1
|
Zheng J, Wang X, Huang R, Xian P, Cui J, Amo A, Chen L, Han Y, Hou S, Yang Y. Integration of comparative cytology, ionome, transcriptome and metabolome provide a basic framework for the response of foxtail millet to Cd stress. JOURNAL OF HAZARDOUS MATERIALS 2025; 489:137684. [PMID: 40007366 DOI: 10.1016/j.jhazmat.2025.137684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 12/28/2024] [Accepted: 02/19/2025] [Indexed: 02/27/2025]
Abstract
Apart from directly affecting the growth and development of crops, Cd in the soil can easily enter the human body through the food chain and pose a threat to human health. Therefore, understanding the toxicity of Cd to specific crops and the molecular mechanisms of their response to Cd is essential. In this study, hydroponic experiments were utilized to study the response of foxtail millet to Cd stress through phenotypic investigation, enzyme activity determination, ultrastructure, ionome, transcriptome and metabolome. With the increase in cadmium concentration, both the growth and photosynthetic capacity of foxtail millet seedlings are severely inhibited. The ultrastructure of cells is damaged, cells are deformed, chloroplasts swell and disappear, and cell walls thicken. Cd stress affects the absorption, transport, and redistribution of beneficial metal ions in the seedlings. Multi-omics analysis reveals the crucial roles of glycolysis, glutathione metabolism and phenylpropanoid and lignin biosynthesis pathways in Cd detoxification via energy metabolism, the antioxidant system and cell wall changes. Finally, a schematic diagram of foxtail millet in response to Cd stress was we preliminarily drew. This work provides a basic framework for further revealing the molecular mechanism of Cd tolerance in foxtail millet.
Collapse
Affiliation(s)
- Jie Zheng
- College of Agriculture, Houji Laboratory of Shanxi Province, Shanxi Agricultural University, Taiyuan, Shanxi 030031, China.
| | - Xinyue Wang
- College of Agriculture, Houji Laboratory of Shanxi Province, Shanxi Agricultural University, Taiyuan, Shanxi 030031, China.
| | - Rong Huang
- College of Agriculture, Houji Laboratory of Shanxi Province, Shanxi Agricultural University, Taiyuan, Shanxi 030031, China.
| | - Peiyu Xian
- College of Agriculture, Houji Laboratory of Shanxi Province, Shanxi Agricultural University, Taiyuan, Shanxi 030031, China.
| | - Jian Cui
- College of Agriculture, Houji Laboratory of Shanxi Province, Shanxi Agricultural University, Taiyuan, Shanxi 030031, China.
| | - Aduragbemi Amo
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, USA.
| | - Liang Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China.
| | - Yuanhuai Han
- College of Agriculture, Houji Laboratory of Shanxi Province, Shanxi Agricultural University, Taiyuan, Shanxi 030031, China.
| | - Siyu Hou
- College of Agriculture, Houji Laboratory of Shanxi Province, Shanxi Agricultural University, Taiyuan, Shanxi 030031, China.
| | - Yang Yang
- College of Agriculture, Houji Laboratory of Shanxi Province, Shanxi Agricultural University, Taiyuan, Shanxi 030031, China.
| |
Collapse
|
2
|
Ilievska M, Chong SL, Lim KJ, Immanen J, Nieminen K, Maaheimo H, Helariutta Y, Wurman-Rodrich J, Dupree P, Ord J, Tenkanen M, Salojärvi J. Gene regulatory network analysis of silver birch reveals the ancestral state of secondary cell wall biosynthesis in core eudicots. THE NEW PHYTOLOGIST 2025. [PMID: 40241402 DOI: 10.1111/nph.70126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 03/13/2025] [Indexed: 04/18/2025]
Abstract
The compact genome and lack of recent whole-genome multiplication (WGM) events make the boreal pioneer tree silver birch (Betula pendula) a promising model for primary and secondary cell wall (PCW and SCW) regulation in forest trees. Here, we constructed regulatory networks through combined co-expression and promoter motif analysis and carried out a tissue-wide analysis of xylan using mass spectrometry. Analyses confirm the evolutionarily conserved model of superimposed layers of regulation and suggest a relatively simple ancestral state still retained in birch. Multispecies network analysis, including birch, poplar, and eucalyptus, identified conserved regulatory interactions, highlighting lignin biosynthesis as least conserved. The SCW biosynthesis co-expression module was enriched with WGM duplicates. While regulator genes were under positive selection, others evolved under relaxed purifying selection, possibly linked with diversification, as indicated by expression and regulatory motif differences. Xylan composition varied between PCW and SCW, revealing unique acetylation patterns. PCW xylan biosynthesis genes showed distinct expression and regulatory motifs, with a novel acetyl transferase potentially involved. This work highlights birch as a valuable model for understanding wood formation, vascular development, and cell wall composition in eudicots.
Collapse
Affiliation(s)
- Maja Ilievska
- Faculty of Biological and Environmental Sciences, Organismal and Evolutionary Biology Research Programme and Viikki Plant Science Centre, University of Helsinki, Helsinki, FI-00014, Finland
| | - Sun-Li Chong
- Department of Food and Nutrition, University of Helsinki, Helsinki, FI-00014, Finland
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, 311300, China
| | - Kean-Jin Lim
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, 311300, China
| | - Juha Immanen
- Faculty of Biological and Environmental Sciences, Organismal and Evolutionary Biology Research Programme and Viikki Plant Science Centre, University of Helsinki, Helsinki, FI-00014, Finland
- Natural Resources Institute Finland (Luke), Helsinki, FI-00791, Finland
| | - Kaisa Nieminen
- Faculty of Biological and Environmental Sciences, Organismal and Evolutionary Biology Research Programme and Viikki Plant Science Centre, University of Helsinki, Helsinki, FI-00014, Finland
- Natural Resources Institute Finland (Luke), Helsinki, FI-00791, Finland
| | - Hannu Maaheimo
- VTT Technical Research Centre, PO Box 1000, Espoo, FI-02044, Finland
| | - Yrjö Helariutta
- Faculty of Biological and Environmental Sciences, Organismal and Evolutionary Biology Research Programme and Viikki Plant Science Centre, University of Helsinki, Helsinki, FI-00014, Finland
- Sainsbury Laboratory, University of Cambridge, Cambridge, CB2 1LR, UK
| | | | - Paul Dupree
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QW, UK
| | - James Ord
- Faculty of Biological and Environmental Sciences, Organismal and Evolutionary Biology Research Programme and Viikki Plant Science Centre, University of Helsinki, Helsinki, FI-00014, Finland
| | - Maija Tenkanen
- Department of Food and Nutrition, University of Helsinki, Helsinki, FI-00014, Finland
| | - Jarkko Salojärvi
- Faculty of Biological and Environmental Sciences, Organismal and Evolutionary Biology Research Programme and Viikki Plant Science Centre, University of Helsinki, Helsinki, FI-00014, Finland
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, 637551, Singapore
| |
Collapse
|
3
|
Nichol J, Dutt S, Samuel M. The Shock of Shatter: Understanding Silique and Silicle Dehiscence for Improving Oilseed Crops in Brassicaceae. PLANT DIRECT 2025; 9:e70058. [PMID: 40230828 PMCID: PMC11994477 DOI: 10.1002/pld3.70058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 02/07/2025] [Accepted: 03/02/2025] [Indexed: 04/16/2025]
Abstract
Silique dehiscence, despite being an essential physiological process for seed dispersal for dehiscent fruits, is disadvantageous for the agricultural industry. While crops have been selected against the expression of natural, spontaneous shattering to protect the seeds for harvest, fruit dehiscence in the field can be promoted through abiotic factors such as wind, drought, and hail that can be detrimental in reducing crop yield and profitability. In crops like canola, pennycress, and Camelina, this impact could be as high as 50%, creating economic losses for both the industry and the economy. Mitigating the effects of fruit dehiscence is crucial to prevent seed loss, economic loss, and the persistence of volunteer plants, which interfere with crop rotation and require increased weed control. Developing agronomic traits through genetic manipulation to enhance the strength of the fruiting body can prevent seed dispersal mechanisms from occurring and boost yield efficiency and preservation. Current research into this area has created mutant plants with indehiscent fruits by reducing allele function that determines the identity of the various anatomical layers of the fruit. Future genetic approaches may focus on strengthening siliques by enhancing secondary cell walls through either increased lignification or reducing cell wall-degrading enzymes to achieve shatter tolerance. This review focuses on improving our knowledge within members of the Brassicaceae family to create a better understanding of silique/silicle dehiscence for researchers to establish a groundwork for broader applications across diverse crops. This knowledge will directly lead to improved agricultural productivity and ensure a stable food supply, addressing global challenges the world is facing.
Collapse
Affiliation(s)
- Justin B. Nichol
- Department of Biological SciencesUniversity of CalgaryCalgaryAlbertaCanada
| | - Shakshi A. Dutt
- Department of Biological SciencesUniversity of CalgaryCalgaryAlbertaCanada
| | - Marcus A. Samuel
- Department of Biological SciencesUniversity of CalgaryCalgaryAlbertaCanada
| |
Collapse
|
4
|
Wang D, Zuo S, Zhang Y, Zhao P, Tuoheti G, Zhao B, Wan P, Chu L, Yang K. Transcriptome analyses reveal key genes related to pod dehiscence of adzuki bean ( Vigna angularis L.). 3 Biotech 2025; 15:80. [PMID: 40071127 PMCID: PMC11891120 DOI: 10.1007/s13205-025-04255-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 02/19/2025] [Indexed: 03/14/2025] Open
Abstract
To investigate the mechanism of pod dehiscence in adzuki bean, RNA sequencing was utilized to analyze transcriptomes in the ventral and dorsal sutures of pods from two dehiscence-resistant accessions and two dehiscence-susceptible accessions. A total of 943 differentially expressed genes (DEGs) were identified. Through the Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) metabolic enrichment pathways, 34 genes related to pod dehiscence were identified. The genes associated with pod dehiscence primarily encode enzymes involved in cell wall modification, including pectin esterase, cellulose synthase, glucosyltransferase, glycoside hydrolase, D-galactosidase, peroxidases, and transcription factors from the MADS-box gene family. The genes exhibit significant enrichment in pathways such as "Pentose and glucuronate interconversions," "Galactose metabolism," "Fructose and mannose metabolism," "Starch and sucrose metabolism," and "Biosynthesis of secondary metabolites." These components primarily play a role in modifying the cell wall, regulating the biochemistry of cells in the dehiscence zone of the pod, and influencing the physiological and metabolic processes of the ventral and dorsal sutures of the pod. This study examined transcript level variations between adzuki bean varieties resistant and susceptible to pod dehiscence, specifically focusing on the ventral and dorsal sutures. The findings offer novel perspectives for elucidating the pod dehiscence regulatory network in adzuki bean and provide valuable genetic resources to guide pod dehiscence-resistant breeding in adzuki bean. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-025-04255-z.
Collapse
Affiliation(s)
- Donghao Wang
- Key Laboratory of New Technology in Agricultural Application, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, 102206 China
| | - Siyu Zuo
- College of Life and Health, Dalian University, No. 10 Xuefu Street, Dalian, 116622 Liaoning China
| | - Ying Zhang
- College of Life and Health, Dalian University, No. 10 Xuefu Street, Dalian, 116622 Liaoning China
| | - Pu Zhao
- Key Laboratory of New Technology in Agricultural Application, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, 102206 China
| | - Gulinuer Tuoheti
- College of Life and Health, Dalian University, No. 10 Xuefu Street, Dalian, 116622 Liaoning China
| | - Bo Zhao
- Key Laboratory of New Technology in Agricultural Application, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, 102206 China
| | - Ping Wan
- Key Laboratory of New Technology in Agricultural Application, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, 102206 China
| | - Liwei Chu
- Key Laboratory of New Technology in Agricultural Application, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, 102206 China
- College of Life and Health, Dalian University, No. 10 Xuefu Street, Dalian, 116622 Liaoning China
| | - Kai Yang
- Key Laboratory of New Technology in Agricultural Application, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, 102206 China
| |
Collapse
|
5
|
Daduwal HS, Bhardwaj R, Lamba JS, Vikal Y, Srivastava RK. QTL mapping and candidate gene identification for fodder quality traits in Pearl millet. BMC PLANT BIOLOGY 2025; 25:404. [PMID: 40165046 PMCID: PMC11956491 DOI: 10.1186/s12870-025-06381-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 03/10/2025] [Indexed: 04/02/2025]
Abstract
BACKGROUND Pearl millet is an excellent forage crop with significant potential for forage production. Its fodder is rich in protein, calcium, phosphorus and other essential minerals while being low in undesirable components such as hydrocyanic acid and oxalic acid. Globally, the shortage of high-quality fodder poses challenges for maintaining animal health and productivity, ultimately impacting dairy farmers. Therefore, improving pearl millet for fodder traits should be a priority to meet the global demand for nutritious livestock feed. RESULTS Significant variability was observed for all forage quality related traits at both locations. A linkage map was constructed using 755 single-nucleotide polymorphisms (SNPs) markers, spanning a total length of 3080.44 cM. A total 8, 6 and 10 QTLs were identified for Ludhiana, Abohar and across the locations, respectively, for fodder quality. A common genomic interval with flanking markers S6_234379851- S6_64109715 was associated with IVOMD, CP and ME at all locations, with 10-34% phenotypic variance. Further, expression analysis identified BHLH 148, Resistance to phytophthora, Laccase 15, cytochrome P450, PLIM2c, GRF11, NEDD AXR1, NAC 92 and TF 089 as differentially expressed candidate genes in the leaf tissues of parental lines. A phylogenetic tree constructed using these genes revealed two clades identified with six paralogous events. Additionally, a phylogenetic tree of eight cereal species showed that the majority of shared similarity with the Pgl genes, suggestinga recent speciation event among them. Common genes, including cytochrome P450, PLIM2c, NEDD AXR1 and NAC domains were identified between QTL regions and expression analysis. CONCLUSION The differentially expressed genes incorporating the regulatory elements governing the lignin pathway have direct or indirect effects on fodder digestibility and quality. Exploiting these factors can contribute to the direct improvement of fodder quality. The identified QTLs and candidate genes from this study could facilitate the development of gene based markers for fodder improvement.
Collapse
Affiliation(s)
- Harmanpreet Singh Daduwal
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, 141004, India
- International Crops Research Institute for the Semi-Arid Tropics, Patancheru, India
| | - Ruchika Bhardwaj
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, 141004, India
| | - Jaspal Singh Lamba
- Department of Animal Nutrition, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, 141004, India
| | - Yogesh Vikal
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab, 141004, India
| | - Rakesh K Srivastava
- International Crops Research Institute for the Semi-Arid Tropics, Patancheru, India.
| |
Collapse
|
6
|
Xiong H, He H, Chang Y, Miao B, Liu Z, Wang Q, Dong F, Xiong L. Multiple roles of NAC transcription factors in plant development and stress responses. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025; 67:510-538. [PMID: 39950532 DOI: 10.1111/jipb.13854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 01/02/2025] [Indexed: 03/29/2025]
Abstract
NAC (NAM, ATAF1/2, and CUC2) transcription factors (TFs) are a family of plant-specific TFs that play crucial roles in various aspects of plant development and stress responses. Here, we provide an in-depth review of the structural characteristics, regulatory mechanisms, and functional roles of NACs in different plant species. One of the key features of NACs is their ability to regulate gene expression through a variety of mechanisms, including binding to DNA sequences in the promoter regions of target genes, interacting with other TFs, and modulating chromatin structure. We discuss these mechanisms in detail, providing insights into the complex regulatory networks that govern the activity of NACs. We explore the diverse functions of these TFs in plant growth and development processes, including embryogenesis, seed development, root and shoot development, floral development and fruit ripening, secondary cell wall formation, and senescence. We also discuss the diverse regulatory roles of NACs in response to various stresses, including drought, flooding, heat, cold, salinity, nutrient deficit, and diseases. Lastly, we emphasize the crosstalk role of NACs between developmental processes and stress responses. This integrated perspective highlights how NACs orchestrate plant growth and resilience. Overall, this review provides a comprehensive overview of the pivotal roles of NACs in plant development and stress responses, emphasizing their potential for engineering stress-resistant crops and enhancing agricultural productivity.
Collapse
Affiliation(s)
- Haiyan Xiong
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Haidong He
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yu Chang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Binbin Miao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhiwei Liu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qianqian Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Faming Dong
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lizhong Xiong
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
7
|
Rai A, Skårn MN, Elameen A, Tengs T, Amundsen MR, Bjorå OS, Haugland LK, Yakovlev IA, Brurberg MB, Thorstensen T. CRISPR-Cas9-mediated deletions of FvMYB46 in Fragaria vesca reveal its role in regulation of fruit set and phenylpropanoid biosynthesis. BMC PLANT BIOLOGY 2025; 25:256. [PMID: 40000946 PMCID: PMC11853751 DOI: 10.1186/s12870-024-06041-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 12/31/2024] [Indexed: 02/27/2025]
Abstract
The phenylpropanoid pathway, regulated by transcription factors of the MYB family, produces secondary metabolites that play important roles in fertilization and early phase of fruit development. The MYB46 transcription factor is a key regulator of secondary cell wall structure, lignin and flavonoid biosynthesis in many plants, but little is known about its activity in flowers and berries in F. vesca. For functional analysis of FvMYB46, we designed a CRISPR-Cas9 construct with an endogenous F. vesca-specific U6 promoter for efficient and specific expression of two gRNAs targeting the first exon of FvMYB46. This generated mutants with an in-frame 81-bp deletion of the first conserved MYB domain or an out-of-frame 82-bp deletion potentially knocking out gene function. In both types of mutant plants, pollen germination and fruit set were significantly reduced compared to wild type. Transcriptomic analysis of flowers revealed that FvMYB46 positively regulates the expression of genes involved in processes like xylan biosynthesis and metabolism, homeostasis of reactive oxygen species (ROS) and the phenylpropanoid pathway, including secondary cell wall biosynthesis and flavonoid biosynthesis. Genes regulating carbohydrate metabolism and signalling were also deregulated, suggesting that FvMYB46 might regulate the crosstalk between carbohydrate metabolism and phenylpropanoid biosynthesis. In the FvMYB46-mutant flowers, the flavanol and flavan-3-ol contents, especially epicatechin, quercetin-glucoside and kaempferol-3-coumaroylhexoside, were reduced, and we observed a local reduction in the lignin content in the anthers. Together, these results suggest that FvMYB46 controls fertility and efficient fruit set by regulating the cell wall structure, flavonoid biosynthesis, carbohydrate metabolism, and sugar and ROS signalling in flowers and early fruit development in F. vesca.
Collapse
Affiliation(s)
- Arti Rai
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research, Ås, Norway
| | - Magne Nordang Skårn
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research, Ås, Norway
| | - Abdelhameed Elameen
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research, Ås, Norway
| | - Torstein Tengs
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research, Ås, Norway
| | - Mathias Rudolf Amundsen
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Ås, Norway
| | - Oskar S Bjorå
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research, Ås, Norway
- Department of Plant Sciences, Norwegian University of Life Sciences, Ås, Norway
| | - Lisa K Haugland
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research, Ås, Norway
| | - Igor A Yakovlev
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research, Ås, Norway
| | - May Bente Brurberg
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research, Ås, Norway
- Department of Plant Sciences, Norwegian University of Life Sciences, Ås, Norway
| | - Tage Thorstensen
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research, Ås, Norway.
| |
Collapse
|
8
|
Li T, Tian P, Wang X, Li M, Xing S. Overexpression of TCP5 or Its Dominant Repressor Form, TCP5-SRDX, Causes Male Infertility in Arabidopsis. Int J Mol Sci 2025; 26:1813. [PMID: 40076439 PMCID: PMC11899387 DOI: 10.3390/ijms26051813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 02/14/2025] [Accepted: 02/18/2025] [Indexed: 03/14/2025] Open
Abstract
TCP transcription factors have long been known to play a crucial role in leaf development, but their significance in reproduction has recently been revealed. TCP5 is a member of class II of the TCP family, which predominantly regulates cell differentiation. This study used overexpression and SRDX fusion to evaluate the role of TCP5 in anther development. TCP5 overexpression resulted in lower fertility, primarily due to anther non-dehiscence. We also observed reduced lignin accumulation in the anther endothecium. In addition, TCP5 overexpression resulted in smaller anthers with fewer pollen sacs and pollen due to early-anther defects before meiosis. TCP5 showed expression in early anthers, including the epidermis, endothecium, middle layer, tapetum, sporogenous cells (pollen mother cells), and vascular bundles. Conversely, during meiosis, the TCP5 signal was only detected in the tapetum, PMCs, and vascular bundles. The TCP5 signal disappeared after meiosis, and no signal was observed in mature anthers. Interestingly, the TCP5-SRDX transgenic plants were also sterile, at least for the early-arising flowers, if not all of them. TCP5-SRDX expression also resulted in undersized anthers with fewer pollen sacs and pollen. However, the lignin accumulation in most of these anthers was comparable to that of the wild type, allowing these anthers to open. The qRT-PCR results revealed that several genes associated with secondary cell wall thickening had altered expression profiles in TCP5 overexpression transgenics, which supported the non-dehiscent anther phenotype. Furthermore, the expression levels of numerous critical anther genes were down-regulated in both TCP5 overexpression and TCP5-SRDX plants, indicating a comparable anther phenotype in these transgenic plants. These findings not only suggest that an appropriate TCP5 expression level is essential for anther development and plant fertility, but also improve our understanding of TCP transcription factor functioning in plant male reproduction and contribute information that may allow us to manipulate fertility and breeding in crops.
Collapse
Affiliation(s)
- Tingting Li
- College of Life Science, Shanxi University, Taiyuan 030006, China; (T.L.); (P.T.); (X.W.); (M.L.)
- Institute of Applied Biology, Shanxi University, Taiyuan 030006, China
| | - Ping Tian
- College of Life Science, Shanxi University, Taiyuan 030006, China; (T.L.); (P.T.); (X.W.); (M.L.)
- Institute of Applied Biology, Shanxi University, Taiyuan 030006, China
| | - Xinxin Wang
- College of Life Science, Shanxi University, Taiyuan 030006, China; (T.L.); (P.T.); (X.W.); (M.L.)
- Institute of Applied Biology, Shanxi University, Taiyuan 030006, China
| | - Mengyao Li
- College of Life Science, Shanxi University, Taiyuan 030006, China; (T.L.); (P.T.); (X.W.); (M.L.)
- Institute of Applied Biology, Shanxi University, Taiyuan 030006, China
| | - Shuping Xing
- Institute of Applied Biology, Shanxi University, Taiyuan 030006, China
- Shanxi Key Laboratory of Nucleic Acid Biopesticides, Shanxi University, Taiyuan 030600, China
| |
Collapse
|
9
|
Qaseem MF, Zhang W, Dupree P, Wu AM. Xylan structural diversity, biosynthesis, and functional regulation in plants. Int J Biol Macromol 2025; 291:138866. [PMID: 39719228 DOI: 10.1016/j.ijbiomac.2024.138866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/22/2024] [Accepted: 12/15/2024] [Indexed: 12/26/2024]
Abstract
Xylan is a vital component of plant cell walls, contributing to their structural integrity and flexibility through interactions with other polymers. Its structure varies among plant species, influencing the mechanical properties of cell walls. Xylan also has significant industrial potential, including in biofuels, biomaterials, food, and pharmaceuticals, due to its ability to be converted into valuable bioproducts. However, key aspects of xylan biosynthesis, regulation, and structural impact on plant growth and structures remain unclear. This review highlights current researches on xylan biosynthesis, modification, and applications, identifying critical gaps in knowledge. Meanwhile the review proposes new approaches to regulate xylan synthesis and understand its role in cell wall assembly and interactions with other polymers. Addressing these gaps could unlock the full industrial potential of xylan, leading to more sustainable applications.
Collapse
Affiliation(s)
- Mirza Faisal Qaseem
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangzhou 510642, China; Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou 510642, China
| | - Wenjuan Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangzhou 510642, China; Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou 510642, China
| | - Paul Dupree
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Ai-Min Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangzhou 510642, China; Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
10
|
Verma RK, Singh SP, Singh SP, Narayan S, Verma PC, Sawant SV. Spatiotemporal regulation of anther's tapetum degeneration paved the way for a reversible male sterility system in cotton. PLANT BIOTECHNOLOGY JOURNAL 2025; 23:532-548. [PMID: 39607303 PMCID: PMC11772332 DOI: 10.1111/pbi.14518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/11/2024] [Accepted: 10/31/2024] [Indexed: 11/29/2024]
Abstract
Male sterility is an important agronomical trait in self-pollinating plants for producing cost-effective F1 hybrids to harness the heterosis. Still, large-scale development and maintenance of male sterile lines and restoring fertility in F1 hybrids pose significant challenges in plant hybrid breeding. Cotton is a self-pollinating crop and exhibits strong hybrid vigor. However, there are currently few breeding methods to achieve cost-effective production of F1 hybrid cotton. Here, we utilized novel functions of the Arabidopsis autophagy-related BECLIN1/ATG6 and a mutant of E3 ubiquitin ligase COP1 (COP1L105A) genes in developing rescuable male sterility in cotton. We have generated multiple male-sterile (MS) and restorer (RS) cotton lines expressing BECLIN1 and COP1L105A, respectively. Cytological observation showed that post-meiotic tapetal expression of BECLIN1 delays tapetum developmental programmed cell death (dPCD) by affecting reactive oxygen species (ROS) balance-this delay in dPCD results in early microspore defects and later small-sized flowers with indehiscent anthers. Furthermore, the evaluation of F1 hybrids developed by crossing MS and RS lines showed that early tapetal COP1L105A expression abolishes expression of BECLIN1 resulting in normal tapetum degeneration, pollen development, and fertility. In addition, the F1 hybrid developed with MS and RS cotton lines in transgenic glass-house and net-house conditions showed the rescued fertility comparable with control plants (WT). In terms of cotton fiber productivity, the COP1L105A-expressing transgenic cotton lines outperformed the WT. The current work effectively demonstrates the wider applicability of the new F1 cotton production system.
Collapse
Affiliation(s)
- Rishi Kumar Verma
- Molecular Biology and Biotechnology DivisionCSIR‐National Botanical Research InstituteLucknowIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| | - Surendra Pratap Singh
- Molecular Biology and Biotechnology DivisionCSIR‐National Botanical Research InstituteLucknowIndia
- Plant Molecular Biology Laboratory, Department of Botany, Dayanand Anglo‐Vedic (PG) CollegeChhatrapati Shahu Ji Maharaj UniversityKanpurIndia
| | - Sudhir Pratap Singh
- Molecular Biology and Biotechnology DivisionCSIR‐National Botanical Research InstituteLucknowIndia
- Department of Industrial BiotechnologyGujarat Biotechnology University, Near Gujarat International Finance Tec (GIFT)‐CityGandhinagarGujaratIndia
| | - Shiv Narayan
- Molecular Biology and Biotechnology DivisionCSIR‐National Botanical Research InstituteLucknowIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| | - Praveen C. Verma
- Molecular Biology and Biotechnology DivisionCSIR‐National Botanical Research InstituteLucknowIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| | - Samir V. Sawant
- Molecular Biology and Biotechnology DivisionCSIR‐National Botanical Research InstituteLucknowIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| |
Collapse
|
11
|
McGuire ST, Shockey J, Bates PD. The first intron and promoter of Arabidopsis DIACYLGLYCEROL ACYLTRANSFERASE 1 exert synergistic effects on pollen and embryo lipid accumulation. THE NEW PHYTOLOGIST 2025; 245:263-281. [PMID: 39501618 PMCID: PMC11617664 DOI: 10.1111/nph.20244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 10/17/2024] [Indexed: 12/06/2024]
Abstract
Accumulation of triacylglycerols (TAGs) is crucial during various stages of plant development. In Arabidopsis, two enzymes share overlapping functions to produce TAGs, namely acyl-CoA:diacylglycerol acyltransferase 1 (DGAT1) and phospholipid:diacylglycerol acyltransferase 1 (PDAT1). Loss of function of both genes in a dgat1-1/pdat1-2 double mutant is gametophyte lethal. However, the key regulatory elements controlling tissue-specific expression of either gene has not yet been identified. We transformed a dgat1-1/dgat1-1//PDAT1/pdat1-2 parent with transgenic constructs containing the Arabidopsis DGAT1 promoter fused to the AtDGAT1 open reading frame either with or without the first intron. Triple homozygous plants were obtained, however, in the absence of the DGAT1 first intron anthers fail to fill with pollen, seed yield is c. 10% of wild-type, seed oil content remains reduced (similar to dgat1-1/dgat1-1), and non-Mendelian segregation of the PDAT1/pdat1-2 locus occurs. Whereas plants expressing the AtDGAT1pro:AtDGAT1 transgene containing the first intron mostly recover phenotypes to wild-type. This study establishes that a combination of the promoter and first intron of AtDGAT1 provides the proper context for temporal and tissue-specific expression of AtDGAT1 in pollen. Furthermore, we discuss possible mechanisms of intron mediated regulation and how regulatory elements can be used as genetic tools to functionally replace TAG biosynthetic enzymes in Arabidopsis.
Collapse
Affiliation(s)
- Sean T. McGuire
- Institute of Biological ChemistryWashington State UniversityPullmanWA99164USA
| | - Jay Shockey
- United States Department of Agriculture, Agricultural Research Service, Southern Regional Research Service1100 Allen Toussaint BlvdNew OrleansLA70124USA
| | - Philip D. Bates
- Institute of Biological ChemistryWashington State UniversityPullmanWA99164USA
| |
Collapse
|
12
|
Tamadaddi C, Choi J, Ghasemi M, Kim SH, Gomez ED, Gomez EW, Anderson CT. NST3 induces ectopic transdifferentiation, forming secondary walls with diverse patterns and composition in Arabidopsis thaliana. ANNALS OF BOTANY 2024; 134:1097-1111. [PMID: 39212164 PMCID: PMC11687626 DOI: 10.1093/aob/mcae153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND AND AIMS The master transcription factor NAC SECONDARY WALL THICKENING PROMOTING FACTOR3 (NST3), also known as SND1, plays a pivotal role in regulating secondary cell wall (SCW) development in interfascicular and xylary fibres in Arabidopsis thaliana. Despite progress in understanding SCW assembly in xylem vessel-like cells, the mechanisms behind its assembly across different cell types remain unclear. Overexpression of NST3 or its homologue NST1 leads to reduced fertility, posing challenges for studying their impact on secondary wall formation. This study aimed to develop a tightly regulated dexamethasone (DEX)-inducible expression system for NST3 and NST1 to elucidate the structure and assembly of diverse SCWs. METHODS Using the DEX-inducible system, we characterized ectopically formed SCWs for their diverse patterns, mesoscale organization, cellulose microfibril orientation and molecular composition using spinning disc confocal microscopy, field emission scanning electron microscopy, vibrational sum-frequency generation spectroscopy, and histochemical staining and time-of-flight secondary ion mass spectrometry, respectively. KEY RESULTS Upon DEX treatment, NST3 and NST1 transgenic hypocotyls underwent time-dependent transdifferentiation, progressing from protoxylem-like to metaxylem-like cells. NST3-induced plants exhibited normal growth but had rough secondary wall surfaces with delaminating S2 and S3 layers. Mesoscale examination of induced SCWs in epidermal cells revealed that macrofibril thickness and orientation were comparable to xylem vessels, while wall thickness resembled that of interfascicular fibres. Additionally, induced epidermal cells formed SCWs with altered cellulose and lignin contents. CONCLUSIONS These findings suggest NST3 and/or NST1 induce SCWs with shared characteristics of both xylem and fibre-like cells forming loosely arranged cell wall layers and cellulose organized at multiple angles relative to the cell growth axis and with varied cellulose and lignin abundance. This inducible system opens avenues to explore ectopic SCWs for bioenergy and bioproducts, offering valuable insights into SCW patterning across diverse cell types and developmental stages.
Collapse
Affiliation(s)
- Chetana Tamadaddi
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
- Center for Lignocellulose Structure and Formation (CLSF), The Pennsylvania State University, University Park, PA 16802, USA
| | - Juseok Choi
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA 16802, USA
| | - Masoud Ghasemi
- Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA 16802, USA
| | - Seong H Kim
- Center for Lignocellulose Structure and Formation (CLSF), The Pennsylvania State University, University Park, PA 16802, USA
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA 16802, USA
| | - Enrique D Gomez
- Center for Lignocellulose Structure and Formation (CLSF), The Pennsylvania State University, University Park, PA 16802, USA
- Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA 16802, USA
| | - Esther W Gomez
- Center for Lignocellulose Structure and Formation (CLSF), The Pennsylvania State University, University Park, PA 16802, USA
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA 16802, USA
| | - Charles T Anderson
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
- Center for Lignocellulose Structure and Formation (CLSF), The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
13
|
Zhao P, Yu Q, He Y, Sun P, Wang H, Zhou X, Su Y, Guo H. PagHAM4a-PagSCL21 and PagHAM4b-PagTCP20 modules positively regulate cambial activity and its differentiation into secondary xylem in poplar. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:7174-7189. [PMID: 39243137 PMCID: PMC11630012 DOI: 10.1093/jxb/erae375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 09/06/2024] [Indexed: 09/09/2024]
Abstract
Stem secondary xylem produced by cambial division and differentiation is the main source of tree biomass. Secondary xylem formation involves a complex transcriptional regulatory network; however, the underlying mechanism is still being explored. Here, we report that PagHAM4a and PagHAM4b are positive regulators of cambial differentiation into secondary xylem in hybrid poplar (Populus alba × Populus glandulosa clone 84K). Overexpression of PagHAM4a and PagHAM4b enhanced cambial activity and increased the number of secondary xylem cells in the stems of poplar. By contrast, single or double mutations of PagHAM4a and PagHAM4b generated by CRISPR/Cas9 decreased cambial activity, leading to a significant reduction of secondary xylem. Neither overexpression nor mutation of the two genes affected the size of vessels and fibers in xylem. Both PagHAM4a- and PagHAM4b-regulated gene networks were mainly centered at the stage when cambium had just initiated secondary growth, but the molecular networks regulated by the two genes were distinct. Further analysis revealed that PagSCL21 and PagTCP20 are direct targets of PagHAM4a and PagHAM4b, respectively, and their overexpression also promoted cambial differentiation into secondary xylem. Taken together, we identified two novel key regulatory modules in poplar, PagHAM4a-PagSCL21 and PagHAM4b-PagTCP20, which provide new insights into the mechanism of secondary xylem formation in trees.
Collapse
Affiliation(s)
- Pan Zhao
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Qiulin Yu
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yumei He
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Pengfang Sun
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Huilin Wang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Xinyi Zhou
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yuting Su
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Huihong Guo
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
14
|
Dokka N, Rathinam M, Sreevathsa R. Lignin lite: Boosting plant power through selective downregulation. PLANT, CELL & ENVIRONMENT 2024; 47:4945-4962. [PMID: 39115273 DOI: 10.1111/pce.15060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/11/2024] [Accepted: 07/15/2024] [Indexed: 11/06/2024]
Abstract
SUMMARY STATEMENTThis article explores the dual benefits of reducing lignin content in plants, which streamlines biofuel production while maintaining robust defence mechanisms. It discusses how plants compensate for lower lignin levels through alternative defence strategies, recent biotechnological advances in lignin modification, and the implications for agriculture and industry.
Collapse
Affiliation(s)
- Narasimham Dokka
- Division of Molecular Biology and Biotechnology, ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi, India
| | - Maniraj Rathinam
- Division of Molecular Biology and Biotechnology, ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi, India
| | - Rohini Sreevathsa
- Division of Molecular Biology and Biotechnology, ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi, India
| |
Collapse
|
15
|
Zhao JJ, Xiang X, Yang P, Li J, Li H, Wei SY, Wang RQ, Wang T, Huang J, Chen LH, Wan XQ, He F. Genome-wide analysis of C2H2.2 gene family in Populus Trichocarpa and the function exploration of PtrC2H2.2-6 in osmotic stress. Int J Biol Macromol 2024; 283:137937. [PMID: 39579826 DOI: 10.1016/j.ijbiomac.2024.137937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 11/18/2024] [Accepted: 11/20/2024] [Indexed: 11/25/2024]
Abstract
C2H2 transcription factors are essential for increasing a plant's ability to withstand extreme conditions. However, research on the functions of C2H2 transcription factors in woody plants, particularly their responses to osmotic stress, is limited. This research identified 109 C2H2 genes, and the PtrC2H2.2 subfamily, which contains 28 genes, captured our keen interest, prompting an extensive molecular characterization. Evolutionarily, PtrC2H2.2 s have undergone 30 fragment duplications and 2 tandem duplications. PtrC2H2.2-6 acts as a core transcription factor, whose expression was decreased after both ABA and drought treatments, implying it may play a negative regulatory role in the osmotic stress response by regulating the expression of targets. Specifically, the PtrC2H2.2-6-RNAi poplar showed improved osmotic stress tolerance compared to the overexpressing line, which was more sensitive, and transcriptome data analyses flanked the molecular mechanisms of their possible regulation. In this research, we dissected the molecular features of the PtrC2H2.2 subfamily genes and elucidated the role of a specific member, the PtrC2H2.2-6 gene, in the ability of poplar to respond to osmotic stress. This discovery not only establishes a foundation for further exploration of its biological functions but also presents precious genetic assets for the development of drought-tolerant forest tree varieties through genetic engineering.
Collapse
Affiliation(s)
- Jiu-Jiu Zhao
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiang Xiang
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Peng Yang
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Jing Li
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Hao Li
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Shu-Ying Wei
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Rui-Quan Wang
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Ting Wang
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Jinliang Huang
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Liang-Hua Chen
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Xue-Qin Wan
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Fang He
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
16
|
Ding W, Tu Z, Gong B, Deng Z, Liu Q, Gu Z, Yang C. Unveiling Key Genes and Unique Transcription Factors Involved in Secondary Cell Wall Formation in Pinus taeda. Int J Mol Sci 2024; 25:11805. [PMID: 39519356 PMCID: PMC11545933 DOI: 10.3390/ijms252111805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Pinus taeda is a key timber species, and extensive research has been conducted on its wood formation. However, a comprehensive investigation into the biosynthetic pathways of lignin, cellulose, and hemicellulose in P. taeda is lacking, resulting in an incomplete understanding of secondary cell wall (SCW) formation in this species. In this study, we systematically analyzed transcriptomic data from previously published sources and constructed detailed pathways for lignin, cellulose, and hemicellulose biosynthesis. We identified 188 lignin-related genes and 78 genes associated with cellulose and hemicellulose biosynthesis. An RT-qPCR highlighted 15 key lignin biosynthesis genes and 13 crucial genes for cellulose and hemicellulose biosynthesis. A STEM analysis showed that most essential enzyme-coding genes clustered into Profile 14, suggesting their significant role in SCW formation. Additionally, we identified seven NAC and six MYB transcription factors (TFs) from atypical evolutionary clades, with distinct expression patterns from those of the previously characterized NAC and MYB genes, indicating potentially unique functions in SCW formation. This research provides the first comprehensive overview of lignin, cellulose, and hemicellulose biosynthetic genes in P. taeda and underscores the importance of non-canonical NAC and MYB TFs, laying a genetic foundation for future studies on SCW regulatory mechanisms.
Collapse
Affiliation(s)
- Wei Ding
- Jiangxi Academy of Forestry, Nanchang 330013, China; (W.D.); (Z.T.); (B.G.); (Z.D.); (Q.L.)
- Jiangxi Provincial Key Laboratory of Improved Variety Breeding and Efficient Utilization of Native Tree Species, Nanchang 330013, China
| | - Zhonghua Tu
- Jiangxi Academy of Forestry, Nanchang 330013, China; (W.D.); (Z.T.); (B.G.); (Z.D.); (Q.L.)
- Jiangxi Provincial Key Laboratory of Improved Variety Breeding and Efficient Utilization of Native Tree Species, Nanchang 330013, China
| | - Bin Gong
- Jiangxi Academy of Forestry, Nanchang 330013, China; (W.D.); (Z.T.); (B.G.); (Z.D.); (Q.L.)
- Jiangxi Provincial Key Laboratory of Improved Variety Breeding and Efficient Utilization of Native Tree Species, Nanchang 330013, China
| | - Zhaolei Deng
- Jiangxi Academy of Forestry, Nanchang 330013, China; (W.D.); (Z.T.); (B.G.); (Z.D.); (Q.L.)
- Jiangxi Provincial Key Laboratory of Improved Variety Breeding and Efficient Utilization of Native Tree Species, Nanchang 330013, China
| | - Qian Liu
- Jiangxi Academy of Forestry, Nanchang 330013, China; (W.D.); (Z.T.); (B.G.); (Z.D.); (Q.L.)
- Jiangxi Provincial Key Laboratory of Improved Variety Breeding and Efficient Utilization of Native Tree Species, Nanchang 330013, China
| | - Zhenjun Gu
- Jiangxi Academy of Forestry, Nanchang 330013, China; (W.D.); (Z.T.); (B.G.); (Z.D.); (Q.L.)
- Jiangxi Provincial Key Laboratory of Improved Variety Breeding and Efficient Utilization of Native Tree Species, Nanchang 330013, China
| | - Chunxia Yang
- Jiangxi Academy of Forestry, Nanchang 330013, China; (W.D.); (Z.T.); (B.G.); (Z.D.); (Q.L.)
- Jiangxi Provincial Key Laboratory of Improved Variety Breeding and Efficient Utilization of Native Tree Species, Nanchang 330013, China
| |
Collapse
|
17
|
Wang Y, Xing Y, Yang X, Yu Y, Li J, Zhao C, Yuan M, Huang W, Yin Y, Liu G, Sun Y, Li H, Tang J, Zhang Q, Gou M. Knockout of ZmNST2 promotes bioethanol production from corn stover. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:3099-3101. [PMID: 39007257 PMCID: PMC11500975 DOI: 10.1111/pbi.14432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 06/04/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024]
Affiliation(s)
- Ying Wang
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of AgronomyHenan Agricultural UniversityZhengzhouHenanChina
| | - Ye Xing
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of AgronomyHenan Agricultural UniversityZhengzhouHenanChina
| | - Xinyu Yang
- Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, College of Biological and Food EngineeringAnhui Polytechnic UniversityWuhuAnhuiChina
| | - Yanwen Yu
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of AgronomyHenan Agricultural UniversityZhengzhouHenanChina
| | - Jiankun Li
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of AgronomyHenan Agricultural UniversityZhengzhouHenanChina
| | - Chenyang Zhao
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of AgronomyHenan Agricultural UniversityZhengzhouHenanChina
| | - Mengyu Yuan
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of AgronomyHenan Agricultural UniversityZhengzhouHenanChina
| | - Weili Huang
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of AgronomyHenan Agricultural UniversityZhengzhouHenanChina
| | - Yue Yin
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of AgronomyHenan Agricultural UniversityZhengzhouHenanChina
| | - Guohui Liu
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of AgronomyHenan Agricultural UniversityZhengzhouHenanChina
| | - Yuqing Sun
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of AgronomyHenan Agricultural UniversityZhengzhouHenanChina
| | - Haochuan Li
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of AgronomyHenan Agricultural UniversityZhengzhouHenanChina
- The Shennong LaboratoryZhengzhouHenanChina
| | - Jihua Tang
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of AgronomyHenan Agricultural UniversityZhengzhouHenanChina
- The Shennong LaboratoryZhengzhouHenanChina
| | - Qin Zhang
- Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, College of Biological and Food EngineeringAnhui Polytechnic UniversityWuhuAnhuiChina
| | - Mingyue Gou
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of AgronomyHenan Agricultural UniversityZhengzhouHenanChina
- The Shennong LaboratoryZhengzhouHenanChina
| |
Collapse
|
18
|
Wang J, Zhang X, Yang H, Li S, Hu Y, Wei D, Tang Q, Yang Y, Tian S, Wang Z. Eggplant NAC domain transcription factor SmNST1 as an activator promotes secondary cell wall thickening. PLANT, CELL & ENVIRONMENT 2024; 47:4293-4304. [PMID: 38963294 DOI: 10.1111/pce.15014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/28/2024] [Accepted: 06/13/2024] [Indexed: 07/05/2024]
Abstract
NAC-domain transcription factors (TFs) are plant-specific transcriptional regulators playing crucial roles in plant secondary cell wall (SCW) biosynthesis. SCW is important for plant growth and development, maintaining plant morphology, providing rigid support, ensuring material transportation and participating in plant stress responses as a protective barrier. However, the molecular mechanisms underlying SCW in eggplant have not been thoroughly explored. In this study, the NAC domain TFs SmNST1 and SmNST2 were cloned from the eggplant line 'Sanyue qie'. SmNST1 and SmNST2 expression levels were the highest in the roots and stems. Subcellular localization analysis showed that they were localized in the cell membrane and nucleus. Their overexpression in transgenic tobacco showed that SmNST1 promotes SCW thickening. The expression of a set of SCW biosynthetic genes for cellulose, xylan and lignin, which regulate SCW formation, was increased in transgenic tobacco. Bimolecular fluorescence and luciferase complementation assays showed that SmNST1 interacted with SmNST2 in vivo. Yeast one-hybrid, electrophoretic mobility shift assay (EMSA) and Dual-luciferase reporter assays showed that SmMYB26 directly bound to the SmNST1 promoter and acted as an activator. SmNST1 and SmNST2 interact with the SmMYB108 promoter and repress SmMYB108 expression. Altogether, we showed that SmNST1 positively regulates SCW formation, improving our understanding of SCW biosynthesis transcriptional regulation.
Collapse
Affiliation(s)
- Jiali Wang
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Olericulture, Chongqing, China
| | - Xinxin Zhang
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Olericulture, Chongqing, China
| | - Huiqin Yang
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Olericulture, Chongqing, China
| | - Sirui Li
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Olericulture, Chongqing, China
| | - Yao Hu
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Olericulture, Chongqing, China
| | - Dayong Wei
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Olericulture, Chongqing, China
| | - Qinglin Tang
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Olericulture, Chongqing, China
| | - Yang Yang
- The Institute of Vegetables and Flowers, Chongqing Academy of Agricultural Sciences, Chongqing, China
| | - Shibing Tian
- The Institute of Vegetables and Flowers, Chongqing Academy of Agricultural Sciences, Chongqing, China
| | - Zhimin Wang
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Olericulture, Chongqing, China
| |
Collapse
|
19
|
Mao J, Tang Q, Wu H, Chen Y. Transcriptome Remodeling in Arabidopsis: A Response to Heterologous Poplar MSL-lncRNAs Overexpression. PLANTS (BASEL, SWITZERLAND) 2024; 13:2906. [PMID: 39458852 PMCID: PMC11511487 DOI: 10.3390/plants13202906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/08/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024]
Abstract
Stamens are vital reproductive organs in angiosperms, essential for plant growth, reproduction, and development. The genetic regulation and molecular mechanisms underlying stamen development are, however, complex and varied among different plant species. MSL-lncRNAs, a gene specific to the Y chromosome of Populus deltoides, is predominantly expressed in male flower buds. Heterologous expression of MSL-lncRNAs in Arabidopsis thaliana resulted in an increase in both stamen and anther count, without affecting pistil development or seed set. To reveal the molecular regulatory network influenced by MSL-lncRNAs on stamen development, we conducted transcriptome sequencing of flowers from both wild-type and MSL-lncRNAs-overexpressing Arabidopsis. A total of 678 differentially expressed genes were identified between wild-type and transgenic Arabidopsis. Among these, 20 were classified as transcription factors, suggesting a role for these regulatory proteins in stamen development. GO enrichment analysis revealed that the differentially expressed genes were significantly associated with processes such as pollen formation, polysaccharide catabolic processes, and secondary metabolism. KEGG pathway analysis indicated that MSL-lncRNAs might promote stamen development by upregulating genes involved in the phenylpropanoid biosynthesis pathway. The top three upregulated genes, all featuring the DUF295 domain, were found to harbor an F-box motif at their N-termini, which is implicated in stamen development. Additionally, in transgenic Arabidopsis flowers, genes implicated in tapetum formation and anther development were also observed to be upregulated, implying a potential role for MSL-lncRNAs in modulating pollen development through the positive regulation of these genes. The findings from this study establish a theoretical framework for elucidating the genetic control exerted by MSL-lncRNAs over stamen and pollen development.
Collapse
Affiliation(s)
| | | | | | - Yingnan Chen
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing 210037, China; (J.M.); (Q.T.); (H.W.)
| |
Collapse
|
20
|
Wang R, Shi YC, Zhang B, Liu WR, Tan FQ, Lu F, Jiang N, Cheng LC, Xie KD, Wu XM, Guo WW. Gene expression profiles and metabolic pathways responsible for male sterility in cybrid pummelo. PLANT CELL REPORTS 2024; 43:262. [PMID: 39407042 DOI: 10.1007/s00299-024-03357-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/03/2024] [Indexed: 11/15/2024]
Abstract
KEY MESSAGE Abnormal expression of genes regulating anther and pollen development and insufficient accumulation of male sterility (MS)- related metabolites lead to MS in cybrid pummelo Male sterility (MS) is a major cause of seedlessness in citrus, which is an important trait for fresh fruit. Understanding the mechanism of MS is important for breeding seedless citrus cultivars. In this study, we dissected the transcriptional, metabolic and physiological mechanisms of MS in somatic cybrid of pummelo (G1 + HBP). G1 + HBP exhibited severe male sterility, manifesting as retarded anther differentiation, abnormal anther wall development (especially tapetum and endothecium), and deficient pollen wall formation. In the anthers of G1 + HBP, the expression of genes regulating anther differentiation and tapetum development was abnormal, and the expression of genes regulating endothecium secondary lignification thickening and pollen wall formation was down-regulated. The transcription of genes involved in MS-related biological processes, such as jasmonic acid (JA) signaling pathway, primary metabolism, flavonoid metabolism, and programmed cell death, was altered in G1 + HBP anthers, and the accumulation of MS-associated metabolites, including fatty acids, amino acids, sugars, ATP, flavonols and reactive oxygen species (ROS), was down-regulated in G1 + HBP anthers. In summary, abnormal expression of key genes regulating anther and pollen development, altered transcription of key genes involved in MS-related metabolic pathways, and insufficient accumulation of MS-related metabolites together lead to MS in G1 + HBP. The critical genes and the metabolism pathways identified herein provide new insights into the formation mechanism of MS in citrus and candidate genes for breeding seedless citrus.
Collapse
Affiliation(s)
- Rong Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
- College of Horticulture and Landscape, Yunnan Agricultural University, Kunming, 650201, China
| | - Yang-Cao Shi
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Bo Zhang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wan-Rong Liu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Feng-Quan Tan
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Fang Lu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Nan Jiang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lai-Chao Cheng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Kai-Dong Xie
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiao-Meng Wu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Wen-Wu Guo
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China.
- Hubei Hongshan Laboratory, Wuhan, 430070, China.
| |
Collapse
|
21
|
Zhang C, Xiong AT, Ren MY, Zhao YY, Huang MJ, Huang LC, Zhang Z, Wang Y, Zheng QQ, Fan J, Guan JJ, Yang ZN. An epigenetically mediated double negative cascade from EFD to HB21 regulates anther development. Nat Commun 2024; 15:7796. [PMID: 39242635 PMCID: PMC11379828 DOI: 10.1038/s41467-024-52114-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 08/27/2024] [Indexed: 09/09/2024] Open
Abstract
Epigenetic modifications are crucial for plant development. EFD (Exine Formation Defect) encodes a SAM-dependent methyltransferase that is essential for the pollen wall pattern formation and male fertility in Arabidopsis. In this study, we find that the expression of DRM2, a de novo DNA methyltransferase in plants, complements for the defects in efd, suggesting its potential de novo DNA methyltransferase activity. Genetic analysis indicates that EFD functions through HB21, as the knockout of HB21 fully restores fertility in efd mutants. DNA methylation and histone modification analyses reveal that EFD represses the transcription of HB21 through epigenetic mechanisms. Additionally, we demonstrate that HB21 directly represses the expression of genes crucial for pollen formation and anther dehiscence, including CalS5, RPG1/SWEET8, CYP703A2 and NST2. Collectively, our findings unveil a double negative regulatory cascade mediated by epigenetic modifications that coordinates anther development, offering insights into the epigenetic regulation of this process.
Collapse
Affiliation(s)
- Cheng Zhang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Ao-Tong Xiong
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Meng-Yi Ren
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Yan-Yun Zhao
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Min-Jia Huang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Long-Cheng Huang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Zheng Zhang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Yun Wang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Quan-Quan Zheng
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Jing Fan
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Jing-Jing Guan
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Zhong-Nan Yang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China.
| |
Collapse
|
22
|
Li S, Yang JB, Li JQ, Huang J, Shen RF, Zeng DL, Zhu XF. A NAC transcription factor represses a module associated with xyloglucan content and regulates aluminum tolerance. PLANT PHYSIOLOGY 2024; 196:564-578. [PMID: 38753299 DOI: 10.1093/plphys/kiae281] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/11/2024] [Indexed: 09/03/2024]
Abstract
The transcriptional regulation of aluminum (Al) tolerance in plants is largely unknown, although Al toxicity restricts agricultural yields in acidic soils. Here, we identified a NAM, ATAF1/2, and cup-shaped cotyledon 2 (NAC) transcription factor that participates in Al tolerance in Arabidopsis (Arabidopsis thaliana). Al substantially induced the transcript and protein levels of ANAC070, and loss-of-function mutants showed remarkably increased Al sensitivity, implying a beneficial role of ANAC070 in plant tolerance to Al toxicity. Further investigation revealed that more Al accumulated in the roots of anac070 mutants, especially in root cell walls, accompanied by a higher hemicellulose and xyloglucan level, implying a possible interaction between ANAC070 and genes that encode proteins responsible for the modification of xyloglucan, including xyloglucan endo-transglycosylase/hydrolase (XTH) or ANAC017. Yeast 1-hybrid analysis revealed a potential interaction between ANAC070 and ANAC017, but not for other XTHs. Furthermore, dual-luciferase reporter assay, RT-qPCR, and GUS analysis revealed that ANAC070 could directly repress the transcript levels of ANAC017, and knockout of ANAC017 in the anac070 mutant partially restored its Al sensitivity phenotype, indicating that ANAC070 contributes to Al tolerance mechanisms other than suppression of ANAC017 expression. Further analysis revealed that the core transcription factor SENSITIVE TO PROTON RHIZOTOXICITY 1 (STOP1) and its target genes, which control Al tolerance in Arabidopsis, may also be involved in ANAC070-regulated Al tolerance. In summary, we identified a transcription factor, ANAC070, that represses the ANAC017-XTH31 module to regulate Al tolerance in Arabidopsis.
Collapse
Affiliation(s)
- Su Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- Institute of Soil Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ji Bo Yang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Jia Qi Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- Institute of Soil Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Huang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- Institute of Soil Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ren Fang Shen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- Institute of Soil Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Da Li Zeng
- College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Xiao Fang Zhu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- Institute of Soil Science, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
23
|
Guo Y, Yao L, Chen X, Xu X, Sang YL, Liu LJ. The transcription factor PagLBD4 represses cell differentiation and secondary cell wall biosynthesis in Populus. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 214:108924. [PMID: 38991593 DOI: 10.1016/j.plaphy.2024.108924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/20/2024] [Accepted: 07/07/2024] [Indexed: 07/13/2024]
Abstract
LBD (LATERAL ORGAN BOUNDARIES DOMAIN) transcription factors are key regulators of plant growth and development. In this study, we functionally characterized the PagLBD4 gene in Populus (Populus alba × Populus glandulosa). Overexpression of PagLBD4 (PagLBD4OE) significantly repressed secondary xylem differentiation and secondary cell wall (SCW) deposition, while CRISPR/Cas9-mediated PagLBD4 knockout (PagLBD4KO) significantly increased secondary xylem differentiation and SCW deposition. Consistent with the functional analysis, gene expression analysis revealed that SCW biosynthesis pathways were significantly down-regulated in PagLBD4OE plants but up-regulated in PagLBD4KO plants. We also performed DNA affinity purification followed by sequencing (DAP-seq) to identify genes bound by PagLBD4. Integration of RNA sequencing (RNA-seq) and DAP-seq data identified 263 putative direct target genes (DTGs) of PagLBD4, including important regulatory genes for SCW biosynthesis, such as PagMYB103 and PagIRX12. Together, our results demonstrated that PagLBD4 is a repressor of secondary xylem differentiation and SCW biosynthesis in Populus, which possibly lead to the dramatic growth repression in PagLBD4OE plants.
Collapse
Affiliation(s)
- Ying Guo
- State Forestry and Grassland Administration Key Laboratory of Silviculture in downstream areas of the Yellow River, College of Forestry, Shandong Agricultural University, Taian, 271018, China
| | - Lijuan Yao
- State Forestry and Grassland Administration Key Laboratory of Silviculture in downstream areas of the Yellow River, College of Forestry, Shandong Agricultural University, Taian, 271018, China
| | - Xiaoman Chen
- State Forestry and Grassland Administration Key Laboratory of Silviculture in downstream areas of the Yellow River, College of Forestry, Shandong Agricultural University, Taian, 271018, China
| | - Xiaoqi Xu
- State Forestry and Grassland Administration Key Laboratory of Silviculture in downstream areas of the Yellow River, College of Forestry, Shandong Agricultural University, Taian, 271018, China
| | - Ya Lin Sang
- State Forestry and Grassland Administration Key Laboratory of Silviculture in downstream areas of the Yellow River, College of Forestry, Shandong Agricultural University, Taian, 271018, China.
| | - Li-Jun Liu
- State Forestry and Grassland Administration Key Laboratory of Silviculture in downstream areas of the Yellow River, College of Forestry, Shandong Agricultural University, Taian, 271018, China.
| |
Collapse
|
24
|
Cao Y, Han Z, Zhang Z, He L, Huang C, Chen J, Dai F, Xuan L, Yan S, Si Z, Hu Y, Zhang T. UDP-glucosyltransferase 71C4 controls the flux of phenylpropanoid metabolism to shape cotton seed development. PLANT COMMUNICATIONS 2024; 5:100938. [PMID: 38689494 PMCID: PMC11369780 DOI: 10.1016/j.xplc.2024.100938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/24/2024] [Accepted: 04/29/2024] [Indexed: 05/02/2024]
Abstract
Seeds play a crucial role in plant reproduction, making it essential to identify genes that affect seed development. In this study, we focused on UDP-glucosyltransferase 71C4 (UGT71C4) in cotton, a member of the glycosyltransferase family that shapes seed width and length, thereby influencing seed index and seed cotton yield. Overexpression of UGT71C4 results in seed enlargement owing to its glycosyltransferase activity on flavonoids, which redirects metabolic flux from lignin to flavonoid metabolism. This shift promotes cell proliferation in the ovule via accumulation of flavonoid glycosides, significantly enhancing seed cotton yield and increasing the seed index from 10.66 g to 11.91 g. By contrast, knockout of UGT71C4 leads to smaller seeds through activation of the lignin metabolism pathway and redirection of metabolic flux back to lignin synthesis. This redirection leads to increased ectopic lignin deposition in the ovule, inhibiting ovule growth and development, and alters yield components, increasing the lint percentage from 41.42% to 43.40% and reducing the seed index from 10.66 g to 8.60 g. Our research sheds new light on seed size development and reveals potential pathways for enhancing seed yield.
Collapse
Affiliation(s)
- Yiwen Cao
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, the Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China; Hainan Institute, Zhejiang University, Sanya, China
| | - Zegang Han
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, the Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | | | - Lu He
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, the Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Chujun Huang
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, the Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Jinwen Chen
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, the Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Fan Dai
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, the Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Lisha Xuan
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, the Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Sunyi Yan
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, the Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Zhanfeng Si
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, the Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Yan Hu
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, the Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China; Hainan Institute, Zhejiang University, Sanya, China
| | - Tianzhen Zhang
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, the Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China; Hainan Institute, Zhejiang University, Sanya, China.
| |
Collapse
|
25
|
Sirangelo TM. Molecular Investigations to Improve Fusarium Head Blight Resistance in Wheat: An Update Focusing on Multi-Omics Approaches. PLANTS (BASEL, SWITZERLAND) 2024; 13:2179. [PMID: 39204615 PMCID: PMC11359810 DOI: 10.3390/plants13162179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/24/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024]
Abstract
Fusarium head blight (FHB) is mainly caused by Fusarium graminearum (Fg) and is a very widespread disease throughout the world, leading to severe damage to wheat with losses in both grain yield and quality. FHB also leads to mycotoxin contamination in the infected grains, being toxic to humans and animals. In spite of the continuous advancements to elucidate more and more aspects of FHB host resistance, to date, our knowledge about the molecular mechanisms underlying wheat defense response to this pathogen is not comprehensive, most likely due to the complex wheat-Fg interaction. Recently, due to climate changes, such as high temperature and heavy rainfall, FHB has become more frequent and severe worldwide, making it even more urgent to completely understand wheat defense mechanisms. In this review, after a brief description of the first wheat immune response to Fg, we discuss, for each FHB resistance type, from Type I to Type V resistances, the main molecular mechanisms involved, the major quantitative trait loci (QTLs) and candidate genes found. The focus is on multi-omics research helping discover crucial molecular pathways for each resistance type. Finally, according to the emerging examined studies and results, a wheat response model to Fg attack, showing the major interactions in the different FHB resistance types, is proposed. The aim is to establish a useful reference point for the researchers in the field interested to adopt an interdisciplinary omics approach.
Collapse
Affiliation(s)
- Tiziana M Sirangelo
- Division Biotechnologies and Agroindustry, ENEA-Italian National Agency for New Technologies, Energy and Sustainable Economic Development, 00123 Rome, Italy
| |
Collapse
|
26
|
Xue JS, Feng YF, Zhang MQ, Xu QL, Xu YM, Shi JQ, Liu LF, Wu XF, Wang S, Yang ZN. The regulatory mechanism of rapid lignification for timely anther dehiscence. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:1788-1800. [PMID: 38888227 DOI: 10.1111/jipb.13715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 05/16/2024] [Indexed: 06/20/2024]
Abstract
Anther dehiscence is a crucial event in plant reproduction, tightly regulated and dependent on the lignification of the anther endothecium. In this study, we investigated the rapid lignification process that ensures timely anther dehiscence in Arabidopsis. Our findings reveal that endothecium lignification can be divided into two distinct phases. During Phase I, lignin precursors are synthesized without polymerization, while Phase II involves simultaneous synthesis of lignin precursors and polymerization. The transcription factors MYB26, NST1/2, and ARF17 specifically regulate the pathway responsible for the synthesis and polymerization of lignin monomers in Phase II. MYB26-NST1/2 is the key regulatory pathway responsible for endothecium lignification, while ARF17 facilitates this process by interacting with MYB26. Interestingly, our results demonstrate that the lignification of the endothecium, which occurs within approximately 26 h, is much faster than that of the vascular tissue. These findings provide valuable insights into the regulation mechanism of rapid lignification in the endothecium, which enables timely anther dehiscence and successful pollen release during plant reproduction.
Collapse
Affiliation(s)
- Jing-Shi Xue
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Yi-Feng Feng
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Ming-Qi Zhang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Qin-Lin Xu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Ya-Min Xu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Jun-Qin Shi
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Li-Fang Liu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Xiao-Feng Wu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Shui Wang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Zhong-Nan Yang
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| |
Collapse
|
27
|
Yang Z, Wang J, Wang W, Zhang H, Wu Y, Gao X, Gao D, Li X. Physiological, cytological and multi-omics analysis revealed the molecular response of Fritillaria cirrhosa to Cd toxicity in Qinghai-Tibet Plateau. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134611. [PMID: 38754230 DOI: 10.1016/j.jhazmat.2024.134611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/05/2024] [Accepted: 05/11/2024] [Indexed: 05/18/2024]
Abstract
Fritillaria cirrhosa, an endangered plant endemic to plateau regions, faces escalating cadmium (Cd) stress due to pollution in the Qinghai-Tibet Plateau. This study employed physiological, cytological, and multi-omics techniques to investigate the toxic effects of Cd stress and detoxification mechanisms of F. cirrhosa. The results demonstrated that Cd caused severe damage to cell membranes and organelles, leading to significant oxidative damage and reducing photosynthesis, alkaloid and nucleoside contents, and biomass. Cd application increased cell wall thickness by 167.89% in leaves and 445.78% in bulbs, leading to weight percentage of Cd increases of 76.00% and 257.14%, respectively. PER, CESA, PME, and SUS, genes responsible for cell wall thickening, were significantly upregulated. Additionally, the levels of metabolites participating in the scavenging of reactive oxygen species, including oxidized glutathione, D-proline, L-citrulline, and putrescine, were significantly increased under Cd stress. Combined multi-omics analyses revealed that glutathione metabolism and cell wall biosynthesis pathways jointly constituted the detoxification mechanism of F. cirrhosa in response to Cd stress. This study provides a theoretical basis for further screening of new cultivars for Cd tolerance and developing appropriate cultivation strategies to alleviate Cd toxicity.
Collapse
Affiliation(s)
- Zemin Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming 650500, China.
| | - Jialu Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Wenjun Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming 650500, China.
| | - Haobo Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China.
| | - Yuhan Wu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China.
| | - Xusheng Gao
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China.
| | - Dan Gao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Xiwen Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
28
|
Wang Y, Wang Q, Zhang F, Han C, Li W, Ren M, Wang Y, Qi K, Xie Z, Zhang S, Tao S. PbARF19-mediated auxin signaling regulates lignification in pear fruit stone cells. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 344:112103. [PMID: 38657909 DOI: 10.1016/j.plantsci.2024.112103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/18/2024] [Accepted: 04/21/2024] [Indexed: 04/26/2024]
Abstract
The stone cells in pear fruits cause rough flesh and low juice, seriously affecting the taste. Lignin has been demonstrated as the main component of stone cells. Auxin, one of the most important plant hormone, regulates most physiological processes in plants including lignification. However, the concentration effect and regulators of auxin on pear fruits stone cell formation remains unclear. Here, endogenous indole-3-acetic acid (IAA) and stone cells were found to be co-localized in lignified cells by immunofluorescence localization analysis. The exogenous treatment of different concentrations of IAA demonstrated that the application of 200 µM IAA significantly reduced stone cell content, while concentrations greater than 500 µM significantly increased stone cell content. Besides, 31 auxin response factors (ARFs) were identified in pear genome. Putative ARFs were predicted as critical regulators involved in the lignification of pear flesh cells by phylogenetic relationship and expression analysis. Furthermore, the negative regulation of PbARF19 on stone cell formation in pear fruit was demonstrated by overexpression in pear fruitlets and Arabidopsis. These results illustrated that the PbARF19-mediated auxin signal plays a critical role in the lignification of pear stone cell by regulating lignin biosynthetic genes. This study provides theoretical and practical guidance for improving fruit quality in pear production.
Collapse
Affiliation(s)
- Yanling Wang
- Sanya Institute, College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Qi Wang
- Sanya Institute, College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Fanhang Zhang
- Sanya Institute, College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Chenyang Han
- Sanya Institute, College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Wen Li
- Sanya Institute, College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Mei Ren
- Sanya Institute, College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Yueyang Wang
- Sanya Institute, College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Kaijie Qi
- Sanya Institute, College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhihua Xie
- Sanya Institute, College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Shaoling Zhang
- Sanya Institute, College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Shutian Tao
- Sanya Institute, College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
29
|
Fu J, McKinley B, James B, Chrisler W, Markillie LM, Gaffrey MJ, Mitchell HD, Riaz MR, Marcial B, Orr G, Swaminathan K, Mullet J, Marshall-Colon A. Cell-type-specific transcriptomics uncovers spatial regulatory networks in bioenergy sorghum stems. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:1668-1688. [PMID: 38407828 DOI: 10.1111/tpj.16690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 12/17/2023] [Accepted: 02/07/2024] [Indexed: 02/27/2024]
Abstract
Bioenergy sorghum is a low-input, drought-resilient, deep-rooting annual crop that has high biomass yield potential enabling the sustainable production of biofuels, biopower, and bioproducts. Bioenergy sorghum's 4-5 m stems account for ~80% of the harvested biomass. Stems accumulate high levels of sucrose that could be used to synthesize bioethanol and useful biopolymers if information about cell-type gene expression and regulation in stems was available to enable engineering. To obtain this information, laser capture microdissection was used to isolate and collect transcriptome profiles from five major cell types that are present in stems of the sweet sorghum Wray. Transcriptome analysis identified genes with cell-type-specific and cell-preferred expression patterns that reflect the distinct metabolic, transport, and regulatory functions of each cell type. Analysis of cell-type-specific gene regulatory networks (GRNs) revealed that unique transcription factor families contribute to distinct regulatory landscapes, where regulation is organized through various modes and identifiable network motifs. Cell-specific transcriptome data was combined with known secondary cell wall (SCW) networks to identify the GRNs that differentially activate SCW formation in vascular sclerenchyma and epidermal cells. The spatial transcriptomic dataset provides a valuable source of information about the function of different sorghum cell types and GRNs that will enable the engineering of bioenergy sorghum stems, and an interactive web application developed during this project will allow easy access and exploration of the data (https://mc-lab.shinyapps.io/lcm-dataset/).
Collapse
Affiliation(s)
- Jie Fu
- Department of Plant Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, 61801, USA
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, Urbana, Illinois, 61801, USA
| | - Brian McKinley
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, 77843, USA
- DOE Great Lakes Bioenergy Resource Center, Madison, Wisconsin, 53726, USA
| | - Brandon James
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, Urbana, Illinois, 61801, USA
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama, 35806, USA
| | - William Chrisler
- Pacific Northwest National Laboratory, Richland, Washington, 99354, USA
| | | | - Matthew J Gaffrey
- Pacific Northwest National Laboratory, Richland, Washington, 99354, USA
| | - Hugh D Mitchell
- Pacific Northwest National Laboratory, Richland, Washington, 99354, USA
| | - Muhammad Rizwan Riaz
- Department of Plant Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, 61801, USA
| | - Brenda Marcial
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, Urbana, Illinois, 61801, USA
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama, 35806, USA
| | - Galya Orr
- Pacific Northwest National Laboratory, Richland, Washington, 99354, USA
| | - Kankshita Swaminathan
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, Urbana, Illinois, 61801, USA
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama, 35806, USA
| | - John Mullet
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, 77843, USA
- DOE Great Lakes Bioenergy Resource Center, Madison, Wisconsin, 53726, USA
| | - Amy Marshall-Colon
- Department of Plant Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, 61801, USA
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, Urbana, Illinois, 61801, USA
| |
Collapse
|
30
|
Zhang X, Bian A, Yang J, Liang Y, Zhang Z, Yan M, Yuan S, Zhang Q. Morphological Innovation Drives Sperm Release in Bryophytes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306767. [PMID: 38552153 PMCID: PMC11132054 DOI: 10.1002/advs.202306767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 03/17/2024] [Indexed: 05/29/2024]
Abstract
Plant movements for survival are nontrivial. Antheridia in the moss Physcomitrium patens (P. patens) use motion to eject sperm in the presence of water. However, the biological and mechanical mechanisms that actuate the process are unknown. Here, the burst of the antheridium of P. patens, triggered by water, results from elastic instability and is determined by an asymmetric change in cell geometry. The tension generated in jacket cell walls of antheridium arises from turgor pressure, and is further promoted when the inner walls of apex burst in hydration, causing water and cellular contents of apex quickly influx into sperm chamber. The outer walls of the jacket cells are strengthened by NAC transcription factor VNS4 and serve as key morphomechanical innovations to store hydrostatic energy in a confined space in P. patens. However, the antheridium in liverwort Marchantia polymorpha (M. polymorpha) adopts a different strategy for sperm release; like jacket cell outer walls of P. patens, the cells surrounding the antheridium of M. polymorpha appear to play a similar role in the storage of energy. Collectively, the work shows that plants have evolved different ingenious devices for sperm discharge and that morphological innovations can differ.
Collapse
Affiliation(s)
- Xinxin Zhang
- Institute of BotanyChinese Academy of SciencesBeijing100093China
| | - Ang Bian
- College of Computer ScienceSichuan UniversityChengdu610065China
| | - Junbo Yang
- Shenzhen BranchGuangdong Laboratory of Lingnan Modern AgricultureGenome Analysis Laboratory of the Ministry of Agriculture and Rural AffairsAgricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhenGuangdong518120China
| | - Ye Liang
- Core Facility of the State Key Laboratory of Membrane BiologyPeking UniversityBeijing100871China
| | - Zhe Zhang
- Department of Mechanical and Aerospace EngineeringThe Hong Kong University of Science and TechnologyClear Water BayHong Kong999077China
| | - Meng Yan
- School of Life ScienceHangzhou Institute for Advanced StudyUniversity of Chinese Academy of SciencesHangzhouZhejiang310024China
| | - Siqi Yuan
- College of Life SciencesState Key Laboratory of Crop Genetics & Germplasm Enhancement and UtilizationNanjing Agricultural UniversityNanjing210095China
| | - Qun Zhang
- College of Life SciencesState Key Laboratory of Crop Genetics & Germplasm Enhancement and UtilizationNanjing Agricultural UniversityNanjing210095China
| |
Collapse
|
31
|
Chen W, Jiang B, Zeng H, Liu Z, Chen W, Zheng S, Wu J, Lou H. Molecular regulatory mechanisms of staminate strobilus development and dehiscence in Torreya grandis. PLANT PHYSIOLOGY 2024; 195:534-551. [PMID: 38365225 DOI: 10.1093/plphys/kiae081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/06/2023] [Accepted: 12/24/2023] [Indexed: 02/18/2024]
Abstract
Gymnosperms are mostly dioecious, and their staminate strobili undergo a longer developmental period than those of angiosperms. However, the underlying molecular mechanisms remain unclear. This study aimed to identify key genes and pathways involved in staminate strobilus development and dehiscence in Torreya grandis. Through weighted gene co-expression network analysis (WGCNA), we identified fast elongation-related genes enriched in carbon metabolism and auxin signal transduction, whereas dehiscence-related genes were abundant in alpha-linolenic acid metabolism and the phenylpropanoid pathway. Based on WGCNA, we also identified PHYTOCHROME-INTERACTING FACTOR4 (TgPIF4) as a potential regulator for fast elongation of staminate strobilus and 2 WRKY proteins (TgWRKY3 and TgWRKY31) as potential regulators for staminate strobilus dehiscence. Multiple protein-DNA interaction analyses showed that TgPIF4 directly activates the expression of TRANSPORT INHIBITOR RESPONSE2 (TgTIR2) and NADP-MALIC ENZYME (TgNADP-ME). Overexpression of TgPIF4 significantly promoted staminate strobilus elongation by elevating auxin signal transduction and pyruvate content. TgWRKY3 and TgWRKY31 bind to the promoters of the lignin biosynthesis gene PHENYLALANINE AMMONIA-LYASE (TgPAL) and jasmonic acid metabolism gene JASMONATE O-METHYLTRANSFERASE (TgJMT), respectively, and directly activate their transcription. Overexpression of TgWRKY3 and TgWRKY31 in the staminate strobilus led to early dehiscence, accompanied by increased lignin and methyl jasmonate levels, respectively. Collectively, our findings offer a perspective for understanding the growth of staminate strobili in gymnosperms.
Collapse
Affiliation(s)
- Weijie Chen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Baofeng Jiang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Hao Zeng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Zhihui Liu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Wenchao Chen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Shan Zheng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Jiasheng Wu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Heqiang Lou
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| |
Collapse
|
32
|
Zhang R, Li B, Zhao Y, Zhu Y, Li L. An essential role for mannan degradation in both cell growth and secondary cell wall formation. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:1407-1420. [PMID: 37978883 DOI: 10.1093/jxb/erad463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 11/17/2023] [Indexed: 11/19/2023]
Abstract
Coordination of secondary cell wall deposition and cell expansion during plant growth is required for cell development, particularly in vascular tissues. Yet the fundamental coordination process has received little attention. We observed that the Arabidopsis endo-1,4-mannanase gene, AtMAN6, is involved in the formation of cell walls in vascular tissues. In the inflorescence stem, the man6 mutant had smaller vessel cells with thicker secondary cell walls and shorter fiber cells. Elongation growth was reduced in the root, and secondary cell wall deposition in vessel cells occurred early. Overexpression of AtMAN6 resulted in the inverse phenotypes of the man6 mutant. AtMAN6 was discovered on the plasma membrane and was specifically expressed in vessel cells during its early development. The AtMAN6 protein degraded galactoglucomannan to produce oligosaccharides, which caused secondary cell wall deposition in vessel and fiber cells to be suppressed. Transcriptome analysis revealed that the expression of genes involved in the regulation of secondary cell wall synthesis was changed in both man6 mutant and AtMAN6 overexpression plants. AtMAN6's C-terminal cysteine repeat motif (CCRM) was found to facilitate homodimerization and is required for its activity. According to the findings, the oligosaccharides produced by AtMAN6 hydrolysis may act as a signal to mediate this coordination between cell growth and secondary cell wall deposition.
Collapse
Affiliation(s)
- Rui Zhang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Bo Li
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yunjun Zhao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yingying Zhu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems and College of Ecology, Lanzhou University, Lanzhou 730000, Gansu, China
| | - Laigeng Li
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
33
|
Ma P, Li J, Sun G, Zhu J. Comparative transcriptome analysis reveals the adaptive mechanisms of halophyte Suaeda dendroides encountering high saline environment. FRONTIERS IN PLANT SCIENCE 2024; 15:1283912. [PMID: 38419781 PMCID: PMC10899697 DOI: 10.3389/fpls.2024.1283912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 01/30/2024] [Indexed: 03/02/2024]
Abstract
Suaeda dendroides, a succulent euhalophyte of the Chenopodiaceae family, intermittently spread around northern Xinjiang, China, has the ability to grow and develop in saline and alkali environments. The objective of this study was therefore to investigate the underlying molecular mechanisms of S. dendroides response to high salt conditions. 27 sequencing libraries prepared from low salt (200 mM NaCl) and high salt (800 mM NaCl) treated plants at 5 different stages were sequenced using Illumina Hiseq 2000. A total of 133,107 unigenes were obtained, of which 4,758 were DEGs. The number of DEGs in the high salt group (3,189) was more than the low salt treatment group (733) compared with the control. GO and KEGG analysis of the DEGs at different time points of the high salt treatment group showed that the genes related to cell wall biosynthesis and modification, plant hormone signal transduction, ion homeostasis, organic osmolyte accumulation, and reactive oxygen species (ROS) detoxification were significantly expressed, which indicated that these could be the main mechanisms of S. dendroides acclimate to high salt stress. The study provides a new perspective for understanding the molecular mechanisms of halophytes adapting to high salinity. It also provides a basis for future investigations of key salt-responsive genes in S. dendroides.
Collapse
Affiliation(s)
- Panpan Ma
- College of Life Sciences, Shihezi University, Shihezi, China
- Xinjiang Production & Construction Group Key Laboratory of Crop Germplasm Enhancement and Gene Resources Utilization, Biotechnology Research Institute, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
| | - Jilian Li
- Key Laboratory of Cotton Biology and Genetic Breeding in Northwest Inland Region of the Ministry of Agriculture (Xinjiang), Institute of Cotton Research, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
| | - Guoqing Sun
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- Western Research Institute, Chinese Academy of Agricultural Sciences, Changji, China
| | - Jianbo Zhu
- College of Life Sciences, Shihezi University, Shihezi, China
| |
Collapse
|
34
|
Wiese AJ, Torutaeva E, Honys D. The transcription factors and pathways underpinning male reproductive development in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2024; 15:1354418. [PMID: 38390292 PMCID: PMC10882072 DOI: 10.3389/fpls.2024.1354418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/15/2024] [Indexed: 02/24/2024]
Abstract
As Arabidopsis flowers mature, specialized cells within the anthers undergo meiosis, leading to the production of haploid microspores that differentiate into mature pollen grains, each containing two sperm cells for double fertilization. During pollination, the pollen grains are dispersed from the anthers to the stigma for subsequent fertilization. Transcriptomic studies have identified a large number of genes expressed over the course of male reproductive development and subsequent functional characterization of some have revealed their involvement in floral meristem establishment, floral organ growth, sporogenesis, meiosis, microsporogenesis, and pollen maturation. These genes encode a plethora of proteins, ranging from transcriptional regulators to enzymes. This review will focus on the regulatory networks that control male reproductive development, starting from flower development and ending with anther dehiscence, with a focus on transcription factors and some of their notable target genes.
Collapse
Affiliation(s)
- Anna Johanna Wiese
- Laboratory of Pollen Biology, Institute for Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| | - Elnura Torutaeva
- Laboratory of Pollen Biology, Institute for Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czechia
| | - David Honys
- Laboratory of Pollen Biology, Institute for Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czechia
| |
Collapse
|
35
|
Wei Z, Wei H. Deciphering the intricate hierarchical gene regulatory network: unraveling multi-level regulation and modifications driving secondary cell wall formation. HORTICULTURE RESEARCH 2024; 11:uhad281. [PMID: 38344650 PMCID: PMC10857936 DOI: 10.1093/hr/uhad281] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/12/2023] [Indexed: 04/29/2025]
Abstract
Wood quality is predominantly determined by the amount and the composition of secondary cell walls (SCWs). Consequently, unraveling the molecular regulatory mechanisms governing SCW formation is of paramount importance for genetic engineering aimed at enhancing wood properties. Although SCW formation is known to be governed by a hierarchical gene regulatory network (HGRN), our understanding of how a HGRN operates and regulates the formation of heterogeneous SCWs for plant development and adaption to ever-changing environment remains limited. In this review, we examined the HGRNs governing SCW formation and highlighted the significant key differences between herbaceous Arabidopsis and woody plant poplar. We clarified many confusions in existing literatures regarding the HGRNs and their orthologous gene names and functions. Additionally, we revealed many network motifs including feed-forward loops, feed-back loops, and negative and positive autoregulation in the HGRNs. We also conducted a thorough review of post-transcriptional and post-translational aspects, protein-protein interactions, and epigenetic modifications of the HGRNs. Furthermore, we summarized how the HGRNs respond to environmental factors and cues, influencing SCW biosynthesis through regulatory cascades, including many regulatory chains, wiring regulations, and network motifs. Finally, we highlighted the future research directions for gaining a further understanding of molecular regulatory mechanisms underlying SCW formation.
Collapse
Affiliation(s)
- Zhigang Wei
- Engineering Research Center of Agricultural Microbiology Technology, Ministhry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Molecular Biology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Hairong Wei
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI 49931, USA
| |
Collapse
|
36
|
Shoaib N, Pan K, Mughal N, Raza A, Liu L, Zhang J, Wu X, Sun X, Zhang L, Pan Z. Potential of UV-B radiation in drought stress resilience: A multidimensional approach to plant adaptation and future implications. PLANT, CELL & ENVIRONMENT 2024; 47:387-407. [PMID: 38058262 DOI: 10.1111/pce.14774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/28/2023] [Accepted: 11/10/2023] [Indexed: 12/08/2023]
Abstract
The escalating impact of climate change and ultraviolet (UV) radiation is subjecting plants to unique combinations of UV-B and drought stress. These combined stressors could have additive, synergistic, or antagonistic effects, but the precise nature of these impacts remains uncertain, hampering our ability to predict plant adaptations approach towards stressors. Our analysis of various studies shows that UV-B or drought conditions detrimentally influence plant growth and health metrics by the enhanced generation of reactive oxygen species causing damage to lipids, proteins, carbohydrates and DNA. Further reducing biomass accumulation, plant height, photosynthetic efficiency, leaf area, and water transpiration, while enhancing stress-related symptoms. In response to UV-B radiation and drought stress, plants exhibit a notable up-regulation of specific acclimation-associated metabolites, including proline, flavonoids, anthocyanins, unsaturated fatty acids, and antioxidants. These metabolites play a pivotal role in conferring protection against environmental stresses. Their biosynthesis and functional roles are potentially modulated by signalling molecules such as hydrogen peroxide, abscisic acid, jasmonic acid, salicylic acid, and ethylene, all of which have associated genetic markers that further elucidate their involvement in stress response pathways. In comparison to single stress, the combination of UV-B and drought induces the plant defence responses and growth retardation which are less-than-additive. This sub-additive response, consistent across different study environments, suggests the possibility of a cross-resistance mechanism. Our outlines imply that the adverse effects of increased drought and UV-B could potentially be mitigated by cross-talk between UV-B and drought regimes utilizing a multidimensional approach. This crucial insight could contribute significantly to refining our understanding of stress tolerance in the face of ongoing global climate change.
Collapse
Affiliation(s)
- Noman Shoaib
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Kaiwen Pan
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Nishbah Mughal
- Engineering Research Centre for Crop Strip Intercropping System, Key Laboratory of Crop Ecophysiology and Farming System in Southwest China (Ministry of Agriculture), College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Ali Raza
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Liling Liu
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Juan Zhang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaogang Wu
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Xiaoming Sun
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Lin Zhang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Zhifen Pan
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| |
Collapse
|
37
|
Im JH, Son S, Kim WC, Kim K, Mitsuda N, Ko JH, Han KH. Jasmonate activates secondary cell wall biosynthesis through MYC2-MYB46 module. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:1099-1114. [PMID: 37983636 DOI: 10.1111/tpj.16541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/17/2023] [Accepted: 10/26/2023] [Indexed: 11/22/2023]
Abstract
Formation of secondary cell wall (SCW) is tightly regulated spatiotemporally by various developmental and environmental signals. Successful fine-tuning of the trade-off between SCW biosynthesis and stress responses requires a better understanding of how plant growth is regulated under environmental stress conditions. However, the current understanding of the interplay between environmental signaling and SCW formation is limited. The lipid-derived plant hormone jasmonate (JA) and its derivatives are important signaling components involved in various physiological processes including plant growth, development, and abiotic/biotic stress responses. Recent studies suggest that JA is involved in SCW formation but the signaling pathway has not been studied for how JA regulates SCW formation. We tested this hypothesis using the transcription factor MYB46, a master switch for SCW biosynthesis, and JA treatments. Both the transcript and protein levels of MYB46, a master switch for SCW formation, were significantly increased by JA treatment, resulting in the upregulation of SCW biosynthesis. We then show that this JA-induced upregulation of MYB46 is mediated by MYC2, a central regulator of JA signaling, which binds to the promoter of MYB46. We conclude that this MYC2-MYB46 module is a key component of the plant response to JA in SCW formation.
Collapse
Affiliation(s)
- Jong Hee Im
- Department of Horticulture, Michigan State University, East Lansing, Michigan, 48824, USA
- DOE Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan, 48824, USA
- Department of Science Education, Jeju National University, Jeju, Republic of Korea
| | - Seungmin Son
- National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, 54874, Republic of Korea
| | - Won-Chan Kim
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Kihwan Kim
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Nobutaka Mitsuda
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, 305-8566, Japan
| | - Jae-Heung Ko
- Department of Plant & Environmental New Resources, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Kyung-Hwan Han
- Department of Horticulture, Michigan State University, East Lansing, Michigan, 48824, USA
- DOE Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan, 48824, USA
- Department of Forestry, Michigan State University, East Lansing, Michigan, 48824, USA
| |
Collapse
|
38
|
Jin X, Chai Q, Liu C, Niu X, Li W, Shang X, Gu A, Zhang D, Guo W. Cotton GhNAC4 promotes drought tolerance by regulating secondary cell wall biosynthesis and ribosomal protein homeostasis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:1052-1068. [PMID: 37934782 DOI: 10.1111/tpj.16538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 10/25/2023] [Accepted: 10/29/2023] [Indexed: 11/09/2023]
Abstract
Drought has a severe impact on the quality and yield of cotton. Deciphering the key genes related to drought tolerance is important for understanding the regulation mechanism of drought stress and breeding drought-tolerant cotton cultivars. Several studies have demonstrated that NAC transcription factors are crucial in the regulation of drought stress, however, the related functional mechanisms are still largely unexplored. Here, we identified that NAC transcription factor GhNAC4 positively regulated drought stress tolerance in cotton. The expression of GhNAC4 was significantly induced by abiotic stress and plant hormones. Silencing of GhNAC4 distinctly impaired the resistance to drought stress and overexpressing GhNAC4 in cotton significantly enhanced the stress tolerance. RNA-seq analysis revealed that overexpression of GhNAC4 enriched the expression of genes associated with the biosynthesis of secondary cell walls and ribosomal proteins. We confirmed that GhNAC4 positively activated the expressions of GhNST1, a master regulator reported previously in secondary cell wall formation, and two ribosomal protein-encoding genes GhRPL12 and GhRPL18p, by directly binding to their promoter regions. Overexpression of GhNAC4 promoted the expression of downstream genes associated with the secondary wall biosynthesis, resulting in enhancing secondary wall deposition in the roots, and silencing of GhRPL12 and GhRPL18p significantly impaired the resistance to drought stress. Taken together, our study reveals a novel pathway mediated by GhNAC4 that promotes secondary cell wall biosynthesis to strengthen secondary wall development and regulates the expression of ribosomal protein-encoding genes to maintain translation stability, which ultimately enhances drought tolerance in cotton.
Collapse
Affiliation(s)
- Xuanxiang Jin
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qichao Chai
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chuchu Liu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xin Niu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Weixi Li
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaoguang Shang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Aixing Gu
- Engineering Research Center of Ministry of Education for Cotton, Xinjiang Agricultural University, Urumqi, 830052, China
| | - Dayong Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wangzhen Guo
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
39
|
Liu H, Zheng Z, Sun Z, Qi F, Wang J, Wang M, Dong W, Cui K, Zhao M, Wang X, Zhang M, Wu X, Wu Y, Luo D, Huang B, Zhang Z, Cao G, Zhang X. Identification of two major QTLs for pod shell thickness in peanut (Arachis hypogaea L.) using BSA-seq analysis. BMC Genomics 2024; 25:65. [PMID: 38229017 DOI: 10.1186/s12864-024-10005-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 01/11/2024] [Indexed: 01/18/2024] Open
Abstract
BACKGROUND Pod shell thickness (PST) is an important agronomic trait of peanut because it affects the ability of shells to resist pest infestations and pathogen attacks, while also influencing the peanut shelling process. However, very few studies have explored the genetic basis of PST. RESULTS An F2 segregating population derived from a cross between the thick-shelled cultivar Yueyou 18 (YY18) and the thin-shelled cultivar Weihua 8 (WH8) was used to identify the quantitative trait loci (QTLs) for PST. On the basis of a bulked segregant analysis sequencing (BSA-seq), four QTLs were preliminarily mapped to chromosomes 3, 8, 13, and 18. Using the genome resequencing data of YY18 and WH8, 22 kompetitive allele-specific PCR (KASP) markers were designed for the genotyping of the F2 population. Two major QTLs (qPSTA08 and qPSTA18) were identified and finely mapped, with qPSTA08 detected on chromosome 8 (0.69-Mb physical genomic region) and qPSTA18 detected on chromosome 18 (0.15-Mb physical genomic region). Moreover, qPSTA08 and qPSTA18 explained 31.1-32.3% and 16.7-16.8% of the phenotypic variation, respectively. Fifteen genes were detected in the two candidate regions, including three genes with nonsynonymous mutations in the exon region. Two molecular markers (Tif2_A08_31713024 and Tif2_A18_7198124) that were developed for the two major QTL regions effectively distinguished between thick-shelled and thin-shelled materials. Subsequently, the two markers were validated in four F2:3 lines selected. CONCLUSIONS The QTLs identified and molecular markers developed in this study may lay the foundation for breeding cultivars with a shell thickness suitable for mechanized peanut shelling.
Collapse
Affiliation(s)
- Hongfei Liu
- Institute of Crop Molecular Breeding, The Shennong Laboraory, Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Henan Provincial Key Laboratory for Oil Crops Improvement, Postgraduate T&R Base of Zhengzhou University, Henan Academy of Agricultural Sciences, Ministry of Agriculture, Zhengzhou, 450002, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450002, China
| | - Zheng Zheng
- Institute of Crop Molecular Breeding, The Shennong Laboraory, Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Henan Provincial Key Laboratory for Oil Crops Improvement, Postgraduate T&R Base of Zhengzhou University, Henan Academy of Agricultural Sciences, Ministry of Agriculture, Zhengzhou, 450002, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450002, China
| | - Ziqi Sun
- Institute of Crop Molecular Breeding, The Shennong Laboraory, Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Henan Provincial Key Laboratory for Oil Crops Improvement, Postgraduate T&R Base of Zhengzhou University, Henan Academy of Agricultural Sciences, Ministry of Agriculture, Zhengzhou, 450002, China
| | - Feiyan Qi
- Institute of Crop Molecular Breeding, The Shennong Laboraory, Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Henan Provincial Key Laboratory for Oil Crops Improvement, Postgraduate T&R Base of Zhengzhou University, Henan Academy of Agricultural Sciences, Ministry of Agriculture, Zhengzhou, 450002, China
| | - Juan Wang
- Institute of Crop Molecular Breeding, The Shennong Laboraory, Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Henan Provincial Key Laboratory for Oil Crops Improvement, Postgraduate T&R Base of Zhengzhou University, Henan Academy of Agricultural Sciences, Ministry of Agriculture, Zhengzhou, 450002, China
| | - Mengmeng Wang
- Institute of Crop Molecular Breeding, The Shennong Laboraory, Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Henan Provincial Key Laboratory for Oil Crops Improvement, Postgraduate T&R Base of Zhengzhou University, Henan Academy of Agricultural Sciences, Ministry of Agriculture, Zhengzhou, 450002, China
| | - Wenzhao Dong
- Institute of Crop Molecular Breeding, The Shennong Laboraory, Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Henan Provincial Key Laboratory for Oil Crops Improvement, Postgraduate T&R Base of Zhengzhou University, Henan Academy of Agricultural Sciences, Ministry of Agriculture, Zhengzhou, 450002, China
| | - Kailu Cui
- Institute of Crop Molecular Breeding, The Shennong Laboraory, Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Henan Provincial Key Laboratory for Oil Crops Improvement, Postgraduate T&R Base of Zhengzhou University, Henan Academy of Agricultural Sciences, Ministry of Agriculture, Zhengzhou, 450002, China
| | - Mingbo Zhao
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450002, China
| | - Xiao Wang
- Institute of Crop Molecular Breeding, The Shennong Laboraory, Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Henan Provincial Key Laboratory for Oil Crops Improvement, Postgraduate T&R Base of Zhengzhou University, Henan Academy of Agricultural Sciences, Ministry of Agriculture, Zhengzhou, 450002, China
| | - Meng Zhang
- Institute of Crop Molecular Breeding, The Shennong Laboraory, Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Henan Provincial Key Laboratory for Oil Crops Improvement, Postgraduate T&R Base of Zhengzhou University, Henan Academy of Agricultural Sciences, Ministry of Agriculture, Zhengzhou, 450002, China
| | - Xiaohui Wu
- Institute of Crop Molecular Breeding, The Shennong Laboraory, Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Henan Provincial Key Laboratory for Oil Crops Improvement, Postgraduate T&R Base of Zhengzhou University, Henan Academy of Agricultural Sciences, Ministry of Agriculture, Zhengzhou, 450002, China
| | - Yue Wu
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450002, China
| | - Dandan Luo
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450002, China
| | - Bingyan Huang
- Institute of Crop Molecular Breeding, The Shennong Laboraory, Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Henan Provincial Key Laboratory for Oil Crops Improvement, Postgraduate T&R Base of Zhengzhou University, Henan Academy of Agricultural Sciences, Ministry of Agriculture, Zhengzhou, 450002, China
| | - Zhongxin Zhang
- Institute of Crop Molecular Breeding, The Shennong Laboraory, Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Henan Provincial Key Laboratory for Oil Crops Improvement, Postgraduate T&R Base of Zhengzhou University, Henan Academy of Agricultural Sciences, Ministry of Agriculture, Zhengzhou, 450002, China
| | - Gangqiang Cao
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450002, China.
| | - Xinyou Zhang
- Institute of Crop Molecular Breeding, The Shennong Laboraory, Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Henan Provincial Key Laboratory for Oil Crops Improvement, Postgraduate T&R Base of Zhengzhou University, Henan Academy of Agricultural Sciences, Ministry of Agriculture, Zhengzhou, 450002, China.
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450002, China.
| |
Collapse
|
40
|
Zhang J, Shi J, Zeng K, Cai M, Lan X. Transcriptomic landscape of staminate catkins development during overwintering process in Betula platyphylla. FRONTIERS IN PLANT SCIENCE 2024; 14:1249122. [PMID: 38259941 PMCID: PMC10801112 DOI: 10.3389/fpls.2023.1249122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/06/2023] [Indexed: 01/24/2024]
Abstract
Betula platyphylla, belonging to the cold-specialized lineage Betulaceae, exhibits a unique reproductive strategy where staminate catkins emerge in the first summer and undergo an overwintering process, culminating in flowering in the following year. However, the underlying regulatory mechanism remains unclear. In this study, we investigated the male germline development of B. platyphylla in four distinct stages: microsporocytes in Oct. (S1), uninuclear microspores from Dec. (S2) to Mar. of the following year (S3), and bicellular microspores in Apr. (S4). We performed RNA sequencing on mature pollen and the four stages of staminate catkins. Using weighted gene co-expression network analysis (WGCNA), we identified five highly correlated gene modules with distinct expression profiles. These modules exhibited strong correlations with sugar metabolism, cell cycle, flowering, and cell wall dynamics, highlighting their dynamic roles during male germline developmental stages. During the overwintering process, we observed that the expression of transcription factors such as BpDUO1 and BpAMS at the appropriate developmental stages, suggests their significant roles in male germline development. The expression patterns of BpFLC and BpFT suggest their potential involvement in temperature perception during male reproductive development. These findings offer valuable insights into the reproductive success of plants adapting to cold environments.
Collapse
Affiliation(s)
| | | | | | | | - Xingguo Lan
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China
| |
Collapse
|
41
|
Qian Z, Shi D, Zhang H, Li Z, Huang L, Yan X, Lin S. Transcription Factors and Their Regulatory Roles in the Male Gametophyte Development of Flowering Plants. Int J Mol Sci 2024; 25:566. [PMID: 38203741 PMCID: PMC10778882 DOI: 10.3390/ijms25010566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 12/30/2023] [Accepted: 12/30/2023] [Indexed: 01/12/2024] Open
Abstract
Male gametophyte development in plants relies on the functions of numerous genes, whose expression is regulated by transcription factors (TFs), non-coding RNAs, hormones, and diverse environmental stresses. Several excellent reviews are available that address the genes and enzymes associated with male gametophyte development, especially pollen wall formation. Growing evidence from genetic studies, transcriptome analysis, and gene-by-gene studies suggests that TFs coordinate with epigenetic machinery to regulate the expression of these genes and enzymes for the sequential male gametophyte development. However, very little summarization has been performed to comprehensively review their intricate regulatory roles and discuss their downstream targets and upstream regulators in this unique process. In the present review, we highlight the research progress on the regulatory roles of TF families in the male gametophyte development of flowering plants. The transcriptional regulation, epigenetic control, and other regulators of TFs involved in male gametophyte development are also addressed.
Collapse
Affiliation(s)
- Zhihao Qian
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (Z.Q.); (D.S.); (H.Z.); (Z.L.)
| | - Dexi Shi
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (Z.Q.); (D.S.); (H.Z.); (Z.L.)
| | - Hongxia Zhang
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (Z.Q.); (D.S.); (H.Z.); (Z.L.)
| | - Zhenzhen Li
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (Z.Q.); (D.S.); (H.Z.); (Z.L.)
| | - Li Huang
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China;
| | - Xiufeng Yan
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (Z.Q.); (D.S.); (H.Z.); (Z.L.)
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China
| | - Sue Lin
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (Z.Q.); (D.S.); (H.Z.); (Z.L.)
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China
| |
Collapse
|
42
|
Naresh R, Srivastava R, Gunapati S, Sane AP, Sane VA. Functional characterization of GhNAC2 promoter conferring hormone- and stress-induced expression: a potential tool to improve growth and stress tolerance in cotton. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:17-32. [PMID: 38435854 PMCID: PMC10901759 DOI: 10.1007/s12298-024-01411-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/14/2023] [Accepted: 01/10/2024] [Indexed: 03/05/2024]
Abstract
The GhNAC2 transcription factor identified from G. herbaceum improves root growth and drought tolerance through transcriptional reprogramming of phytohormone signaling. The promoter of such a versatile gene could serve as an important genetic engineering tool for biotechnological application. In this study, we identified and characterized the promoter of GhNAC2 to understand its regulatory mechanism. GhNAC2 transcription factor increased in root tissues in response to GA, ethylene, auxin, ABA, mannitol, and NaCl. In silico analysis revealed an overrepresentation of cis-regulatory elements associated with hormone signaling, stress responses and root-, pollen-, and seed-specific promoter activity. To validate their role in GhNAC2 function/regulation, an 870-bp upstream regulatory sequence was fused with the GUS reporter gene (uidA) and expressed in Arabidopsis and cotton hairy roots for in planta characterization. Histochemical GUS staining indicated localized expression in root tips, root elongation zone, root primordia, and reproductive tissues under optimal growth conditions. Mannitol, NaCl, auxin, GA, and ABA, induced the promoter-driven GUS expression in all tissues while ethylene suppressed the promoter activity. The results show that the 870 nt fragment of the GhNAC2 promoter drives root-preferential expression and responds to phytohormonal and stress signals. In corroboration with promoter regulation, GA and ethylene pathways differentially regulated root growth in GhNAC2-expressing Arabidopsis. The findings suggest that differential promoter activity governs the expression of GhNAC2 in root growth and stress-related functions independently through specific promoter elements. This multifarious promoter can be utilized to develop yield and climate resilience in cotton by expanding the options to control gene regulation. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-024-01411-2.
Collapse
Affiliation(s)
- Ram Naresh
- Molecular Biology and Biotechnology, CSIR-National Botanical Research Institute, Lucknow, 226001 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Richa Srivastava
- Molecular Biology and Biotechnology, CSIR-National Botanical Research Institute, Lucknow, 226001 India
| | - Samatha Gunapati
- Molecular Biology and Biotechnology, CSIR-National Botanical Research Institute, Lucknow, 226001 India
- Present Address: Department of Agronomy and Plant Genetics, University of Minnesota, Saint Paul, MN 55108 USA
| | - Aniruddha P. Sane
- Molecular Biology and Biotechnology, CSIR-National Botanical Research Institute, Lucknow, 226001 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Vidhu A. Sane
- Molecular Biology and Biotechnology, CSIR-National Botanical Research Institute, Lucknow, 226001 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| |
Collapse
|
43
|
Xiang Y, Huang XY, Zhao YW, Wang CK, Sun Q, Hu DG. Optimization of apple fruit flavor by MdVHP1-2 via modulation of soluble sugar and organic acid accumulation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108227. [PMID: 38043254 DOI: 10.1016/j.plaphy.2023.108227] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/18/2023] [Accepted: 11/21/2023] [Indexed: 12/05/2023]
Abstract
For fleshy fruits, the content and ratio of organic acids and soluble sugars are key factors for their flavor. Therefore, a better understanding of soluble sugar and organic acid accumulation in vacuoles is essential to the improvement of fruit quality. Vacuolar-type inorganic pyrophosphatase (V-PPase) has been found in various plants with crucial functions based on the hydrolysis of PPi. However, the effects of V-PPase on the soluble sugar and organic acid accumulation in apple fruit remain unclear. In this study, MdVHP1-2, a V-PPase protein in the vacuolar membrane, was identified. The results showed a positive correlation between the expression of MdVHP1-2 and the sugar/acid ratio during ripening of apple fruits. A series of transgenic analyses showed that overexpression of MdVHP1-2 significantly elevated the contents of soluble sugars and organic acids as well as the sugar/acid ratio in apple fruits and calli. Additionally, transient interference induced by MdVHP1-2 expression inhibited the accumulation of soluble sugars and organic acids in apple fruits. In summary, this study provides insight into the mechanisms by which MdVHP1-2 modulates fruit flavor through mediation of soluble sugar and organic acid accumulation, thereby facilitating improvement of the overall quality of apple and other fruits.
Collapse
Affiliation(s)
- Ying Xiang
- National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Xiao-Yu Huang
- National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Yu-Wen Zhao
- National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Chu-Kun Wang
- National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Quan Sun
- National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong, 271018, China.
| | - Da-Gang Hu
- National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong, 271018, China.
| |
Collapse
|
44
|
Yu G, Sun B, Zhu Z, Mehareb EM, Teng A, Han J, Zhang H, Liu J, Liu X, Raza G, Zhang B, Zhang Y, Wang K. Genome-wide DNase I-hypersensitive site assay reveals distinct genomic distributions and functional features of open chromatin in autopolyploid sugarcane. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:573-589. [PMID: 37897092 DOI: 10.1111/tpj.16513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 09/15/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023]
Abstract
The characterization of cis-regulatory DNA elements (CREs) is essential for deciphering the regulation of gene expression in eukaryotes. Although there have been endeavors to identify CREs in plants, the properties of CREs in polyploid genomes are still largely unknown. Here, we conducted the genome-wide identification of DNase I-hypersensitive sites (DHSs) in leaf and stem tissues of the auto-octoploid species Saccharum officinarum. We revealed that DHSs showed highly similar distributions in the genomes of these two S. officinarum tissues. Notably, we observed that approximately 74% of DHSs were located in distal intergenic regions, suggesting considerable differences in the abundance of distal CREs between S. officinarum and other plants. Leaf- and stem-dependent transcriptional regulatory networks were also developed by mining the binding motifs of transcription factors (TFs) from tissue-specific DHSs. Four TEOSINTE BRANCHED 1, CYCLOIDEA, and PCF1 (TCP) TFs (TCP2, TCP4, TCP7, and TCP14) and two ethylene-responsive factors (ERFs) (ERF109 and ERF03) showed strong causal connections with short binding distances from each other, pointing to their possible roles in the regulatory networks of leaf and stem development. Through functional validation in transiently transgenic protoplasts, we isolate a set of tissue-specific promoters. Overall, the DHS maps presented here offer a global view of the potential transcriptional regulatory elements in polyploid sugarcane and can be expected to serve as a valuable resource for both transcriptional network elucidation and genome editing in sugarcane breeding.
Collapse
Affiliation(s)
- Guangrun Yu
- School of Life Sciences, Nantong University, Nantong, 226019, China
| | - Bo Sun
- School of Life Sciences, Nantong University, Nantong, 226019, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhiying Zhu
- School of Life Sciences, Nantong University, Nantong, 226019, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Eid M Mehareb
- Sugar Crops Research Institute (SRCI), Agricultural Research Center (ARC), Giza, 12619, Egypt
| | - Ailing Teng
- School of Life Sciences, Nantong University, Nantong, 226019, China
| | - Jinlei Han
- School of Life Sciences, Nantong University, Nantong, 226019, China
| | - Hui Zhang
- School of Life Sciences, Nantong University, Nantong, 226019, China
| | - Jiayong Liu
- Sugarcane Institute, Yunnan Academy of Agricultural Sciences, Kaiyuan, 661699, China
| | - Xinlong Liu
- Sugarcane Institute, Yunnan Academy of Agricultural Sciences, Kaiyuan, 661699, China
| | - Ghulam Raza
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, 38000, Pakistan
| | - Baohong Zhang
- Department of Biology, East Carolina University, Greenville, North Carolina, 27858, USA
| | - Yuebin Zhang
- Sugarcane Institute, Yunnan Academy of Agricultural Sciences, Kaiyuan, 661699, China
| | - Kai Wang
- School of Life Sciences, Nantong University, Nantong, 226019, China
| |
Collapse
|
45
|
Li W, Lin YCJ, Chen YL, Zhou C, Li S, De Ridder N, Oliveira DM, Zhang L, Zhang B, Wang JP, Xu C, Fu X, Luo K, Wu AM, Demura T, Lu MZ, Zhou Y, Li L, Umezawa T, Boerjan W, Chiang VL. Woody plant cell walls: Fundamentals and utilization. MOLECULAR PLANT 2024; 17:112-140. [PMID: 38102833 DOI: 10.1016/j.molp.2023.12.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/12/2023] [Accepted: 12/12/2023] [Indexed: 12/17/2023]
Abstract
Cell walls in plants, particularly forest trees, are the major carbon sink of the terrestrial ecosystem. Chemical and biosynthetic features of plant cell walls were revealed early on, focusing mostly on herbaceous model species. Recent developments in genomics, transcriptomics, epigenomics, transgenesis, and associated analytical techniques are enabling novel insights into formation of woody cell walls. Here, we review multilevel regulation of cell wall biosynthesis in forest tree species. We highlight current approaches to engineering cell walls as potential feedstock for materials and energy and survey reported field tests of such engineered transgenic trees. We outline opportunities and challenges in future research to better understand cell type biogenesis for more efficient wood cell wall modification and utilization for biomaterials or for enhanced carbon capture and storage.
Collapse
Affiliation(s)
- Wei Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | | | - Ying-Lan Chen
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan, China
| | - Chenguang Zhou
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Shuang Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Nette De Ridder
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Dyoni M Oliveira
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Lanjun Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Baocai Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jack P Wang
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695, USA
| | - Changzheng Xu
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Xiaokang Fu
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Keming Luo
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Ai-Min Wu
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou 510642, China
| | - Taku Demura
- Center for Digital Green-innovation, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Meng-Zhu Lu
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou 311300, China
| | - Yihua Zhou
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Laigeng Li
- CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China
| | - Toshiaki Umezawa
- Laboratory of Metabolic Science of Forest Plants and Microorganisms, Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Wout Boerjan
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Vincent L Chiang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695, USA.
| |
Collapse
|
46
|
Chen L, Liu L, Yang G, Li X, Dai X, Xue L, Yin T. Expression Quantitative Trait Locus of Wood Formation-Related Genes in Salix suchowensis. Int J Mol Sci 2023; 25:247. [PMID: 38203430 PMCID: PMC10778782 DOI: 10.3390/ijms25010247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
Shrub willows are widely planted for landscaping, soil remediation, and biomass production, due to their rapid growth rates. Identification of regulatory genes in wood formation would provide clues for genetic engineering of willows for improved growth traits on marginal lands. Here, we conducted an expression quantitative trait locus (eQTL) analysis, using a full sibling F1 population of Salix suchowensis, to explore the genetic mechanisms underlying wood formation. Based on variants identified from simplified genome sequencing and gene expression data from RNA sequencing, 16,487 eQTL blocks controlling 5505 genes were identified, including 2148 cis-eQTLs and 16,480 trans-eQTLs. eQTL hotspots were identified, based on eQTL frequency in genomic windows, revealing one hotspot controlling genes involved in wood formation regulation. Regulatory networks were further constructed, resulting in the identification of key regulatory genes, including three transcription factors (JAZ1, HAT22, MYB36) and CLV1, BAM1, CYCB2;4, CDKB2;1, associated with the proliferation and differentiation activity of cambium cells. The enrichment of genes in plant hormone pathways indicates their critical roles in the regulation of wood formation. Our analyses provide a significant groundwork for a comprehensive understanding of the regulatory network of wood formation in S. suchowensis.
Collapse
Affiliation(s)
| | | | | | | | | | - Liangjiao Xue
- State Key Laboratory of Tree Genetics and Breeding, Jiangsu Key Laboratory for Poplar Germplasm Enhancement and Variety Improvement, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Tongming Yin
- State Key Laboratory of Tree Genetics and Breeding, Jiangsu Key Laboratory for Poplar Germplasm Enhancement and Variety Improvement, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
47
|
Han K, Zhao Y, Sun Y, Li Y. NACs, generalist in plant life. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:2433-2457. [PMID: 37623750 PMCID: PMC10651149 DOI: 10.1111/pbi.14161] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 07/24/2023] [Accepted: 08/01/2023] [Indexed: 08/26/2023]
Abstract
Plant-specific NAC proteins constitute a major transcription factor family that is well-known for its roles in plant growth, development, and responses to abiotic and biotic stresses. In recent years, there has been significant progress in understanding the functions of NAC proteins. NAC proteins have a highly conserved DNA-binding domain; however, their functions are diverse. Previous understanding of the structure of NAC transcription factors can be used as the basis for their functional diversity. NAC transcription factors consist of a target-binding domain at the N-terminus and a highly versatile C-terminal domain that interacts with other proteins. A growing body of research on NAC transcription factors helps us comprehend the intricate signalling network and transcriptional reprogramming facilitated by NAC-mediated complexes. However, most studies of NAC proteins have been limited to a single function. Here, we discuss the upstream regulators, regulatory components and targets of NAC in the context of their prospective roles in plant improvement strategies via biotechnology intervention, highlighting the importance of the NAC transcription factor family in plants and the need for further research.
Collapse
Affiliation(s)
- Kunjin Han
- State Key Laboratory of Tree Genetics and Breeding, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Ye Zhao
- State Key Laboratory of Tree Genetics and Breeding, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Yuhan Sun
- State Key Laboratory of Tree Genetics and Breeding, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Yun Li
- State Key Laboratory of Tree Genetics and Breeding, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| |
Collapse
|
48
|
Wang Q, Lei S, Yan J, Song Y, Qian J, Zheng M, Hsu YF. UBC6, a ubiquitin-conjugating enzyme, participates in secondary cell wall thickening in the inflorescence stem of Arabidopsis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 205:108152. [PMID: 37944242 DOI: 10.1016/j.plaphy.2023.108152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 10/22/2023] [Accepted: 10/29/2023] [Indexed: 11/12/2023]
Abstract
Secondary cell wall (SCW) thickening in plant inflorescence stems is a complicated cellular process that is essential for stem strength and biomass. Although Arabidopsis NAC transcription factor (TF) 1 (NST1) regulates the SCW thickening in anther walls, the single T-DNA-insertion mutant (nst1) does not show disrupted SCW thickening in anther endothecium, interfascicular fibers or xylem. To better understand the regulatory mechanism of this process, we generated an ethyl methanesulfonate (EMS)-mutagenized Arabidopsis population with the nst1 background. scd5 (SCW-defective mutant 5) was isolated in a forward genetic screen from the EMS mutant library, which displayed not only less lignin deposition in the interfascicular fiber and xylem than the wild type but also a pendent inflorescence stem. The EMS-induced mutation associated with the scd5 phenotype was found in the 5th exon of At2G46030 that encodes a ubiquitin-conjugating enzyme (UBC6), we thereby renamed the allele nst1 ubc6. Overexpressing UBC6 in nst1 ubc6 rescued the defective SCW, whereas disrupting UBC6 in nst1 by the CRISPR/Cas9 system caused a phenotype similar to that observed in nst1 ubc6. UBC6 was localized to the nucleus and plasma membrane, and possessed E2 ubiquitin-conjugating activity in vitro. MYB7 and MYB32 are considered as transcription repressors in the phenylpropanoid pathway and are involved in NAC TF-related transcriptional regulation in SCW thickening. UBC6 can interact with MYB7 and MYB32 and positively mediate the degradation of MYB7 and MYB32 by the 26S proteasome. Overall, these results indicated the contribution of UBC6 to SCW thickening in Arabidopsis inflorescence stems.
Collapse
Affiliation(s)
- Qingzhu Wang
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Shikang Lei
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Jiawen Yan
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Yu Song
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Jie Qian
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Min Zheng
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, 400715, China.
| | - Yi-Feng Hsu
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
49
|
Li J, Liu Y, Zhang J, Cao L, Xie Q, Chen G, Chen X, Hu Z. Suppression of a hexokinase gene SlHXK1 in tomato affects fruit setting and seed quality. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 205:108160. [PMID: 37944243 DOI: 10.1016/j.plaphy.2023.108160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 10/09/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023]
Abstract
Hexokinase is considered to be the key molecule in sugar signaling and metabolism. Here, we reported that silencing SlHXK1 resulted in a decrease in flower number, increased rate of flower dropping, abnormal thickening of the anther wall, and reduced pollen and seed viability. An anatomical analysis revealed the loss of small cells and abnormal thickening of anther walls in SlHXK1-RNAi lines. Treatment with auxin and 1-methylcyclopropene inhibited flower dropping from the pedicel abscission zone. qRT-PCR analysis revealed that the effect of SlHXK1 on abscission was associated with the expression levels of genes related to key meristem, auxin, ethylene, cell wall metabolism and programmed cell death. Pollen germination and pollen staining experiments showed that pollen viability was significantly reduced in the SlHXK1-RNAi lines. Physiological and biochemical analyses showed that hexokinase activity and starch content were markedly decreased in the transgenic lines. The expression of genes related to tomato pollen development was also suppressed in the transgenic lines. Although the RNAi lines eventually produced some viable seeds, the yield and quality of the seeds was lower than that of wild-type plants. Yeast two-hybrid and bimolecular fluorescence complementation assays showed that SlHXK1 interacted with SlKINγ. Furthermore, SlPIF4 inhibited the transcriptional expression of SlHXK1. In conclusion, our results demonstrate that SlHXK1 may play important roles in pollen, anther, seed and the pedicel abscission zone by affecting starch accumulation or cell wall synthesis, as well as by regulating the number of the transcripts of genes that are involved in auxin, ethylene and cell wall degradation.
Collapse
Affiliation(s)
- Jing Li
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, China.
| | - Yu Liu
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, China.
| | - Jianling Zhang
- Laboratory of Plant Germplasm Innovation and Utilization, School of Life Sciences, Liaocheng University, Liaocheng, China.
| | - Lili Cao
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, China.
| | - Qiaoli Xie
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, China.
| | - Guoping Chen
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, China.
| | - Xuqing Chen
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Zongli Hu
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, China.
| |
Collapse
|
50
|
Kong L, Song Q, Wei H, Wang Y, Lin M, Sun K, Zhang Y, Yang J, Li C, Luo K. The AP2/ERF transcription factor PtoERF15 confers drought tolerance via JA-mediated signaling in Populus. THE NEW PHYTOLOGIST 2023; 240:1848-1867. [PMID: 37691138 DOI: 10.1111/nph.19251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 08/15/2023] [Indexed: 09/12/2023]
Abstract
Drought stress is one of the major limiting factors for the growth and development of perennial trees. Xylem vessels act as the center of water conduction in woody species, but the underlying mechanism of its development and morphogenesis under water-deficient conditions remains elucidation. Here, we identified and characterized an osmotic stress-induced ETHYLENE RESPONSE FACTOR 15 (PtoERF15) and its target, PtoMYC2b, which was involved in mediating vessel size, density, and cell wall thickness in response to drought in Populus tomentosa. PtoERF15 is preferentially expressed in differentiating xylem of poplar stems. Overexpression of PtoERF15 contributed to stem water potential maintaining, thus promoting drought tolerance. RNA-Seq and biochemical analysis further revealed that PtoERF15 directly regulated PtoMYC2b, encoding a switch of JA signaling pathway. Additionally, our findings verify that three sets of homologous genes from NAC (NAM, ATAF1/2, and CUC2) gene family: PtoSND1-A1/A2, PtoVND7-1/7-2, and PtoNAC118/120, as the targets of PtoMYC2b, are involved in the regulation of vessel morphology in poplar. Collectively, our study provides molecular evidence for the involvement of the PtoERF15-PtoMYC2b transcription cascade in maintaining stem water potential through the regulation of xylem vessel development, ultimately improving drought tolerance in poplar.
Collapse
Affiliation(s)
- Lingfei Kong
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creationin Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, 400715, China
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Qin Song
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creationin Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, 400715, China
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Hongbin Wei
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creationin Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, 400715, China
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Yanhong Wang
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creationin Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, 400715, China
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Minghui Lin
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creationin Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Kuan Sun
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creationin Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, 400715, China
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Yuqian Zhang
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creationin Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, 400715, China
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Jiarui Yang
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creationin Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, 400715, China
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Chaofeng Li
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creationin Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, 400715, China
- Maize Research Institute, Southwest University, Chongqing, 400715, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, 400715, China
| | - Keming Luo
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creationin Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, 400715, China
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, 400715, China
| |
Collapse
|