1
|
Bakker JW, Münger E, Esser HJ, Sikkema RS, de Boer WF, Sprong H, Reusken CBEM, de Vries A, Kohl R, van der Linden A, Stroo A, van der Jeugd H, Pijlman GP, Koopmans MPG, Munnink BBO, Koenraadt CJM. Ixodes ricinus as potential vector for Usutu virus. PLoS Negl Trop Dis 2024; 18:e0012172. [PMID: 38985837 PMCID: PMC11236205 DOI: 10.1371/journal.pntd.0012172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 04/25/2024] [Indexed: 07/12/2024] Open
Abstract
Usutu virus (USUV) is an emerging flavivirus that is maintained in an enzootic cycle with mosquitoes as vectors and birds as amplifying hosts. In Europe, the virus has caused mass mortality of wild birds, mainly among Common Blackbird (Turdus merula) populations. While mosquitoes are the primary vectors for USUV, Common Blackbirds and other avian species are exposed to other arthropod ectoparasites, such as ticks. It is unknown, however, if ticks can maintain and transmit USUV. We addressed this question using in vitro and in vivo experiments and field collected data. USUV replicated in IRE/CTVM19 Ixodes ricinus tick cells and in injected ticks. Moreover, I. ricinus nymphs acquired the virus via artificial membrane blood-feeding and maintained the virus for at least 70 days. Transstadial transmission of USUV from nymphs to adults was confirmed in 4.9% of the ticks. USUV disseminated from the midgut to the haemocoel, and was transmitted via the saliva of the tick during artificial membrane blood-feeding. We further explored the role of ticks by monitoring USUV in questing ticks and in ticks feeding on wild birds in the Netherlands between 2016 and 2019. In total, 622 wild birds and the Ixodes ticks they carried were tested for USUV RNA. Of these birds, 48 (7.7%) carried USUV-positive ticks. The presence of negative-sense USUV RNA in ticks, as confirmed via small RNA-sequencing, showed active virus replication. In contrast, we did not detect USUV in 15,381 questing ticks collected in 2017 and 2019. We conclude that I. ricinus can be infected with USUV and can transstadially and horizontally transmit USUV. However, in comparison to mosquito-borne transmission, the role of I. ricinus ticks in the epidemiology of USUV is expected to be minor.
Collapse
Affiliation(s)
- Julian W Bakker
- Laboratory of Entomology, Wageningen University & Research, Wageningen, the Netherlands
| | | | - Helen J Esser
- Wildlife Ecology and Conservation Group, Wageningen University & Research, Wageningen, the Netherlands
| | - Reina S Sikkema
- Department of Viroscience, Erasmus MC, Rotterdam, the Netherlands
- Vogeltrekstation, Dutch Centre for Avian Migration and Demography, NIOO-KNAW, Wageningen, the Netherlands
| | - Willem F de Boer
- Wildlife Ecology and Conservation Group, Wageningen University & Research, Wageningen, the Netherlands
| | - Hein Sprong
- National Institute of Public Health and the Environment (RIVM), Utrecht, the Netherlands
| | - Chantal B E M Reusken
- Department of Viroscience, Erasmus MC, Rotterdam, the Netherlands
- National Institute of Public Health and the Environment (RIVM), Utrecht, the Netherlands
| | - Ankje de Vries
- National Institute of Public Health and the Environment (RIVM), Utrecht, the Netherlands
| | - Robert Kohl
- Department of Viroscience, Erasmus MC, Rotterdam, the Netherlands
| | | | - Arjan Stroo
- Centre for Monitoring of Vectors, Netherlands Food and Consumer Product Safety Authority (NVWA), Wageningen, the Netherlands
| | - Henk van der Jeugd
- Vogeltrekstation, Dutch Centre for Avian Migration and Demography, NIOO-KNAW, Wageningen, the Netherlands
| | - Gorben P Pijlman
- Laboratory of Virology, Wageningen University & Research, Wageningen, the Netherlands
| | | | | | | |
Collapse
|
2
|
Keckeisen C, Šujanová A, Himmel T, Matt J, Nedorost N, Chagas CRF, Weissenböck H, Harl J. Isospora and Lankesterella Parasites (Eimeriidae, Apicomplexa) of Passeriform Birds in Europe: Infection Rates, Phylogeny, and Pathogenicity. Pathogens 2024; 13:337. [PMID: 38668292 PMCID: PMC11053544 DOI: 10.3390/pathogens13040337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/09/2024] [Accepted: 04/15/2024] [Indexed: 04/29/2024] Open
Abstract
Wild birds are common hosts to numerous intracellular parasites such as single-celled eukaryotes of the family Eimeriidae (order Eucoccidiorida, phylum Apicomplexa). We investigated the infection rates, phylogeny, and pathogenicity of Isospora and Lankesterella parasites in wild and captive passerine birds. Blood and tissue samples of 815 wild and 15 deceased captive birds from Europe were tested using polymerase chain reaction and partial sequencing of the mitochondrial cytochrome b and cytochrome c oxidase I and the nuclear 18S rRNA gene. The infection rate for Lankesterella in wild birds was 10.7% compared to 5.8% for Isospora. Chromogenic in situ hybridization with probes targeting the parasites' 18S rRNA was employed to identify the parasites' presence in multiple organs, and hematoxylin-eosin staining was performed to visualize the parasite stages and assess associated lesions. Isospora parasites were mainly identified in the intestine, spleen, and liver. Extraintestinal tissue stages of Isospora were accompanied by predominantly lymphohistiocytic inflammation of varying severity. Lankesterella was most frequently detected in the spleen, lung, and brain; however, infected birds presented only a low parasite burden without associated pathological changes. These findings contribute to our understanding of Isospora and Lankesterella parasites in wild birds.
Collapse
Affiliation(s)
- Carina Keckeisen
- Institute of Pathology, Department of Biological Sciences and Pathobiology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria; (C.K.); (T.H.)
| | - Alžbeta Šujanová
- Institute of Zoology, Slovak Academy of Sciences, 845 06 Bratislava, Slovakia;
- Nature Research Centre, 084 12 Vilnius, Lithuania;
| | - Tanja Himmel
- Institute of Pathology, Department of Biological Sciences and Pathobiology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria; (C.K.); (T.H.)
- Clinical Institutes of the MedUni Vienna, Department of Pathology, Medical University of Vienna, 1090 Vienna, Austria
| | - Julia Matt
- Institute of Pathology, Department of Biological Sciences and Pathobiology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria; (C.K.); (T.H.)
| | - Nora Nedorost
- Institute of Pathology, Department of Biological Sciences and Pathobiology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria; (C.K.); (T.H.)
| | | | - Herbert Weissenböck
- Institute of Pathology, Department of Biological Sciences and Pathobiology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria; (C.K.); (T.H.)
| | - Josef Harl
- Institute of Pathology, Department of Biological Sciences and Pathobiology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria; (C.K.); (T.H.)
- Clinical Institutes of the MedUni Vienna, Department of Pathology, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
3
|
Simonin Y. Circulation of West Nile Virus and Usutu Virus in Europe: Overview and Challenges. Viruses 2024; 16:599. [PMID: 38675940 PMCID: PMC11055060 DOI: 10.3390/v16040599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/08/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
West Nile Virus (WNV) and Usutu Virus (USUV) are both neurotropic mosquito-borne viruses belonging to the Flaviviridae family. These closely related viruses mainly follow an enzootic cycle involving mosquitoes as vectors and birds as amplifying hosts, but humans and other mammals can also be infected through mosquito bites. WNV was first identified in Uganda in 1937 and has since spread globally, notably in Europe, causing periodic outbreaks associated with severe cases of neuroinvasive diseases such as meningitis and encephalitis. USUV was initially isolated in 1959 in Swaziland and has also spread to Europe, primarily affecting birds and having a limited impact on human health. There has been a recent expansion of these viruses' geographic range in Europe, facilitated by factors such as climate change, leading to increased human exposure. While sharing similar biological traits, ecology, and epidemiology, there are significant distinctions in their pathogenicity and their impact on both human and animal health. While WNV has been more extensively studied and is a significant public health concern in many regions, USUV has recently been gaining attention due to its emergence in Europe and the diversity of its circulating lineages. Understanding the pathophysiology, ecology, and transmission dynamics of these viruses is important to the implementation of effective surveillance and control measures. This perspective provides a brief overview of the current situation of these two viruses in Europe and outlines the significant challenges that need to be addressed in the coming years.
Collapse
Affiliation(s)
- Yannick Simonin
- Pathogenesis and Control of Chronic and Emerging Infections, University of Montpellier, INSERM, EFS, 34000 Montpellier, France
| |
Collapse
|
4
|
Bergmann F, Holicki CM, Michel F, Bock S, Scuda N, Priemer G, Kenklies S, Siempelkamp T, Skuballa J, Sauerwald C, Herms L, Muluneh A, Peters M, Hlinak A, Groschup MH, Sadeghi B, Ziegler U. Reconstruction of the molecular evolution of Usutu virus in Germany: Insights into virus emersion and circulation. PLoS Negl Trop Dis 2023; 17:e0011203. [PMID: 37782665 PMCID: PMC10569574 DOI: 10.1371/journal.pntd.0011203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 10/12/2023] [Accepted: 09/07/2023] [Indexed: 10/04/2023] Open
Abstract
Usutu virus (USUV) is a mosquito-borne flavivirus that is widely distributed in southern and central Europe. The zoonotic virus circulates primarily between birds and mosquitoes, can, however, in rare cases infect other mammals including humans. In the past, USUV has been repeatedly associated with mass mortalities in birds, primarily blackbirds and owls. Birds commonly succumb either due to the peracute nature of the infection or due to severe encephalitis. In Germany, USUV has spread rapidly since its first detection in 2010 in mosquitoes under the presence of susceptible host and vector species. Nonetheless, there is to date limited access to whole genome sequences resulting in the absence of in-depth phylogenetic and phylodynamic analyses. In this study, 118 wild and captive birds were sequenced using a nanopore sequencing platform with prior target enrichment via amplicons. Due to the high abundancy of Europe 3 and Africa 3 in Germany an ample quantity of associated whole genome sequences was generated and the most recent common ancestor could be determined for each lineage. The corresponding clock phylogeny revealed an introduction of USUV Europe 3 and Africa 3 into Germany three years prior to their first isolation in the avifauna in 2011 and 2014, respectively. Based on the clustering and temporal history of the lineages, evidence exists for the genetic evolution of USUV within Germany as well as new introductions thereof into the country.
Collapse
Affiliation(s)
- Felicitas Bergmann
- Institute of Novel and Emerging Infectious Disease, Friedrich-Loeffler-Institute, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Cora M. Holicki
- Institute of Novel and Emerging Infectious Disease, Friedrich-Loeffler-Institute, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Friederike Michel
- Institute of Novel and Emerging Infectious Disease, Friedrich-Loeffler-Institute, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Sabine Bock
- Berlin-Brandenburg State Laboratory, Frankfurt (Oder), Germany
| | - Nelly Scuda
- Bavarian Health and Food Safety Authority, Erlangen, Germany
| | - Grit Priemer
- State Office of Agriculture, Food Safety and Fisheries Mecklenburg-Vorpommern (LALLF), Rostock, Germany
| | - Susanne Kenklies
- State Office for Consumer Protection Saxony-Anhalt (LAV), Stendal, Germany
| | - Timo Siempelkamp
- Thuringian State Office for Consumer Protection, Bad Langensalza, Germany
| | - Jasmin Skuballa
- State Institute for Chemical and Veterinary Analysis Karlsruhe, Karlsruhe, Germany
| | - Claudia Sauerwald
- Department of Veterinary Medicine, Hessian State Laboratory, Gießen, Germany
| | - Louise Herms
- Lower Saxony State Office for Consumer Protection and Food Safety (LAVES), Hannover, Germany
| | - Aemero Muluneh
- Saxon State Laboratory of Health and Veterinary Affairs, Dresden, Germany
| | - Martin Peters
- Chemical and Veterinary Investigation Office (CVUA), Arnsberg, Germany
| | - Andreas Hlinak
- Berlin-Brandenburg State Laboratory, Frankfurt (Oder), Germany
| | - Martin H. Groschup
- Institute of Novel and Emerging Infectious Disease, Friedrich-Loeffler-Institute, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
- German Center of Infection Research (DZIF), Partner site Hamburg-Lübeck-Borstel-Riems, Greifswald-Insel Riems, Germany
| | - Balal Sadeghi
- Institute of Novel and Emerging Infectious Disease, Friedrich-Loeffler-Institute, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Ute Ziegler
- Institute of Novel and Emerging Infectious Disease, Friedrich-Loeffler-Institute, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
- German Center of Infection Research (DZIF), Partner site Hamburg-Lübeck-Borstel-Riems, Greifswald-Insel Riems, Germany
| |
Collapse
|
5
|
Williams RAJ, Sánchez-Llatas CJ, Doménech A, Madrid R, Fandiño S, Cea-Callejo P, Gomez-Lucia E, Benítez L. Emerging and Novel Viruses in Passerine Birds. Microorganisms 2023; 11:2355. [PMID: 37764199 PMCID: PMC10536639 DOI: 10.3390/microorganisms11092355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/13/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
There is growing interest in emerging viruses that can cause serious or lethal disease in humans and animals. The proliferation of cloacal virome studies, mainly focused on poultry and other domestic birds, reveals a wide variety of viruses, although their pathogenic significance is currently uncertain. Analysis of viruses detected in wild birds is complex and often biased towards waterfowl because of the obvious interest in avian influenza or other zoonotic viruses. Less is known about the viruses present in the order Passeriformes, which comprises approximately 60% of extant bird species. This review aims to compile the most significant contributions on the DNA/RNA viruses affecting passerines, from traditional and metagenomic studies. It highlights that most passerine species have never been sampled. Especially the RNA viruses from Flaviviridae, Orthomyxoviridae and Togaviridae are considered emerging because of increased incidence or avian mortality/morbidity, spread to new geographical areas or hosts and their zoonotic risk. Arguably poxvirus, and perhaps other virus groups, could also be considered "emerging viruses". However, many of these viruses have only recently been described in passerines using metagenomics and their role in the ecosystem is unknown. Finally, it is noteworthy that only one third of the viruses affecting passerines have been officially recognized.
Collapse
Affiliation(s)
- Richard A. J. Williams
- Department of Genetics, Physiology, and Microbiology, School of Biology, Complutense University of Madrid (UCM), C. de José Antonio Nováis, 12, 28040 Madrid, Spain; (C.J.S.-L.); (R.M.); (P.C.-C.); (L.B.)
- “Animal Viruses” Research Group, Complutense University of Madrid, 28040 Madrid, Spain; (A.D.); (S.F.); (E.G.-L.)
| | - Christian J. Sánchez-Llatas
- Department of Genetics, Physiology, and Microbiology, School of Biology, Complutense University of Madrid (UCM), C. de José Antonio Nováis, 12, 28040 Madrid, Spain; (C.J.S.-L.); (R.M.); (P.C.-C.); (L.B.)
| | - Ana Doménech
- “Animal Viruses” Research Group, Complutense University of Madrid, 28040 Madrid, Spain; (A.D.); (S.F.); (E.G.-L.)
- Deparment of Animal Health, Veterinary Faculty, Complutense University of Madrid, Av. Puerta de Hierro, s/n, 28040 Madrid, Spain
| | - Ricardo Madrid
- Department of Genetics, Physiology, and Microbiology, School of Biology, Complutense University of Madrid (UCM), C. de José Antonio Nováis, 12, 28040 Madrid, Spain; (C.J.S.-L.); (R.M.); (P.C.-C.); (L.B.)
- “Animal Viruses” Research Group, Complutense University of Madrid, 28040 Madrid, Spain; (A.D.); (S.F.); (E.G.-L.)
| | - Sergio Fandiño
- “Animal Viruses” Research Group, Complutense University of Madrid, 28040 Madrid, Spain; (A.D.); (S.F.); (E.G.-L.)
- Deparment of Animal Health, Veterinary Faculty, Complutense University of Madrid, Av. Puerta de Hierro, s/n, 28040 Madrid, Spain
| | - Pablo Cea-Callejo
- Department of Genetics, Physiology, and Microbiology, School of Biology, Complutense University of Madrid (UCM), C. de José Antonio Nováis, 12, 28040 Madrid, Spain; (C.J.S.-L.); (R.M.); (P.C.-C.); (L.B.)
- “Animal Viruses” Research Group, Complutense University of Madrid, 28040 Madrid, Spain; (A.D.); (S.F.); (E.G.-L.)
| | - Esperanza Gomez-Lucia
- “Animal Viruses” Research Group, Complutense University of Madrid, 28040 Madrid, Spain; (A.D.); (S.F.); (E.G.-L.)
- Deparment of Animal Health, Veterinary Faculty, Complutense University of Madrid, Av. Puerta de Hierro, s/n, 28040 Madrid, Spain
| | - Laura Benítez
- Department of Genetics, Physiology, and Microbiology, School of Biology, Complutense University of Madrid (UCM), C. de José Antonio Nováis, 12, 28040 Madrid, Spain; (C.J.S.-L.); (R.M.); (P.C.-C.); (L.B.)
- “Animal Viruses” Research Group, Complutense University of Madrid, 28040 Madrid, Spain; (A.D.); (S.F.); (E.G.-L.)
| |
Collapse
|
6
|
Musto C, Tamba M, Calzolari M, Rossi A, Grisendi A, Marzani K, Bonilauri P, Delogu M. Detection of West Nile and Usutu Virus RNA in Autumn Season in Wild Avian Hosts in Northern Italy. Viruses 2023; 15:1771. [PMID: 37632113 PMCID: PMC10458002 DOI: 10.3390/v15081771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
West Nile (WNV) and Usutu (USUV) viruses are two mosquito-borne viruses belonging to the family Flaviviridae and genus Flavivirus. The natural transmission cycle of WNV and USUV involves mosquitoes and birds, while mammals are thought to be accidental hosts. The goal of this study was to report-in the context of "off-season monitoring" and passive surveillance-the detection of WNV and USUV RNA in wild birds. To this end, we analyzed biological samples of wild birds in Northern Italy, from October to May, hence outside of the regional monitoring period (June-September). The virological investigations for the detection of USUV and WNV RNA were performed using real-time PCR on frozen samples of the brain, myocardium, kidney, and spleen. In a total sample of 164 wild birds belonging to 27 different species, sequences of both viruses were detected: four birds (2.44%) were positive for WNV and five (3.05%) for USUV. Off-season infections of WNV and especially USUV are still widely discussed and only a few studies have been published to date. To the best of our knowledge, this study is the first report on the detection of USUV RNA until December 22nd. Although further studies are required, our results confirm the viral circulation out-of-season of Flavivirus in wild birds, suggesting reconsidering the epidemiological monitoring period based on each individual climate zone and taking into consideration global warming which will play an important role in the epidemiology of vector-borne diseases.
Collapse
Affiliation(s)
- Carmela Musto
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Bologna, Italy;
| | - Marco Tamba
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia-Romagna, 25124 Brescia, Italy; (M.T.); (M.C.); (A.R.); (A.G.); (K.M.); (P.B.)
| | - Mattia Calzolari
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia-Romagna, 25124 Brescia, Italy; (M.T.); (M.C.); (A.R.); (A.G.); (K.M.); (P.B.)
| | - Arianna Rossi
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia-Romagna, 25124 Brescia, Italy; (M.T.); (M.C.); (A.R.); (A.G.); (K.M.); (P.B.)
| | - Annalisa Grisendi
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia-Romagna, 25124 Brescia, Italy; (M.T.); (M.C.); (A.R.); (A.G.); (K.M.); (P.B.)
| | - Katia Marzani
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia-Romagna, 25124 Brescia, Italy; (M.T.); (M.C.); (A.R.); (A.G.); (K.M.); (P.B.)
| | - Paolo Bonilauri
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia-Romagna, 25124 Brescia, Italy; (M.T.); (M.C.); (A.R.); (A.G.); (K.M.); (P.B.)
| | - Mauro Delogu
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Bologna, Italy;
| |
Collapse
|
7
|
van Bree JWM, Linthout C, van Dijk T, Abbo SR, Fros JJ, Koenraadt CJM, Pijlman GP, Wang H. Competition between two Usutu virus isolates in cell culture and in the common house mosquito Culex pipiens. Front Microbiol 2023; 14:1195621. [PMID: 37293213 PMCID: PMC10244747 DOI: 10.3389/fmicb.2023.1195621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 04/18/2023] [Indexed: 06/10/2023] Open
Abstract
Usutu virus (USUV) is a mosquito-borne flavivirus of African origin. Over the past decades, USUV has spread through Europe causing mass die-offs among multiple bird species. The natural transmission cycle of USUV involves Culex spp. mosquitoes as vectors and birds as amplifying hosts. Next to birds and mosquitoes, USUV has also been isolated from multiple mammalian species, including humans, which are considered dead-end hosts. USUV isolates are phylogenetically classified into an African and European branch, subdivided into eight genetic lineages (Africa 1, 2, and 3 and Europe 1, 2, 3, 4, and 5 lineages). Currently, multiple African and European lineages are co-circulating in Europe. Despite increased knowledge of the epidemiology and pathogenicity of the different lineages, the effects of co-infection and transmission efficacy of the co-circulating USUV strains remain unclear. In this study, we report a comparative study between two USUV isolates as follows: a Dutch isolate (USUV-NL, Africa lineage 3) and an Italian isolate (USUV-IT, Europe lineage 2). Upon co-infection, USUV-NL was consistently outcompeted by USUV-IT in mosquito, mammalian, and avian cell lines. In mosquito cells, the fitness advantage of USUV-IT was most prominently observed in comparison to the mammalian or avian cell lines. When Culex pipiens mosquitoes were orally infected with the different isolates, no overall differences in vector competence for USUV-IT and USUV-NL were observed. However, during the in vivo co-infection assay, it was observed that USUV-NL infectivity and transmission were negatively affected by USUV-IT but not vice versa.
Collapse
Affiliation(s)
- Joyce W. M. van Bree
- Laboratory of Virology, Wageningen University and Research, Wageningen, Netherlands
| | - Charlotte Linthout
- Laboratory of Entomology, Wageningen University and Research, Wageningen, Netherlands
| | - Teije van Dijk
- Laboratory of Virology, Wageningen University and Research, Wageningen, Netherlands
| | - Sandra R. Abbo
- Laboratory of Virology, Wageningen University and Research, Wageningen, Netherlands
| | - Jelke J. Fros
- Laboratory of Virology, Wageningen University and Research, Wageningen, Netherlands
| | | | - Gorben P. Pijlman
- Laboratory of Virology, Wageningen University and Research, Wageningen, Netherlands
| | - Haidong Wang
- Laboratory of Virology, Wageningen University and Research, Wageningen, Netherlands
| |
Collapse
|
8
|
Gothe LMR, Ganzenberg S, Ziegler U, Obiegala A, Lohmann KL, Sieg M, Vahlenkamp TW, Groschup MH, Hörügel U, Pfeffer M. Horses as Sentinels for the Circulation of Flaviviruses in Eastern-Central Germany. Viruses 2023; 15:v15051108. [PMID: 37243194 DOI: 10.3390/v15051108] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
Since 2018, autochthonous West Nile virus (WNV) infections have been regularly reported in eastern-central Germany. While clinically apparent infections in humans and horses are not frequent, seroprevalence studies in horses may allow the tracing of WNV and related flaviviruses transmission, such as tick-borne encephalitis virus (TBEV) and Usutu virus (USUV), and consequently help to estimate the risk of human infections. Hence, the aim of our study was to follow the seropositive ratio against these three viruses in horses in Saxony, Saxony Anhalt, and Brandenburg and to describe their geographic distribution for the year 2021. In early 2022, i.e., before the virus transmission season, sera from 1232 unvaccinated horses were tested using a competitive pan-flavivirus ELISA (cELISA). In order to estimate the true seropositive ratio of infection with WNV, TBEV, and USUV for 2021, positive and equivocal results were confirmed by a virus neutralization test (VNT). In addition, possible risk factors for seropositivity using questionnaires were analyzed using logistic regression based on questionnaires similar to our previous study from 2020. In total, 125 horse sera reacted positive in the cELISA. Based on the VNT, 40 sera showed neutralizing antibodies against WNV, 69 against TBEV, and 5 against USUV. Three sera showed antibodies against more than one virus, and eight were negative based on the VNT. The overall seropositive ratio was 3.3% (95% CI: 2.38-4.40) for WNV, 5.6% (95% CI: 4.44-7.04) for TBEV, and 0.4% (95% CI: 0.14-0.98) for USUV infections. While age and number of horses on the holding were factors predicting TBEV seropositivity, no risk factors were discovered for WNV seropositivity. We conclude that horses are useful sentinels to determine the flavivirus circulation in eastern-central Germany, as long as they are not vaccinated against WNV.
Collapse
Affiliation(s)
- Leonard M R Gothe
- Institute of Animal Hygiene and Veterinary Public Health, Faculty of Veterinary Medicine, Leipzig University, 04103 Leipzig, Germany
| | - Stefanie Ganzenberg
- Department for Horses, Faculty of Veterinary Medicine, Leipzig University, 04103 Leipzig, Germany
| | - Ute Ziegler
- Friedrich-Loeffler Institut (FLI), Federal Research Institute for Animal Health, Institute of Novel and Emerging Infectious Diseases, 17493 Greifswald-Insel Riems, Germany
| | - Anna Obiegala
- Institute of Animal Hygiene and Veterinary Public Health, Faculty of Veterinary Medicine, Leipzig University, 04103 Leipzig, Germany
| | - Katharina L Lohmann
- Department for Horses, Faculty of Veterinary Medicine, Leipzig University, 04103 Leipzig, Germany
| | - Michael Sieg
- Institute of Virology, Faculty of Veterinary Medicine, Leipzig University, 04103 Leipzig, Germany
| | - Thomas W Vahlenkamp
- Institute of Virology, Faculty of Veterinary Medicine, Leipzig University, 04103 Leipzig, Germany
| | - Martin H Groschup
- Friedrich-Loeffler Institut (FLI), Federal Research Institute for Animal Health, Institute of Novel and Emerging Infectious Diseases, 17493 Greifswald-Insel Riems, Germany
| | - Uwe Hörügel
- Animal Diseases Fund Saxony, Horse Health Service, 01099 Dresden, Germany
| | - Martin Pfeffer
- Institute of Animal Hygiene and Veterinary Public Health, Faculty of Veterinary Medicine, Leipzig University, 04103 Leipzig, Germany
| |
Collapse
|
9
|
Akinsulie OC, Adesola RO, Bakre A, Adebowale OO, Adeleke R, Ogunleye SC, Oladapo IP. Usutu virus: An emerging flavivirus with potential threat to public health in Africa: Nigeria as a case study. Front Vet Sci 2023; 10:1115501. [PMID: 36875996 PMCID: PMC9980716 DOI: 10.3389/fvets.2023.1115501] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 01/27/2023] [Indexed: 02/18/2023] Open
Abstract
Usutu virus (USUV) is an arthropod-borne virus (arbovirus) of the flaviviridae family (genus Flavivirus) which belong to the Japanese encephalitis virus complex. Culex mosquitoes have been implicated in the transmission of this pathogen. The major susceptible hosts of USUV are migratory birds, thereby potentiating its ability to spread from one region to another globally. Nigeria has the largest economy in Africa with a significant percentage of the gross domestic product relying on the agricultural and animal production industry. This review explores the zoonotic potentials of the virus in Africa, especially Nigeria, with special focus on the devastating sequelae this might lead to in the future if necessary precautionary policies are not enacted and adopted to bolster the surveillance system for mosquito-borne viruses.
Collapse
Affiliation(s)
| | | | - Adetolase Bakre
- Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | | | - Richard Adeleke
- College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Seto Charles Ogunleye
- College of Veterinary Medicine, Mississippi State University, Starkville, MS, United States
| | | |
Collapse
|
10
|
Cadar D, Simonin Y. Human Usutu Virus Infections in Europe: A New Risk on Horizon? Viruses 2022; 15:77. [PMID: 36680117 PMCID: PMC9866956 DOI: 10.3390/v15010077] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022] Open
Abstract
The Usutu virus (USUV), a neurotropic mosquito-borne flavivirus discovered in 1959 in South Africa, has spread over the last twenty years across the European continent. This virus follows an enzootic cycle involving mosquitoes and birds. This caused epizootics with significant bird mortality in Europe in 2016 and 2018. It can also occasionally infect humans and other mammals, including horses and bats, which act as incidental or dead-end hosts. The zoonotic risk associated with this succession of avian epizootics in Europe deserves attention, even if, to date, human cases remain exceptional. Human infection is most often asymptomatic or responsible for mild clinical symptoms. However, human Usutu infections have also been associated with neurological disorders, such as encephalitis and meningoencephalitis. One of the major complexities of the study of USUV pathogenesis is the presence of a great diversity of lineages which could co-circulate spatiotemporally. In this review we discuss several aspects of the circulation of Usutu virus in humans in Europe, the neurological disorders associated, involved viral lineages, and the issues and questions raised by their circulation.
Collapse
Affiliation(s)
- Dániel Cadar
- Bernhard Nocht Institute for Tropical Medicine, WHO Collaborating Centre for Arbovirus and Hemorrhagic Fever Reference and Research, 20359 Hamburg, Germany
| | - Yannick Simonin
- Pathogenesis and Control of Chronic and Emerging Infections, University of Montpellier, INSERM, EFS, 34000 Montpellier, France
| |
Collapse
|
11
|
Abstract
Usutu virus (USUV, Flaviviridae) is an emerging mosquito-borne virus that has been implicated in neuroinvasive disease in humans and epizootic deaths in wild birds. USUV is maintained in an enzootic cycle between ornithophilic mosquitoes, primarily Culex spp., and wild birds, predominantly passerine species. However, limited experimental data exist on the species competent for USUV transmission. Here, we demonstrate that house sparrows are susceptible to multiple USUV strains. Our study also revealed that Culex quinquefasciatus mosquitoes are susceptible to USUV, with a significantly higher infection rate for the Netherlands 2016 USUV strain compared to the Uganda 2012 USUV strain at 50% and 19%, respectively. To assess transmission between avian host and mosquito vector, we allowed mosquitoes to feed on either juvenile chickens or house sparrows inoculated with USUV. Both bird models transmitted USUV to C. quinquefasciatus mosquitoes. Linear regression analyses indicated that C. quinquefasciatus infection rates were positively correlated with avian viremia levels, with 3 to 4 log10 PFU/mL representing the minimum avian viremia threshold for transmission to mosquitoes. Based on the viremia required for transmission, house sparrows were estimated to more readily transmit the Netherlands 2016 strain compared to the Uganda 2012 strain. These studies provide insights on a competent reservoir host of USUV. IMPORTANCE Usutu virus (USUV) is a zoonotic mosquito-borne virus that can cause neuroinvasive disease, including meningitis and encephalitis, in humans and has resulted in hundreds of thousands of deaths in wild birds. The perpetuation of USUV in nature is dependent on transmission between Culex spp. mosquitoes and various avian species. To date, few experimental data exist for determining which bird species are important for the maintenance of USUV. Our studies showed that house sparrows can transmit infectious Usutu virus, indicating their role as a competent host species. By identifying reservoir species of USUV, we can predict areas of USUV emergence and mitigate its impacts on global human and wildlife health.
Collapse
|
12
|
Holicki CM, Bergmann F, Stoek F, Schulz A, Groschup MH, Ziegler U, Sadeghi B. Expedited retrieval of high-quality Usutu virus genomes via Nanopore sequencing with and without target enrichment. Front Microbiol 2022; 13:1044316. [PMID: 36439823 PMCID: PMC9681921 DOI: 10.3389/fmicb.2022.1044316] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/20/2022] [Indexed: 10/04/2023] Open
Abstract
Usutu virus (USUV) is a mosquito-borne zoonotic virus and one of the causes of flavivirus encephalitis in birds and occasionally in humans. USUV rapidly disperses in a susceptible host and vector environment, as is the case in South and Central Europe. However, compared to other flaviviruses, USUV has received less research attention and there is therefore limited access to whole-genome sequences and also to in-depth phylogenetic and phylodynamic analyses. To ease future molecular studies, this study compares first- (partial sequencing via Sanger), second- (Illumina), and third-generation (MinION Nanopore) sequencing platforms for USUV. With emphasis on MinION Nanopore sequencing, cDNA-direct and target-enrichment (amplicon-based) sequencing approaches were validated in parallel. The study was based on four samples from succumbed birds commonly collected throughout Germany. The samples were isolated from various sample matrices, organs as well as blood cruor, and included three different USUV lineages. We concluded that depending on the focus of a research project, amplicon-based MinION Nanopore sequencing can be an ideal cost- and time-effective alternative to Illumina in producing optimal genome coverage. It can be implemented for an array of lab- or field-based objectives, including among others: phylodynamic studies and the analysis of viral quasispecies.
Collapse
Affiliation(s)
- Cora M Holicki
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Felicitas Bergmann
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Franziska Stoek
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Ansgar Schulz
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Martin H Groschup
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Ute Ziegler
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Balal Sadeghi
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| |
Collapse
|
13
|
Graninger M, Hubmer S, Riederer F, Kettner S, Hauk M, Auf T, Aberle JH, Stiasny K, Aberle SW, Camp JV. The first case of Usutu virus neuroinvasive disease in Austria, 2021. Open Forum Infect Dis 2022; 9:ofac255. [PMID: 35873290 PMCID: PMC9297159 DOI: 10.1093/ofid/ofac255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/13/2022] [Indexed: 11/13/2022] Open
Abstract
Abstract
Usutu virus (USUV) is a mosquito-borne flavivirus closely related to West Nile virus (WNV) that is endemic in many European countries. We report the first case of USUV neuroinvasive disease in Austria and discuss challenges in differentiating USUV from WNV infections in areas where both viruses are endemic.
Collapse
Affiliation(s)
| | - Stefan Hubmer
- Department of Neurology, Klinik Hietzing, Vienna, Austria
| | - Franz Riederer
- Department of Neurology, Klinik Hietzing, Vienna, Austria
- Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Stephan Kettner
- Department for Anesthesiology and Intensive Care, Klinik Hietzing, Vienna, Austria
- Karl Landsteiner Institute for Anesthesiology and Intensive Care Medicine, Vienna, Austria
| | - Martin Hauk
- Department for Anesthesiology and Intensive Care, Klinik Hietzing, Vienna, Austria
| | - Tasnim Auf
- Department for Cardiology, Klinik Floridsdorf, Vienna, Austria
| | - Judith H. Aberle
- Center for Virology, Medical University of Vienna, Vienna, Austria
| | - Karin Stiasny
- Center for Virology, Medical University of Vienna, Vienna, Austria
| | | | - Jeremy V. Camp
- Center for Virology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
14
|
Musto C, Tamba M, Calzolari M, Torri D, Marzani K, Cerri J, Bonilauri P, Delogu M. Usutu virus in blackbirds (Turdus merula) with clinical signs, a case study from northern Italy. EUR J WILDLIFE RES 2022. [DOI: 10.1007/s10344-022-01572-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
AbstractUsutu virus (USUV) is a mosquito-borne virus belonging to the family Flaviviridae, genus Flavivirus. Natural transmission cycle of USUV involves mosquitoes and birds, so humans and other mammals are considered incidental hosts. In this study, USUV infection was diagnosed in all wild blackbirds, collected from July to September 2018 in a wildlife recovery center in the province of Bologna, in the Emilia-Romagna region, northern Italy. All blackbirds showed neurological clinical signs, such as overturning, pedaling, and incoordination. Moreover, the subjects died shortly after arriving at the hospitalization center. Virological investigations were performed by real-time PCR on frozen samples of the spleen, kidney, myocardium, and brain for the detection of Usutu (USUV) and West Nile (WNV) viruses. The small and large intestine were used as a matrix for the detection of Newcastle disease virus (NDV). All 56 subjects with neurological clinical signs were positive for USUV, only one subject (1.8%) tested positive for WNV, and no subject was positive for NDV. The most represented age class was class 1 J (58.9%), followed by class 3 (25.0%), and lastly from class 4 (16.1%). Most of the blackbirds before dying were in good (51.8%) and fair (39.3%) nutritional status, while only five subjects (8.9%) were cachectic. The USUV genomes detected in the blackbirds of this study fall within the sub-clade already called EU2 that has been detected since 2009 in the Emilia-Romagna region. Neurological clinical signs in USUV-affected blackbirds are still widely discussed and there are few works in the literature. Although our results require further studies, we believe them to be useful for understanding the clinical signs of Usutu virus in blackbirds, helping to increase the knowledge of this zoonotic agent in wild species and to understand its effect on the ecosystem. The goal of this study was to report—in the context of the regional passive surveillance program—the detection of USUV RNA in its most important amplifying host, the common blackbird, when showing clinical signs before death.
Collapse
|
15
|
Himmel T, Harl J, Matt J, Weissenböck H. A citizen science-based survey of avian mortality focusing on haemosporidian infections in wild passerine birds. Malar J 2021; 20:417. [PMID: 34688278 PMCID: PMC8542282 DOI: 10.1186/s12936-021-03949-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/08/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Haemosporidioses are common in birds and their manifestations range from subclinical infections to severe disease, depending on the involved parasite and bird species. Clinical haemosporidioses are often observed in non-adapted zoo or aviary birds, whereas in wild birds, particularly passerines, haemosporidian infections frequently seem to be asymptomatic. However, a recent study from Austria showed pathogenic haemosporidian infections in common blackbirds due to high parasite burdens of Plasmodium matutinum LINN1, a common parasite in this bird species, suggesting that virulent infections also occur in natural hosts. Based on these findings, the present study aimed to explore whether and to what extent other native bird species are possibly affected by pathogenic haemosporidian lineages, contributing to avian morbidity. METHODS Carcasses of passerine birds and woodpeckers were collected during a citizen science-based survey for avian mortality in Austria, from June to October 2020. Tissue samples were taken and examined for haemosporidian parasites of the genera Plasmodium, Haemoproteus and Leucocytozoon by nested PCR and sequencing the mitochondrial cytb barcode region, histology, and chromogenic in situ hybridization applying genus-specific probes. RESULTS From over 160 dead bird reportings, 83 carcasses of 25 avian species were submitted for investigation. Overall haemosporidian infection rate was 31%, with finches and tits prevailing species counts and infections. Sequence analyses revealed 17 different haplotypes (4 Plasmodium, 4 Haemoproteus, 9 Leucocytozoon), including 4 novel Leucocytozoon lineages. Most infected birds presented low parasite burdens in the peripheral blood and tissues, ruling out a significant contribution of haemosporidian infections to morbidity or death of the examined birds. However, two great tits showed signs of avian malaria, suggesting pathogenic effects of the detected species Plasmodium relictum SGS1 and Plasmodium elongatum GRW06. Further, exo-erythrocytic tissue stages of several haemosporidian lineages are reported. CONCLUSIONS While suggesting generally little contribution of haemosporidian infections to mortality of the investigated bird species, the findings indicate a possible role of certain haemosporidian lineages in overall clinical manifestation, either as main causes or as concurrent disease agents. Further, the study presents new data on exo-erythrocytic stages of previously reported lineages and shows how citizen science can be used in the field of haemosporidian research.
Collapse
Affiliation(s)
- Tanja Himmel
- Institute of Pathology, Department for Pathobiology, University of Veterinary Medicine, Veterinärplatz 1, 1210, Vienna, Austria
| | - Josef Harl
- Institute of Pathology, Department for Pathobiology, University of Veterinary Medicine, Veterinärplatz 1, 1210, Vienna, Austria
| | - Julia Matt
- Institute of Pathology, Department for Pathobiology, University of Veterinary Medicine, Veterinärplatz 1, 1210, Vienna, Austria
| | - Herbert Weissenböck
- Institute of Pathology, Department for Pathobiology, University of Veterinary Medicine, Veterinärplatz 1, 1210, Vienna, Austria.
| |
Collapse
|
16
|
Kuchinsky SC, Frere F, Heitzman-Breen N, Golden J, Vázquez A, Honaker CF, Siegel PB, Ciupe SM, LeRoith T, Duggal NK. Pathogenesis and shedding of Usutu virus in juvenile chickens. Emerg Microbes Infect 2021; 10:725-738. [PMID: 33769213 PMCID: PMC8043533 DOI: 10.1080/22221751.2021.1908850] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Usutu virus (USUV; family: Flaviviridae, genus: Flavivirus), is an emerging zoonotic arbovirus that causes severe neuroinvasive disease in humans and has been implicated in the loss of breeding bird populations in Europe. USUV is maintained in an enzootic cycle between ornithophilic mosquitos and wild birds. As a member of the Japanese encephalitis serocomplex, USUV is closely related to West Nile virus (WNV) and St. Louis encephalitis virus (SLEV), both neuroinvasive arboviruses endemic in wild bird populations in the United States. An avian model for USUV is essential to understanding zoonotic transmission. Here we describe the first avian models of USUV infection with the development of viremia. Juvenile commercial ISA Brown chickens were susceptible to infection by multiple USUV strains with evidence of cardiac lesions. Juvenile chickens from two chicken lines selected for high (HAS) or low (LAS) antibody production against sheep red blood cells showed markedly different responses to USUV infection. Morbidity and mortality were observed in the LAS chickens, but not HAS chickens. LAS chickens had significantly higher viral titers in blood and other tissues, as well as oral secretions, and significantly lower development of neutralizing antibody responses compared to HAS chickens. Mathematical modelling of virus-host interactions showed that the viral clearance rate is a stronger mitigating factor for USUV viremia than neutralizing antibody response in this avian model. These chicken models provide a tool for further understanding USUV pathogenesis in birds and evaluating transmission dynamics between avian hosts and mosquito vectors.
Collapse
Affiliation(s)
- Sarah C Kuchinsky
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Francesca Frere
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Nora Heitzman-Breen
- Department of Mathematics, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Jacob Golden
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Ana Vázquez
- National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), Epidemiology and Public Health Network of Biomedical Research Centre (CIBERESP), Madrid, Spain
| | - Christa F Honaker
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Paul B Siegel
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Stanca M Ciupe
- Department of Mathematics, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Tanya LeRoith
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Nisha K Duggal
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| |
Collapse
|
17
|
Bakran-Lebl K, Camp JV, Kolodziejek J, Weidinger P, Hufnagl P, Cabal Rosel A, Zwickelstorfer A, Allerberger F, Nowotny N. Diversity of West Nile and Usutu virus strains in mosquitoes at an international airport in Austria. Transbound Emerg Dis 2021; 69:2096-2109. [PMID: 34169666 PMCID: PMC9540796 DOI: 10.1111/tbed.14198] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/21/2021] [Indexed: 11/27/2022]
Abstract
Increased globalization and international transportation have resulted in the inadvertent introduction of exotic mosquitoes and new mosquito‐borne diseases. International airports are among the possible points of entry for mosquitoes and their pathogens. We established a mosquito and mosquito‐borne diseases monitoring programme at the largest international airport in Austria and report the results for the first two years, 2018 and 2019. This included weekly monitoring and sampling of adult mosquitoes, and screening them for the presence of viral nucleic acids by standard molecular diagnostic techniques. Additionally, we surveyed the avian community at the airport, as birds are potentially amplifying hosts. In 2018, West Nile virus (WNV) was detected in 14 pools and Usutu virus (USUV) was detected in another 14 pools of mosquitoes (minimum infection rate [MIR] of 6.8 for each virus). Of these 28 pools, 26 consisted of female Culex pipiens/torrentium, and two contained male Culex sp. mosquitoes. Cx. pipiens/torrentium mosquitoes were the most frequently captured mosquito species at the airport. The detected WNV strains belonged to five sub‐clusters within the sub‐lineage 2d‐1, and all detected USUV strains were grouped to at least seven sub‐clusters among the cluster Europe 2; all strains were previously shown to be endemic in Austria. In 2019, all mosquito pools were negative for any viral nucleic acids tested. Our study suggests that airports may serve as foci of arbovirus activity, particularly during epidemic years, and should be considered when designing mosquito control and arbovirus monitoring programmes.
Collapse
Affiliation(s)
- Karin Bakran-Lebl
- Austrian Agency for Health and Food Safety, Institute for Medical Microbiology and Hygiene, Vienna, Austria
| | - Jeremy V Camp
- Institute of Virology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Jolanta Kolodziejek
- Institute of Virology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Pia Weidinger
- Institute of Virology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Peter Hufnagl
- Austrian Agency for Health and Food Safety, Institute for Medical Microbiology and Hygiene, Vienna, Austria
| | - Adriana Cabal Rosel
- Austrian Agency for Health and Food Safety, Institute for Medical Microbiology and Hygiene, Vienna, Austria
| | | | - Franz Allerberger
- Austrian Agency for Health and Food Safety, Institute for Medical Microbiology and Hygiene, Vienna, Austria
| | - Norbert Nowotny
- Institute of Virology, University of Veterinary Medicine Vienna, Vienna, Austria.,Department of Basic Medical Sciences, College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Healthcare City, Dubai, United Arab Emirates
| |
Collapse
|
18
|
Scaramozzino P, Carvelli A, Bruni G, Cappiello G, Censi F, Magliano A, Manna G, Ricci I, Rombolà P, Romiti F, Rosone F, Sala MG, Scicluna MT, Vaglio S, De Liberato C. West Nile and Usutu viruses co-circulation in central Italy: outcomes of the 2018 integrated surveillance. Parasit Vectors 2021; 14:243. [PMID: 33962673 PMCID: PMC8103664 DOI: 10.1186/s13071-021-04736-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 04/21/2021] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND West Nile (WNV) and Usutu (USUV) are emerging vector-borne zoonotic flaviviruses. They are antigenically very similar, sharing the same life cycle with birds as amplification host, Culicidae as vector, and man/horse as dead-end host. They can co-circulate in an overlapping geographic range. In Europe, surveillance plans annually detect several outbreaks. METHODS In Italy, a WNV/USUV surveillance plan is in place through passive and active surveillance. After a 2018 WNV outbreak, a reinforced integrated risk-based surveillance was performed in four municipalities through clinical and serological surveillance in horses, Culicidae catches, and testing on human blood-based products for transfusion. RESULTS Eight WNV cases in eight equine holdings were detected. Twenty-three mosquitoe catches were performed and 2367 specimens of Culex pipiens caught; 17 pools were USUV positive. A total of 8889 human blood donations were tested, and two asymptomatic donors were USUV positive. CONCLUSIONS Different surveillance components simultaneously detected WNV only in horses and USUV only in humans and mosquitoes. While in endemic areas (i.e. northern Italy) entomological surveillance is successfully used as an early detection warning, this method in central Italy seems ineffective. To achieve a high level of sensitivity, the entomological trapping effort should probably exceed a reasonable balance between cost and performance. Besides, WNV/USUV early detection can be addressed by horses and birds. Further research is needed to adapt the surveillance components in different epidemiological contexts.
Collapse
Affiliation(s)
- Paola Scaramozzino
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", Via Appia Nuova 1411, 00178, Roma, Italy
| | - Andrea Carvelli
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", Via Appia Nuova 1411, 00178, Roma, Italy.
| | - Gianpaolo Bruni
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", Via Appia Nuova 1411, 00178, Roma, Italy
| | | | - Francesco Censi
- Azienda Sanitaria Locale di Latina, Via Pier Luigi Nervi, Latina Fiori, 04100, Latina, Italy
| | - Adele Magliano
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", Via Appia Nuova 1411, 00178, Roma, Italy
| | - Giuseppe Manna
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", Via Appia Nuova 1411, 00178, Roma, Italy
| | - Ida Ricci
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", Via Appia Nuova 1411, 00178, Roma, Italy
| | - Pasquale Rombolà
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", Via Appia Nuova 1411, 00178, Roma, Italy
| | - Federico Romiti
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", Via Appia Nuova 1411, 00178, Roma, Italy
| | - Francesca Rosone
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", Via Appia Nuova 1411, 00178, Roma, Italy
| | - Marcello Giovanni Sala
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", Via Appia Nuova 1411, 00178, Roma, Italy
| | - Maria Teresa Scicluna
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", Via Appia Nuova 1411, 00178, Roma, Italy
| | - Stefania Vaglio
- Università degli Studi di Roma "La Sapienza", Piazzale Aldo Moro 5, 00185, Roma, Italy
| | - Claudio De Liberato
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", Via Appia Nuova 1411, 00178, Roma, Italy
| |
Collapse
|
19
|
Abbo SR, Visser TM, Koenraadt CJM, Pijlman GP, Wang H. Effect of blood source on vector competence of Culex pipiens biotypes for Usutu virus. Parasit Vectors 2021; 14:194. [PMID: 33832527 PMCID: PMC8028107 DOI: 10.1186/s13071-021-04686-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 03/16/2021] [Indexed: 11/30/2022] Open
Abstract
Background Infectious blood meal experiments have been frequently performed with different virus-vector combinations to assess the transmission potential of arthropod-borne (arbo)viruses. A wide variety of host blood sources have been used to deliver arboviruses to their arthropod vectors in laboratory studies. The type of blood used during vector competence experiments does not always reflect the blood from the viremic vertebrate hosts in the field, but little is known about the effect of blood source on the experimental outcome of vector competence studies. Here we investigated the effect of avian versus human blood on the infection and transmission rates of the zoonotic Usutu virus (USUV) in its primary mosquito vector Culex pipiens. Methods Cx. pipiens biotypes (pipiens and molestus) were orally infected with USUV through infectious blood meals containing either chicken or human whole blood. The USUV infection and transmission rates were determined by checking mosquito bodies and saliva for USUV presence after 14 days of incubation at 28 °C. In addition, viral titers were determined for USUV-positive mosquito bodies and saliva. Results Human and chicken blood lead to similar USUV transmission rates for Cx. pipiens biotype pipiens (18% and 15%, respectively), while human blood moderately but not significantly increased the transmission rate (30%) compared to chicken blood (17%) for biotype molestus. USUV infection rates with human blood were consistently higher in both Cx. pipiens biotypes compared to chicken blood. In virus-positive mosquitoes, USUV body and saliva titers did not differ between mosquitoes taking either human or chicken blood. Importantly, biotype molestus had much lower USUV saliva titers compared to biotype pipiens, regardless of which blood was offered. Conclusions Infection of mosquitoes with human blood led to higher USUV infection rates as compared to chicken blood. However, the blood source had no effect on the vector competence for USUV. Interestingly, biotype molestus is less likely to transmit USUV compared to biotype pipiens due to very low virus titers in the saliva. ![]()
Collapse
Affiliation(s)
- Sandra R Abbo
- Laboratory of Virology, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Tessa M Visser
- Laboratory of Entomology, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Constantianus J M Koenraadt
- Laboratory of Entomology, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Gorben P Pijlman
- Laboratory of Virology, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands.
| | - Haidong Wang
- Laboratory of Virology, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands.
| |
Collapse
|
20
|
Böszörményi K, Hirsch J, Kiemenyi Kayere G, Fagrouch Z, Heijmans N, Rodriguez Garcia R, Dwarka S, van Dijke A, Aaldijk B, Limpens R, Barcena M, Koster B, Verstrepen B, Bogers W, Kocken C, Cornellissen G, Verschoor E, Faber B. A Bacterially-Expressed Recombinant Envelope Protein from Usutu Virus Induces Neutralizing Antibodies in Rabbits. Vaccines (Basel) 2021; 9:vaccines9020157. [PMID: 33669414 PMCID: PMC7920429 DOI: 10.3390/vaccines9020157] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/13/2021] [Accepted: 02/14/2021] [Indexed: 12/15/2022] Open
Abstract
Background: Recently, an emerging flavivirus, Usutu virus (USUV), has caused an epidemic among birds in Europe, resulting in a massive die-off in Eurasian blackbirds. Currently found only in Europe and Africa, it can be envisioned that Usutu virus will follow the path of other flaviviruses, like West Nile virus and Zika virus, and will spread via its mosquito vectors and bird hosts to other parts of the world. Several cases of human infections by Usutu virus have already been published. Anticipating this spread, development of an efficacious vaccine would be highly desirable. Method: This study describes the production in E. coli, purification, and refolding of a partial USUV envelope protein. Prior to immunization, the protein was characterized using size exclusion chromatography, transmission electron microscopy and dynamic light scattering, showing the limited presence of virus-like structures, indicating that the protein solution is probably a mixture of mono and multimeric envelope proteins. Results: Immunizations of two rabbits with the refolded E-protein fraction, mixed with a strong adjuvant, resulted in the generation of neutralizing antibodies, as evidenced in an in vitro assay. Discussion: The way forward towards a subunit vaccine against Usutu virus infection is discussed.
Collapse
Affiliation(s)
- Kinga Böszörményi
- Department of Virology, Biomedical Primate Research Centre, Lange Kleiweg 161, 2288 GJ Rijswijk, The Netherlands; (G.K.K.); (Z.F.); (B.V.); (W.B.); (E.V.)
- Correspondence: (K.B.); (B.F.); Tel.: +31-152842500 (K.B. & B.F.)
| | - Janet Hirsch
- Department of Biotechnology, Hamburg University of Applied Sciences, Ulmenliet 20, 21033 Hamburg, Germany; (J.H.); (G.C.)
| | - Gwendoline Kiemenyi Kayere
- Department of Virology, Biomedical Primate Research Centre, Lange Kleiweg 161, 2288 GJ Rijswijk, The Netherlands; (G.K.K.); (Z.F.); (B.V.); (W.B.); (E.V.)
| | - Zahra Fagrouch
- Department of Virology, Biomedical Primate Research Centre, Lange Kleiweg 161, 2288 GJ Rijswijk, The Netherlands; (G.K.K.); (Z.F.); (B.V.); (W.B.); (E.V.)
| | - Nicole Heijmans
- Department of Parasitology, Biomedical Primate Research Centre, Lange Kleiweg 161, 2288 GJ Rijswijk, The Netherlands; (N.H.); (R.R.G.); (S.D.); (A.v.D.); (B.A.); (C.K.)
| | - Roberto Rodriguez Garcia
- Department of Parasitology, Biomedical Primate Research Centre, Lange Kleiweg 161, 2288 GJ Rijswijk, The Netherlands; (N.H.); (R.R.G.); (S.D.); (A.v.D.); (B.A.); (C.K.)
| | - Soesjiel Dwarka
- Department of Parasitology, Biomedical Primate Research Centre, Lange Kleiweg 161, 2288 GJ Rijswijk, The Netherlands; (N.H.); (R.R.G.); (S.D.); (A.v.D.); (B.A.); (C.K.)
| | - Amy van Dijke
- Department of Parasitology, Biomedical Primate Research Centre, Lange Kleiweg 161, 2288 GJ Rijswijk, The Netherlands; (N.H.); (R.R.G.); (S.D.); (A.v.D.); (B.A.); (C.K.)
| | - Boyd Aaldijk
- Department of Parasitology, Biomedical Primate Research Centre, Lange Kleiweg 161, 2288 GJ Rijswijk, The Netherlands; (N.H.); (R.R.G.); (S.D.); (A.v.D.); (B.A.); (C.K.)
| | - Ronald Limpens
- Section Electron Microscopy, Leiden University Medical Center, Einthovenweg 20, 2300 RC Leiden, The Netherlands; (R.L.); (M.B.); (B.K.)
| | - Montserrat Barcena
- Section Electron Microscopy, Leiden University Medical Center, Einthovenweg 20, 2300 RC Leiden, The Netherlands; (R.L.); (M.B.); (B.K.)
| | - Bram Koster
- Section Electron Microscopy, Leiden University Medical Center, Einthovenweg 20, 2300 RC Leiden, The Netherlands; (R.L.); (M.B.); (B.K.)
| | - Babs Verstrepen
- Department of Virology, Biomedical Primate Research Centre, Lange Kleiweg 161, 2288 GJ Rijswijk, The Netherlands; (G.K.K.); (Z.F.); (B.V.); (W.B.); (E.V.)
| | - Willy Bogers
- Department of Virology, Biomedical Primate Research Centre, Lange Kleiweg 161, 2288 GJ Rijswijk, The Netherlands; (G.K.K.); (Z.F.); (B.V.); (W.B.); (E.V.)
| | - Clemens Kocken
- Department of Parasitology, Biomedical Primate Research Centre, Lange Kleiweg 161, 2288 GJ Rijswijk, The Netherlands; (N.H.); (R.R.G.); (S.D.); (A.v.D.); (B.A.); (C.K.)
| | - Gesine Cornellissen
- Department of Biotechnology, Hamburg University of Applied Sciences, Ulmenliet 20, 21033 Hamburg, Germany; (J.H.); (G.C.)
| | - Ernst Verschoor
- Department of Virology, Biomedical Primate Research Centre, Lange Kleiweg 161, 2288 GJ Rijswijk, The Netherlands; (G.K.K.); (Z.F.); (B.V.); (W.B.); (E.V.)
| | - Bart Faber
- Department of Parasitology, Biomedical Primate Research Centre, Lange Kleiweg 161, 2288 GJ Rijswijk, The Netherlands; (N.H.); (R.R.G.); (S.D.); (A.v.D.); (B.A.); (C.K.)
- Correspondence: (K.B.); (B.F.); Tel.: +31-152842500 (K.B. & B.F.)
| |
Collapse
|
21
|
Holicki CM, Scheuch DE, Ziegler U, Lettow J, Kampen H, Werner D, Groschup MH. German Culex pipiens biotype molestus and Culex torrentium are vector-competent for Usutu virus. Parasit Vectors 2020; 13:625. [PMID: 33380339 PMCID: PMC7774236 DOI: 10.1186/s13071-020-04532-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 12/07/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Usutu virus (USUV) is a rapidly spreading zoonotic arbovirus (arthropod-borne virus) and a considerable threat to the global avifauna and in isolated cases to human health. It is maintained in an enzootic cycle involving ornithophilic mosquitoes as vectors and birds as reservoir hosts. Despite massive die-offs in wild bird populations and the detection of severe neurological symptoms in infected humans, little is known about which mosquito species are involved in the propagation of USUV. METHODS In the present study, the vector competence of a German (i.e. "Central European") and a Serbian (i.e. "Southern European") Culex pipiens biotype molestus laboratory colony was experimentally evaluated. For comparative purposes, Culex torrentium, a frequent species in Northern Europe, and Aedes aegypti, a primarily tropical species, were also tested. Adult female mosquitoes were exposed to bovine blood spiked with USUV Africa 2 and subsequently incubated at 25 °C. After 2 to 3 weeks saliva was collected from each individual mosquito to assess the ability of a mosquito species to transmit USUV. RESULTS Culex pipiens biotype molestus mosquitoes originating from Germany and the Republic of Serbia and Cx. torrentium mosquitoes from Germany proved competent for USUV, as indicated by harboring viable virus in their saliva 21 days post infection. By contrast, Ae. aegypti mosquitoes were relatively refractory to an USUV infection, exhibiting low infection rates and lacking virus in their saliva. CONCLUSIONS Consistent with the high prevalences and abundances of Cx. pipiens biotype molestus and Cx. torrentium in Central and Northern Europe, these two species have most likely played a historic role in the spread, maintenance, and introduction of USUV into Germany. Identification of the key USUV vectors enables the establishment and implementation of rigorous entomological surveillance programs and the development of effective, evidence-based vector control interventions.
Collapse
Affiliation(s)
- Cora M Holicki
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Dorothee E Scheuch
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Ute Ziegler
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Julia Lettow
- Institute of Infectiology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany.,Department of Molecular Genetics and Infection Biology, University of Greifswald, Greifswald, Germany
| | - Helge Kampen
- Institute of Infectiology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Doreen Werner
- Biodiversity of Aquatic and Semiaquatic Landscape Features, Leibniz Centre for Agricultural Landscape Research, Müncheberg, Germany
| | - Martin H Groschup
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany.
| |
Collapse
|
22
|
Harl J, Himmel T, Valkiūnas G, Ilgūnas M, Bakonyi T, Weissenböck H. Geographic and host distribution of haemosporidian parasite lineages from birds of the family Turdidae. Malar J 2020; 19:335. [PMID: 32933526 PMCID: PMC7491118 DOI: 10.1186/s12936-020-03408-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 09/04/2020] [Indexed: 12/14/2022] Open
Abstract
Background Haemosporidians (Apicomplexa, Protista) are obligate heteroxenous parasites of vertebrates and blood-sucking dipteran insects. Avian haemosporidians comprise more than 250 species traditionally classified into four genera, Plasmodium, Haemoproteus, Leucocytozoon, and Fallisia. However, analyses of the mitochondrial CytB gene revealed a vast variety of lineages not yet linked to morphospecies. This study aimed to analyse and discuss the data of haemosporidian lineages isolated from birds of the family Turdidae, to visualise host and geographic distribution using DNA haplotype networks and to suggest directions for taxonomy research on parasite species. Methods Haemosporidian CytB sequence data from 350 thrushes were analysed for the present study and complemented with CytB data of avian haemosporidians gathered from Genbank and MalAvi database. Maximum Likelihood trees were calculated to identify clades featuring lineages isolated from Turdidae species. For each clade, DNA haplotype networks were calculated and provided with information on host and geographic distribution. Results In species of the Turdidae, this study identified 82 Plasmodium, 37 Haemoproteus, and 119 Leucocytozoon lineages, 68, 28, and 112 of which are mainly found in this host group. Most of these lineages cluster in the clades, which are shown as DNA haplotype networks. The lineages of the Leucocytozoon clades were almost exclusively isolated from thrushes and usually were restricted to one host genus, whereas the Plasmodium and Haemoproteus networks featured multiple lineages also recovered from other passeriform and non-passeriform birds. Conclusion This study represents the first attempt to summarise information on the haemosporidian parasite lineages of a whole bird family. The analyses allowed the identification of numerous groups of related lineages, which have not been linked to morphologically defined species yet, and they revealed several cases in which CytB lineages were probably assigned to the wrong morphospecies. These taxonomic issues are addressed by comparing distributional patterns of the CytB lineages with data from the original species descriptions and further literature. The authors also discuss the availability of sequence data and emphasise that MalAvi database should be considered an extremely valuable addition to GenBank, but not a replacement.
Collapse
Affiliation(s)
- Josef Harl
- Institute of Pathology, Department for Pathobiology, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210, Vienna, Austria.
| | - Tanja Himmel
- Institute of Pathology, Department for Pathobiology, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210, Vienna, Austria
| | | | - Mikas Ilgūnas
- Nature Research Centre, Akademijos 2, 08412, Vilnius, Lithuania
| | - Támas Bakonyi
- Institute of Virology, Department for Pathobiology, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210, Vienna, Austria
| | - Herbert Weissenböck
- Institute of Pathology, Department for Pathobiology, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210, Vienna, Austria
| |
Collapse
|
23
|
Vilibic-Cavlek T, Petrovic T, Savic V, Barbic L, Tabain I, Stevanovic V, Klobucar A, Mrzljak A, Ilic M, Bogdanic M, Benvin I, Santini M, Capak K, Monaco F, Listes E, Savini G. Epidemiology of Usutu Virus: The European Scenario. Pathogens 2020; 9:699. [PMID: 32858963 PMCID: PMC7560012 DOI: 10.3390/pathogens9090699] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 08/22/2020] [Accepted: 08/24/2020] [Indexed: 02/07/2023] Open
Abstract
Usutu virus (USUV) is an emerging arbovirus isolated in 1959 (Usutu River, Swaziland). Previously restricted to sub-Saharan Africa, the virus was introduced in Europe in 1996. While the USUV has received little attention in Africa, the virus emergence has prompted numerous studies with robust epidemiological surveillance programs in Europe. The natural transmission cycle of USUV involves mosquitoes (vectors) and birds (amplifying hosts) with humans and other mammals considered incidental ("dead-end") hosts. In Africa, the virus was isolated in mosquitoes, rodents and birds and serologically detected in horses and dogs. In Europe, USUV was detected in bats, whereas antibodies were found in different animal species (horses, dogs, squirrels, wild boar, deer and lizards). While bird mortalities were not reported in Africa, in Europe USUV was shown to be highly pathogenic for several bird species, especially blackbirds (Turdus merula) and great gray owls (Strix nebulosa). Furthermore, neurotropism of USUV for humans was reported for the first time in both immunocompromised and immunocompetent patients. Epizootics and genetic diversity of USUV in different bird species as well as detection of the virus in mosquitoes suggest repeated USUV introductions into Europe with endemization in some countries. The zoonotic potential of USUV has been reported in a growing number of human cases. Clinical cases of neuroinvasive disease and USUV fever, as well as seroconversion in blood donors were reported in Europe since 2009. While most USUV strains detected in humans, birds and mosquitoes belong to European USUV lineages, several reports indicate the presence of African lineages as well. Since spreading trends of USUV are likely to continue, continuous multidisciplinary interventions ("One Health" concept) should be conducted for monitoring and prevention of this emerging arboviral infection.
Collapse
Affiliation(s)
- Tatjana Vilibic-Cavlek
- Department of Virology, Croatian Institute of Public Health, 10000 Zagreb, Croatia; (I.T.); (M.B.)
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| | - Tamas Petrovic
- Department for Virology, Scientific Veterinary Institute, 21000 Novi Sad, Serbia;
| | - Vladimir Savic
- Poultry Center, Croatian Veterinary Institute, 10000 Zagreb, Croatia;
| | - Ljubo Barbic
- Department of Microbiology and Infectious Diseases with Clinic, Faculty of Veterinary Medicine, University of Zagreb, 10000 Zagreb, Croatia; (L.B.); (V.S.); (I.B.)
| | - Irena Tabain
- Department of Virology, Croatian Institute of Public Health, 10000 Zagreb, Croatia; (I.T.); (M.B.)
| | - Vladimir Stevanovic
- Department of Microbiology and Infectious Diseases with Clinic, Faculty of Veterinary Medicine, University of Zagreb, 10000 Zagreb, Croatia; (L.B.); (V.S.); (I.B.)
| | - Ana Klobucar
- Department of Epidemiology, Andrija Stampar Teaching Institute of Public Health, 10000 Zagreb, Croatia;
| | - Anna Mrzljak
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
- Department of Medicine, Merkur University Hospital, 10000 Zagreb, Croatia
| | - Maja Ilic
- Department of Epidemiology, Croatian Institute of Public Health, 10000 Zagreb, Croatia;
| | - Maja Bogdanic
- Department of Virology, Croatian Institute of Public Health, 10000 Zagreb, Croatia; (I.T.); (M.B.)
| | - Iva Benvin
- Department of Microbiology and Infectious Diseases with Clinic, Faculty of Veterinary Medicine, University of Zagreb, 10000 Zagreb, Croatia; (L.B.); (V.S.); (I.B.)
| | - Marija Santini
- Department for Intensive Care Medicine and Neuroinfectology, University Hospital for Infectious Diseases “Dr Fran Mihaljevic”, 10000 Zagreb, Croatia;
| | - Krunoslav Capak
- Environmental Health Department, Croatian Institute of Public Health, 10000 Zagreb, Croatia;
| | - Federica Monaco
- OIE Reference Center for West Nile Disease, Istituto Zooprofilattico Sperimentale “G. Caporale”, 64100 Teramo, Italy; (F.M.); (G.S.)
| | - Eddy Listes
- Laboratory for Diagnostics, Croatian Veterinary Institute, Regional Institute Split, 21000 Split, Croatia;
| | - Giovanni Savini
- OIE Reference Center for West Nile Disease, Istituto Zooprofilattico Sperimentale “G. Caporale”, 64100 Teramo, Italy; (F.M.); (G.S.)
| |
Collapse
|
24
|
Abstract
Usutu virus (USUV) is an emerging arbovirus that was first isolated in South Africa in 1959. This Flavivirus is maintained in the environment through a typical enzootic cycle involving mosquitoes and birds. USUV has spread to a large part of the European continent over the two decades mainly leading to substantial avian mortalities with a significant recrudescence of bird infections recorded throughout Europe within the few last years. USUV infection in humans is considered to be most often asymptomatic or to cause mild clinical signs. Nonetheless, a few cases of neurological complications such as encephalitis or meningoencephalitis have been reported. USUV and West Nile virus (WNV) share many features, like a close phylogenetic relatedness and a similar ecology, with co-circulation frequently observed in nature. However, USUV has been much less studied and in-depth comparisons of the biology of these viruses are yet rare. In this review, we discuss the main body of knowledge regarding USUV and compare it with the literature on WNV, addressing in particular virological and clinical aspects, and pointing data gaps.
Collapse
|
25
|
Trimmel NE, Walzer C. Infectious Wildlife Diseases in Austria-A Literature Review From 1980 Until 2017. Front Vet Sci 2020; 7:3. [PMID: 32154271 PMCID: PMC7046627 DOI: 10.3389/fvets.2020.00003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 01/02/2020] [Indexed: 12/28/2022] Open
Abstract
This literature review examines infectious wildlife disease research in Austria. We analyzed 226 research papers, published between 1980 and 2017. We determined that wildlife disease papers increased significantly from 0.8 ± 0.8 publications per year in the first decade (1980–1989) when compared to 2008–2017 with an average of 12.9 ± 4.1 publications per year. We illustrate information about the most investigated diseases and highlight the lack of research into certain wildlife pathogens. A special emphasis was given to diseases with zoonotic potential. The review showed that research focused on a few select species like the red fox (Vulpes vulpes), red deer (Cervus elaphus), and wild boar (Sus scrofa), all game species. Moreover, diseases affecting livestock and human health were seen more often. The review also found that only a low number of publications actually stated disease prevalence and confidence interval data. The reported diseases identified were classified according to their notifiable status and the distribution at the wildlife–human and wildlife–livestock interface. Furthermore, we try to argue why research into some diseases is prioritized, and why other diseases are underrepresented in current Austrian research. While spatiotemporal indicators could not be assessed due to the variability in methodologies and objectives of various studies, the information provided by this review offers the first comprehensive evaluation of the status of infectious wildlife disease research in Austria. Therefore, this study could assist investigators to identify further areas of priorities for research and conservation efforts and for wildlife management professionals to inform policy and funding strategies. With this review, we want to encourage research in the field of wildlife diseases in Austria to enhance current knowledge in the prevention of further loss in biodiversity and to find new measures to promote “One Health” on a global scale.
Collapse
Affiliation(s)
- Nina Eva Trimmel
- Department of Integrative Biology and Evolution, Research Institute of Wildlife Ecology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Chris Walzer
- Department of Integrative Biology and Evolution, Research Institute of Wildlife Ecology, University of Veterinary Medicine Vienna, Vienna, Austria.,Wildlife Conservation Society, Bronx, NY, United States
| |
Collapse
|
26
|
Bournez L, Umhang G, Faure E, Boucher JM, Boué F, Jourdain E, Sarasa M, Llorente F, Jiménez-Clavero MA, Moutailler S, Lacour SA, Lecollinet S, Beck C. Exposure of Wild Ungulates to the Usutu and Tick-Borne Encephalitis Viruses in France in 2009-2014: Evidence of Undetected Flavivirus Circulation a Decade Ago. Viruses 2019; 12:E10. [PMID: 31861683 PMCID: PMC7019733 DOI: 10.3390/v12010010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/13/2019] [Accepted: 12/16/2019] [Indexed: 12/30/2022] Open
Abstract
Abstract: Flaviviruses have become increasingly important pathogens in Europe over the past few decades. A better understanding of the spatiotemporal distribution of flaviviruses in France is needed to better define risk areas and to gain knowledge of the dynamics of virus transmission cycles. Serum samples from 1014 wild boar and 758 roe deer from 16 departments (administrative units) in France collected from 2009 to 2014 were screened for flavivirus antibodies using a competitive ELISA (cELISA) technique. Serum samples found to be positive or doubtful by cELISA were then tested for antibodies directed against West Nile virus (WNV), Usutu virus (USUV), Bagaza virus (BAGV), and tick-borne encephalitis/Louping ill viruses (TBEV/LIV) by microsphere immunoassays (except BAGV) and micro-neutralization tests. USUV antibodies were detected only in southeastern and southwestern areas. TBEV/LIV antibodies were detected in serum samples from eastern, southwestern and northern departments. The results indicate continuous circulation of USUV in southern France from 2009 to 2014, which was unnoticed by the French monitoring system for bird mortality. The findings also confirm wider distribution of TBEV in the eastern part of the country than of human clinical cases. However, further studies are needed to determine the tick-borne flavivirus responsible for the seroconversion in southwestern and northern France.
Collapse
Affiliation(s)
- Laure Bournez
- Nancy Laboratory for Rabies and Wildlife, The French Agency for Food, Environmental and Occupational Health and Safety (ANSES), CS 40009 54220 Malzéville, France; (G.U.); (J.-M.B.); (F.B.)
| | - Gérald Umhang
- Nancy Laboratory for Rabies and Wildlife, The French Agency for Food, Environmental and Occupational Health and Safety (ANSES), CS 40009 54220 Malzéville, France; (G.U.); (J.-M.B.); (F.B.)
| | - Eva Faure
- National Hunters Federation, 92130 Issy-les-Moulineaux, France; (E.F.); (M.S.)
| | - Jean-Marc Boucher
- Nancy Laboratory for Rabies and Wildlife, The French Agency for Food, Environmental and Occupational Health and Safety (ANSES), CS 40009 54220 Malzéville, France; (G.U.); (J.-M.B.); (F.B.)
| | - Franck Boué
- Nancy Laboratory for Rabies and Wildlife, The French Agency for Food, Environmental and Occupational Health and Safety (ANSES), CS 40009 54220 Malzéville, France; (G.U.); (J.-M.B.); (F.B.)
| | - Elsa Jourdain
- Université Clermont Auvergne, INRAE, VetAgro Sup, Unité mixte de recherche Epidémiologie des maladies animales et zoonotiques (UMR EPIA), 63122 Saint-Genès-Champanelle, France;
| | - Mathieu Sarasa
- National Hunters Federation, 92130 Issy-les-Moulineaux, France; (E.F.); (M.S.)
- Biologie et Ecologie des Organismes et Populations Sauvages (BEOPS), 1 Esplanade Compans Caffarelli, 31000 Toulouse, France
| | - Francisco Llorente
- Centro de Investigación en Sanidad Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CISA), 28130 Valdeolmos, Spain; (F.L.); (M.A.J.-C.)
| | - Miguel A. Jiménez-Clavero
- Centro de Investigación en Sanidad Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CISA), 28130 Valdeolmos, Spain; (F.L.); (M.A.J.-C.)
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain
| | - Sara Moutailler
- Unité mixte de recherche Biologie moléculaire et Immunologie Parasitaire (UMR BIPAR), ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, Université Paris-Est, Maisons-Alfort 94700, France;
| | - Sandrine A. Lacour
- Unité mixte de recherche (UMR) Virologie, INRAE, Ecole Nationale Vétérinaire d’Alfort, ANSES, Université Paris-Est, 94700 Maisons-Alfort, France; (S.A.L.); (S.L.); (C.B.)
| | - Sylvie Lecollinet
- Unité mixte de recherche (UMR) Virologie, INRAE, Ecole Nationale Vétérinaire d’Alfort, ANSES, Université Paris-Est, 94700 Maisons-Alfort, France; (S.A.L.); (S.L.); (C.B.)
| | - Cécile Beck
- Unité mixte de recherche (UMR) Virologie, INRAE, Ecole Nationale Vétérinaire d’Alfort, ANSES, Université Paris-Est, 94700 Maisons-Alfort, France; (S.A.L.); (S.L.); (C.B.)
| |
Collapse
|
27
|
Gill CM, Kapadia RK, Beckham JD, Piquet AL, Tyler KL, Pastula DM. Usutu virus disease: a potential problem for North America? J Neurovirol 2019; 26:149-154. [PMID: 31858483 DOI: 10.1007/s13365-019-00818-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 09/07/2019] [Accepted: 11/18/2019] [Indexed: 11/27/2022]
Abstract
Usutu virus is an emerging mosquito-borne flavivirus initially identified in South Africa in 1959 that is now circulating throughout parts of Africa, Europe, and the Middle East. It is closely related to West Nile virus, and has similar vectors, amplifying bird hosts, and epidemiology. Usutu virus infection can occur in humans and may be asymptomatic or cause systemic (e.g., fever, rash, and hepatitis) or neuroinvasive (e.g., meningitis and encephalitis) disease. Given few reported cases, the full clinical spectrum is not known. No anti-viral treatment is available, but it can be largely prevented by avoiding mosquito bites. Because of similar mosquitoes, birds, and climate to Europe, the potential for introduction to North America is possible.
Collapse
Affiliation(s)
- Christine M Gill
- Neuro-Infectious Diseases Group, Department of Neurology and Division of Infectious Diseases, University of Colorado School of Medicine, Mail Stop B182, Research Complex 2, 12700 East 19th Ave., Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Ronak K Kapadia
- Neuro-Infectious Diseases Group, Department of Neurology and Division of Infectious Diseases, University of Colorado School of Medicine, Mail Stop B182, Research Complex 2, 12700 East 19th Ave., Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - J David Beckham
- Neuro-Infectious Diseases Group, Department of Neurology and Division of Infectious Diseases, University of Colorado School of Medicine, Mail Stop B182, Research Complex 2, 12700 East 19th Ave., Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Amanda L Piquet
- Neuro-Infectious Diseases Group, Department of Neurology and Division of Infectious Diseases, University of Colorado School of Medicine, Mail Stop B182, Research Complex 2, 12700 East 19th Ave., Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Kenneth L Tyler
- Neuro-Infectious Diseases Group, Department of Neurology and Division of Infectious Diseases, University of Colorado School of Medicine, Mail Stop B182, Research Complex 2, 12700 East 19th Ave., Anschutz Medical Campus, Aurora, CO, 80045, USA
- Department of Immunology-Microbiology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Daniel M Pastula
- Neuro-Infectious Diseases Group, Department of Neurology and Division of Infectious Diseases, University of Colorado School of Medicine, Mail Stop B182, Research Complex 2, 12700 East 19th Ave., Anschutz Medical Campus, Aurora, CO, 80045, USA.
- Department of Epidemiology, Colorado School of Public Health, Aurora, CO, USA.
| |
Collapse
|
28
|
Hönig V, Palus M, Kaspar T, Zemanova M, Majerova K, Hofmannova L, Papezik P, Sikutova S, Rettich F, Hubalek Z, Rudolf I, Votypka J, Modry D, Ruzek D. Multiple Lineages of Usutu Virus ( Flaviviridae, Flavivirus) in Blackbirds ( Turdus merula) and Mosquitoes ( Culex pipiens, Cx. modestus) in the Czech Republic (2016-2019). Microorganisms 2019; 7:E568. [PMID: 31744087 PMCID: PMC6920817 DOI: 10.3390/microorganisms7110568] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 10/29/2019] [Accepted: 11/15/2019] [Indexed: 01/23/2023] Open
Abstract
Usutu virus (USUV) is a flavivirus (Flaviviridae: Flavivirus) of an African origin transmitted among its natural hosts (diverse species of birds) by mosquitoes. The virus was introduced multiple times to Europe where it caused mortality of blackbirds (Turdus merula) and certain other susceptible species of birds. In this study, we report detection of USUV RNA in blackbirds, Culex pipiens and Cx. modestus mosquitoes in the Czech Republic, and isolation of 10 new Czech USUV strains from carcasses of blackbirds in cell culture. Multiple lineages (Europe 1, 2 and Africa 3) of USUV were found in blackbirds and mosquitoes in the southeastern part of the country. A single USUV lineage (Europe 3) was found in Prague and was likely associated with increased mortalities in the local blackbird population seen in this area in 2018. USUV genomic RNA (lineage Europe 2) was detected in a pool of Cx. pipiens mosquitoes from South Bohemia (southern part of the country), where no major mortality of birds has been reported so far, and no flavivirus RNA has been found in randomly sampled cadavers of blackbirds. The obtained data contributes to our knowledge about USUV genetic variability, distribution and spread in Central Europe.
Collapse
Affiliation(s)
- Vaclav Hönig
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 37005 Ceske Budejovice, Czech Republic; (M.P.); (T.K.); (M.Z.); (K.M.); (J.V.); (D.M.); (D.R.)
- Department of Virology, Veterinary Research Institute, 62100 Brno, Czech Republic
| | - Martin Palus
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 37005 Ceske Budejovice, Czech Republic; (M.P.); (T.K.); (M.Z.); (K.M.); (J.V.); (D.M.); (D.R.)
- Department of Virology, Veterinary Research Institute, 62100 Brno, Czech Republic
| | - Tomas Kaspar
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 37005 Ceske Budejovice, Czech Republic; (M.P.); (T.K.); (M.Z.); (K.M.); (J.V.); (D.M.); (D.R.)
- Faculty of Science, University of South Bohemia, 37005 Ceske Budejovice, Czech Republic
| | - Marta Zemanova
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 37005 Ceske Budejovice, Czech Republic; (M.P.); (T.K.); (M.Z.); (K.M.); (J.V.); (D.M.); (D.R.)
| | - Karolina Majerova
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 37005 Ceske Budejovice, Czech Republic; (M.P.); (T.K.); (M.Z.); (K.M.); (J.V.); (D.M.); (D.R.)
- Department of Parasitology, Faculty of Science, Charles University, 12800 Prague, Czech Republic
| | - Lada Hofmannova
- Department of Pathology and Parasitology, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences, 61242 Brno, Czech Republic; (L.H.); (P.P.)
| | - Petr Papezik
- Department of Pathology and Parasitology, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences, 61242 Brno, Czech Republic; (L.H.); (P.P.)
| | - Silvie Sikutova
- Institute of Vertebrate Biology, Czech Academy of Sciences, 60365 Brno, Czech Republic; (S.S.); (Z.H.); (I.R.)
| | - Frantisek Rettich
- Centre for Epidemiology and Microbiology, National Institute of Public Health, 10000 Prague, Czech Republic;
| | - Zdenek Hubalek
- Institute of Vertebrate Biology, Czech Academy of Sciences, 60365 Brno, Czech Republic; (S.S.); (Z.H.); (I.R.)
| | - Ivo Rudolf
- Institute of Vertebrate Biology, Czech Academy of Sciences, 60365 Brno, Czech Republic; (S.S.); (Z.H.); (I.R.)
| | - Jan Votypka
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 37005 Ceske Budejovice, Czech Republic; (M.P.); (T.K.); (M.Z.); (K.M.); (J.V.); (D.M.); (D.R.)
- Department of Parasitology, Faculty of Science, Charles University, 12800 Prague, Czech Republic
| | - David Modry
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 37005 Ceske Budejovice, Czech Republic; (M.P.); (T.K.); (M.Z.); (K.M.); (J.V.); (D.M.); (D.R.)
- Department of Pathology and Parasitology, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences, 61242 Brno, Czech Republic; (L.H.); (P.P.)
- CEITEC, University of Veterinary and Pharmaceutical Sciences, 61242 Brno, Czech Republic
| | - Daniel Ruzek
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 37005 Ceske Budejovice, Czech Republic; (M.P.); (T.K.); (M.Z.); (K.M.); (J.V.); (D.M.); (D.R.)
- Department of Virology, Veterinary Research Institute, 62100 Brno, Czech Republic
| |
Collapse
|
29
|
Weidinger P, Kolodziejek J, Bakonyi T, Brunthaler R, Erdélyi K, Weissenböck H, Nowotny N. Different dynamics of Usutu virus infections in Austria and Hungary, 2017-2018. Transbound Emerg Dis 2019; 67:298-307. [PMID: 31505099 PMCID: PMC7003936 DOI: 10.1111/tbed.13351] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/23/2019] [Accepted: 08/30/2019] [Indexed: 12/19/2022]
Abstract
Usutu virus (USUV), a mosquito‐borne flavivirus closely related to West Nile virus, emerged in Austria in 2001, when it caused a considerable mass‐mortality of Eurasian blackbirds. Cases in birds increased until 2003 and quickly declined thereafter, presumably due to developing herd immunity. Since 2006, no further cases were recorded, until two blackbirds were tested positive in 2016. In Hungary, USUV first appeared in 2005 and has caused only sporadic infections since then. Initially, the only genetic USUV lineage found across both countries was Europe 1. This changed in 2015/2016, when Europe 2 emerged, which has since then become the prevalent lineage. Due to dispersal of these strains and introduction of new genetic lineages, USUV infections are now widespread across Europe. In 2009, the first cases of USUV‐related encephalitis were described in humans, and the virus has been frequently detected in blood donations since 2016. To monitor USUV infections among the Austrian wild bird population in 2017/2018, 86 samples were investigated by RT‐PCR. In 67 of them, USUV nucleic acid was detected (17 in 2017, 50 in 2018). The majority of succumbed birds were blackbirds, found in Vienna and Lower Austria. However, the virus also spread westwards to Upper Austria and southwards to Styria and Carinthia. In Hungary, 253 wild birds were examined, but only six of them were infected with USUV (five in 2017, one in 2018). Thus, in contrast to the considerable increase in USUV‐associated bird mortality in Austria, the number of infections in Hungary declined after a peak in 2016. Except for one case of USUV lineage Africa 3 in Austria in 2017, Europe 2 remains the most prevalent genetic lineage in both countries. Since USUV transmission largely depends on temperature, which affects vector populations, climate change may cause more frequent USUV outbreaks in the future.
Collapse
Affiliation(s)
- Pia Weidinger
- Viral Zoonoses, Emerging and Vector-Borne Infections Group, Institute of Virology, University of Veterinary Medicine, Vienna, Austria
| | - Jolanta Kolodziejek
- Viral Zoonoses, Emerging and Vector-Borne Infections Group, Institute of Virology, University of Veterinary Medicine, Vienna, Austria
| | - Tamás Bakonyi
- Viral Zoonoses, Emerging and Vector-Borne Infections Group, Institute of Virology, University of Veterinary Medicine, Vienna, Austria.,Department of Microbiology and Infectious Diseases, University of Veterinary Medicine, Budapest, Hungary
| | - René Brunthaler
- Institute of Pathology, University of Veterinary Medicine, Vienna, Austria
| | - Károly Erdélyi
- Veterinary Diagnostic Directorate, National Food Chain Safety Office, Budapest, Hungary
| | | | - Norbert Nowotny
- Viral Zoonoses, Emerging and Vector-Borne Infections Group, Institute of Virology, University of Veterinary Medicine, Vienna, Austria.,Department of Basic Medical Sciences, College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| |
Collapse
|
30
|
Benzarti E, Sarlet M, Franssen M, Cadar D, Schmidt-Chanasit J, Rivas JF, Linden A, Desmecht D, Garigliany M. Usutu Virus Epizootic in Belgium in 2017 and 2018: Evidence of Virus Endemization and Ongoing Introduction Events. Vector Borne Zoonotic Dis 2019; 20:43-50. [PMID: 31479400 DOI: 10.1089/vbz.2019.2469] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Wildlife surveillance allowed the monitoring of the zoonotic mosquito-borne Usutu virus (USUV) in birds and bats (Pipistrellus pipistrellus) in southern Belgium in 2017 and 2018. USUV-RNA was detected in 69 birds (of 253) from 15 species, among which 7 species had not previously been reported to be susceptible to the infection. Similarly, 2 bats (of 10) were detected positive by reverse transcriptase quantitative polymerase chain reaction (RT-qPCR). USUV-associated lesions were mainly found in Eurasian Blackbirds (Turdus merula), in which USUV antigens were demonstrated by immunohistochemistry in the brain, heart, liver, kidney, intestine, and lung. Partial nonstructural protein 5 gene-based phylogenetic analysis showed several identical or closely related strains from 2016, 2017, and 2018 clustering together within Europe 3 or Africa 3 lineages. Further, one USUV strain detected in a common chaffinch (Fringilla coelebs) manifested a close genetic relationship with the European 1 strains circulating in Hungary and Austria. Our data provide evidence of USUV endemization in southern Belgium in local birds and bats, extension of the host range of the virus and ongoing virus introduction from abroad, likely by migratory birds. Our results highlight the need for vigilance in the forthcoming years toward new virus-associated outbreaks in birds and possible human infections in Belgium.
Collapse
Affiliation(s)
- Emna Benzarti
- Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Michaël Sarlet
- Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Mathieu Franssen
- Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Daniel Cadar
- Bernhard Nocht Institute for Tropical Medicine, WHO Collaborating Centre for Arbovirus and Haemorrhagic Fever Reference and Research, Hamburg, Germany
| | - Jonas Schmidt-Chanasit
- Bernhard Nocht Institute for Tropical Medicine, WHO Collaborating Centre for Arbovirus and Haemorrhagic Fever Reference and Research, Hamburg, Germany.,Faculty of Mathematics, Informatics and Natural Sciences, University of Hamburg, Hamburg, Germany
| | - Jose Felipe Rivas
- Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Annick Linden
- Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Daniel Desmecht
- Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Mutien Garigliany
- Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| |
Collapse
|
31
|
Nyaruaba R, Mwaliko C, Mwau M, Mousa S, Wei H. Arboviruses in the East African Community partner states: a review of medically important mosquito-borne Arboviruses. Pathog Glob Health 2019; 113:209-228. [PMID: 31664886 PMCID: PMC6882432 DOI: 10.1080/20477724.2019.1678939] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Mosquito-borne diseases, including arbovirus-related diseases, make up a large proportion of infectious disease cases worldwide, causing a serious global public health burden with over 700,000 deaths annually. Mosquito-borne arbovirus outbreaks can range from global to regional. In the East African Community (EAC) region, these viruses have caused a series of emerging and reemerging infectious disease outbreaks. Member states in the EAC share a lot in common including regional trade and transport, some of the factors highlighted to be the cause of mosquito-borne arbovirus disease outbreaks worldwide. In this review, characteristics of 24 mosquito-borne arboviruses indigenous to the EAC are reviewed, including lesser or poorly understood viruses, like Batai virus (BATV) and Ndumu virus (NDUV), which may escape their origins under perfect conditions to establish a foothold in new geographical locations. Factors that may influence the future spread of these viruses within the EAC are addressed. With the continued development observed in the EAC, strategies should be developed by the Community in improving mosquito and mosquito-borne arbovirus surveillance to prevent future outbreaks.
Collapse
Affiliation(s)
- Raphael Nyaruaba
- Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
- International college, University of Chinese Academy of Sciences, Beijing, China
| | - Caroline Mwaliko
- Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
- International college, University of Chinese Academy of Sciences, Beijing, China
| | - Matilu Mwau
- Center for Infectious and Parasitic Diseases Control Research, Kenya Medical Research Institute, Busia, Kenya
| | - Samar Mousa
- Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
- International college, University of Chinese Academy of Sciences, Beijing, China
| | - Hongping Wei
- Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| |
Collapse
|
32
|
Camp JV, Kolodziejek J, Nowotny N. Targeted surveillance reveals native and invasive mosquito species infected with Usutu virus. Parasit Vectors 2019; 12:46. [PMID: 30665453 PMCID: PMC6341546 DOI: 10.1186/s13071-019-3316-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 01/14/2019] [Indexed: 11/11/2022] Open
Abstract
Background The emergence of Usutu virus (USUV) in Europe was first reported in Austria, 2001, and the virus has since spread to many European countries. Initial outbreaks are marked by a mass die-off of European blackbirds (Turdus merula) and other bird species. During outbreaks, the virus has been detected in pools of Culex pipiens mosquitoes, and these mosquitoes are probably the most important enzootic vectors. Beginning in 2017, a second wave of blackbird deaths associated with USUV was observed in eastern Austria; the affected areas expanded to the Austrian federal states of Styria in the south and to Upper Austria in the west in 2018. We sampled the potential vector population at selected sites of bird deaths in 2018 in order to identify infected mosquitoes. Results We detected USUV RNA in 16 out of 19 pools of Cx. pipiens/Cx. torrentium mosquitoes at sites of USUV-linked blackbird mortality in Linz and Graz, Austria. A disseminated virus infection was detected in individuals from selected pools, suggesting that Cx. pipiens form pipiens was the principal vector. In addition to a high rate of infected Cx. pipiens collected from Graz, a disseminated virus infection was detected in a pool of Aedes japonicus japonicus. Conclusions We show herein that naturally-infected mosquitoes at foci of USUV activity are primarily Cx. pipiens form pipiens. In addition, we report the first natural infection of Ae. j. japonicus with USUV, suggesting that it may be involved in the epizootic transmission of USUV in Europe. Ae. j. japonicus is an invasive mosquito whose range is expanding in Europe.
Collapse
Affiliation(s)
- Jeremy V Camp
- Viral Zoonoses, Emerging and Vector-borne Infections Group, Institute of Virology, University of Veterinary Medicine Vienna, Vienna, Austria.
| | - Jolanta Kolodziejek
- Viral Zoonoses, Emerging and Vector-borne Infections Group, Institute of Virology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Norbert Nowotny
- Viral Zoonoses, Emerging and Vector-borne Infections Group, Institute of Virology, University of Veterinary Medicine Vienna, Vienna, Austria.,Department of Basic Medical Sciences, College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| |
Collapse
|
33
|
Segura Guerrero NA, Sharma S, Neyts J, Kaptein SJF. Favipiravir inhibits in vitro Usutu virus replication and delays disease progression in an infection model in mice. Antiviral Res 2018; 160:137-142. [PMID: 30385306 DOI: 10.1016/j.antiviral.2018.10.026] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/26/2018] [Accepted: 10/28/2018] [Indexed: 01/29/2023]
Abstract
Usutu virus (USUV) is an emerging flavivirus that causes Usutu disease mainly in birds, but infection of mammals such as rodents, bats and horses has also been demonstrated. In addition, human cases (both in immunocompromised and -competent individuals) were also reported. Large outbreaks with other flaviviruses, such as West Nile virus and Zika virus, indicate that one should be vigilant for yet other outbreaks. To allow the identification of inhibitors of USUV replication, we established in vitro antiviral assays, which were validated using a small selection of known flavivirus inhibitors, including the broad-spectrum viral RNA polymerase inhibitor favipiravir (T-705). Next, an USUV infection model in AG129 (IFN-α/β and IFN-γ receptor knockout) mice was established. AG129 mice proved highly susceptible to USUV; an inoculum as low as 102 PFU (1.3 × 105 TCID50) resulted in the development of symptoms as early as 3 days post infection with viral RNA being detectable in various tissues. Treatment of mice with favipiravir (150 mg/kg/dose, BID, oral gavage) significantly reduced viral load in blood and tissues and significantly delayed virus-induced disease. This USUV mouse model is thus amenable for assessing the potential in vivo efficacy of (novel) USUV/flavivirus inhibitors.
Collapse
Affiliation(s)
- Nidya A Segura Guerrero
- KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Leuven, Belgium; Universidad Pedagógica y Tecnológica de Colombia, Tunja, Colombia
| | - Sapna Sharma
- KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Johan Neyts
- KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Leuven, Belgium.
| | - Suzanne J F Kaptein
- KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| |
Collapse
|
34
|
Usutu virus induced mass mortalities of songbirds in Central Europe: Are habitat models suitable to predict dead birds in unsampled regions? Prev Vet Med 2018; 159:162-170. [PMID: 30314779 DOI: 10.1016/j.prevetmed.2018.09.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 09/14/2018] [Accepted: 09/14/2018] [Indexed: 12/30/2022]
Abstract
The Usutu virus (USUV) is a mosquito-borne flavivirus closely related to the better known West Nile virus, and it can cause mass mortalities of song birds. In the present paper, a dataset of georeferenced locations of USUV-positive birds was compiled and then used to map the geographical distribution of suitable USUV habitats in Central Europe. Six habitat models, comprising BIOCLIM, DOMAIN, maximum entropy model (MAXENT), generalized linear model (GLM), boosted regression trees model (BRT), and random forests model (RF), were selected and tested for their performance ability to predict cases of disease in unsampled areas. Suitability index maps, a diagram depicting model performance by the Area Under the Curve (AUC) vs. the True Skill Statistic (TSS), and a diagram ranking sensitivity vs. specificity as well as correct classification ratio (CCR) vs. misclassification ratio (MCR) were presented. Of the models tested GLM, BRT, RF, and MAXENT were shown suitable to predict USUV-positive dead birds in unsampled regions, with BRT the highest predictive accuracy (AUC = 0.75, TSS = 0.50). However, the four models classified major parts of the model domain as USUV-suitable, although USUV was never confirmed there so far (MCR=0.49 to 0.61). DOMAIN and especially BIOCLIM can only be recommended for interpolating point observations to raster files, i.e. for analyzing observed USUV distributions (MCR = 0.10). Habitat models can be a helpful tool for informing veterinary authorities about the possible distribution of a given mosquito-borne disease. Nevertheless, it should be taken in consideration, that the spatial and temporal scales, the selection of an appropriate model, the availability of significant predictive variables as well as the representativeness and completeness of collected species or disease cases may strongly influence the modeling results.
Collapse
|
35
|
Lühken R, Jöst H, Cadar D, Thomas SM, Bosch S, Tannich E, Becker N, Ziegler U, Lachmann L, Schmidt-Chanasit J. Distribution of Usutu Virus in Germany and Its Effect on Breeding Bird Populations. Emerg Infect Dis 2018; 23:1994-2001. [PMID: 29148399 PMCID: PMC5708248 DOI: 10.3201/eid2312.171257] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Usutu virus (USUV) is an emerging mosquitoborne flavivirus with an increasing number of reports from several countries in Europe, where USUV infection has caused high avian mortality rates. However, 20 years after the first observed outbreak of USUV in Europe, there is still no reliable assessment of the large-scale impact of USUV outbreaks on bird populations. In this study, we identified the areas suitable for USUV circulation in Germany and analyzed the effects of USUV on breeding bird populations. We calculated the USUV-associated additional decline of common blackbird (Turdus merula) populations as 15.7% inside USUV-suitable areas but found no significant effect for the other 14 common bird species investigated. Our results show that the emergence of USUV is a further threat for birds in Europe and that the large-scale impact on population levels, at least for common blackbirds, must be considered.
Collapse
|
36
|
Chathuranga WGD, Karunaratne SHPP, Fernando BR, De Silva WAPP. Diversity, distribution, abundance, and feeding pattern of tropical ornithophilic mosquitoes. JOURNAL OF VECTOR ECOLOGY : JOURNAL OF THE SOCIETY FOR VECTOR ECOLOGY 2018; 43:158-167. [PMID: 29757505 DOI: 10.1111/jvec.12295] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 03/12/2018] [Indexed: 06/08/2023]
Abstract
Bird-biting mosquitoes act as bridge vectors of diverse pathogens of emerging infectious diseases. In this study, we report for the first time the abundance, diversity, distribution, and feeding pattern of bird-biting mosquitoes on an island where avifaunal diversity is rich. Monthly mosquito collections were done at six different habitats in three different climatic zones using bird-baited traps over a year. Collected mosquitoes were identified using morphological and molecular tools. A total of 2,655 bird-biting mosquitoes of eight genera and 25 species were identified. Of these, 52% were Culex species, which represents 35% of the Culex species in the country. The most abundant species were Culex sitiens, Cx. pseudovishnui, Cx. nigropunctatus and Cx. quinquefasciatus, whereas the latter two were common to all habitats. The highest abundance was reported in lowland forests (49.6%), while it was lowest in highland forests (22.3%). Highest species similarity was reported from highland forests. Seasonal variations of the most abundant species were significantly different in selected habitats (p< 0.05). Two distinct biting peaks were identified, from 06:00 to 21:00 and 22:00 to 02:00. The biting nature of identified ornithophilic mosquitoes suggests the potential vector status of these mosquitoes.
Collapse
Affiliation(s)
- W G D Chathuranga
- Department of Zoology, Faculty of Science, University of Peradeniya, Peradeniya, Sri Lanka
- Postgraduate Institute of Science, University of Peradeniya, Peradeniya, Sri Lanka
| | - S H P P Karunaratne
- Department of Zoology, Faculty of Science, University of Peradeniya, Peradeniya, Sri Lanka
| | - B R Fernando
- Department of Veterinary Public Health and Pharmacology, Faculty of Veterinary Medicine and Animal Science, University of Peradeniya, Peradeniya, Sri Lanka
| | | |
Collapse
|
37
|
Curland N, Gethöffer F, van Neer A, Ziegler L, Heffels-Redmann U, Lierz M, Baumgärtner W, Wohlsein P, Völker I, Lapp S, Bello A, Pfankuche VM, Braune S, Runge M, Moss A, Rautenschlein S, Jung A, Teske L, Strube C, Schulz J, Bodewes R, Osterhaus ADME, Siebert U. Investigation into diseases in free-ranging ring-necked pheasants ( Phasianus colchicus) in northwestern Germany during population decline with special reference to infectious pathogens. EUR J WILDLIFE RES 2018; 64:12. [PMID: 32214944 PMCID: PMC7087779 DOI: 10.1007/s10344-018-1173-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 11/06/2017] [Accepted: 01/19/2018] [Indexed: 11/29/2022]
Abstract
The population of ring-necked pheasants (Phasianus colchicus) is decreasing all over Germany since the years 2008/2009. Besides impacts of habitat changes caused by current rates of land conversion, climatic influences or predators, a contribution of infectious pathogens needs also to be considered. Infectious and non-infectious diseases in free-living populations of ring-necked pheasants have been scarcely investigated so far. In the present study, carcasses of 258 deceased free-ranging pheasants of different age groups, predominantly adult pheasants, collected over a period of 4 years in the states of Lower Saxony, North Rhine–Westphalia and Schleswig-Holstein, were examined pathomorphologically, parasitologically, virologically and bacteriologically, with a focus set on infectious pathogens. A periocular and perinasal dermatitis of unknown origin was present in 62.3% of the pheasants. Additional alterations included protozoal cysts in the skeletal musculature (19.0%), hepatitis (21.7%), enteritis (18.7%), gastritis (12.6%), and pneumonia (11.7%). In single cases, neoplasms (2.6%) and mycobacteriosis (1.7%) occurred. Further findings included identification of coronaviral DNA from trachea or caecal tonsils (16.8%), siadenoviral DNA (7.6%), avian metapneumoviral RNA (6.6%), and infectious bursal disease viral RNA (3.7%). Polymerase chain reaction (PCR) on herpesvirus, avian influenza virus (AIV), paramyxovirus type 1 (PMV-1), avian encephalomyelitis virus (AEV), and chlamydia were negative. Based on the present results, there is no indication of a specific pathogen as a sole cause for population decline in adult pheasants. However, an infectious disease can still not be completely excluded as it may only affect reproduction effectivity or a certain age group of pheasants (e.g., chicks) which were not presented in the study.
Collapse
Affiliation(s)
- N Curland
- 1Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, 30173 Hannover, Germany
| | - F Gethöffer
- 1Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, 30173 Hannover, Germany
| | - A van Neer
- 1Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, 30173 Hannover, Germany
| | - L Ziegler
- 2Clinic for Birds, Reptiles, Amphibians and Fish, Justus Liebig University Giessen, Frankfurter Strasse 91, 35321 Giessen, Germany
| | - U Heffels-Redmann
- 2Clinic for Birds, Reptiles, Amphibians and Fish, Justus Liebig University Giessen, Frankfurter Strasse 91, 35321 Giessen, Germany
| | - M Lierz
- 2Clinic for Birds, Reptiles, Amphibians and Fish, Justus Liebig University Giessen, Frankfurter Strasse 91, 35321 Giessen, Germany
| | - W Baumgärtner
- 3Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Buenteweg 17, 30559 Hannover, Germany
| | - P Wohlsein
- 3Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Buenteweg 17, 30559 Hannover, Germany
| | - I Völker
- 3Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Buenteweg 17, 30559 Hannover, Germany
| | - S Lapp
- 3Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Buenteweg 17, 30559 Hannover, Germany
| | - A Bello
- 3Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Buenteweg 17, 30559 Hannover, Germany
| | - V M Pfankuche
- 3Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Buenteweg 17, 30559 Hannover, Germany
| | - S Braune
- 4Lower Saxony State Office for Consumer Protection and Food Safety (LAVES), Food and Veterinary Institute Braunschweig/Hannover, Eintrachtweg 17, 30173 Hannover, Germany
| | - M Runge
- 4Lower Saxony State Office for Consumer Protection and Food Safety (LAVES), Food and Veterinary Institute Braunschweig/Hannover, Eintrachtweg 17, 30173 Hannover, Germany
| | - A Moss
- 5Lower Saxony State Office for Consumer Protection and Food Safety (LAVES), Food and Veterinary Institute Oldenburg, Philosophenweg 38, 26121 Oldenburg, Germany
| | - S Rautenschlein
- 6Clinic for Poultry, University of Veterinary Medicine Hannover, Foundation, Buenteweg 17, 30559 Hannover, Germany
| | - A Jung
- 6Clinic for Poultry, University of Veterinary Medicine Hannover, Foundation, Buenteweg 17, 30559 Hannover, Germany
| | - L Teske
- 6Clinic for Poultry, University of Veterinary Medicine Hannover, Foundation, Buenteweg 17, 30559 Hannover, Germany
| | - C Strube
- 7Institute for Parasitology, Center for Infection Medicine, University of Veterinary Medicine Hannover, Foundation, Buenteweg 17, 30559 Hannover, Germany
| | - J Schulz
- 8Institute for Animal Hygiene, Animal Welfare and Farm Animal Behaviour, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, 30173 Hannover, Germany
| | - R Bodewes
- Department of Viroscience, Erasmus MC, P.O. Box 2040, Ee1726, 3000 CA Rotterdam, The Netherlands
| | - A D M E Osterhaus
- 10Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Foundation, Buenteweg 17, 30559 Hannover, Germany
| | - U Siebert
- 1Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, 30173 Hannover, Germany
| |
Collapse
|
38
|
Bakonyi T, Erdélyi K, Brunthaler R, Dán Á, Weissenböck H, Nowotny N. Usutu virus, Austria and Hungary, 2010-2016. Emerg Microbes Infect 2017; 6:e85. [PMID: 29018253 PMCID: PMC5658768 DOI: 10.1038/emi.2017.72] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 07/28/2017] [Accepted: 07/30/2017] [Indexed: 12/05/2022]
Abstract
Usutu virus (USUV, Flaviviridae) was first reported in Europe in Austria in 2001, where it caused wild bird (mainly blackbird) mortality until 2005. Since 2006 no further USUV cases were diagnosed in the country. However, the virus emerged in other European countries (Hungary, Italy, Switzerland, Spain, Germany and the Czech Republic) between 2005 and 2011. In 2016, widespread USUV-associated wild bird mortality was observed in Germany, France, Belgium and the Netherlands. In this study, we report the results of passive monitoring for USUV in Austria and Hungary between 2010 and 2016. In Hungary, USUV caused sporadic cases of wild bird mortality between 2010 and 2015 (altogether 18 diagnosed cases), whereas in summer and autumn 2016 the number of cases considerably increased to 12 (ten blackbirds, one Eurasian jay and one starling). In Austria, USUV was identified in two blackbirds in 2016. Phylogenetic analyses of coding-complete genomes and partial regions of the NS5 protein gene revealed that USUVs from Hungary between 2010 and 2015 are closely related to the virus that emerged in Austria in 2001 and in Hungary in 2005, while one Hungarian sequence from 2015 and all sequences from Hungary and Austria from 2016 clustered together with USUV sequences reported from Italy between 2009 and 2010. The results of the study indicate continuous USUV circulation in the region and exchange of USUV strains between Italy, Austria and Hungary.
Collapse
Affiliation(s)
- Tamás Bakonyi
- Viral Zoonoses, Emerging and Vector-Borne Infections Group, Institute of Virology, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria.,Department of Microbiology and Infectious Diseases, University of Veterinary Medicine, Budapest, Hungária krt. 23-25, 1143 Budapest, Hungary
| | - Károly Erdélyi
- Veterinary Diagnostic Directorate, National Food Chain Safety Office, Tábornok utca 2, 1149 Budapest, Hungary
| | - René Brunthaler
- Institute of Pathology and Forensic Veterinary Medicine, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria
| | - Ádám Dán
- Veterinary Diagnostic Directorate, National Food Chain Safety Office, Tábornok utca 2, 1149 Budapest, Hungary
| | - Herbert Weissenböck
- Institute of Pathology and Forensic Veterinary Medicine, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria
| | - Norbert Nowotny
- Viral Zoonoses, Emerging and Vector-Borne Infections Group, Institute of Virology, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria.,Department of Basic Medical Sciences, College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, PO Box 505055, Dubai Healthcare City, Dubai, United Arab Emirates
| |
Collapse
|
39
|
Palanisamy N, Lennerstrand J. Computational Prediction of Usutu Virus E Protein B Cell and T Cell Epitopes for Potential Vaccine Development. Scand J Immunol 2017; 85:350-364. [PMID: 28273384 DOI: 10.1111/sji.12544] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 02/26/2017] [Indexed: 12/26/2022]
Abstract
Usutu virus (family Flaviviridae), once confined to Africa, has emerged in Europe a decade ago. The virus has been spreading throughout Europe at a greater pace mostly affecting avian species. While most bird species remain asymptomatic carriers of this virus, few bird species are highly susceptible. Lately, Usutu virus (USUV) infections in humans were reported sporadically with severe neuroinvasive symptoms like meningoencephalitis. As so much is unknown about this virus, which potentially may cause severe diseases in humans, there is a need for more studies of this virus. In this study, we have used computational tools to predict potential B cell and T cell epitopes of USUV envelope (E) protein. We found that amino acids between positions 68 and 84 could be a potential B cell epitope, while amino acids between positions 53 and 69 could be a potential major histocompatibility complex (MHC) class I- and class II-restricted T cell epitope. By homology 3D modeling of USUV E protein, we found that the predicted B cell epitope was predominantly located in the coil region, while T cell epitope was located in the beta-strand region of the E protein. Additionally, the potential MHC class I T cell epitope (LAEVRSYCYL) was predicted to bind to nearly 24 human leucocyte antigens (HLAs) (IC50 ≤5000 nm) covering nearly 86.44% of the Black population and 96.90% of the Caucasoid population. Further in vivo studies are needed to validate the predicted epitopes.
Collapse
Affiliation(s)
- N Palanisamy
- Section of Clinical Virology, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - J Lennerstrand
- Section of Clinical Virology, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
40
|
Puggioli A, Bonilauri P, Calzolari M, Lelli D, Carrieri M, Urbanelli S, Pudar D, Bellini R. Does Aedes albopictus (Diptera: Culicidae) play any role in Usutu virus transmission in Northern Italy? Experimental oral infection and field evidences. Acta Trop 2017; 172:192-196. [PMID: 28495404 DOI: 10.1016/j.actatropica.2017.05.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Revised: 05/05/2017] [Accepted: 05/05/2017] [Indexed: 02/02/2023]
Abstract
This study evaluated the vector competence of Aedes albopictus in transmitting USUV after oral infection under laboratory conditions. Ae. albopictus showed a low vector competence for USUV, although the positive body sample found with a very high number of viral copies at one week post infection indicates that a replication in the mosquito body can occur, and that USUV can escape the midgut barrier. Field data from an extensive entomological arboviruses surveillance program showed a relevant incidence of Ae. albopictus USUV positive pools in the period 2009-2012 while all pools were negative from 2013 on. No conceivable explanation regarding this field evidence was addressed, suggesting that attention must be paid to the trend of development of this vector-pathogen association, being aware of the potential rapid arbovirus' adaptation to new vectors, to prevent possible new disease's emergence.
Collapse
|
41
|
Gaibani P, Rossini G. An overview of Usutu virus. Microbes Infect 2017; 19:382-387. [DOI: 10.1016/j.micinf.2017.05.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 05/26/2017] [Accepted: 05/29/2017] [Indexed: 10/19/2022]
|
42
|
Wellehan • JF, Lierz • M, Phalen • D, Raidal • S, Styles • DK, Crosta • L, Melillo • A, Schnitzer • P, Lennox • A, Lumeij JT. Infectious disease. CURRENT THERAPY IN AVIAN MEDICINE AND SURGERY 2016. [PMCID: PMC7158187 DOI: 10.1016/b978-1-4557-4671-2.00011-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
43
|
Fros JJ, Miesen P, Vogels CB, Gaibani P, Sambri V, Martina BE, Koenraadt CJ, van Rij RP, Vlak JM, Takken W, Pijlman GP. Comparative Usutu and West Nile virus transmission potential by local Culex pipiens mosquitoes in north-western Europe. One Health 2015; 1:31-36. [PMID: 28616462 PMCID: PMC5441354 DOI: 10.1016/j.onehlt.2015.08.002] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 08/21/2015] [Accepted: 08/24/2015] [Indexed: 12/17/2022] Open
Abstract
Originating from Africa, Usutu virus (USUV) first emerged in Europe in 2001. This mosquito-borne flavivirus caused high mortality rates in its bird reservoirs, which strongly resembled the introduction of West Nile virus (WNV) in 1999 in the United States. Mosquitoes infected with USUV incidentally transmit the virus to other vertebrates, including humans, which can result in neuroinvasive disease. USUV and WNV co-circulate in parts of southern Europe, but the distribution of USUV extends into central and northwestern Europe. In the field, both viruses have been detected in the northern house mosquito Culex pipiens, of which the potential for USUV transmission is unknown. To understand the transmission dynamics and assess the potential spread of USUV, we determined the vector competence of C. pipiens for USUV and compared it with the well characterized WNV. We show for the first time that northwestern European mosquitoes are highly effective vectors for USUV, with infection rates of 11% at 18 °C and 53% at 23 °C, which are comparable with values obtained for WNV. Interestingly, at a high temperature of 28 °C, mosquitoes became more effectively infected with USUV (90%) than with WNV (58%), which could be attributed to barriers in the mosquito midgut. Small RNA deep sequencing of infected mosquitoes showed for both viruses a strong bias for 21-nucleotide small interfering (si)RNAs, which map across the entire viral genome both on the sense and antisense strand. No evidence for viral PIWI-associated RNA (piRNA) was found, suggesting that the siRNA pathway is the major small RNA pathway that targets USUV and WNV infection in C. pipiens mosquitoes. Northwestern European mosquitoes are highly effective vectors for USUV. Culex pipiens is significantly more competent for USUV than for WNV at 28 °C. The siRNA but not the piRNA pathway targets USUV and WNV infections in C. pipiens. USUV may be a prelude to WNV transmission in northwestern Europe.
Collapse
Affiliation(s)
- Jelke J Fros
- Laboratory of Virology Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Pascal Miesen
- Department of Medical Microbiology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Chantal B Vogels
- Laboratory of Entomology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Paolo Gaibani
- Regional Reference Centre for Microbiological Emergencies (CRREM), Microbiology Unit, Azienda Ospedaliero-Universitaria di Bologna, Policlinico S. Orsola-Malpighi, Bologna, Italy
| | - Vittorio Sambri
- Unit of Microbiology, The Greater Romagna Area Hub Laboratory, Piazza della Liberazione, 60, 47522 Pievesestina, FC, Italy
| | - Byron E Martina
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands.,Artemis One Health, Utrecht, The Netherlands
| | - Constantianus J Koenraadt
- Laboratory of Entomology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Ronald P van Rij
- Department of Medical Microbiology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Just M Vlak
- Laboratory of Virology Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Willem Takken
- Laboratory of Entomology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Gorben P Pijlman
- Laboratory of Virology Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
44
|
Straková P, Šikutová S, Jedličková P, Sitko J, Rudolf I, Hubálek Z. The common coot as sentinel species for the presence of West Nile and Usutu flaviviruses in Central Europe. Res Vet Sci 2015; 102:159-61. [PMID: 26412536 DOI: 10.1016/j.rvsc.2015.08.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 07/20/2015] [Accepted: 08/02/2015] [Indexed: 10/23/2022]
Abstract
We examined 146 common coots (Fulica atra) on fishponds in central Moravia, Czech Republic, for antibodies to West Nile (WNV) and Usutu (USUV) flaviviruses. Eighteen birds reacted in the plaque-reduction neutralization test against WNV; these WNV seropositive samples were then titrated in parallel against USUV and tick-borne encephalitis virus (TBEV) to exclude flavivirus cross-reactivity. Two birds (1.4% overall) had the highest titers against WNV while 9 birds (6.2% overall) were seropositive for USUV, and in 7 birds the infecting flavivirus could not be differentiated with certainty. Our results indicate that both WNV and USUV infections occur in common coots; these birds might serve as a 'sentinel' species indicating the presence of these viruses at fishpond and wetland habitats in Central Europe.
Collapse
Affiliation(s)
- Petra Straková
- Institute of Vertebrate Biology v.v.i., Academy of Sciences, Brno, Czech Republic; Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Silvie Šikutová
- Institute of Vertebrate Biology v.v.i., Academy of Sciences, Brno, Czech Republic
| | - Petra Jedličková
- Institute of Vertebrate Biology v.v.i., Academy of Sciences, Brno, Czech Republic
| | - Jiljí Sitko
- Comenius Museum, Ornithological Station, Přerov, Czech Republic
| | - Ivo Rudolf
- Institute of Vertebrate Biology v.v.i., Academy of Sciences, Brno, Czech Republic; Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic.
| | - Zdenek Hubálek
- Institute of Vertebrate Biology v.v.i., Academy of Sciences, Brno, Czech Republic; Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| |
Collapse
|
45
|
Serological evidence for the circulation of flaviviruses in seabird populations of the western Indian Ocean. Epidemiol Infect 2015; 144:652-60. [PMID: 26194365 DOI: 10.1017/s0950268815001661] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Birds play a central role in the epidemiology of several flaviviruses of concern for public and veterinary health. Seabirds represent the most abundant and widespread avifauna in the western Indian Ocean and may play an important role as host reservoirs and spreaders of arthropod-borne pathogens such as flaviviruses. We report the results of a serological investigation based on blood samples collected from nine seabird species from seven islands in the Indian Ocean. Using a commercial competitive enzyme-linked immunosorbent assay directed against the prototypic West Nile flavivirus, antibodies against flaviviruses were detected in the serum of 47 of the 855 seabirds tested. They were detected in bird samples from three islands and from four bird species. Seroneutralization tests on adults and chicks suggested that great frigatebirds (Fregata minor) from Europa were infected by West Nile virus during their non-breeding period, and that Usutu virus probably circulated within bird colonies on Tromelin and on Juan de Nova. Real-time polymerase chain reactions performed on bird blood samples did not yield positive results precluding the genetic characterization of flavivirus using RNA sequencing. Our findings stress the need to further investigate flavivirus infections in arthropod vectors present in seabird colonies.
Collapse
|
46
|
Llopis IV, Rossi L, Di Gennaro A, Mosca A, Teodori L, Tomassone L, Grego E, Monaco F, Lorusso A, Savini G. Further circulation of West Nile and Usutu viruses in wild birds in Italy. INFECTION GENETICS AND EVOLUTION 2015; 32:292-7. [DOI: 10.1016/j.meegid.2015.03.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 03/16/2015] [Accepted: 03/21/2015] [Indexed: 10/23/2022]
|
47
|
In situ hybridization and sequence analysis reveal an association of Plasmodium spp. with mortalities in wild passerine birds in Austria. Parasitol Res 2015; 114:1455-62. [PMID: 25636246 DOI: 10.1007/s00436-015-4328-z] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 01/19/2015] [Indexed: 11/27/2022]
Abstract
Native European passerine birds are frequently clinically inapparent carriers of haemosporidian parasites of the genus Plasmodium. Clinical disease and death are only exceptionally reported. In the present study, tissue samples of 233 wild passerine birds found dead in Eastern Austria were examined by in situ hybridization (ISH) and partial cytochrome B gene sequence analysis for the presence, abundance and taxonomic assignment of Plasmodium spp. In 34 cases (14.6%), ISH yielded a positive result with large numbers of developmental stages in different cell types of the spleen, liver, brain and lung. The abundance of the tissue stages, which was comparable to fatal cases of avian malaria in penguins, suggested a major contribution to the cause of death. Genetic analysis revealed infections with representatives of three different valid species of Plasmodium, Plasmodium elongatum, Plasmodium lutzi and Plasmodium vaughani. Genetically identical parasite lineages had been found in a previous study in penguins kept in the Vienna zoo, providing evidence for the role of wild birds as reservoir hosts. Further, this study provides evidence that several species of Plasmodium are able to abundantly proliferate in endemic wild birds ultimately resulting in mortalities.
Collapse
|
48
|
Ashraf U, Ye J, Ruan X, Wan S, Zhu B, Cao S. Usutu virus: an emerging flavivirus in Europe. Viruses 2015; 7:219-38. [PMID: 25606971 PMCID: PMC4306835 DOI: 10.3390/v7010219] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 01/13/2015] [Indexed: 12/24/2022] Open
Abstract
Usutu virus (USUV) is an African mosquito-borne flavivirus belonging to the Japanese encephalitis virus serocomplex. USUV is closely related to Murray Valley encephalitis virus, Japanese encephalitis virus, and West Nile virus. USUV was discovered in South Africa in 1959. In Europe, the first true demonstration of circulation of USUV was reported in Austria in 2001 with a significant die-off of Eurasian blackbirds. In the subsequent years, USUV expanded to neighboring countries, including Italy, Germany, Spain, Hungary, Switzerland, Poland, England, Czech Republic, Greece, and Belgium, where it caused unusual mortality in birds. In 2009, the first two human cases of USUV infection in Europe have been reported in Italy, causing meningoencephalitis in immunocompromised patients. This review describes USUV in terms of its life cycle, USUV surveillance from Africa to Europe, human cases, its cellular tropism and pathogenesis, its genetic relationship with other flaviviruses, genetic diversity among USUV strains, its diagnosis, and a discussion of the potential future threat to Asian countries.
Collapse
Affiliation(s)
- Usama Ashraf
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| | - Jing Ye
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| | - Xindi Ruan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| | - Shengfeng Wan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| | - Bibo Zhu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| | - Shengbo Cao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| |
Collapse
|
49
|
Springborn MR, Keller RP, Elwood S, Romagosa CM, Zambrana‐Torrelio C, Daszak P. Integrating invasion and disease in the risk assessment of live bird trade. DIVERS DISTRIB 2015; 21:101-110. [PMID: 32313433 PMCID: PMC7163611 DOI: 10.1111/ddi.12281] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
AIM International trade in plants and animals generates significant economic benefits. It also leads to substantial unintended impacts when introduced species become invasive, causing environmental disturbance or transmitting diseases that affect people, livestock, other wildlife or the environment. Policy responses are usually only implemented after these species become established and damages are already incurred. International agreements to control trade are likewise usually based on selection of species with known impacts. We aim to further develop quantitative invasive species risk assessment for bird imports and extend the tool to explicitly address disease threats. LOCATION United States of America. METHODS We use a two-step approach for rapid risk assessment based on the expected biological risks due to both the environmental and health impact of a potentially invasive wildlife species in trade. We assess establishment probability based on a model informed by historical observations and then construct a model of emerging infectious disease threat based on economic and ecological characteristics of the exporting country. RESULTS We illustrate how our rapid assessment tool can be used to identify high-priority species for regulation based on a combination of the threat they pose for becoming established and vectoring emerging infectious diseases. MAIN CONCLUSIONS Our approach can be executed for a species in a matter of days and is nested in an economic decision-making framework for determining whether the biological risk is justified by trade benefits.
Collapse
Affiliation(s)
- Michael R. Springborn
- Department of Environmental Science and PolicyUniversity of California2104 Wickson HallOne Shields Ave.DavisCA95616USA
| | - Reuben P. Keller
- Institute of Environmental SustainabilityLoyola University Chicago1032 W. Sheridan Rd.ChicagoIL60660USA
| | - Sarah Elwood
- EcoHealth Alliance460 W. 34th St.New YorkNY10001USA
| | - Christina M. Romagosa
- Center for Forest SustainabilitySchool of Forestry and Wildlife SciencesAuburn University602 Duncan Dr.AuburnAL36849USA
- Department of Wildlife Ecology and ConservationUniversity of Florida110 Newins‐Ziegler HallGainesvilleFL 32611
| | | | - Peter Daszak
- EcoHealth Alliance460 W. 34th St.New YorkNY10001USA
| |
Collapse
|
50
|
Lebl K, Zittra C, Silbermayr K, Obwaller A, Berer D, Brugger K, Walter M, Pinior B, Fuehrer HP, Rubel F. Mosquitoes (Diptera: Culicidae) and their relevance as disease vectors in the city of Vienna, Austria. Parasitol Res 2014; 114:707-13. [PMID: 25468380 PMCID: PMC4303709 DOI: 10.1007/s00436-014-4237-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 11/14/2014] [Indexed: 11/16/2022]
Abstract
Mosquitoes (Diptera: Culicidae) are important vectors for a wide range of pathogenic organisms. As large parts of the human population in developed countries live in cities, the occurrence of vector-borne diseases in urban areas is of particular interest for epidemiologists and public health authorities. In this study, we investigated the mosquito occurrence in the city of Vienna, Austria, in order to estimate the risk of transmission of mosquito-borne diseases. Mosquitoes were captured using different sampling techniques at 17 sites in the city of Vienna. Species belonging to the Culex pipiens complex (78.8 %) were most abundant, followed by Coquillettidia richiardii (10.2 %), Anopheles plumbeus (5.4 %), Aedes vexans (3.8 %), and Ochlerotatus sticticus (0.7 %). Individuals of the Cx. pipiens complex were found at 80.2 % of the trap sites, while 58.8 % of the trap sites were positive for Cq. richiardii and Ae. vexans. Oc. sticticus was captured at 35.3 % of the sites, and An. plumbeus only at 23.5 % of the trap sites. Cx. pipiens complex is known to be a potent vector and pathogens like West Nile virus (WNV), Usutu virus (USUV), Tahyna virus (TAHV), Sindbis virus (SINV), Plasmodium sp., and Dirofilaria repens can be transmitted by this species. Cq. richiardii is a known vector species for Batai virus (BATV), SINV, TAHV, and WNV, while Ae. vexans can transmit TAHV, USUV, WNV, and Dirofilaria repens. An. plumbeus and Oc. sticticus seem to play only a minor role in the transmission of vector-borne diseases in Vienna. WNV, which is already wide-spread in Europe, is likely to be the highest threat in Vienna as it can be transmitted by several of the most common species, has already been shown to pose a higher risk in cities, and has the possibility to cause severe illness.
Collapse
Affiliation(s)
- Karin Lebl
- Institute for Veterinary Public Health, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210, Vienna, Austria,
| | | | | | | | | | | | | | | | | | | |
Collapse
|