1
|
Zhang R, Kang Z, Dong S, Shangguan D, Shoukat RF, Zhang J, Zafar J, Wu H, Yu XQ, Xu X, Jin F. Boosting the efficacy of fungal biocontrol: miRNA339-5p-mediated mosquito immunity regulation. PEST MANAGEMENT SCIENCE 2025; 81:1727-1739. [PMID: 39628139 DOI: 10.1002/ps.8572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 10/19/2024] [Accepted: 11/15/2024] [Indexed: 03/15/2025]
Abstract
BACKGROUND Aedes mosquitoes are vectors for numerous viral diseases, including dengue, zika, chikungunya, and yellow fever. Therefore, underscoring the urgent need for eco-friendly alternatives to combat insecticide resistance and the scarcity of effective vaccines. Entomopathogenic fungi present a sustainable alternative to chemical insecticides; however, their widespread application is limited by their relatively low virulence. RESULTS Here, we investigated the immunological interactions between Metarhizium anisopliae and Aedes albopictus, demonstrating that fungal infection significantly up-regulated immune-related genes in the Toll and melanization pathways, thereby enhancing antifungal and antibacterial defenses at 48 h post-infection (hpi). Small RNA sequencing identified miR339-5p as a crucial modulator, targeting the immune genes Gram-Negative Binding Protein 1 (GNBP1) and CLIP-domain Serine Protease B15 (CLIPB15), which are critical for Toll and phenoloxidase (PO) pathway activation. The administration of a synthetic miR339-5p mimic increased fungal virulence, resulting in a higher mortality rate among adult mosquitoes and a significant increase in the mortality rate of mosquito larvae within 24 hpi. GNBP1 was found to regulate both Toll and PO pathways, while CLIPB15 specifically modulated the PO system by cleaving prophenoloxidase (PPO). CONCLUSION This research highlights the potential of leveraging Ae. albopictus-encoded miR339-5p through advanced genetic engineering techniques to bolster the efficacy of existing fungal-based mosquito control strategies, providing a promising approach in the fight against mosquito-borne diseases. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ruonan Zhang
- State Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, College of Life Sciences, South China Normal University, Guangzhou, China
| | - Zehong Kang
- State Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Shengzhang Dong
- Department of Molecule Microbiology and Immunology, Johns Hopkins University, Baltimore, MD, USA
| | - Duanwen Shangguan
- State Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Rana Fartab Shoukat
- State Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Jie Zhang
- State Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Junaid Zafar
- State Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Hongxin Wu
- State Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Xiao-Qiang Yu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, College of Life Sciences, South China Normal University, Guangzhou, China
| | - Xiaoxia Xu
- State Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Fengliang Jin
- State Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou, China
| |
Collapse
|
2
|
Zhao L, Niu J, Feng D, Wang X, Zhang R. Immune functions of pattern recognition receptors in Lepidoptera. Front Immunol 2023; 14:1203061. [PMID: 37398667 PMCID: PMC10312389 DOI: 10.3389/fimmu.2023.1203061] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 06/05/2023] [Indexed: 07/04/2023] Open
Abstract
Pattern recognition receptors (PRRs), as the "sensors" in the immune response, play a prominent role in recognizing pathogen-associated molecular patterns (PAMPs) and initiating an effective defense response to pathogens in Lepidoptera. It is becoming increasingly clear that damage-associated molecular patterns (DAMPs) normally play a physiological role within cells; however, when exposed to extracellular, they may become "part-time" critical signals of the immune response. Based on research in recent years, we review herein typical PRRs of Lepidoptera, including peptidoglycan recognition protein (PGRP), gram-negative binding protein (GNBP), β-1,3-glucan recognition protein (βGRP), C-type lectin (CTL), and scavenger receptor (SR). We also outline the ways in which DAMPs participate in the immune response and the correlation between PRRs and immune escape. Taken together, these findings suggest that the role of PRRs in insect innate immunity may be much greater than expected and that it is possible to recognize a broader range of signaling molecules.
Collapse
Affiliation(s)
- Lin Zhao
- School of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| | - Jinlan Niu
- School of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| | - Disong Feng
- School of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| | - Xialu Wang
- School of Medical Devices, Shenyang Pharmaceutical University, Shenyang, China
| | - Rong Zhang
- School of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
3
|
Feng K, Jiang D, Luo J, Tang F. OfGNBP silencing enhances the toxicity of Serratia marcescens Bizio (SM1) to Odontotermes formosanus (Shiraki). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 189:105306. [PMID: 36549813 DOI: 10.1016/j.pestbp.2022.105306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/16/2022] [Accepted: 11/27/2022] [Indexed: 06/17/2023]
Abstract
The immunity of insects plays a vital role in their survival. Our experiments found that lipopolysaccharide (LPS) and glucono-δ-lactone (GDL) could influence the virulence of Serratia marcescens Bizio (SM1) to Odontotermes formosanus (Shiraki) by affecting the immunity. Gram-negative binding proteins (GNBPs) are an important pattern recognition proteins that play a crucial role in the innate immune system. Therefore, two OfGNBPs were cloned in O. formosanus. The expression of OfGNBPs was significantly changed by LPS,SM1 and GDL, not prick. In addition, the immune-related gene expression, the phenoloxidase activity and antibacterial activity of donor termites and recipient termites were significantly induced by SM1. Furthermore, the knockdown of OfGNBP by RNA interference reduced not only individual immunity but also social immunity in O. formosanus, which increased the virulence of SM1 to O. formosanus. Importantly, dsOfGNBP alone also had good control effect on O. formosanus. In summary, we concluded that dsOfGNBPs are important termite immunosuppressants.
Collapse
Affiliation(s)
- Kai Feng
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, People's Republic of China; College of Forestry, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Dabao Jiang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, People's Republic of China; College of Forestry, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Jian Luo
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, People's Republic of China; College of Forestry, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Fang Tang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, People's Republic of China; College of Forestry, Nanjing Forestry University, Nanjing 210037, People's Republic of China.
| |
Collapse
|
4
|
Koutsos E, Modica B, Freel T. Immunomodulatory potential of black soldier fly larvae: applications beyond nutrition in animal feeding programs. Transl Anim Sci 2022; 6:txac084. [PMID: 35854966 PMCID: PMC9280983 DOI: 10.1093/tas/txac084] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 06/21/2022] [Indexed: 11/13/2022] Open
Abstract
Insect-derived ingredients, including whole larvae, protein-rich meal, and oil, have been extensively studied in recent years and shown to be a sustainable source of quality nutrition for virtually all animal species and life stages. In addition to the ability to use these ingredients as a source of essential nutrition, more recent research has demonstrated the potential for the immunomodulatory activity of various components of insect-derived ingredients. For all insects studied, antimicrobial peptides make up a critical part of the insects’ innate immune system and these peptides have antimicrobial efficacy when purified from hemolymph and tested in vitro. From black soldier fly larvae, in particular, lauric acid is a predominant fatty acid deposited into the insect, and lauric acid also has potential antimicrobial activity in vitro and in vivo. Finally, the chitin and chitosan components of the insect exoskeleton may modulate microbial activity in a variety of ways. In companion animals, poultry, and livestock species, insect-derived ingredients have shown the potential to reduce the impact of actual or simulated disease challenge on several parameters of animal health and well-being. This review describes the current state of knowledge of the immunomodulatory potential of insect-derived ingredients.
Collapse
Affiliation(s)
| | - Bree Modica
- EnviroFlight, LLC , 1118 Progress Way, Maysville, KY 41056 , USA
| | - Tarra Freel
- EnviroFlight, LLC , 1118 Progress Way, Maysville, KY 41056 , USA
| |
Collapse
|
5
|
Wang Z, Zhou W, Huang B, Gao M, Li Q, Tao Y, Wang Z. Molecular and Functional Characterization of Peptidoglycan Recognition Proteins OfPGRP-A and OfPGRP-B in Ostrinia furnacalis (Lepidoptera: Crambidae). INSECTS 2022; 13:insects13050417. [PMID: 35621753 PMCID: PMC9146462 DOI: 10.3390/insects13050417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 11/22/2022]
Abstract
Simple Summary The Asian corn borer, Ostrinia furnacalis (Guenée), is the most destructive lepidopteran insect pest of corn (Zea mays L.) in China. Pathogenic microorganisms play an important role in the population control of the Asian corn borer. Although microorganisms can cause the death of O. furnacalis, an immune response also occurs as an attempt to fight off and eliminate invading pathogens. If the molecular mechanism of interaction between O. furnacalis and pathogenic bacteria is clarified, the lethal effect of pathogenic microorganisms can be better exerted by inhibiting the natural immune response of O. furnacalis. As an important member of the pattern-recognition receptor family, peptidoglycan recognition protein (PGRP) plays a key role in the insect innate immune response. In this study, we cloned two PGRP genes from O. furnacalis and analyzed their spatiotemporal expression. In combination with bacterial induction experiments, we revealed the immune signal recognition pathway involved in the two proteins. The results of this study deepen the understanding of the natural immune response of O. furnacalis and provide new ideas for better utilization of pathogenic microorganisms in biological control of the Asian corn borer. Abstract Peptidoglycan recognition proteins (PGRPs) are important components of insect immune systems, in which they play key roles. We cloned and sequenced two full-length PGRP, named OfPGRP-A and OfPGRP-B, from the Asian corn borer, Ostrinia furnacalis. These two genes comprise open reading frames of 658 and 759 bp, encoding proteins of 192 and 218 amino acids, respectively. qPCR showed that OfPGRP-A and OfPGRP-B are prominently expressed in the midgut of O. furnacalis fourth instar larvae. After inoculation with Staphylococcus aureus and Bacillus thuringiensis, the expression of OfPGRP-A was significantly upregulated, whereas the expression of OfPGRP-B was enhanced after inoculation with Escherichia coli. This suggests that OfPGRP-A mainly recognizes Gram-positive bacteria and may participate in the Toll signaling pathways, while OfPGRP-B identifies Gram-negative bacteria and may participate in Imd signaling pathways. Our results provide insights into the roles of PGRPs in O. furnacalis immune function and a foundation for using pathogens for the biological control of O. furnacalis.
Collapse
Affiliation(s)
- Zengxia Wang
- College of Agriculture, Anhui Science and Technology University, Fengyang 233100, China; (B.H.); (M.G.); (Q.L.); (Y.T.)
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, MOA—CABI Joint Laboratory for Bio-Safety, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing 100193, China
- Correspondence: (Z.W.); (Z.W.)
| | - Wan Zhou
- College of Resource and Environment, Anhui Science and Technology University, Fengyang 233100, China;
| | - Baohong Huang
- College of Agriculture, Anhui Science and Technology University, Fengyang 233100, China; (B.H.); (M.G.); (Q.L.); (Y.T.)
| | - Mengyuan Gao
- College of Agriculture, Anhui Science and Technology University, Fengyang 233100, China; (B.H.); (M.G.); (Q.L.); (Y.T.)
| | - Qianqian Li
- College of Agriculture, Anhui Science and Technology University, Fengyang 233100, China; (B.H.); (M.G.); (Q.L.); (Y.T.)
| | - Yidong Tao
- College of Agriculture, Anhui Science and Technology University, Fengyang 233100, China; (B.H.); (M.G.); (Q.L.); (Y.T.)
| | - Zhenying Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, MOA—CABI Joint Laboratory for Bio-Safety, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing 100193, China
- Correspondence: (Z.W.); (Z.W.)
| |
Collapse
|
6
|
Sensing microbial infections in the Drosophila melanogaster genetic model organism. Immunogenetics 2022; 74:35-62. [DOI: 10.1007/s00251-021-01239-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 11/20/2021] [Indexed: 12/17/2022]
|
7
|
Yuan F, Wei C. Gene expression profiles in Malpighian tubules of the vector leafhopper Psammotettix striatus (L.) revealed regional functional diversity and heterogeneity. BMC Genomics 2022; 23:67. [PMID: 35057738 PMCID: PMC8781387 DOI: 10.1186/s12864-022-08300-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 01/11/2022] [Indexed: 12/03/2022] Open
Abstract
Background Many leafhoppers are known as pests and disease vectors of economically important plants. Previous studies of the physiological functions of vector leafhoppers have mainly focused on the salivary glands and the alimentary tract that are deemed to be associated with digestion, host defense and phytoplasma and/or virus transmission. By contrast, the significance of Malpighian tubules (MTs) is less studied. To clarify the physiological function of MTs of the vector leafhopper Psammotettix striatus that transmits phytoplasma triggering the wheat blue dwarf disease, we performed a transcriptome study on P. striatus MTs and compared gene expression profiles among different anatomical regions in the tubules (i.e., MT1+2, the anterior segment together with the sub-anterior segment; MT3, the inflated segment; and MT4, the distal segment). Results Transcriptome of P. striatus MTs generate a total of 42,815 high-quality unigenes, among which highly expressed unigenes are mainly involved in organic solute transport, detoxification and immunity in addition to osmoregulation. Region-specific comparative analyses reveal that all these MT regions have functions in osmoregulation, organic solute transport and detoxification, but each region targets different substrates. Differential expression and regional enrichment of immunity-related effector activities and molecules involved in phagocytosis and the biosynthesis of antimicrobial peptides among different regions indicate that MT1+2 and MT4 have the ability to eliminate the invading pathogens. However, in MT3 which secrets brochosomes to the integument and eggs as physical barriers, disulfide-isomerase, acidic ribosomal protein P and many other unigenes were highly expressed, which can be attractive candidate genes for future studies of the biosynthesis and the origin of brochosomes. Conclusions Psammotettix striatus MTs perform multiple physiological functions as versatile organs than just excretory organs with osmoregulatory function. Heterogeneity of physiological functions among different MT regions is related to organic solute transport, detoxification, immunity and brochosome biosynthesis in addition to osmoregulation, and each region targets different substrates. These functions may be helpful for P. striatus to resist pathogens from habitats and to utilize a wider range of host plants, which may assist the transmission and spread of phytoplasmas. The results provide potential molecular targets for the exploit of chemical and/or gene-silencing insecticides. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08300-6.
Collapse
|
8
|
Wang Z, Feng K, Tang F, Xu M. Activation of the Host Immune Response in Hyphantria cunea (Drury) (Lepidoptera: Noctuidae) Induced by Serratia marcescens Bizio. INSECTS 2021; 12:insects12110983. [PMID: 34821784 PMCID: PMC8617612 DOI: 10.3390/insects12110983] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/04/2021] [Accepted: 10/27/2021] [Indexed: 01/07/2023]
Abstract
Simple Summary Hyphantria cunea (Drury) is a quarantine pest, due to its extensive host, leading to serious economic losses in the agricultural and forestry industries. To control this pest, it is increasingly important to use microbial pesticides because they are biologically active and ecologically safe. Serratia marcescens Bizio (SM1) is a potential biocontrol bacterium. Although SM1 has a pathogenic role in H. cunea, H. cunea self-defense reduces the pathogenic effect of SM1. In this study, immune-related differentially expressed genes (DEGs) in H. cunea were first identified after SM1 infection, and the immune regulation mode of H. cunea in response to SM1, including antimicrobial peptide synthesis pathways, melanization and cellular immunity, was revealed. According to the analysis, the immune system of H. cunea was induced by SM1. In summary, our study demonstrates how the immune systems of the H. cunea work to resist the infection of SM1, which provides the theoretical basis for researching more efficient microbial pesticides for H. cunea. Abstract Host–pathogen interactions are essential to our understanding of biological pesticides. Hyphantria cunea (Drury) is an important forest pest worldwide. The immune mechanism of the interaction between H. cunea and Serratia marcescens Bizio (SM1) is unclear. First, transcriptome sequencing and quantitative real-time PCR (qRT-PCR) analysis described the H. cunea immune response to SM1. A total of 234 immune-related differentially expressed genes (DEGs) were found. Many immune regulatory genes in three classical pathways were found. Antimicrobial peptides, including attacin B, cecropin A, gloverin, lebocin and diapausin, are involved in defending against SM1 challenge, and are mainly produced by Toll and immune deficiency (IMD) pathways. Some melanization genes were changed in H. cunea, which suggested that H. cunea melanization was activated by SM1. Furthermore, phagocytosis, autophagolysosome and apoptosis pathways in cellular immunity were activated in H. cunea against SM1. Finally, the expression patterns of 10 immune genes were analyzed systematically by qRT-PCR, and most of the genes were upregulated compared to the control. Our studies provide useful information about the immune response of H. cunea under the stress of SM1, which is important to understand how SM1 affects the immune system of H. cunea and provides new ideas to control H. cunea by using SM1.
Collapse
Affiliation(s)
- Zhiqiang Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (Z.W.); (K.F.); (M.X.)
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Kai Feng
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (Z.W.); (K.F.); (M.X.)
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Fang Tang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (Z.W.); (K.F.); (M.X.)
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
- Correspondence: ; Tel.: +86-13813966269
| | - Meng Xu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (Z.W.); (K.F.); (M.X.)
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
9
|
Cerenius L, Söderhäll K. Immune properties of invertebrate phenoloxidases. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 122:104098. [PMID: 33857469 DOI: 10.1016/j.dci.2021.104098] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 03/12/2021] [Accepted: 04/04/2021] [Indexed: 06/12/2023]
Abstract
Melanin production from different types of phenoloxidases (POs) confers immunity from a variety of pathogens ranging from viruses and microorganisms to parasites. The arthropod proPO expresses a variety of activities including cytokine, opsonin and microbiocidal activities independent of and even without melanin production. Proteolytic processing of proPO and its activating enzyme gives rise to several peptide fragments with a variety of separate activities in a process reminiscent of vertebrate complement system activation although proPO bears no sequence similarity to vertebrate complement factors. Pathogens influence proPO activation and thereby what types of immune effects that will be produced. An increasing number of specialised pathogens - from parasites to viruses - have been identified who can synthesise compounds specifically aimed at the proPO-system. In invertebrates outside the arthropods phylogenetically unrelated POs are participating in melanization reactions obviously aimed at intruders and/or aberrant tissues.
Collapse
Affiliation(s)
- Lage Cerenius
- Department of Organismal Biology,Uppsala University, Norbyvägen 18A, 752 36 Uppsala, Sweden.
| | - Kenneth Söderhäll
- Department of Organismal Biology,Uppsala University, Norbyvägen 18A, 752 36 Uppsala, Sweden
| |
Collapse
|
10
|
Fungal α-1,3-Glucan as a New Pathogen-Associated Molecular Pattern in the Insect Model Host Galleria mellonella. Molecules 2021; 26:molecules26165097. [PMID: 34443685 PMCID: PMC8399224 DOI: 10.3390/molecules26165097] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/16/2021] [Accepted: 08/20/2021] [Indexed: 11/24/2022] Open
Abstract
Recognition of pathogen-associated molecular patterns (PAMPs) by appropriate pattern recognition receptors (PRRs) is a key step in activating the host immune response. The role of a fungal PAMP is attributed to β-1,3-glucan. The role of α-1,3-glucan, another fungal cell wall polysaccharide, in modulating the host immune response is not clear. This work investigates the potential of α-1,3-glucan as a fungal PAMP by analyzing the humoral immune response of the greater wax moth Galleria mellonella to Aspergillus niger α-1,3-glucan. We demonstrated that 57-kDa and 61-kDa hemolymph proteins, identified as β-1,3-glucan recognition proteins, bound to A. niger α-1,3-glucan. Other hemolymph proteins, i.e., apolipophorin I, apolipophorin II, prophenoloxidase, phenoloxidase activating factor, arylphorin, and serine protease, were also identified among α-1,3-glucan-interacting proteins. In response to α-1,3-glucan, a 4.5-fold and 3-fold increase in the gene expression of antifungal peptides galiomicin and gallerimycin was demonstrated, respectively. The significant increase in the level of five defense peptides, including galiomicin, corresponded well with the highest antifungal activity in hemolymph. Our results indicate that A. niger α-1,3-glucan is recognized by the insect immune system, and immune response is triggered by this cell wall component. Thus, the role of a fungal PAMP for α-1,3-glucan can be postulated.
Collapse
|
11
|
Ji J, Zhou L, Xu Z, Ma L, Lu Z. Two atypical gram-negative bacteria-binding proteins are involved in the antibacterial response in the pea aphid (Acyrthosiphon pisum). INSECT MOLECULAR BIOLOGY 2021; 30:427-435. [PMID: 33928689 DOI: 10.1111/imb.12708] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/26/2021] [Accepted: 04/21/2021] [Indexed: 06/12/2023]
Abstract
The activation of immune pathways is triggered by the recognition of pathogens by pattern recognition receptors (PRRs). Gram-negative bacteria-binding proteins (GNBPs)/β-1,3-glucan recognition proteins (βGRPs) are a conserved family of PRRs in insects. Two GNBPs are predicted in the genome database of pea aphids; however, little is known about their functions in the aphid immune system. Here, we show that pea aphid GNBPs possess domain architectures and sequence features distinct from those of typical GNBPs/βGRPs and that their expression is induced by bacterial infection. Knockdown of their expression by dsRNA resulted in lower phenoloxidase activity, higher bacterial loads and higher mortality in aphids after infection. Our data suggest that these two atypical GNBPs are involved in the antibacterial response in the pea aphid, likely acting as PRRs in the prophenoloxidase pathway.
Collapse
Affiliation(s)
- J Ji
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, China
| | - L Zhou
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Z Xu
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, China
| | - L Ma
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Z Lu
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, China
| |
Collapse
|
12
|
Huang Y, Ren Q. Research progress in innate immunity of freshwater crustaceans. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 104:103569. [PMID: 31830502 DOI: 10.1016/j.dci.2019.103569] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 12/07/2019] [Accepted: 12/08/2019] [Indexed: 06/10/2023]
Abstract
Invertebrates lack adaptive immunity and innate immunity plays important roles in combating foreign invasive pathogens. Freshwater crustaceans, which are invertebrates, depend completely on their innate immune system. In recent years, many immune-related molecules in freshwater crustaceans, as well as their functions, have been identified. Three main immune signaling pathways, namely, Toll, immune deficiency (IMD), and Janus kinase-signal transducer activator of transcription (JAK/STAT) pathways, were found in freshwater crustaceans. A series of pattern recognition receptors (PRRs), including Toll receptors, lectins, lipopolysaccharide and β-1,3-glucan binding protein, scavenger receptors, Down syndrome cell adhesion molecules, and thioester-containing proteins, were reported. Prophenoloxidase activation system and antimicrobial peptide synthesis are two important immune effector systems. These components are involved in the innate immunity of freshwater crustaceans, and they function in the innate immune defense against invading pathogens. This review mainly summarizes innate immune signaling pathways, PRRs, and effector molecules in freshwater crustaceans.
Collapse
Affiliation(s)
- Ying Huang
- College of Oceanography, Hohai University, 1 Xikang Road, Nanjing, Jiangsu, 210098, China; Postdoctoral Innovation Practice Base, Jiangsu Shuixian Industrial Company Limited, 40 Tonghu Road, Baoying, Yangzhou, Jiangsu, 225800, China
| | - Qian Ren
- Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, Jiangsu, 222005, China; College of Marine Science and Engineering, Nanjing Normal University, 1 Wenyuan Road, Nanjing, Jiangsu, 210023, China.
| |
Collapse
|
13
|
Molecular characterization of a pattern recognition protein LGBP highly expressed in the early stages of mud crab Scylla paramamosain. Comp Biochem Physiol A Mol Integr Physiol 2018; 227:25-31. [PMID: 30201542 DOI: 10.1016/j.cbpa.2018.08.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 08/31/2018] [Accepted: 08/31/2018] [Indexed: 11/24/2022]
Abstract
The early developmental stages of the mud crab Scylla paramamosain suffer from high mortality caused by pathogen infections; however, few immune associated factors are known. Lipopolysaccharide and β-1,3-glucan-binding protein (LGBP) functions as a typical pathogen recognition receptor and plays an important role in the innate immune system of invertebrates. In this study we characterized a LGBP gene (SpLGBP) which was highly expressed in the late embryonic, zoea I larval stage and hepatopancreas of S. paramamosain.. It encodes 364 amino acids, composed of several conserved domains like the bacterial glucanase motif. The recombinant SpLGBP protein (rSpLGBP) was obtained through the E.coli expression system, in which two 6◊His-tags were added to both C and N terminals during vector construction for the improvement of purification efficiency. In vivo the study showed that the SpLGBP mRNA was significantly up-regulated under Vibrio parahaemolyticus and a lipopolysaccharide (LPS) challenge in the hemocytes and hepatopancreas. The ELISA binding assay in vitro indicated that the rSpLGBP was capable of binding to LPSs and peptidoglycan (PGN). The rSpLGBP could agglutinate both G+ and G- bacteria in the presence of Ca2+. Our results suggest that SpLGBP may play an immunological role against pathogenic infection in the early developmental stages of S. paramamosain.
Collapse
|
14
|
Wang X, Luo H, Zhang R. Innate immune responses in the Chinese oak silkworm, Antheraea pernyi. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 83:22-33. [PMID: 29241953 DOI: 10.1016/j.dci.2017.12.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 12/10/2017] [Accepted: 12/11/2017] [Indexed: 06/07/2023]
Abstract
Innate immunity, the evolutionarily conserved defense system, has been extensively analyzed in insect models over recent decades. The significant progress in this area has formed our dominant conceptual framework of the innate immune system, but critical advances in other insects have had a profound impact on our insights into the mystery of innate immunity. In recent years, we focused on the immune responses in Antheraea pernyi, an important commercial silkworm species reared in China. Here, we review the immune responses of A. pernyi based on immune-related gene-encoded proteins that are divided into five categories, namely pattern recognition receptors, hemolymph proteinases and their inhibitors, prophenoloxidase, Toll pathway factors and antimicrobial peptides, and others. Although the summarized information is limited since the research on A. pernyi immunity is in its infancy, we hope to provide evidence for further exploration of innate immune mechanisms.
Collapse
Affiliation(s)
- Xialu Wang
- School of Medical Devices, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China
| | - Hao Luo
- School of Life Science and Bio-pharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China
| | - Rong Zhang
- School of Life Science and Bio-pharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China.
| |
Collapse
|
15
|
Rao XJ, Zhan MY, Pan YM, Liu S, Yang PJ, Yang LL, Yu XQ. Immune functions of insect βGRPs and their potential application. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 83:80-88. [PMID: 29229443 DOI: 10.1016/j.dci.2017.12.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 12/06/2017] [Accepted: 12/08/2017] [Indexed: 06/07/2023]
Abstract
Insects rely completely on the innate immune system to sense the foreign bodies and to mount the immune responses. Germ-line encoded pattern recognition receptors play crucial roles in recognizing pathogen-associated molecular patterns. Among them, β-1,3-glucan recognition proteins (βGRPs) and gram-negative bacteria-binding proteins (GNBPs) belong to the same pattern recognition receptor family, which can recognize β-1,3-glucans. Typical insect βGRPs are comprised of a tandem carbohydrate-binding module in the N-terminal and a glucanase-like domain in the C-terminal. The former can recognize triple-helical β-1,3-glucans, whereas the latter, which normally lacks the enzymatic activity, can recruit adapter proteins to initiate the protease cascade. According to studies, insect βGRPs possess at least three types of functions. Firstly, some βGRPs cooperate with peptidoglycan recognition proteins to recognize the lysine-type peptidoglycans upstream of the Toll pathway. Secondly, some directly recognize fungal β-1,3-glucans to activate the Toll pathway and melanization. Thirdly, some form the 'attack complexes' with other immune effectors to promote the antifungal defenses. The current review will focus on the discovery of insect βGRPs, functions of some well-characterized members, structure-function studies and their potential application.
Collapse
Affiliation(s)
- Xiang-Jun Rao
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui 230036, China.
| | - Ming-Yue Zhan
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Yue-Min Pan
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Su Liu
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Pei-Jin Yang
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Li-Ling Yang
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Xiao-Qiang Yu
- Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou 510631, China
| |
Collapse
|
16
|
Xu Y, Shi J, Hao W, Xiang T, Zhou H, Wang W, Meng Q, Ding Z. iTRAQ-based quantitative proteomic analysis of Procambarus clakii hemocytes during Spiroplasma eriocheiris infection. FISH & SHELLFISH IMMUNOLOGY 2018; 77:438-444. [PMID: 29625245 DOI: 10.1016/j.fsi.2018.04.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 03/13/2018] [Accepted: 04/02/2018] [Indexed: 06/08/2023]
Abstract
As a new-found aquaculture pathogen, Spiroplasma eriocheiris, has resulted in inconceivable economic losses in aquaculture. In the infection of S. eriocheiris, the Procambarus clakii hemocytes have indicated to be major target cells. What was designed to examine in our study is the hemocytes' immune response at the protein levels. Before the pathogen was injected and after 192 h of post-injection, the differential proteomes of the crayfish hemocytes were analyzed immediately by isobaric tags for relative and absolute quantization (iTRAQ) labeling, followed by liquid chromatogramphytandem mass spectrometry (LC-MS/MS). This research had identified a total of 285 differentially expressed proteins. Eighty-three and 202 proteins were up-regulated and down-regulated, respectively, caused by the S. eriocheiris infection. Up-regulated proteins included alpha-2-macroglobulin (α2M), vitellogenin, ferritin, etc. Down-regulated proteins, involved with serine protease, peroxiredoxin 6, 14-3-3-like protein, C-type lectin, cdc42 homolog precursor, etc. The prophenoloxidase-activating system, antimicrobial action involved in the immune responses of P. clarkii is considered to be damaged due to S. eriocheiris infection. The present work could lay the foundation for future research on the proteins related to the susceptibility/resistance of P. clarkii to S. eriocheiris. In addition, it is helpful for our understanding molecular mechanism of disease processes in crayfishes.
Collapse
Affiliation(s)
- Yinbin Xu
- Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210046, China
| | - Jinyan Shi
- Jiangsu Key Laboratory for Biofunctional Molecules & Aquatic Institute of Jiangsu Second Normal University, College of Life Science and Chemistry, Jiangsu Second Normal University, 77 West Beijing Road, Nanjing, 210013, China
| | - Wenjing Hao
- Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210046, China
| | - Tao Xiang
- Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210046, China
| | - Haifeng Zhou
- Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210046, China
| | - Wen Wang
- Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210046, China
| | - Qingguo Meng
- Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210046, China.
| | - Zhengfeng Ding
- Jiangsu Key Laboratory for Biofunctional Molecules & Aquatic Institute of Jiangsu Second Normal University, College of Life Science and Chemistry, Jiangsu Second Normal University, 77 West Beijing Road, Nanjing, 210013, China.
| |
Collapse
|
17
|
Investigation of immunogenic properties of Hemolin from silkworm, Bombyx mori as carrier protein: an immunoinformatic approach. Sci Rep 2018; 8:6957. [PMID: 29725106 PMCID: PMC5934409 DOI: 10.1038/s41598-018-25374-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 04/20/2018] [Indexed: 11/08/2022] Open
Abstract
Infectious diseases are the major cause of high mortality among infants and geriatric patients. Vaccines are the only weapon in our arsenal to defend us ourselves against innumerable infectious diseases. Though myriad of vaccines are available, still countless people die due to microbial infections. Subunit vaccine is an effective strategy of vaccine development, combining a highly immunogenic carrier protein with highly antigenic but non-immunogenic antigen (haptens). In this study we have made an attempt to utilize the immunoinformatic tool for carrier protein development. Immunogenic mediators (T-cell, B-cell, IFN-γ epitopes) and physiochemical properties of hemolin protein of silkworm, Bombyx mori were studied. Hemolin was found to be non-allergic and highly antigenic in nature. The refined tertiary structure of modelled hemolin was docked against TLR3 and TLR4-MD2 complex. Molecular dynamics study emphasized the stable microscopic interaction between hemolin and TLRs. In-silico cloning and codon optimization was carried out for effective expression of hemolin in E. coli expression system. The overall presence of Cytotoxic T Lymphocytes (CTL), Humoral T Lymphocytes (HTL), and IFN-γ epitopes with high antigenicity depicts the potential of hemolin as a good candidate for carrier protein.
Collapse
|
18
|
Phupet B, Pitakpornpreecha T, Baowubon N, Runsaeng P, Utarabhand P. Lipopolysaccharide- and β-1,3-glucan-binding protein from Litopenaeus vannamei: Purification, cloning and contribution in shrimp defense immunity via phenoloxidase activation. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 81:167-179. [PMID: 29191550 DOI: 10.1016/j.dci.2017.11.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 11/23/2017] [Accepted: 11/24/2017] [Indexed: 06/07/2023]
Abstract
Lipopolysaccharide- and β-1,3-glucan-binding protein (LGBP) existed in diversity of invertebrates including shrimp plays a crucial role in an innate immunity via mediating the recognition of invading pathogens. In this study, LGBP was cloned and characterized from the hepatopancreas of Litopenaeus vannamei, named as LvLGBP. Its full-length cDNA of 1282 bp contained an open reading frame (1101 bp) encoding a peptide of 367 amino acids. The LGBP primary structure contained a glycosyl hydrolase domain, two integrin binding motifs, two kinase C phosphorylation sites, and two polysaccharide recognition motifs which were identified as a polysaccharide binding motif and a β-1,3-glucan recognition motif. The LvLGBP transcripts were expressed mainly in the hepatopancreas. Upon challenge with Vibrio parahaemolyticus or white spot syndrome virus (WSSV), the LvLGBP mRNA expression was significantly up-regulated to reach a maximum at 48 h post injection. Its expression was also induced by lipopolysaccharide (LPS) or β-1,3-glucan stimulation. RNAi-based silencing resulted in the critical suppression of LvLGBP expression. Knockdown of LvLGBP gene with co-inoculation by V. parahaemolyticus or WSSV led to increase in the cumulative mortality and reduce in the median lethal time. Native LGBP was detected only in the hepatopancreas as verified by Western blotting. Purified LGBP from the hepatopancreas exhibited the agglutinating and binding activity towards Gram-negative bacterium V. parahaemolyticus with calcium-dependence. Its agglutinating activity was dominantly inhibited by LPS with higher potential than β-1,3-glucan. Purified LvLGBP could significantly activate the hemocyte phenoloxidase activity in the presence of LPS (12.9 folds), while slight activation was detected with β-1,3-glucan (2.0 folds). It could enhance the encapsulation by hemocytes but did not have antibacterial activity. These results provided evidence that LvLGBP might act as a pathogenic recognition protein to activate shrimp immune defense against invading pathogens via the agglutination, binding and enhancing encapsulation and phenoloxidase activity of the hemocytes.
Collapse
Affiliation(s)
- Benjaporn Phupet
- Department of Biochemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Thanawat Pitakpornpreecha
- Department of Biochemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Nuntaporn Baowubon
- Department of Biochemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Phanthipha Runsaeng
- Department of Biochemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Prapaporn Utarabhand
- Department of Biochemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand.
| |
Collapse
|
19
|
Anjugam M, Vaseeharan B, Iswarya A, Amala M, Govindarajan M, Alharbi NS, Kadaikunnan S, Khaled JM, Benelli G. A study on β-glucan binding protein (β-GBP) and its involvement in phenoloxidase cascade in Indian white shrimp Fenneropenaeus indicus. Mol Immunol 2017; 92:1-11. [DOI: 10.1016/j.molimm.2017.09.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 09/20/2017] [Accepted: 09/22/2017] [Indexed: 11/24/2022]
|
20
|
Cao J, Wu L, Jin M, Li T, Hui K, Ren Q. Transcriptome profiling of the Macrobrachium rosenbergii lymphoid organ under the white spot syndrome virus challenge. FISH & SHELLFISH IMMUNOLOGY 2017; 67:27-39. [PMID: 28554835 DOI: 10.1016/j.fsi.2017.05.059] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2016] [Revised: 05/23/2017] [Accepted: 05/25/2017] [Indexed: 06/07/2023]
Abstract
Macrobrachium rosenbergii is a crustacean with economic importance, and adult prawns are generally thought to be tolerant to white spot syndrome virus (WSSV) infection. Although certain genes are known to respond to WSSV infection and lymphoid tissue is an important immune organ, the response of lymphoid organ to WSSV infection is unclear. Next-generation sequencing was employed in this study to determine the transcriptome differences between WSSV infection and mock lymphoid organs. A total of 44,606,694 and 40,384,856 clean reads were generated and assembled into 73,658 and 72,374 unigenes from the control sample and the WSSV infection sample, respectively. Based on homology searches, KEGG, GO, and COG analysis, 21,323 unigenes were annotated. Among them, 4951 differential expression genes were identified and categorized into 244 metabolic pathways. Coagulation cascades, and pattern recognition receptor signaling pathways were used as examples to discuss the response of host to WSSV infection. We also identified 12,308 simple sequence repeats, which can be further used as functional markers. Results contribute to a better understanding of the immune response of prawn lymphoid organ to WSSV and provide information for identifying novel genes in the absence of the prawn genome.
Collapse
Affiliation(s)
- Jun Cao
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Lei Wu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, Nanjing 210046, People's Republic of China
| | - Min Jin
- State Key Laboratory Breeding Base of Marine Genetic Resource, Third Institute of Oceanography, SOA, Xiamen 361005, People's Republic of China
| | - Tingting Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, Nanjing 210046, People's Republic of China
| | - Kaimin Hui
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, Nanjing 210046, People's Republic of China.
| | - Qian Ren
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, Nanjing 210046, People's Republic of China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, People's Republic of China.
| |
Collapse
|
21
|
Characterization of a Gloverin-Like Antimicrobial Peptide Isolated from Muga Silkworm, Antheraea assamensis. Int J Pept Res Ther 2017. [DOI: 10.1007/s10989-017-9618-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
22
|
Arumugam G, Sreeramulu B, Paulchamy R, Thangavel S, Sundaram J. Purification and functional characterization of lectin with phenoloxidase activity from the hemolymph of cockroach, Periplaneta americana. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2017; 95:e21390. [PMID: 28557066 DOI: 10.1002/arch.21390] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Lectins also identified as hemagglutinins are multivalent proteins and on account of their fine sugar-binding specificity play an important role in immune system of invertebrates. The present study was carried out on the hemolymph lectin of cockroach, Periplaneta americana with appropriate screening and purification to understand its molecular as well as functional nature. The lectin from the hemolymph was purified using ion-exchange chromatography. The approximate molecular weight of purified lectin was 340 kDa as determined by FPLC analysis. Rabbit erythrocytes were highly agglutinated with purified lectin from the hemolymph of P. americana. The hemagglutination activity (HA) of lectin was specifically inhibited by fucose. Glycoproteins also inhibited the HA activity of lectin. The amino acid sequences of the purified lectin revealed homology with amino acid sequences of allergen proteins from P. americana. Purified lectin showed the highest phenoloxidase activity against dopamine. The activators such as exogenous proteases and LPS from Escherichia coli and Salmonella minnesota significantly enhanced the PO activity of the purified lectin. Besides, the presence of copper and hemocyanin conserved domain in the purified lectin provided a new facet that insects belonging to the ancient clade such as cockroaches retained some traces of evolutionary resemblance in possessing lectin of ancient origin.
Collapse
|
23
|
Lai AG, Aboobaker AA. Comparative genomic analysis of innate immunity reveals novel and conserved components in crustacean food crop species. BMC Genomics 2017; 18:389. [PMID: 28521727 PMCID: PMC5437397 DOI: 10.1186/s12864-017-3769-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 05/07/2017] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Growing global demands for crustacean food crop species have driven large investments in aquaculture research worldwide. However, large-scale production is susceptible to pathogen-mediated destruction particularly in developing economies. Thus, a thorough understanding of the immune system components of food crop species is imperative for research to combat pathogens. RESULTS Through a comparative genomics approach utilising extant data from 55 species, we describe the innate immune system of the class Malacostraca, which includes all food crop species. We identify 7407 malacostracan genes from 39 gene families implicated in different aspects of host defence and demonstrate dynamic evolution of innate immunity components within this group. Malacostracans have achieved flexibility in recognising infectious agents through divergent evolution and expansion of pathogen recognition receptors genes. Antiviral RNAi, Toll and JAK-STAT signal transduction pathways have remained conserved within Malacostraca, although the Imd pathway appears to lack several key components. Immune effectors such as the antimicrobial peptides (AMPs) have unique evolutionary profiles, with many malacostracan AMPs not found in other arthropods. Lastly, we describe four putative novel immune gene families, potentially representing important evolutionary novelties of the malacostracan immune system. CONCLUSION Our analyses across the broader Malacostraca have allowed us to not only draw analogies with other arthropods but also to identify evolutionary novelties in immune modulation components and form strong hypotheses as to when key pathways have evolved or diverged. This will serve as a key resource for future immunology research in crustacean food crops.
Collapse
Affiliation(s)
- Alvina G Lai
- Department of Zoology, University of Oxford, Tinbergen Building, South Parks Road, Oxford, OX1 3PS, UK.
| | - A Aziz Aboobaker
- Department of Zoology, University of Oxford, Tinbergen Building, South Parks Road, Oxford, OX1 3PS, UK.
| |
Collapse
|
24
|
Bergman P, Seyedoleslami Esfahani S, Engström Y. Drosophila as a Model for Human Diseases—Focus on Innate Immunity in Barrier Epithelia. Curr Top Dev Biol 2017; 121:29-81. [DOI: 10.1016/bs.ctdb.2016.07.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
25
|
Smartt CT, Shin D, Anderson SL. The Effect of West Nile Virus Infection on the Midgut Gene Expression of Culex pipiens quinquefasciatus Say (Diptera: Culicidae). INSECTS 2016; 7:insects7040076. [PMID: 27999244 PMCID: PMC5198224 DOI: 10.3390/insects7040076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Revised: 11/27/2016] [Accepted: 12/06/2016] [Indexed: 12/23/2022]
Abstract
The interaction of the mosquito and the invading virus is complex and can result in physiological and gene expression alterations in the insect. The association of West Nile virus (WNV) and Culex pipiens quinquefasciatus mosquitoes results in measurable changes in gene expression; 22 gene products were shown previously to have altered expression. Sequence analysis of one product, CQ G1A1, revealed 100% amino acid identity to gram negative bacteria binding proteins (CPQGBP) in Cx. p. quinquefasciatus, Aedes aegypti (70%) and Anopheles gambiae (63%) that function in pathogen recognition. CQ G1A1 also was differentially expressed following WNV infection in two populations of Cx. p. quinquefasciatus colonized from Florida with known differences in vector competence for WNV and showed spatial and temporal gene expression differences in midgut, thorax, and carcass tissues. These data suggest gene expression of CQ G1A1 is influenced by WNV infection and the WNV infection-controlled expression differs between populations and tissues.
Collapse
Affiliation(s)
- Chelsea T Smartt
- Florida Medical Entomology Laboratory, Department of Entomology and Nematology, University of Florida-IFAS, 200 9th Street Southeast, Vero Beach, FL 32962, USA.
| | - Dongyoung Shin
- Florida Medical Entomology Laboratory, Department of Entomology and Nematology, University of Florida-IFAS, 200 9th Street Southeast, Vero Beach, FL 32962, USA.
| | - Sheri L Anderson
- Florida Medical Entomology Laboratory, Department of Entomology and Nematology, University of Florida-IFAS, 200 9th Street Southeast, Vero Beach, FL 32962, USA.
| |
Collapse
|
26
|
Papanicolaou A, Schetelig MF, Arensburger P, Atkinson PW, Benoit JB, Bourtzis K, Castañera P, Cavanaugh JP, Chao H, Childers C, Curril I, Dinh H, Doddapaneni H, Dolan A, Dugan S, Friedrich M, Gasperi G, Geib S, Georgakilas G, Gibbs RA, Giers SD, Gomulski LM, González-Guzmán M, Guillem-Amat A, Han Y, Hatzigeorgiou AG, Hernández-Crespo P, Hughes DST, Jones JW, Karagkouni D, Koskinioti P, Lee SL, Malacrida AR, Manni M, Mathiopoulos K, Meccariello A, Munoz-Torres M, Murali SC, Murphy TD, Muzny DM, Oberhofer G, Ortego F, Paraskevopoulou MD, Poelchau M, Qu J, Reczko M, Robertson HM, Rosendale AJ, Rosselot AE, Saccone G, Salvemini M, Savini G, Schreiner P, Scolari F, Siciliano P, Sim SB, Tsiamis G, Ureña E, Vlachos IS, Werren JH, Wimmer EA, Worley KC, Zacharopoulou A, Richards S, Handler AM. The whole genome sequence of the Mediterranean fruit fly, Ceratitis capitata (Wiedemann), reveals insights into the biology and adaptive evolution of a highly invasive pest species. Genome Biol 2016; 17:192. [PMID: 27659211 PMCID: PMC5034548 DOI: 10.1186/s13059-016-1049-2] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 08/26/2016] [Indexed: 01/01/2023] Open
Abstract
Background The Mediterranean fruit fly (medfly), Ceratitis capitata, is a major destructive insect pest due to its broad host range, which includes hundreds of fruits and vegetables. It exhibits a unique ability to invade and adapt to ecological niches throughout tropical and subtropical regions of the world, though medfly infestations have been prevented and controlled by the sterile insect technique (SIT) as part of integrated pest management programs (IPMs). The genetic analysis and manipulation of medfly has been subject to intensive study in an effort to improve SIT efficacy and other aspects of IPM control. Results The 479 Mb medfly genome is sequenced from adult flies from lines inbred for 20 generations. A high-quality assembly is achieved having a contig N50 of 45.7 kb and scaffold N50 of 4.06 Mb. In-depth curation of more than 1800 messenger RNAs shows specific gene expansions that can be related to invasiveness and host adaptation, including gene families for chemoreception, toxin and insecticide metabolism, cuticle proteins, opsins, and aquaporins. We identify genes relevant to IPM control, including those required to improve SIT. Conclusions The medfly genome sequence provides critical insights into the biology of one of the most serious and widespread agricultural pests. This knowledge should significantly advance the means of controlling the size and invasive potential of medfly populations. Its close relationship to Drosophila, and other insect species important to agriculture and human health, will further comparative functional and structural studies of insect genomes that should broaden our understanding of gene family evolution. Electronic supplementary material The online version of this article (doi:10.1186/s13059-016-1049-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alexie Papanicolaou
- Hawkesbury Institute for the Environment, Western Sydney University, Sydney, Australia
| | - Marc F Schetelig
- Justus-Liebig-University Giessen, Institute for Insect Biotechnology, 35394, Giessen, Germany
| | - Peter Arensburger
- Department of Biological Sciences, Cal Poly Pomona, Pomona, CA, 91768, USA
| | - Peter W Atkinson
- Department of Entomology and Center for Disease Vector Research, University of California Riverside, Riverside, CA, 92521, USA.,Interdepartmental Graduate Program in Genetics, Genomics & Bioinformatics, University of California Riverside, Riverside, CA, 92521, USA
| | - Joshua B Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Kostas Bourtzis
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, Seibersdorf, Vienna, Austria.,Department of Environmental and Natural Resources Management, University of Patras, Agrinio, Greece
| | - Pedro Castañera
- Department of Environmental Biology, Centro de Investigaciones Biológicas, CSIC, 28040, Madrid, Spain
| | - John P Cavanaugh
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Hsu Chao
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | | | - Ingrid Curril
- Georg-August-Universität Göttingen, Johann-Friedrich-Blumenbach-Institut für Zoologie und Anthropologie, 37077, Göttingen, Germany
| | - Huyen Dinh
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - HarshaVardhan Doddapaneni
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Amanda Dolan
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA
| | - Shannon Dugan
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Markus Friedrich
- Department of Biological Sciences, Wayne State University, Detroit, MI, 48202, USA
| | - Giuliano Gasperi
- Department of Biology and Biotechnology, University of Pavia, 27100, Pavia, Italy
| | - Scott Geib
- USDA-ARS, Pacific Basin Agricultural Research Center, Hilo, HI, 96720, USA
| | - Georgios Georgakilas
- DIANA-Lab, Department of Electrical & Computer Engineering, University of Thessaly, 382 21 Volos, Greece and Hellenic Pasteur Institute, 11521, Athens, Greece
| | - Richard A Gibbs
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Sarah D Giers
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Ludvik M Gomulski
- Department of Biology and Biotechnology, University of Pavia, 27100, Pavia, Italy
| | - Miguel González-Guzmán
- Department of Environmental Biology, Centro de Investigaciones Biológicas, CSIC, 28040, Madrid, Spain
| | - Ana Guillem-Amat
- Department of Environmental Biology, Centro de Investigaciones Biológicas, CSIC, 28040, Madrid, Spain
| | - Yi Han
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Artemis G Hatzigeorgiou
- DIANA-Lab, Department of Electrical & Computer Engineering, University of Thessaly, 382 21 Volos, Greece and Hellenic Pasteur Institute, 11521, Athens, Greece
| | - Pedro Hernández-Crespo
- Department of Environmental Biology, Centro de Investigaciones Biológicas, CSIC, 28040, Madrid, Spain
| | - Daniel S T Hughes
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Jeffery W Jones
- Department of Biological Sciences, Oakland University, Rochester, MI, 48309, USA
| | - Dimitra Karagkouni
- DIANA-Lab, Department of Electrical & Computer Engineering, University of Thessaly, 382 21 Volos, Greece and Hellenic Pasteur Institute, 11521, Athens, Greece
| | - Panagiota Koskinioti
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| | - Sandra L Lee
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Anna R Malacrida
- Department of Biology and Biotechnology, University of Pavia, 27100, Pavia, Italy
| | - Mosè Manni
- Department of Biology and Biotechnology, University of Pavia, 27100, Pavia, Italy
| | - Kostas Mathiopoulos
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| | - Angela Meccariello
- Department of Biology, University of Naples Federico II, 80126, Naples, Italy
| | | | - Shwetha C Murali
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Terence D Murphy
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Donna M Muzny
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Georg Oberhofer
- Georg-August-Universität Göttingen, Johann-Friedrich-Blumenbach-Institut für Zoologie und Anthropologie, 37077, Göttingen, Germany
| | - Félix Ortego
- Department of Environmental Biology, Centro de Investigaciones Biológicas, CSIC, 28040, Madrid, Spain
| | - Maria D Paraskevopoulou
- DIANA-Lab, Department of Electrical & Computer Engineering, University of Thessaly, 382 21 Volos, Greece and Hellenic Pasteur Institute, 11521, Athens, Greece
| | - Monica Poelchau
- National Agricultural Library, USDA, Beltsville, MD, 20705, USA
| | - Jiaxin Qu
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Martin Reczko
- Institute of Molecular Biology and Genetics, Biomedical Sciences Research Centre "Alexander Fleming", Vari, Greece
| | - Hugh M Robertson
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Andrew J Rosendale
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Andrew E Rosselot
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Giuseppe Saccone
- Department of Biology, University of Naples Federico II, 80126, Naples, Italy
| | - Marco Salvemini
- Department of Biology, University of Naples Federico II, 80126, Naples, Italy
| | - Grazia Savini
- Department of Biology and Biotechnology, University of Pavia, 27100, Pavia, Italy
| | - Patrick Schreiner
- Interdepartmental Graduate Program in Genetics, Genomics & Bioinformatics, University of California Riverside, Riverside, CA, 92521, USA
| | - Francesca Scolari
- Department of Biology and Biotechnology, University of Pavia, 27100, Pavia, Italy
| | - Paolo Siciliano
- Department of Biology and Biotechnology, University of Pavia, 27100, Pavia, Italy
| | - Sheina B Sim
- USDA-ARS, Pacific Basin Agricultural Research Center, Hilo, HI, 96720, USA
| | - George Tsiamis
- Department of Environmental and Natural Resources Management, University of Patras, Agrinio, Greece
| | - Enric Ureña
- Department of Environmental Biology, Centro de Investigaciones Biológicas, CSIC, 28040, Madrid, Spain
| | - Ioannis S Vlachos
- DIANA-Lab, Department of Electrical & Computer Engineering, University of Thessaly, 382 21 Volos, Greece and Hellenic Pasteur Institute, 11521, Athens, Greece
| | - John H Werren
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA
| | - Ernst A Wimmer
- Georg-August-Universität Göttingen, Johann-Friedrich-Blumenbach-Institut für Zoologie und Anthropologie, 37077, Göttingen, Germany
| | - Kim C Worley
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | | | - Stephen Richards
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Alfred M Handler
- USDA-ARS, Center for Medical, Agricultural, and Veterinary Entomology, 1700 S.W. 23rd Drive, Gainesville, FL, 32608, USA.
| |
Collapse
|
27
|
Wang S, Zhang Y, Yang M, Ye L, Gong L, Qian Q, Shuai Y, You Z, Chen Y, Zhong B. Characterization of Transgenic Silkworm Yielded Biomaterials with Calcium-Binding Activity. PLoS One 2016; 11:e0159111. [PMID: 27414647 PMCID: PMC4944971 DOI: 10.1371/journal.pone.0159111] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 06/27/2016] [Indexed: 11/19/2022] Open
Abstract
Silk fibers have many inherent properties that are suitable for their use in biomaterials. In this study, the silk fibroin was genetically modified by including a Ca-binding sequence, [(AGSGAG)6ASEYDYDDDSDDDDEWD]2 from shell nacreous matrix protein. It can be produced as fibers by transgenic silkworm. The Ca-binding activity and mineralization of the transgenic silk fibroin were examined in vitro. The results showed that this transgenic silk fibroin had relatively higher Ca-binding activity than unmodified silk fibroin. The increased Ca-binding activity could promote the usage of silk fibroin as a biomaterial in the pharmaceutical industry. This study shows the possibility of using silk fibroin as a mineralization accelerating medical material by generating genetically modified transgenic silkworm.
Collapse
Affiliation(s)
- Shaohua Wang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, P.R. China
| | - Yuyu Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, P.R. China
| | - Mingying Yang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, P.R. China
| | - Lupeng Ye
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, P.R. China
| | - Lu Gong
- College of Life Sciences, Zhejiang University, Hangzhou 310058, P.R. China
| | - Qiujie Qian
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, P.R. China
| | - Yajun Shuai
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, P.R. China
| | - Zhengying You
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, P.R. China
| | - Yuyin Chen
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, P.R. China
| | - Boxiong Zhong
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, P.R. China
- * E-mail:
| |
Collapse
|
28
|
Shu M, Mang D, Fu GS, Tanaka S, Endo H, Kikuta S, Sato R. Mechanisms of nodule-specific melanization in the hemocoel of the silkworm, Bombyx mori. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2016; 70:10-23. [PMID: 26707571 DOI: 10.1016/j.ibmb.2015.12.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 11/26/2015] [Accepted: 12/15/2015] [Indexed: 06/05/2023]
Abstract
In the insect immune system, nodules are known to be a product of the cellular response against microorganisms and may be a preferential target for melanization. However, the mechanism of nodule-preferential melanization remains to be explored. In this study, we identified several mechanisms of nodule-preferential melanization by analyzing congregation and the activation of several factors involved in the prophenoloxidase (proPO)-activating system in the silkworm, Bombyx mori. Microorganism-binding assays revealed that B. mori larval plasma have an effective invading microorganism-surveillance network consisting of at least six pattern-recognition receptors (PRRs). We also found that a hemolymph serine proteinase, BmHP14, can bind to Saccharomyces cerevisiae. Pull-down assays showed that PRR C-type lectins form protein complexes with serine proteinase homologs, BmSPH1 and BmSPH2, which leads to the activated forms of BmSPH1 and BmSPH2 being gathered on microorganisms and trapped in nodules. Immunostaining analysis revealed that most factors in the proPO-activating system and some factors in the triggering system for antimicrobial peptide production exist in the granules of hemocytes which can gather in nodules. Western blot analysis showed that factors in the proPO-activating system are congregated in formed nodules by their concentration in plasma and aggregating hemocytes.
Collapse
Affiliation(s)
- Min Shu
- Graduate School of Bio-Application and Systems Engineering, Tokyo University of Agriculture and Technology, Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Dingze Mang
- Graduate School of Bio-Application and Systems Engineering, Tokyo University of Agriculture and Technology, Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Gege Sun Fu
- Graduate School of Bio-Application and Systems Engineering, Tokyo University of Agriculture and Technology, Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Shiho Tanaka
- Graduate School of Bio-Application and Systems Engineering, Tokyo University of Agriculture and Technology, Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Haruka Endo
- Graduate School of Bio-Application and Systems Engineering, Tokyo University of Agriculture and Technology, Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Shingo Kikuta
- Graduate School of Bio-Application and Systems Engineering, Tokyo University of Agriculture and Technology, Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Ryoichi Sato
- Graduate School of Bio-Application and Systems Engineering, Tokyo University of Agriculture and Technology, Naka-cho, Koganei, Tokyo 184-8588, Japan.
| |
Collapse
|
29
|
Hou L, Xiu Y, Wang J, Liu X, Liu Y, Gu W, Wang W, Meng Q. iTRAQ-based quantitative proteomic analysis of Macrobrachium rosenbergii hemocytes during Spiroplasma eriocheiris infection. J Proteomics 2015; 136:112-22. [PMID: 26746008 DOI: 10.1016/j.jprot.2015.12.026] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 12/15/2015] [Accepted: 12/25/2015] [Indexed: 12/01/2022]
Abstract
UNLABELLED Spiroplasma eriocheiris, as a novel aquaculture pathogen, has led into catastrophic economic losses in aquaculture. The Macrobrachium rosenbergii hemocytes were major target cells in S. eriocheiris infection. Our study was designed to examine the hemocytes' immune response at the protein levels. The differential proteomes of the prawn hemocytes were analyzed immediately prior to injection with the pathogen, and at 192h post-injection by isobaric tags for relative and absolute quantization (iTRAQ) labeling, followed by liquid chromatogramphytandem mass spectrometry (LC-MS/MS). A total of 69 differentially expressed proteins were identified. Forty-nine proteins were up-regulated and 20 proteins were down-regulated resulting from a S. eriocheiris infection. Up-regulated proteins included vertebrate gliacolin-like protein, vitellogenin, Gram-negative binding protein 1, alpha2 macroglobulin isoform 2 (a2M), etc. Down-regulated proteins, involved with beta-1,3-glucan-binding protein (BGBP), immunoglobulin like, Rab7, lipopolysaccharide and β-1,3-glucan (LGBP), actin-related protein, etc. Selected bioactive factors (tachylectin, α2M and vitellogenin, BGBP, C-type lectin, LGBP and Rab7) were verified by their immune roles in the S. eriocheiris infection using real-time PCR. The present work could serve as a basis for future studies on the proteins implicated in the susceptibility/resistance of M. rosenbergii to S. eriocheiris, as well as contribute to our understanding of disease processes in prawns. BIOLOGICAL SIGNIFICANCE This is the first time using an iTRAQ approach to analyze proteomes of M. rosenbergii mobilized against S. eriocheiris infection and substantiated the hemocytes' proteomic changes in M. rosenbergii using an infection model. The results reported here can provide a significant step forward toward a more complete elucidation of the immune relationship between M. rosenbergii and the pathogen S. eriocheiris.
Collapse
Affiliation(s)
- Libo Hou
- Jiangsu Key Laboratory for Biodiversity & Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China; Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210046, China
| | - Yunji Xiu
- Jiangsu Key Laboratory for Biodiversity & Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China; Key Laboratory for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, Shandong, China; Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210046, China
| | - Jian Wang
- Jiangsu Key Laboratory for Biodiversity & Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China; Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210046, China
| | - Xiaoqian Liu
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Yuhan Liu
- Jiangsu Key Laboratory for Biodiversity & Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China; Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210046, China
| | - Wei Gu
- Jiangsu Key Laboratory for Biodiversity & Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China; Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210046, China
| | - Wen Wang
- Jiangsu Key Laboratory for Biodiversity & Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China; Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210046, China
| | - Qingguo Meng
- Jiangsu Key Laboratory for Biodiversity & Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China; Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210046, China.
| |
Collapse
|
30
|
Xiong GH, Xing LS, Lin Z, Saha TT, Wang C, Jiang H, Zou Z. High throughput profiling of the cotton bollworm Helicoverpa armigera immunotranscriptome during the fungal and bacterial infections. BMC Genomics 2015; 16:321. [PMID: 26001831 PMCID: PMC4490664 DOI: 10.1186/s12864-015-1509-1] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 03/31/2015] [Indexed: 12/03/2022] Open
Abstract
Background Innate immunity is essential in defending against invading pathogens in invertebrates. The cotton bollworm, Helicoverpa armigera (Hübner) is one of the most destructive lepidopteran pests, which causes enormous economic losses in agricultural production worldwide. The components of the immune system are largely unknown in this insect. The application of entomopathogens is considered as an alternative to the chemical insecticides for its control. However, few studies have focused on the molecular mechanisms of host-pathogen interactions between pest insects and their pathogens. Here, we investigated the immunotranscriptome of H. armigera larvae and examined gene expression changes after pathogen infections. This study provided insights into the potential immunity-related genes and pathways in H. armigera larvae. Results Here, we adopted a high throughput RNA-seq approach to determine the immunotranscriptome of H. armigera larvae injected with buffer, fungal pathogen Beauveria bassiana, or Gram-negative bacterium Enterobacter cloacae. Based on sequence similarity to those homologs known to participate in immune responses in other insects, we identified immunity-related genes encoding pattern recognition receptors, signal modulators, immune effectors, and nearly all members of the Toll, IMD and JAK/STAT pathways. The RNA-seq data indicated that some immunity-related genes were activated in fungus- and bacterium-challenged fat body while others were suppressed in B. bassiana challenged hemocytes, including the putative IMD and JAK-STAT pathway members. Bacterial infection elevated the expression of recognition and modulator genes in the fat body and signal pathway genes in hemocytes. Although fat body and hemocytes both are important organs involved in the immune response, our transcriptome analysis revealed that more immunity-related genes were induced in the fat body than that hemocytes. Furthermore, quantitative real-time PCR analysis confirmed that, consistent with the RNA-seq data, the transcript abundances of putative PGRP-SA1, Serpin1, Toll-14, and Spz2 genes were elevated in fat body upon B. bassiana infection, while the mRNA levels of defensin, moricin1, and gloverin1 were up-regulated in hemocytes. Conclusions In this study, a global survey of the host defense against fungal and bacterial infection was performed on the non-model lepidopteran pest species. The comprehensive sequence resource and expression profiles of the immunity-related genes in H. armigera are acquired. This study provided valuable information for future functional investigations as well as development of specific and effective agents to control this pest. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1509-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Guang-Hua Xiong
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Long-Sheng Xing
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Zhe Lin
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Tusar T Saha
- Department of Entomology, University of California Riverside, Riverside, CA, 92521, USA.
| | - Chengshu Wang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China.
| | - Haobo Jiang
- Department of Entomology and Plant Pathology, Oklahoma State University, 127 NRC, Stillwater, OK, 74078, USA.
| | - Zhen Zou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
31
|
Pulpitel T, Pernice M, Simpson SJ, Ponton F. Tissue-Specific Immune Gene Expression in the Migratory Locust, Locusta Migratoria. INSECTS 2015; 6:368-80. [PMID: 26463191 PMCID: PMC4553485 DOI: 10.3390/insects6020368] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 04/02/2015] [Accepted: 04/08/2015] [Indexed: 11/16/2022]
Abstract
The ability of hosts to respond to infection involves several complex immune recognition pathways. Broadly conserved pathogen-associated molecular patterns (PAMPs) allow individuals to target a range of invading microbes. Recently, studies on insect innate immunity have found evidence that a single pathogen can activate different immune pathways across species. In this study, expression changes in immune genes encoding peptidoglycan-recognition protein SA (PGRP-SA), gram-negative binding protein 1 (GNBP1) and prophenoloxidase (ProPO) were investigated in Locusta migratoria, following an immune challenge using injected lipopolysaccharide (LPS) solution from Escherichia coli. Since immune activation might also be tissue-specific, gene expression levels were followed across a range of tissue types. For PGRP-SA, expression increased in response to LPS within all seven of the tissue-types assayed and differed significantly between tissues. Expression of GNBP1 similarly varied across tissue types, yet showed no clear expression difference between LPS-injected and uninfected locusts. Increases in ProPO expression in response to LPS, however, could only be detected in the gut sections. This study has revealed tissue-specific immune response to add a new level of complexity to insect immune studies. In addition to variation in recognition pathways identified in previous works, tissue-specificity should be carefully considered in similar works.
Collapse
Affiliation(s)
- Tamara Pulpitel
- School of Biological Sciences, The University of Sydney, NSW 2006, Australia.
| | - Mathieu Pernice
- Plant Functional Biology and Climate Change Cluster, University of Technology Sydney, New South Wales 2007, Australia.
| | - Stephen J Simpson
- School of Biological Sciences, The University of Sydney, NSW 2006, Australia.
- The Charles Perkins Centre, The University of Sydney, NSW 2006, Australia.
| | - Fleur Ponton
- School of Biological Sciences, The University of Sydney, NSW 2006, Australia.
- The Charles Perkins Centre, The University of Sydney, NSW 2006, Australia.
| |
Collapse
|
32
|
Huang W, Xu X, Freed S, Zheng Z, Wang S, Ren S, Jin F. Molecular cloning and characterization of a β-1,3-glucan recognition protein from Plutella xylostella (L.). N Biotechnol 2015; 32:290-9. [DOI: 10.1016/j.nbt.2015.01.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 01/07/2015] [Accepted: 01/13/2015] [Indexed: 11/15/2022]
|
33
|
Liang J, Wang T, Xiang Z, He N. Tweedle cuticular protein BmCPT1 is involved in innate immunity by participating in recognition of Escherichia coli. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2015; 58:76-88. [PMID: 25449127 DOI: 10.1016/j.ibmb.2014.11.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2014] [Revised: 11/11/2014] [Accepted: 11/11/2014] [Indexed: 06/04/2023]
Abstract
Bombyx mori, a lepidopteran insect, is one of the earliest models for pattern recognition of Gram-negative bacteria, which may induce the IMD pathway for production of antibacterial peptides. So far, several recognition proteins have been reported in B. mori. However, the connection between pattern recognition of Gram negative bacteria and activation of BmRelish1, a transcription factor controlled by the IMD pathway remains largely unknown. In the present study, we identify BmCPT1, a cuticle protein bearing a Tweedle domain. Its gene expression is co-regulated by NF-kappaB and juvenile hormone signals. BmCPT1 is induced by Escherichia coli in fat bodies and hemocytes, but is constitutively expressed in the epidermis. In vitro binding assays indicate that BmCPT1 protein recognizes and binds to E. coli peptidoglycan. Post-transcriptionally modified BmCPT1 in the hemolymph binds to E. coli cells through interactions with peptidoglycan recognition protein-5 (BmPGRP5) and lipopolysaccharide binding protein (BmLBP). Transgenic overexpression of BmCPT1 causes the upregulated expression of BmRelish1 and clear induction of two gloverin genes. Therefore, BmCPT1 may work along with BmPGRP-S5 and BmLBP to recognize E. coli in the hemolymph and indirectly activate BmRelish1 to induce antimicrobial peptide synthesis.
Collapse
Affiliation(s)
- Jiubo Liang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing 400715, China.
| | - Ting Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing 400715, China.
| | - Zhonghuai Xiang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing 400715, China.
| | - Ningjia He
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing 400715, China.
| |
Collapse
|
34
|
Stokes BA, Yadav S, Shokal U, Smith LC, Eleftherianos I. Bacterial and fungal pattern recognition receptors in homologous innate signaling pathways of insects and mammals. Front Microbiol 2015; 6:19. [PMID: 25674081 PMCID: PMC4309185 DOI: 10.3389/fmicb.2015.00019] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 01/07/2015] [Indexed: 12/12/2022] Open
Abstract
In response to bacterial and fungal infections in insects and mammals, distinct families of innate immune pattern recognition receptors (PRRs) initiate highly complex intracellular signaling cascades. Those cascades induce a variety of immune functions that restrain the spread of microbes in the host. Insect and mammalian innate immune receptors include molecules that recognize conserved microbial molecular patterns. Innate immune recognition leads to the recruitment of adaptor molecules forming multi-protein complexes that include kinases, transcription factors, and other regulatory molecules. Innate immune signaling cascades induce the expression of genes encoding antimicrobial peptides and other key factors that mount and regulate the immune response against microbial challenge. In this review, we summarize our current understanding of the bacterial and fungal PRRs for homologous innate signaling pathways of insects and mammals in an effort to provide a framework for future studies.
Collapse
Affiliation(s)
- Bethany A Stokes
- Insect Infection and Immunity Laboratory, Department of Biological Sciences, The George Washington University Washington, DC, USA
| | - Shruti Yadav
- Insect Infection and Immunity Laboratory, Department of Biological Sciences, The George Washington University Washington, DC, USA
| | - Upasana Shokal
- Insect Infection and Immunity Laboratory, Department of Biological Sciences, The George Washington University Washington, DC, USA
| | - L C Smith
- Insect Infection and Immunity Laboratory, Department of Biological Sciences, The George Washington University Washington, DC, USA
| | - Ioannis Eleftherianos
- Insect Infection and Immunity Laboratory, Department of Biological Sciences, The George Washington University Washington, DC, USA
| |
Collapse
|
35
|
Chen YE, Jin S, Zhao QS, Zhang Y, Wang CL. PtLGBP, a pattern recognition receptor in Portunus trituberculatus involved in the immune response against different challenges. ACTA BIOLOGICA HUNGARICA 2014; 65:294-304. [PMID: 25194733 DOI: 10.1556/abiol.65.2014.3.6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Lipopolysaccharide and b-1,3-glucan binding protein (LGBP) is a pattern recognition receptor that can recognize and bind LPS and b-1,3-glucan. LGBP has crucial roles in innate immune defense against Gram-negative bacteria and fungi. In this study, LGBP functions in Portunus trituberculatus innate immunity were analyzed. First, the mRNA expression of PtLGBP in hemocytes, hepatopancreas, and muscle toward three typical pathogen-associated molecular patterns (PAMPs) stimulations were examined using real-time PCR. Results show that the overall trend of relative expressions of the LGBP gene in three tissues is consistent, showing up-down trend. In each group, the highest expression of the LGBP gene was at 3 and 12 h post-injection. The LGBP gene is also expressed significantly higher in the hemocytes and hepatopancreas than in the muscle. The highest level of LGBP was in the lipopolysaccharides (LPS) and glucan-injected group, whereas the lowest level was in the PGN-injected group. Furthermore, bacterial agglutination assay with polyclonal antibody specifically for PtLGBP proved that the recombinant PtLGBP (designated as rPtLGBP) could exhibit obvious agglutination activity toward Gram-negative bacteria Escherichia coli, Vibrio parahaemolyticus, and V. alginolyticus; Gram-positive bacteria Bacillus subtilis; and fungi Saccharomyces cerevisiae. LGBP in Portunus trituberculatus possibly served as a multi-functional PRR. In addition, LGBP is not only involved in the immune response against Gram-negative and fungi, as manifested in other invertebrates, but also has a significant role in anti-Gram-positive bacteria infection.
Collapse
Affiliation(s)
- Y-E Chen
- Ningbo University School of Marine Sciences Ningbo, Zhejiang 315211 China
| | - S Jin
- Ningbo University School of Marine Sciences Ningbo, Zhejiang 315211 China
| | - Q-S Zhao
- Ningbo University School of Marine Sciences Ningbo, Zhejiang 315211 China
| | - Y Zhang
- Ningbo University School of Marine Sciences Ningbo, Zhejiang 315211 China
| | - C-L Wang
- Ningbo University School of Marine Sciences Ningbo, Zhejiang 315211 China
| |
Collapse
|
36
|
Rao XJ, Zhong X, Lin XY, Huang XH, Yu XQ. Characterization of a novel Manduca sexta beta-1, 3-glucan recognition protein (βGRP3) with multiple functions. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2014; 52:13-22. [PMID: 24952171 PMCID: PMC4143429 DOI: 10.1016/j.ibmb.2014.06.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 06/09/2014] [Accepted: 06/11/2014] [Indexed: 05/30/2023]
Abstract
Recognition of pathogens by insect pattern recognition receptors is critical to mount effective immune responses. In this study, we reported a new member (βGRP3) of the β-1, 3-glucan recognition protein (βGRP) family from the tobacco hornworm Manduca sexta. Unlike other members of the M. sexta βGRP family proteins, which contain an N-terminal small glucan binding domain and a C-terminal large glucanase-like domain, βGRP3 is 40-45 residues shorter at the N-terminus and lacks the small glucan binding domain. The glucanase-like domain of βGRP3 is most similar to that of M. sexta microbe binding protein (MBP) with 78% identity. βGRP3 transcript was mainly expressed in the fat body, and both its mRNA and protein levels were not induced by microorganisms in larvae. Recombinant βGRP3 purified from Drosophila S2 cells could bind to several Gram-negative and Gram-positive bacteria and yeast, as well as to laminarin (β-1, 3-glucan), mannan, lipopolysaccharide (LPS), lipoteichoic acid (LTA), and meso-diaminopimelic acid (DAP)-type peptidoglycan (PG), but did not bind to Lysine-type PG. Binding of βGRP3 to laminarin could be competed well by free laminarin, mannan, LPS and LTA, but almost not competed by free PGs. Recombinant βGRP3 could agglutinate Bacillus cereus and Escherichia coli in a calcium-dependent manner and showed antibacterial (bacteriostatic) activity against B. cereus, novel functions that have not been reported for the βGRP family proteins before. M. sexta βGRP3 may serve as an immune surveillance receptor with multiple functions.
Collapse
Affiliation(s)
- Xiang-Jun Rao
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui 230036, China; Division of Molecular Biology and Biochemistry, School of Biological Sciences, University of Missouri-Kansas City, 5007 Rockhill Road, Kansas City, MO 64110, USA
| | - Xue Zhong
- Division of Molecular Biology and Biochemistry, School of Biological Sciences, University of Missouri-Kansas City, 5007 Rockhill Road, Kansas City, MO 64110, USA
| | - Xin-Yu Lin
- Division of Molecular Biology and Biochemistry, School of Biological Sciences, University of Missouri-Kansas City, 5007 Rockhill Road, Kansas City, MO 64110, USA; College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Xiao-Hong Huang
- Division of Molecular Biology and Biochemistry, School of Biological Sciences, University of Missouri-Kansas City, 5007 Rockhill Road, Kansas City, MO 64110, USA; College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Xiao-Qiang Yu
- Division of Molecular Biology and Biochemistry, School of Biological Sciences, University of Missouri-Kansas City, 5007 Rockhill Road, Kansas City, MO 64110, USA.
| |
Collapse
|
37
|
Tang T, Li X, Yang X, Yu X, Wang J, Liu F, Huang D. Transcriptional response of Musca domestica larvae to bacterial infection. PLoS One 2014; 9:e104867. [PMID: 25137050 PMCID: PMC4138075 DOI: 10.1371/journal.pone.0104867] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 07/18/2014] [Indexed: 11/18/2022] Open
Abstract
The house fly Musca domestica, a cosmopolitan dipteran insect, is a significant vector for human and animal bacterial pathogens, but little is known about its immune response to these pathogens. To address this issue, we inoculated the larvae with a mixture of Escherichia coli and Staphylococcus aureus and profiled the transcriptome 6, 24, and 48 h thereafter. Many genes known to controlling innate immunity in insects were induced following infection, including genes encoding pattern recognition proteins (PGRPs), various components of the Toll and IMD signaling pathways and of the proPO-activating and redox systems, and multiple antimicrobial peptides. Interestingly, we also uncovered a large set of novel immune response genes including two broad-spectrum antimicrobial peptides (muscin and domesticin), which might have evolved to adapt to house-fly's unique ecological environments. Finally, genes mediating oxidative phosphorylation were repressed at 48 h post-infection, suggesting disruption of energy homeostasis and mitochondrial function at the late stages of infection. Collectively, our data reveal dynamic changes in gene expression following bacterial infection in the house fly, paving the way for future in-depth analysis of M. domestica's immune system.
Collapse
Affiliation(s)
- Ting Tang
- College of Life Sciences, Hebei University, Baoding, China
| | - Xiang Li
- College of Life Sciences, Hebei University, Baoding, China
| | - Xue Yang
- College of Life Sciences, Hebei University, Baoding, China
| | - Xue Yu
- College of Life Sciences, Hebei University, Baoding, China
| | - Jianhui Wang
- Department of Pathology, Yale University, New Haven, Connecticut, United States of America
| | - Fengsong Liu
- College of Life Sciences, Hebei University, Baoding, China
- * E-mail: (FSL); (DWH)
| | - Dawei Huang
- College of Life Sciences, Hebei University, Baoding, China
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- * E-mail: (FSL); (DWH)
| |
Collapse
|
38
|
Fan J, Han P, Chen X, Hu Q, Ye M. Comparative proteomic analysis of Bombyx mori hemocytes treated with destruxin A. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2014; 86:33-45. [PMID: 24719308 DOI: 10.1002/arch.21160] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Destruxin A (DA), a cyclodepsipeptidic secondary metabolite of the entomopathogenic fungus, Metarhizium anisopliae, is an important anti-immunity agent against insect hemocytes. To understand the mechanism of the molecular responses to DA, fifth-instar larvae of the silkworm, Bombyx mori, were injected with 2 μg of DA. The proteomics of hemocytes were then investigated using two-dimensional electrophoresis and mass spectrometry, and validated qPCR. As a result, a total of 47 differently expressed protein spots were detected and 22 proteins in 26 spots were identified. There are eight immunity-related proteins, including three downregulated proteins (antitrypsin isoform 3, p50 protein, and calreticulin precursor) and five upregulated proteins (C-type lectin 10 precursor, serine proteinase-like protein, paralytic peptide, PPO-1, and PPO-2). Four resistance- and/or stress-related proteins (arginine kinase, carboxylesterase clade H, member 1, aminoacylase, and thiol peroxiredoxin) were upregulated. Ten proteins with other or unknown functions were also recorded. Five selected proteins were verified with qPCR. These results provide new insights into the molecular mechanism of host immune response to DA challenge.
Collapse
Affiliation(s)
- Jiqiao Fan
- Department of Pesticide Science, College of Natural Resource and Environment, South China Agricultural University, Guangzhou, China
| | | | | | | | | |
Collapse
|
39
|
Vogel H, Badapanda C, Knorr E, Vilcinskas A. RNA-sequencing analysis reveals abundant developmental stage-specific and immunity-related genes in the pollen beetle Meligethes aeneus. INSECT MOLECULAR BIOLOGY 2014; 23:98-112. [PMID: 24252113 DOI: 10.1111/imb.12067] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The pollen beetle (Meligethes aeneus) is a major pest of oilseed rape (Brassica napus) and other cruciferous crops in Europe. Pesticide-resistant pollen beetle populations are emerging, increasing the economic impact of this species. We isolated total RNA from the larval and adult stages, the latter either naïve or immunized by injection with bacteria and yeast. High-throughput RNA sequencing (RNA-Seq) was carried out to establish a comprehensive transcriptome catalogue and to screen for developmental stage-specific and immunity-related transcripts. We assembled the transcriptome de novo by combining sequence tags from all developmental stages and treatments. Gene expression data based on normalized read counts revealed several functional gene categories that were differentially expressed between larvae and adults, particularly genes associated with digestion and detoxification that were induced in larvae, and genes associated with reproduction and environmental signalling that were induced in adults. We also identified many genes associated with microbe recognition, immunity-related signalling and defence effectors, such as antimicrobial peptides (AMPs) and lysozymes. Digital gene expression analysis revealed significant differences in the profile of AMPs expressed in larvae, naïve adults and immune-challenged adults, providing insight into the steady-state differences between developmental stages and the complex transcriptional remodelling that occurs following the induction of immunity. Our data provide insight into the adaptive mechanisms used by phytophagous insects and could lead to the development of more effective control strategies for insect pests.
Collapse
Affiliation(s)
- H Vogel
- Department of Entomology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | | | | | | |
Collapse
|
40
|
Imler JL. Overview of Drosophila immunity: a historical perspective. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 42:3-15. [PMID: 24012863 DOI: 10.1016/j.dci.2013.08.018] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 05/01/2013] [Accepted: 05/01/2013] [Indexed: 05/24/2023]
Abstract
The functional analysis of genes from the model organism Drosophila melanogaster has provided invaluable information for many cellular and developmental or physiological processes, including immunity. The best-understood aspect of Drosophila immunity is the inducible humoral response, first recognized in 1972. This pioneering work led to a remarkable series of findings over the next 30 years, ranging from the identification and characterization of the antimicrobial peptides produced, to the deciphering of the signalling pathways activating the genes that encode them and, ultimately, to the discovery of the receptors sensing infection. These studies on an insect model coincided with a revival of the field of innate immunity, and had an unanticipated impact on the biomedical field.
Collapse
Affiliation(s)
- Jean-Luc Imler
- Faculté des Sciences de la Vie, Université de Strasbourg, Strasbourg, France; UPR9022 du CNRS, Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France.
| |
Collapse
|
41
|
Kurata S. Peptidoglycan recognition proteins in Drosophila immunity. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 42:36-41. [PMID: 23796791 PMCID: PMC3808481 DOI: 10.1016/j.dci.2013.06.006] [Citation(s) in RCA: 157] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 06/11/2013] [Accepted: 06/11/2013] [Indexed: 05/13/2023]
Abstract
Innate immunity is the front line of self-defense against infectious non-self in vertebrates and invertebrates. The innate immune system is mediated by germ-line encoding pattern recognition molecules (pathogen sensors) that recognize conserved molecular patterns present in the pathogens but absent in the host. Peptidoglycans (PGN) are essential cell wall components of almost all bacteria, except mycoplasma lacking a cell wall, which provides the host immune system an advantage for detecting invading bacteria. Several families of pattern recognition molecules that detect PGN and PGN-derived compounds have been indentified, and the role of PGRP family members in host defense is relatively well-characterized in Drosophila. This review focuses on the role of PGRP family members in the recognition of invading bacteria and the activation and modulation of immune responses in Drosophila.
Collapse
Affiliation(s)
- Shoichiro Kurata
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan.
| |
Collapse
|
42
|
Bang K, Park S, Cho S. Characterization of a β-1,3-glucan recognition protein from the beet armyworm, Spodoptera exigua (Insecta: Lepidoptera: Noctuidae). INSECT SCIENCE 2013; 20:575-584. [PMID: 23956146 DOI: 10.1111/j.1744-7917.2012.01538.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/04/2012] [Indexed: 06/02/2023]
Abstract
The β-1,3-glucan recognition protein gene from Spodoptera exigua (SeβGRP) was cloned and characterized. The cDNA of this gene is 1 644 nucleotides in length and the predicted polypeptide is 491 amino acids (aa) in length, with a calculated molecular mass of 54.8 kDa. The first 22 aa encode a predicted secretion signal peptide. A BLAST search, multiple sequence alignment, and phylogenetic analysis of the aa sequence of SeβGRP revealed that this protein is most similar to the β-1,3-glucan recognition protein (βGRP) family of pattern recognition proteins. Using reverse-transcription polymerase chain reaction, we detected the presence of SeβGRP transcripts in the egg, larval, pupal, and adult stages of S. exigua. In addition, the SeβGRP transcript was expressed in all the tissues examined including the brain, hemocytes, fat body, intestine, and cuticle. There were no changes in SeβGRP mRNA levels in larvae infected with ultraviolet (UV)-killed Escherichia coli DH5α compared with the control larvae inoculated with the water; however, SeβGRP mRNA levels were markedly elevated 4-8 h after infection and slightly induced 12-24 h after infection in larvae injected with UV-killed Fusarium oxysporum. This may be because β-1,3-glucan is the main component of the cell wall of F. oxysporum, but not E. coli DH5α.
Collapse
Affiliation(s)
- Kyeongrin Bang
- Department of Applied Biology, College of Agriculture and Life Science, Agriculture and Life Sciences Research Institute, Kangwon National University, Chuncheon
| | | | | |
Collapse
|
43
|
Identification of immune response-related genes in the Chinese oak silkworm, Antheraea pernyi by suppression subtractive hybridization. J Invertebr Pathol 2013; 114:313-23. [PMID: 24076149 DOI: 10.1016/j.jip.2013.09.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 08/26/2013] [Accepted: 09/05/2013] [Indexed: 12/21/2022]
Abstract
Insects possess an innate immune system that responds to invading microorganisms. In this study, a subtractive cDNA library was constructed to screen for immune response-related genes in the fat bodies of Antheraea pernyi (Lepidoptera: Saturniidae) pupa challenged with Escherichia coli. Four hundred putative EST clones were identified by suppression subtractive hybridization (SSH), including 50 immune response-related genes, three cytoskeleton genes, eight cell cycle and apoptosis genes, five respiration and energy metabolism genes, five transport genes, 40 metabolism genes, ten stress response genes, four transcription and translation regulation genes and 77 unknown genes. To verify the reliability of the SSH data, the transcription of a set of randomly selected immune response-related genes were confirmed by semi-quantitative reverse transcription-PCR (RT-PCR) and real-time quantitative reverse transcription-PCR (qRT-PCR). These identified immune response-related genes provide insight into understanding the innate immunity in A. pernyi.
Collapse
|
44
|
Zhong X, Zhang L, Zou Y, Yi Q, Zhao P, Xia Q, Xiang Z. Shotgun analysis on the peritrophic membrane of the silkworm Bombyx mori. BMB Rep 2013. [PMID: 23187007 PMCID: PMC4133802 DOI: 10.5483/bmbrep.2012.45.11.261] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The insect midgut epithelium is generally lined with a unique chitin and protein structure, the peritrophic membrane (PM), which facilitates food digestion and protects the gut epithelium. We used gel electrophoresis and mass spectrometry to identify the extracted proteins from the silkworm PM to obtain an in-depth understanding of the biological function of the silkworm PM components. A total of 305 proteins, with molecular weights ranging from 8.02 kDa to 788.52 kDa and the isoelectric points ranging from 3.39 to 12.91, were successfully identified. We also found several major classes of PM proteins, i.e. PM chitin-binding protein, invertebrate intestinal mucin, and chitin deacetylase. The protein profile provides a basis for further study of the physiological events in the PM of Bombyx mori. [BMB Reports 2012; 45(11): 665-670]
Collapse
Affiliation(s)
- Xiaowu Zhong
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | | | | | | | | | | | | |
Collapse
|
45
|
Ratzka C, Gross R, Feldhaar H. Gene expression analysis of the endosymbiont-bearing midgut tissue during ontogeny of the carpenter ant Camponotus floridanus. JOURNAL OF INSECT PHYSIOLOGY 2013; 59:611-623. [PMID: 23570961 DOI: 10.1016/j.jinsphys.2013.03.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 03/27/2013] [Accepted: 03/29/2013] [Indexed: 06/02/2023]
Abstract
Insects have frequently evolved mutualistic relationships with extracellular and/or intracellular bacterial endosymbionts. Infection with endosymbionts seems to affect several cellular functions of the host such as immune pathways, oxidative stress regulation and autophagy. Our current knowledge about specific host factors leading to endosymbiont tolerance and/or control is still scarce and is based on very few associations between insect hosts and bacteria only. Camponotus floridanus ants harbour the obligate intracellular bacterium Blochmannia floridanus within specialized midgut cells called bacteriocytes. The number of Blochmannia endosymbionts within the midgut tissue increases strongly during host development and reaches a maximum at the late pupal stage, where the entire midgut is transformed into a symbiotic organ. After eclosion of workers the number of Blochmannia strongly decreases again. We chose 15 candidate genes from C. floridanus likely to be involved in host-symbiont interactions based on their significant homology to previously investigated symbiosis-relevant genes from other insects. We determined the expression of these genes in the endosymbiont-bearing midgut tissue in comparison to the residual body tissue at different developmental stages of C. floridanus in order to reveal changes in gene expression correlating with changes in endosymbiont number per host. Strikingly, two pattern recognition receptors (amidase PGRP-LB and PGRP-SC2) were highly expressed in the midgut tissue at the pupal stage, potentially down-modulating the IMD pathway to enable endosymbiont tolerance. Moreover, we investigated the immune gene expression in response to bacterial challenge at the pupal stage. Results showed that the midgut tissue differs in expression pattern in contrast to the residual body. Our results support a key role for amidase PGRPs, especially PGRP-LB, in regulation of the immune response towards endosymbionts in C. floridanus and suggest an involvement of the lysosomal system in control of Blochmannia endosymbionts.
Collapse
Affiliation(s)
- Carolin Ratzka
- Lehrstuhl für Mikrobiologie, Biozentrum, Universität Würzburg, Germany.
| | | | | |
Collapse
|
46
|
Imler JL. WITHDRAWN: Overview of Drosophila immunity: A historical perspective. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2013:S0145-305X(13)00128-6. [PMID: 23665509 DOI: 10.1016/j.dci.2013.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 05/01/2013] [Accepted: 05/01/2013] [Indexed: 06/02/2023]
Abstract
This article has been withdrawn at the request of the author. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at http://www.elsevier.com/locate/withdrawalpolicy.
Collapse
Affiliation(s)
- Jean-Luc Imler
- Faculté des Sciences de la Vie, Université de Strasbourg, Strasbourg, France; UPR9022 du CNRS, Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France.
| |
Collapse
|
47
|
Wang XW, Wang JX. Pattern recognition receptors acting in innate immune system of shrimp against pathogen infections. FISH & SHELLFISH IMMUNOLOGY 2013; 34:981-989. [PMID: 22960101 DOI: 10.1016/j.fsi.2012.08.008] [Citation(s) in RCA: 199] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Revised: 07/04/2012] [Accepted: 08/02/2012] [Indexed: 06/01/2023]
Abstract
Invertebrates, including shrimp, have developed very complicated innate immune system against pathogens. Much work has been performed on the innate immunity of shrimp, including immune recognition, signal transduction, effector molecules and antiviral responses due to its great economic value. Pattern recognition is the first step of innate immunity. Pattern recognition receptors (PRRs) sense the presence of infection and activate immune responses. The studies on shrimp PRRs revealed the recognition mechanism of shrimp at a certain degree. To date, 11 types of pattern recognition receptors (PRRs) have been identified in shrimp, namely, β-1,3-glucanase-related proteins, β-1,3-glucan-binding proteins, C-type lectins, scavenger receptors, galectins, fibrinogen-related proteins, thioester-containing protein, Down syndrome cell adhesion molecule, serine protease homologs, trans-activation response RNA-binding protein and Toll like receptors. A number of PRRs have been functionally studied and have been found to have different binding specificities and immune functions. The present review aims to summarize the current knowledge on the PRRs of shrimp.
Collapse
Affiliation(s)
- Xian-Wei Wang
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation of Ministry of Education, School of Life Sciences, Shandong University, Jinan, Shandong 250100, China
| | | |
Collapse
|
48
|
Altincicek B, Elashry A, Guz N, Grundler FMW, Vilcinskas A, Dehne HW. Next generation sequencing based transcriptome analysis of septic-injury responsive genes in the beetle Tribolium castaneum. PLoS One 2013; 8:e52004. [PMID: 23326321 PMCID: PMC3541394 DOI: 10.1371/journal.pone.0052004] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Accepted: 11/07/2012] [Indexed: 12/20/2022] Open
Abstract
Beetles (Coleoptera) are the most diverse animal group on earth and interact with numerous symbiotic or pathogenic microbes in their environments. The red flour beetle Tribolium castaneum is a genetically tractable model beetle species and its whole genome sequence has recently been determined. To advance our understanding of the molecular basis of beetle immunity here we analyzed the whole transcriptome of T. castaneum by high-throughput next generation sequencing technology. Here, we demonstrate that the Illumina/Solexa sequencing approach of cDNA samples from T. castaneum including over 9.7 million reads with 72 base pairs (bp) length (approximately 700 million bp sequence information with about 30× transcriptome coverage) confirms the expression of most predicted genes and enabled subsequent qualitative and quantitative transcriptome analysis. This approach recapitulates our recent quantitative real-time PCR studies of immune-challenged and naïve T. castaneum beetles, validating our approach. Furthermore, this sequencing analysis resulted in the identification of 73 differentially expressed genes upon immune-challenge with statistical significance by comparing expression data to calculated values derived by fitting to generalized linear models. We identified up regulation of diverse immune-related genes (e.g. Toll receptor, serine proteinases, DOPA decarboxylase and thaumatin) and of numerous genes encoding proteins with yet unknown functions. Of note, septic-injury resulted also in the elevated expression of genes encoding heat-shock proteins or cytochrome P450s supporting the view that there is crosstalk between immune and stress responses in T. castaneum. The present study provides a first comprehensive overview of septic-injury responsive genes in T. castaneum beetles. Identified genes advance our understanding of T. castaneum specific gene expression alteration upon immune-challenge in particular and may help to understand beetle immunity in general.
Collapse
Affiliation(s)
- Boran Altincicek
- Rheinische Friedrich-Wilhelms-University of Bonn, INRES-Phytomedicine, Nussallee 9, Bonn, Germany.
| | | | | | | | | | | |
Collapse
|
49
|
Gu ZY, Sun SS, Wang YH, Wang BB, Xie Y, Ma L, Wang JM, Shen WD, Li B. Transcriptional characteristics of gene expression in the midgut of domestic silkworms (Bombyx mori) exposed to phoxim. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2013; 105:36-43. [PMID: 24238288 DOI: 10.1016/j.pestbp.2012.11.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 10/23/2012] [Accepted: 11/18/2012] [Indexed: 06/02/2023]
Abstract
Silkworm (Bombyx mori) is not only an economically important insect but also a model system for lepidoptera. As a vital organ of digestion and nutrient absorption, the midgut of insects also serves as the first physiological barrier to chemical pesticides. In this study, microarray was performed to profile the gene expression changes in the midgut of silkworms exposed to phoxim. After 24h of phoxim exposure (4.0μg/mL), 266 genes displayed at least 2.0-fold changes in expression levels. Among them, 192 genes were up-regulated, and 74 genes were down-regulated. The most significant changes were 14.88-fold up-regulation and 23.36-fold down-regulation. According to gene ontology annotation and pathway analysis, differentially expressed genes were mainly classified into different groups based on their potential involvements in detoxification, immunne response, stress response, energy metabolism and transport. Particularly, the transcription levels of detoxification-related genes were up-regulated, such as cytochrome P450s, esterases and glutathione-S-transferase (GST), indicating increased detoxification activity in the midgut. Our study provides new insights into the molecular mechanism of pesticide metabolism in the midgut of insects, which may promote the development of highly efficient insecticides.
Collapse
Affiliation(s)
- Z Y Gu
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Jin P, Zhou L, Song X, Qian J, Chen L, Ma F. Particularity and universality of a putative Gram-negative bacteria-binding protein (GNBP) gene from amphioxus (Branchiostoma belcheri): insights into the function and evolution of GNBP. FISH & SHELLFISH IMMUNOLOGY 2012; 33:835-845. [PMID: 22986589 DOI: 10.1016/j.fsi.2012.07.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Revised: 07/05/2012] [Accepted: 07/26/2012] [Indexed: 06/01/2023]
Abstract
Gram-negative bacteria-binding proteins (GNBPs) are important pattern recognition proteins (PRPs), which can initiate host defense in response to pathogen surface molecules. The roles of GNBP in innate immunity of arthropods and molluscs have recently been reported. However, the GNBP gene has not been characterized in the species of higher evolutionary status yet. In this study, we identified and characterized an amphioxus GNBP gene (designated as AmphiGNBP). First, we identified and cloned the AmphiGNBP and found that the AmphiGNBP encodes a putative protein with 558 amino acids, which contains a conserved β-1, 3-glucan recognizing and binding domain. Second, we found that the AmphiGNBP encodes two extra WSC (cell Wall integrity and Stress response Component) domains, which are unique in AmphiGNBP protein. The two WSC domains of AmphiGNBP protein coupled with the expansion of amphioxus immunity repertoire might undergo intensive domain shuffling during the age of the Cambrian explosion. Finally, we found that the AmphiGNBP was mainly expressed in immune tissues, such as hepatic cecum and intestine, and the expression of AmphiGNBP was affected after LPS stimulation. In conclusion, our findings disclose the particularity and universality of AmphiGNBP and provide profound insights into the function and evolution of GNBP.
Collapse
Affiliation(s)
- Ping Jin
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210046, China
| | | | | | | | | | | |
Collapse
|