1
|
Shivaraj SM, Vats S, Bhat JA, Dhakte P, Goyal V, Khatri P, Kumawat S, Singh A, Prasad M, Sonah H, Sharma TR, Deshmukh R. Nitric oxide and hydrogen sulfide crosstalk during heavy metal stress in plants. PHYSIOLOGIA PLANTARUM 2020; 168:437-455. [PMID: 31587278 DOI: 10.1111/ppl.13028] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 09/10/2019] [Accepted: 09/23/2019] [Indexed: 06/10/2023]
Abstract
Gases such as ethylene, hydrogen peroxide (H2 O2 ), nitric oxide (NO), carbon monoxide (CO) and hydrogen sulfide (H2 S) have been recognized as vital signaling molecules in plants and animals. Of these gasotransmitters, NO and H2 S have recently gained momentum mainly because of their involvement in numerous cellular processes. It is therefore important to study their various attributes including their biosynthetic and signaling pathways. The present review provides an insight into various routes for the biosynthesis of NO and H2 S as well as their signaling role in plant cells under different conditions, more particularly under heavy metal stress. Their beneficial roles in the plant's protection against abiotic and biotic stresses as well as their adverse effects have been addressed. This review describes how H2 S and NO, being very small-sized molecules, can quickly pass through the cell membranes and trigger a multitude of responses to various factors, notably to various stress conditions such as drought, heat, osmotic, heavy metal and multiple biotic stresses. The versatile interactions between H2 S and NO involved in the different molecular pathways have been discussed. In addition to the signaling role of H2 S and NO, their direct role in posttranslational modifications is also considered. The information provided here will be helpful to better understand the multifaceted roles of H2 S and NO in plants, particularly under stress conditions.
Collapse
Affiliation(s)
- Sheelavanta M Shivaraj
- Département de phytologie, University Laval, Quebec City, QC, Canada
- National Institute for Plant Biotechnology, New Delhi, India
| | - Sanskriti Vats
- National Agri-Food Biotechnology Institute, Mohali, India
| | - Javaid A Bhat
- Soybean Research Institution, Nanjing Agricultural University, Jiangsu Sheng, China
| | - Priyanka Dhakte
- National Institute of Plant Genome Research, New Delhi, India
| | - Vinod Goyal
- Department of Botany and Plant Physiology, Chaudhary Charan Singh Haryana Agricultural University, Haryana, India
| | - Praveen Khatri
- National Agri-Food Biotechnology Institute, Mohali, India
| | - Surbhi Kumawat
- National Agri-Food Biotechnology Institute, Mohali, India
| | - Akshay Singh
- National Agri-Food Biotechnology Institute, Mohali, India
| | - Manoj Prasad
- National Institute of Plant Genome Research, New Delhi, India
| | - Humira Sonah
- National Agri-Food Biotechnology Institute, Mohali, India
| | - Tilak R Sharma
- National Agri-Food Biotechnology Institute, Mohali, India
| | | |
Collapse
|
2
|
Dantas BPV, Ribeiro TP, Assis VL, Furtado FF, Assis KS, Alves JS, Silva TM, Camara CA, França-Silva MS, Veras RC, Medeiros IA, Alencar JL, Braga VA. Vasorelaxation induced by a new naphthoquinone-oxime is mediated by NO-sGC-cGMP pathway. Molecules 2014; 19:9773-85. [PMID: 25006785 PMCID: PMC6270866 DOI: 10.3390/molecules19079773] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 06/21/2014] [Accepted: 06/23/2014] [Indexed: 11/16/2022] Open
Abstract
It has been established that oximes cause endothelium-independent relaxation in blood vessels. In the present study, the cardiovascular effects of the new oxime 3-hydroxy-4–(hydroxyimino)-2-(3-methylbut-2-enylnaphtalen-1(4H)-one (OximeS1) derived from lapachol were evaluated. In normotensive rats, administration of Oxime S1 (10, 15, 20 and 30 mg/Kg, i.v.) produced dose-dependent reduction in blood pressure. In isolated aorta and superior mesenteric artery rings, Oxime S1 induced endothelium-independent and concentration-dependent relaxations (10−8 M to 10−4 M). In addition, Oxime S1-induced vasorelaxations were attenuated by hydroxocobalamin or methylene blue in aorta and by PTIO or ODQ in mesenteric artery rings, suggesting a role for the nitric oxide (NO) pathway. Additionally, Oxime S1 (30 and 100 µM) significantly increased NO concentrations (13.9 ± 1.6 nM and 17.9 ± 4.1 nM, respectively) measured by nitric oxide microsensors. Furthermore, pre-contraction with KCl (80 mM) prevented Oxime S1-derived vasorelaxation in endothelium-denuded aortic rings. Of note, combined treatment with potassium channel inhibitors also reduced Oxime S1-mediated vasorelaxation suggesting a role for potassium channels, more precisely Kir, Kv and KATP channels. We observed the involvement of BKCa channels in Oxime S1-induced relaxation in mesenteric artery rings. In conclusion, these data suggest that the Oxime S1 induces hypotension and vasorelaxation via NO pathway by activating soluble guanylate cyclase (sGC) and K+ channels.
Collapse
Affiliation(s)
- Bruna P. V. Dantas
- Biotechnology Center, Federal University of Paraíba, João Pessoa, PB 58.051-900, Brazil; E-Mails: (B.P.V.D.); (T.P.R); (V.L.A.); (F.F.F.); (K.S.A.); (M.S.F.-S.); (R.C.V.); (I.A.M.); (J.L.A.)
| | - Thaís P. Ribeiro
- Biotechnology Center, Federal University of Paraíba, João Pessoa, PB 58.051-900, Brazil; E-Mails: (B.P.V.D.); (T.P.R); (V.L.A.); (F.F.F.); (K.S.A.); (M.S.F.-S.); (R.C.V.); (I.A.M.); (J.L.A.)
| | - Valéria L. Assis
- Biotechnology Center, Federal University of Paraíba, João Pessoa, PB 58.051-900, Brazil; E-Mails: (B.P.V.D.); (T.P.R); (V.L.A.); (F.F.F.); (K.S.A.); (M.S.F.-S.); (R.C.V.); (I.A.M.); (J.L.A.)
| | - Fabíola F. Furtado
- Biotechnology Center, Federal University of Paraíba, João Pessoa, PB 58.051-900, Brazil; E-Mails: (B.P.V.D.); (T.P.R); (V.L.A.); (F.F.F.); (K.S.A.); (M.S.F.-S.); (R.C.V.); (I.A.M.); (J.L.A.)
| | - Kívia S. Assis
- Biotechnology Center, Federal University of Paraíba, João Pessoa, PB 58.051-900, Brazil; E-Mails: (B.P.V.D.); (T.P.R); (V.L.A.); (F.F.F.); (K.S.A.); (M.S.F.-S.); (R.C.V.); (I.A.M.); (J.L.A.)
| | - Jeziane S. Alves
- Molecular Sciences Department, Federal Rural University of Pernambuco, Recife, PE 52171-900, Brazil; E-Mails: (J.S.A.); (T.M.S.S.); (C.A.C.)
| | - Tania M.S. Silva
- Molecular Sciences Department, Federal Rural University of Pernambuco, Recife, PE 52171-900, Brazil; E-Mails: (J.S.A.); (T.M.S.S.); (C.A.C.)
| | - Celso A. Camara
- Molecular Sciences Department, Federal Rural University of Pernambuco, Recife, PE 52171-900, Brazil; E-Mails: (J.S.A.); (T.M.S.S.); (C.A.C.)
| | - Maria S. França-Silva
- Biotechnology Center, Federal University of Paraíba, João Pessoa, PB 58.051-900, Brazil; E-Mails: (B.P.V.D.); (T.P.R); (V.L.A.); (F.F.F.); (K.S.A.); (M.S.F.-S.); (R.C.V.); (I.A.M.); (J.L.A.)
| | - Robson C. Veras
- Biotechnology Center, Federal University of Paraíba, João Pessoa, PB 58.051-900, Brazil; E-Mails: (B.P.V.D.); (T.P.R); (V.L.A.); (F.F.F.); (K.S.A.); (M.S.F.-S.); (R.C.V.); (I.A.M.); (J.L.A.)
| | - Isac A. Medeiros
- Biotechnology Center, Federal University of Paraíba, João Pessoa, PB 58.051-900, Brazil; E-Mails: (B.P.V.D.); (T.P.R); (V.L.A.); (F.F.F.); (K.S.A.); (M.S.F.-S.); (R.C.V.); (I.A.M.); (J.L.A.)
| | - Jacicarlos L. Alencar
- Biotechnology Center, Federal University of Paraíba, João Pessoa, PB 58.051-900, Brazil; E-Mails: (B.P.V.D.); (T.P.R); (V.L.A.); (F.F.F.); (K.S.A.); (M.S.F.-S.); (R.C.V.); (I.A.M.); (J.L.A.)
| | - Valdir A. Braga
- Biotechnology Center, Federal University of Paraíba, João Pessoa, PB 58.051-900, Brazil; E-Mails: (B.P.V.D.); (T.P.R); (V.L.A.); (F.F.F.); (K.S.A.); (M.S.F.-S.); (R.C.V.); (I.A.M.); (J.L.A.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +55-083-3216-7173; Fax: +55-083-3216-7511
| |
Collapse
|
3
|
Zhang Q, Milliken P, Kulczynska A, Slawin AMZ, Gordon A, Kirkby NS, Webb DJ, Botting NP, Megson IL. Development and characterization of glutamyl-protected N-hydroxyguanidines as reno-active nitric oxide donor drugs with therapeutic potential in acute renal failure. J Med Chem 2013; 56:5321-34. [PMID: 23782349 DOI: 10.1021/jm400146r] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Acute renal failure (ARF) has high mortality and no effective treatment. Nitric oxide (NO) delivery represents a credible means of preventing the damaging effects of vasoconstriction, central to ARF, but design of drugs with the necessary renoselectivity is challenging. Here, we developed N-hydroxyguanidine NO donor drugs that were protected against spontaneous NO release by linkage to glutamyl adducts that could be cleaved by γ-glutamyl transpeptidase (γ-GT), found predominantly in renal tissue. Parent NO donor drug activity was optimized in advance of glutamyl adduct prodrug design. A lead compound that was a suitable substrate for γ-GT-mediated deprotection was identified. Metabolism of this prodrug to the active parent compound was confirmed in rat kidney homogenates, and the prodrug was shown to be an active vasodilator in rat isolated perfused kidneys (EC50 ~50 μM). The data confirm that glutamate protection of N-hydroxyguanidines is an approach that might hold promise in ARF.
Collapse
Affiliation(s)
- Qingzhi Zhang
- EASTChem, School of Chemistry and Centre for Biomolecular Sciences, The University of St. Andrews , North Haugh, St. Andrews KY16 9ST, U.K
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Hock BD, Taylor KG, Cross NB, Kettle AJ, Hampton MB, McKenzie JL. Effect of activated human polymorphonuclear leucocytes on T lymphocyte proliferation and viability. Immunology 2012; 137:249-58. [PMID: 23025756 DOI: 10.1111/imm.12004] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Human polymorphonuclear leucocytes (PMN) are thought to be immunosuppressive. The suppressive mechanism(s) used by PMN are, however, not well defined and in this study they were analysed using T-cell responses to CD3(+) CD28 monoclonal antibodies (mAb) as a readout. We demonstrate that in vitro activated PMN (PMN(act)) can, without any T-cell interaction, induce apparent T-cell suppression by inhibiting the stimulatory capacity of the CD3 mAb. However, a cell-directed suppression of T-cell proliferation was observed when PMN(act) were added to pre-activated T cells that are already committed to polyclonal proliferation. This suppression was partially reversed by catalase addition (P < 0·01) and largely reversed by addition of exogenous interleukin-2 (P < 0·001) but was not significantly reduced by nitric oxide synthase inhibition, myeloperoxidase inhibition or addition of excess arginine. Following removal of PMN(act) , suppressed T cells could respond normally to further stimulation. In addition to suppressing proliferation, co-culture with PMN(act) also induced a significant decrease in T-cell viability that was reversed by catalase addition (P < 0·05). The addition of the arginase inhibitor N-hydroxy-nor-l-arginine induced both a further significant, catalase-sensitive, loss in T-cell viability and increased nitrite release (P < 0·001). These data demonstrate that PMN, when activated, can both induce T-cell death and reversibly inhibit proliferation of activated T cells. The mechanisms underlying these distinct processes and the effects of arginase inhibitors on PMN induced cytotoxicity merit further investigation.
Collapse
Affiliation(s)
- Barry D Hock
- Haematology Research Group, Christchurch Hospital, Christchurch, New Zealand.
| | | | | | | | | | | |
Collapse
|
5
|
Limitations of PET and lesion studies in defining the role of the human cerebellum in motor learning. Behav Brain Sci 2011. [DOI: 10.1017/s0140525x00081899] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
6
|
|
7
|
|
8
|
Eyeblink conditioning, motor control, and the analysis of limbic-cerebellar interactions. Behav Brain Sci 2011. [DOI: 10.1017/s0140525x00081929] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
9
|
|
10
|
Grasping cerebellar function depends on our understanding the principles of sensorimotor integration: The frame of reference hypothesis. Behav Brain Sci 2011. [DOI: 10.1017/s0140525x00081607] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
11
|
Dysmetria of thought: Correlations and conundrums in the relationship between the cerebellum, learning, and cognitive processing. Behav Brain Sci 2011. [DOI: 10.1017/s0140525x00081851] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
12
|
|
13
|
|
14
|
Q: Is the cerebellum an adaptive combiner of motor and mental/motor activities? A: Yes, maybe, certainly not, who can say? Behav Brain Sci 2011. [DOI: 10.1017/s0140525x00082017] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
15
|
|
16
|
What behavioral benefit does stiffness control have? An elaboration of Smith's proposal. Behav Brain Sci 2011. [DOI: 10.1017/s0140525x00081917] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
17
|
|
18
|
del Río LA. Peroxisomes as a cellular source of reactive nitrogen species signal molecules. Arch Biochem Biophys 2011; 506:1-11. [DOI: 10.1016/j.abb.2010.10.022] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Revised: 10/26/2010] [Accepted: 10/27/2010] [Indexed: 12/13/2022]
|
19
|
Manjunatha G, Lokesh V, Neelwarne B. Nitric oxide in fruit ripening: trends and opportunities. Biotechnol Adv 2010; 28:489-99. [PMID: 20307642 DOI: 10.1016/j.biotechadv.2010.03.001] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2009] [Revised: 02/22/2010] [Accepted: 03/12/2010] [Indexed: 10/19/2022]
Abstract
Monitoring ethylene is crucial in regulating post-harvest life of fruits. The concept of nitric oxide (NO) involvement in antagonizing ethylene is new. NO mediated physiologies casted through regulation of plant hormones are widely reported during developmental and stress chemistry having no direct link with ripening. Research in NO biology and understanding its interplay with other signal molecules in ripening fruits suggest ways of achieving greater synergies with NO applications. Experiments focused at convincingly demonstrating the involvement of NO in altering ripening-related ethylene profile of fruits, would help develop new processes for shelf life extension. This issue being the central theme of this review, the putative mechanisms of NO intricacies with other primary and secondary signals are hypothesized. The advantage of eliciting NO endogenously may open up various biotechnological opportunities for its precise delivery into the target tissues.
Collapse
Affiliation(s)
- G Manjunatha
- Plant Cell Biotechnology Department, Central Food Technological Research Institute, Mysore-570 020, India
| | | | | |
Collapse
|
20
|
Jaros F, Straka T, Dobesová Z, Pintérová M, Chalupský K, Kunes J, Entlicher G, Zicha J. Vasorelaxant activity of some oxime derivatives. Eur J Pharmacol 2007; 575:122-6. [PMID: 17706962 DOI: 10.1016/j.ejphar.2007.07.040] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2007] [Revised: 07/20/2007] [Accepted: 07/23/2007] [Indexed: 01/02/2023]
Abstract
Several non-aromatic substituted oxime derivatives (formamidoxime, acetaldoxime, acetone oxime, acetohydroxamic acid, formaldoxime) function as vasorelaxant NO donors when added to precontracted aortic rings in vitro. This study was aimed to evaluate whether these substances posses vasodilator properties under in vivo conditions. We studied blood pressure changes elicited by administration of these compounds to conscious chronically catheterized Wistar rats in which endogenous NO synthesis was acutely inhibited by N(omega)-nitro-L-arginine methyl ester (L-NAME) pretreatment (30 mg/kg i.v.). Three of the tested substances (formaldoxime, acetohydroxamic acid and formamidoxime) induced pronounced dose-dependent blood pressure reduction which was further augmented when baroreflex operation was interrupted by ganglionic blockade (5 mg/kg pentolinium). Pretreatment of rats with methylene blue (soluble guanylate cyclase inhibitor) was used to estimate the contribution of NO to observed blood pressure lowering effects of the above compounds. Nitric oxide seems to be responsible for the entire formaldoxime-induced blood pressure decrease and for a considerable part of blood pressure changes elicited by formamidoxime. On the contrary, we did not find a significant NO contribution to blood pressure reduction caused by acetohydroxamic acid. In conclusion, our study confirmed in vivo vasodilator effects of three above mentioned compounds which were earlier demonstrated to induce in vitro vasorelaxation. It indicated a variable contribution of nitric oxide to blood pressure changes elicited by particular compounds. Substances with hydrophilic character (formamidoxime, acetohydroxamic acid, formaldoxime) were effective, whereas less hydrophilic substance (acetaldoxime) or slightly hydrophobic one (acetone oxime) were ineffective.
Collapse
Affiliation(s)
- Filip Jaros
- Chair of Biochemistry, Faculty of Sciences, Charles University, Czech Republic
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Silva MA, Mirza DF, Buckels JAC, Bramhall SR, Mayer D, Wigmore SJ, Murphy N, Richards DA. Arginine and Urea Metabolism in the Liver Graft: A Study Using Microdialysis in Human Orthotopic Liver Transplantation. Transplantation 2006; 82:1304-11. [PMID: 17130779 DOI: 10.1097/01.tp.0000241099.93794.d6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Arginine is an amino acid having a central role in the metabolism of urea and nitric oxide in the liver. We present our findings of the behavior of these metabolites during the process of transplantation of the liver. METHODS Urea, arginine, ornithine, citrulline, gamma-aminobutyric acid, glutamate, and glutamine levels in 15 livers were studied during the process of retrieval, following storage during the backtable procedure, and for 48 hours postreperfusion using microdialysis. Arginase levels in donor and recipient serum were also analyzed using an enzyme-linked immunosorbent assay specific for type I human arginase. Data was analyzed using one-way analysis of variance, with post-hoc comparison to the value at two hours using Dunnett's test (P < 0.05 significant). RESULTS Levels of metabolites measured in the donor liver were seen to decline significantly in the stored liver. Immediately postreperfusion, there was a significant rise in arginase I levels in the recipient serum with low arginine levels recorded in the liver. The high arginase I levels significantly reduced six hours postreperfusion with a corresponding rise in extracellular arginine levels. Urea levels in the graft increased significantly immediately postreperfusion. CONCLUSIONS Arginine levels were found to be low with correspondingly high serum arginase I levels in the early postreperfusion phase. High serum arginase I levels in early postreperfusion may influence nitric oxide production in this phase since considering Vmax and Km values, arginase I could compete with inducible nitric oxide synthase for arginine. Urea metabolism in the liver recommences immediately postreperfusion.
Collapse
Affiliation(s)
- Michael A Silva
- The Liver Unit, Queen Elizabeth Hospital, University Hospital Birmingham NHS Trust, Edgbaston, Birmingham, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Beranova P, Chalupsky K, Kleschyov AL, Schott C, Boucher JL, Mansuy D, Munzel T, Muller B, Stoclet JC. Nomega-hydroxy-L-arginine homologues and hydroxylamine as nitric oxide-dependent vasorelaxant agents. Eur J Pharmacol 2005; 516:260-7. [PMID: 15964563 DOI: 10.1016/j.ejphar.2005.04.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2005] [Accepted: 04/14/2005] [Indexed: 11/20/2022]
Abstract
Endothelium-independent relaxant activities of N(omega)-hydroxy-L-arginine (L-NOHA) homologues and hydroxylamine, a possible intermediate in nitric oxide (NO) formation, were examined in rat aortic rings. Addition of one -CH(2)- group to the -(CH(2))(x)- chain between the alpha-amino acid and the hydroxyguanidine group (x=4) almost abolished-while deletion of one or two -CH(2)- (x=1 or 2) enhanced-the relaxant activity of L-NOHA homologues. N(omega)-hydroxy-nor-L-arginine- (x=2) and hydroxylamine-induced relaxations were blunted by a NO scavenger and by inhibitors of the guanylyl cyclase pathway, but not by NO synthase or cytochrome P(450) inhibitors (except 7-ethoxyresorufin). However, aortic NO formation was detected (using electron paramagnetic resonance) in the presence of concentrations of these compounds higher than those producing relaxation. These findings support the view that endothelium-independent vasorelaxations induced by both L-NOHA homologues with a required chain length x</=3 and hydroxylamine are mediated by NO-dependent activation of guanylyl cyclase, through a 7-ethoxyresorufin-inhibited mechanism.
Collapse
Affiliation(s)
- Petra Beranova
- Pharmacology and Physico-Chemistry, Centre National de la Recherche Scientifique and University Louis Pasteur of Strasbourg, Unité Mixte de Recherche 7034, Illkirch, France
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Reif A, Shutenko ZV, Feelisch M, Schmidt HHHW. Superoxide dismutase and catalase are required to detect (.-)NO from both coupled and uncoupled neuronal no synthase. Free Radic Biol Med 2004; 37:988-97. [PMID: 15336315 DOI: 10.1016/j.freeradbiomed.2004.07.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2004] [Revised: 05/20/2004] [Accepted: 07/01/2004] [Indexed: 10/26/2022]
Abstract
Despite numerous approaches to measuring nitric oxide ((.-)NO) formation from purified NO synthase (NOS), it is still not clear whether (.-)NO is a direct or indirect product of the NO synthase reaction. The direct detection of catalytically formed (.-)NO is complicated by side reactions with reactive oxide species like H(2)O(2) and superoxide. The aim of the present study was therefore to reinvestigate these reactions both electrochemically and by chemiluminescence detection with particular emphasis on the requirement for cofactors and their interference with (.-)NO detection. Flavins were found to generate large amounts of H(2)O(2) and were therefore excluded from subsequent incubations. Under conditions of both coupled and uncoupled catalysis, SOD was absolutely required to detect (.-)NO from NOS. H(2)O(2) formation took place also in the presence of SOD and gave a smaller yet significant interfering signal. Similar data were obtained when the proposed intermediate N(omega)-hydroxy-l-arginine was utilized as substrate. In conclusion, standard Clark-type ()NO electrodes are cross-sensitive to H(2)O(2) and therefore both SOD and catalase are absolutely required to specifically detect (.-)NO from NOS.
Collapse
Affiliation(s)
- A Reif
- Department of Psychiatry and Psychotherapy, Julius-Maximilians-University Würzburg, D-97078 Würzburg, Germany.
| | | | | | | |
Collapse
|
24
|
Corpas FJ, Barroso JB, Carreras A, Quirós M, León AM, Romero-Puertas MC, Esteban FJ, Valderrama R, Palma JM, Sandalio LM, Gómez M, del Río LA. Cellular and subcellular localization of endogenous nitric oxide in young and senescent pea plants. PLANT PHYSIOLOGY 2004; 136:2722-33. [PMID: 15347796 PMCID: PMC523336 DOI: 10.1104/pp.104.042812] [Citation(s) in RCA: 242] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2004] [Revised: 05/27/2004] [Accepted: 05/30/2004] [Indexed: 05/18/2023]
Abstract
The cellular and subcellular localization of endogenous nitric oxide (NO.) in leaves from young and senescent pea (Pisum sativum) plants was studied. Confocal laser scanning microscopy analysis of pea leaf sections with the fluorescent probe 4,5-diaminofluorescein diacetate revealed that endogenous NO. was mainly present in vascular tissues (xylem and phloem). Green fluorescence spots were also detected in the epidermal cells, palisade and spongy mesophyll cells, and guard cells. In senescent leaves, NO. generation was clearly reduced in the vascular tissues. At the subcellular level, by electron paramagnetic resonance spectroscopy with the spin trap Fe(MGD)(2) and fluorometric analysis with 4,5-diaminofluorescein diacetate, NO. was found to be an endogenous metabolite of peroxisomes. The characteristic three-line electron paramagnetic resonance spectrum of NO., with g = 2.05 and a(N) = 12.8 G, was detected in peroxisomes. By fluorometry, NO. was also found in these organelles, and the level measured of NO. was linearly dependent on the amount of peroxisomal protein. The enzymatic production of NO. from l-Arg (nitric oxide synthase [NOS]-like activity) was measured by ozone chemiluminiscence. The specific activity of peroxisomal NOS was 4.9 nmol NO. mg(-1) protein min(-1); was strictly dependent on NADPH, calmodulin, and BH(4); and required calcium. In senescent pea leaves, the NOS-like activity of peroxisomes was down-regulated by 72%. It is proposed that peroxisomal NO. could be involved in the process of senescence of pea leaves.
Collapse
Affiliation(s)
- Francisco J Corpas
- Departamento de Bioquímica, Biología Celular y Molecular de Plantas, Consejo Superior de Investigaciones Científicas, E-18080 Granada, Spain.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Chalupsky K, Lobysheva I, Nepveu F, Gadea I, Beranova P, Entlicher G, Stoclet JC, Muller B. Relaxant effect of oxime derivatives in isolated rat aorta: role of nitric oxide (NO) formation in smooth muscle. Biochem Pharmacol 2004; 67:1203-14. [PMID: 15006555 DOI: 10.1016/j.bcp.2003.11.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2003] [Accepted: 11/19/2003] [Indexed: 11/20/2022]
Abstract
Various oxime derivatives were evaluated as nitric oxide (NO) donors in arteries. Relaxation of rat aortic rings was used for bioassay of NO production, and electron paramagnetic resonance spectroscopy for demonstration of NO elevation. In rings with or without endothelium or adventitia, hydroxyguanidine and hydroxyurea were almost inactive, whereas formamidoxime, acetaldoxime, acetone oxime, acetohydroxamic acid and formaldoxime elicited relaxation. Active compounds increased NO levels in endothelium-denuded rings. Formaldoxime was the most potent agent for both relaxation and NO elevation in aortic rings, and it also increased NO in human aortic smooth muscle cells. In endothelium-denuded rings, relaxation was inhibited by a NO scavenger (2-phenyl-4,4,5,5-tetramethyl-imidazoline-1-oxyl-3-oxide) and by inhibitors of soluble guanylyl-cyclase (1H[1,2,4,]oxadiazolo[4,3-a]quinoxalin-1-one) or cyclic GMP-dependent protein kinases (Rp-8-bromo cyclic GMP monophosphorothioate). Neither N(omega)-nitro-l-arginine methylester (a NO synthases inhibitor) nor proadifen (a cytochrome P450 inhibitor) decreased the effect of oxime derivatives. However, 7-ethoxyresorufin (7-ER, an inhibitor of P4501A(1) which can also inhibit various NADPH-dependent reductases) abolished the relaxant effect of these compounds, without affecting the one of glyceryl trinitrate (GTN) or 2-(N,N-diethylamino)-diazenolate-2-oxide. 7-ER also abolished formaldoxime-induced NO increase in aortic rings. In rings tolerant to GTN, formaldoxime-induced relaxation and NO elevation were not different from those obtained in control rings. In conclusion, some oxime derivatives release NO by 7-ER-sensitive pathways in aortic smooth muscle, thus eliciting vasorelaxation. Pathways of NO formation are likely distinct from NO synthases and from those responsible for GTN biotransformation. Oxime derivatives could be useful for NO delivery in arteries in which endothelial NO synthase activity is impaired.
Collapse
Affiliation(s)
- Karel Chalupsky
- UMR IRD U152, Faculté des Sciences Pharmaceutiques, Université Paul Sabatier, 31062 Toulouse, France
| | | | | | | | | | | | | | | |
Collapse
|
26
|
del Río LA, Corpas FJ, Barroso JB. Nitric oxide and nitric oxide synthase activity in plants. PHYTOCHEMISTRY 2004; 65:783-92. [PMID: 15081277 DOI: 10.1016/j.phytochem.2004.02.001] [Citation(s) in RCA: 175] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2004] [Indexed: 05/04/2023]
Abstract
Research on NO in plants has gained considerable attention in recent years mainly due to its function in plant growth and development and as a key signalling molecule in different intracellular processes in plants. The NO emission from plants is known since the 1970s, and now there is abundant information on the multiple effects of exogenously applied NO on different physiological and biochemical processes of plants. The physiological function of NO in plants mainly involves the induction of different processes, including the expression of defence-related genes against pathogens and apoptosis/programmed cell death (PCD), maturation and senescence, stomatal closure, seed germination, root development and the induction of ethylene emission. NO can be produced in plants by non-enzymatic and enzymatic systems. The NO-producing enzymes identified in plants are nitrate reductase, and several nitric oxide synthase-like activities, including one localized in peroxisomes which has been biochemically characterized. Recently, two genes of plant proteins with NOS activity have been isolated and characterized for the first time, and both proteins do not have sequence similarities to any mammalian NOS isoform. However, different evidence available indicate that there are other potential enzymatic sources of NO in plants, including xanthine oxidoreductase, peroxidase, cytochrome P450, and some hemeproteins. In plants, the enzymatic production of the signal molecule NO, either constitutive or induced by different biotic/abiotic stresses, may be a much more common event than was initially thought.
Collapse
Affiliation(s)
- Luis A del Río
- Departamento de Bioquímica, Biología Celular y Molecular de Plantas, Estación Experimental del Zaidín, CSIC, E-18080 Granada, Spain.
| | | | | |
Collapse
|
27
|
Cho JY, Dutton A, Miller T, Houk KN, Fukuto JM. Oxidation of N-hydroxyguanidines by copper(II): model systems for elucidating the physiological chemistry of the nitric oxide biosynthetic intermediate N-hydroxyl-L-arginine. Arch Biochem Biophys 2003; 417:65-76. [PMID: 12921781 DOI: 10.1016/s0003-9861(03)00335-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The redox chemistry of models of N-hydroxy-L-arginine, the biosynthetic intermediate in the synthesis of NO by the family of nitric oxide synthase enzymes, has been explored experimentally and theoretically. The oxidation of N-hydroxyguanidine model compounds by Cu(II) was studied as a means of establishing possible metabolic fates and intermediates of this important functional group. These studies indicate than an iminoxyl intermediate is formed and may be an important biological species generated from N-hydroxyguanidines including N-hydroxy-L-arginine.
Collapse
Affiliation(s)
- Jennifer Y Cho
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095-1569, USA
| | | | | | | | | |
Collapse
|
28
|
Ricoux R, Boucher JL, Mandon D, Frapart YM, Henry Y, Mansuy D, Mahy JP. Microperoxidase 8 catalysed nitrogen oxides formation from oxidation of N-hydroxyguanidines by hydrogen peroxide. EUROPEAN JOURNAL OF BIOCHEMISTRY 2003; 270:47-55. [PMID: 12492474 DOI: 10.1046/j.1432-1033.2003.03358.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Nitric oxide (NO) is a potent intra- and intercellular messenger involved in the control of vascular tone, neuronal signalling and host response to infection. In mammals, NO is synthesized by oxidation of l-arginine catalysed by hemeproteins called NO-synthases with intermediate formation of Nomega-hydroxy-l-arginine (NOHA). NOHA and some hydroxyguanidines have been shown to be able to deliver nitrogen oxides including NO in the presence of various oxidative systems. In this study, NOHA and a model compound, N-(4-chlorophenyl)-N'-hydroxyguanidine, were tested for their ability to generate NO in the presence of a haemprotein model, microperoxidase 8 (MP8), and hydrogen peroxide. Nitrite and nitrate production along with selective formation of 4-chlorophenylcyanamide was observed from incubations of N-(4-chlorophenyl)-N'-hydroxyguanidine in the presence of MP8 and hydrogen peroxide. In the case of NOHA, the corresponding cyanamide, Ndelta-cyano-L-ornithine, was too unstable under the conditions used and l-citrulline was the only product identified. A NO-specific conversion of 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide to 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl and formation of MP8-Fe-NO complexes were observed by EPR spectroscopy and low-temperature UV/visible spectroscopy, respectively. These results clearly demonstrate the formation of nitrogen oxides including NO from the oxidation of exogenous hydroxyguanidines by hydrogen peroxide in the presence of a minienzyme such as MP8. The importance of the bioactivation of endogenous (NOHA) or exogenous N-hydroxyguanidines by peroxidases of physiological interest remains to be established in vivo.
Collapse
Affiliation(s)
- Rémy Ricoux
- Laboratoire de Chimie Bioorganique et Bioinorganique, Institut de Chimie Moléculaire d'Orsay, Université Paris-Sud XI, Orsay, France
| | | | | | | | | | | | | |
Collapse
|
29
|
Vetrovsky P, Boucher JL, Schott C, Beranova P, Chalupsky K, Callizot N, Muller B, Entlicher G, Mansuy D, Stoclet JC. Involvement of NO in the endothelium-independent relaxing effects of N(omega)-hydroxy-L-arginine and other compounds bearing a C=NOH function in the rat aorta. J Pharmacol Exp Ther 2002; 303:823-30. [PMID: 12388669 DOI: 10.1124/jpet.102.038612] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The mechanisms of vasorelaxation elicited by N(omega)-hydroxy-L-arginine (L-NOHA) and other compounds bearing a C=NOH function and the structural determinants governing this effect were investigated in rat aorta. L-NOHA, formamidoxime, five aromatic monosubstituted amidoximes, and one aromatic monosubstituted ketoxime elicited relaxation in endothelium-denuded rings. N-Hydroxyguanidine and substituted N-hydroxyguanidines were markedly less active. Relaxations induced by L-NOHA and by the most active studied compound, 4-chlorobenzamidoxime (ClBZA), were unmodified by the presence of endothelium. In endothelium-denuded rings, they were blunted by the NO scavenger 2-phenyl-4,4,5,5-tetramethyl-imidazoline-1-oxyl-3-oxide (300 microM) and by the inhibitor of guanylyl-cyclase activation 1H[1,2,4,]oxadiazolo[4,3-a]quinoxalin-1-one (1 microM). In addition, L-NOHA- and ClBZA both caused cGMP accumulation. L-Arginine, but not D-arginine (1 mM), antagonized the effect of L-NOHA but not ClBZA. Both L-NOHA- and ClBZA-induced relaxations were inhibited by the NAD(P)H-dependent enzymes inhibitor diphenyliodonium (30 microM) and the NAD(P)H-dependent reductases inhibitor 7-ethoxyresorufin (10 microM), but they were unmodified by the cytochrome P450 (P450) inhibitor proadifen (10 microM) and by the NO synthase inhibitor N(omega)-nitro-L-arginine methyl ester (L-NAME, 300 microM). These results show that L-NOHA and other compounds with a C=NOH function can cause endothelium-independent relaxation in the rat aorta. They suggest that activation of guanylyl cyclase and NO formation is implicated in relaxation and that a 7-ethoxyresorufin-sensitive NAD(P)H-dependent pathway is involved. On one hand, L-NOHA and amidoximes may be useful tools for characterizing this pathway in blood vessels and, on the other, may offer a novel approach for treating vascular diseases with impaired endothelial NO activity.
Collapse
Affiliation(s)
- Petr Vetrovsky
- Pharmacology and Physico-Chemistry, Centre National de la Recherche Scientifique (Unité Mixte Recherche 7034) and University Louis Pasteur, Strasbourg, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Cai T, Xian M, Wang PG. Electrochemical and peroxidase oxidation study of N'-hydroxyguanidine derivatives as NO donors. Bioorg Med Chem Lett 2002; 12:1507-10. [PMID: 12031330 DOI: 10.1016/s0960-894x(02)00185-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The electrochemical properties of a series of N-substituted-N'-hydroxyguanidines were studied. Two oxidation potentials of each compound were obtained by cyclic voltammetry. The E(ox1) values were from 0.51 to 0.62V, while the E(ox2) values were from 1.14 to 1.81V in acetonitrile solution. Next, their enzymatic controlled NO release abilities were evaluated. All N'-hydroxyguanidines exhibited efficient NO release abilities under the oxidation by horseradish peroxidase in the presence of H(2)O(2).
Collapse
Affiliation(s)
- Tingwei Cai
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA
| | | | | |
Collapse
|
31
|
Huang J, Sommers EM, Kim-Shapiro DB, King SB. Horseradish peroxidase catalyzed nitric oxide formation from hydroxyurea. J Am Chem Soc 2002; 124:3473-80. [PMID: 11916434 DOI: 10.1021/ja012271v] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Hydroxyurea represents an approved treatment for sickle cell anemia and a number of cancers. Chemiluminescence and electron paramagnetic resonance spectroscopic studies show horseradish peroxidase catalyzes the formation of nitric oxide from hydroxyurea in the presence of hydrogen peroxide. Gas chromatographic headspace analysis and infrared spectroscopy also reveal the production of nitrous oxide in this reaction, which provides evidence for nitroxyl, the one-electron reduced form of nitric oxide. These reactions also generate carbon dioxide, ammonia, nitrite, and nitrate. None of these products form within 1 h in the absence of hydrogen peroxide or horseradish peroxidase. Electron paramagnetic resonance spectroscopy and trapping studies show the intermediacy of a nitroxide radical and a C-nitroso species during this reaction. Absorption spectroscopy indicates that both compounds I and II of horseradish peroxidase act as one-electron oxidants of hydroxyurea. Nitroxyl, generated from Angeli's salt, reacts with ferric horseradish peroxidase to produce a ferrous horseradish peroxidase-nitric oxide complex. Electron paramagnetic resonance experiments with a nitric oxide specific trap reveal that horseradish peroxidase is capable of oxidizing nitroxyl to nitric oxide. A mechanistic model that includes the observed nitroxide radical and C-nitroso compound intermediates has been forwarded to explain the observed product distribution. These studies suggest that direct nitric oxide producing reactions of hydroxyurea and peroxidases may contribute to the overall pharmacological properties of this drug.
Collapse
Affiliation(s)
- Jinming Huang
- Department of Chemistry, Wake Forest University, Winston-Salem, North Carolina 27109, USA
| | | | | | | |
Collapse
|
32
|
Affiliation(s)
- Jens K S Møller
- Food Chemistry, Department of Dairy and Food Science, Royal Veterinary and Agricultural University, Rolighedsvej 30, DK-1958 Frederiksberg C., Denmark
| | | |
Collapse
|
33
|
Hirst J, Goodin DB. Unusual oxidative chemistry of N(omega)-hydroxyarginine and N-hydroxyguanidine catalyzed at an engineered cavity in a heme peroxidase. J Biol Chem 2000; 275:8582-91. [PMID: 10722697 DOI: 10.1074/jbc.275.12.8582] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Heme enzymes are capable of catalyzing a range of oxidative chemistry with high specificity, depending on the surrounding protein environment. We describe here a reaction catalyzed by a mutant of cytochrome c peroxidase, which is similar but distinct from those catalyzed by nitric-oxide synthase. In the R48A mutant, an expanded water-filled cavity was created above the distal heme face. N-hydroxyguanidine (NHG) but not guanidine was shown to bind in the cavity with K(d) = 8.5 mM, and coordinate to the heme to give a low spin state. Reaction of R48A with peroxide produced a Fe(IV)=O/Trp(.+) center capable of oxidizing either NHG or N(omega)-hydroxyarginine (NHA), but not arginine or guanidine, by a multi-turnover catalytic process. Oxidation of either NHG or NHA by R48A did not result in the accumulation of NO, NO(2)(-), NO(3)(-), urea, or citrulline, but instead afforded a yellow product with absorption maxima of 257 and 400 nm. Mass spectrometry of the derivatized NHA products identified the yellow species as N-nitrosoarginine. We suggest that a nitrosylating agent, possibly derived from HNO, is produced by the oxidation of one molecule of substrate. This then reacts with a second substrate molecule to form the observed N-nitroso products. This complex chemistry illustrates how the active sites of enzymes such as nitric-oxide synthase may serve to prevent alternative reactions from occurring, in addition to enabling those desired.
Collapse
Affiliation(s)
- J Hirst
- Department of Molecular Biology, Scripps Research Institute, La Jolla, California 92037, USA
| | | |
Collapse
|
34
|
Keserü GM, Volk B, Balogh GT. Cytochrome P450 catalyzed nitric oxide synthesis: a theoretical study. J Biomol Struct Dyn 2000; 17:759-67. [PMID: 10698112 DOI: 10.1080/07391102.2000.10506565] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Similar to nitric oxide synthase (NOS) cytochrome P450 isoforms (e.g. 3A and 4E) can produce nitric oxide from arginine. Although the active site of both proteins contains a protoporphyrin IX unit having an axial cystein ligand, their effectiveness in the synthesis of NO differs significantly. Now the molecular basis of this functional difference was investigated. A homology model for cytochrome P450 3A4 was refined and compared to the X-ray structure of iNOS. We found the active site of iNOS to be more readily accessible for the substrate than that of P450. Docking calculations were performed using the Monte Carlo conformational analysis technique on all internal and external degrees of freedom of arginine and active site residues as well. The lowest energy conformation of the cytochrome P450 3A4-substrate complex was compared to the high resolution X-ray structure of the iNOS-arginine complex. Comparison of substrate orientations revealed that arginine binds in a similar conformation in both enzymes. In contrast to iNOS we found, however, that in P450 partially negative propionate side chains of protoporphyrin IX are located on the opposite side of the heme plane. As a result of this and the absence of other negatively charged residues the distal (substrate binding) side of P450 should be less negative than that of NOS and therefore its affinity toward the partially positive arginine is reduced. Comparison of molecular electrostatic potentials calculated within the active site of the proteins supports this proposal. Reduced affinity in combination with limited substrate access might be responsible for the less effective NO synthesis of cytochrome P450 observed experimentally.
Collapse
Affiliation(s)
- G M Keserü
- Department of Chemical Information Technology, Technical University of Budapest, Hungary.
| | | | | |
Collapse
|
35
|
Young N, Chole R. Cytokine-mediated bone resorption is cytochrome P-450 dependent. Student Research Award 1998. Otolaryngol Head Neck Surg 1999; 121:708-12. [PMID: 10580224 DOI: 10.1053/hn.1999.v121.a101034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Localized bone loss leads to much of the morbidity of chronic otitis media. Although the cellular events of bone remodeling have been well established, their regulation remains poorly understood. Various cytokines, including tumor necrosis factor-alpha, interleukin-1beta, and interferon-gamma, used alone and in combination, are powerful inducers of bone resorption. One of the modulators of cytokine-induced bone resorption is nitric oxide (NO), a product of the action of NO synthase (NOS) on L -arginine to form NO. Cytochrome P-450, an enzyme that is similar to NOS both structurally and functionally, may also have a role in NO production in various cellular systems. The goal of this study was to elucidate a possible role of cytochrome P-450 in bone. In this study cytokine-induced bone resorption was blocked with cimetidine and clotrimazole, which are selective inhibitors of the cytochrome P-450 IIIA family and 7-ethoxyresorufin, a nonspecific cytochrome P-450 inhibitor. A concomitant reduction of NO was also observed. This effect may be explained by cytochrome P-450 being a preferred alternative pathway or providing an essential cofactor to NOS in bone.
Collapse
Affiliation(s)
- N Young
- Department of Otolaryngology, University of California at Davis, USA
| | | |
Collapse
|
36
|
Tenu JP, Lepoivre M, Moali C, Brollo M, Mansuy D, Boucher JL. Effects of the new arginase inhibitor N(omega)-hydroxy-nor-L-arginine on NO synthase activity in murine macrophages. Nitric Oxide 1999; 3:427-38. [PMID: 10637120 DOI: 10.1006/niox.1999.0255] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In stimulated murine macrophage, arginase and nitric oxide synthase (NOS) compete for their common substrate, l-arginine. The objectives of this study were (i) to test the new alpha-amino acid N(omega)-hydroxy-nor-l-arginine (nor-NOHA) as a new selective arginase inhibitor and (ii) to elucidate the effects of arginase inhibition on l-arginine utilization by an inducible NOS. Nor-NOHA is about 40-fold more potent than N(omega)-hydroxy-l-arginine (NOHA), an intermediate in the l-arginine/NO pathway, to inhibit the hydrolysis of l-arginine to l-ornithine catalyzed by unstimulated murine macrophages (IC(50) values 12 +/- 5 and 400 +/- 50 microM, respectively). Stimulation of murine macrophages with interferon-gamma and lipopolysaccharide (IFN-gamma + LPS) results in clear expression of an inducible NOS (iNOS) and to an increase in arginase activity. Nor-NOHA is also a potent inhibitor of arginase in IFN-gamma + LPS-stimulated macrophage (IC(50) value 10 +/- 3 microM). In contrast to NOHA, nor-NOHA is neither a substrate nor an inhibitor for iNOS and it appears as a useful tool to study the interplays between arginase and NOS. Inhibition of arginase by nor-NOHA increases nitrite and l-citrulline accumulation for incubation times higher than 12 h, under our conditions. Our results allow the determination of the kinetic parameters of the two competitive pathways and the proposal of a simple model which readily explains the differences observed between experiments. This model readily accounts for the observed effects and should be useful to predict the consequences of arginase inhibition in the presence of an active NOS on l-arginine availability.
Collapse
Affiliation(s)
- J P Tenu
- UMR 8619 CNRS, Batiment 430, Universite Paris-Sud XI, Orsay Cedex, F-91405, France
| | | | | | | | | | | |
Collapse
|
37
|
Rodríguez-Crespo I, Nishida CR, Knudsen GM, de Montellano PR. Mutation of the five conserved histidines in the endothelial nitric-oxide synthase hemoprotein domain. No evidence for a non-heme metal requirement for catalysis. J Biol Chem 1999; 274:21617-24. [PMID: 10419469 DOI: 10.1074/jbc.274.31.21617] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Five conserved histidine residues are found in the human endothelial nitric-oxide synthase (NOS) heme domain: His-420, His-421, and His-461 are close to the heme, whereas His-146 and His-214 are some distance away. To investigate whether the histidines form a non-heme iron-binding site, we have expressed the H146A, H214A, H420A, H421A, and H461A mutants. The H420A mutant could not be isolated, and the H146A and H421A mutants were inactive. The H214A mutant resembled the wild-type enzyme in all respects. The H461A mutant had a low-spin heme, but high concentrations of L-Arg and tetrahydrobiopterin led to partial recovery of activity. Laser atomic emission showed that the only significant metal in NOS other than calcium and iron is zinc. The activities of the NOS isoforms were not increased by incubation with Fe(2+), but were inhibited by high Fe(2+) or Zn(2+) concentrations. The histidine mutations altered the ability of the protein to dimerize and to bind heme. However, the protein metal content, the inability of exogenous Fe(2+) to increase catalytic activity, and the absence of evidence that the conserved histidines form a metal site provide no support for a catalytic role for a non-heme redox-active metal.
Collapse
Affiliation(s)
- I Rodríguez-Crespo
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense, 28040 Madrid, Spain
| | | | | | | |
Collapse
|
38
|
Adams DR, Brochwicz-Lewinski M, Butler AR. Nitric oxide: physiological roles, biosynthesis and medical uses. FORTSCHRITTE DER CHEMIE ORGANISCHER NATURSTOFFE = PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS. PROGRES DANS LA CHIMIE DES SUBSTANCES ORGANIQUES NATURELLES 1999; 76:1-211. [PMID: 10091554 DOI: 10.1007/978-3-7091-6351-1_1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- D R Adams
- Department of Chemistry, Heriot Watt University, Edinburgh, Scotland
| | | | | |
Collapse
|
39
|
Abstract
Arginine is one of the most versatile amino acids in animal cells, serving as a precursor for the synthesis not only of proteins but also of nitric oxide, urea, polyamines, proline, glutamate, creatine and agmatine. Of the enzymes that catalyse rate-controlling steps in arginine synthesis and catabolism, argininosuccinate synthase, the two arginase isoenzymes, the three nitric oxide synthase isoenzymes and arginine decarboxylase have been recognized in recent years as key factors in regulating newly identified aspects of arginine metabolism. In particular, changes in the activities of argininosuccinate synthase, the arginases, the inducible isoenzyme of nitric oxide synthase and also cationic amino acid transporters play major roles in determining the metabolic fates of arginine in health and disease, and recent studies have identified complex patterns of interaction among these enzymes. There is growing interest in the potential roles of the arginase isoenzymes as regulators of the synthesis of nitric oxide, polyamines, proline and glutamate. Physiological roles and relationships between the pathways of arginine synthesis and catabolism in vivo are complex and difficult to analyse, owing to compartmentalized expression of various enzymes at both organ (e.g. liver, small intestine and kidney) and subcellular (cytosol and mitochondria) levels, as well as to changes in expression during development and in response to diet, hormones and cytokines. The ongoing development of new cell lines and animal models using cDNA clones and genes for key arginine metabolic enzymes will provide new approaches more clearly elucidating the physiological roles of these enzymes.
Collapse
Affiliation(s)
- G Wu
- Departments of Animal Science, Medical Physiology, and Veterinary Anatomy and Public Health, and Faculty of Nutrition, Texas A&M University, College Station, TX 77843, USA.
| | | |
Collapse
|
40
|
Tozer GM, Everett SA. Nitric oxide in tumor biology and cancer therapy. Part 2: Therapeutic implications. Clin Oncol (R Coll Radiol) 1998; 9:357-64. [PMID: 9448964 DOI: 10.1016/s0936-6555(97)80128-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- G M Tozer
- Gray Laboratory Cancer Research Trust, Mount Vernon Hospital, Northwood, UK
| | | |
Collapse
|
41
|
Everett SA, Patel KB, Dennis MF, Smith KA, Stratford MR, Wardman P. Oxidative denitrification of the antitumour drug hydroxyguanidine. Free Radic Biol Med 1998; 24:1-10. [PMID: 9436608 DOI: 10.1016/s0891-5849(97)00203-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The oxidative denitrification of the antitumour agent hydroxyguanidine (HOG) has been investigated by radiolysis methods and EPR spectroscopy. The azide radical (N3.), a model one-electron oxidant, reacts with HOG with the rate constant 5.1 x 10(9) dm3 mol(-1) s(-1) to yield the guanidino carbon-centred radical (HOG.) which rapidly eliminates nitric oxide (k = 3.1 x 10[3] s[-1]) with the concomitant formation of urea. The HOG. undergoes conjugation with molecular oxygen to form a peroxyl radical (HOGOO.) with a rate constant 8.8 x 10(8) dm3 mol(-1) s(-1). The HOGOO. radical also eliminates nitric oxide but may act as a precursor to the peroxynitrite (ONOO-) ion. The oxidation of HOG by the dibromide radical (Br2.-) was found to release nitric oxide with a yield of 95% relative to Br2.- as determined from the combined yields of inorganic nitrite, nitrate and a HOG/nitric oxide-adduct. This study provides a possible mechanistic basis for the oxidative denitrification of HOG which may contribute to the observed toxicity of the drug both in vitro and in vivo and for the oxidation of nonphysiological hydroxyguanidines to NO. via nitric oxide synthase-independent pathways.
Collapse
Affiliation(s)
- S A Everett
- Gray Laboratory Cancer Research Trust, Mount Vernon Hospital, Northwood, Middlesex, UK
| | | | | | | | | | | |
Collapse
|
42
|
Shibata Y, Sato H, Sagami I, Shimizu T. Interaction of Angeli's salt with cytochrome P450 1A2 distal mutants: an optical absorption spectral study. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1343:67-75. [PMID: 9428660 DOI: 10.1016/s0167-4838(97)00104-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Angeli's salt, Na2N2O3 or O-N=N+-(OH)(O-) in aqueous solution, is known to release NO- or NO., which relaxes vascular tissue and lowers blood pressure. In the liver, the most abundant heme enzyme is cytochrome P450. In the present study, we studied the effect of rat liver cytochrome P450 1A2 (P450 1A2) in regard to its catalysis of the N=N bond scission of Angeli's salt with optical absorption spectra. Also, we examined the contribution of putative distal amino acids of P450 1A2 to the reaction with the salt. We found that wild-type Fe3+ P450 1A2 markedly enhances the N=N scission of the salt up to 100 fold in terms of absorption spectroscopy. A Fe3+ P450 1A2-NO complex with an absorption peak at 435 nm was formed when the salt was added and the complex was then changed to a 6-coordinated Fe2+-NO complex having a 440-nm peak. Glu318Asp, Glu318Ala and Thr319Ala mutants at the putative distal site of P450 1A2 formed a 5-coordinated Fe2+-NO complex having a 400-nm absorption, that was not formed with the wild type. The Glu318Ala mutant, in particular, did not form the Fe3+-NO complex with the addition of Angeli's salt. The presence of L-Cys, reduced glutathione, catalase or superoxide dismutase markedly stabilized the Fe3+ wild type-NO complex. Thus, our data suggests that the N=N bond of Angeli's salt is cleaved with the P450 1A2 active site and NO- or NO. is released. We discuss mechanisms of redox and ligand changes of the P450 heme.
Collapse
Affiliation(s)
- Y Shibata
- Institute for Chemical Reaction Science, Tohoku University, Sendai, Japan
| | | | | | | |
Collapse
|
43
|
High-performance ion chromatography applied to free-radical mechanisms in drug design the problem of ion analysis at high ionic strengths. J Chromatogr A 1997. [DOI: 10.1016/s0021-9673(96)01029-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
44
|
Berkels R, Bertsch A, Zuther T, Dhein S, Stockklauser K, Rösen P, Rösen R. Evidence for a NO synthase in porcine platelets which is stimulated during activation/aggregation. Eur J Haematol 1997; 58:307-13. [PMID: 9222285 DOI: 10.1111/j.1600-0609.1997.tb01676.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We tried to characterize the porcine platelet nitric oxide (NO) synthase and its L-arginine (L-arg)/NO metabolism. Using RT-PCR we could show a constitutive endothelial NOS (ecNOS) and an inducible NOS (iNOS) similar mRNA in platelets. The NOS protein could be evidenced by an ecNOS specific antibody which also bound in platelets. This finding could be confirmed by Western blot showing an ecNOS in the membrane but not the cytosolic fraction; iNOS protein could not be detected. Using NADPH-diaphorase staining we could show NO synthase in preactivated platelets but not in resting platelets, indicating that the platelet NOS may be activated during platelet activation/aggregation. Porcine L-arg plasma levels (9.31 x 10(-5) mol/l +/- 10%) could be shown to be in the same range as human plasma levels. Moreover, we could show that the NO precursor L-arg and hydroxy-L-arginine (OHarg) concentration dependently inhibited collagen induced platelet aggregation. Summarizing these results confirm the existence of and further characterize porcine platelet NO synthases.
Collapse
Affiliation(s)
- R Berkels
- Institut für Pharmakologia, Universität zu Köln, Germany
| | | | | | | | | | | | | |
Collapse
|
45
|
Meyer J, Richter N, Hecker M. High-performance liquid chromatographic determination of nitric oxide synthase-related arginine derivatives in vitro and in vivo. Anal Biochem 1997; 247:11-6. [PMID: 9126364 DOI: 10.1006/abio.1997.2008] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In this paper we present a sensitive and reproducible method for the extraction and quantification of the nitric oxide (NO) synthase (NOS)-related basic amino acids L-hydroxyarginine (L-NHA), L-arginine (L-Arg), L-monomethylarginine (L-NMA), and L-dimethylarginine (L-NDA) in human serum samples by high-performance liquid chromatography (HPLC) analysis. We demonstrate that the serum level of L-NHA can be used as a sensitive and highly specific index of a systemic increase in NOS activity in vivo whose serum concentration, unlike that of the NO degradation products nitrite and/or nitrate, is not influenced by dietary intake. First, we measured L-NHA formation by a recombinant NOS preparation and by lipopolysaccharide-stimulated alveolar macrophages to demonstrate that this amino acid is produced by NOS in vitro. HPLC determination of L-NHA in human serum, however, proved to be difficult due to the presence of amino acids interfering with its detection. Therefore, we developed a clean-up procedure for the extraction of basic amino acids from these serum samples by using a cation-exchange cartridge. The isolated amino acids were subjected to precolumn derivatization with o-pthaldialdehyde and analyzed using a short reversed-phase column which allowed the baseline separation of L-NHA, L-Arg, L-NMA, and L-NDA within 16 min. By using this technique, the average concentrations of L-NHA, L-Arg, L-NMA, and L-NDA in the serum of healthy human subjects were determined to be 9.1, 96.1, 0.1, and 0.4 microM, respectively.
Collapse
Affiliation(s)
- J Meyer
- Center of Physiology, J. W. Goethe University Clinic Frankfurt/M, Germany
| | | | | |
Collapse
|
46
|
Singh R, Pervin S, Rogers NE, Ignarro LJ, Chaudhuri G. Evidence for the presence of an unusual nitric oxide- and citrulline-producing enzyme in rat kidney. Biochem Biophys Res Commun 1997; 232:672-7. [PMID: 9126334 DOI: 10.1006/bbrc.1997.6354] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We have found an enzymatic activity obtained from rat kidney capable of producing citrulline and NOx. (nitrate and nitrite) which was resistant to inhibition by conventional arginine analogues. This enzyme activity does not require any calcium or calmodulin and was found to be induced during pregnancy. This unique enzyme was found to be tissue and species specific. Another unique feature of this enzyme is that it did not bind to 2'5'-ADP-sepharose under standard conditions. Western blot analysis of the 100,000 g kidney supernatant using monoclonal antibody for macrophage inducible nitric oxide synthase failed to produce a band for inducible nitric oxide synthase. HPLC and capillary ion analysis for nitrate and nitrite (NOx) showed clear peaks for [3H] L-citrulline and NOx, respectively, which were not changed either in the absence of calcium and calmodulin or in the presence of 300 microM S-ethylisothiourea, which has been shown to be a very potent and selective inhibitor of inducible nitric oxide synthase with a Ki of about 14.7 nM. These results suggest the possible existence of another isoform of nitric oxide synthase with very distinct properties from the known isoforms.
Collapse
Affiliation(s)
- R Singh
- Department of Obstetrics and Gynecology, UCLA School of Medicine 90095, USA
| | | | | | | | | |
Collapse
|
47
|
Vetrovsky P, Kleschyov AL, Entlicher G, Poindron P, Stoclet JC. Nitric oxide generation from extracellularly applied NG-hydroxy-L-arginine in LPS-activated RAW 264 macrophages. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1334:51-6. [PMID: 9042365 DOI: 10.1016/s0304-4165(96)00074-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Lipopolysaccharide (LPS)-activated but not control RAW 264 macrophages produced nitric oxide (NO) from extracellularly-applied NG-hydroxy-L-arginine (L-NOHA) in a concentration-dependent manner, as measured by EPR spin trapping and assays for NO2- and NO3-. This production was inhibited by NG-nitro-L-arginine methyl ester and NG-monomethyl-L-arginine, NO-synthase inhibitors, as well as by L-lysine, a competitor for the y+ amino acid carrier system. No significant differences were found between L-NOHA and L-arginine with respect to the rate of NO production and the effects of inhibitors. These results provide evidence that extracellular L-NOHA can enter LPS-activated RAW 264 macrophages via a cationic amino acid carrier system and be metabolized to NO by NO-synthase. The data also suggest that no alternative pathway exists for NO production from L-NOHA in non-activated RAW 264 macrophages.
Collapse
Affiliation(s)
- P Vetrovsky
- Laboratoire de Pharmacologie et de Physiopathologie Cellulaires-CNRS URA600, Faculté de Pharmacie, Université Louis Pasteur de Strasbourg, Illkirch, France
| | | | | | | | | |
Collapse
|
48
|
We know a lot about the cerebellum, but do we know what motor learning is? Behav Brain Sci 1996. [DOI: 10.1017/s0140525x00081875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
49
|
Sensorimotor learning in structures “upstream” from the cerebellum. Behav Brain Sci 1996. [DOI: 10.1017/s0140525x00081905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
50
|
Cerebellar arm ataxia: Theories still have a lot to explain. Behav Brain Sci 1996. [DOI: 10.1017/s0140525x00081723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|