molecular, Instituto de Biotecnología Vegetal, Universidad Politécnica de Cartagena, Cartagena, Spain
| |
Collapse
|
16
|
Zhou N, Gu T, Xu Y, Liu Y, Peng L. Challenges and progress of neurodrug: bioactivities, production and delivery strategies of nerve growth factor protein. J Biol Eng 2023; 17:75. [PMID: 38049878 PMCID: PMC10696794 DOI: 10.1186/s13036-023-00392-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 11/10/2023] [Indexed: 12/06/2023] Open
Abstract
Nerve growth factor (NGF) is a vital cytokine that plays a crucial role in the development and regeneration of the nervous system. It has been extensively studied for its potential therapeutic applications in various neural diseases. However, as a protein drug, limited natural source seriously hinders its translation and clinical applications. Conventional extraction of NGF from mouse submandibular glands has a very high cost and potentially induces immunogenicity; total synthesis and semi-synthesis methods are alternatives, but have difficulty in obtaining correct protein structure; gene engineering of plant cells is thought to be non-immunogenic, bioactive and economical. Meanwhile, large molecular weight, high polarity, and negative electrical charge make it difficult for NGF to cross the blood brain barrier to reach therapeutic targets. Current delivery strategies mainly depend on the adenovirus and cell biodelivery, but the safety and efficacy remain to be improved. New materials are widely investigated for the controllable, safe and precise delivery of NGF. This review illustrates physiological and therapeutic effects of NGF for various diseases. Moreover, new progress in production and delivery technologies for NGF are summarized. Bottlenecks encountered in the development of NGF as therapeutics are also discussed with the countermeasures proposed.
Collapse
Affiliation(s)
- Nan Zhou
- College of Pharmaceutical Sciences, Zhejiang University, 866# Yuhangtang Road, Hangzhou, 310058, PR China
| | - TingWei Gu
- College of Pharmaceutical Sciences, Zhejiang University, 866# Yuhangtang Road, Hangzhou, 310058, PR China
| | - Yang Xu
- College of Pharmaceutical Sciences, Zhejiang University, 866# Yuhangtang Road, Hangzhou, 310058, PR China
| | - Yuda Liu
- College of Pharmaceutical Sciences, Zhejiang University, 866# Yuhangtang Road, Hangzhou, 310058, PR China
| | - LiHua Peng
- College of Pharmaceutical Sciences, Zhejiang University, 866# Yuhangtang Road, Hangzhou, 310058, PR China.
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, PR China.
- Jinhua Institute of Zhejiang University, Jinhua, Zhejiang, 321299, PR China.
| |
Collapse
|
17
|
Takaiwa F. Influence on Accumulation Levels and Subcellular Localization of Prolamins by Fusion with the Functional Peptide in Transgenic Rice Seeds. Mol Biotechnol 2023; 65:1869-1886. [PMID: 36856922 DOI: 10.1007/s12033-023-00666-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 01/12/2023] [Indexed: 03/02/2023]
Abstract
To exploit the rice seed-based oral vaccine against Sjögren's syndrome, altered peptide ligand of N-terminal 1 (N1-APL7) from its M3 muscarinic acetylcholine receptor (M3R) autoantigen was expressed as fusion protein with the representative four types of rice prolamins (16 kDa, 14 kDa, 13 kDa, and 10 kDa prolamins) under the control of the individual native prolamin promoter. The 10kD:N1-APL7 and 14kD:N1-APL7 accumulated at high levels (287 and 58 µg/grain), respectively, whereas production levels of the remaining ones were remarkably low. Co-expression of these fusion proteins did not enhance the accumulation level of N1-APL7 in an additive manner. Downregulation of endogenous seed storage proteins by RNAi-mediated suppression also did not lead to substantial elevation of the co-expressed prolamin:N1-APL7 products. When transgenic rice seeds were subjected to in vitro proteolysis with pepsin, the 10kD:N1-APL7 was digested more quickly than the endogenous 10 kDa prolamin and the 14kD:N1-APL7 deposited in PB-Is. This difference could be explained by the finding that the 10kD:N1-APL7 was unexpectedly localized in the PB-IIs containing glutelins. These results indicated that not only accumulation level but also subcellular localization of inherent prolamins were highly influenced by the liked N1-APL7 peptide.
Collapse
Affiliation(s)
- Fumio Takaiwa
- Soul Signal Institute, Kojyohama, Shiraoi, Hokkaido, 059-0641, Japan.
- National Institute of Agrobiological Sciences, Kannondai 3-1-3, Tsukuba, Ibaraki, 305-8602, Japan.
| |
Collapse
|
18
|
Kang YJ, Kim DS, Kim S, Seo YJ, Ko K. Plant-derived PAP proteins fused to immunoglobulin A and M Fc domains induce anti-prostate cancer immune response in mice. BMB Rep 2023; 56:392-397. [PMID: 37037672 PMCID: PMC10390288 DOI: 10.5483/bmbrep.2022-0207] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 02/16/2023] [Accepted: 04/07/2023] [Indexed: 01/01/2025] Open
Abstract
In this study, recombinant Fc-fused Prostate acid phosphatase (PAP) proteins were produced in transgenic plants. PAP was fused to immunoglobulin (Ig) A and M Fc domain (PAP-IgA Fc and PAP-IgM Fc), which were tagged to the ER retention sequence KDEL to generate PAP-IgA FcK and PAP-IgM FcK. Agrobacteriummediated transformation was performed to produce transgenic tobacco plants expressing four recombinant proteins. Genomic PCR and RT-PCR analyses confirmed the transgene insertion and mRNA transcription of PAP-IgA Fc, PAP-IgM Fc, PAP-IgA FcK, and PAP-IgM FcK in tobacco plant leaves. Western blot confirmed the expression of PAP-IgA Fc, PAP-IgM Fc, PAP-IgA FcK, and PAP-IgM FcK proteins. SEC-HPLC and Bio-TEM analyses were performed to confirm the size and shape of the plant-derived recombinant PAP-Fc fusion proteins. In mice experiments, the plant-derived IgA and IgM Fc fused proteins induced production of total IgGs including IgG1 against PAP. This result suggests that IgA and IgM Fc fusion can be applied to produce recombinant PAP proteins as a prostate cancer vaccine in plant expression system. [BMB Reports 2023; 56(7): 392-397].
Collapse
Affiliation(s)
- Yang Joo Kang
- Department of Medicine, College of Medicine, Chung-Ang University, Seoul 06974, Korea
| | - Deuk-Su Kim
- Department of Medicine, College of Medicine, Chung-Ang University, Seoul 06974, Korea
| | - Seyoung Kim
- Department of Life Science, Chung-Ang University, Seoul 06974, Korea
| | - Young-Jin Seo
- Department of Life Science, Chung-Ang University, Seoul 06974, Korea
| | - Kisung Ko
- Department of Medicine, College of Medicine, Chung-Ang University, Seoul 06974, Korea
| |
Collapse
|
19
|
Zhou N, Liu YD, Zhang Y, Gu TW, Peng LH. Pharmacological Functions, Synthesis, and Delivery Progress for Collagen as Biodrug and Biomaterial. Pharmaceutics 2023; 15:pharmaceutics15051443. [PMID: 37242685 DOI: 10.3390/pharmaceutics15051443] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/21/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
Collagen has been widely applied as a functional biomaterial in regulating tissue regeneration and drug delivery by participating in cell proliferation, differentiation, migration, intercellular signal transmission, tissue formation, and blood coagulation. However, traditional extraction of collagen from animals potentially induces immunogenicity and requires complicated material treatment and purification steps. Although semi-synthesis strategies such as utilizing recombinant E. coli or yeast expression systems have been explored as alternative methods, the influence of unwanted by-products, foreign substances, and immature synthetic processes have limited its industrial production and clinical applications. Meanwhile, macromolecule collagen products encounter a bottleneck in delivery and absorption by conventional oral and injection vehicles, which promotes the studies of transdermal and topical delivery strategies and implant methods. This review illustrates the physiological and therapeutic effects, synthesis strategies, and delivery technologies of collagen to provide a reference and outlook for the research and development of collagen as a biodrug and biomaterial.
Collapse
Affiliation(s)
- Nan Zhou
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yu-Da Liu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yue Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ting-Wei Gu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Li-Hua Peng
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
| |
Collapse
|
20
|
Lee J, Lee SK, Park JS, Lee KR. Plant-made pharmaceuticals: exploring studies for the production of recombinant protein in plants and assessing challenges ahead. PLANT BIOTECHNOLOGY REPORTS 2023; 17:53-65. [PMID: 36820221 PMCID: PMC9931573 DOI: 10.1007/s11816-023-00821-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 01/16/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
The production of pharmaceutical compounds in plants is attracting increasing attention, as plant-based systems can be less expensive, safer, and more scalable than mammalian, yeast, bacterial, and insect cell expression systems. Here, we review the history and current status of plant-made pharmaceuticals. Producing pharmaceuticals in plants requires pairing the appropriate plant species with suitable transformation technology. Pharmaceuticals have been produced in tobacco, cereals, legumes, fruits, and vegetables via nuclear transformation, chloroplast transformation, transient expression, and transformation of suspension cell cultures. Despite this wide range of species and methods used, most such efforts have involved the nuclear transformation of tobacco. Tobacco readily generates large amounts of biomass, easily accepts foreign genes, and is amenable to stable gene expression via nuclear transformation. Although vaccines, antibodies, and therapeutic proteins have been produced in plants, such pharmaceuticals are not readily utilized by humans due to differences in glycosylation, and few such compounds have been approved due to a lack of clinical data. In addition, achieving an adequate immune response using plant-made pharmaceuticals can be difficult due to low rates of production compared to other expression systems. Various technologies have recently been developed to help overcome these limitations; however, plant systems are expected to increasingly become widely used expression systems for recombinant protein production.
Collapse
Affiliation(s)
- Juho Lee
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, 54874 Republic of Korea
| | - Seon-Kyeong Lee
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, 54874 Republic of Korea
| | - Jong-Sug Park
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, 54874 Republic of Korea
| | - Kyeong-Ryeol Lee
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, 54874 Republic of Korea
| |
Collapse
|
21
|
Fukushima T, Kodama Y. Selection of a histidine auxotrophic Marchantia polymorpha strain with an auxotrophic selective marker. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2022; 39:345-354. [PMID: 37283617 PMCID: PMC10240916 DOI: 10.5511/plantbiotechnology.22.0810a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/10/2022] [Indexed: 06/08/2023]
Abstract
Marchantia polymorpha has emerged as a model liverwort species, with molecular tools increasingly available. In the present study, we developed an auxotrophic strain of M. polymorpha and an auxotrophic selective marker gene as new experimental tools for this valuable model system. Using CRISPR (clustered regularly interspaced palindromic repeats)/Cas9-mediated genome editing, we mutated the genomic region for IMIDAZOLEGLYCEROL-PHOSPHATE DEHYDRATASE (IGPD) in M. polymorpha to disrupt the biosynthesis of histidine (igpd). We modified an IGPD gene (IGPDm) with silent mutations, generating a histidine auxotrophic selective marker gene that was not a target of our CRISPR/Cas9-mediated genome editing. The M. polymorpha igpd mutant was a histidine auxotrophic strain, growing only on medium containing histidine. The igpd mutant could be complemented by transformation with the IGPDm gene, indicating that this gene could be used as an auxotrophic selective marker. Using the IGPDm marker in the igpd mutant background, we produced transgenic lines without the need for antibiotic selection. The histidine auxotrophic strain igpd and auxotrophic selective marker IGPDm represent new molecular tools for M. polymorpha research.
Collapse
Affiliation(s)
- Tatsushi Fukushima
- Center for Bioscience Research and Education, Utsunomiya University, Tochigi 321-8505, Japan
- Graduate School of Regional Development and Creativity, Utsunomiya University, Tochigi 321-8505, Japan
| | - Yutaka Kodama
- Center for Bioscience Research and Education, Utsunomiya University, Tochigi 321-8505, Japan
- Graduate School of Regional Development and Creativity, Utsunomiya University, Tochigi 321-8505, Japan
| |
Collapse
|
22
|
Nasim N, Sandeep IS, Mohanty S. Plant-derived natural products for drug discovery: current approaches and prospects. THE NUCLEUS 2022; 65:399-411. [PMID: 36276225 PMCID: PMC9579558 DOI: 10.1007/s13237-022-00405-3] [Citation(s) in RCA: 120] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 09/29/2022] [Indexed: 11/19/2022] Open
Abstract
Nature has abundant source of drugs that need to be identified/purified for use as essential biologics, either individually or in combination in the modern medical field. These drugs are divided into small bio-molecules, plant-made biologics, and a recently introduced third category known as phytopharmaceutical drugs. The development of phytopharmaceutical medicines is based on the ethnopharmacological approach, which relies on the traditional medicine system. The concept of ‘one-disease one-target drug’ is becoming less popular, and the use of plant extracts, fractions, and molecules is the new paradigm that holds promising scope to formulate appropriate drugs. This led to discovering a new concept known as polypharmacology, where natural products from varying sources can engage with multiple human physiology targets. This article summarizes different approaches for phytopharmaceutical drug development and discusses the progress in systems biology and computational tools for identifying drug targets. We review the existing drug delivery methods to facilitate the efficient delivery of drugs to the targets. In addition, we describe different analytical techniques for the authentication and fingerprinting of plant materials. Finally, we highlight the role of biopharming in developing plant-based biologics.
Collapse
Affiliation(s)
- Noohi Nasim
- grid.412612.20000 0004 1760 9349Centre for Biotechnology, Siksha ‘O’ Anusandhan (Deemed to be University), Bhubaneswar, Odisha 751003 India
| | - Inavolu Sriram Sandeep
- grid.412612.20000 0004 1760 9349Centre for Biotechnology, Siksha ‘O’ Anusandhan (Deemed to be University), Bhubaneswar, Odisha 751003 India
| | - Sujata Mohanty
- grid.506052.40000 0004 4911 8595Department of Biotechnology, Rama Devi Women’s University, Vidya Vihar, Bhubaneswar, Odisha 751022 India
| |
Collapse
|
23
|
Hung CY, Zhu C, Kittur FS, He M, Arning E, Zhang J, Johnson AJ, Jawa GS, Thomas MD, Ding TT, Xie J. A plant-based mutant huntingtin model-driven discovery of impaired expression of GTPCH and DHFR. Cell Mol Life Sci 2022; 79:553. [PMID: 36251090 PMCID: PMC9576654 DOI: 10.1007/s00018-022-04587-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 09/13/2022] [Accepted: 10/03/2022] [Indexed: 11/28/2022]
Abstract
Pathophysiology associated with Huntington's disease (HD) has been studied extensively in various cell and animal models since the 1993 discovery of the mutant huntingtin (mHtt) with abnormally expanded polyglutamine (polyQ) tracts as the causative factor. However, the sequence of early pathophysiological events leading to HD still remains elusive. To gain new insights into the early polyQ-induced pathogenic events, we expressed Htt exon1 (Httex1) with a normal (21), or an extended (42 or 63) number of polyQ in tobacco plants. Here, we show that transgenic plants accumulated Httex1 proteins with corresponding polyQ tracts, and mHttex1 induced protein aggregation and affected plant growth, especially root and root hair development, in a polyQ length-dependent manner. Quantitative proteomic analysis of young roots from severely affected Httex1Q63 and unaffected Httex1Q21 plants showed that the most reduced protein by polyQ63 is a GTP cyclohydrolase I (GTPCH) along with many of its related one-carbon (C1) metabolic pathway enzymes. GTPCH is a key enzyme involved in folate biosynthesis in plants and tetrahydrobiopterin (BH4) biosynthesis in mammals. Validating studies in 4-week-old R6/2 HD mice expressing a mHttex1 showed reduced levels of GTPCH and dihydrofolate reductase (DHFR, a key folate utilization/alternate BH4 biosynthesis enzyme), and impaired C1 and BH4 metabolism. Our findings from mHttex1 plants and mice reveal impaired expressions of GTPCH and DHFR and may contribute to a better understanding of mHtt-altered C1 and BH4 metabolism, and their roles in the pathogenesis of HD.
Collapse
Affiliation(s)
- Chiu-Yueh Hung
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC, 27707, USA
| | - Chuanshu Zhu
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC, 27707, USA.,College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Farooqahmed S Kittur
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC, 27707, USA
| | - Maotao He
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC, 27707, USA.,Department of Pathology, Weifang Medical University, Weifang, Shandong, 261000, China
| | - Erland Arning
- Baylor Scott and White Research Institute, Institute of Metabolic Disease, Dallas, TX, 75204, USA
| | - Jianhui Zhang
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC, 27707, USA
| | - Asia J Johnson
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC, 27707, USA
| | - Gurpreet S Jawa
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC, 27707, USA.,DePuy Synthes Companies of Johnson & Johnson, West Chester, PA, 19380, USA
| | - Michelle D Thomas
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC, 27707, USA.,University of North Carolina, Eshelman School of Pharmacy, Chapel Hill, NC, 27599, USA
| | - Tomas T Ding
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC, 27707, USA.
| | - Jiahua Xie
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC, 27707, USA.
| |
Collapse
|
24
|
Oinam L, Hayashi R, Hiemori K, Kiyoi K, Sage-Ono K, Miura K, Ono M, Tateno H. Quantitative evaluation of glycan-binding specificity of recombinant concanavalin A produced in lettuce (Lactuca sativa). Biotechnol Bioeng 2022; 119:1781-1791. [PMID: 35394653 DOI: 10.1002/bit.28099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 02/25/2022] [Accepted: 03/31/2022] [Indexed: 11/10/2022]
Abstract
Concanavalin A (ConA), a mannose (Man)-specific leguminous lectin isolated from the jack bean (Canavalia ensiformis) seed extracts, was discovered over a century ago. Although ConA has been extensively applied in various life science research, recombinant mature ConA expression has not been fully established. Here, we aimed to produce recombinant ConA (rConA) in lettuce (Lactuca sativa) using an Agrobacterium tumefaciens-mediated transient expression system. rConA could be produced as a fully active form from soluble fractions of lettuce leaves and purified by affinity chromatography. From 12 g wet weight of lettuce leaves, 0.9 mg rConA could be purified. The glycan-binding properties of rConA were then compared with that of the native ConA isolated from jack bean using glycoconjugate microarray and frontal affinity chromatography. rConA demonstrated a glycan-binding specificity similar to nConA. Both molecules bound to N-glycans containing a terminal Man residue. Consistent with previous reports, terminal Manα1-6Man was found to be an essential unit for the high-affinity binding of rConA and nConA, while bisecting GlcNAc diminished the binding of rConA and nConA to Manα1-6Man-terminated N-glycans. These results demonstrate that the fully active rConA could be produced using the A. tumefaciens-mediated transient expression system and used as a recombinant substitute for nConA.
Collapse
Affiliation(s)
- Lalhaba Oinam
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan
| | - Ryoma Hayashi
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Keiko Hiemori
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan
| | - Kayo Kiyoi
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan
| | - Kimiyo Sage-Ono
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Kenji Miura
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Michiyuki Ono
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Hiroaki Tateno
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan
| |
Collapse
|
25
|
Huckauf J, Brandt BP, Dezar C, Nausch H, Hauerwaas A, Weisenfeld U, Elshiewy O, Rua M, Hugenholtz J, Wesseler J, Cingiz K, Broer I. Sustainable Production of the Cyanophycin Biopolymer in Tobacco in the Greenhouse and Field. Front Bioeng Biotechnol 2022; 10:896863. [PMID: 35769105 PMCID: PMC9234492 DOI: 10.3389/fbioe.2022.896863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/17/2022] [Indexed: 11/21/2022] Open
Abstract
The production of biodegradable polymers as coproducts of other commercially relevant plant components can be a sustainable strategy to decrease the carbon footprint and increase the commercial value of a plant. The biodegradable polymer cyanophycin granular polypeptide (CGP) was expressed in the leaves of a commercial tobacco variety, whose seeds can serve as a source for biofuel and feed. In T0 generation in the greenhouse, up to 11% of the leaf dry weight corresponded to the CGP. In T1 generation, the maximum content decreased to approximately 4% dw, both in the greenhouse and first field trial. In the field, a maximum harvest of 4 g CGP/plant could be obtained. Independent of the CGP content, most transgenic plants exhibited a slight yield penalty in the leaf biomass, especially under stress conditions in greenhouse and field trials. After the harvest, the leaves were either Sun dried or ensiled. The resulting material was used to evaluate the extraction of CGP compared to that in the laboratory protocol. The farm-level analysis indicates that the extraction of CGP from tobacco plants can provide alternative income opportunities for tobacco farmers. The CGP yield/ha indicates that the CGP production in plants can be economically feasible depending on the cultivation and extraction costs. Moreover, we analyzed the consumer acceptance of potential applications associated with GM tobacco in four European countries (Germany, Finland, Italy and the Netherlands) and found unexpectedly high acceptance.
Collapse
Affiliation(s)
- Jana Huckauf
- Agrobiotechnology, University of Rostock, Rostock, Germany
| | | | | | - Henrik Nausch
- Agrobiotechnology, University of Rostock, Rostock, Germany
| | - Antoniya Hauerwaas
- Institute of Management and Organisation (IMO), Leuphana University Lüneburg, Lüneburg, Germany
| | - Ursula Weisenfeld
- Institute of Management and Organisation (IMO), Leuphana University Lüneburg, Lüneburg, Germany
| | - Ossama Elshiewy
- Institute of Management and Organisation (IMO), Leuphana University Lüneburg, Lüneburg, Germany
| | | | | | - Justus Wesseler
- Agricultural Economics and Rural Policy, Wageningen University, Wageningen, Netherlands
| | - Kutay Cingiz
- Agricultural Economics and Rural Policy, Wageningen University, Wageningen, Netherlands
| | - Inge Broer
- Agrobiotechnology, University of Rostock, Rostock, Germany
- *Correspondence: Inge Broer,
| |
Collapse
|
26
|
Plchová H, Moravec T, Čeřovská N, Pobořilová Z, Dušek J, Kratochvílová K, Navrátil O, Kundu JK. A GoldenBraid-Compatible Virus-Based Vector System for Transient Expression of Heterologous Proteins in Plants. Viruses 2022; 14:1099. [PMID: 35632840 PMCID: PMC9146717 DOI: 10.3390/v14051099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 05/09/2022] [Accepted: 05/19/2022] [Indexed: 12/10/2022] Open
Abstract
We have developed a Potato virus X (PVX)-based vector system compatible with the GoldenBraid 2.0 (GB) cloning strategy to transiently express heterologous proteins or peptides in plants for biotechnological purposes. This vector system consists of three domestication vectors carrying three GB parts-the cauliflower mosaic virus (CaMV) 35S promoter with PVX upstream of the second subgenomic promoter of the PVX coat protein (PVX CP SGP), nopaline synthase (NOS) terminator with PVX downstream of the first PVX CP SGP and the gene of interest (GOI). The full-length PVX clone carrying the sequence encoding a green fluorescent protein (GFP) as GOI was incorporated into the binary GB vector in a one-step reaction of three GB parts using the four-nucleotide GB standard syntax. We investigated whether the obtained vector named GFP/pGBX enables systemic PVX infection and expression of GFP in Nicotiana benthamiana plants. We show that this GB-compatible vector system can be used for simple and efficient assembly of PVX-based expression constructs and that it meets the current need for interchange of standard biological parts used in different expression systems.
Collapse
Affiliation(s)
- Helena Plchová
- Laboratory of Virology, Centre for Plant Virus Research, Institute of Experimental Botany of the Czech Academy of Sciences, 16500 Prague, Czech Republic; (H.P.); (N.Č.); (Z.P.); (J.D.); (K.K.); (O.N.)
| | - Tomáš Moravec
- Laboratory of Virology, Centre for Plant Virus Research, Institute of Experimental Botany of the Czech Academy of Sciences, 16500 Prague, Czech Republic; (H.P.); (N.Č.); (Z.P.); (J.D.); (K.K.); (O.N.)
| | - Noemi Čeřovská
- Laboratory of Virology, Centre for Plant Virus Research, Institute of Experimental Botany of the Czech Academy of Sciences, 16500 Prague, Czech Republic; (H.P.); (N.Č.); (Z.P.); (J.D.); (K.K.); (O.N.)
| | - Zuzana Pobořilová
- Laboratory of Virology, Centre for Plant Virus Research, Institute of Experimental Botany of the Czech Academy of Sciences, 16500 Prague, Czech Republic; (H.P.); (N.Č.); (Z.P.); (J.D.); (K.K.); (O.N.)
| | - Jakub Dušek
- Laboratory of Virology, Centre for Plant Virus Research, Institute of Experimental Botany of the Czech Academy of Sciences, 16500 Prague, Czech Republic; (H.P.); (N.Č.); (Z.P.); (J.D.); (K.K.); (O.N.)
- Department of Plant Protection, Czech University of Life Sciences, 16500 Prague, Czech Republic
| | - Kateřina Kratochvílová
- Laboratory of Virology, Centre for Plant Virus Research, Institute of Experimental Botany of the Czech Academy of Sciences, 16500 Prague, Czech Republic; (H.P.); (N.Č.); (Z.P.); (J.D.); (K.K.); (O.N.)
- Department of Experimental Plant Biology, Faculty of Science, Charles University in Prague, 12843 Prague, Czech Republic
| | - Oldřich Navrátil
- Laboratory of Virology, Centre for Plant Virus Research, Institute of Experimental Botany of the Czech Academy of Sciences, 16500 Prague, Czech Republic; (H.P.); (N.Č.); (Z.P.); (J.D.); (K.K.); (O.N.)
| | - Jiban Kumar Kundu
- Laboratory of Virology, Centre for Plant Virus Research, Institute of Experimental Botany of the Czech Academy of Sciences, 16500 Prague, Czech Republic; (H.P.); (N.Č.); (Z.P.); (J.D.); (K.K.); (O.N.)
- Plant Virus and Vector Interactions, Centre for Plant Virus Research, Crop Research Institute, 16106 Prague, Czech Republic
| |
Collapse
|
27
|
Zhu Q, Tan J, Liu YG. Molecular farming using transgenic rice endosperm. Trends Biotechnol 2022; 40:1248-1260. [PMID: 35562237 DOI: 10.1016/j.tibtech.2022.04.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/01/2022] [Accepted: 04/07/2022] [Indexed: 01/05/2023]
Abstract
Plant expression platforms are low-cost, scalable, safe, and environmentally friendly systems for the production of recombinant proteins and bioactive metabolites. Rice (Oryza sativa L.) endosperm is an ideal bioreactor for the production and storage of high-value active substances, including pharmaceutical proteins, oral vaccines, vitamins, and nutraceuticals such as flavonoids and carotenoids. Here, we explore the use of molecular farming from producing medicines to developing functional food crops (biofortification). We review recent progress in producing pharmaceutical proteins and bioactive substances in rice endosperm and compare this platform with other plant expression systems. We describe how rice endosperm could be modified to design metabolic pathways and express and store stable products and discuss the factors restricting the commercialization of transgenic rice products and future prospects.
Collapse
Affiliation(s)
- Qinlong Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China.
| | - Jiantao Tan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Yao-Guang Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| |
Collapse
|
28
|
Lima LF, Sousa MGDC, Rodrigues GR, de Oliveira KBS, Pereira AM, da Costa A, Machado R, Franco OL, Dias SC. Elastin-like Polypeptides in Development of Nanomaterials for Application in the Medical Field. FRONTIERS IN NANOTECHNOLOGY 2022. [DOI: 10.3389/fnano.2022.874790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Elastin-like polypeptides (ELPs) are biopolymers formed by amino acid sequences derived from tropoelastin. These biomolecules can be soluble below critical temperatures, forming aggregates at higher temperatures, which makes them an interesting source for the design of different nanobiomaterials. These nanobiomaterials can be obtained from heterologous expression in several organisms such as bacteria, fungi, and plants. Thanks to the many advantages of ELPs, they have been used in the biomedical field to develop nanoparticles, nanofibers, and nanocomposites. These nanostructures can be used in multiple applications such as drug delivery systems, treatments of type 2 diabetes, cardiovascular diseases, tissue repair, and cancer therapy. Thus, this review aims to shed some light on the main advances in elastin-like-based nanomaterials, their possible expression forms, and importance to the medical field.
Collapse
|
29
|
Development of spirulina for the manufacture and oral delivery of protein therapeutics. Nat Biotechnol 2022; 40:956-964. [PMID: 35314813 PMCID: PMC9200632 DOI: 10.1038/s41587-022-01249-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 02/03/2022] [Indexed: 12/21/2022]
Abstract
The use of the edible photosynthetic cyanobacterium Arthrospira platensis (spirulina) as a biomanufacturing platform has been limited by a lack of genetic tools. Here we report genetic engineering methods for stable, high-level expression of bioactive proteins in spirulina, including large-scale, indoor cultivation and downstream processing methods. Following targeted integration of exogenous genes into the spirulina chromosome (chr), encoded protein biopharmaceuticals can represent as much as 15% of total biomass, require no purification before oral delivery and are stable without refrigeration and protected during gastric transit when encapsulated within dry spirulina. Oral delivery of a spirulina-expressed antibody targeting campylobacter-a major cause of infant mortality in the developing world-prevents disease in mice, and a phase 1 clinical trial demonstrated safety for human administration. Spirulina provides an advantageous system for the manufacture of orally delivered therapeutic proteins by combining the safety of a food-based production host with the accessible genetic manipulation and high productivity of microbial platforms.
Collapse
|
30
|
Inam S, Abbas Z, Noor S, Rehman N, Adeel Zafar S, Ramzan Khan M, Ali Kaimkhani Z, Al-Misned F, Shah M, Mahboob S, Muhammad Ali G. Isolation, cloning and transgenic expression of hepatitis B surface antigen ( HBsAg) in Solanum lycopersicum L. Saudi J Biol Sci 2022; 29:1559-1564. [PMID: 35280581 PMCID: PMC8913426 DOI: 10.1016/j.sjbs.2021.11.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/29/2021] [Accepted: 11/03/2021] [Indexed: 11/30/2022] Open
Abstract
The Hepatitis B virus (HBV) infection is one of the most widespread viral infections of humans. HBV causes acute and chronic hepatitis. Chronic hepatitis leads to hepatocellular carcinoma, which is a significant cause of death. DNA-based immunization programs to control the spread of Hepatitis B in developing countries are costly and require special storage and transportation. The alternative way is to express Hepatitis B surface antigen (HBsAg) in plants to develop oral vaccines. In this study, HBsAg gene was isolated, cloned, and then transformed in tomato plants. The transgenic tomato plants were confirmed through RT-qPCR. HBsAg expression was analysed in mature green and red stages of tomato fruit through quantitative real-time PCR. It was observed that expression of HBsAg was high in matured red tomato as compared to mature green. The present study is the first step to developing Solanum lycopersicum as an edible vaccine production system in this world region.
Collapse
Affiliation(s)
- Safeena Inam
- National Institute for Genomics and Advanced Biotechnology (NIGAB), Pakistan Agriculture Research Council, Pakistan
| | - Zaheer Abbas
- National Institute for Genomics and Advanced Biotechnology (NIGAB), Pakistan Agriculture Research Council, Pakistan
| | - Sabahat Noor
- National Institute for Genomics and Advanced Biotechnology (NIGAB), Pakistan Agriculture Research Council, Pakistan
| | - Nazia Rehman
- National Institute for Genomics and Advanced Biotechnology (NIGAB), Pakistan Agriculture Research Council, Pakistan
| | - Syed Adeel Zafar
- Department of Botany and Plant Sciences, University of California, Reiverside, USA
| | - Muhammad Ramzan Khan
- National Institute for Genomics and Advanced Biotechnology (NIGAB), Pakistan Agriculture Research Council, Pakistan
| | | | - F. Al-Misned
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Masaud Shah
- School of Medicine, Department of Physiology, Ajou University, Suwon 16499, Korea
| | - Shahid Mahboob
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ghulam Muhammad Ali
- National Institute for Genomics and Advanced Biotechnology (NIGAB), Pakistan Agriculture Research Council, Pakistan
| |
Collapse
|
31
|
Ortega-Berlanga B, Pniewski T. Plant-Based Vaccines in Combat against Coronavirus Diseases. Vaccines (Basel) 2022; 10:138. [PMID: 35214597 PMCID: PMC8876659 DOI: 10.3390/vaccines10020138] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 01/06/2022] [Accepted: 01/14/2022] [Indexed: 02/07/2023] Open
Abstract
Coronavirus (CoV) diseases, including Middle East Respiratory Syndrome (MERS) and Severe Acute Respiratory Syndrome (SARS) have gained in importance worldwide, especially with the current COVID-19 pandemic caused by SARS-CoV-2. Due to the huge global demand, various types of vaccines have been developed, such as more traditional attenuated or inactivated viruses, subunit and VLP-based vaccines, as well as novel DNA and RNA vaccines. Nonetheless, emerging new COVID-19 variants are necessitating continuous research on vaccines, including these produced in plants, either via stable expression in transgenic or transplastomic plants or transient expression using viral vectors or agroinfection. Plant systems provide low cost, high scalability, safety and capacity to produce multimeric or glycosylated proteins. To date, from among CoVs antigens, spike and capsid proteins have been produced in plants, mostly using transient expression systems, at the additional advantage of rapid production. Immunogenicity of plant-produced CoVs proteins was positively evaluated after injection of purified antigens. However, this review indicates that plant-produced CoVs proteins or their carrier-fused immunodominant epitopes can be potentially applied also as mucosal vaccines, either after purification to be administered to particular membranes (nasal, bronchus mucosa) associated with the respiratory system, or as oral vaccines obtained from partly processed plant tissue.
Collapse
Affiliation(s)
- Benita Ortega-Berlanga
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznań, Poland;
| | | |
Collapse
|
32
|
Monreal-Escalante E, Ramos-Vega A, Angulo C, Bañuelos-Hernández B. Plant-Based Vaccines: Antigen Design, Diversity, and Strategies for High Level Production. Vaccines (Basel) 2022; 10:100. [PMID: 35062761 PMCID: PMC8782010 DOI: 10.3390/vaccines10010100] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/25/2021] [Accepted: 01/01/2022] [Indexed: 12/18/2022] Open
Abstract
Vaccines for human use have conventionally been developed by the production of (1) microbial pathogens in eggs or mammalian cells that are then inactivated, or (2) by the production of pathogen proteins in mammalian and insect cells that are purified for vaccine formulation, as well as, more recently, (3) by using RNA or DNA fragments from pathogens. Another approach for recombinant antigen production in the last three decades has been the use of plants as biofactories. Only have few plant-produced vaccines been evaluated in clinical trials to fight against diseases, of which COVID-19 vaccines are the most recent to be FDA approved. In silico tools have accelerated vaccine design, which, combined with transitory antigen expression in plants, has led to the testing of promising prototypes in pre-clinical and clinical trials. Therefore, this review deals with a description of immunoinformatic tools and plant genetic engineering technologies used for antigen design (virus-like particles (VLP), subunit vaccines, VLP chimeras) and the main strategies for high antigen production levels. These key topics for plant-made vaccine development are discussed and perspectives are provided.
Collapse
Affiliation(s)
- Elizabeth Monreal-Escalante
- Immunology and Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste, Instituto PoliItécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz 23096, BCS, Mexico; (A.R.-V.); (C.A.)
- CONACYT—Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz 23096, BCS, Mexico
| | - Abel Ramos-Vega
- Immunology and Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste, Instituto PoliItécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz 23096, BCS, Mexico; (A.R.-V.); (C.A.)
| | - Carlos Angulo
- Immunology and Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste, Instituto PoliItécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz 23096, BCS, Mexico; (A.R.-V.); (C.A.)
| | - Bernardo Bañuelos-Hernández
- Escuela de Veterinaria, Universidad De La Salle Bajío, Avenida Universidad 602, Lomas del Campestre, Leon 37150, GTO, Mexico
| |
Collapse
|
33
|
Kapusi E, Stoger E. Molecular Farming in Seed Crops: Gene Transfer into Barley (Hordeum vulgare ) and Wheat (Triticum aestivum ). Methods Mol Biol 2022; 2480:49-60. [PMID: 35616856 DOI: 10.1007/978-1-0716-2241-4_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The production of recombinant proteins in seed crops has a long history and cereal grains are now one of the platforms in commercial use. Specific advantages include excellent storage properties, a well-developed endomembrane system with a high biosynthetic capacity and well-established cultivation procedures worldwide. However, the production of transgenic cereals is a time-consuming procedure and the lack of efficient transformation systems is still a significant bottleneck. Barley can be transformed at high efficiency but the protocols are genotype-dependent. Wheat is generally more challenging to transform, but considerable progress has been made in enhancing transformation efficiencies and in controlling transgene expression. In this chapter, we describe and discuss standard procedures for generating transgenic barley and wheat for the production of recombinant proteins.
Collapse
Affiliation(s)
- Eszter Kapusi
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Eva Stoger
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria.
| |
Collapse
|
34
|
Recent advances in molecular farming using monocot plants. Biotechnol Adv 2022; 58:107913. [DOI: 10.1016/j.biotechadv.2022.107913] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 01/13/2022] [Accepted: 01/15/2022] [Indexed: 12/22/2022]
|
35
|
Hemmati F, Hemmati-Dinarvand M, Karimzade M, Rutkowska D, Eskandari MH, Khanizadeh S, Afsharifar A. Plant-derived VLP: a worthy platform to produce vaccine against SARS-CoV-2. Biotechnol Lett 2021; 44:45-57. [PMID: 34837582 PMCID: PMC8626723 DOI: 10.1007/s10529-021-03211-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 11/10/2021] [Indexed: 02/06/2023]
Abstract
After its emergence in late 2019 SARS-CoV-2 was declared a pandemic by the World Health Organization on 11 March 2020 and has claimed more than 2.8 million lives. There has been a massive global effort to develop vaccines against SARS-CoV-2 and the rapid and low cost production of large quantities of vaccine is urgently needed to ensure adequate supply to both developed and developing countries. Virus-like particles (VLPs) are composed of viral antigens that self-assemble into structures that mimic the structure of native viruses but lack the viral genome. Thus they are not only a safer alternative to attenuated or inactivated vaccines but are also able to induce potent cellular and humoral immune responses and can be manufactured recombinantly in expression systems that do not require viral replication. VLPs have successfully been produced in bacteria, yeast, insect and mammalian cell cultures, each production platform with its own advantages and limitations. Plants offer a number of advantages in one production platform, including proper eukaryotic protein modification and assembly, increased safety, low cost, high scalability as well as rapid production speed, a critical factor needed to control outbreaks of potential pandemics. Plant-based VLP-based viral vaccines currently in clinical trials include, amongst others, Hepatitis B virus, Influenza virus and SARS-CoV-2 vaccines. Here we discuss the importance of plants as a next generation expression system for the fast, scalable and low cost production of VLP-based vaccines.
Collapse
Affiliation(s)
- Farshad Hemmati
- Plant Virology Research Center, College of Agriculture, Shiraz University, Shiraz, Iran.
| | - Mohsen Hemmati-Dinarvand
- Department of Clinical Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Marziye Karimzade
- Plant Pathology Department, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Daria Rutkowska
- CSIR Next Generation Health, PO Box 395, Pretoria, 0001, South Africa
| | - Mohammad Hadi Eskandari
- Department of Food Science and Technology, College of Agriculture, Shiraz University, Shiraz, Iran
| | - Sayyad Khanizadeh
- Hepatitis Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Alireza Afsharifar
- Plant Virology Research Center, College of Agriculture, Shiraz University, Shiraz, Iran.
| |
Collapse
|
36
|
Singh AA, Pillay P, Tsekoa TL. Engineering Approaches in Plant Molecular Farming for Global Health. Vaccines (Basel) 2021; 9:vaccines9111270. [PMID: 34835201 PMCID: PMC8623924 DOI: 10.3390/vaccines9111270] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 12/16/2022] Open
Abstract
Since the demonstration of the first plant-produced proteins of medical interest, there has been significant growth and interest in the field of plant molecular farming, with plants now being considered a viable production platform for vaccines. Despite this interest and development by a few biopharmaceutical companies, plant molecular farming is yet to be embraced by ‘big pharma’. The plant system offers a faster alternative, which is a potentially more cost-effective and scalable platform for the mass production of highly complex protein vaccines, owing to the high degree of similarity between the plant and mammalian secretory pathway. Here, we identify and address bottlenecks in the use of plants for vaccine manufacturing and discuss engineering approaches that demonstrate both the utility and versatility of the plant production system as a viable biomanufacturing platform for global health. Strategies for improving the yields and quality of plant-produced vaccines, as well as the incorporation of authentic posttranslational modifications that are essential to the functionality of these highly complex protein vaccines, will also be discussed. Case-by-case examples are considered for improving the production of functional protein-based vaccines. The combination of all these strategies provides a basis for the use of cutting-edge genome editing technology to create a general plant chassis with reduced host cell proteins, which is optimised for high-level protein production of vaccines with the correct posttranslational modifications.
Collapse
|
37
|
Kang CE, Lee S, Seo DH, Heo W, Kwon SH, Kim J, Lee J, Ko BJ, Koiwa H, Kim WT, Kim JY. Comparison of CD20 Binding Affinities of Rituximab Produced in Nicotiana benthamiana Leaves and Arabidopsis thaliana Callus. Mol Biotechnol 2021; 63:1016-1029. [PMID: 34185248 DOI: 10.1007/s12033-021-00360-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 06/10/2021] [Indexed: 10/21/2022]
Abstract
Plants are promising drug-production platforms with high economic efficiency, stability, and convenience in mass production. However, studies comparing the equivalency between the original antibodies and those produced in plants are limited. Amino acid sequences that constitute the Fab region of an antibody are diverse, and the post-transcriptional modifications that occur according to these sequences in animals and plants are also highly variable. In this study, rituximab, a blockbuster antibody drug used in the treatment of non-Hodgkin's lymphoma, was produced in Nicotiana benthamiana leaves and Arabidopsis thaliana callus, and was compared to the original rituximab produced in CHO cells. Interestingly, the epitope recognition and antigen-binding abilities of rituximab from N. benthamiana leaves were almost lost. In the case of rituximab produced in A. thaliana callus, the specific binding ability and CD20 capping activity were maintained, but the binding affinity was less than 50% of that of original rituximab from CHO cells. These results suggest that different plant species exhibit different binding affinities. Accordingly, in addition to the differences in PTMs between mammals and plants, the differences between the species must also be considered in the process of producing antibodies in plants.
Collapse
Affiliation(s)
- Cho Eun Kang
- Department of Pharmacology and Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03080, Republic of Korea
| | - Seungeun Lee
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03080, Republic of Korea
| | - Dong Hye Seo
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03080, Republic of Korea
| | - Woon Heo
- Department of Pharmacology and Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03080, Republic of Korea
| | - Sun Hyung Kwon
- Department of Pharmacology and Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03080, Republic of Korea
| | - JeongRyeol Kim
- Department of Pharmacology and Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03080, Republic of Korea
| | - Jinu Lee
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, 21983, Republic of Korea
| | - Byoung Joon Ko
- Mass Analysis Team, New Drug Development Center, Cheongju, Chungbuk, 28160, Republic of Korea
| | - Hisashi Koiwa
- Vegetable and Fruit Development Center, Department of Horticultural Sciences, Texas A&M University, College Station, TX77843-2133, USA
| | - Woo Taek Kim
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03080, Republic of Korea.
| | - Joo Young Kim
- Department of Pharmacology and Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03080, Republic of Korea.
| |
Collapse
|
38
|
Stander J, Chabeda A, Rybicki EP, Meyers AE. A Plant-Produced Virus-Like Particle Displaying Envelope Protein Domain III Elicits an Immune Response Against West Nile Virus in Mice. FRONTIERS IN PLANT SCIENCE 2021; 12:738619. [PMID: 34589108 PMCID: PMC8475786 DOI: 10.3389/fpls.2021.738619] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 08/13/2021] [Indexed: 05/27/2023]
Abstract
West Nile virus (WNV) is a globally disseminated Flavivirus that is associated with encephalitis outbreaks in humans and horses. The continuous global outbreaks of West Nile disease in the bird, human, and horse populations, with no preventative measures for humans, pose a major public health threat. The development of a vaccine that contributes to the "One Health" Initiative could be the answer to prevent the spread of the virus and control human and animal disease. The current commercially available veterinary vaccines are generally costly and most require high levels of biosafety for their manufacture. Consequently, we explored making a particulate vaccine candidate made transiently in plants as a more cost-effective and safer means of production. A WNV virus-like particle-display-based vaccine candidate was generated by the use of the SpyTag/SpyCatcher (ST/SC) conjugation system. The WNV envelope protein domain III (EDIII), which contains WNV-specific epitopes, was fused to and displayed on AP205 phage virus-like particles (VLPs) following the production of both separately in Nicotiana benthamiana. Co-purification of AP205 and EDIII genetically fused to ST and SC, respectively, resulted in the conjugated VLPs displaying EDIII with an average coupling efficiency of 51%. Subcutaneous immunisation of mice with 5 μg of purified AP205: EDIII VLPs elicited a potent IgG response to WNV EDIII. This study presents the potential plants being used as biofactories for making significant pharmaceutical products for the "One Health" Initiative and could be used to address the need for their local production in low- and middle-income countries (LMICs).
Collapse
Affiliation(s)
- Jennifer Stander
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| | - Aleyo Chabeda
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, United States
| | - Edward P. Rybicki
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Science, University of Cape Town, Cape Town, South Africa
| | - Ann E. Meyers
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
39
|
Buyel JF, Stöger E, Bortesi L. Targeted genome editing of plants and plant cells for biomanufacturing. Transgenic Res 2021; 30:401-426. [PMID: 33646510 PMCID: PMC8316201 DOI: 10.1007/s11248-021-00236-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 02/03/2021] [Indexed: 02/07/2023]
Abstract
Plants have provided humans with useful products since antiquity, but in the last 30 years they have also been developed as production platforms for small molecules and recombinant proteins. This initially niche area has blossomed with the growth of the global bioeconomy, and now includes chemical building blocks, polymers and renewable energy. All these applications can be described as "plant molecular farming" (PMF). Despite its potential to increase the sustainability of biologics manufacturing, PMF has yet to be embraced broadly by industry. This reflects a combination of regulatory uncertainty, limited information on process cost structures, and the absence of trained staff and suitable manufacturing capacity. However, the limited adaptation of plants and plant cells to the requirements of industry-scale manufacturing is an equally important hurdle. For example, the targeted genetic manipulation of yeast has been common practice since the 1980s, whereas reliable site-directed mutagenesis in most plants has only become available with the advent of CRISPR/Cas9 and similar genome editing technologies since around 2010. Here we summarize the applications of new genetic engineering technologies to improve plants as biomanufacturing platforms. We start by identifying current bottlenecks in manufacturing, then illustrate the progress that has already been made and discuss the potential for improvement at the molecular, cellular and organism levels. We discuss the effects of metabolic optimization, adaptation of the endomembrane system, modified glycosylation profiles, programmable growth and senescence, protease inactivation, and the expression of enzymes that promote biodegradation. We outline strategies to achieve these modifications by targeted gene modification, considering case-by-case examples of individual improvements and the combined modifications needed to generate a new general-purpose "chassis" for PMF.
Collapse
Affiliation(s)
- J F Buyel
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstrasse 6, 52074, Aachen, Germany.
- Institute for Molecular Biotechnology, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany.
| | - E Stöger
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - L Bortesi
- Aachen-Maastricht Institute for Biobased Materials (AMIBM), Maastricht University, Brightlands Chemelot Campus, Urmonderbaan 22, 6167 RD, Geleen, The Netherlands
| |
Collapse
|
40
|
Mirzaee M, Holásková E, Mičúchová A, Kopečný DJ, Osmani Z, Frébort I. Long-Lasting Stable Expression of Human LL-37 Antimicrobial Peptide in Transgenic Barley Plants. Antibiotics (Basel) 2021; 10:898. [PMID: 34438948 PMCID: PMC8388648 DOI: 10.3390/antibiotics10080898] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/19/2021] [Accepted: 07/21/2021] [Indexed: 12/22/2022] Open
Abstract
Antimicrobial peptides play a crucial role in the innate immune system of multicellular organisms. LL-37 is the only known member of the human cathelicidin family. As well as possessing antibacterial properties, it is actively involved in various physiological responses in eukaryotic cells. Accordingly, there is considerable interest in large-scale, low-cost, and microbial endotoxin-free production of LL-37 recombinant peptides for pharmaceutical applications. As a heterologous expression biofactory, we have previously obtained homologous barley (Hordeum vulgare L.) as an attractive vehicle for producing recombinant human LL-37 in the grain storage compartment, endosperm. The long-term stability of expression and inheritance of transgenes is necessary for the successful commercialization of recombinant proteins. Here, we report the stable inheritance and expression of the LL-37 gene in barley after six generations, including two consecutive seasons of experimental field cultivation. The transgenic plants showed normal growth and remained fertile. Based on the bacteria viability test, the produced peptide LL-37 retained high antibacterial activity.
Collapse
Affiliation(s)
- Malihe Mirzaee
- Centre of Region Haná for Biotechnological and Agricultural Research, Czech Advanced Technology and Research Institute (CATRIN), Palacký University, 783 71 Olomouc, Czech Republic; (M.M.); (E.H.); (A.M.); (Z.O.)
| | - Edita Holásková
- Centre of Region Haná for Biotechnological and Agricultural Research, Czech Advanced Technology and Research Institute (CATRIN), Palacký University, 783 71 Olomouc, Czech Republic; (M.M.); (E.H.); (A.M.); (Z.O.)
| | - Alžbeta Mičúchová
- Centre of Region Haná for Biotechnological and Agricultural Research, Czech Advanced Technology and Research Institute (CATRIN), Palacký University, 783 71 Olomouc, Czech Republic; (M.M.); (E.H.); (A.M.); (Z.O.)
| | - David J. Kopečný
- Department of Experimental Biology, Faculty of Science, Palacký University, 783 71 Olomouc, Czech Republic;
| | - Zhila Osmani
- Centre of Region Haná for Biotechnological and Agricultural Research, Czech Advanced Technology and Research Institute (CATRIN), Palacký University, 783 71 Olomouc, Czech Republic; (M.M.); (E.H.); (A.M.); (Z.O.)
| | - Ivo Frébort
- Centre of Region Haná for Biotechnological and Agricultural Research, Czech Advanced Technology and Research Institute (CATRIN), Palacký University, 783 71 Olomouc, Czech Republic; (M.M.); (E.H.); (A.M.); (Z.O.)
| |
Collapse
|
41
|
Cid R, Bolívar J. Platforms for Production of Protein-Based Vaccines: From Classical to Next-Generation Strategies. Biomolecules 2021; 11:1072. [PMID: 34439738 PMCID: PMC8394948 DOI: 10.3390/biom11081072] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/16/2021] [Accepted: 07/17/2021] [Indexed: 12/12/2022] Open
Abstract
To date, vaccination has become one of the most effective strategies to control and reduce infectious diseases, preventing millions of deaths worldwide. The earliest vaccines were developed as live-attenuated or inactivated pathogens, and, although they still represent the most extended human vaccine types, they also face some issues, such as the potential to revert to a pathogenic form of live-attenuated formulations or the weaker immune response associated with inactivated vaccines. Advances in genetic engineering have enabled improvements in vaccine design and strategies, such as recombinant subunit vaccines, have emerged, expanding the number of diseases that can be prevented. Moreover, antigen display systems such as VLPs or those designed by nanotechnology have improved the efficacy of subunit vaccines. Platforms for the production of recombinant vaccines have also evolved from the first hosts, Escherichia coli and Saccharomyces cerevisiae, to insect or mammalian cells. Traditional bacterial and yeast systems have been improved by engineering and new systems based on plants or insect larvae have emerged as alternative, low-cost platforms. Vaccine development is still time-consuming and costly, and alternative systems that can offer cost-effective and faster processes are demanding to address infectious diseases that still do not have a treatment and to face possible future pandemics.
Collapse
Affiliation(s)
- Raquel Cid
- ADL Bionatur Solutions S.A., Av. del Desarrollo Tecnológico 11, 11591 Jerez de la Frontera, Spain
| | - Jorge Bolívar
- Department of Biomedicine, Biotechnology and Public Health-Biochemistry and Molecular Biology, Campus Universitario de Puerto Real, University of Cadiz, 11510 Puerto Real, Spain
| |
Collapse
|
42
|
Kumar M, Kumari N, Thakur N, Bhatia SK, Saratale GD, Ghodake G, Mistry BM, Alavilli H, Kishor DS, Du X, Chung SM. A Comprehensive Overview on the Production of Vaccines in Plant-Based Expression Systems and the Scope of Plant Biotechnology to Combat against SARS-CoV-2 Virus Pandemics. PLANTS (BASEL, SWITZERLAND) 2021; 10:1213. [PMID: 34203729 PMCID: PMC8232254 DOI: 10.3390/plants10061213] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/28/2021] [Accepted: 06/12/2021] [Indexed: 12/23/2022]
Abstract
Many pathogenic viral pandemics have caused threats to global health; the COVID-19 pandemic is the latest. Its transmission is growing exponentially all around the globe, putting constraints on the health system worldwide. A novel coronavirus, severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), causes this pandemic. Many candidate vaccines are available at this time for COVID-19, and there is a massive international race underway to procure as many vaccines as possible for each country. However, due to heavy global demand, there are strains in global vaccine production. The use of a plant biotechnology-based expression system for vaccine production also represents one part of this international effort, which is to develop plant-based heterologous expression systems, virus-like particles (VLPs)-vaccines, antiviral drugs, and a rapid supply of antigen-antibodies for detecting kits and plant origin bioactive compounds that boost the immunity and provide tolerance to fight against the virus infection. This review will look at the plant biotechnology platform that can provide the best fight against this global pandemic.
Collapse
Affiliation(s)
- Manu Kumar
- Department of Life Science, College of Life Science and Biotechnology, Dongguk University, Seoul 10326, Korea; (M.K.); (D.S.K.); (X.D.)
| | - Nisha Kumari
- Department of Radiology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Korea;
| | - Nishant Thakur
- Department of Hospital Pathology, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, 10, 63-ro, Yeongdeungpo-gu, Seoul 07345, Korea;
| | - Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 05029, Korea;
| | - Ganesh Dattatraya Saratale
- Department of Food Science and Biotechnology, Dongguk University, Seoul 10326, Korea; (G.D.S.); (B.M.M.)
| | - Gajanan Ghodake
- Department of Biological and Environmental Science, Dongguk University, Seoul 10326, Korea;
| | - Bhupendra M. Mistry
- Department of Food Science and Biotechnology, Dongguk University, Seoul 10326, Korea; (G.D.S.); (B.M.M.)
| | - Hemasundar Alavilli
- Department of Biochemistry and Molecular Biology, College of Medicine, Korea University, Seoul 02841, Korea;
| | - D. S. Kishor
- Department of Life Science, College of Life Science and Biotechnology, Dongguk University, Seoul 10326, Korea; (M.K.); (D.S.K.); (X.D.)
| | - Xueshi Du
- Department of Life Science, College of Life Science and Biotechnology, Dongguk University, Seoul 10326, Korea; (M.K.); (D.S.K.); (X.D.)
| | - Sang-Min Chung
- Department of Life Science, College of Life Science and Biotechnology, Dongguk University, Seoul 10326, Korea; (M.K.); (D.S.K.); (X.D.)
| |
Collapse
|
43
|
Fernie AR, Sonnewald U. Plant biotechnology for sustainable agriculture and food safety. JOURNAL OF PLANT PHYSIOLOGY 2021; 261:153416. [PMID: 33872931 DOI: 10.1016/j.jplph.2021.153416] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Affiliation(s)
- Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany.
| | - Uwe Sonnewald
- Division of Biochemistry, Department of Biology, University of Erlangen-Nuremberg, Erlangen, Germany.
| |
Collapse
|
44
|
Ponndorf D, Meshcheriakova Y, Thuenemann EC, Dobon Alonso A, Overman R, Holton N, Dowall S, Kennedy E, Stocks M, Lomonossoff GP, Peyret H. Plant-made dengue virus-like particles produced by co-expression of structural and non-structural proteins induce a humoral immune response in mice. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:745-756. [PMID: 33099859 PMCID: PMC8051607 DOI: 10.1111/pbi.13501] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 10/05/2020] [Accepted: 10/20/2020] [Indexed: 05/20/2023]
Abstract
Dengue virus (DENV) is an emerging threat causing an estimated 390 million infections per year. Dengvaxia, the only licensed vaccine, may not be adequately safe in young and seronegative patients; hence, development of a safer, more effective vaccine is of great public health interest. Virus-like particles (VLPs) are a safe and very efficient vaccine strategy, and DENV VLPs have been produced in various expression systems. Here, we describe the production of DENV VLPs in Nicotiana benthamiana using transient expression. The co-expression of DENV structural proteins (SP) and a truncated version of the non-structural proteins (NSPs), lacking NS5 that contains the RNA-dependent RNA polymerase, led to the assembly of DENV VLPs in plants. These VLPs were comparable in appearance and size to VLPs produced in mammalian cells. Contrary to data from other expression systems, expression of the protein complex prM-E was not successful, and strategies used in other expression systems to improve the VLP yield did not result in increased yields in plants but, rather, increased purification difficulties. Immunogenicity assays in BALB/c mice revealed that plant-made DENV1-SP + NSP VLPs led to a higher antibody response in mice compared with DENV-E domain III displayed inside bluetongue virus core-like particles and a DENV-E domain III subunit. These results are consistent with the idea that VLPs could be the optimal approach to creating candidate vaccines against enveloped viruses.
Collapse
Affiliation(s)
- Daniel Ponndorf
- Department of Biological ChemistryJohn Innes CentreNorwich Research ParkNorwichUK
| | - Yulia Meshcheriakova
- Department of Biological ChemistryJohn Innes CentreNorwich Research ParkNorwichUK
| | - Eva C. Thuenemann
- Department of Biological ChemistryJohn Innes CentreNorwich Research ParkNorwichUK
| | | | - Ross Overman
- Leaf Expression SystemsNorwich Research ParkNorwichUK
| | | | | | | | - Martin Stocks
- Plant Bioscience LimitedNorwich Research ParkNorwichUK
| | | | - Hadrien Peyret
- Department of Biological ChemistryJohn Innes CentreNorwich Research ParkNorwichUK
| |
Collapse
|
45
|
Schillberg S, Finnern R. Plant molecular farming for the production of valuable proteins - Critical evaluation of achievements and future challenges. JOURNAL OF PLANT PHYSIOLOGY 2021; 258-259:153359. [PMID: 33460995 DOI: 10.1016/j.jplph.2020.153359] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/14/2020] [Accepted: 12/25/2020] [Indexed: 05/22/2023]
Abstract
Recombinant proteins play an important role in many areas of our lives. For example, recombinant enzymes are used in the food and chemical industries and as high-quality proteins for research, diagnostic and therapeutic applications. The production of recombinant proteins is still dominated by expression systems based on microbes and mammalian cells, although the manufacturing of recombinant proteins in plants - known as molecular farming - has been promoted as an alternative, cost-efficient strategy for three decades. Several molecular farming products have reached the market, but the number of success stories has been limited by industrial inertia driven by perceptions of low productivity, the high cost of downstream processing, and regulatory hurdles that create barriers to translation. Here, we discuss the technical and economic factors required for the successful commercialization of molecular farming, and consider potential future directions to enable the broader application of production platforms based on plants.
Collapse
Affiliation(s)
- Stefan Schillberg
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstraße 6, 52074, Aachen, Germany; Department of Phytopathology, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany.
| | - Ricarda Finnern
- LenioBio GmbH, Erkrather Straße 401, 40231, Düsseldorf, Germany
| |
Collapse
|
46
|
Hepatitis B core-based virus-like particles: A platform for vaccine development in plants. ACTA ACUST UNITED AC 2021; 29:e00605. [PMID: 33732633 PMCID: PMC7937989 DOI: 10.1016/j.btre.2021.e00605] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/17/2021] [Accepted: 02/25/2021] [Indexed: 02/07/2023]
Abstract
Virus-like particles (VLPs) are a class of structures formed by the self-assembly of viral capsid protein subunits and contain no infective viral genetic material. The Hepatitis B core (HBc) antigen is capable of assembling into VLPs that can elicit strong immune responses and has been licensed as a commercial vaccine against Hepatitis B. The HBc VLPs have also been employed as a platform for the presentation of foreign epitopes to the immune system and have been used to develop vaccines against, for example, influenza A and Foot-and-mouth disease. Plant expression systems are rapid, scalable and safe, and are capable of providing correct post-translational modifications and reducing upstream production costs. The production of HBc-based virus-like particles in plants would thus greatly increase the efficiency of vaccine production. This review investigates the application of plant-based HBc VLP as a platform for vaccine production.
Collapse
|
47
|
Schmidt JA, Richter LV, Condoluci LA, Ahner BA. Mitigation of deleterious phenotypes in chloroplast-engineered plants accumulating high levels of foreign proteins. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:42. [PMID: 33568217 PMCID: PMC7877051 DOI: 10.1186/s13068-021-01893-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 01/28/2021] [Indexed: 05/19/2023]
Abstract
BACKGROUND The global demand for functional proteins is extensive, diverse, and constantly increasing. Medicine, agriculture, and industrial manufacturing all rely on high-quality proteins as major active components or process additives. Historically, these demands have been met by microbial bioreactors that are expensive to operate and maintain, prone to contamination, and relatively inflexible to changing market demands. Well-established crop cultivation techniques coupled with new advancements in genetic engineering may offer a cheaper and more versatile protein production platform. Chloroplast-engineered plants, like tobacco, have the potential to produce large quantities of high-value proteins, but often result in engineered plants with mutant phenotypes. This technology needs to be fine-tuned for commercial applications to maximize target protein yield while maintaining robust plant growth. RESULTS Here, we show that a previously developed Nicotiana tabacum line, TetC-cel6A, can produce an industrial cellulase at levels of up to 28% of total soluble protein (TSP) with a slight dwarf phenotype but no loss in biomass. In seedlings, the dwarf phenotype is recovered by exogenous application of gibberellic acid. We also demonstrate that accumulating foreign protein represents an added burden to the plants' metabolism that can make them more sensitive to limiting growth conditions such as low nitrogen. The biomass of nitrogen-limited TetC-cel6A plants was found to be as much as 40% lower than wildtype (WT) tobacco, although heterologous cellulase production was not greatly reduced compared to well-fertilized TetC-cel6A plants. Furthermore, cultivation at elevated carbon dioxide (1600 ppm CO2) restored biomass accumulation in TetC-cel6A plants to that of WT, while also increasing total heterologous protein yield (mg Cel6A plant-1) by 50-70%. CONCLUSIONS The work reported here demonstrates that well-fertilized tobacco plants have a substantial degree of flexibility in protein metabolism and can accommodate considerable levels of some recombinant proteins without exhibiting deleterious mutant phenotypes. Furthermore, we show that the alterations to protein expression triggered by growth at elevated CO2 can help rebalance endogenous protein expression and/or increase foreign protein production in chloroplast-engineered tobacco.
Collapse
Affiliation(s)
- Jennifer A Schmidt
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, USA.
| | - Lubna V Richter
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, USA
| | - Lisa A Condoluci
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, USA
| | - Beth A Ahner
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, USA
| |
Collapse
|
48
|
Siriwattananon K, Manopwisedjaroen S, Kanjanasirirat P, Budi Purwono P, Rattanapisit K, Shanmugaraj B, Smith DR, Borwornpinyo S, Thitithanyanont A, Phoolcharoen W. Development of Plant-Produced Recombinant ACE2-Fc Fusion Protein as a Potential Therapeutic Agent Against SARS-CoV-2. FRONTIERS IN PLANT SCIENCE 2021; 11:604663. [PMID: 33584747 PMCID: PMC7874119 DOI: 10.3389/fpls.2020.604663] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 12/03/2020] [Indexed: 05/12/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of coronavirus disease (COVID-19) which has recently emerged as a potential threat to global public health. SARS-CoV-2 is the third known human coronavirus that has huge impact on the human population after SARS-CoV and MERS-CoV. Although some vaccines and therapeutic drugs are currently in clinical trials, none of them are approved for commercial use yet. As with SARS-CoV, SARS-CoV-2 utilizes angiotensin-converting enzyme 2 (ACE2) as the cell entry receptor to enter into the host cell. In this study, we have transiently produced human ACE2 fused with the Fc region of human IgG1 in Nicotiana benthamiana and the in vitro neutralization efficacy of the plant-produced ACE2-Fc fusion protein was assessed. The recombinant ACE2-Fc fusion protein was expressed in N. benthamiana at 100 μg/g leaf fresh weight on day 6 post-infiltration. The recombinant fusion protein showed potent binding to receptor binding domain (RBD) of SARS-CoV-2. Importantly, the plant-produced fusion protein exhibited potent anti-SARS-CoV-2 activity in vitro. Treatment with ACE2-Fc fusion protein after viral infection dramatically inhibit SARS-CoV-2 infectivity in Vero cells with an IC50 value of 0.84 μg/ml. Moreover, treatment with ACE2-Fc fusion protein at the pre-entry stage suppressed SARS-CoV-2 infection with an IC50 of 94.66 μg/ml. These findings put a spotlight on the plant-produced ACE2-Fc fusion protein as a potential therapeutic candidate against SARS-CoV-2.
Collapse
Affiliation(s)
- Konlavat Siriwattananon
- Research Unit for Plant-Produced Pharmaceuticals, Chulalongkorn University, Bangkok, Thailand
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | | | | | - Priyo Budi Purwono
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand
- Department of Microbiology, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Kaewta Rattanapisit
- Research Unit for Plant-Produced Pharmaceuticals, Chulalongkorn University, Bangkok, Thailand
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Balamurugan Shanmugaraj
- Research Unit for Plant-Produced Pharmaceuticals, Chulalongkorn University, Bangkok, Thailand
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Duncan R. Smith
- Institute of Molecular Bioscience, Mahidol University, Salaya, Thailand
| | - Suparerk Borwornpinyo
- Excellence Center for Drug Discovery, Faculty of Science, Mahidol University, Bangkok, Thailand
| | | | - Waranyoo Phoolcharoen
- Research Unit for Plant-Produced Pharmaceuticals, Chulalongkorn University, Bangkok, Thailand
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
49
|
Sethi L, Kumari K, Dey N. Engineering of Plants for Efficient Production of Therapeutics. Mol Biotechnol 2021; 63:1125-1137. [PMID: 34398446 PMCID: PMC8365136 DOI: 10.1007/s12033-021-00381-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/10/2021] [Indexed: 02/07/2023]
Abstract
Plants are becoming useful platforms for recombinant protein production at present time. With the advancement of efficient molecular tools of genomics, proteomics, plants are now being used as a biofactory for production of different life saving therapeutics. Plant-based biofactory is an established production system with the benefits of cost-effectiveness, high scalability, rapid production, enabling post-translational modification, and being devoid of harmful pathogens contamination. This review introduces the main challenges faced by plant expression system: post-translational modifications, protein stability, biosafety concern and regulation. It also summarizes essential factors to be considered in engineering plants, including plant expression system, promoter, post-translational modification, codon optimization, and fusion tags, protein stabilization and purification, subcellular targeting, and making vaccines in an edible way. This review will be beneficial and informative to scholars and readers in the field of plant biotechnology.
Collapse
Affiliation(s)
- Lini Sethi
- Division of Plant and Microbial Biotechnology, Institute of Life Sciences, NALCO Square, Chandrasekharpur, Bhubaneswar, Odisha 751023 India ,Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, Haryana (NCR Delhi) 121001 India
| | - Khushbu Kumari
- Division of Plant and Microbial Biotechnology, Institute of Life Sciences, NALCO Square, Chandrasekharpur, Bhubaneswar, Odisha 751023 India ,Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, Haryana (NCR Delhi) 121001 India
| | - Nrisingha Dey
- Division of Plant and Microbial Biotechnology, Institute of Life Sciences, NALCO Square, Chandrasekharpur, Bhubaneswar, Odisha 751023 India
| |
Collapse
|
50
|
Xisto MF, Dias RS, Feitosa-Araujo E, Prates JWO, da Silva CC, de Paula SO. Efficient Plant Production of Recombinant NS1 Protein for Diagnosis of Dengue. FRONTIERS IN PLANT SCIENCE 2020; 11:581100. [PMID: 33193526 PMCID: PMC7649140 DOI: 10.3389/fpls.2020.581100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/02/2020] [Indexed: 05/28/2023]
Abstract
Dengue fever is endemic in more than 120 countries, which account for 3.9 billion people at risk of infection worldwide. The absence of a vaccine with effective protection against the four serotypes of this virus makes differential molecular diagnosis the key step for the correct treatment of the disease. Rapid and efficient diagnosis prevents progression to a more severe stage of this disease. Currently, the limiting factor in the manufacture of dengue (DENV) diagnostic kits is the lack of large-scale production of the non-structural 1 (NS1) protein (antigen) to be used in the capture of antibodies from the blood serum of infected patients. In this work, we use plant biotechnology and genetic engineering as tools for the study of protein production for research and commercial purposes. Gene transfer, integration and expression in plants is a valid strategy for obtaining large-scale and low-cost heterologous protein production. The authors produced NS1 protein of the dengue virus serotype 2 (NS1DENV2) in the Arabidopsis thaliana plant. Transgenic plants obtained by genetic transformation expressed the recombinant protein that was purified and characterized for diagnostic use. The yield was 203 μg of the recombinant protein per gram of fresh leaf. By in situ immunolocalization, transgenic protein was observed within the plant tissue, located in aggregates bodies. These antigens showed high sensitivity and specificity to both IgM (84.29% and 91.43%, respectively) and IgG (83.08% and 87.69%, respectively). The study goes a step further to validate the use of plants as a strategy for obtaining large-scale and efficient protein production to be used in dengue virus diagnostic tests.
Collapse
Affiliation(s)
| | - Roberto Sousa Dias
- Department of General Biology, Federal University of Viçosa, Viçosa, Brazil
| | | | | | | | | |
Collapse
|