1
|
Rizan C, Rotchell JM, Eng PC, Robaire B, Ciocan C, Kapoor N, Kalra S, Sherman JD. Mitigating the environmental effects of healthcare: the role of the endocrinologist. Nat Rev Endocrinol 2025; 21:344-359. [PMID: 40082727 DOI: 10.1038/s41574-025-01098-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/18/2025] [Indexed: 03/16/2025]
Abstract
Human health depends on planetary health, and yet healthcare provision can have unintended consequences for the health of the planet. Emissions from the healthcare sector include greenhouse gases, air pollution and plastic pollution, alongside chemical contamination. Chemical pollution resulting in endocrine disruption has been associated with plastics, which are a source of concerning additives such as phthalates, bisphenols, perfluoroalkyl and polyfluoroalkyl substances, and flame retardants (all routinely found in healthcare products). Many endocrine-disrupting chemicals are persistent and ubiquitous in the environment (including water and food sources), with potential secondary harms for human health, including disrupting reproductive, metabolic and thyroid function. Here we review evidence-based strategies for mitigating environmental effects of healthcare delivery. We focus on what endocrinologists can do, including reducing demand for healthcare services through better preventative health, focusing on high-value care and improving sustainability of medical equipment and pharmaceuticals through adopting circular economy principles (including reduce, reuse and, as a last resort, recycle). The specific issue of endocrine-disrupting chemicals might be mitigated through responsible disposal and processing, alongside advocating for the use of alternative materials and replacing additive chemicals with those that have lower toxicity profiles, as well as tighter regulations. We must work to urgently transition to sustainable models of care provision, minimizing negative effects on human and planetary health.
Collapse
Affiliation(s)
- Chantelle Rizan
- Centre for Sustainable Medicine, National University of Singapore, Singapore, Singapore.
- Brighton and Sussex Medical School, Brighton, UK.
| | | | - Pei Chia Eng
- Department of Endocrinology, National University Hospital, Singapore, Singapore
- Department of Medicine, National University of Singapore, Singapore, Singapore
| | - Bernard Robaire
- Faculty of Medicine and Biomedical Sciences, McGill University, Montreal, Quebec, Canada
| | - Corina Ciocan
- School of Applied Sciences, University of Brighton, Brighton, UK
| | - Nitin Kapoor
- Department of Endocrinology, Christian Medical College, Vellore, India
- The Non-Communicable Disease Unit, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Sanjay Kalra
- Department of Endocrinology, Bharti Hospital, Karnal, India
- University Centre for Research and Development, Chandigarh University, Mohali, India
| | - Jodi D Sherman
- Yale School of Medicine, Yale University, New Haven, CT, USA
- Yale School of Public Health, Yale University, New Haven, CT, USA
| |
Collapse
|
2
|
Blewett TA, Ackerly KL, Sundin J, Clark TD, Rowsey LE, Griffin RA, Metz M, Kuchenmüller L, Leeuwis RHJ, Levet M, Martin S, Speers-Roesch B, Jutfelt F, Joudan S. Unintended Consequences of Aquatic Enrichment in Experimental Biology. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:8301-8307. [PMID: 40267917 DOI: 10.1021/acs.est.4c11276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
Enrichment in aquatic animal studies is important for promoting welfare and maintaining animal health and can be categorized by physical, sensory, social, occupational, and dietary enrichment. However, the risk of potential chemical leaching associated with physical enrichment items has been largely overlooked (i.e., artificial plants or shelter). Most enrichment items lack information on their chemical composition and have not undergone testing for plastic or metal leachates that can alter water chemistry and impair animal physiology. In fish and invertebrate research, these leachates have the potential to modify the health of aquatic animals or their reproductive processes. Moreover, in toxicology research, altered chemical exposure concentrations and interactive effects with leachates could invalidate toxicity assays and lead to misleading results. We identify key contaminants associated with common enrichment items and highlight the substantial lack of empirical research focusing on the confounding factors associated with aquatic enrichment. We explore the mechanisms through which relevant leachates can complicate experimental outcomes, detailing the pathways by which these substances may interact with both the experimental environment and the animals themselves. We conclude that there is widespread potential for serious complications to research outcomes and chronic toxicity from enrichment materials. Therefore, we advocate for the establishment of standardized regulations and a global certification system for aquatic enrichment items to ensure the validity of studies and to safeguard animal welfare. We encourage researchers to critically consider the implications of leaching from aquatic enrichment when designing experimental systems.
Collapse
Affiliation(s)
- Tamzin A Blewett
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2G5, Canada
| | - Kerri Lynn Ackerly
- Marine Science Institute, The University of Texas at Austin, Port Aransas, Texas 78373, United States
| | - Josefin Sundin
- Department of Aquatic Resources, Swedish University of Agricultural Sciences, 178 93 Drottningholm, Sweden
| | - Timothy D Clark
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria 3216, Australia
| | - Lauren E Rowsey
- Department of Biological Sciences, University of New Brunswick, Saint John, New Brunswick E2L 4L5 Canada
| | - Robert A Griffin
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2G5, Canada
| | - Moa Metz
- Department of Biology, Faculty of Natural Sciences, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Luis Kuchenmüller
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria 3216, Australia
| | - Robine H J Leeuwis
- Department of Biology, Faculty of Natural Sciences, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Marie Levet
- Département de Sciences Biologiques, Université de Montréal, 1375 Avenue Thérèse-Lavoie-Roux, Montréal, Québec H2V0B3, Canada
| | - Sidney Martin
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2G5, Canada
| | - Ben Speers-Roesch
- Department of Biological Sciences, University of New Brunswick, Saint John, New Brunswick E2L 4L5 Canada
| | - Fredrik Jutfelt
- Department of Biology, Faculty of Natural Sciences, Norwegian University of Science and Technology, 7491 Trondheim, Norway
- Department of Biological and Environmental Sciences, Faculty of Science, University of Gothenburg, 4050 30 Gothenburg, Sweden
| | - Shira Joudan
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|
3
|
Arcega RD, Chih PS, Hsu PC, Chang WH, Chen RJ, Mahmudiono T, Lee CC, Chen HL. Toxicity evaluation and prioritization of recycled plastic food contact materials using in silico tools. JOURNAL OF HAZARDOUS MATERIALS 2025; 488:137467. [PMID: 39923369 DOI: 10.1016/j.jhazmat.2025.137467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 01/05/2025] [Accepted: 02/01/2025] [Indexed: 02/11/2025]
Abstract
This study assessed the toxicity of virgin and recycled plastic food contact materials (FCMs) at various recycling stages, migrated in four food simulants (water, 20 % ethanol, 4 % acetic acid, and n-heptane), using cytotoxicity and high-content screening (HCS) bioassays. Toxicity was correlated with migrating substances identified through chemical analyses, and samples were ranked by toxicity priority. Recycled polyethylene terephthalate (rPET) and 20 % ethanol exhibited the highest reduction in cell viability, whereas virgin PET (vPET) showed even lower viability. Pellets did not trigger oxidative responses in HepaRG and HK-2 cells; however, bales and flakes affected their cell morphology and mitochondrial function. rPET-flake migration in 4 % acetic acid was most toxic to HepaRG cells, while rPET-bale migration in 20 % ethanol and rPP-flake migration in water were most toxic to HK-2 cells. Nonetheless, the negative effects on cell viability and HCS parameters were mostly mitigated at the final pellet stage. In HepaRG cells exposed to 4 % acetic acid, antimony negatively correlated with cell viability and positively with cellular area, indicating its role in rPET-induced necrosis. ToxPi ranking identified vPET migration in n-heptane and water as top priorities given the nephrotoxic risks. This study emphasizes refining recycling methods and testing plastics to minimize FCM cytotoxicity.
Collapse
Affiliation(s)
- Rachelle D Arcega
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| | - Pei-Shan Chih
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| | - Pei-Chun Hsu
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| | - Wei-Hsiang Chang
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan; Department of Environmental Trace Toxic Substances Research Center, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| | - Rong-Jane Chen
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| | - Trias Mahmudiono
- Department of Nutrition, Faculty of Public Health, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Ching-Chang Lee
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan; Department of Environmental Trace Toxic Substances Research Center, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| | - Hsiu-Ling Chen
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan; Department of Environmental Trace Toxic Substances Research Center, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan; Department of Nutrition, Faculty of Public Health, Universitas Airlangga, Surabaya 60115, Indonesia.
| |
Collapse
|
4
|
Doria HB, Sohal N, Feldmeyer B, Pfenninger M. Size over substance: Microplastic particle size drives gene expression and fitness loss in a freshwater insect. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2025; 284:107386. [PMID: 40305993 DOI: 10.1016/j.aquatox.2025.107386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 04/14/2025] [Accepted: 04/24/2025] [Indexed: 05/02/2025]
Abstract
Microplastics (MP) are a diverse class of contaminants for which it is challenging to assess their effects on freshwater biota. As polyamide (PA) and polyvinyl chloride (PVC) are two of the most abundant microplastic materials in natural environments, the present study investigated whether their chronic presence, particle size (< 100 μm and > 100 μm) and their mixture influenced gene transcription patterns and inclusive fitness of C. riparius. Transcriptome data as the lowest phenotypic trait level suggested that MP exposure impacted a range of organismic processes like oxidative stress and inflammations, leading to an innate immune response, downregulation of metabolism in organs directly exposed to the particles and triggered premature molting, regardless of the MP material or their mixture. A life-cycle fitness assessment was performed using PA, PVC and a mixture of both in, respectively. The integration of the fitness components survival, developmental time and fertility into the daily population growth rate as comprehensive fitness parameter on the highest trait level showed that any chronic microplastic exposure led to a considerable fitness loss. Partitioning the effects of substance and size class showed that microplastic exposure as such and size played an important role, while the MP material was of minor importance. The observed decrease in daily population growth rates between 2.3 and 7.6 % upon chronic MP exposure suggested a dramatic reduction of the species' population size and thus for freshwater ecosystems.
Collapse
Affiliation(s)
- Halina Binde Doria
- LOEWE Centre for Translational Biodiversity Genomics, Senckenberg Biodiversity and Climate Research Centre, Georg-Voigt-Str. 14-16, D-60325, Frankfurt am Main, Germany; Department of Molecular Ecology, Senckenberg Biodiversity and Climate Research Centre, Georg-Voigt-Str. 14-16, D-60325, Frankfurt am Main, Germany
| | - Nida Sohal
- Department of Molecular Ecology, Senckenberg Biodiversity and Climate Research Centre, Georg-Voigt-Str. 14-16, D-60325, Frankfurt am Main, Germany
| | - Barbara Feldmeyer
- Department of Molecular Ecology, Senckenberg Biodiversity and Climate Research Centre, Georg-Voigt-Str. 14-16, D-60325, Frankfurt am Main, Germany
| | - Markus Pfenninger
- LOEWE Centre for Translational Biodiversity Genomics, Senckenberg Biodiversity and Climate Research Centre, Georg-Voigt-Str. 14-16, D-60325, Frankfurt am Main, Germany; Department of Molecular Ecology, Senckenberg Biodiversity and Climate Research Centre, Georg-Voigt-Str. 14-16, D-60325, Frankfurt am Main, Germany; Institute for Molecular and Organismic Evolution, Johannes Gutenberg University, Johann-Joachim-Becher-Weg 7, 55128, Mainz, Germany.
| |
Collapse
|
5
|
Cao Y, Liu Y, Guo K, He W, Hur J, Guo H. Molecular characteristics and plastic additives in dissolved organic matter derived from polystyrene microplastics: Effects of cumulative irradiation and microplastic concentrations. WATER RESEARCH 2025; 282:123641. [PMID: 40253887 DOI: 10.1016/j.watres.2025.123641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 03/28/2025] [Accepted: 04/12/2025] [Indexed: 04/22/2025]
Abstract
Microplastic-derived dissolved organic matter (MP-DOM), released during ultraviolet-induced aging of microplastics (MPs), has emerged as a critical yet underexplored topic regarding the environmental impacts of MPs. However, the effects of irradiation intensity on the release and molecular diversity of MP-DOM, including plastic additives, remain poorly understood. In this study, the photoaging processes of polystyrene MPs (PS-MPs) were simulated under varying cumulative irradiation (irradiation intensity × irradiation duration) and PS-MPs concentrations (1 - 5 g/L). The PS-derived DOM (PS-DOM) was characterized using fluorescence spectroscopy, Fourier transform-ion cyclotron resonance mass spectrometry (FT-ICR MS), and liquid chromatography coupled with high-resolution mass spectrometry (LC-HRMS). After 21 days of irradiation, the amount of leached PS-DOM ranged from 7.76 to 39.40 mg-C/g. Cumulative irradiation significantly accelerated PS-MPs aging and PS-DOM leaching (p < 0.001). Initially, these processes proceeded slowly until the cumulative irradiation exceeded 75 kWh/m2. Beyond this threshold, PS-MPs exhibited substantial size reduction, increased oxidation, and enhanced PS-DOM leaching. FT-ICR MS analysis revealed that PS-DOM contained 30.1 %-31.8 % unique components compared to natural organic matter, with greater degradability at lower PS-MPs concentrations. Furthermore, LC-HRMS identified 13 oxidation products and 25 plastic additives in PS-DOM, with their amounts decreasing as PS-MPs concentrations increased, from 17.05 to 3.24 mg/g and 4.88 to 1.85 mg/g, respectively. Notably, lower PS-MPs concentrations resulted in greater cumulative irradiation per unit mass, intensifying PS-DOM leaching, enhancing degradability, and increasing plastic additives release. This study highlights the environmental implications of per unit cumulative irradiation on MP-DOM leaching and its molecular composition, providing insights into its ecological risks and potential impacts on aquatic systems.
Collapse
Affiliation(s)
- Yuanyuan Cao
- Key Laboratory of Groundwater Conservation of MWR, Key Laboratory of Groundwater Circulation and Environmental Evolution of MOE, School of Water Resources and Environment, China University of Geosciences Beijing, Beijing, 100083, China
| | - Yang Liu
- Key Laboratory of Groundwater Conservation of MWR, Key Laboratory of Groundwater Circulation and Environmental Evolution of MOE, School of Water Resources and Environment, China University of Geosciences Beijing, Beijing, 100083, China.
| | - Kehui Guo
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Center for Water and Ecology, Tsinghua University, Beijing, 100084, China
| | - Wei He
- Key Laboratory of Groundwater Conservation of MWR, Key Laboratory of Groundwater Circulation and Environmental Evolution of MOE, School of Water Resources and Environment, China University of Geosciences Beijing, Beijing, 100083, China
| | - Jin Hur
- Department of Environment and Energy, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul, 05006, South Korea
| | - Huaming Guo
- Key Laboratory of Groundwater Conservation of MWR, Key Laboratory of Groundwater Circulation and Environmental Evolution of MOE, School of Water Resources and Environment, China University of Geosciences Beijing, Beijing, 100083, China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences Beijing, Beijing, 100083, China; Frontiers Science Center for Deep-time Digital Earth, China University of Geosciences Beijing, Beijing, 100083, China.
| |
Collapse
|
6
|
Ren Y, Lin FK, Meng JJ, Liu YQ, Li Y, Zhao WK, Zhao R, Zhu DR, Liu YM. Characterization of potential bioactive molecules in Fissistigma polyanthum using UPLC-ESI-QTOF-MS-based metabolomics integrated with chemometrics approaches. J Chromatogr A 2025; 1746:465804. [PMID: 40009970 DOI: 10.1016/j.chroma.2025.465804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 02/13/2025] [Accepted: 02/18/2025] [Indexed: 02/28/2025]
Abstract
Fissistigma polyanthum is a renowned medicinal plant traditionally used by over 10 ethnic groups in China to treat various ailments, including inflammation. However, research on its chemical composition and bioactivity remains limited. This study investigated the chemical profiles and biological activities across different parts of F. polyanthum, aiming to identify the bioactive molecules associated with anti-inflammatory and anti-Alzheimer's effects. To ensure accurate metabolite identification, an in-house Fissistigma compound library containing 654 chemicals was constructed and integrated with the Progenesis QI informatics platform. Using UPLC-ESI-QTOF-MS-based metabolomics, 97 compounds, including alkaloids, flavonoids and terpenoids, were identified, of which 86 were reported for the first time in this species. Heatmap analysis revealed significant content variations of these constituents across different plant parts: leaves were rich in flavonoids and terpenoids, while the root without bark was abundant in alkaloids. PCA and PLS-DA analyses confirmed significant metabolite differences among the plant parts, with 31 key differential compounds explaining the chemical variations. Comparative bioactivity assays showed that the root without bark exhibited strong anti-butyrylcholinesterase activity, with an IC50 value of 54.22 μg/mL, while the root bark and leaves demonstrated the strongest inhibition of NO production, with IC50 values of 62.64 and 71.85 μg/mL, respectively. The S-plot analysis further identified 25 potential bioactive compounds, primarily alkaloids and flavonoids, responsible for the observed bioactivities, including known anti-inflammatory and anti-Alzheimer's agents. These findings underscore the pharmaceutical potential of F. polyanthum and the effectiveness of integrating metabolomics and chemometrics to discover bioactive molecules in medicinal plants.
Collapse
Affiliation(s)
- Ying Ren
- School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Feng-Ke Lin
- School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China.
| | - Jia-Jia Meng
- The Institute of Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Yu-Qing Liu
- School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Yue Li
- School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Wen-Kai Zhao
- School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Rui Zhao
- School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Dong-Rong Zhu
- School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Yu-Ming Liu
- School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China.
| |
Collapse
|
7
|
Popa CL, Dontu SI, Savastru D, Carstea EM. Changes in Fluorescence of Aquatic Dissolved Organic Matter Induced by Plastic Debris. MATERIALS (BASEL, SWITZERLAND) 2025; 18:1602. [PMID: 40271883 PMCID: PMC11990298 DOI: 10.3390/ma18071602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/21/2025] [Accepted: 03/31/2025] [Indexed: 04/25/2025]
Abstract
Water contamination with plastic materials represents one of the most pressing environmental problems that the modern world is facing. In this context, the present paper aims to investigate the influence of fluorescent dissolved organic matter (FDOM) released by plastic materials on the aquatic bacterial fraction and evaluate the efficiency of fluorescence spectroscopy in identifying plastic FDOM in freshwater. To this purpose, river and tap water samples were contaminated in a controlled manner in the laboratory, and the water quality parameters and bacterial occurrence for these samples were determined using standard physico-chemical characterization methods: fluorescence spectroscopy, dynamic light scattering, and flow cytometry. The results revealed that plastic debris influenced the dissolved-particulate organic matter continuum, also affecting bacterial cell proliferation in both the river and tap samples. The study highlights that the impact of plastic FDOM on bacterial proliferation should not be taken lightly, while fluorescence spectroscopy proved to be an effective method for identifying the presence of plastic FDOM in water samples of various origins.
Collapse
Affiliation(s)
| | - Simona I. Dontu
- National Institute of R&D for Optoelectronics, INOE2000, Atomistilor 409, 077125 Magurele, Romania; (C.L.P.); (D.S.)
| | | | - Elfrida M. Carstea
- National Institute of R&D for Optoelectronics, INOE2000, Atomistilor 409, 077125 Magurele, Romania; (C.L.P.); (D.S.)
| |
Collapse
|
8
|
McPartland M, Ashcroft F, Wagner M. Plastic chemicals disrupt molecular circadian rhythms via adenosine 1 receptor in vitro. ENVIRONMENT INTERNATIONAL 2025; 198:109422. [PMID: 40179621 DOI: 10.1016/j.envint.2025.109422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/28/2025] [Accepted: 03/27/2025] [Indexed: 04/05/2025]
Abstract
The adenosine 1 receptor (A1R) is a G protein-coupled receptor that transduces signals to regulate sleep-wake cycles and circadian rhythms. Plastic products contain thousands of chemicals, known to disrupt physiological function. Recent research has demonstrated that some of these chemicals are also A1R agonists, however, the extent to which such activation propagates downstream and results in cellular alterations remains unknown. Thus, we investigate whether chemicals extracted from polyurethane (PUR) and polyvinyl chloride (PVC) plastics disrupt circadian rhythms via agonism of A1R. We confirm that plastic chemicals in both plastics activate A1R and inhibit intracellular cAMP in U2OS cells. Notably, this inhibition is comparable to that induced by the highly specific A1R agonist 2'-MeCCPA. To assess circadian disruption, we quantify temporal expression patterns of the clock genes PER2 and CRY2 at 4-h intervals over 48 h. Here, exposure to plastic chemicals shifts the phase in the oscillatory expression cycles of both clock genes by 9-17 min. Importantly, these effects are dose-dependent and reversible when A1R is inhibited by a pharmacological antagonist. This demonstrates that plastic chemicals can disrupt circadian processes by interfering with A1R signaling and suggests a novel mechanism by which these and other chemicals may contribute to non-communicable diseases.
Collapse
Affiliation(s)
- Molly McPartland
- Department of Biology, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway.
| | - Felicity Ashcroft
- Department of Biology, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| | - Martin Wagner
- Department of Biology, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway.
| |
Collapse
|
9
|
Velasquez STR, Hu Q, Kramm J, Santin VC, Völker C, Wurm FR. Plastics of the Future? An Interdisciplinary Review on Biobased and Biodegradable Polymers: Progress in Chemistry, Societal Views, and Environmental Implications. Angew Chem Int Ed Engl 2025:e202423406. [PMID: 40126932 DOI: 10.1002/anie.202423406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 01/30/2025] [Accepted: 01/30/2025] [Indexed: 03/26/2025]
Abstract
Global demand to reduce polymer waste and microplastics pollution has increased in recent years, prompting further research, development, and wider use of biodegradable and biobased polymers (BBPs). BBPs have emerged as promising alternatives to conventional plastics, with the potential to mitigate the environmental burdens of persistent plastic waste. We provide an updated perspective on their impact, five years after our last article, featuring several recent advances, particularly in exploring broader variety of feedstock, applying novel chemical modifications, and developing new functionalities. Life-cycle assessments reveal that environmental performance of BBPs depends on several factors including feedstock selection, production efficiency, and end-of-life management. Furthermore, the introduction of BBPs in several everyday life products has also influenced consumer perception, market dynamics, and regulatory frameworks. Although offering environmental advantages in specific applications, BBPs also raise concerns regarding their biodegradability under varying environmental conditions, potential microplastic generation, and soil health impacts. We highlight the need for a circular approach considering the entire polymer life cycle, from feedstock sourcing, modification and use, to end-of-life options. Interdisciplinary research, collaborative initiatives, and informed policymaking are crucial to unlocking the full potential of BBPs and exploiting their contribution to create a circular economy and more sustainable future.
Collapse
Affiliation(s)
- Sara T R Velasquez
- Sustainable Polymer Chemistry (SPC), Department of Molecules and Materials, MESA+ Institute for Nanotechnology, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE, Enschede, Netherlands
| | - Qisong Hu
- Sustainable Polymer Chemistry (SPC), Department of Molecules and Materials, MESA+ Institute for Nanotechnology, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE, Enschede, Netherlands
| | - Johanna Kramm
- Institute for Social-Ecological Research (ISOE), Hamburger Allee 45, 60486, Frankfurt am Main, Germany
| | - Vitória C Santin
- Sustainable Polymer Chemistry (SPC), Department of Molecules and Materials, MESA+ Institute for Nanotechnology, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE, Enschede, Netherlands
| | - Carolin Völker
- Institute for Social-Ecological Research (ISOE), Hamburger Allee 45, 60486, Frankfurt am Main, Germany
- Institute of Ecology, Evolution and Diversity, Faculty Biological Sciences, Goethe University Frankfurt, Max-von-Laue-Straße 13, 60438, Frankfurt am Main, Germany
| | - Frederik R Wurm
- Sustainable Polymer Chemistry (SPC), Department of Molecules and Materials, MESA+ Institute for Nanotechnology, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE, Enschede, Netherlands
| |
Collapse
|
10
|
Martínez Rodríguez A, Kratina P, Jones JI. Different impacts of oil-based and bio-based microplastics on isotopic composition and stoichiometry of a model freshwater grazer. ENVIRONMENTAL RESEARCH 2025; 268:120782. [PMID: 39778613 DOI: 10.1016/j.envres.2025.120782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 12/14/2024] [Accepted: 01/05/2025] [Indexed: 01/11/2025]
Abstract
Microplastic pollution has become a pervasive environmental challenge due to their global distribution and putatively harmful effects on organisms at different ecotoxicological endpoints. However, in some cases, the effects of microplastics are similar to, or even less harmful than those of naturally occurring particles. Bioplastics, developed as a more sustainable alternative to traditional plastics, still have unclear effects compared with oil-based microplastics. This study uses a laboratory-controlled experiment to compare the physical effects of oil-based high-density polyethylene (HDPE) and bio-based biodegradable polylactic acid (PLA) on the consumption rate, isotopic composition, respiration rate, stoichiometry, and growth rate of model freshwater snail Radix balthica. The experiment included a positive control using silica sand (Si) to simulate natural particles and a control with no experimental additions. It was hypothesised that exposure to microplastics affects the snails solely through the physical influence of the particles, and that the effects of microplastics depend on their composition. The results show that the effects of HDPE were attributable solely due to the physical presence of the particles, but this was not the case for PLA. Exposure to PLA led to increased growth (as final mass). Consumption, respiration, and growth rates were not significantly affected when exposed to the experimental additions. However, the isotopic composition and C:N of snails was altered after exposure to HDPE and Si compared with control. The isotopic composition of snails exposed to PLA did not show significant changes, but they did have higher phosphorous content in their tissues. In this study, HDPE microplastics were not more harmful than naturally occurring particles, and PLA microplastics appeared to influence growth patterns differently than expected. Further research is needed to confirm these observations and fully assess the environmental and biological implications of these contaminants.
Collapse
Affiliation(s)
- Ana Martínez Rodríguez
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK.
| | - Pavel Kratina
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - J Iwan Jones
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| |
Collapse
|
11
|
de Ruijter VN, Redondo-Hasselerharm PE, Koelmans AA. A brief history of microplastics effect testing: Guidance and prospect. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 368:125711. [PMID: 39828198 DOI: 10.1016/j.envpol.2025.125711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/16/2024] [Accepted: 01/16/2025] [Indexed: 01/22/2025]
Abstract
Numerous reviews have consistently highlighted the shortcomings of studies evaluating the effects of microplastics (MP), with many of the issues identified in 2016 still relevant in 2024. Here, we summarize the current knowledge on MP effect testing, compare guidelines, and provide an overview of risk assessments conducted at both single species and community levels. We discuss standard test materials, MP characteristics, and mechanisms explaining effects. We have observed that the quality of MP effect studies is gradually improving, and knowledge on enhancing these studies is available. Recommendations include data rescaling and alignment for ecological risk assessment, with preference for using environmentally relevant MPs. A step-by-step protocol for creating polydisperse test materials is provided. Most risk assessments indicate that concentrations observed in ecosystems globally exceed the effect thresholds measured in the laboratory. However, using a higher-tier approach, no risks are expected for freshwater benthic communities at current MP exposure concentrations. Evidence on the mechanisms behind adverse effects is growing; however, more well-designed experiments are needed. A potential solution might involve comparing natural particles with MPs that are as similar in dimensions as possible, providing insight into the mechanisms of food dilution where volume is a critical determinant of toxicity.
Collapse
Affiliation(s)
- Vera N de Ruijter
- Aquatic Ecology and Water Quality Management Group, Wageningen University, the Netherlands
| | | | - Albert A Koelmans
- Aquatic Ecology and Water Quality Management Group, Wageningen University, the Netherlands.
| |
Collapse
|
12
|
Viljoen SJ, Brailsford FL, Murphy DV, Hoyle FC, Jones DL, Henry DJ, Fosu-Nyarko J. Toxicity of additives present in conventional and biodegradable plastics on soil fauna: a case study of the root lesion nematode Pratylenchus neglectus. JOURNAL OF HAZARDOUS MATERIALS 2025; 483:136682. [PMID: 39612880 DOI: 10.1016/j.jhazmat.2024.136682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/11/2024] [Accepted: 11/25/2024] [Indexed: 12/01/2024]
Abstract
Plastic pollution in terrestrial environments is a growing concern, with an increasing focus on the impact of plastic additives on soil ecosystems. We evaluated the impact of additives from conventional plastics (ACP) and biodegradable plastics (ABP) on the soil nematode, Pratylenchus neglectus. The additives represented five functional classes (antioxidants, colourants, flame retardants, nucleating agents, and plasticisers). P. neglectus exhibited concentration-dependent mortality when exposed to the additives, with Tartrazine, an ABP colourant, inducing higher mortality compared to the conventional counterpart. No significant changes in the locomotory patterns of P. neglectus were observed, whereas oxidative stress significantly increased in response to all assistive treatments. Exposure to most of the additives resulted in a significant decline in nematode reproduction; ACPs generally caused more severe effects than ABPs. Our findings highlight a complexity in how plastic additives impact soil organisms and challenge the assumption that ABPs may be universally safer for ecosystems. The study emphasises the importance of conducting ecotoxicological assessments of specific ABPs on important species to inform the design of environmentally sustainable plastics. The results also suggest that P. neglectus could serve as a valuable sentinel organism for evaluating the ecological impacts of plastic pollution in soil.
Collapse
Affiliation(s)
- Samantha J Viljoen
- Bioplastics Innovation Hub, Food Futures Institute, Murdoch University, Murdoch, WA 6150, Australia; SoilsWest, Centre for Sustainable Farming Systems, Food Futures Institute, Murdoch University, Murdoch, WA 6150, Australia; School of Mathematics, Statistics, Chemistry and Physics, Murdoch University, Murdoch, WA 6150, Australia.
| | - Francesca L Brailsford
- Bioplastics Innovation Hub, Food Futures Institute, Murdoch University, Murdoch, WA 6150, Australia; SoilsWest, Centre for Sustainable Farming Systems, Food Futures Institute, Murdoch University, Murdoch, WA 6150, Australia
| | - Daniel V Murphy
- Bioplastics Innovation Hub, Food Futures Institute, Murdoch University, Murdoch, WA 6150, Australia; SoilsWest, Centre for Sustainable Farming Systems, Food Futures Institute, Murdoch University, Murdoch, WA 6150, Australia
| | - Frances C Hoyle
- Bioplastics Innovation Hub, Food Futures Institute, Murdoch University, Murdoch, WA 6150, Australia; SoilsWest, Centre for Sustainable Farming Systems, Food Futures Institute, Murdoch University, Murdoch, WA 6150, Australia
| | - Davey L Jones
- Bioplastics Innovation Hub, Food Futures Institute, Murdoch University, Murdoch, WA 6150, Australia; SoilsWest, Centre for Sustainable Farming Systems, Food Futures Institute, Murdoch University, Murdoch, WA 6150, Australia; Environment Centre Wales, Bangor University, Bangor, Gwynedd LL57 2UW, UK
| | - David J Henry
- Bioplastics Innovation Hub, Food Futures Institute, Murdoch University, Murdoch, WA 6150, Australia; School of Mathematics, Statistics, Chemistry and Physics, Murdoch University, Murdoch, WA 6150, Australia
| | - John Fosu-Nyarko
- Centre for Crop and Food Innovation, Food Futures Institute, School of Agricultural Sciences, Murdoch University, Murdoch, WA 6150, Australia
| |
Collapse
|
13
|
Lestido-Cardama A, Barbosa-Pereira L, Sendón R, Bustos J, Paseiro Losada P, Rodríguez Bernaldo de Quirós A. Chemical safety and risk assessment of bio-based and/or biodegradable polymers for food contact: A review. Food Res Int 2025; 202:115737. [PMID: 39967183 DOI: 10.1016/j.foodres.2025.115737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 01/09/2025] [Accepted: 01/10/2025] [Indexed: 02/20/2025]
Abstract
Bio-based and/or biodegradable polymers are being developed and applied as a sustainable and innovative alternative to conventional petroleum-based materials for food packaging applications. From the chemical standpoint, bio-based and/or biodegradable polymers present a complex chemical composition that includes additives, monomers, and other starting substances, but also, oligomers, impurities, degradation products, etc. All these compounds may migrate into the food and can be a hazard to the consumers' health. Thus, identifying potential migrants is crucial to assess the safety of these materials. The analytical methods applied to investigate migrants in bio-based and/or biodegradable polymers are reviewed and commented on. Mostly, gas chromatography or liquid chromatography coupled to mass spectrometry and specifically high-resolution mass spectrometry are the techniques of choice. In addition, a summary of recently published migration studies of chemicals from bio-based and/or biodegradable polymers into food simulants and food is provided. Moreover, current approaches to risk assessment of packaging materials are presented and illustrated with examples. Therefore, this review aims to highlight the chemical safety issues raised by biopolymers for food contact applications, that are often overlooked.
Collapse
Affiliation(s)
- Antía Lestido-Cardama
- Department of Analytical Chemistry, Nutrition and Food Science, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; Instituto de Materiales (iMATUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Letricia Barbosa-Pereira
- Department of Analytical Chemistry, Nutrition and Food Science, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; Instituto de Materiales (iMATUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Raquel Sendón
- Department of Analytical Chemistry, Nutrition and Food Science, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; Instituto de Materiales (iMATUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Juana Bustos
- National Food Centre, Spanish Agency of Food Safety and Nutrition, Majadahonda, Spain
| | - Perfecto Paseiro Losada
- Department of Analytical Chemistry, Nutrition and Food Science, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Ana Rodríguez Bernaldo de Quirós
- Department of Analytical Chemistry, Nutrition and Food Science, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; Instituto de Materiales (iMATUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| |
Collapse
|
14
|
James BD, Medvedev AV, Medvedeva LA, Martsen E, Gorman KL, Lin B, Makarov SS, Aluwihare LI, de Vos A, Reddy CM, Hahn ME. Burnt Plastic (Pyroplastic) from the M/V X-Press Pearl Ship Fire and Plastic Spill Contain Compounds That Activate Endocrine and Metabolism-Related Human and Fish Transcription Factors. ENVIRONMENT & HEALTH (WASHINGTON, D.C.) 2025; 3:91-101. [PMID: 39839249 PMCID: PMC11744394 DOI: 10.1021/envhealth.4c00172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/18/2024] [Accepted: 10/22/2024] [Indexed: 01/23/2025]
Abstract
In May 2021, the M/V X-Press Pearl ship fire disaster led to the largest maritime spill of resin pellets (nurdles) and burnt plastic (pyroplastic). Field samples collected from beaches in Sri Lanka nearest to the ship comprised nurdles and pieces of pyroplastic. Three years later, the toxicity of the spilled material remains unresolved. To begin understanding its potential toxicity, solvent extracts of the nurdles and pyroplastic were screened for their bioactivity by several Attagene FACTORIAL bioassays (TF, NR, and AquaTox), which measured the activity of a combined 70 human transcription factor response elements and nuclear receptors and 6 to 7 nuclear receptors for each of three phylogenetically distinct fish species. Extracts of the pyroplastics robustly activated end points for the human aryl hydrocarbon receptor (AhR), estrogen receptor (ER), pregnane X receptor (PXR), peroxisome proliferator-activated receptor (PPAR), retinoid X receptor (RXR), and oxidative stress (NRF2) and had the potential for activation of several others. The bioactivity profile of the pyroplastics was most similar (similarity score = 0.96) to that of probable human carcinogens benzo[b]fluoranthene and benzo[k]fluoranthene despite the extracts being a complex mixture of thousands of compounds. The activity diminished only slightly for extracts of pyroplastic collected eight months after the spill. The AquaTox FACTORIAL bioassay measured the activation of ERα, ERβ, androgen receptor (AR), PPARα, PPARγ, and RXRβ for human, zebrafish (Danio rerio), Japanese medaka (Oryzias latipes), and rainbow trout (Oncorhynchus mykiss), revealing species-specific sensitivities to the chemicals associated with the pyroplastics. These findings provide needed information to guide long-term monitoring efforts, make hazard assessments of the spilled material, and direct further research on pyroplastic, an emerging global contaminant.
Collapse
Affiliation(s)
- Bryan D. James
- Department
of Marine Chemistry and Geochemistry, Woods
Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, United States
- Department
of Biology, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, United States
- Department
of Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | | | - Lyubov A. Medvedeva
- Attagene, Research Triangle Park, Morrisville, North Carolina 27709, United States
| | - Elena Martsen
- Attagene, Research Triangle Park, Morrisville, North Carolina 27709, United States
| | - Kristen L. Gorman
- Attagene, Research Triangle Park, Morrisville, North Carolina 27709, United States
| | - Benjamin Lin
- Attagene, Research Triangle Park, Morrisville, North Carolina 27709, United States
| | - Sergei S. Makarov
- Attagene, Research Triangle Park, Morrisville, North Carolina 27709, United States
| | - Lihini I. Aluwihare
- Scripps
Institution of Oceanography, University
of California San Diego, La Jolla, California 92093, United States
| | - Asha de Vos
- Oceanswell, Colombo 00500, Sri Lanka
- The
Oceans Institute, University of Western
Australia, Perth 6009, Australia
| | - Christopher M. Reddy
- Department
of Marine Chemistry and Geochemistry, Woods
Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, United States
| | - Mark E. Hahn
- Department
of Biology, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, United States
| |
Collapse
|
15
|
Campisi L, La Motta C, Napierska D. Polyvinyl chloride (PVC), its additives, microplastic and human health: Unresolved and emerging issues. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 960:178276. [PMID: 39765168 DOI: 10.1016/j.scitotenv.2024.178276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 12/13/2024] [Accepted: 12/22/2024] [Indexed: 01/18/2025]
Abstract
Polyvinyl chloride (PVC), a commonly used plastic across Europe, poses a number of risks at various stages of its life cycle. The carcinogenicity of PVC monomer, the need to use high number and volume of problematic additives, the easiness of fragmentation compared to other thermoplastics, the high volume of use in everyday products and the resulting extent to which European population is potentially exposed to both microplastics and chemicals and, finally, continuous problems during waste management, have raised concerns about impacts of PVC on human health and the environment for decades. As far back as in 2000, the European Commission recognized that PVC causes a wide range of serious problems for the environment and human health. More recently, in April 2022, PVC and its additives were included in the European Union's Restrictions Roadmap, and the European Chemicals Agency's investigation ruled that, to limit the use of some additives and to minimize releases of PVC microparticles, regulatory action would be necessary. Additionally, the Global Plastics Treaty discussions emphasise a need to ensure that plastics that remain in the economy are free of hazardous chemicals, including hazardous polymers. In this paper, we reviewed the available data on PVC microplastic, additives, the end of life options of products made of PVC, and how they all are connected. It is crucial to consider this polymer within the broader context of chemical pollution and circular economy, acknowledging that changes in how we manage our resources are necessary to achieve the goal for a truly non-toxic environment in the future.
Collapse
Affiliation(s)
- Luca Campisi
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, PI, Italy; Flashtox srl, Via Tosco Romagnola 136, 56025 Pontedera, PI, Italy
| | - Concettina La Motta
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, PI, Italy.
| | | |
Collapse
|
16
|
Akash K, Parthasarathi R, Elango R, Bragadeeswaran S. Exploring the intricate studies on low-density polyethylene (LDPE) biodegradation by Bacillus cereus AP-01, isolated from the gut of Styrofoam-fed Tenebrio molitor larvae. Biodegradation 2025; 36:12. [PMID: 39775270 DOI: 10.1007/s10532-024-10107-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025]
Abstract
This study aims to investigate the biodegradation potential of a gut bacterial strain, Bacillus cereus AP-01, isolated from Tenebrio molitor larvae fed Styrofoam, focusing on its efficacy in degrading low-density polyethylene (LDPE). The biodegradation process was evaluated through a series of assays, including clear zone assays, biodegradation assays, and planktonic cell growth assessments in mineral salt medium (MSM) over a 28-day incubation period. Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) were employed to characterize the alterations in LDPE pellets, followed by molecular characterization. Over three months, sterile soil + LDPE pellets were treated with different concentrations of gut bacterial strain. The degradation capabilities were assessed by measuring pH, total microbial counts, carbon dioxide evolution, weight loss, and conducting phase contrast microscopy and mechanical strength tests. Results demonstrated that MSM containing LDPE as a carbon source with gut bacterial strain produced a clear zone and enhanced planktonic cell growth. FTIR analysis revealed the formation of new functional groups in the LDPE, while SEM images displayed surface erosion and cracking, providing visual evidence of biodegradation. Molecular characterization confirmed the strain as Bacillus cereus AP-01 (NCBI Accession Number: OR288218.1). A 10% inoculum concentration of Bacillus cereus AP-01 exhibited increased soil bacterial counts, carbon dioxide evolution, and pH levels, alongside a notable weight loss of 30.3% in LDPE pellets. Mechanical strength assessments indicated substantial reductions in tensile strength (7.81 ± 0.84 MPa), compression (4.92 ± 0.53 MPa), hardness (51.96 ± 5.62 shore D), flexibility (10.62 ± 1.15 MPa), and impact resistance (14.79 ± 0.94 J). These findings underscore the biodegradation potential of Bacillus cereus AP-01, presenting a promising strategy for addressing the global LDPE pollution crisis.
Collapse
Affiliation(s)
- Krishnamoorthi Akash
- Department of Microbiology, Faculty of Agriculture, Annamalai University, Annamalai Nagar, Chidambaram, Tamilnadu, 608002, India
| | - Rengasamy Parthasarathi
- Department of Microbiology, Faculty of Agriculture, Annamalai University, Annamalai Nagar, Chidambaram, Tamilnadu, 608002, India.
- Department of Soil Science and Agricultural Chemistry, Anbil Dharmalingam Agricultural College and Research Institute, Trichy, Tamilnadu, 620027, India.
| | - Rajavel Elango
- Department of Microbiology, Faculty of Agriculture, Annamalai University, Annamalai Nagar, Chidambaram, Tamilnadu, 608002, India
| | - Subramanian Bragadeeswaran
- Centre of Advanced Study in Marine Biology, Faculty of Marine Sciences, Annamalai University, Parangipettai, Tamilnadu, 608502, India
| |
Collapse
|
17
|
Le Bihanic F, Cormier B, Dassié E, Lecomte S, Receveur J, Le Floch S, Cachot J, Morin B. Toxicity assessment of DMSO extracts of environmental aged beached plastics using human cell lines. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117604. [PMID: 39778318 DOI: 10.1016/j.ecoenv.2024.117604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 12/20/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025]
Abstract
Plastic products contain complex mixtures of chemical compounds that are incorporated into polymers to improve material properties. Besides the intentional chemical additives, other compounds including residual monomers and non-intentionnaly added substances (NIAS) as well as sorbed pollutants are usually also present in aged plastic. Since most of these substances are only loosely bound to the polymer via non-covalently interactions, i.e., van der Waals forces, they may leach to the surrounding environment. Although there is increasing knowledge about toxicity of weathered plastic to aquatic organisms, only little is known about how plastic associated chemicals affect human health. Seafood consumption is one of the routes of human exposure to microplastics. The aim of this study was to evaluate the ability of naturally aged plastic associated chemicals to induce harmful effects to human health via the consumption of MP-contaminated seafood. Human colorectal adenocarcinoma Caco-2 and human hepatocyte carcinoma HepG2 cells were selected as model of the colon and liver cells respectively. They are known for their high capacity to metabolize organic contaminants. Both cell lines were exposed to DMSO extracts of different plastics to investigate the effects of chemicals on cell viability, oxidative stress induction and genotoxicity. In addition, the estrogenic effects of DMSO-extracts were evaluated using an estrogen-dependent reporter gene assay in T47D-Kbluc human breast cancer cells. Chemical profiles of the DMSO extracts were polymer-dependent, with polyvinyl chloride (PVC) highly contaminated with metals while polypropylene (PP) contained the lowest concentration of metals. Organic pollutants, including polycyclic aromatic hydrocarbons, were mainly found in PVC, high density polyethylene (HDPE) and PP extracts, whereas other extracted plastics had less (PP) to no organic contamination (polyethylene terephthalate PET). PVC was the most toxic plastic inducing cytotoxicity for both cell lines. DNA damage was observed for Caco-2 cells exposure to HDPE, PVC and nylon. Reactive oxygen species were induced only with nylon extracts in intestinal cells. No toxicity was observed for PP and PET and none of the tested plastics had any estrogenic effect. Our results demonstrate that some environmental aged plastic material released a variety of known and unknown chemical compounds some of which are toxic in vitro and contribute to the knowledge on adverse human health effects of plastics.
Collapse
Affiliation(s)
- Florane Le Bihanic
- Univ. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, Pessac F-33600, France
| | - Bettie Cormier
- Univ. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, Pessac F-33600, France
| | - Emilie Dassié
- Univ. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, Pessac F-33600, France
| | - Sophie Lecomte
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, Pessac F-33600, France
| | - Justine Receveur
- CEDRE, Research Department, 715 rue Alain Colas, CS 41836, Cedex 2, Brest 29218, France
| | - Stéphane Le Floch
- CEDRE, Research Department, 715 rue Alain Colas, CS 41836, Cedex 2, Brest 29218, France
| | - Jérôme Cachot
- Univ. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, Pessac F-33600, France
| | - Bénédicte Morin
- Univ. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, Pessac F-33600, France.
| |
Collapse
|
18
|
Andersen H, Müller MHB, Yadetie F, Berg V, Nourizadeh-Lillabadi R, Chikwati EM, Hermansen L, Goksøyr A, Lyche JL. Plastic additives affect estrogenic pathways and lipid metabolism in precision - cut - liver slices in Atlantic cod (Gadus morhua). THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:177927. [PMID: 39689470 DOI: 10.1016/j.scitotenv.2024.177927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 11/04/2024] [Accepted: 12/02/2024] [Indexed: 12/19/2024]
Abstract
The overall aim of the present study was to determine if exposure to three high volume plastic additives, including diethylhexyl phthalate (DEHP), bisphenol A (BPA) and benzotriazoles (BT), have the potential to promote adverse effects in Atlantic cod (G. morhua). Ex vivo precision cut - liver slices (PCLS) from six male juvenile Atlantic cod were exposed to four concentrations of mono-(2-ethylhexyl)-phthalate (MEHP, the main metabolite of DEHP), BPA and BT both singly and in mixtures ranging from 0.1 to 100 μM (MEHP), 0.022-22 μM (BPA) and 0.042-42 μM (BT). Histology and transmission electron microscopy (TEM) were used to assess pathological changes and ultrastructure of the exposed liver tissue. Vitellogenin (Vtg) produced by the hepatic tissue was analyzed using ELISA, and the transcription levels of selected biomarker genes (vtg1, esr1, cyp1a, scdb, aclya, fabp1a, acox1, hnf4a and cebp) were measured using Quantitative real-time polymerase chain reaction (Q-PCR). An estrogenic effect was observed with a significant upregulation of the vtg1 and esr1 genes and increase in Vtg protein synthesis following exposure to BPA and a mixture of the selected compounds. The hnf4a showed a significant downregulation following mixture exposure, where the BPA was suspected to be the main driver for this response although not inducing a significant downregulation in the single component exposure. There was no significant difference between the mixture exposure and the individual compound exposures, nevertheless a tendency of an antagonistic mixture effect for the biomarkers of estrogenic effect (vtg1, esr1 and Vtg), and possibly synergistic or additive effect on the lipid metabolism related gene hnf4a, warrants further investigation.
Collapse
Affiliation(s)
- Hilde Andersen
- Department of Paraclinical Sciences, Norwegian University of Life Sciences, Oslo, Norway
| | - Mette H B Müller
- Department of Production Animal Clinical Sciences, Norwegian University of Life Sciences, Oslo, Norway.
| | - Fekadu Yadetie
- Department of Biological Sciences, University of Bergen, Norway
| | - Vidar Berg
- Department of Paraclinical Sciences, Norwegian University of Life Sciences, Oslo, Norway
| | | | - Elvis M Chikwati
- Department of Preclinical Sciences and Pathology, Norwegian University of Life Sciences, Oslo, Norway
| | - Lene Hermansen
- Imaging Center, Norwegian University of Life Sciences, Oslo, Norway
| | - Anders Goksøyr
- Department of Biological Sciences, University of Bergen, Norway
| | - Jan L Lyche
- Department of Paraclinical Sciences, Norwegian University of Life Sciences, Oslo, Norway
| |
Collapse
|
19
|
Meng W, Chen Q, Zhang Y, Sun H, Li J, Sun H, Liu C, Fang M, Su G. Tracking chemical feature releases from plastic food packaging to humans. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135897. [PMID: 39298966 DOI: 10.1016/j.jhazmat.2024.135897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 09/10/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
Humankind are being exposed to a cocktail of chemicals, such as chemicals released from plastic food packaging. It is of great importance to evaluate the prevalence of plastic food packaging-derived chemicals pollution along the flow of food-human. We developed a robust and practical database of 2101 chemical features associated with plastic food packaging that combined data from three sources, 925 of which were acquired from non-target screening of chemical extracts from eight commonly used plastic food packaging materials. In this database, 625 features, especially half of the non-targets, were potential migrants who likely entered our bodies through dietary intake. Biomonitoring analysis of plastic chemical features in foodstuffs or human serum samples showed that approximately 78 % of the 2101 features were detectable and approximately half were non-targets. Of these, 17 plastic chemicals with high detection frequencies (DFs) in the human serum were confirmed to be functional chemical additives. Together, our work indicates that the number of plastic chemicals in our bodies could be far greater than previously recognized, and human exposure to plastic chemicals might pose a potential health risk.
Collapse
Affiliation(s)
- Weikun Meng
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Qianyu Chen
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yayun Zhang
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Hao Sun
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jianhua Li
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Hong Sun
- Jiangsu Provincial Center for Disease Control and Prevention, 210009 Nanjing, China.
| | - Chunsheng Liu
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Mingliang Fang
- Department of Environmental Science and Engineering, Fudan University, 200433 Shanghai, China
| | - Guanyong Su
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| |
Collapse
|
20
|
Caneparo C, Carignan L, Lonina E, Goulet SM, Pellerin FA, Chabaud S, Bordeleau F, Bolduc S, Pelletier M. Impact of Endocrine Disruptors on the Genitourinary Tract. J Xenobiot 2024; 14:1849-1888. [PMID: 39728407 DOI: 10.3390/jox14040099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/04/2024] [Accepted: 11/26/2024] [Indexed: 12/28/2024] Open
Abstract
Over the last decades, the human species has seen an increase in the incidence of pathologies linked to the genitourinary tract. Observations in animals have allowed us to link these increases, at least in part, to changes in the environment and, in particular, to an increasing presence of endocrine disruptors. These can be physical agents, such as light or heat; natural products, such as phytoestrogens; or chemicals produced by humans. Endocrine disruptors may interfere with the signaling pathways mediated by the endocrine system, particularly those linked to sex hormones. These factors and their general effects are presented before focusing on the male and female genitourinary tracts by describing their anatomy, development, and pathologies, including bladder and prostate cancer.
Collapse
Affiliation(s)
- Christophe Caneparo
- Department of Pediatrics, Gynecology and Obstetrics, Faculty of Medicine, Geneva University Hospitals, University of Geneva, CH-1205 Geneva, Switzerland
| | - Laurence Carignan
- Oncology Division, CHU de Québec-Université Laval Research Center and Université Laval Cancer Research Center, Quebec, QC G1R 3S3, Canada
- Regenerative Medicine Division, Centre de Recherche en Organogénèse Expérimentale/LOEX, CHU de Québec-Université Laval Research Center, Université Laval, Quebec, QC G1J 5B3, Canada
| | - Elena Lonina
- Infectious and Immune Diseases Division, CHU de Québec-Université Laval Research Center, Quebec, QC G1V 4G2, Canada
- Intersectorial Centre for Endocrine Disruptors Analysis, Institut National de La Recherche Scientifique (INRS), Montreal, QC H4V 1B7, Canada
- Department of Microbiology-Infectious Diseases and Immunology, Faculty of Medicine, Laval University; ARThrite Research Center, Université Laval, Quebec, QC G1V 0A6, Canada
| | - Sarah-Maude Goulet
- Infectious and Immune Diseases Division, CHU de Québec-Université Laval Research Center, Quebec, QC G1V 4G2, Canada
- Intersectorial Centre for Endocrine Disruptors Analysis, Institut National de La Recherche Scientifique (INRS), Montreal, QC H4V 1B7, Canada
- Department of Microbiology-Infectious Diseases and Immunology, Faculty of Medicine, Laval University; ARThrite Research Center, Université Laval, Quebec, QC G1V 0A6, Canada
| | - Felix-Antoine Pellerin
- Oncology Division, CHU de Québec-Université Laval Research Center and Université Laval Cancer Research Center, Quebec, QC G1R 3S3, Canada
- Regenerative Medicine Division, Centre de Recherche en Organogénèse Expérimentale/LOEX, CHU de Québec-Université Laval Research Center, Université Laval, Quebec, QC G1J 5B3, Canada
| | - Stéphane Chabaud
- Regenerative Medicine Division, Centre de Recherche en Organogénèse Expérimentale/LOEX, CHU de Québec-Université Laval Research Center, Université Laval, Quebec, QC G1J 5B3, Canada
| | - François Bordeleau
- Oncology Division, CHU de Québec-Université Laval Research Center and Université Laval Cancer Research Center, Quebec, QC G1R 3S3, Canada
- Regenerative Medicine Division, Centre de Recherche en Organogénèse Expérimentale/LOEX, CHU de Québec-Université Laval Research Center, Université Laval, Quebec, QC G1J 5B3, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Quebec, QC G1V 0A6, Canada
| | - Stéphane Bolduc
- Regenerative Medicine Division, Centre de Recherche en Organogénèse Expérimentale/LOEX, CHU de Québec-Université Laval Research Center, Université Laval, Quebec, QC G1J 5B3, Canada
- Department of Surgery, Université Laval, Quebec, QC G1V 0A6, Canada
| | - Martin Pelletier
- Infectious and Immune Diseases Division, CHU de Québec-Université Laval Research Center, Quebec, QC G1V 4G2, Canada
- Intersectorial Centre for Endocrine Disruptors Analysis, Institut National de La Recherche Scientifique (INRS), Montreal, QC H4V 1B7, Canada
- Department of Microbiology-Infectious Diseases and Immunology, Faculty of Medicine, Laval University; ARThrite Research Center, Université Laval, Quebec, QC G1V 0A6, Canada
| |
Collapse
|
21
|
Hong Y, Wang Y, Wang D, Yuan Q, Yang Z, Deng C. Assessing male reproductive toxicity of environmental pollutant di-ethylhexyl phthalate with network toxicology and molecular docking strategy. Reprod Toxicol 2024; 130:108749. [PMID: 39551107 DOI: 10.1016/j.reprotox.2024.108749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/10/2024] [Accepted: 11/12/2024] [Indexed: 11/19/2024]
Abstract
Environmental pollutants, especially endocrine-disrupting chemicals (EDCs) like di-ethylhexyl phthalate (DEHP), pose serious threats to human health, with DEHP widely implicated in male reproductive toxicity. However, the complex molecular interactions remain unknown. We employed a network toxicology approach combined with molecular docking analysis to identify potential targets and mechanisms of DEHP's toxic effects. Databases such as ChEMBL, STITCH, OMIM, and GeneCards were utilized to gather data, and Cytoscape software was used to construct protein-protein interaction networks. A total of 51 potential targets were identified, with eight core targets, including PTGS2, CASP3, and ESR1, highlighted for their roles in oxidative stress, apoptosis, and hormonal dysregulation. KEGG pathway enrichment analysis revealed significant associations with pathways in cancer, cytokine-mediated signaling, and the hypothalamic-pituitary-gonadal axis. Additionally, gene expression datasets from the Gene Expression Omnibus (GEO) database were analyzed to identify differentially expressed genes overlapped with DEHP targets in testicular diseases. Molecular docking results confirmed strong binding affinities between DEHP and the core target proteins, suggesting a robust interaction mechanism. This study underscores the need for further investigation into DEHP's toxic mechanisms and its combined effects with other environmental pollutants, paving the way for comprehensive risk assessments and the development of targeted intervention strategies.
Collapse
Affiliation(s)
- Yanggang Hong
- The Second School of Medicine, Wenzhou Medical University, Wenzhou Zhejiang 325035, China.
| | - Yi Wang
- The First School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Deqi Wang
- The First School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Qichao Yuan
- The Second School of Medicine, Wenzhou Medical University, Wenzhou Zhejiang 325035, China
| | - Zihan Yang
- The Second School of Medicine, Wenzhou Medical University, Wenzhou Zhejiang 325035, China
| | - Chuncao Deng
- The Second School of Medicine, Wenzhou Medical University, Wenzhou Zhejiang 325035, China
| |
Collapse
|
22
|
Omidoyin KC, Jho EH. Environmental occurrence and ecotoxicological risks of plastic leachates in aquatic and terrestrial environments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176728. [PMID: 39383966 DOI: 10.1016/j.scitotenv.2024.176728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/18/2024] [Accepted: 10/02/2024] [Indexed: 10/11/2024]
Abstract
Plastic pollution poses a significant threat to environmental and human health, with microplastics widely distributed across various ecosystems. Although current ecotoxicological studies have primarily focused on the inherent toxicity of plastics in natural environments, the role of chemical additives leaching from plastics into the environment remains underexplored despite their significant contribution to the overall toxic potential of plastics. Existing systematic studies on plastic leachates have often examined isolated additive compounds, neglecting the ecotoxicological effects of multiple compounds present in plastic leachates. Additionally, most previous research has focused on aquatic environments, overlooking the leaching mechanisms and ecological risks to diverse species with various ecological roles in aquatic and terrestrial ecosystems. This oversight hinders comprehensive ecological risk assessments. This study addresses these research gaps by reviewing the environmental occurrence of plastic leachates and their ecotoxicological impacts on aquatic and terrestrial ecosystems. Key findings reveal the pervasive presence of plastic leachates in various environments, identifying common additives such as phthalates, polybrominated diphenyl ethers (PBDEs), bisphenol A (BPA), and nonylphenols (NPs). Ecotoxicologically, chemical additives leaching from plastics under specific environmental conditions can influence their bioavailability and subsequent uptake by organisms. This review proposes a novel ecotoxicity risk assessment framework that integrates chemical analysis, ecotoxicological testing, and exposure assessment, offering a comprehensive approach to evaluating the risks of plastic leachates. This underscores the importance of interdisciplinary research that combines advanced analytical techniques with ecotoxicological studies across diverse species and environmental conditions to enhance the understanding of the complex impacts of plastic leachates and inform future research and regulatory policies.
Collapse
Affiliation(s)
- Kehinde Caleb Omidoyin
- Department of Agricultural Chemistry, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| | - Eun Hea Jho
- Department of Agricultural Chemistry, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea; Department of Agricultural and Biological Chemistry, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea; Center of SEBIS (Strategic Solutions for Environmental Blindspots in the Interest of Society), 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea.
| |
Collapse
|
23
|
Gasciauskaite G, Lunkiewicz J, Tucci M, Von Deschwanden C, Nöthiger CB, Spahn DR, Tscholl DW. Environmental and economic impact of sustainable anaesthesia interventions: a single-centre retrospective observational study. Br J Anaesth 2024; 133:1449-1458. [PMID: 38177005 DOI: 10.1016/j.bja.2023.11.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/03/2023] [Accepted: 11/16/2023] [Indexed: 01/06/2024] Open
Abstract
BACKGROUND Anaesthesia contributes substantially to the environmental impact of healthcare. To reduce the ecological footprint of anaesthesia, a set of sustainability interventions was implemented in the University Hospital Zurich, Switzerland. This study evaluates the environmental and economic implications of these interventions. METHODS This was a single-centre retrospective observational study. We analysed the environmental impact and financial implications of changes in sevoflurane, desflurane, propofol, and plastic consumption over 2 yr (April 2021 to March 2023). The study included pre-implementation, implementation, and post-implementation phases. RESULTS After implementation of sustainability measures, desflurane use was eliminated, there was a decrease in the consumption of sevoflurane from a median (inter-quartile range) of 25 (14-39) ml per case to 11 (6-22) ml per case (P<0.0001). Propofol consumption increased from 250 (150-721) mg per case to 743 (370-1284) mg per case (P<0.0001). Use of plastics changed: in the first quarter analysed, two or more infusion syringes were used in 62% of cases, compared with 74% of cases in the last quarter (P<0.0001). Two or more infusion lines were used in 58% of cases in the first quarter analysed, compared with 68% of cases in the last quarter (P<0.0001). This resulted in an 81% reduction in overall environmental impact from 3 (0-7) to 1 (0-3) CO2 equivalents in kg per case (P<0.0001). The costs during the final study phase were 11% lower compared with those in the initial phase: from 25 (13-41) to 21 (14-31) CHF (Swiss francs) per case (P<0.0001). CONCLUSIONS Implementing sustainable anaesthesia interventions can significantly reduce the environmental impact and cost of anaesthesia.
Collapse
Affiliation(s)
- Greta Gasciauskaite
- Institute of Anaesthesiology, University Hospital Zurich, Zurich, Switzerland.
| | - Justyna Lunkiewicz
- Institute of Anaesthesiology, University Hospital Zurich, Zurich, Switzerland
| | - Michael Tucci
- Institute of Anaesthesiology, University Hospital Zurich, Zurich, Switzerland
| | | | | | - Donat R Spahn
- Institute of Anaesthesiology, University Hospital Zurich, Zurich, Switzerland
| | - David W Tscholl
- Institute of Anaesthesiology, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
24
|
Mummaleti G, Feng J, Mohan A, Suh J, Kong ZL, Kong F. Microplastics interactions and transformations during in vitro digestion with milk. Food Res Int 2024; 197:115247. [PMID: 39593329 DOI: 10.1016/j.foodres.2024.115247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/24/2024] [Accepted: 10/18/2024] [Indexed: 11/28/2024]
Abstract
Despite increasing awareness of microplastic contamination in food, the specific interactions and transformations of microplastics during digestion remain poorly understood. The study investigates the behavior of microplastics during in vitro digestion processes and their interaction with components of milk. The in vitro digestion studies are conducted to study the changes in microplastics in simulated digestive fluids, with and without milk. The study revealed that microplastics undergo significant changes in size, surface morphology, and chemical properties when subjected to digestion with and without milk. Notably, microplastics digested with milk exhibited a 15-25% increase in aggregation due to protein corona formation, enhancing their potential for interactions within biological systems. FTIR analysis revealed the formation of OH and CO groups in digested microplastics, indicating hydrolysis and structural changes. The stronger peaks in the 1630-1650 cm-1 range suggest significant adsorption of milk proteins, highlighting the complex interactions during digestion. Additionally, the chemicals and additives leached from microplastics into digesta raising the concerns about their potential health effects. The study emphasizes the necessity for additional research and regulatory measures to address the risks associated with microplastic contamination in food.
Collapse
Affiliation(s)
- Gopinath Mummaleti
- Department of Food Science and Technology, The University of Georgia, Athens, GA 30602, USA
| | - Jiannan Feng
- Department of Food Science and Technology, The University of Georgia, Athens, GA 30602, USA
| | - Anand Mohan
- Department of Food Science and Technology, The University of Georgia, Athens, GA 30602, USA
| | - Joonhyuk Suh
- Department of Food Science and Technology, The University of Georgia, Athens, GA 30602, USA
| | - Zwe-Ling Kong
- Department of Food Science, National Taiwan Ocean University, Keelung 202301, Taiwan
| | - Fanbin Kong
- Department of Food Science and Technology, The University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
25
|
Peng X, Li X, Zhou J, Tan J, Chen G, Zhu Z, Yang T. Beyond plastic pollution: Unveiling chemical release from plastic debris in river water and seawater using non-target screening. WATER RESEARCH 2024; 267:122515. [PMID: 39340868 DOI: 10.1016/j.watres.2024.122515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/01/2024] [Accepted: 09/23/2024] [Indexed: 09/30/2024]
Abstract
Oceans and rivers are predominant sinks, reservoirs, and carriers of plastic debris that are proposed to be long term sources of a variety of contaminants in the environments. This research unveiled kinetics of chemical releases from plastic debris in freshwater and marine environment via artificial river water (ARW) and seawater (ASW) in combination of nontarget screening. Chemical leaching from PVC cord particles in the ARW and ASW basically followed the first order kinetics, reaching pseudo-equilibrium in 30d and 14d, respectively, associated with both particle surface - water partitioning and inner-particle diffusion of chemicals. Dissolved organic carbon, finer size, and weathering of plastic particles might enhance whereas metal ions potentially hinder chemical releases from plastic debris in waters, respectively. Salinity and pH showed moderate effects on chemical leaching. In addition, chemicals' physiochemical properties might also affect their leaching behavior. Hundreds to thousands of chemicals would be released from plastic debris in days once entering waters, among which > 80% were unknown with rare or no information about eco-toxicity and environmental fate, posing unpredicted risks to the environment. Furthermore, new chemicals may keep being released with increasing weathering and extending retention time of plastics in waters, leading to increases in both numbers and complexities of released chemicals. Chemical leaching from plastics showed product-dependence and certain differences in freshwater and seawater. Large numbers of unknown chemicals potentially released from plastic debris in rivers, lakes, and oceans and subsequent environmental risks warrant in-depth research.
Collapse
Affiliation(s)
- Xianzhi Peng
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China.
| | - Xinling Li
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Zhou
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jianhua Tan
- Guangzhou Quality Supervision and Testing Institute, Guangzhou, 510050, China
| | - Guangshi Chen
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, 524054, China
| | - Zewen Zhu
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tao Yang
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
26
|
Hong AR, Kim JS. Biological hazards of micro- and nanoplastic with adsorbents and additives. Front Public Health 2024; 12:1458727. [PMID: 39651483 PMCID: PMC11621061 DOI: 10.3389/fpubh.2024.1458727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 10/29/2024] [Indexed: 12/11/2024] Open
Abstract
With the increased worldwide production of plastics, interest in the biological hazards of microplastics (MP) and nanoplastics (NP), which are widely distributed as environmental pollutants, has also increased. This review aims to provide a comprehensive overview of the toxicological effects of MP and NP on in vitro and in vivo systems based on studies conducted over the past decade. We summarize key findings on how the type, size, and adsorbed substances of plastics, including chemical additives, impact organisms. Also, we address various exposure routes, such as ingestion, inhalation, and skin contact, and their biological effects on both aquatic and terrestrial organisms, as well as human health. Additionally, the review highlights the increased toxicity of MP and NP due to their smaller size and higher bioavailability, as well as the interactions between these particles and chemical additives. This review emphasizes the need for further research into the complex biological interactions and risks posed by the accumulation of MP and NP in the environment, while also proposing potential directions for future studies.
Collapse
Affiliation(s)
- Ah Reum Hong
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences (KIRAMS), Seoul, Republic of Korea
- Radiological and Medico-Oncological Sciences, University of Science and Technology (UST), Seoul, Republic of Korea
| | - Jin Su Kim
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences (KIRAMS), Seoul, Republic of Korea
- Radiological and Medico-Oncological Sciences, University of Science and Technology (UST), Seoul, Republic of Korea
| |
Collapse
|
27
|
Amato A, Esposito R, Viel T, Glaviano F, Cocca M, Manfra L, Libralato G, Somma E, Lorenti M, Costantini M, Zupo V. Effects of biodegradable microplastics on the crustacean isopod Idotea balthica basteri Audouin, 1826. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 361:124897. [PMID: 39243934 DOI: 10.1016/j.envpol.2024.124897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 09/09/2024]
Abstract
Plastic pollution is a notable environmental issue, being plastic widespread and characterized by long lifetime. Serious environmental problems are caused by the improper management of plastic end-of-life. In fact, plastic litter is currently detected in any environment. Biodegradable Polymers (BPs) are promising materials if correctly applied and managed at their end of life, to minimize environmental problems. However, poor data on the fate and toxicity of BPs on marine organisms still limit their applicability. In this work we tested the effects of five biodegradable polymers (polybutylene succinate, PBS; polybutylene succinate-co-butylene adipate, PBSA; polycaprolactone, PCL; poly (3-hydroxybutyrates, PHB; polylactic acid, PLA) widely used for several purposes. Adult individuals of the isopod Idotea balthica basteri were fed on these polymers for twenty-seven days by adding biodegradable microplastic polymers (BMPs) to formulated feeds at two concentrations, viz. 0.84 and 8.4 g/kg feed. The plastic fragments affected the mortality rates of the isopods, as well as the expression levels of eighteen genes (tested by Real Time qPCR) involved in stress response and detoxification processes. Our findings confirmed that I. balthica basteri is a convenient model organism to study the response to environmental pollution and emerging contaminants in the aquatic environment, and highlighted the need for the correct use of BMPs.
Collapse
Affiliation(s)
- Amalia Amato
- Stazione Zoologica Anton Dohrn, Department of Ecosustainable Marine Biotechnology, Via Ammiraglio Ferdinando Acton 55, 80133, Naples, Italy; Department of Biology, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cinthia 21, 80126, Naples, Italy
| | - Roberta Esposito
- Stazione Zoologica Anton Dohrn, Department of Ecosustainable Marine Biotechnology, Via Ammiraglio Ferdinando Acton 55, 80133, Naples, Italy
| | - Thomas Viel
- Stazione Zoologica Anton Dohrn, Department of Ecosustainable Marine Biotechnology, Via Ammiraglio Ferdinando Acton 55, 80133, Naples, Italy
| | - Francesca Glaviano
- Stazione Zoologica Anton Dohrn, Department of Ecosustainable Marine Biotechnology, Ischia Marine Centre, 80077, Ischia, Italy
| | - Mariacristina Cocca
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy, Via Campi Flegrei, 34, 80078, Pozzuoli, Napoli, Italy
| | - Loredana Manfra
- Stazione Zoologica Anton Dohrn, Department of Ecosustainable Marine Biotechnology, Via Ammiraglio Ferdinando Acton 55, 80133, Naples, Italy; Institute for Environmental Protection and Research (ISPRA), Via Vitaliano Brancati 48, 00144, Rome, Italy
| | - Giovanni Libralato
- Stazione Zoologica Anton Dohrn, Department of Ecosustainable Marine Biotechnology, Via Ammiraglio Ferdinando Acton 55, 80133, Naples, Italy; Department of Biology, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cinthia 21, 80126, Naples, Italy
| | - Emanuele Somma
- Stazione Zoologica Anton Dohrn, Department of Ecosustainable Marine Biotechnology, Ischia Marine Centre, 80077, Ischia, Italy
| | - Maurizio Lorenti
- Stazione Zoologica Anton Dohrn, Department of Integrative Marine Ecology, Ischia Marine Centre, 80077 Ischia, Italy
| | - Maria Costantini
- Stazione Zoologica Anton Dohrn, Department of Ecosustainable Marine Biotechnology, Via Ammiraglio Ferdinando Acton 55, 80133, Naples, Italy.
| | - Valerio Zupo
- Stazione Zoologica Anton Dohrn, Department of Ecosustainable Marine Biotechnology, Ischia Marine Centre, 80077, Ischia, Italy
| |
Collapse
|
28
|
Crusot M, Gardon T, Richmond T, Jezequel R, Barbier E, Gaertner-Mazouni N. Chemical toxicity of leachates from synthetic and natural-based spat collectors on the embryo-larval development of the pearl oyster, Pinctada margaritifera. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135647. [PMID: 39217928 DOI: 10.1016/j.jhazmat.2024.135647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/21/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
In French Polynesia, the pearl farming industry relies entirely on collecting natural spat using a shade-mesh collector, which is reported to contribute to both plastic pollution and the release of toxic chemicals. With the aim of identifying more environment-friendly collectors, this study investigates the chemical toxicity of shade-mesh (SM) and alternative materials, including reusable plates (P), a newly developed biomaterial (BioM) and Coconut coir geotextile (Coco), on the embryo-larval development of Pinctada margaritifera. Embryos were exposed during 48 h to four concentrations (0, 0.1, 10 and 100 g L-1) of leachates produced from materials. Chemical screening of raw materials and leachates was performed to assess potential relationships with the toxicity observed on D-larvae development. Compared to the other tested materials, results demonstrated lower levels of chemical pollutants in BioM and no toxic effects of its leachates at 10 g L-1. No toxicity was observed at the lowest tested concentration (0.1 g L-1). These findings offer valuable insights for promoting safer spat collector alternatives such as BioM and contribute to the sustainable development of pearl farming.
Collapse
Affiliation(s)
- M Crusot
- UPF, ILM, Ifremer, IRD, UMR 241 SECOPOL, Tahiti, French Polynesia.
| | - T Gardon
- UPF, ILM, Ifremer, IRD, UMR 241 SECOPOL, Tahiti, French Polynesia; Ifremer, ILM, IRD, UPF, UMR 241 SECOPOL, Tahiti, French Polynesia
| | - T Richmond
- UPF, ILM, Ifremer, IRD, UMR 241 SECOPOL, Tahiti, French Polynesia
| | - R Jezequel
- CEDRE, 715 Rue Alain Colas, 29218 Brest, France
| | - E Barbier
- UPF, ILM, Ifremer, IRD, UMR 241 SECOPOL, Tahiti, French Polynesia
| | | |
Collapse
|
29
|
Brander SM, Senathirajah K, Fernandez MO, Weis JS, Kumar E, Jahnke A, Hartmann NB, Alava JJ, Farrelly T, Almroth BC, Groh KJ, Syberg K, Buerkert JS, Abeynayaka A, Booth AM, Cousin X, Herzke D, Monclús L, Morales-Caselles C, Bonisoli-Alquati A, Al-Jaibachi R, Wagner M. The time for ambitious action is now: Science-based recommendations for plastic chemicals to inform an effective global plastic treaty. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:174881. [PMID: 39047828 DOI: 10.1016/j.scitotenv.2024.174881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/01/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024]
Abstract
The ubiquitous and global ecological footprint arising from the rapidly increasing rates of plastic production, use, and release into the environment is an important modern environmental issue. Of increasing concern are the risks associated with at least 16,000 chemicals present in plastics, some of which are known to be toxic, and which may leach out both during use and once exposed to environmental conditions, leading to environmental and human exposure. In response, the United Nations member states agreed to establish an international legally binding instrument on plastic pollution, the global plastics treaty. The resolution acknowledges that the treaty should prevent plastic pollution and its related impacts, that effective prevention requires consideration of the transboundary nature of plastic production, use and pollution, and that the full life cycle of plastics must be addressed. As a group of scientific experts and members of the Scientists' Coalition for an Effective Plastics Treaty, we concur that there are six essential "pillars" necessary to truly reduce plastic pollution and allow for chemical detoxification across the full life cycle of plastics. These include a plastic chemical reduction and simplification, safe and sustainable design of plastic chemicals, incentives for change, holistic approaches for alternatives, just transition and equitable interventions, and centering human rights. There is a critical need for scientifically informed and globally harmonized information, transparency, and traceability criteria to protect the environment and public health. The right to a clean, healthy, and sustainable environment must be upheld, and thus it is crucial that scientists, industry, and policy makers work in concert to create a future free from hazardous plastic contamination.
Collapse
Affiliation(s)
- Susanne M Brander
- Oregon State University, Dept. Fisheries, Wildlife, Conservation Sciences; Coastal Oregon Marine Experiment Station, Newport, OR, USA.
| | - Kala Senathirajah
- School of Engineering, University of Newcastle, Callaghan, Australia
| | - Marina O Fernandez
- Laboratory of Neuroendocrinology, Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (IBYME-CONICET), Argentina
| | - Judith S Weis
- Biological Sciences, Rutgers University, Newark, NJ, USA
| | - Eva Kumar
- Department of Health Security, Finnish Institute for Health and Welfare, Kuopio, Finland
| | - Annika Jahnke
- Department of Exposure Science, Helmholtz-Centre for Environmental Research - UFZ, Permoserstr, Leipzig, Germany; Institute for Environmental Research, RWTH Aachen University, Germany
| | - Nanna B Hartmann
- Department of Environmental and Resource Engineering, Technical University of Denmark, Bygningstorvet, Lyngby, Denmark
| | - Juan José Alava
- Ocean Pollution Research Unit, Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, Canada
| | - Trisia Farrelly
- School of People, Environment and Planning, Massey University, New Zealand
| | - Bethanie Carney Almroth
- Department of Biological and Environmental Sciences, University of Gothenburg, Göteborg, Sweden
| | - Ksenia J Groh
- Eawag - Swiss Federal Institute of Aquatic Science and Technology, Department of Environmental Toxicology, Duebendorf, Switzerland
| | - Kristian Syberg
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Johanna Sophie Buerkert
- Centre for Climate Change Law and Governance, Faculty of Law, University of Copenhagen, Denmark
| | - Amila Abeynayaka
- Quantitative Sustainability Assessment, Department of Environmental and Resource Engineering, Technical University of Denmark, Bygningstorvet, Lyngby, Denmark; Moore Institute for Plastic Pollution Research, Long Beach, CA, USA
| | | | - Xavier Cousin
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, INRAE, Palavas, France
| | - Dorte Herzke
- NILU & Norwegian Institute of Public Health (NIPH), Oslo, Norway
| | - Laura Monclús
- Department of Biology, Norwegian University of Science and Technology (NTNU), Trondheim, Norway; Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | | | - Andrea Bonisoli-Alquati
- Department of Biological Sciences, California State Polytechnic University - Pomona, Pomona, CA, USA
| | - Rana Al-Jaibachi
- Department of Bioscience, University of Sheffield, Sheffield, United Kingdom
| | - Martin Wagner
- Department of Biology, Norwegian University of Science and Technology (NTNU), Trondheim, Norway; Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|
30
|
Al-Darraji A, Oluwoye I, Lagat C, Tanaka S, Barifcani A. Erosion of rigid plastics in turbid (sandy) water: quantitative assessment for marine environments and formation of microplastics. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:1847-1858. [PMID: 39221511 DOI: 10.1039/d4em00122b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Mechanical degradation (erosion) of plastics in the marine environment has been reported in many literature studies but without quantitative information. This type of degradation is crucial as it accounts for most of the initial microplastic products, in marine environments (e.g., rivers and oceans). Here, we quantify the erosion of plastics by water-borne sediments under typical perpendicular water velocities and sand loads of turbid rivers and coastal oceans. Polypropylene (PP) shows the highest response to water-borne erosion, with a surface degradation rate of 5160 μm per year (4.44 mg per mm2 per year), compared with high-density polyethylene (HDPE) with a degradation rate of 1874 μm per year (1.79 mg per mm2 per year), resulting in the formation of microplastics (MPs). The rate of formation of such microplastic particles (>10 μm), as characterised by a laser direct infrared (LDIR) chemical imaging system, amounts to 669 particles per mm2 per year for PP and 187 particles per mm2 per year for HDPE, exhibiting average particle sizes of 60 μm and 23 μm in the same order. Furthermore, surface microscopy provided valuable insights into the dominant erosion mechanisms, revealing three distinct zones and the surface features reveal the brittle erosion behaviours. These results will enable a better assessment of degradation and lifetime prediction of plastics in turbid rivers and coastal oceans, allowing precise estimation of the rate of formation of MPs.
Collapse
Affiliation(s)
- Ali Al-Darraji
- Discipline of Chemical Engineering, WA School of Mines: Minerals, Energy and Chemical Engineering, Curtin University, Western Australia, Australia.
| | - Ibukun Oluwoye
- Curtin Corrosion Centre, Western Australian School of Mines: Minerals, Energy and Chemical Engineering, Curtin University, Perth, Australia.
- Graduate School of Global Environmental Studies, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto, Japan
| | - Christopher Lagat
- Discipline of Petroleum Engineering, WA School of Mines: Minerals, Energy and Chemical Engineering, Curtin University, Western Australia, Australia
| | - Shuhei Tanaka
- Graduate School of Global Environmental Studies, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto, Japan
| | - Ahmed Barifcani
- Discipline of Petroleum Engineering, WA School of Mines: Minerals, Energy and Chemical Engineering, Curtin University, Western Australia, Australia
| |
Collapse
|
31
|
Martínez Rodríguez A, Kratina P, Jones JI. Microplastic pollution and nutrient enrichment shift the diet of freshwater macroinvertebrates. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 359:124540. [PMID: 39004208 DOI: 10.1016/j.envpol.2024.124540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/25/2024] [Accepted: 07/11/2024] [Indexed: 07/16/2024]
Abstract
Microplastic pollution poses a global threat to freshwater ecosystems, with laboratory experiments indicating potential toxic impacts through chemical toxicity, physical abrasion, and false satiation. Bioplastics have emerged as a potential greener alternative to traditional oil-based plastics. Yet, their environmental effects remain unclear, particularly at scales relevant to the natural environment. Additionally, the interactive impacts of microplastics with other environmental stressors, such as nutrient enrichment, are poorly understood and rarely studied. Under natural conditions organisms might be able to mitigate the toxic effects of microplastics by shifting their diet, but this ability may be compromised by other stressors. This study combines an outdoor mesocosm experiment and stable isotope analysis to determine changes in the trophic niches of three freshwater invertebrate species exposed to conventional (HDPE) and bio-based biodegradable (PLA) microplastics at two concentrations, both independently and combined with nutrient enrichment. Exposure to microplastics altered the isotopic niches of two of the invertebrate species, with nutrient enrichment mediating this effect. Moreover, the effects of microplastics were consistent regardless of their type or concentration. Under enriched conditions, two of the species exposed to microplastics shifted to a specialised diet compared with controls, whereas little difference was observed between the isotopic niches of those exposed to microplastic and controls under ambient nutrient conditions. Additionally, PLA was estimated to support 24 % of the diet of one species, highlighting the potential assimilation of bioplastics by biota and possible implications. Overall, these findings suggest that the toxic effects of microplastics suggested from laboratory studies might not manifest under real-world conditions. However, this study does demonstrate that subtle sublethal effects occur even at environmentally realistic microplastic concentrations. The crucial role of nutrient enrichment in mediating microplastic effects underscores the importance of considering microplastic pollution in the context of other environmental stressors.
Collapse
Affiliation(s)
- Ana Martínez Rodríguez
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK.
| | - Pavel Kratina
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - J Iwan Jones
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| |
Collapse
|
32
|
Siegel KR, Murray BR, Gearhart J, Kassotis CD. In vitro endocrine and cardiometabolic toxicity associated with artificial turf materials. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 111:104562. [PMID: 39245243 PMCID: PMC11499011 DOI: 10.1016/j.etap.2024.104562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/30/2024] [Accepted: 09/02/2024] [Indexed: 09/10/2024]
Abstract
Artificial turf, a consumer product growing in usage in the United States, contains diverse chemicals, some of which are endocrine disruptive. Endocrine effects from turf material extracts have been primarily limited to one component, crumb rubber, of these multi-material products. We present in vitro bioactivities from non-weathered and weathered turf sample extracts, including multiple turf components. All weathered samples were collected from real-world turf fields. Non-weathered versus weathered differentially affected the androgen (AR), estrogen (ER), glucocorticoid (GR), and thyroid receptors (TR) in reporter bioassays. While weathered extracts more efficaciously activated peroxisome proliferator activated receptor γ (PPARγ), this did not translate to greater in vitro adipogenic potential. All turf extracts activated the aryl hydrocarbon receptor (AhR). High AhR-efficacy extracts induced modest rat cardiomyoblast toxicity in an AhR-dependent manner. Our data demonstrate potential endocrine and cardiometabolic effects from artificial turf material extracts, warranting further investigation into potential exposures and human health effects.
Collapse
Affiliation(s)
- Kyle R Siegel
- Department of Pharmacology and Institute of Environmental Health Sciences, Wayne State University, Detroit, MI 48202, United States
| | - Brooklynn R Murray
- Department of Pharmacology and Institute of Environmental Health Sciences, Wayne State University, Detroit, MI 48202, United States
| | - Jeff Gearhart
- Research Director, Ecology Center, Ann Arbor, MI 48104, United States
| | - Christopher D Kassotis
- Department of Pharmacology and Institute of Environmental Health Sciences, Wayne State University, Detroit, MI 48202, United States.
| |
Collapse
|
33
|
Tastet V, Le Vée M, Verger A, Brandhonneur N, Bruyère A, Fardel O. Lack of effects of polystyrene micro- and nanoplastics on activity and expression of human drug transporters. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 111:104563. [PMID: 39260711 DOI: 10.1016/j.etap.2024.104563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 08/28/2024] [Accepted: 09/05/2024] [Indexed: 09/13/2024]
Abstract
Micro- and nanoplastics (MPs/NPs) constitute emerging and widely-distributed environmental contaminants to which humans are highly exposed. They possibly represent a threat for human health. In order to identify cellular/molecular targets for these plastic particles, we have analysed the effects of exposure to manufactured polystyrene (PS) MPs and NPs on in vitro activity and expression of human membrane drug transporters, known to interact with chemical pollutants. PS MPs and NPs, used at various concentrations (1, 10 or 100 µg/mL), failed to inhibit efflux activities of the ATP-binding cassette (ABC) transporters P-glycoprotein, MRPs and BCRP in ABC transporter-expressing cells. Furthermore, PS particles did not impair the transport of P-glycoprotein or BCRP substrates across intestinal Caco-2 cell monolayers. Uptake activities of solute carriers (SLCs) such as OCT1 and OCT2 (handling organic cations) or OATP1B1, OATP1B3, OATP2B1, OAT1 and OAT3 (handling organic anions) were additionally not altered by PS MPs/NPs in HEK-293 cells overexpressing these SLCs. mRNA expression of ABC transporters and of the SLCs OCT1 and OATP2B1 in Caco-2 cells and human hepatic HepaRG cells were finally not impaired by a 48-h exposure to MPs/NPs. Altogether, these data indicate that human drug transporters are unlikely to be direct and univocal targets for synthetic PS MPs/NPs.
Collapse
Affiliation(s)
- Valentin Tastet
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail), UMR_S 1085, Rennes 35000, France
| | - Marc Le Vée
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail), UMR_S 1085, Rennes 35000, France
| | - Alexis Verger
- Univ Rennes, ISCR (Institut des Sciences Chimiques de Rennes), UMR 6226, Rennes 35000, France
| | - Nolwenn Brandhonneur
- Univ Rennes, ISCR (Institut des Sciences Chimiques de Rennes), UMR 6226, Rennes 35000, France
| | - Arnaud Bruyère
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail), UMR_S 1085, Rennes 35000, France
| | - Olivier Fardel
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail), UMR_S 1085, Rennes 35000, France.
| |
Collapse
|
34
|
Taghizadeh Rahmat Abadi Z, Abtahi B, Fathi MB, Mashhadi N, Grossart HP. Size, shape, and elemental composition as predictors of microplastic surface erosion. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:134961. [PMID: 38936183 DOI: 10.1016/j.jhazmat.2024.134961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/12/2024] [Accepted: 06/17/2024] [Indexed: 06/29/2024]
Abstract
The degradation of surfaces and its possible dependence on shape, size, and elemental composition of plastic particles were subjected. The surfaces of 146 microplastics were classified from smooth to fully eroded (%) by SEM/EDS. Structural elements and various additives were found on microplastics depending on their shapes. The surface of plastic items > 100 µm in length showed a relatively more eroded area than smaller ones, regardless of their shapes. Depending on shape, the percentage of surface erosion of irregularly shaped fragments < 100 µm was significantly enhanced compared to microbeads of the same size. These results may provide insights into assessing potential risks posed by microplastics and improve our understanding of the role of these parameters concerning possible adverse health effects on the environment.
Collapse
Affiliation(s)
| | - B Abtahi
- Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran.
| | - M B Fathi
- Condensed matter department, Faculty of Physics, Kharazmi University, Tehran, Iran.
| | - N Mashhadi
- Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran.
| | - H-P Grossart
- Leibniz Institute of Freshwater Ecology and Inland Fisheries, Department of Experimental Limnology, Alte Fischerhuette 2, 16775 Stechlin, Germany; Postdam University, Institute of Biology and Biochemistry, Maulbeerallee 2, D-14469 Potsdam, Germany.
| |
Collapse
|
35
|
Marcharla E, Vinayagam S, Gnanasekaran L, Soto-Moscoso M, Chen WH, Thanigaivel S, Ganesan S. Microplastics in marine ecosystems: A comprehensive review of biological and ecological implications and its mitigation approach using nanotechnology for the sustainable environment. ENVIRONMENTAL RESEARCH 2024; 256:119181. [PMID: 38768884 DOI: 10.1016/j.envres.2024.119181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/01/2024] [Accepted: 05/18/2024] [Indexed: 05/22/2024]
Abstract
Microplastic contamination has rapidly become a serious environmental issue, threatening marine ecosystems and human health. This review aims to not only understand the distribution, impacts, and transfer mechanisms of microplastic contamination but also to explore potential solutions for mitigating its widespread impact. This review encompasses the categorisation, origins, and worldwide prevalence of microplastics and methodically navigates the complicated structure of microplastics. Understanding the sources of minute plastic particles infiltrating water bodies worldwide is critical for successful removal. The presence and accumulation of microplastics has far reaching negative impacts on various marine creatures, eventually extending its implications to human health. Microplastics are known to affect the metabolic activities and the survival of microbial communities, phytoplankton, zooplankton, and fauna present in marine environments. Moreover, these microplastics cause developmental abnormalities, endocrine disruption, and several metabolic disorders in humans. These microplastics accumulates in aquatic environments through trophic transfer mechanisms and biomagnification, thereby disrupting the delicate balance of these ecosystems. The review also addresses the tactics for minimising the widespread impact of microplastics by suggesting practical alternatives. These include increasing public awareness, fostering international cooperation, developing novel cleanup solutions, and encouraging the use of environment-friendly materials. In conclusion, this review examines the sources and prevalence of microplastic contamination in marine environment, its impacts on living organisms and ecosystems. It also proposes various sustainable strategies to mitigate the problem of microplastics pollution. Also, the current challenges associated with the mitigation of these pollutants have been discussed and addressing these challenges require immediate and collective action for restoring the balance in marine ecosystems.
Collapse
Affiliation(s)
- Eswar Marcharla
- Department of Biotechnology, Faculty of Science & Humanities, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamil Nadu 603203, India
| | - Saranya Vinayagam
- Department of Biosciences, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Tamil Nadu, 602 105, India
| | - Lalitha Gnanasekaran
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica, 1000000, Chile.
| | | | - Wei-Hsin Chen
- Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan 701, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan; Department of Mechanical Engineering, National Chin-Yi University of Technology, Taichung 411, Taiwan
| | - Sundaram Thanigaivel
- Department of Biotechnology, Faculty of Science & Humanities, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamil Nadu 603203, India.
| | - Swamynathan Ganesan
- Department of Biotechnology, Faculty of Science & Humanities, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamil Nadu 603203, India.
| |
Collapse
|
36
|
Kadlečková M, Kocourková K, Mikulka F, Smolka P, Mráček A, Sedláček T, Musilová L, Humeník M, Minařík A. Release of contaminants from polymer surfaces under condition of organized fluid flows. WATER RESEARCH X 2024; 24:100248. [PMID: 39234299 PMCID: PMC11372844 DOI: 10.1016/j.wroa.2024.100248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 09/06/2024]
Abstract
The use of polymers for water storage or distribution is closely monitored, especially with regard to the possible contamination with substances coming from the material's surfaces. Different standards are practiced across countries according to type of applied materials and such test methods are prevalently based on constant temperature conditions. However, these polymers systems could be located in diverse environment which does not necessarily provide constant conditions. Experimental findings show that exposure of liquid inside polymeric materials to specific temperature gradients, and consequently to emerging organized flows, can result in an accelerated leaching of undesirable substances from the solid surface. In presented work model steady-state and organized flow conditions are used to compare release of contaminates from polyethylene by measuring of surface tension, UV-Vis spectroscopy, FTIR, scanning electron microscopy and elemental analysis of polymer surfaces and water leachates. The pilot study shows that convective flow generated via temperature gradient significantly affects contaminant release in comparison to a steady state and mixing flow conditions.
Collapse
Affiliation(s)
- Markéta Kadlečková
- Department of Physics and Materials Engineering, Faculty of Technology, Tomas Bata University in Zlín, Vavrečkova 5669, 760 01 Zlín, Czech Republic
- Centre of Polymer Systems, Tomas Bata University in Zlín, Třída Tomáše Bati 5678, 76001 Zlín, Czech Republic
| | - Karolína Kocourková
- Department of Physics and Materials Engineering, Faculty of Technology, Tomas Bata University in Zlín, Vavrečkova 5669, 760 01 Zlín, Czech Republic
| | - Filip Mikulka
- Department of Physics and Materials Engineering, Faculty of Technology, Tomas Bata University in Zlín, Vavrečkova 5669, 760 01 Zlín, Czech Republic
| | - Petr Smolka
- Department of Physics and Materials Engineering, Faculty of Technology, Tomas Bata University in Zlín, Vavrečkova 5669, 760 01 Zlín, Czech Republic
| | - Aleš Mráček
- Department of Physics and Materials Engineering, Faculty of Technology, Tomas Bata University in Zlín, Vavrečkova 5669, 760 01 Zlín, Czech Republic
| | - Tomáš Sedláček
- Centre of Polymer Systems, Tomas Bata University in Zlín, Třída Tomáše Bati 5678, 76001 Zlín, Czech Republic
- Department of Polymer Engineering, Faculty of Technology, Tomas Bata University in Zlín, Vavrečkova 5669, Zlín, 760 01, Czech Republic
| | - Lenka Musilová
- Department of Physics and Materials Engineering, Faculty of Technology, Tomas Bata University in Zlín, Vavrečkova 5669, 760 01 Zlín, Czech Republic
| | - Martin Humeník
- Department of Biomaterials, Faculty of Engineering Science, University Bayreuth, Prof.-Rüdiger-Bormann.Str. 1, 95447 Bayreuth, Germany
| | - Antonín Minařík
- Department of Physics and Materials Engineering, Faculty of Technology, Tomas Bata University in Zlín, Vavrečkova 5669, 760 01 Zlín, Czech Republic
- Centre of Polymer Systems, Tomas Bata University in Zlín, Třída Tomáše Bati 5678, 76001 Zlín, Czech Republic
| |
Collapse
|
37
|
Law KL, Sobkowicz MJ, Shaver MP, Hahn ME. Untangling the chemical complexity of plastics to improve life cycle outcomes. NATURE REVIEWS. MATERIALS 2024; 9:657-667. [PMID: 39430229 PMCID: PMC11483869 DOI: 10.1038/s41578-024-00705-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/27/2024] [Indexed: 10/22/2024]
Abstract
A diversity of chemicals are intentionally added to plastics to enhance their properties and aid in manufacture. Yet, the accumulated chemical composition of these materials is essentially unknown even to those within the supply chain, let alone to consumers or recyclers. Recent legislated and voluntary commitments to increase recycled content in plastic products highlight the practical challenges wrought by these chemical mixtures, amid growing public concern about the impacts of plastic-associated chemicals on environmental and human health. In this Perspective, we offer guidance for plastics manufacturers to collaborate across sectors and critically assess their use of added chemicals. The ultimate goal is to use fewer and better additives to promote a circular plastics economy with minimal risk to humans and the environment.
Collapse
Affiliation(s)
| | - Margaret J. Sobkowicz
- Plastics Engineering Department, University of Massachusetts Lowell, Lowell, MA, USA
| | - Michael P. Shaver
- Sustainable Materials Innovation Hub, Henry Royce Institute, University of Manchester, Manchester, UK
| | - Mark E. Hahn
- Biology Department and Woods Hole Center for Oceans and Human Health, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| |
Collapse
|
38
|
Symeonides C, Aromataris E, Mulders Y, Dizon J, Stern C, Barker TH, Whitehorn A, Pollock D, Marin T, Dunlop S. An Umbrella Review of Meta-Analyses Evaluating Associations between Human Health and Exposure to Major Classes of Plastic-Associated Chemicals. Ann Glob Health 2024; 90:52. [PMID: 39183960 PMCID: PMC11342836 DOI: 10.5334/aogh.4459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 06/07/2024] [Indexed: 08/27/2024] Open
Abstract
Background: Epidemiological research investigating the impact of exposure to plastics, and plastic-associated chemicals, on human health is critical, especially given exponentially increasing plastic production. In parallel with increasing production, academic research has also increased exponentially both in terms of the primary literature and ensuing systematic reviews with meta-analysis. However, there are few overviews that capture a broad range of chemical classes to present a state of play regarding impacts on human health. Methods: We undertook an umbrella review to review the systematic reviews with meta-analyses. Given the complex composition of plastic and the large number of identified plastic-associated chemicals, it was not possible to capture all chemicals that may be present in, and migrate from, plastic materials. We therefore focussed on a defined set of key exposures related to plastics. These were microplastics, due to their ubiquity and potential for human exposure, and the polymers that form the matrix of consumer plastics. We also included plasticisers and flame retardants as the two classes of functional additive with the highest concentration ranges in plastic. In addition, we included bisphenols and per- and polyfluoroalkyl substances (PFAS) as two other major plastic-associated chemicals with significant known exposure through food contact materials. Epistemonikos and PubMed were searched for systematic reviews with meta-analyses, meta-analyses, and pooled analyses evaluating the association of plastic polymers, particles (microplastics) or any of the selected groups of high-volume plastic-associated chemicals above, measured directly in human biospecimens, with human health outcomes. Results: Fifty-two systematic reviews were included, with data contributing 759 meta-analyses. Most meta-analyses (78%) were from reviews of moderate methodological quality. Across all the publications retrieved, only a limited number of plastic-associated chemicals within each of the groups searched had been evaluated in relevant meta-analyses, and there were no meta-analyses evaluating polymers, nor microplastics. Synthesised estimates of the effects of plastic-associated chemical exposure were identified for the following health outcome categories in humans: birth, child and adult reproductive, endocrine, child neurodevelopment, nutritional, circulatory, respiratory, skin-related and cancers. Bisphenol A (BPA) is associated with decreased anoclitoral distance in infants, type 2 diabetes (T2D) in adults, insulin resistance in children and adults, polycystic ovary syndrome, obesity and hypertension in children and adults and cardiovascular disease (CVD); other bisphenols have not been evaluated. Phthalates, the only plasticisers identified, are associated with spontaneous pregnancy loss, decreased anogenital distance in boys, insulin resistance in children and adults, with additional associations between certain phthalates and decreased birth weight, T2D in adults, precocious puberty in girls, reduced sperm quality, endometriosis, adverse cognitive development and intelligence quotient (IQ) loss, adverse fine motor and psychomotor development and elevated blood pressure in children and asthma in children and adults. Polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs) but not other flame retardants, and some PFAS were identified and are all associated with decreased birth weight. In general populations, PCBs are associated with T2D in adults and endometriosis, bronchitis in infants, CVD, non-Hodgkin's lymphoma (NHL) and breast cancer. In PCB-poisoned populations, exposure is associated with overall mortality, mortality from hepatic disease (men), CVD (men and women) and several cancers. PBDEs are adversely associated with children's cognitive development and IQ loss. PBDEs and certain PFAS are associated with changes in thyroid function. PFAS exposure is associated with increased body mass index (BMI) and overweight in children, attention deficit hyperactive disorder (ADHD) in girls and allergic rhinitis. Potential protective associations were found, namely abnormal pubertal timing in boys being less common with higher phthalate exposure, increased high-density lipoprotein (HDL) with exposure to mono(2-ethyl-5-oxohexyl) phthalate (MEOHP) and reduced incidence of chronic lymphocytic lymphoma (a subtype of NHL) with PCB exposure. Conclusions: Exposure to plastic-associated chemicals is associated with adverse outcomes across a wide range of human health domains, and every plastic-associated chemical group is associated with at least one adverse health outcome. Large gaps remain for many plastic-associated chemicals. Recommendations: For research, we recommend that efforts are harmonised globally to pool resources and extend beyond the chemicals included in this umbrella review. Priorities for primary research, with ensuing systematic reviews, could include micro- and nanoplastics as well as emerging plastic-associated chemicals of concern such as bisphenol analogues and replacement plasticisers and flame retardants. With respect to chemical regulation, we propose that safety for plastic-associated chemicals in humans cannot be assumed at market entry. We therefore recommend that improved independent, systematic hazard testing for all plastic-associated chemicals is undertaken before market release of products. In addition because of the limitations of laboratory-based testing for predicting harm from plastic in humans, independent and systematic post-market bio-monitoring and epidemiological studies are essential to detect potential unforeseen harms.
Collapse
Affiliation(s)
- Christos Symeonides
- Minderoo Foundation, Perth, Western Australia, Australia
- Centre for Community Child Health, Royal Children’s Hospital, Parkville, Victoria, Australia
| | - Edoardo Aromataris
- JBI, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | | | - Janine Dizon
- JBI, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia
- College of Nursing and Health Sciences, Flinders University, Adelaide, South Australia, Australia
| | - Cindy Stern
- JBI, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Timothy Hugh Barker
- JBI, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Ashley Whitehorn
- JBI, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Danielle Pollock
- JBI, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Tania Marin
- JBI, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia
- College of Nursing and Health Sciences, Flinders University, Adelaide, South Australia, Australia
| | - Sarah Dunlop
- Minderoo Foundation, Perth, Western Australia, Australia
- School of Biological Sciences, The University of Western Australia, Perth, Australia
| |
Collapse
|
39
|
James BD, Medvedev AV, Makarov SS, Nelson RK, Reddy CM, Hahn ME. Moldable Plastics (Polycaprolactone) can be Acutely Toxic to Developing Zebrafish and Activate Nuclear Receptors in Mammalian Cells. ACS Biomater Sci Eng 2024; 10:5237-5251. [PMID: 38981095 PMCID: PMC11323200 DOI: 10.1021/acsbiomaterials.4c00693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Popularized on social media, hand-moldable plastics are formed by consumers into tools, trinkets, and dental prosthetics. Despite the anticipated dermal and oral contact, manufacturers share little information with consumers about these materials, which are typically sold as microplastic-sized resin pellets. Inherent to their function, moldable plastics pose a risk of dermal and oral exposure to unknown leachable substances. We analyzed 12 moldable plastics advertised for modeling and dental applications and determined them to be polycaprolactone (PCL) or thermoplastic polyurethane (TPU). The bioactivities of the most popular brands advertised for modeling applications of each type of polymer were evaluated using a zebrafish embryo bioassay. While water-borne exposure to the TPU pellets did not affect the targeted developmental end points at any concentration tested, the PCL pellets were acutely toxic above 1 pellet/mL. The aqueous leachates of the PCL pellets demonstrated similar toxicity. Methanolic extracts from the PCL pellets were assayed for their bioactivity using the Attagene FACTORIAL platform. Of the 69 measured end points, the extracts activated nuclear receptors and transcription factors for xenobiotic metabolism (pregnane X receptor, PXR), lipid metabolism (peroxisome proliferator-activated receptor γ, PPARγ), and oxidative stress (nuclear factor erythroid 2-related factor 2, NRF2). By nontargeted high-resolution comprehensive two-dimensional gas chromatography (GC × GC-HRT), we tentatively identified several compounds in the methanolic extracts, including PCL oligomers, a phenolic antioxidant, and residues of suspected antihydrolysis and cross-linking additives. In a follow-up zebrafish embryo bioassay, because of its stated high purity, biomedical grade PCL was tested to mitigate any confounding effects due to chemical additives in the PCL pellets; it elicited comparable acute toxicity. From these orthogonal and complementary experiments, we suggest that the toxicity was due to oligomers and nanoplastics released from the PCL rather than chemical additives. These results challenge the perceived and assumed inertness of plastics and highlight their multiple sources of toxicity.
Collapse
Affiliation(s)
- Bryan D. James
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, USA 02543
- Department of Biology, Woods Hole Oceanographic Institution, Woods Hole, MA, USA 02543
| | | | | | | | - Christopher M. Reddy
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, USA 02543
| | - Mark E. Hahn
- Department of Biology, Woods Hole Oceanographic Institution, Woods Hole, MA, USA 02543
| |
Collapse
|
40
|
Meyer D, Morlock GE. Concept of a six-fold multiplex planar bioassay to distinguish endocrine agonist, antagonist, cytotoxic and false-positive responses. Talanta 2024; 275:126174. [PMID: 38705021 DOI: 10.1016/j.talanta.2024.126174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 04/21/2024] [Accepted: 04/25/2024] [Indexed: 05/07/2024]
Abstract
To analyze a complex sample for endocrine activity, different tests must be performed to clarify androgen/estrogen agonism, antagonism, cytotoxicity, anti-cytotoxicity, and corresponding false-positive reactions. This means a large amount of work. Therefore, a six-fold planar multiplex bioassay concept was developed to evaluate up to the mentioned six endpoints or mechanisms simultaneously in the same sample analysis. Separation of active constituents from interfering matrix via high-performance thin-layer chromatography and effect differentiation via four vertical stripes (of agonists and end-products of the respective enzyme-substrate reaction) applied along each separated sample track were key to success. First, duplex endocrine bioassay versions were established. For the androgen/anti-androgen bioassay applied via piezoelectric spraying, the mean limit of biological detection of bisphenol A was 14 ng/band and its mean half maximal inhibitory concentration IC50 was 116 ng/band. Applied to trace analysis of six migrate samples from food packaging materials, 19 compound zones with agonistic or antagonistic estrogen/androgen activities were detected, with up to seven active compound zones within one migrate. For the first time, the S9 metabolism of endocrine effective compounds was studied on the same surface and revealed partial deactivation. Coupled to high-resolution mass spectrometry, molecular formulas were tentatively assigned to compounds, known to be present in packaging materials or endocrine active or previously unknown. Finally, the detection of cytotoxicity/anti-cytotoxicity and false-positives was integrated into the duplex androgen/anti-androgen bioassay. The resulting six-fold multiplex planar bioassay was evaluated with positive control standards and successfully applied to one migrate sample. The streamlined stripe concept for multiplex planar bioassays made it possible to assign different mechanisms to individual active compounds in a complex sample. The concept is generic and can be transferred to other assays.
Collapse
Affiliation(s)
- Daniel Meyer
- Institute of Nutritional Science, Chair of Food Science, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Gertrud E Morlock
- Institute of Nutritional Science, Chair of Food Science, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany; Center for Sustainable Food Systems, Justus Liebig University Giessen, Senckenbergstr. 3, 35390, Giessen, Germany.
| |
Collapse
|
41
|
Zjacić JP, Katančić Z, Kovacic M, Kusic H, Hrnjak Murgić Z, Dionysiou DD, Karamanis P, Loncaric Bozic A. Fragmentation of polypropylene into microplastics promoted by photo-aging; release of metals, toxicity and inhibition of biodegradability. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 935:173344. [PMID: 38772480 DOI: 10.1016/j.scitotenv.2024.173344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/07/2024] [Accepted: 05/16/2024] [Indexed: 05/23/2024]
Abstract
The widespread presence of microplastics (MP) in water represents an environmental problem, not only because of the harmful effects of their size and potential to vector other pollutants, but also because of the release of additives, degradation products and residues contained in the polymer matrix. The latter includes metallic catalysts, which are often overlooked. This study focuses on the photo-aging of polypropylene (PP) and the resulting structural changes that promote its fragmentation microplastics (PP-MPs) and release of metals, as well as the resulting toxicity of leachates and their potential to inhibit biodegradation of organics in water. The pristine, photo-aged and waste PP are ground under the same regime to assess susceptibility to fragmentation. Obtained PP-MPs are submitted to leaching tests; the release of organics and metals is monitored by Total Organic Carbon (TOC) and Inductively Coupled Plasma Mass Spectrometry (ICP-MS) analysis, respectively. The leachates are assessed for their toxicity against Vibrio fischeri, Daphnia magna and Pseudokirchneriella subcapitata and their influence on the biodegradability of the glucose solution. Photo-aging induced changes in the crystallinity and morphology of the PP and manifested in the abundance of smaller MPs, as revealed by the particle size distribution. In the case of pristine PP, all particles were > 100 μm in size, while aged PP yielded significant mass fraction of MPs <100 μm. The toxicity of leachates from aged PP-MPs is higher than that of pristine and exhibits a positive correlation with portion of metals released. The biodegradability of glucose is strongly inhibited by PP-MPs leachates containing a mixture of metals in trace concentrations.
Collapse
Affiliation(s)
- Josipa Papac Zjacić
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia
| | - Zvonimir Katančić
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia
| | - Marin Kovacic
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia
| | - Hrvoje Kusic
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia; University North, Trg dr. Žarka Dolinara 1, 48000 Koprivnica, Croatia.
| | - Zlata Hrnjak Murgić
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia
| | - Dionysios D Dionysiou
- Environmental Engineering and Science Program, Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH 45221-0012, USA
| | - Panaghiotis Karamanis
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Hélioparc Pau Pyrénées, 2 Rue de president Angot, 64053 Pau, France
| | - Ana Loncaric Bozic
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia
| |
Collapse
|
42
|
Binde Doria H, Wagner V, Foucault Q, Pfenninger M. Unveiling population-specific outcomes: Examining life cycle traits of different strains of Chironomus riparius exposed to microplastics and cadmium questions generality of ecotoxicological results. PLoS One 2024; 19:e0304739. [PMID: 38985709 PMCID: PMC11236181 DOI: 10.1371/journal.pone.0304739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 05/16/2024] [Indexed: 07/12/2024] Open
Abstract
Ecotoxicological tests used for risk assessment of toxicants and its mixtures rely both on classical life-cycle endpoints and bioindicator organisms usually derived from long-term laboratory cultures. While these cultures are thought to be comparable among laboratories and more sensitive than field organisms, it is not well investigated whether this assumption is met. Therefore, we aimed to investigate differential life-cycle endpoints response of two different strains of C. riparius, one originally from Spain and the other from Germany, kept under the same laboratory conditions for more than five years. To highlight any possible differences, the two populations were challenged with exposure to cadmium (Cd), polyvinyl chloride (PVC) microplastics and a co-exposure with both. Our results showed that significant differences between the strains became evident with the co-exposure of Cd and PVC MPs. The German strain showed attenuation of the deleterious Cd effects with microplastic co-exposure in survival and developmental time. Contrary to that, the Spanish strain showed no interaction between the substances. In conclusion, the toxicity-effects of contaminants may vary strongly among laboratory populations, which makes a universal risk assessment evaluation challenging.
Collapse
Affiliation(s)
- Halina Binde Doria
- Department Molecular Ecology, Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany
- LOEWE Centre for Translational Biodiversity Genomics, Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany
| | - Vivian Wagner
- Institute for Molecular and Organismic Evolution, Johannes Gutenberg University, Mainz, Germany
| | - Quentin Foucault
- Department Evolutionary Genetics, Bielefeld University, Bielefeld, Germany
| | - Markus Pfenninger
- Department Molecular Ecology, Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany
- LOEWE Centre for Translational Biodiversity Genomics, Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany
- Institute for Molecular and Organismic Evolution, Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
43
|
Stevens S, Bartosova Z, Völker J, Wagner M. Migration of endocrine and metabolism disrupting chemicals from plastic food packaging. ENVIRONMENT INTERNATIONAL 2024; 189:108791. [PMID: 38838488 DOI: 10.1016/j.envint.2024.108791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/22/2024] [Accepted: 05/30/2024] [Indexed: 06/07/2024]
Abstract
Plastics constitute a vast array of substances, with over 16000 known plastic chemicals, including intentionally and non-intentionally added substances. Thousands of chemicals, including toxic ones, are extractable from plastics, however, the extent to which these compounds migrate from everyday products into food or water remains poorly understood. This study aims to characterize the endocrine and metabolism disrupting activity, as well as the chemical composition of migrates from plastic food contact articles (FCAs) from four countries as significant sources of human exposure. Fourteen plastic FCAs covering seven polymer types with high global market shares were migrated into water and a water-ethanol mixture as food simulants according to European regulations. The migrates were analyzed using reporter gene assays for nuclear receptors relevant to human health and non-target chemical analysis to characterize the chemical composition. Chemicals migrating from each FCA interfered with at least two nuclear receptors, predominantly targeting pregnane X receptor (24/28 migrates). Moreover, peroxisome proliferator receptor gamma was activated by 19 out of 28 migrates, though mostly with lower potencies. Estrogenic and antiandrogenic activity was detected in eight and seven migrates, respectively. Fewer chemicals and less toxicity migrated into water compared to the water-ethanol mixture. However, 73 % of the 15 430 extractable chemical features also transferred into food simulants, and the water-ethanol migrates exhibited a similar toxicity prevalence compared to methanol extracts. The chemical complexity differed largely between FCAs, with 8 to 10631 chemical features migrating into food simulants. Using stepwise partial least squares regressions, we successfully narrowed down the list of potential active chemicals, identified known endocrine disrupting chemicals, such as triphenyl phosphate, and prioritized chemical features for further identification. This study demonstrates the migration of endocrine and metabolism disrupting chemicals from plastic FCAs into food simulants, rendering a migration of these compounds into food and beverages probable.
Collapse
Affiliation(s)
- Sarah Stevens
- Norwegian University of Science and Technology (NTNU), Department of Biology, 7491 Trondheim, Norway.
| | - Zdenka Bartosova
- Norwegian University of Science and Technology (NTNU), Department of Biology, 7491 Trondheim, Norway
| | - Johannes Völker
- Norwegian University of Science and Technology (NTNU), Department of Biology, 7491 Trondheim, Norway; Innovative Environmental Services (IES) Ltd, Benkenstrasse 260, 4108 Witterswill, Switzerland
| | - Martin Wagner
- Norwegian University of Science and Technology (NTNU), Department of Biology, 7491 Trondheim, Norway.
| |
Collapse
|
44
|
López-Ibáñez S, Quade J, Wlodarczyk A, Abad MJ, Beiras R. Marine degradation and ecotoxicity of conventional, recycled and compostable plastic bags. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 351:124096. [PMID: 38703982 DOI: 10.1016/j.envpol.2024.124096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/12/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024]
Abstract
Plastic bags are currently a major component of marine litter, causing aesthetical nuisance, and undesirable effects on marine fauna that ingest them or are entangled. Plastic litter also rises concern on the ecotoxicological effects due to the potential toxicity of the chemical additives leached in aquatic environments. Conventional plastic bags are made of polyethylene, either from first use or recycled, but regulations restricting single-use plastics and limiting lightweight carrier bags (<50 μm thickness) have fostered the replacement of thin PE bags by compostable materials advertised as safer for the environment. In this study, we assess the degradation of commercially available plastic bags in marine conditions at two scales: aquariums (60 days) and outdoors flow-through mesocosm (120 days). Strength at break point and other tensile strength parameters were used as ecologically relevant endpoints to track mechanical degradation. Ecotoxicity has been assessed along the incubation period using the sensitive Paracentrotus lividus embryo test. Whereas PE bags did not substantially lose their mechanical properties within the 60 d aquarium exposures, compostable bags showed remarkable weight loss and tensile strength decay, some of them fragmenting in the aquarium after 3-4 weeks. Sediment pore water inoculum promoted a more rapid degradation of compostable bags, while nutrient addition pattern did not affect the degradation rate. Longer-term mesocosms exposures supported these findings, as well as pointed out the influence of the microbial processes on the degradation efficiency of compostable/bioplastic bags. Compostable materials, in contrast toPE, showed moderate toxicity on sea-urchin larvae, partially associated to degradation of these materials, but the environmental implications of these findings remain to be assessed. These methods proved to be useful to classify plastic materials, according to their degradability in marine conditions, in a remarkably shorter time than current standard tests and promote new materials safer for the marine fauna.
Collapse
Affiliation(s)
- Sara López-Ibáñez
- ECIMAT, Centro de Investigación Mariña (CIM), Universidade de Vigo, 36331, Vigo, Galicia, Spain; Facultade de Ciencias do Mar, Universidade de Vigo, 36310, Vigo, Galicia, Spain.
| | - Jakob Quade
- ECIMAT, Centro de Investigación Mariña (CIM), Universidade de Vigo, 36331, Vigo, Galicia, Spain; RWTH Aachen University, Institute for Environmental Research, Worringer Weg 1, 52074, Aachen, Germany
| | - Angelika Wlodarczyk
- ECIMAT, Centro de Investigación Mariña (CIM), Universidade de Vigo, 36331, Vigo, Galicia, Spain; University of Applied Sciences Technikum Wien, Höchstädtpl. 6, 1200, Vienna, Austria
| | - María-José Abad
- Universidade da Coruña, Campus Industrial de Ferrol, CITENI- Grupo de Polímeros, Campus de Esteiro, Ferrol, Galicia, Spain
| | - Ricardo Beiras
- ECIMAT, Centro de Investigación Mariña (CIM), Universidade de Vigo, 36331, Vigo, Galicia, Spain; Facultade de Ciencias do Mar, Universidade de Vigo, 36310, Vigo, Galicia, Spain
| |
Collapse
|
45
|
Chen Q, Ma C, Lee YH, Marques Dos Santos M, Kim MS, Meng G, Snyder SA, Lee JS, Shi H. Non-negligible Toxicity to Fish in the Early Life Stages Triggered by Aqueous Leachate of Takeaway Plastic Containers. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:10041-10051. [PMID: 38788731 DOI: 10.1021/acs.est.4c01790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
Ordering takeout is a growing social phenomenon and may raise public health concerns. However, the associated health risk of compounds leaching from plastic packaging is unknown due to the lack of chemical and toxicity data. In this study, 20 chemical candidates were tentatively identified in the environmentally relevant leachate from plastic containers through the nontargeted chemical analysis. Three main components with high responses and/or predicted toxicity were further verified and quantified, namely, 3,5-di-tert-butyl-4-hydroxycinnamic acid (BHC), 2,4-di-tert-butylphenol (2,4-DTBP), and 9-octadecenamide (oleamide). The toxicity to zebrafish larvae of BHC, a degradation product of a widely used antioxidant Irganox 1010, was quite similar to that of the whole plastic leachate. In the same manner, RNA-seq-based ingenuity analysis showed that the affected canonical pathways of zebrafish larvae were quite comparable between BHC and the whole plastic leachate, i.e., highly relevant to neurological disease, metabolic disease, and even behavioral disorder. Longer-term exposure (35 days) did not cause any effect on adult zebrafish but led to decreased hatching rate and obvious neurotoxicity in zebrafish offspring. Collectively, this study strongly suggests that plastic containers can leach out a suite of compounds causing non-negligible impacts on the early stages of fish via direct or parental exposure.
Collapse
Affiliation(s)
- Qiqing Chen
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Cuizhu Ma
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Young Hwan Lee
- Department of Marine Ecology and Environment, College of Life Sciences, Gangneung-Wonju National University, Gangneung 25457, South Korea
| | - Mauricius Marques Dos Santos
- Nanyang Environment & Water Research Institute (NEWRI), Nanyang Technological University, 1 Cleantech Loop, CleanTech One, #06-08, 637141 Singapore
| | - Min-Sub Kim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Ge Meng
- Agilent Technologies, 412 Yinglun Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Shane Allen Snyder
- Nanyang Environment & Water Research Institute (NEWRI), Nanyang Technological University, 1 Cleantech Loop, CleanTech One, #06-08, 637141 Singapore
| | - Jae-Seong Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Huahong Shi
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| |
Collapse
|
46
|
V L Leonard S, Liddle CR, Atherall CA, Chapman E, Watkins M, D J Calaminus S, Rotchell JM. Microplastics in human blood: Polymer types, concentrations and characterisation using μFTIR. ENVIRONMENT INTERNATIONAL 2024; 188:108751. [PMID: 38761430 DOI: 10.1016/j.envint.2024.108751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/12/2024] [Accepted: 05/12/2024] [Indexed: 05/20/2024]
Abstract
Microplastics (MPs) are an everyday part of life, and are now ubiquitous in the environment. Crucially, MPs have not just been found within the environment, but also within human bodies, including the blood. We aimed to provide novel information on the range of MP polymer types present, as well as their size and shape characteristics, in human whole blood from 20 healthy volunteers. Twenty-four polymer types were identified from 18 out of 20 (90 %) donors and quantified in blood, with the majority observed for the first time. Using an LOQ approach, five polymer types met the threshold with a lower mean ± SD of 2466 ± 4174 MP/L. The concentrations of plastics analysed in blood samples ranged from 1.84 - 4.65 μg/mL. Polyethylene (32 %), ethylene propylene diene (14 %), and ethylene-vinyl-acetate/alcohol (12 %) fragments were the most abundant. MP particles that were identified within the blood samples had a mean particle length of 127.99 ± 293.26 µm (7-3000 µm), and a mean particle width of 57.88 ± 88.89 µm (5-800 µm). The MPs were predominantly categorised as fragments (88 %) and were white/clear (79 %). A variety of plastic additive chemicals were identified including endocrine disrupting-classed phthalates. The procedural blank samples comprised 7 polymer types, that were distinct from those identified in blood, mainly resin (25 %), polyethylene terephthalate (17 %), and polystyrene (17 %) with a mean ± SD of 4.80 ± 5.59 MP/L. This study adds to the growing evidence that MPs are taken up into the human body and are transported via the bloodstream. The shape and sizes of the particles raise important questions with respect to their presence and associated hazards in terms of potential detrimental impacts such as vascular inflammation, build up within major organs, and changes to either immune cell response, or haemostasis and thrombosis.
Collapse
Affiliation(s)
- Sophie V L Leonard
- Centre for Biomedicine, Hull York Medical School, University of Hull, Kingston-upon-Hull, HU6 7RX, United Kingdom
| | - Catriona R Liddle
- Centre for Biomedicine, Hull York Medical School, University of Hull, Kingston-upon-Hull, HU6 7RX, United Kingdom
| | - Charlotte A Atherall
- Centre for Biomedicine, Hull York Medical School, University of Hull, Kingston-upon-Hull, HU6 7RX, United Kingdom
| | - Emma Chapman
- School of Natural Sciences, University of Hull, Kingston-upon-Hull, HU6 7RX, United Kingdom
| | - Matthew Watkins
- College of Health and Science, University of Lincoln, Brayford Pool, Lincoln, LN6 7TS, United Kingdom
| | - Simon D J Calaminus
- Centre for Biomedicine, Hull York Medical School, University of Hull, Kingston-upon-Hull, HU6 7RX, United Kingdom.
| | - Jeanette M Rotchell
- School of Natural Sciences, University of Hull, Kingston-upon-Hull, HU6 7RX, United Kingdom; College of Health and Science, University of Lincoln, Brayford Pool, Lincoln, LN6 7TS, United Kingdom.
| |
Collapse
|
47
|
Daniel D, Barros L, da Costa JP, Girão AV, Nunes B. Using marine mussels to assess the potential ecotoxicological effects of two different commercial microplastics. MARINE POLLUTION BULLETIN 2024; 203:116441. [PMID: 38703629 DOI: 10.1016/j.marpolbul.2024.116441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/23/2024] [Accepted: 04/28/2024] [Indexed: 05/06/2024]
Abstract
Microplastics (MPs) in the aquatic environment pose a serious threat to biota, by being confounded with food. These effects occur in mussels which are filter-feeding organisms. Mussels from the genus Mytilus sp. were used to evaluate the ecotoxicological effects of two MPs, polypropylene (PP) and polyethylene terephthalate (PET), after 4 and 28-days. Measured individual endpoints were condition index and feeding rate; and sub-individual parameters, metabolism of phase I (CYP1A1, CYP1A2 and CYP3A4) and II (glutathione S-transferases - GSTs), and antioxidant defense (catalase - CAT). MPs decreased both condition index (CI) and feeding rate (FR). No alterations occurred in metabolic enzymes, suggesting that these MPs are not metabolized by these pathways. Furthermore, lack of alterations in GSTs and CAT activities suggests the absence of conjugation and oxidative stress. Overall, biochemical markers were not responsive, but non-enzymatic responses showed deleterious effects caused by these MPs, which may be of high ecological importance.
Collapse
Affiliation(s)
- David Daniel
- Departamento de Biologia, Universidade de Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal; Centro de Estudos do Ambiente e do Mar (CESAM), Campus de Santiago, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Luis Barros
- Departamento de Biologia, Universidade de Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - João Pinto da Costa
- Centro de Estudos do Ambiente e do Mar (CESAM), Campus de Santiago, Universidade de Aveiro, 3810-193 Aveiro, Portugal; Departamento de Química, Universidade de Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Ana Violeta Girão
- Departamento de Engenharia de Materiais e Cerâmica, CICECO, Universidade de Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Bruno Nunes
- Departamento de Biologia, Universidade de Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal; Centro de Estudos do Ambiente e do Mar (CESAM), Campus de Santiago, Universidade de Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
48
|
Peng X, Yang T, Guo S, Zhou J, Chen G, Zhu Z, Tan J. Revealing chemical release from plastic debris in animals' digestive systems using nontarget and suspect screening and simulating digestive fluids. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 348:123793. [PMID: 38513944 DOI: 10.1016/j.envpol.2024.123793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 03/10/2024] [Accepted: 03/12/2024] [Indexed: 03/23/2024]
Abstract
Plastic debris in the environment are not only pollutants but may also be important sources of a variety of contaminants. This work simulated kinetics and potential of chemical leaching from plastic debris in animals' digestive systems by incubating polyvinyl chloride (PVC) cord particles in artificial digestive fluids combined with nontarget and suspect screening based on UHPLC-Orbitrap HRMS. Impacts of particle size, aging, and digestive fluid were investigated to elucidate mechanisms of chemical leaching. Thousands of chemical features were screened in the leachates of PVC cord particles in the artificial digestive fluids, among which >60% were unknown. Bisphenol A (BPA) and bis(2-ethylhexyl) phthalate (DEHP) were the dominant identified CL1 compounds. Finer size and aging of the PVC particles and prolonged incubation time enhanced chemical release, resulting in greater numbers, higher levels, and more complexity in components of the released chemicals. The gastrointestinal fluid was more favorable for chemical leaching than the gastric fluid, with greater numbers and higher levels. Hundreds to thousands of chemical features were screened and filtered in the leachates of consumer plastic products, including food contact products (FCPs) in the artificial bird gastrointestinal fluid. In addition to BPA and DEHP, several novel bisphenol analogues were identified in the leachate of at least one FCP. The results revealed that once plastic debris are ingested by animals, hundreds to thousands of chemicals may be released into animals' digestive tracts in hours, posing potential synergistic risks of plastic debris and chemicals to plastic-ingesting animals. Future research should pay more attentions to identification, ecotoxicities, and environmental fate of vast amounts of unknown chemicals potentially released from plastics in order to gain full pictures of plastic pollution in the environment.
Collapse
Affiliation(s)
- Xianzhi Peng
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China.
| | - Tao Yang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shang Guo
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Zhou
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guangshi Chen
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zewen Zhu
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jianhua Tan
- Guangzhou Quality Supervision and Testing Institute, Guangzhou, 510050, China
| |
Collapse
|
49
|
Sangwan S, Bhattacharyya R, Banerjee D. Plastic compounds and liver diseases: Whether bisphenol A is the only culprit. Liver Int 2024; 44:1093-1105. [PMID: 38407523 DOI: 10.1111/liv.15879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/08/2024] [Accepted: 02/12/2024] [Indexed: 02/27/2024]
Abstract
Plastics, while providing modern conveniences, have become an inescapable source of global concern due to their role in environmental pollution. Particularly, the focus on bisphenol A (BPA) reveals its biohazardous nature and association with liver issues, specifically steatosis. However, research indicates that BPA is just one facet of the problem, as other bisphenol analogues, microplastics, nanoplastics and additional plastic derivatives also pose potential risks. Notably, BPA is implicated in every stage of non-alcoholic fatty liver disease (NAFLD) onset and progression, surpassing hepatitis B virus as a primary cause of chronic liver disease worldwide. As plastic contamination tops the environmental contaminants list, urgent action is needed to assess causative factors and mitigate their impact. This review delves into the molecular disruptions linking plastic pollutant exposure to liver diseases, emphasizing the broader connection between plastics and the rising prevalence of NAFLD.
Collapse
Affiliation(s)
- Sonal Sangwan
- Department of Experimental Medicine and Biotechnology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Rajasri Bhattacharyya
- Department of Experimental Medicine and Biotechnology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Dibyajyoti Banerjee
- Department of Experimental Medicine and Biotechnology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
50
|
Limonta G, Panti C, Fossi MC, Nardi F, Baini M. Exposure to virgin and marine incubated microparticles of biodegradable and conventional polymers modulates the hepatopancreas transcriptome of Mytilus galloprovincialis. JOURNAL OF HAZARDOUS MATERIALS 2024; 468:133819. [PMID: 38402680 DOI: 10.1016/j.jhazmat.2024.133819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/02/2024] [Accepted: 02/15/2024] [Indexed: 02/27/2024]
Abstract
Biodegradable polymers have been proposed as an alternative to conventional plastics to mitigate the impact of marine litter, but the research investigating their toxicity is still in its infancy. This study evaluates the potential ecotoxicological effects of both virgin and marine-incubated microparticles (MPs), at environmentally relevant concentration (0.1 mg/l), made of different biodegradable polymers (Polycaprolactone, Mater-Bi, cellulose) and conventional polymers (Polyethylene) on Mytilus galloprovincialis by using transcriptomics. This approach is increasingly being used to assess the effects of pollutants on organisms, obtaining data on numerous biological pathways simultaneously. Whole hepatopancreas de novo transcriptome sequencing was performed, individuating 972 genes differentially expressed across experimental groups compared to the control. Through the comparative transcriptomic profiling emerges that the preponderant effect is attributable to the marine incubation of MPs, especially for incubated polycaprolactone (731 DEGs). Mater-Bi and cellulose alter the smallest number of genes and biological processes in the mussel hepatopancreas. All microparticles, regardless of their polymeric composition, dysregulated innate immunity, and fatty acid metabolism biological processes. These findings highlight the necessity of considering the interactions of MPs with the environmental factors in the marine ecosystem when performing ecotoxicological evaluations. The results obtained contribute to fill current knowledge gaps regarding the potential environmental impacts of biodegradable polymers.
Collapse
Affiliation(s)
- Giacomo Limonta
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via P.A. Mattioli, 4, Siena, Italy; National Biodiversity Future Center (NBFC), Palermo, Italy
| | - Cristina Panti
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via P.A. Mattioli, 4, Siena, Italy; National Biodiversity Future Center (NBFC), Palermo, Italy.
| | - Maria Cristina Fossi
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via P.A. Mattioli, 4, Siena, Italy; National Biodiversity Future Center (NBFC), Palermo, Italy
| | - Francesco Nardi
- National Biodiversity Future Center (NBFC), Palermo, Italy; Department of Life Sciences, University of Siena, Via A. Moro, 2, Siena, Italy
| | - Matteo Baini
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via P.A. Mattioli, 4, Siena, Italy; National Biodiversity Future Center (NBFC), Palermo, Italy
| |
Collapse
|