1
|
Wilkens A, Czerniawski P, Bednarek P, Libik-Konieczny M, Yamada K. ATML1 Regulates the Differentiation of ER Body-Containing Large Pavement Cells in Rosette Leaves of Brassicaceae Plants. PLANT & CELL PHYSIOLOGY 2024; 65:1160-1172. [PMID: 38590036 PMCID: PMC11287205 DOI: 10.1093/pcp/pcae039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 04/10/2024]
Abstract
Endoplasmic reticulum (ER)-derived organelles, ER bodies, participate in the defense against herbivores in Brassicaceae plants. ER bodies accumulate β-glucosidases, which hydrolyze specialized thioglucosides known as glucosinolates to generate bioactive substances. In Arabidopsis thaliana, the leaf ER (LER) bodies are formed in large pavement cells, which are found in the petioles, margins and blades of rosette leaves. However, the regulatory mechanisms involved in establishing large pavement cells are unknown. Here, we show that the ARABIDOPSIS THALIANA MERISTEM L1 LAYER (ATML1) transcription factor regulates the formation of LER bodies in large pavement cells of rosette leaves. Overexpression of ATML1 enhanced the expression of LER body-related genes and the number of LER body-containing large pavement cells, whereas its knock-out resulted in opposite effects. ATML1 enhances endoreduplication and cell size through LOSS OF GIANT CELLS FROM ORGANS (LGO). Although the overexpression and knock-out of LGO affected the appearance of large pavement cells in Arabidopsis, the effect on LER body-related gene expression and LER body formation was weak. LER body-containing large pavement cells were also found in Eutrema salsugineum, another Brassicaceae species. Our results demonstrate that ATML1 establishes large pavement cells to induce LER body formation in Brassicaceae plants and thereby possibly contribute to the defense against herbivores.
Collapse
Affiliation(s)
- Alwine Wilkens
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, Krakow 30-239, Poland
- Małopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, Krakow 30-387, Poland
| | - Paweł Czerniawski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Zygmunta Noskowskiego 12/14, Poznan 61-713, Poland
| | - Paweł Bednarek
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Zygmunta Noskowskiego 12/14, Poznan 61-713, Poland
| | - Marta Libik-Konieczny
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, Krakow 30-239, Poland
| | - Kenji Yamada
- Małopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, Krakow 30-387, Poland
| |
Collapse
|
2
|
Bhandari DD, Brandizzi F. Logistics of defense: The contribution of endomembranes to plant innate immunity. J Cell Biol 2024; 223:e202307066. [PMID: 38551496 PMCID: PMC10982075 DOI: 10.1083/jcb.202307066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 04/02/2024] Open
Abstract
Phytopathogens cause plant diseases that threaten food security. Unlike mammals, plants lack an adaptive immune system and rely on their innate immune system to recognize and respond to pathogens. Plant response to a pathogen attack requires precise coordination of intracellular traffic and signaling. Spatial and/or temporal defects in coordinating signals and cargo can lead to detrimental effects on cell development. The role of intracellular traffic comes into a critical focus when the cell sustains biotic stress. In this review, we discuss the current understanding of the post-immune activation logistics of plant defense. Specifically, we focus on packaging and shipping of defense-related cargo, rerouting of intracellular traffic, the players enabling defense-related traffic, and pathogen-mediated subversion of these pathways. We highlight the roles of the cytoskeleton, cytoskeleton-organelle bridging proteins, and secretory vesicles in maintaining pathways of exocytic defense, acting as sentinels during pathogen attack, and the necessary elements for building the cell wall as a barrier to pathogens. We also identify points of convergence between mammalian and plant trafficking pathways during defense and highlight plant unique responses to illustrate evolutionary adaptations that plants have undergone to resist biotic stress.
Collapse
Affiliation(s)
- Deepak D. Bhandari
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, USA
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, USA
| | - Federica Brandizzi
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, USA
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
3
|
Mano NA, Shaikh MA, Widhalm JR, Yoo CY, Mickelbart MV. Transcriptional repression of GTL1 under water-deficit stress promotes anthocyanin biosynthesis to enhance drought tolerance. PLANT DIRECT 2024; 8:e594. [PMID: 38799417 PMCID: PMC11117050 DOI: 10.1002/pld3.594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 04/29/2024] [Indexed: 05/29/2024]
Abstract
The transcription factor GT2-LIKE 1 (GTL1) has been implicated in orchestrating a transcriptional network of diverse physiological, biochemical, and developmental processes. In response to water-limiting conditions, GTL1 is a negative regulator of stomatal development, but its potential rolein other water-deficit responses is unknown. We hypothesized that GTL1 regulates transcriptome changes associated with drought tolerance over leaf developmental stages. To test the hypothesis, gene expression was profiled by RNA-seq analysis in emerging and expanding leaves of wild-type and a drought-tolerant gtl1-4 knockout mutant under well-watered and water-deficit conditions. Our comparative analysis of genotype-treatment combinations within leaf developmental age identified 459 and 1073 differentially expressed genes in emerging and expanding leaves, respectively, as water-deficit responsive GTL1-regulated genes. Transcriptional profiling identified a potential role of GTL1 in two important pathways previously linked to drought tolerance: flavonoid and polyamine biosynthesis. In expanding leaves, negative regulation of GTL1 under water-deficit conditions promotes biosynthesis of flavonoids and anthocyanins that may contribute to drought tolerance. Quantification of polyamines did not support a role for GTL1 in these drought-responsive pathways, but this is likely due to the complex nature of polyamine synthesis and turnover. Our global transcriptome analysis suggests that transcriptional repression of GTL1 by water deficit allows plants to activate diverse pathways that collectively contribute to drought tolerance.
Collapse
Affiliation(s)
- Noel Anthony Mano
- Department of Botany and Plant PathologyPurdue UniversityWest LafayetteIndianaUSA
- Center for Plant BiologyPurdue UniversityWest LafayetteIndianaUSA
- Department of Biological and Environmental SciencesHeidelberg UniversityTiffinOhioUSA
- Present address:
School of Biological SciencesThe University of UtahSalt Lake CityUtahUSA
| | - Mearaj A. Shaikh
- Center for Plant BiologyPurdue UniversityWest LafayetteIndianaUSA
- Department of Horticulture and Landscape ArchitecturePurdue UniversityWest LafayetteIndianaUSA
| | - Joshua R. Widhalm
- Center for Plant BiologyPurdue UniversityWest LafayetteIndianaUSA
- Department of Horticulture and Landscape ArchitecturePurdue UniversityWest LafayetteIndianaUSA
| | - Chan Yul Yoo
- Present address:
School of Biological SciencesThe University of UtahSalt Lake CityUtahUSA
| | - Michael V. Mickelbart
- Department of Botany and Plant PathologyPurdue UniversityWest LafayetteIndianaUSA
- Center for Plant BiologyPurdue UniversityWest LafayetteIndianaUSA
- Department of Horticulture and Landscape ArchitecturePurdue UniversityWest LafayetteIndianaUSA
| |
Collapse
|
4
|
Bian J, Chen R, Gu S, Wang W, Yang X. Quantitative proteomics analysis identified new interacting proteins of JAL30 in Arabidopsis. J Proteomics 2024; 297:105127. [PMID: 38367771 DOI: 10.1016/j.jprot.2024.105127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/26/2024] [Accepted: 02/14/2024] [Indexed: 02/19/2024]
Abstract
Jacalin-related lectins (JALs) are a unique group of plant lectins derived from the jacalin protein family, which play important roles in plant defense responses. JAL30/PBP1 (PYK10 binding protein 1) interacts with inactive PYK10, exerting negative regulatory control over the size of the PYK10 complex, which is formed and activated upon insect or pathogen invasion. However, the precise interplay between JAL30 and other components remains elusive. In this study, we found JAL30 as a nucleocytoplasmic protein, but no obvious phenotype was observed in jal30-1 single mutant. Through immunoprecipitation (IP) enrichment combined with liquid chromatography-tandem mass spectrometry (LC-MS/MS), dozens of new JAL30 interacting proteins were found in addition to several reported ones. Gene Ontology (GO) analysis revealed that these interacting proteins were highly related to the wounding and bacterial stimuli, suggesting their potential involvement in the jasmonate (JA) response. Importantly, the expression of JAL30 was induced by MeJA treatment, further highlighting its relevance in plant defense mechanisms. A novel JAL30 interacting protein, ESM1, was identified and its interaction with JAL30 was confirmed by Co-immunoprecipitation. Moreover, ESM1 was found as an O-GlcNAcylated protein, suggesting that JAL30 may possess glycosylated protein binding ability, particularly in O-GlcNAcylated protein and peptide recognition. Overall, our study provides valuable insights into the interacting protein network and biological function of JAL30, demonstrates the interaction between JAL30 and ESM1, and uncovers the potential significance of JAL30 in plant defense system, potentially through its association with PYK10 complex or JA response. SIGNIFICANCE: The biological functions of lectin proteins, including defense responses, immunity responses, signal transduction, have been well studied. Lectin proteins were also utilized to enrich glycosylated proteins for their specific carbohydrates binding capability. Jacalin-related lectins (JALs) were found to involve in plant defense mechanism. However, it is not yet clear whether JALs could use for enrichment of glycosylated proteins. In this study, we used label-free quantification method to identify interacting proteins of JAL30. A novel interacting protein, ESM1, as an O-GlcNAcylated protein was found. ESM1 has been reported to take part in defense against insect herbivory. Therefore, our findings provided experimental evidence to confirm that JALs have potential to be developed as the bio-tools to enrich glycosylated proteins. Finally, our data not only illustrated the vital biological role of JALs in plants, but also verified unique function of JAL30 in recognizing O-GlcNAcylated proteins.
Collapse
Affiliation(s)
- Jianghu Bian
- College of Juncao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Rongqing Chen
- College of Juncao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shiting Gu
- College of Juncao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wenfei Wang
- College of Juncao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, China; Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fujian Province University, Fuzhou, China
| | - Xuelian Yang
- College of Juncao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, China; Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, Fujian Agriculture and Forestry University, Fuzhou, China.
| |
Collapse
|
5
|
Choi YJ, Geem KR, Kim J, Lee DW. Differential contributions of two domains of NAI2 to the formation of the endoplasmic reticulum body. FRONTIERS IN PLANT SCIENCE 2023; 14:1184678. [PMID: 37346116 PMCID: PMC10279885 DOI: 10.3389/fpls.2023.1184678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 05/22/2023] [Indexed: 06/23/2023]
Abstract
The endoplasmic reticulum (ER) serves essential functions in eukaryotic cells, including protein folding, transport of secretory proteins, and lipid synthesis. The ER is a highly dynamic organelle that generates various types of compartments. Among them, the ER body is specifically present in plants in the Brassicaceae family and plays a crucial role in chemical defense against pathogens. The NAI2 protein is essential for ER body formation, and its ectopic overexpression is sufficient to induce ER body formation even in the leaves of Nicotiana benthamiana, where the ER body does not naturally exist. Despite the significance of NAI2 in ER body formation, the mechanism whereby NAI2 mediates ER body formation is not fully clear. This study aimed to investigate how two domains of Arabidopsis NAI2, the Glu-Phe-Glu (EFE) domain (ED) and the NAI2 domain (ND), contribute to ER body formation in N. benthamiana leaves. Using co-immunoprecipitation and bimolecular fluorescence complementation assays, we found that the ND is critical for homomeric interaction of NAI2 and ER body formation. Moreover, deletion of ED induced the formation of enlarged ER bodies, suggesting that ED plays a regulatory role during ER body formation. Our results indicate that the two domains of NAI2 cooperate to induce ER body formation in a balanced manner.
Collapse
Affiliation(s)
- Yun Ju Choi
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju, Republic of Korea
| | - Kyoung Rok Geem
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju, Republic of Korea
| | - Jitae Kim
- Bio-Energy Research Center, Chonnam National University, Gwangju, Republic of Korea
| | - Dong Wook Lee
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju, Republic of Korea
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju, Republic of Korea
- Kumho Life Science Laboratory, Chonnam National University, Gwangju, Republic of Korea
| |
Collapse
|
6
|
Jeon H, Segonzac C. Manipulation of the Host Endomembrane System by Bacterial Effectors. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2023; 36:208-217. [PMID: 36645655 DOI: 10.1094/mpmi-09-22-0190-fi] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The endomembrane system, extending from the nuclear envelope to the plasma membrane, is critical to the plant response to pathogen infection. Synthesis and transport of immunity-related proteins and antimicrobial compounds to and from the plasma membrane are supported by conventional and unconventional processes of secretion and internalization of vesicles, guided by the cytoskeleton networks. Although plant bacterial pathogens reside mostly in the apoplast, major structural and functional modifications of the endomembrane system in the host cell occur during bacterial infection. Here, we review the dynamics of these cellular compartments, briefly, for their essential contributions to the plant defense responses and, in parallel, for their emerging roles in bacterial pathogenicity. We further focus on Pseudomonas syringae, Xanthomonas spp., and Ralstonia solanacearum type III secreted effectors that one or both localize to and associate with components of the host endomembrane system or the cytoskeleton network to highlight the diversity of virulence strategies deployed by bacterial pathogens beyond the inhibition of the secretory pathway. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Hyelim Jeon
- Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul, 08826, Republic of Korea
- Plant Immunity Research Center, Seoul National University, Seoul 08826, Republic of Korea
| | - Cécile Segonzac
- Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul, 08826, Republic of Korea
- Plant Immunity Research Center, Seoul National University, Seoul 08826, Republic of Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, 08826, Republic of Korea
- Agricultural and Life Science Research Institute, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
7
|
Wang P, Clark NM, Nolan TM, Song G, Bartz PM, Liao CY, Montes-Serey C, Katz E, Polko JK, Kieber JJ, Kliebenstein DJ, Bassham DC, Walley JW, Yin Y, Guo H. Integrated omics reveal novel functions and underlying mechanisms of the receptor kinase FERONIA in Arabidopsis thaliana. THE PLANT CELL 2022; 34:2594-2614. [PMID: 35435236 PMCID: PMC9252503 DOI: 10.1093/plcell/koac111] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 04/09/2022] [Indexed: 05/20/2023]
Abstract
The receptor kinase FERONIA (FER) is a versatile regulator of plant growth and development, biotic and abiotic stress responses, and reproduction. To gain new insights into the molecular interplay of these processes and to identify new FER functions, we carried out quantitative transcriptome, proteome, and phosphoproteome profiling of Arabidopsis (Arabidopsis thaliana) wild-type and fer-4 loss-of-function mutant plants. Gene ontology terms for phytohormone signaling, abiotic stress, and biotic stress were significantly enriched among differentially expressed transcripts, differentially abundant proteins, and/or misphosphorylated proteins, in agreement with the known roles for FER in these processes. Analysis of multiomics data and subsequent experimental evidence revealed previously unknown functions for FER in endoplasmic reticulum (ER) body formation and glucosinolate biosynthesis. FER functions through the transcription factor NAI1 to mediate ER body formation. FER also negatively regulates indole glucosinolate biosynthesis, partially through NAI1. Furthermore, we found that a group of abscisic acid (ABA)-induced transcription factors is hypophosphorylated in the fer-4 mutant and demonstrated that FER acts through the transcription factor ABA INSENSITIVE5 (ABI5) to negatively regulate the ABA response during cotyledon greening. Our integrated omics study, therefore, reveals novel functions for FER and provides new insights into the underlying mechanisms of FER function.
Collapse
Affiliation(s)
- Ping Wang
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa 50011, USA
| | - Natalie M Clark
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa 50011, USA
| | | | - Gaoyuan Song
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa 50011, USA
| | - Parker M Bartz
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa 50011, USA
| | - Ching-Yi Liao
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa 50011, USA
| | - Christian Montes-Serey
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa 50011, USA
| | - Ella Katz
- Department of Plant Science, University of California, Davis, California 95616, USA
| | - Joanna K Polko
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Joseph J Kieber
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | - Diane C Bassham
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa 50011, USA
| | - Justin W Walley
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa 50011, USA
- Plant Sciences Institutes, Iowa State University, Ames, Iowa 50011, USA
| | - Yanhai Yin
- Author for correspondence: (H.G.); (Y.Y)
| | | |
Collapse
|
8
|
Protein glycosylation changes during systemic acquired resistance in Arabidopsis thaliana. Int J Biol Macromol 2022; 212:381-392. [PMID: 35623457 DOI: 10.1016/j.ijbiomac.2022.05.126] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 05/08/2022] [Accepted: 05/17/2022] [Indexed: 01/01/2023]
Abstract
N-glycosylation, an important post-translational modification of proteins in all eukaryotes, has been clearly shown to be involved in numerous diseases in mammalian systems. In contrast, little is known regarding the role of protein N-glycosylation in plant defensive responses to pathogen infection. We identified, for the first time, glycoproteins related to systemic acquired resistance (SAR) in an Arabidopsis thaliana model, using a glycoproteomics platform based on high-resolution mass spectrometry. 407 glycosylation sites corresponding to 378 glycopeptides and 273 unique glycoproteins were identified. 65 significantly changed glycoproteins with 80 N-glycosylation sites were detected in systemic leaves of SAR-induced plants, including numerous GDSL-like lipases, thioglucoside glucohydrolases, kinases, and glycosidases. Functional enrichment analysis revealed that significantly changed glycoproteins were involved mainly in N-glycan biosynthesis and degradation, phenylpropanoid biosynthesis, cutin and wax biosynthesis, and plant-pathogen interactions. Comparative analysis of glycoproteomics and proteomics data indicated that glycoproteomics analysis is an efficient method for screening proteins associated with SAR. The present findings clarify glycosylation status and sites of A. thaliana proteins, and will facilitate further research on roles of glycoproteins in SAR induction.
Collapse
|
9
|
Li X, Li X, Fan B, Zhu C, Chen Z. Specialized endoplasmic reticulum-derived vesicles in plants: Functional diversity, evolution, and biotechnological exploitation. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:821-835. [PMID: 35142108 PMCID: PMC9314129 DOI: 10.1111/jipb.13233] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
A central role of the endoplasmic reticulum (ER) is the synthesis, folding and quality control of secretory proteins. Secretory proteins usually exit the ER to enter the Golgi apparatus in coat protein complex II (COPII)-coated vesicles before transport to different subcellular destinations. However, in plants there are specialized ER-derived vesicles (ERDVs) that carry specific proteins but, unlike COPII vesicles, can exist as independent organelles or travel to the vacuole in a Golgi-independent manner. These specialized ERDVs include protein bodies and precursor-accumulating vesicles that accumulate storage proteins in the endosperm during seed development. Specialized ERDVs also include precursor protease vesicles that accumulate amino acid sequence KDEL-tailed cysteine proteases and ER bodies in Brassicales plants that accumulate myrosinases that hydrolyzes glucosinolates. These functionally specialized ERDVs act not only as storage organelles but also as platforms for signal-triggered processing, activation and deployment of specific proteins with important roles in plant growth, development and adaptive responses. Some specialized ERDVs have also been exploited to increase production of recombinant proteins and metabolites. Here we discuss our current understanding of the functional diversity, evolutionary mechanisms and biotechnological application of specialized ERDVs, which are associated with some of the highly remarkable characteristics important to plants.
Collapse
Affiliation(s)
- Xie Li
- College of Life Science, Key Laboratory of Marine Food Quality and Hazard Controlling Technology of Zhejiang ProvinceChina Jiliang UniversityHangzhou310018China
| | - Xifeng Li
- College of Life Science, Key Laboratory of Marine Food Quality and Hazard Controlling Technology of Zhejiang ProvinceChina Jiliang UniversityHangzhou310018China
| | - Baofang Fan
- Department of Botany and Plant Pathology, Center for Plant BiologyPurdue UniversityWest Lafayette47907‐2054INUSA
| | - Cheng Zhu
- College of Life Science, Key Laboratory of Marine Food Quality and Hazard Controlling Technology of Zhejiang ProvinceChina Jiliang UniversityHangzhou310018China
| | - Zhixiang Chen
- College of Life Science, Key Laboratory of Marine Food Quality and Hazard Controlling Technology of Zhejiang ProvinceChina Jiliang UniversityHangzhou310018China
- Department of Botany and Plant Pathology, Center for Plant BiologyPurdue UniversityWest Lafayette47907‐2054INUSA
| |
Collapse
|
10
|
Lv Q, Li X, Fan B, Zhu C, Chen Z. The Cellular and Subcellular Organization of the Glucosinolate–Myrosinase System against Herbivores and Pathogens. Int J Mol Sci 2022; 23:ijms23031577. [PMID: 35163500 PMCID: PMC8836197 DOI: 10.3390/ijms23031577] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 01/01/2023] Open
Abstract
Glucosinolates are an important class of secondary metabolites in Brassicales plants with a critical role in chemical defense. Glucosinolates are chemically inactive but can be hydrolyzed by myrosinases to produce a range of chemically active compounds toxic to herbivores and pathogens, thereby constituting the glucosinolate–myrosinase defense system or the mustard oil bomb. During the evolution, Brassicales plants have developed not only complex biosynthetic pathways for production of a large number of glucosinolate structures but also different classes of myrosinases that differ in catalytic mechanisms and substrate specificity. Studies over the past several decades have made important progress in the understanding of the cellular and subcellular organization of the glucosinolate–myrosinase system for rapid and timely detonation of the mustard oil bomb upon tissue damage after herbivore feeding and pathogen infection. Progress has also been made in understanding the mechanisms that herbivores and pathogens have evolved to counter the mustard oil bomb. In this review, we summarize our current understanding of the function and organization of the glucosinolate–myrosinase system in Brassicales plants and discuss both the progresses and future challenges in addressing this complex defense system as an excellent model for analyzing plant chemical defense.
Collapse
Affiliation(s)
- Qiaoqiao Lv
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China; (Q.L.); (X.L.)
| | - Xifeng Li
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China; (Q.L.); (X.L.)
| | - Baofang Fan
- Purdue Center for Plant Biology, Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907-2054, USA;
| | - Cheng Zhu
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China; (Q.L.); (X.L.)
- Correspondence: (C.Z.); (Z.C.); Tel.: +86-571-8683-6090 (C.Z.); +1-765-494-4657 (Z.C.)
| | - Zhixiang Chen
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China; (Q.L.); (X.L.)
- Purdue Center for Plant Biology, Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907-2054, USA;
- Correspondence: (C.Z.); (Z.C.); Tel.: +86-571-8683-6090 (C.Z.); +1-765-494-4657 (Z.C.)
| |
Collapse
|
11
|
Rufián JS, Elmore JM, Bejarano ER, Beuzon CR, Coaker GL. ER Bodies Are Induced by Pseudomonas syringae and Negatively Regulate Immunity. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:1001-1009. [PMID: 34110257 PMCID: PMC8635791 DOI: 10.1094/mpmi-11-20-0330-sc] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
ER bodies are endoplasmic reticulum-derived organelles present in plants belonging to the Brassicales order. In Arabidopsis thaliana, ER bodies are ubiquitous in cotyledons and roots and are present only in certain cell types in rosette leaves. However, both wounding and jasmonic acid treatment induce the formation of ER bodies in leaves. Formation of this structure is dependent on the transcription factor NAI1. The main components of the ER bodies are β-glucosidases (BGLUs), enzymes that hydrolyze specialized compounds. In Arabidopsis, PYK10 (BGLU23) and BGLU18 are the most abundant ER body proteins. In this work, we found that ER bodies are downregulated as a consequence of the immune responses induced by bacterial flagellin perception. Arabidopsis mutants defective in ER body formation show enhanced responses upon flagellin perception and enhanced resistance to bacterial infections. Furthermore, the bacterial toxin coronatine induces the formation of de novo ER bodies in leaves and its virulence function is partially dependent on this structure. Finally, we show that performance of the polyphagous beet armyworm herbivore Spodoptera exigua increases in plants lacking ER bodies. Altogether, we provide new evidence for the role of the ER bodies in plant immune responses.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- José S. Rufián
- Instituto de Hortofruticultura Subtropical y Mediterránea, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Dept. Biología Celular, Genética y Fisiología, Campus de Teatinos, Málaga E-29071, Spain
- Department of Plant Pathology, University of California Davis, Davis, CA 95616, U.S.A
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences; Chinese Academy of Sciences, Shanghai 201602, China
| | - James M. Elmore
- Department of Plant Pathology, University of California Davis, Davis, CA 95616, U.S.A
| | - Eduardo R. Bejarano
- Instituto de Hortofruticultura Subtropical y Mediterránea, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Dept. Biología Celular, Genética y Fisiología, Campus de Teatinos, Málaga E-29071, Spain
| | - Carmen R. Beuzon
- Instituto de Hortofruticultura Subtropical y Mediterránea, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Dept. Biología Celular, Genética y Fisiología, Campus de Teatinos, Málaga E-29071, Spain
| | - Gitta L. Coaker
- Department of Plant Pathology, University of California Davis, Davis, CA 95616, U.S.A
| |
Collapse
|
12
|
Sarkar S, Stefanik N, Kunieda T, Hara-Nishimura I, Yamada K. The Arabidopsis transcription factor NAI1 activates the NAI2 promoter by binding to the G-box motifs. PLANT SIGNALING & BEHAVIOR 2021; 16:1846928. [PMID: 33315514 PMCID: PMC7849731 DOI: 10.1080/15592324.2020.1846928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 11/02/2020] [Accepted: 11/02/2020] [Indexed: 05/16/2023]
Abstract
Brassicaceae plants, including Arabidopsis thaliana, develop endoplasmic reticulum (ER)-derived structures called ER bodies, which are involved in chemical defense against herbivores. NAI1 is a basic helix-loop-helix (bHLH) type transcription factor that regulates two downstream genes, NAI2 and BGLU23, that are responsible for the ER body formation and function. Here, we examined the transcription factor function of NAI1, and found that NAI1 binds to the promoter region of NAI2 and activates the NAI2 promoter. The recombinant NAI1 protein recognizes the canonical and non-canonical G-box motifs in the NAI2 promoter. Furthermore, we examined the DNA binding activity of NAI1 toward several E-box motifs in the NAI2 and BGLU23 promoters and found that NAI1 binds to a DNA fragment that includes an E-box motif from the BGLU23 promoter. Subcellular localization of NAI1 was evident in the nucleus, which is consistent with its transcription factor function. Transient expression experiments in Nicotiana benthamiana leaves showed that GFP-NAI1 protein activated the NAI2 promoter by binding to the two G-boxes of the promoter. Disruption of the G-boxes abolished the NAI1-dependent activation of the NAI2 promoter. These results indicate that NAI1 has a DNA binding activity in a motif-dependent manner and suggest that NAI1 regulates NAI2 and BGLU23 gene expressions through binding to these DNA motifs in their promoters.
Collapse
Affiliation(s)
- Shayan Sarkar
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Natalia Stefanik
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
- Institute of Zoology and Biomedical Sciences, Faculty of Biology, Jagiellonian University, Krakow, Poland
| | - Tadashi Kunieda
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
- Faculty of Science and Engineering, Konan University, Kobe, Japan
| | | | - Kenji Yamada
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
13
|
Romanchuk S. Protein bodies of the endoplasmic reticulum in Arabidopsis thaliana (Brassicaceae): origin, structural and biochemical features, functional significance. UKRAINIAN BOTANICAL JOURNAL 2020. [DOI: 10.15407/ukrbotj77.06.480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
History of the discovery, formation, structural and biochemical traits of the protein bodies, derivatives of the granular endoplasmic reticulum (GER) that are known as ER-bodies, are reviewed. The functions of ER-bodies in cell vital activity mainly in Arabidopsis thaliana are reported. The highly specific component of ER-bodies, β-glucosidase enzyme, is described and its protecting role for plants under effect of abiotic and biotic factors is characterized. Based on the analytical review of the literature, it is shown that ER-bodies and the transcription factor NAI2 are unique to species of the family Brassicaceae. The specificity of the system GER – ER-bodies for Brassicaceae and thus the fundamental and applied importance of future research of mechanisms of its functioning in A. thaliana and other Brassicaceae species are emphasized.
Collapse
|
14
|
Characterization of rhizome transcriptome and identification of a rhizomatous ER body in the clonal plant Cardamine leucantha. Sci Rep 2020; 10:13291. [PMID: 32764594 PMCID: PMC7413523 DOI: 10.1038/s41598-020-69941-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 07/03/2020] [Indexed: 11/24/2022] Open
Abstract
The rhizome is a plant organ that develops from a shoot apical meristem but penetrates into belowground environments. To characterize the gene expression profile of rhizomes, we compared the rhizome transcriptome with those of the leaves, shoots and roots of a rhizomatous Brassicaceae plant, Cardamine leucantha. Overall, rhizome transcriptomes were characterized by the absence of genes that show rhizome-specific expression and expression profiles intermediate between those of shoots and roots. Our results suggest that both endogenous developmental factors and external environmental factors are important for controlling the rhizome transcriptome. Genes that showed relatively high expression in the rhizome compared to shoots and roots included those related to belowground defense, control of reactive oxygen species and cell elongation under dark conditions. A comparison of transcriptomes further allowed us to identify the presence of an ER body, a defense-related belowground organelle, in epidermal cells of the C. leucantha rhizome, which is the first report of ER bodies in rhizome tissue.
Collapse
|
15
|
Stefanik N, Bizan J, Wilkens A, Tarnawska-Glatt K, Goto-Yamada S, Strzałka K, Nishimura M, Hara-Nishimura I, Yamada K. NAI2 and TSA1 Drive Differentiation of Constitutive and Inducible ER Body Formation in Brassicaceae. PLANT & CELL PHYSIOLOGY 2020; 61:722-734. [PMID: 31879762 DOI: 10.1093/pcp/pcz236] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 12/19/2019] [Indexed: 05/28/2023]
Abstract
Brassicaceae and closely related species develop unique endoplasmic reticulum (ER)-derived structures called ER bodies, which accumulate β-glucosidases/myrosinases that are involved in chemical defense. There are two different types of ER bodies: ER bodies constitutively present in seedlings (cER bodies) and ER bodies in rosette leaves induced by treatment with the wounding hormone jasmonate (JA) (iER bodies). Here, we show that At-α whole-genome duplication (WGD) generated the paralogous genes NAI2 and TSA1, which consequently drive differentiation of cER bodies and iER bodies in Brassicaceae plants. In Arabidopsis, NAI2 is expressed in seedlings where cER bodies are formed, whereas TSA1 is expressed in JA-treated leaves where iER bodies are formed. We found that the expression of NAI2 in seedlings and the JA inducibility of TSA1 are conserved across other Brassicaceae plants. The accumulation of NAI2 transcripts in Arabidopsis seedlings is dependent on the transcription factor NAI1, whereas the JA induction of TSA1 in rosette leaves is dependent on MYC2, MYC3 and MYC4. We discovered regions of microsynteny, including the NAI2/TSA1 genes, but the promoter regions are differentiated between TSA1 and NAI2 genes in Brassicaceae. This suggests that the divergence of function between NAI2 and TSA1 occurred immediately after WGD in ancestral Brassicaceae plants to differentiate the formation of iER and cER bodies. Our findings indicate that At-α WGD enabled diversification of defense strategies, which may have contributed to the massive diversification of Brassicaceae plants.
Collapse
Affiliation(s)
- Natalia Stefanik
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow 30-387, Poland
- Faculty of Biology, Institute of Zoology and Biomedical Sciences, Jagiellonian University, Krakow 30-387, Poland
| | - Jakub Bizan
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow 30-387, Poland
| | - Alwine Wilkens
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow 30-387, Poland
- The Franciszek Gorski Institute of Plant Physiology, Polish Academy of Science, Krakow 30-239, Poland
| | | | - Shino Goto-Yamada
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow 30-387, Poland
| | - Kazimierz Strzałka
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow 30-387, Poland
| | - Mikio Nishimura
- Department of Cell Biology, National Institute for Basic Biology, Okazaki, 444-8585 Japan
| | | | - Kenji Yamada
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow 30-387, Poland
| |
Collapse
|
16
|
Han Y, Watanabe S, Shimada H, Sakamoto A. Dynamics of the leaf endoplasmic reticulum modulate β-glucosidase-mediated stress-activated ABA production from its glucosyl ester. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:2058-2071. [PMID: 31761937 PMCID: PMC7094080 DOI: 10.1093/jxb/erz528] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 11/21/2019] [Indexed: 05/18/2023]
Abstract
The phytohormone abscisic acid (ABA) is produced via a multistep de novo biosynthesis pathway or via single-step hydrolysis of inactive ABA-glucose ester (ABA-GE). The hydrolysis reaction is catalyzed by β-glucosidase (BG, or BGLU) isoforms localized to various organelles, where they become activated upon stress, but the mechanisms underlying this organelle-specific activation remain unclear. We investigated the relationship between the subcellular distribution and stress-induced activation of BGLU18 (BG1), an endoplasmic reticulum enzyme critical for abiotic stress responses, in Arabidopsis thaliana leaves. High BGLU18 levels were present in leaf petioles, primarily in endoplasmic reticulum bodies. These Brassicaceae-specific endoplasmic reticulum-derived organelles responded dynamically to abiotic stress, particularly drought-induced dehydration, by changing in number and size. Under stress, BGLU18 distribution shifted toward microsomes, which was accompanied by increasing BGLU18-mediated ABA-GE hydrolytic activity and ABA levels in leaf petioles. Under non-stress conditions, impaired endoplasmic reticulum body formation caused a microsomal shift of BGLU18 and increased its enzyme activity; however, ABA levels increased only under stress, probably because ABA-GE is supplied to the endoplasmic reticulum only under these conditions. Loss of BGLU18 delayed dehydration-induced ABA accumulation, suggesting that ABA-GE hydrolysis precedes the biosynthesis. We propose that dynamics of the endoplasmic reticulum modulate ABA homeostasis and abiotic stress responses by activating BGLU18-mediated ABA-GE hydrolysis.
Collapse
Affiliation(s)
- Yiping Han
- Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Japan
| | - Shunsuke Watanabe
- RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama, Japan
| | - Hiroshi Shimada
- Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Japan
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Atsushi Sakamoto
- Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Japan
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
- Correspondence:
| |
Collapse
|
17
|
Yamada K, Goto-Yamada S, Nakazaki A, Kunieda T, Kuwata K, Nagano AJ, Nishimura M, Hara-Nishimura I. Endoplasmic reticulum-derived bodies enable a single-cell chemical defense in Brassicaceae plants. Commun Biol 2020; 3:21. [PMID: 31937912 PMCID: PMC6959254 DOI: 10.1038/s42003-019-0739-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 12/10/2019] [Indexed: 01/23/2023] Open
Abstract
Brassicaceae plants have a dual-cell type of chemical defense against herbivory. Here, we show a novel single-cell defense involving endoplasmic reticulum (ER)-derived organelles (ER bodies) and the vacuoles. We identify various glucosinolates as endogenous substrates of the ER-body β-glucosidases BGLU23 and BGLU21. Woodlice strongly prefer to eat seedlings of bglu23 bglu21 or a glucosinolate-deficient mutant over wild-type seedlings, confirming that the β-glucosidases have a role in chemical defense: production of toxic compounds upon organellar damage. Deficiency of the Brassicaceae-specific protein NAI2 prevents ER-body formation, which results in a loss of BGLU23 and a loss of resistance to woodlice. Hence, NAI2 that interacts with BGLU23 is essential for sequestering BGLU23 in ER bodies and preventing its degradation. Artificial expression of NAI2 and BGLU23 in non-Brassicaceae plants results in the formation of ER bodies, indicating that acquisition of NAI2 by Brassicaceae plants is a key step in developing their single-cell defense system. Kenji Yamada et al. describe a single-cell chemical defense strategy in Brassicaceae plants that requires formation of endoplasmic reticulum-derived organelles for the accumulation of β-glucosidases. They find that seedlings lacking a specific β-glucosidase lose their resistance to predation by woodlice.
Collapse
Affiliation(s)
- Kenji Yamada
- Malopolska Centre of Biotechnology, Jagiellonian University, 30-387, Krakow, Poland. .,Department of Cell Biology, National Institute for Basic Biology, Okazaki, 444-8585, Japan. .,Graduate School of Science, Kyoto University, Kyoto, 606-8502, Japan.
| | - Shino Goto-Yamada
- Malopolska Centre of Biotechnology, Jagiellonian University, 30-387, Krakow, Poland.,Department of Cell Biology, National Institute for Basic Biology, Okazaki, 444-8585, Japan.,Graduate School of Science, Kyoto University, Kyoto, 606-8502, Japan
| | - Akiko Nakazaki
- Graduate School of Science, Kyoto University, Kyoto, 606-8502, Japan
| | - Tadashi Kunieda
- Graduate School of Science, Kyoto University, Kyoto, 606-8502, Japan.,Faculty of Science and Engineering, Konan University, Kobe, 658-8501, Japan.,Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, 630-0192, Japan
| | - Keiko Kuwata
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, 464-8601, Japan
| | - Atsushi J Nagano
- Faculty of Agriculture, Ryukoku University, Otsu, Shiga, 520-2194, Japan
| | - Mikio Nishimura
- Department of Cell Biology, National Institute for Basic Biology, Okazaki, 444-8585, Japan. .,Faculty of Science and Engineering, Konan University, Kobe, 658-8501, Japan.
| | - Ikuko Hara-Nishimura
- Graduate School of Science, Kyoto University, Kyoto, 606-8502, Japan. .,Faculty of Science and Engineering, Konan University, Kobe, 658-8501, Japan.
| |
Collapse
|
18
|
Knudsen C, Gallage NJ, Hansen CC, Møller BL, Laursen T. Dynamic metabolic solutions to the sessile life style of plants. Nat Prod Rep 2019; 35:1140-1155. [PMID: 30324199 PMCID: PMC6254060 DOI: 10.1039/c8np00037a] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Plants are sessile organisms. To compensate for not being able to escape when challenged by unfavorable growth conditions, pests or herbivores, plants have perfected their metabolic plasticity by having developed the capacity for on demand dynamic biosynthesis and storage of a plethora of phytochemicals.
Covering: up to 2018 Plants are sessile organisms. To compensate for not being able to escape when challenged by unfavorable growth conditions, pests or herbivores, plants have perfected their metabolic plasticity by having developed the capacity for on demand synthesis of a plethora of phytochemicals to specifically respond to the challenges arising during plant ontogeny. Key steps in the biosynthesis of phytochemicals are catalyzed by membrane-bound cytochrome P450 enzymes which in plants constitute a superfamily. In planta, the P450s may be organized in dynamic enzyme clusters (metabolons) and the genes encoding the P450s and other enzymes in a specific pathway may be clustered. Metabolon formation facilitates transfer of substrates between sequential enzymes and therefore enables the plant to channel the flux of general metabolites towards biosynthesis of specific phytochemicals. In the plant cell, compartmentalization of the operation of specific biosynthetic pathways in specialized plastids serves to avoid undesired metabolic cross-talk and offers distinct storage sites for molar concentrations of specific phytochemicals. Liquid–liquid phase separation may lead to formation of dense biomolecular condensates within the cytoplasm or vacuole allowing swift activation of the stored phytochemicals as required upon pest or herbivore attack. The molecular grid behind plant plasticity offers an endless reservoir of functional modules, which may be utilized as a synthetic biology tool-box for engineering of novel biological systems based on rational design principles. In this review, we highlight some of the concepts used by plants to coordinate biosynthesis and storage of phytochemicals.
Collapse
Affiliation(s)
- Camilla Knudsen
- Plant Biochemistry Laboratory, Department of Plant and Environmental Science, University of Copenhagen, DK-1871 Frederiksberg C, Denmark.
| | | | | | | | | |
Collapse
|
19
|
Nakazaki A, Yamada K, Kunieda T, Tamura K, Hara-Nishimura I, Shimada T. Biogenesis of leaf endoplasmic reticulum body is regulated by both jasmonate-dependent and independent pathways. PLANT SIGNALING & BEHAVIOR 2019; 14:1622982. [PMID: 31132914 PMCID: PMC6619926 DOI: 10.1080/15592324.2019.1622982] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 05/17/2019] [Indexed: 05/28/2023]
Abstract
Endoplasmic reticulum (ER) bodies are thought to function in plant defense against insects and pathogens. Recently, a new type of ER body referred to as "leaf ER bodies" (L-ER bodies) was identified in Arabidopsis rosette leaves. L-ER bodies accumulate two β-glucosidases, namely PYK10 and BGLU18, which are characteristic of previously described constitutive ER bodies and inducible ER bodies, respectively. However, it is unclear how the biogenesis of L-ER bodies, which are similar to both constitutive and inducible ER bodies, is regulated. In the present study, we show that the biogenesis of L-ER bodies is regulated by both jasmonate (JA)-dependent and -independent pathways. Confocal imaging analysis revealed the presence of L-ER bodies in the JA insensitive mutant coronatine insensitive 1-1 (coi1-1), which lacks the JA receptor COI1. Quantitative reverse transcription polymerase chain reaction analysis revealed that the expression of BGLU18 mainly depends on the JA signaling pathway while that of PYK10 does not. In addition, expression of the ER body related genes NAI1, NAI2, and TSA1 was reduced in the coi1-1 mutant relative to the wild type. Taken together, these findings suggest that JA signaling is not necessary for the formation of L-ER bodies, while it is partially required for gene expression of L-ER body components.
Collapse
Affiliation(s)
- Akiko Nakazaki
- Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Kenji Yamada
- Malopolska Center of Biotechnology, Jagiellonian University, Kraków, Poland
| | - Tadashi Kunieda
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
| | - Kentaro Tamura
- Department of Environmental and Life Sciences, University of Shizuoka, Shizuoka, Japan
| | | | - Tomoo Shimada
- Graduate School of Science, Kyoto University, Kyoto, Japan
| |
Collapse
|
20
|
Johnson KL. Cutting the Mustard: Evolving Endoplasmic Reticulum Structures into Endoplasmic Reticulum Bodies for Plant Defense. PLANT PHYSIOLOGY 2019; 180:14-15. [PMID: 31053675 PMCID: PMC6501097 DOI: 10.1104/pp.19.00326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Affiliation(s)
- Kim L Johnson
- La Trobe Institute for Agriculture and Food, Department of Animal, Plant, and Soil Sciences, La Trobe University, Bundoora, Victoria 3086, Australia
| |
Collapse
|
21
|
Wang Z, Li X, Liu N, Peng Q, Wang Y, Fan B, Zhu C, Chen Z. A Family of NAI2-Interacting Proteins in the Biogenesis of the ER Body and Related Structures. PLANT PHYSIOLOGY 2019; 180:212-227. [PMID: 30770459 PMCID: PMC6501091 DOI: 10.1104/pp.18.01500] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 02/05/2019] [Indexed: 05/16/2023]
Abstract
Plants produce different types of endoplasmic reticulum (ER)-derived vesicles that accumulate and transport proteins, lipids, and metabolites. In the Brassicales, a distinct ER-derived structure called the ER body is found throughout the epidermis of cotyledons, hypocotyls, and roots. NAI2 is a key factor for ER body formation in Arabidopsis (Arabidopsis thaliana). Homologs of NAI2 are found only in the Brassicales and therefore may have evolved specifically to enable ER body formation. Here, we report that three related Arabidopsis NAI2-interacting proteins (NAIP1, NAIP2, and NAIP3) play a critical role in the biogenesis of ER bodies and related structures. Analysis using GFP fusions revealed that all three NAIPs are components of the ER bodies found in the cotyledons, hypocotyls, and roots. Genetic analysis with naip mutants indicates that they have a critical and redundant role in ER body formation. NAIP2 and NAIP3 are also components of other vesicular structures likely derived from the ER that are formed independent of NAI2 and are present not only in the cotyledons, hypocotyls, and roots, but also in the rosettes. Thus, while NAIP1 is a specialized ER body component, NAIP2 and NAIP3 are components of different types of ER-derived structures. Analysis of chimeric NAIP proteins revealed that their N-terminal domains play a major role in the functional specialization between NAIP1 and NAIP3. Unlike NAI2, NAIPs have homologs in all plants; therefore, NAIP-containing ER structures, from which the ER bodies in the Brassicales may have evolved, are likely to be present widely in plants.
Collapse
Affiliation(s)
- Zhe Wang
- Department of Botany and Plant Pathology and Center for Plant Biology, 915 W. State Street, Purdue University, West Lafayette, Indiana 47907-2054
| | - Xifeng Li
- Department of Botany and Plant Pathology and Center for Plant Biology, 915 W. State Street, Purdue University, West Lafayette, Indiana 47907-2054
- College of Life Science, China Jiliang University, Hangzhou 310018, China
| | - Nana Liu
- Department of Botany and Plant Pathology and Center for Plant Biology, 915 W. State Street, Purdue University, West Lafayette, Indiana 47907-2054
- College of Science, China Agricultural University, Beijing 100193, China
| | - Qi Peng
- Department of Botany and Plant Pathology and Center for Plant Biology, 915 W. State Street, Purdue University, West Lafayette, Indiana 47907-2054
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Yuexia Wang
- Department of Botany and Plant Pathology and Center for Plant Biology, 915 W. State Street, Purdue University, West Lafayette, Indiana 47907-2054
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Baofang Fan
- Department of Botany and Plant Pathology and Center for Plant Biology, 915 W. State Street, Purdue University, West Lafayette, Indiana 47907-2054
| | - Cheng Zhu
- College of Life Science, China Jiliang University, Hangzhou 310018, China
| | - Zhixiang Chen
- Department of Botany and Plant Pathology and Center for Plant Biology, 915 W. State Street, Purdue University, West Lafayette, Indiana 47907-2054
- College of Life Science, China Jiliang University, Hangzhou 310018, China
| |
Collapse
|
22
|
Nakazaki A, Yamada K, Kunieda T, Sugiyama R, Hirai MY, Tamura K, Hara-Nishimura I, Shimada T. Leaf Endoplasmic Reticulum Bodies Identified in Arabidopsis Rosette Leaves Are Involved in Defense against Herbivory. PLANT PHYSIOLOGY 2019; 179:1515-1524. [PMID: 30696747 PMCID: PMC6446793 DOI: 10.1104/pp.18.00984] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 01/15/2019] [Indexed: 05/20/2023]
Abstract
ER bodies are endoplasmic reticulum (ER)-derived organelles specific to the order Brassicales and are thought to function in plant defense against insects and pathogens. ER bodies are generally classified into two types: constitutive ER bodies in the epidermal cells of seedlings, and wound-inducible ER bodies in rosette leaves. Herein, we reveal a third type of ER body found in Arabidopsis (Arabidopsis thaliana) rosette leaves and designate them "leaf ERbodies" (L-ER bodies). L-ER bodies constitutively occurred in specific cells of the rosette leaves: marginal cells, epidermal cells covering the midrib, and giant pavement cells. The distribution of L-ER bodies was closely associated with the expression profile of the basic helix-loop-helix transcription factor NAI1, which is responsible for constitutive ER-body formation. L-ER bodies were seldom observed in nai1 mutant leaves, indicating that NAI1 is involved in L-ER body formation. Confocal imaging analysis revealed that L-ER bodies accumulated two types of β-glucosidases: PYK10, the constitutive ER-body β-glucosidase; and BETA-GLUCOSIDASE18 (BGLU18), the wound-inducible ER-body β-glucosidase. Combined with the absence of L-ER bodies in the bglu18 pyk10 mutant, these results indicate that BGLU18 and PYK10 are the major components of L-ER bodies. A subsequent feeding assay with the terrestrial isopod Armadillidium vulgare revealed that bglu18 pyk10 leaves were severely damaged as a result of herbivory. In addition, the bglu18 pyk10 mutant was defective in the hydrolysis of 4-methoxyindol-3-ylmethyl glucosinolate These results suggest that L-ER bodies are involved in the production of defensive compound(s) from 4-methoxyindol-3-ylmethyl glucosinolate that protect Arabidopsis leaves against herbivory attack.
Collapse
Affiliation(s)
- Akiko Nakazaki
- Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Kenji Yamada
- Malopolska Center of Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Tadashi Kunieda
- Faculty of Science and Engineering, Konan University, Kobe 658-8501, Japan
| | - Ryosuke Sugiyama
- RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Masami Yokota Hirai
- RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Kentaro Tamura
- Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | | | - Tomoo Shimada
- Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
23
|
Geem KR, Kim DH, Lee DW, Kwon Y, Lee J, Kim JH, Hwang I. Jasmonic acid-inducible TSA1 facilitates ER body formation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 97:267-280. [PMID: 30267434 DOI: 10.1111/tpj.14112] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 09/11/2018] [Accepted: 09/12/2018] [Indexed: 05/28/2023]
Abstract
Members of the Brassicales contain an organelle, the endoplasmic reticulum (ER) body, which is derived from the ER. Recent studies have shed light on the biogenesis of the ER body and its physiological role in plants. However, formation of the ER body and its physiological role are not fully understood. Here, we investigated the physiological role of TSK-associating protein 1 (TSA1), a close homolog of NAI2 that is involved in ER body formation, and provide evidence that it is involved in ER body biogenesis under wound-related stress conditions. TSA1 is N-glycosylated and localizes to the ER body as a luminal protein. TSA1 was highly induced by the plant hormone, methyl jasmonate (MeJA). Ectopic expression of TSA1:GFP induced ER body formation in root tissues of transgenic Arabidopsis thaliana and in leaf tissues of Nicotiana benthamiana. TSA1 and NAI2 formed a heterocomplex and showed an additive effect on ER body formation in N. benthamiana. MeJA treatment induced ER body formation in leaf tissues of nai2 and tsa1 plants, but not nai2/tsa1 double-mutant plants. However, constitutive ER body formation was altered in young seedlings of nai2 plants but not tsa1 plants. Based on these results, we propose that TSA1 plays a critical role in MeJA-induced ER body formation in plants.
Collapse
Affiliation(s)
- Kyoung Rok Geem
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Korea
| | - Dae Heon Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Korea
| | - Dong Wook Lee
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, 37673, Korea
| | - Yun Kwon
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Korea
| | - Junho Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Korea
| | - Jeong Hee Kim
- Department of Biochemistry and Molecular Biology, College of Dentistry, and Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul, 130-701, Korea
| | - Inhwan Hwang
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Korea
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, 37673, Korea
| |
Collapse
|
24
|
Wang JZ, Li B, Xiao Y, Ni Y, Ke H, Yang P, de Souza A, Bjornson M, He X, Shen Z, Balcke GU, Briggs SP, Tissier A, Kliebenstein DJ, Dehesh K. Initiation of ER Body Formation and Indole Glucosinolate Metabolism by the Plastidial Retrograde Signaling Metabolite, MEcPP. MOLECULAR PLANT 2017; 10:1400-1416. [PMID: 28965830 PMCID: PMC6368977 DOI: 10.1016/j.molp.2017.09.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 09/13/2017] [Accepted: 09/18/2017] [Indexed: 05/09/2023]
Abstract
Plants have evolved tightly regulated signaling networks to respond and adapt to environmental perturbations, but the nature of the signaling hub(s) involved have remained an enigma. We have previously established that methylerythritol cyclodiphosphate (MEcPP), a precursor of plastidial isoprenoids and a stress-specific retrograde signaling metabolite, enables cellular readjustments for high-order adaptive functions. Here, we specifically show that MEcPP promotes two Brassicaceae-specific traits, namely endoplasmic reticulum (ER) body formation and induction of indole glucosinolate (IGs) metabolism selectively, via transcriptional regulation of key regulators NAI1 for ER body formation and MYB51/122 for IGs biosynthesis). The specificity of MEcPP is further confirmed by the lack of induction of wound-inducible ER body genes as well as IGs by other altered methylerythritol phosphate pathway enzymes. Genetic analyses revealed MEcPP-mediated COI1-dependent induction of these traits. Moreover, MEcPP signaling integrates the biosynthesis and hydrolysis of IGs through induction of nitrile-specifier protein1 and reduction of the suppressor, ESM1, and production of simple nitriles as the bioactive end product. The findings position the plastidial metabolite, MEcPP, as the initiation hub, transducing signals to adjust the activity of hard-wired gene circuitry to expand phytochemical diversity and alter the associated subcellular structure required for functionality of the secondary metabolites, thereby tailoring plant stress responses.
Collapse
Affiliation(s)
- Jin-Zheng Wang
- Institute for Integrative Genome Biology and Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA; Department of Plant Biology, University of California, Davis, CA 95616, USA
| | - Baohua Li
- Department of Plant Sciences, University of California, Davis, CA 95616, USA
| | - Yanmei Xiao
- Department of Plant Biology, University of California, Davis, CA 95616, USA
| | - Yu Ni
- Department of Plant Biology, University of California, Davis, CA 95616, USA
| | - Haiyan Ke
- Institute for Integrative Genome Biology and Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
| | - Panyu Yang
- Department of Plant Biology, University of California, Davis, CA 95616, USA
| | - Amancio de Souza
- Institute for Integrative Genome Biology and Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
| | - Marta Bjornson
- Department of Plant Biology, University of California, Davis, CA 95616, USA
| | - Xiang He
- Institute for Integrative Genome Biology and Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
| | - Zhouxin Shen
- Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Gerd Ulrich Balcke
- Department of Cell and Metabolic Biology, Leibniz-Institute of Plant Biochemistry, Halle, Germany
| | - Steve P Briggs
- Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Alain Tissier
- Department of Cell and Metabolic Biology, Leibniz-Institute of Plant Biochemistry, Halle, Germany
| | | | - Katayoon Dehesh
- Institute for Integrative Genome Biology and Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA; Department of Plant Biology, University of California, Davis, CA 95616, USA.
| |
Collapse
|
25
|
Abstract
Purpose of Review We provide an overview of the current knowledge on cytochrome P450-mediated metabolism organized as metabolons and factors that facilitate their stabilization. Essential parameters will be discussed including those that are commonly disregarded using the dhurrin metabolon from Sorghum bicolor as a case study. Recent Findings Sessile plants control their metabolism to prioritize their resources between growth and development, or defense. This requires fine-tuned complex dynamic regulation of the metabolic networks involved. Within the recent years, numerous studies point to the formation of dynamic metabolons playing a major role in controlling the metabolic fluxes within such networks. Summary We propose that P450s and their partners interact and associate dynamically with POR, which acts as a charging station possibly in concert with Cytb5. Solvent environment, lipid composition, and non-catalytic proteins guide metabolon formation and thereby activity, which have important implications for synthetic biology approaches aiming to produce high-value specialized metabolites in heterologous hosts.
Collapse
Affiliation(s)
- Jean-Etienne Bassard
- Plant Biochemistry Laboratory, Center for Synthetic Biology, VILLUM Research Center “Plant Plasticity,” Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Copenhagen Denmark
| | - Birger Lindberg Møller
- Plant Biochemistry Laboratory, Center for Synthetic Biology, VILLUM Research Center “Plant Plasticity,” Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Copenhagen Denmark
- Carlsberg Research Laboratory, Gamle Carlsberg Vej 10, DK-1799 Copenhagen V, Denmark
| | - Tomas Laursen
- Plant Biochemistry Laboratory, Center for Synthetic Biology, VILLUM Research Center “Plant Plasticity,” Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Copenhagen Denmark
- Feedstocks Division, Joint BioEnergy Institute, Emeryville, CA 94608 USA
| |
Collapse
|
26
|
Nakano RT, Piślewska-Bednarek M, Yamada K, Edger PP, Miyahara M, Kondo M, Böttcher C, Mori M, Nishimura M, Schulze-Lefert P, Hara-Nishimura I, Bednarek P. PYK10 myrosinase reveals a functional coordination between endoplasmic reticulum bodies and glucosinolates in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 89:204-220. [PMID: 27612205 DOI: 10.1111/tpj.13377] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 08/30/2016] [Accepted: 09/05/2016] [Indexed: 05/20/2023]
Abstract
The endoplasmic reticulum body (ER body) is an organelle derived from the ER that occurs in only three families of the order Brassicales and is suggested to be involved in plant defense. ER bodies in Arabidopsis thaliana contain large amounts of β-glucosidases, but the physiological functions of ER bodies and these enzymes remain largely unclear. Here we show that PYK10, the most abundant β-glucosidase in A. thaliana root ER bodies, hydrolyzes indole glucosinolates (IGs) in addition to the previously reported in vitro substrate scopolin. We found a striking co-expression between ER body-related genes (including PYK10), glucosinolate biosynthetic genes and the genes for so-called specifier proteins affecting the terminal products of myrosinase-mediated glucosinolate metabolism, indicating that these systems have been integrated into a common transcriptional network. Consistent with this, comparative metabolite profiling utilizing a number of A. thaliana relatives within Brassicaceae identified a clear phylogenetic co-occurrence between ER bodies and IGs, but not between ER bodies and scopolin. Collectively, our findings suggest a functional link between ER bodies and glucosinolate metabolism in planta. In addition, in silico three-dimensional modeling, combined with phylogenomic analysis, suggests that PYK10 represents a clade of 16 myrosinases that arose independently from the other well-documented class of six thioglucoside glucohydrolases. These findings provide deeper insights into how glucosinolates are metabolized in cruciferous plants and reveal variation of the myrosinase-glucosinolate system within individual plants.
Collapse
Affiliation(s)
- Ryohei T Nakano
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, D-50829, Köln, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, D-50829, Köln, Germany
- Department of Botany, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Mariola Piślewska-Bednarek
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznań, Poland
| | - Kenji Yamada
- Department of Cell Biology, National Institute of Basic Biology, Okazaki, 444-8585, Japan
| | - Patrick P Edger
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
| | - Mado Miyahara
- Department of Botany, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Maki Kondo
- Department of Cell Biology, National Institute of Basic Biology, Okazaki, 444-8585, Japan
| | - Christoph Böttcher
- Department of Stress and Developmental Biology, Leibniz Institute of Plant Biochemistry, D-06120, Halle (Saale), Germany
| | - Masashi Mori
- Ishikawa Prefectural University, Nonoichi, Ishikawa, 834-1213, Japan
| | - Mikio Nishimura
- Department of Cell Biology, National Institute of Basic Biology, Okazaki, 444-8585, Japan
| | - Paul Schulze-Lefert
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, D-50829, Köln, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, D-50829, Köln, Germany
| | - Ikuko Hara-Nishimura
- Department of Botany, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Paweł Bednarek
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznań, Poland
| |
Collapse
|
27
|
Watanabe E, Mano S, Nomoto M, Tada Y, Hara-Nishimura I, Nishimura M, Yamada K. HSP90 Stabilizes Auxin-Responsive Phenotypes by Masking a Mutation in the Auxin Receptor TIR1. PLANT & CELL PHYSIOLOGY 2016; 57:2245-2254. [PMID: 27816945 DOI: 10.1093/pcp/pcw170] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 09/30/2016] [Indexed: 05/10/2023]
Abstract
Heat shock protein 90 (HSP90) is a molecular chaperone that is required for the function of various substrate proteins, also known as client proteins. It is proposed that HSP90 buffers or hides phenotypic variations in animals and plants by masking mutations in some of its client proteins. However, none of the client proteins with cryptic mutations has been identified to date. Here, we identify the first client protein example by which HSP90 buffers a mutation: the auxin receptor transport inhibitor response 1 (TIR1). TIR1 interacts with HSP90 in the nucleus. An HSP90-specific inhibitor abolished the nuclear localization of TIR1 and the auxin-induced degradation of a TIR1-substrate, indicating that TIR1 is an HSP90 client protein. Plants with a null mutation in the TIR1 gene had a defect in auxin response, whereas plants with a point mutation in the TIR1 gene responded to auxin treatment in young seedlings, but a cryptic defect in its auxin response was exposed with HSP90 inhibitor treatment. These results demonstrate that HSP90 masks a point mutation in the auxin receptor TIR1 and thereby buffers auxin-responsive phenotypes.
Collapse
Affiliation(s)
- Etsuko Watanabe
- Department of Cell Biology, National Institute for Basic Biology, Okazaki, 444-8585 Japan
- Present address: Cryobiofrontier Research Center, Faculty of Agriculture, Iwate University, Morioka, 020-8550 Japan
| | - Shoji Mano
- Department of Evolutionary Biology and Biodiversity, National Institute for Basic Biology, Okazaki, 444-8585 Japan
- Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, 444-8585 Japan
| | - Mika Nomoto
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, 464-8602 Japan
| | - Yasuomi Tada
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, 464-8602 Japan
- Center for Gene Research, Nagoya University, Nagoya, 464-8602 Japan
| | - Ikuko Hara-Nishimura
- Department of Botany; Graduate School of Science, Kyoto University, Kyoto, 606-8502 Japan
- Present address: Faculty of Science and Engineering, Konan University, Kobe, 658-0073 Japan
| | - Mikio Nishimura
- Department of Cell Biology, National Institute for Basic Biology, Okazaki, 444-8585 Japan
| | - Kenji Yamada
- Department of Cell Biology, National Institute for Basic Biology, Okazaki, 444-8585 Japan
- Department of Botany; Graduate School of Science, Kyoto University, Kyoto, 606-8502 Japan
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, 30-387, Poland
| |
Collapse
|
28
|
Gotté M, Bénard M, Kiefer-Meyer MC, Jaber R, Moore JP, Vicré-Gibouin M, Driouich A. Endoplasmic Reticulum Body-Related Gene Expression in Different Root Zones of Arabidopsis Isolated by Laser-Assisted Microdissection. THE PLANT GENOME 2016; 9. [PMID: 27898830 DOI: 10.3835/plantgenome2015.08.0076] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 03/30/2016] [Indexed: 05/22/2023]
Abstract
Endoplasmic reticulum (ER) bodies are important organelles for root defense. However, little is known regarding the genetic control of their formation in root tissues. In the present study, (L.) Heynh. roots were dissected using laser-assisted microdissection (LAM) with minimal sample preparation (no fixation or embedding steps) and the expression of genes associated with ER body formation and function was assessed by real-time quantitative reverse-transcription polymerase chain reaction (RT-qRT-PCR) in the presence and absence of the defense phytohormone methyl jasmonate (MeJA). Zones of interest were identified in plants overexpressing a fluorescent construct; these being the root cap zone, meristematic zone, elongation zone, and differentiation zone. Given their role in ER body formation, the expression of the genes , , , , and was evaluated in the whole root and in the four dissected root zones using RT-qRT-PCR. Our data show that the expression level of all five genes differs in a root-zone-specific manner in untreated roots. They also reveal that all of them are overexpressed in response to MeJA with the two genes being the most highly overexpressed in the EZ. Finally, the gene, encoding for a transcription factor that regulates the expression of the four other genes, is the first to respond to MeJA, supporting its central role in ER body formation and function in root defense.
Collapse
|
29
|
At14a-Like1 participates in membrane-associated mechanisms promoting growth during drought in Arabidopsis thaliana. Proc Natl Acad Sci U S A 2015; 112:10545-50. [PMID: 26240315 DOI: 10.1073/pnas.1510140112] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Limited knowledge of how plants regulate their growth and metabolism in response to drought and reduced soil water potential has impeded efforts to improve stress tolerance. Increased expression of the membrane-associated protein At14a-like1 (AFL1) led to increased growth and accumulation of the osmoprotective solute proline without negative effects on unstressed plants. Conversely, inducible RNA-interference suppression of AFL1 decreased growth and proline accumulation during low water potential while having no effect on unstressed plants. AFL1 overexpression lines had reduced expression of many stress-responsive genes, suggesting AFL1 may promote growth in part by suppression of negative regulatory genes. AFL1 interacted with the endomembrane proteins protein disulfide isomerase 5 (PDI5) and NAI2, with the PDI5 interaction being particularly increased by stress. PDI5 and NAI2 are negative regulatory factors, as pdi5, nai2, and pdi5-2nai2-3 mutants had increased growth and proline accumulation at low water potential. AFL1 also interacted with Adaptor protein2-2A (AP2-2A), which is part of a complex that recruits cargo proteins and promotes assembly of clathrin-coated vesicles. AFL1 colocalization with clathrin light chain along the plasma membrane, together with predictions of AFL1 structure, were consistent with a role in vesicle formation or trafficking. Fractionation experiments indicated that AFL1 is a peripheral membrane protein associated with both plasma membrane and endomembranes. These data identify classes of proteins (AFL1, PDI5, and NAI2) not previously known to be involved in drought signaling. AFL1-predicted structure, protein interactions, and localization all indicate its involvement in previously uncharacterized membrane-associated drought sensing or signaling mechanisms.
Collapse
|
30
|
Hawes C, Kiviniemi P, Kriechbaumer V. The endoplasmic reticulum: a dynamic and well-connected organelle. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2015; 57:50-62. [PMID: 25319240 DOI: 10.1111/jipb.12297] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 10/09/2014] [Indexed: 06/04/2023]
Abstract
The endoplasmic reticulum forms the first compartment in a series of organelles which comprise the secretory pathway. It takes the form of an extremely dynamic and pleomorphic membrane-bounded network of tubules and cisternae which have numerous different cellular functions. In this review, we discuss the nature of endoplasmic reticulum structure and dynamics, its relationship with closely associated organelles, and its possible function as a highway for the distribution and delivery of a diverse range of structures from metabolic complexes to viral particles.
Collapse
Affiliation(s)
- Chris Hawes
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
| | | | | |
Collapse
|
31
|
Gotté M, Ghosh R, Bernard S, Nguema-Ona E, Vicré-Gibouin M, Hara-Nishimura I, Driouich A. Methyl Jasmonate Affects Morphology, Number and Activity of Endoplasmic Reticulum Bodies in Raphanus sativus Root Cells. ACTA ACUST UNITED AC 2014; 56:61-72. [DOI: 10.1093/pcp/pcu141] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
32
|
Yamamoto A, Yoshii M, Murase S, Fujita M, Kurata N, Hobo T, Kagaya Y, Takeda S, Hattori T. Cell-by-Cell Developmental Transition from Embryo to Post-Germination Phase Revealed by Heterochronic Gene Expression and ER-Body Formation in Arabidopsis leafy cotyledon Mutants. ACTA ACUST UNITED AC 2014; 55:2112-25. [DOI: 10.1093/pcp/pcu139] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
33
|
Goto-Yamada S, Mano S, Nakamori C, Kondo M, Yamawaki R, Kato A, Nishimura M. Chaperone and Protease Functions of LON Protease 2 Modulate the Peroxisomal Transition and Degradation with Autophagy. ACTA ACUST UNITED AC 2014; 55:482-96. [DOI: 10.1093/pcp/pcu017] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
34
|
Galland M, Huguet R, Arc E, Cueff G, Job D, Rajjou L. Dynamic proteomics emphasizes the importance of selective mRNA translation and protein turnover during Arabidopsis seed germination. Mol Cell Proteomics 2014; 13:252-68. [PMID: 24198433 PMCID: PMC3879618 DOI: 10.1074/mcp.m113.032227] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 10/23/2013] [Indexed: 01/02/2023] Open
Abstract
During seed germination, the transition from a quiescent metabolic state in a dry mature seed to a proliferative metabolic state in a vigorous seedling is crucial for plant propagation as well as for optimizing crop yield. This work provides a detailed description of the dynamics of protein synthesis during the time course of germination, demonstrating that mRNA translation is both sequential and selective during this process. The complete inhibition of the germination process in the presence of the translation inhibitor cycloheximide established that mRNA translation is critical for Arabidopsis seed germination. However, the dynamics of protein turnover and the selectivity of protein synthesis (mRNA translation) during Arabidopsis seed germination have not been addressed yet. Based on our detailed knowledge of the Arabidopsis seed proteome, we have deepened our understanding of seed mRNA translation during germination by combining two-dimensional gel-based proteomics with dynamic radiolabeled proteomics using a radiolabeled amino acid precursor, namely [(35)S]-methionine, in order to highlight de novo protein synthesis, stability, and turnover. Our data confirm that during early imbibition, the Arabidopsis translatome keeps reflecting an embryonic maturation program until a certain developmental checkpoint. Furthermore, by dividing the seed germination time lapse into discrete time windows, we highlight precise and specific patterns of protein synthesis. These data refine and deepen our knowledge of the three classical phases of seed germination based on seed water uptake during imbibition and reveal that selective mRNA translation is a key feature of seed germination. Beyond the quantitative control of translational activity, both the selectivity of mRNA translation and protein turnover appear as specific regulatory systems, critical for timing the molecular events leading to successful germination and seedling establishment.
Collapse
Affiliation(s)
- Marc Galland
- From ‡INRA, Jean-Pierre Bourgin Institute (IJPB, UMR1318 INRA-AgroParisTech), Laboratory of Excellence “Saclay Plant Sciences” (LabEx SPS), F-78026 Versailles, France
- §AgroParisTech, Chair of Plant Physiology, F-75231 Paris, France
| | - Romain Huguet
- ¶CNRS/Bayer CropScience Joint Laboratory (UMR5240), F-69263 Lyon, France
| | - Erwann Arc
- From ‡INRA, Jean-Pierre Bourgin Institute (IJPB, UMR1318 INRA-AgroParisTech), Laboratory of Excellence “Saclay Plant Sciences” (LabEx SPS), F-78026 Versailles, France
- §AgroParisTech, Chair of Plant Physiology, F-75231 Paris, France
| | - Gwendal Cueff
- From ‡INRA, Jean-Pierre Bourgin Institute (IJPB, UMR1318 INRA-AgroParisTech), Laboratory of Excellence “Saclay Plant Sciences” (LabEx SPS), F-78026 Versailles, France
- §AgroParisTech, Chair of Plant Physiology, F-75231 Paris, France
| | - Dominique Job
- §AgroParisTech, Chair of Plant Physiology, F-75231 Paris, France
- ¶CNRS/Bayer CropScience Joint Laboratory (UMR5240), F-69263 Lyon, France
| | - Loïc Rajjou
- From ‡INRA, Jean-Pierre Bourgin Institute (IJPB, UMR1318 INRA-AgroParisTech), Laboratory of Excellence “Saclay Plant Sciences” (LabEx SPS), F-78026 Versailles, France
- §AgroParisTech, Chair of Plant Physiology, F-75231 Paris, France
| |
Collapse
|
35
|
Nakano RT, Yamada K, Bednarek P, Nishimura M, Hara-Nishimura I. ER bodies in plants of the Brassicales order: biogenesis and association with innate immunity. FRONTIERS IN PLANT SCIENCE 2014; 5:73. [PMID: 24653729 PMCID: PMC3947992 DOI: 10.3389/fpls.2014.00073] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 02/12/2014] [Indexed: 05/20/2023]
Abstract
The endoplasmic reticulum (ER) forms highly organized network structures composed of tubules and cisternae. Many plant species develop additional ER-derived structures, most of which are specific for certain groups of species. In particular, a rod-shaped structure designated as the ER body is produced by plants of the Brassicales order, which includes Arabidopsis thaliana. Genetic analyses and characterization of A. thaliana mutants possessing a disorganized ER morphology or lacking ER bodies have provided insights into the highly organized mechanisms responsible for the formation of these unique ER structures. The accumulation of proteins specific for the ER body within the ER plays an important role in the formation of ER bodies. However, a mutant that exhibits morphological defects of both the ER and ER bodies has not been identified. This suggests that plants in the Brassicales order have evolved novel mechanisms for the development of this unique organelle, which are distinct from those used to maintain generic ER structures. In A. thaliana, ER bodies are ubiquitous in seedlings and roots, but rare in rosette leaves. Wounding of rosette leaves induces de novo formation of ER bodies, suggesting that these structures are associated with resistance against pathogens and/or herbivores. ER bodies accumulate a large amount of β-glucosidases, which can produce substances that potentially protect against invading pests. Biochemical studies have determined that the enzymatic activities of these β-glucosidases are enhanced during cell collapse. These results suggest that ER bodies are involved in plant immunity, although there is no direct evidence of this. In this review, we provide recent perspectives of ER and ER body formation in A. thaliana, and discuss clues for the functions of ER bodies. We highlight defense strategies against biotic stress that are unique for the Brassicales order, and discuss how ER structures could contribute to these strategies.
Collapse
Affiliation(s)
- Ryohei T. Nakano
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding ResearchCologne, Germany
| | - Kenji Yamada
- Department of Cell Biology, National Institute for Basic BiologyOkazaki, Japan
- Department of Basic Biology, School of Life Science, The Graduate University for Advanced Studies (Sokendai)Okazaki, Japan
| | - Paweł Bednarek
- Institute of Bioorganic Chemistry, Polish Academy of SciencesPoznañ, Poland
| | - Mikio Nishimura
- Department of Cell Biology, National Institute for Basic BiologyOkazaki, Japan
- Department of Basic Biology, School of Life Science, The Graduate University for Advanced Studies (Sokendai)Okazaki, Japan
| | - Ikuko Hara-Nishimura
- Department of Botany, Graduate School of Science, Kyoto UniversityKyoto, Japan
- *Correspondence: Ikuko Hara-Nishimura, Laboratory of Plant Molecular and Cell Biology, Department of Botany, Graduate School of Science, Kyoto University, Kita-Shirakawa Oiwake-cho, Sakyo-ku, 606-8502 Kyoto, Japan e-mail:
| |
Collapse
|
36
|
Shibata M, Oikawa K, Yoshimoto K, Kondo M, Mano S, Yamada K, Hayashi M, Sakamoto W, Ohsumi Y, Nishimura M. Highly oxidized peroxisomes are selectively degraded via autophagy in Arabidopsis. THE PLANT CELL 2013; 25:4967-83. [PMID: 24368788 PMCID: PMC3903999 DOI: 10.1105/tpc.113.116947] [Citation(s) in RCA: 158] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 11/08/2013] [Accepted: 12/09/2013] [Indexed: 05/18/2023]
Abstract
The positioning of peroxisomes in a cell is a regulated process that is closely associated with their functions. Using this feature of the peroxisomal positioning as a criterion, we identified three Arabidopsis thaliana mutants (peroxisome unusual positioning1 [peup1], peup2, and peup4) that contain aggregated peroxisomes. We found that the PEUP1, PEUP2, and PEUP4 were identical to Autophagy-related2 (ATG2), ATG18a, and ATG7, respectively, which are involved in the autophagic system. The number of peroxisomes was increased and the peroxisomal proteins were highly accumulated in the peup1 mutant, suggesting that peroxisome degradation by autophagy (pexophagy) is deficient in the peup1 mutant. These aggregated peroxisomes contained high levels of inactive catalase and were more oxidative than those of the wild type, indicating that peroxisome aggregates comprise damaged peroxisomes. In addition, peroxisome aggregation was induced in wild-type plants by exogenous application of hydrogen peroxide. The cat2 mutant also contained peroxisome aggregates. These findings demonstrate that hydrogen peroxide as a result of catalase inactivation is the inducer of peroxisome aggregation. Furthermore, an autophagosome marker, ATG8, frequently colocalized with peroxisome aggregates, indicating that peroxisomes damaged by hydrogen peroxide are selectively degraded by autophagy in the wild type. Our data provide evidence that autophagy is crucial for quality control mechanisms for peroxisomes in Arabidopsis.
Collapse
Affiliation(s)
- Michitaro Shibata
- Department of Cell Biology, National Institute for Basic Biology, Okazaki 444-8585, Japan
- Department of Basic Biology, School of Life Science, The Graduate University for Advanced Studies, Okazaki 444-8585, Japan
| | - Kazusato Oikawa
- Department of Cell Biology, National Institute for Basic Biology, Okazaki 444-8585, Japan
| | - Kohki Yoshimoto
- Institut National de la Recherche Agronomique, UMR1318, Institut Jean-Pierre Bourgin, RD10, F-78000 Versailles, France
- AgroParisTech, Institut Jean-Pierre Bourgin, RD10, F-78000 Versailles, France
| | - Maki Kondo
- Department of Cell Biology, National Institute for Basic Biology, Okazaki 444-8585, Japan
| | - Shoji Mano
- Department of Cell Biology, National Institute for Basic Biology, Okazaki 444-8585, Japan
- Department of Basic Biology, School of Life Science, The Graduate University for Advanced Studies, Okazaki 444-8585, Japan
| | - Kenji Yamada
- Department of Cell Biology, National Institute for Basic Biology, Okazaki 444-8585, Japan
- Department of Basic Biology, School of Life Science, The Graduate University for Advanced Studies, Okazaki 444-8585, Japan
| | - Makoto Hayashi
- Department of Cell Biology, National Institute for Basic Biology, Okazaki 444-8585, Japan
- Department of Basic Biology, School of Life Science, The Graduate University for Advanced Studies, Okazaki 444-8585, Japan
| | - Wataru Sakamoto
- Institute of Plant Science and Resources, Okayama University, Okayama 710-0046, Japan
| | - Yoshinori Ohsumi
- Frontier Research Center, Tokyo Institute of Technology, Yokohama 226-8503, Japan
| | - Mikio Nishimura
- Department of Cell Biology, National Institute for Basic Biology, Okazaki 444-8585, Japan
- Department of Basic Biology, School of Life Science, The Graduate University for Advanced Studies, Okazaki 444-8585, Japan
- Address correspondence to
| |
Collapse
|
37
|
Hu WJ, Chen J, Liu TW, Liu X, Chen J, Wu FH, Wang WH, He JX, Xiao Q, Zheng HL. Comparative proteomic analysis on wild type and nitric oxide-overproducing mutant (nox1) of Arabidopsis thaliana. Nitric Oxide 2013; 36:19-30. [PMID: 24184441 DOI: 10.1016/j.niox.2013.10.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 09/22/2013] [Accepted: 10/22/2013] [Indexed: 11/28/2022]
Abstract
Nitric oxide (NO) as a ubiquitous signal molecule plays an important role in plant development and growth. Here, we compared the proteomic changes between NO-overproducing mutant (nox1) and wild-type (WT) of Arabidopsis thaliana using two-dimensional electrophoresis coupled with MALDI-TOF MS. We successfully identified 59 differentially expressed proteins in nox1 mutant, which are predicted to play potential roles in specific cellular processes, such as post-translational modification, energy production and conversion, metabolism, transcription and signal transduction, cell rescue and defense, development and differentiation. Particularly, expression levels of five anti-oxidative enzymes were altered by the mutation; and assays of their respective enzymatic activities indicated an enhanced level of oxidative stress in nox1 mutant. Finally, some important proteins were further confirmed at transcriptional level using quantitative real-time PCR revealing the systemic changes between WT and nox1. The result suggests that obvious morphological changes in the nox1 mutant may be regulated by different mechanisms and factors, while excess endogenous NO maybe one of the possible reasons.
Collapse
Affiliation(s)
- Wen-Jun Hu
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, PR China
| | - Juan Chen
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, PR China
| | - Ting-Wu Liu
- Department of Biology, Huaiyin Normal University, Huaian, Jiangsu 223300, PR China; Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, PR China
| | - Xiang Liu
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, PR China
| | - Juan Chen
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, PR China
| | - Fei-Hua Wu
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, PR China
| | - Wen-Hua Wang
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, PR China
| | - Jun-Xian He
- State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Qiang Xiao
- Laboratory of Biological Resources Protection and Utilization of Hubei Province, Hubei Institutes for Nationalities, Enshi 445000, PR China
| | - Hai-Lei Zheng
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, PR China.
| |
Collapse
|
38
|
Hakenjos JP, Bejai S, Ranftl Q, Behringer C, Vlot AC, Absmanner B, Hammes U, Heinzlmeir S, Kuster B, Schwechheimer C. ML3 is a NEDD8- and ubiquitin-modified protein. PLANT PHYSIOLOGY 2013; 163:135-49. [PMID: 23903439 PMCID: PMC3762636 DOI: 10.1104/pp.113.221341] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 07/30/2013] [Indexed: 05/23/2023]
Abstract
NEDD8 (NEURAL PRECURSOR CELL-EXPRESSED, DEVELOPMENTALLY DOWN-REGULATED PROTEIN8) is an evolutionarily conserved 8-kD protein that is closely related to ubiquitin and that can be conjugated like ubiquitin to specific lysine residues of target proteins in eukaryotes. In contrast to ubiquitin, for which a broad range of substrate proteins are known, only a very limited number of NEDD8 target proteins have been identified to date. Best understood, and also evolutionarily conserved, is the NEDD8 modification (neddylation) of cullins, core subunits of the cullin-RING-type E3 ubiquitin ligases that promote the polyubiquitylation of degradation targets in eukaryotes. Here, we show that Myeloid differentiation factor-2-related lipid-recognition domain protein ML3 is an NEDD8- as well as ubiquitin-modified protein in Arabidopsis (Arabidopsis thaliana) and examine the functional role of ML3 in the plant cell. Our analysis indicates that ML3 resides in the vacuole as well as in endoplasmic reticulum (ER) bodies. ER bodies are Brassicales-specific ER-derived organelles and, similar to other ER body proteins, ML3 orthologs can only be identified in this order of flowering plants. ML3 gene expression is promoted by wounding as well as by the phytohormone jasmonic acid and repressed by ethylene, signals that are known to induce and repress ER body formation, respectively. Furthermore, ML3 protein abundance is dependent on NAI1, a master regulator of ER body formation in Arabidopsis. The regulation of ML3 expression and the localization of ML3 in ER bodies and the vacuole is in agreement with a demonstrated importance of ML3 in the defense to herbivore attack. Here, we extend the spectrum of ML3 biological functions by demonstrating a role in the response to microbial pathogens.
Collapse
|
39
|
Batzenschlager M, Masoud K, Janski N, Houlné G, Herzog E, Evrard JL, Baumberger N, Erhardt M, Nominé Y, Kieffer B, Schmit AC, Chabouté ME. The GIP gamma-tubulin complex-associated proteins are involved in nuclear architecture in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2013; 4:480. [PMID: 24348487 PMCID: PMC3842039 DOI: 10.3389/fpls.2013.00480] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 11/05/2013] [Indexed: 05/08/2023]
Abstract
During interphase, the microtubular cytoskeleton of cycling plant cells is organized in both cortical and perinuclear arrays. Perinuclear microtubules (MTs) are nucleated from γ-Tubulin Complexes (γ-TuCs) located at the surface of the nucleus. The molecular mechanisms of γ-TuC association to the nuclear envelope (NE) are currently unknown. The γ-TuC Protein 3 (GCP3)-Interacting Protein 1 (GIP1) is the smallest γ-TuC component identified so far. AtGIP1 and its homologous protein AtGIP2 participate in the localization of active γ-TuCs at interphasic and mitotic MT nucleation sites. Arabidopsis gip1gip2 mutants are impaired in establishing a fully functional mitotic spindle and exhibit severe developmental defects. In this study, gip1gip2 knock down mutants were further characterized at the cellular level. In addition to defects in both the localization of γ-TuC core proteins and MT fiber robustness, gip1gip2 mutants exhibited a severe alteration of the nuclear shape associated with an abnormal distribution of the nuclear pore complexes. Simultaneously, they showed a misorganization of the inner nuclear membrane protein AtSUN1. Furthermore, AtGIP1 was identified as an interacting partner of AtTSA1 which was detected, like the AtGIP proteins, at the NE. These results provide the first evidence for the involvement of a γ-TuC component in both nuclear shaping and NE organization. Functional hypotheses are discussed in order to propose a model for a GIP-dependent nucleo-cytoplasmic continuum.
Collapse
Affiliation(s)
- Morgane Batzenschlager
- Centre National de la Recherche Scientifique, Institut de Biologie Moléculaire des Plantes, UPR 2357, Conventionné avec l'Université de StrasbourgStrasbourg, France
| | - Kinda Masoud
- Centre National de la Recherche Scientifique, Institut de Biologie Moléculaire des Plantes, UPR 2357, Conventionné avec l'Université de StrasbourgStrasbourg, France
| | - Natacha Janski
- Centre National de la Recherche Scientifique, Institut de Biologie Moléculaire des Plantes, UPR 2357, Conventionné avec l'Université de StrasbourgStrasbourg, France
| | - Guy Houlné
- Centre National de la Recherche Scientifique, Institut de Biologie Moléculaire des Plantes, UPR 2357, Conventionné avec l'Université de StrasbourgStrasbourg, France
| | - Etienne Herzog
- Centre National de la Recherche Scientifique, Institut de Biologie Moléculaire des Plantes, UPR 2357, Conventionné avec l'Université de StrasbourgStrasbourg, France
| | - Jean-Luc Evrard
- Centre National de la Recherche Scientifique, Institut de Biologie Moléculaire des Plantes, UPR 2357, Conventionné avec l'Université de StrasbourgStrasbourg, France
| | - Nicolas Baumberger
- Centre National de la Recherche Scientifique, Institut de Biologie Moléculaire des Plantes, UPR 2357, Conventionné avec l'Université de StrasbourgStrasbourg, France
| | - Mathieu Erhardt
- Centre National de la Recherche Scientifique, Institut de Biologie Moléculaire des Plantes, UPR 2357, Conventionné avec l'Université de StrasbourgStrasbourg, France
| | - Yves Nominé
- Biotechnologie et Signalisation cellulaire, Institut de Recherche de l'Ecole de Biotechnologie de Strasbourg, UMR 7242, Université de StrasbourgIllkirch, France
| | - Bruno Kieffer
- Institut de Génétique et Biologie Moléculaire et Cellulaire, Ecole Supérieure de Biotechnologie de StrasbourgIllkirch, France
| | - Anne-Catherine Schmit
- Centre National de la Recherche Scientifique, Institut de Biologie Moléculaire des Plantes, UPR 2357, Conventionné avec l'Université de StrasbourgStrasbourg, France
- *Correspondence: Anne-Catherine Schmit, Institut de Biologie Moléculaire des Plantes, UPR2357 du CNRS, 12, rue du Gl Zimmer, 67084 Strasbourg-Cedex, France e-mail:
| | - Marie-Edith Chabouté
- Centre National de la Recherche Scientifique, Institut de Biologie Moléculaire des Plantes, UPR 2357, Conventionné avec l'Université de StrasbourgStrasbourg, France
| |
Collapse
|
40
|
Yamada K, Nagano AJ, Nishina M, Hara-Nishimura I, Nishimura M. Identification of two novel endoplasmic reticulum body-specific integral membrane proteins. PLANT PHYSIOLOGY 2013; 161:108-20. [PMID: 23166355 PMCID: PMC3532245 DOI: 10.1104/pp.112.207654] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Accepted: 11/15/2012] [Indexed: 05/05/2023]
Abstract
The endoplasmic reticulum (ER) body, a large compartment specific to the Brassicales, accumulates β-glucosidase and possibly plays a role in the defense against pathogens and herbivores. Although the ER body is a subdomain of the ER, it is unclear whether any ER body-specific membrane protein exists. In this study, we identified two integral membrane proteins of the ER body in Arabidopsis (Arabidopsis thaliana) and termed them MEMBRANE PROTEIN OF ENDOPLASMIC RETICULUM BODY1 (MEB1) and MEB2. In Arabidopsis, a basic helix-loop-helix transcription factor, NAI1, and an ER body component, NAI2, regulate ER body formation. The expression profiles of MEB1 and MEB2 are similar to those of NAI1, NAI2, and ER body β-glucosidase PYK10 in Arabidopsis. The expression of MEB1 and MEB2 was reduced in the nai1 mutant, indicating that NAI1 regulates the expression of MEB1 and MEB2 genes. MEB1 and MEB2 proteins localize to the ER body membrane but not to the ER network, suggesting that these proteins are specifically recruited to the ER body membrane. MEB1 and MEB2 physically interacted with ER body component NAI2, and they were diffused throughout the ER network in the nai2 mutant, which has no ER body. Heterologous expression of MEB1 and MEB2 in yeast (Saccharomyces cerevisiae) suppresses iron and manganese toxicity, suggesting that MEB1 and MEB2 are metal transporters. These results indicate that the membrane of ER bodies has specific membrane proteins and suggest that the ER body is involved in defense against metal stress as well as pathogens and herbivores.
Collapse
Affiliation(s)
- Kenji Yamada
- Department of Cell Biology, National Institute for Basic Biology, Okazaki 444–8585, Aichi, Japan (K.Y., Mo.N., Mi.N.); School of Life Science, Graduate University for Advanced Studies (Sokendai), Okazaki 444–8585, Aichi, Japan (K.Y., Mi.N.); and Department of Botany, Graduate School of Science, Kyoto University, Kyoto 606–8502, Kyoto, Japan (A.J.N., I.H.-N.)
| | | | - Momoko Nishina
- Department of Cell Biology, National Institute for Basic Biology, Okazaki 444–8585, Aichi, Japan (K.Y., Mo.N., Mi.N.); School of Life Science, Graduate University for Advanced Studies (Sokendai), Okazaki 444–8585, Aichi, Japan (K.Y., Mi.N.); and Department of Botany, Graduate School of Science, Kyoto University, Kyoto 606–8502, Kyoto, Japan (A.J.N., I.H.-N.)
| | - Ikuko Hara-Nishimura
- Department of Cell Biology, National Institute for Basic Biology, Okazaki 444–8585, Aichi, Japan (K.Y., Mo.N., Mi.N.); School of Life Science, Graduate University for Advanced Studies (Sokendai), Okazaki 444–8585, Aichi, Japan (K.Y., Mi.N.); and Department of Botany, Graduate School of Science, Kyoto University, Kyoto 606–8502, Kyoto, Japan (A.J.N., I.H.-N.)
| | - Mikio Nishimura
- Department of Cell Biology, National Institute for Basic Biology, Okazaki 444–8585, Aichi, Japan (K.Y., Mo.N., Mi.N.); School of Life Science, Graduate University for Advanced Studies (Sokendai), Okazaki 444–8585, Aichi, Japan (K.Y., Mi.N.); and Department of Botany, Graduate School of Science, Kyoto University, Kyoto 606–8502, Kyoto, Japan (A.J.N., I.H.-N.)
| |
Collapse
|
41
|
ERMO3/MVP1/GOLD36 is involved in a cell type-specific mechanism for maintaining ER morphology in Arabidopsis thaliana. PLoS One 2012; 7:e49103. [PMID: 23155454 PMCID: PMC3498303 DOI: 10.1371/journal.pone.0049103] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 10/04/2012] [Indexed: 11/19/2022] Open
Abstract
The endoplasmic reticulum (ER) has a unique, network-like morphology. The ER structures are composed of tubules, cisternae, and three-way junctions. This morphology is highly conserved among eukaryotes, but the molecular mechanism that maintains ER morphology has not yet been elucidated. In addition, certain Brassicaceae plants develop a unique ER-derived organelle called the ER body. This organelle accumulates large amounts of PYK10, a β-glucosidase, but its physiological functions are still obscure. We aimed to identify a novel factor required for maintaining the morphology of the ER, including ER bodies, and employed a forward-genetic approach using transgenic Arabidopsis thaliana (GFP-h) with fluorescently-labeled ER. We isolated and investigated a mutant (designated endoplasmic reticulum morphology3, ermo3) with huge aggregates and abnormal punctate structures of ER. ERMO3 encodes a GDSL-lipase/esterase family protein, also known as MVP1. Here, we showed that, although ERMO3/MVP1/GOLD36 was expressed ubiquitously, the morphological defects of ermo3 were specifically seen in a certain type of cells where ER bodies developed. Coimmunoprecipitation analysis combined with mass spectrometry revealed that ERMO3/MVP1/GOLD36 interacts with the PYK10 complex, a huge protein complex that is thought to be important for ER body-related defense systems. We also found that the depletion of transcription factor NAI1, a master regulator for ER body formation, suppressed the formation of ER-aggregates in ermo3 cells, suggesting that NAI1 expression plays an important role in the abnormal aggregation of ER. Our results suggest that ERMO3/MVP1/GOLD36 is required for preventing ER and other organelles from abnormal aggregation and for maintaining proper ER morphology in a coordinated manner with NAI1.
Collapse
|
42
|
Peremyslov VV, Klocko AL, Fowler JE, Dolja VV. Arabidopsis Myosin XI-K Localizes to the Motile Endomembrane Vesicles Associated with F-actin. FRONTIERS IN PLANT SCIENCE 2012; 3:184. [PMID: 22969781 PMCID: PMC3432474 DOI: 10.3389/fpls.2012.00184] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 07/28/2012] [Indexed: 05/18/2023]
Abstract
Plant myosins XI were implicated in cell growth, F-actin organization, and organelle transport, with myosin XI-K being a critical contributor to each of these processes. However, subcellular localization of myosins and the identity of their principal cargoes remain poorly understood. Here, we generated a functionally competent, fluorescent protein-tagged, myosin XI-K, and investigated its spatial distribution within Arabidopsis cells. This myosin was found to associate primarily not with larger organelles (e.g., Golgi) as was broadly assumed, but with endomembrane vesicles trafficking along F-actin. Subcellular localization and fractionation experiments indicated that the nature of myosin-associated vesicles is organ- and cell type-specific. In leaves, a large proportion of these vesicles aligned and co-fractionated with a motile endoplasmic reticulum (ER) subdomain. In roots, non-ER vesicles were a dominant myosin cargo. Myosin XI-K showed a striking polar localization at the tips of growing, but not mature, root hairs. These results strongly suggest that a major mechanism whereby myosins contribute to plant cell physiology is vesicle transport, and that this activity can be regulated depending on the growth phase of a cell.
Collapse
Affiliation(s)
- Valera V. Peremyslov
- Department of Botany and Plant Pathology, Center for Genome Research and Biocomputing, Oregon State UniversityCorvallis, OR, USA
| | - Amy L. Klocko
- Department of Botany and Plant Pathology, Center for Genome Research and Biocomputing, Oregon State UniversityCorvallis, OR, USA
| | - John E. Fowler
- Department of Botany and Plant Pathology, Center for Genome Research and Biocomputing, Oregon State UniversityCorvallis, OR, USA
| | - Valerian V. Dolja
- Department of Botany and Plant Pathology, Center for Genome Research and Biocomputing, Oregon State UniversityCorvallis, OR, USA
| |
Collapse
|
43
|
Au KKC, Pérez-Gómez J, Neto H, Müller C, Meyer AJ, Fricker MD, Moore I. A perturbation in glutathione biosynthesis disrupts endoplasmic reticulum morphology and secretory membrane traffic in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 71:881-94. [PMID: 22507191 DOI: 10.1111/j.1365-313x.2012.05022.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
To identify potentially novel and essential components of plant membrane trafficking mechanisms we performed a GFP-based forward genetic screen for seedling-lethal biosynthetic membrane trafficking mutants in Arabidopsis thaliana. Amongst these mutants, four recessive alleles of GSH2, which encodes glutathione synthase (GSH2), were recovered. Each allele was characterized by loss of the typical polygonal endoplasmic reticulum (ER) network and the accumulation of swollen ER-derived bodies which accumulated a soluble secretory marker. Since GSH2 is responsible for converting γ-glutamylcysteine (γ-EC) to glutathione (GSH) in the glutathione biosynthesis pathway, gsh2 mutants exhibited γ-EC hyperaccumulation and GSH deficiency. Redox-sensitive GFP revealed that gsh2 seedlings maintained redox poise in the cytoplasm but were more sensitive to oxidative challenge. Genetic and pharmacological evidence indicated that γ-EC accumulation rather than GSH deficiency was responsible for the perturbation of ER morphology. Use of soluble and membrane-bound ER markers suggested that the swollen ER bodies were derived from ER fusiform bodies. Despite the gross perturbation of ER morphology, gsh2 seedlings did not suffer from constitutive oxidative ER stress or lack of an unfolded protein response, and homozygotes for the weakest allele could be propagated. The link between glutathione biosynthesis and ER morphology and function is discussed.
Collapse
Affiliation(s)
- Kenneth K C Au
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, UK
| | | | | | | | | | | | | |
Collapse
|
44
|
Hayashi M, Nanba C, Saito M, Kondo M, Takeda A, Watanabe Y, Nishimura M. Loss of XRN4 function can trigger cosuppression in a sequence-dependent manner. PLANT & CELL PHYSIOLOGY 2012; 53:1310-1321. [PMID: 22611176 DOI: 10.1093/pcp/pcs078] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
OLE1 encodes an oleosin isoprotein, a major membrane protein of the lipid-reserve organelle in seeds known as the oil body. Transgenic Arabidopsis were generated to contain an artificial chimeric transgene composed of OLE1 and green fluorescent protein (GFP). Overexpression of the fusion protein allowed visualization of the oil body size and structure in living cells using fluorescence microscopy. Two mutants, xrn4-8(OleG) and xrn4-9(OleG), accumulating enlarged oil bodies with reduced GFP fluorescence were isolated from the mutagenized progeny of a transgenic plant. Both mutants contained a defect in EXORIBONUCLEASE4 (XRN4), a gene known to encode a ribonuclease that specifically degrades uncapped mRNAs. Transgene expression was silenced in these mutants, as demonstrated by the reduced levels of the transgene mRNA and its product, OLE1-GFP. XRN4 loss of function also triggered cosuppression, i.e. simultaneous reduction in expression of the transgene and an endogenous OLE1 gene that shared a region of identical sequence. The enlarged oil bodies exhibiting reduced GFP fluorescence were formed in the xrn4-8(OleG) and xrn4-9(OleG) mutants due to the reduction of the endogenous OLE1 and the transgene product, OLE1-GFP, respectively. Cosuppression triggered by the xrn4 mutation also occurs for other genes such as PYK10, which encodes an endoplasmic reticulum (ER) body-resident β-glucosidase. The overall results indicate that a loss of XRN4 function can potentially trigger the cosuppression in a sequence-dependent manner.
Collapse
MESH Headings
- Arabidopsis/genetics
- Arabidopsis/metabolism
- Arabidopsis Proteins/biosynthesis
- Arabidopsis Proteins/genetics
- Arabidopsis Proteins/metabolism
- Base Sequence
- Chromosome Mapping
- Chromosomes, Plant/genetics
- Chromosomes, Plant/metabolism
- Cloning, Molecular
- Exoribonucleases/genetics
- Exoribonucleases/metabolism
- Fluorescence
- Gene Expression Regulation, Plant
- Genes, Plant
- Green Fluorescent Proteins/genetics
- Green Fluorescent Proteins/metabolism
- Mutation
- Phenotype
- Plant Proteins/genetics
- Plant Proteins/metabolism
- Plants, Genetically Modified/genetics
- Plants, Genetically Modified/metabolism
- Plasmids/genetics
- Plasmids/metabolism
- RNA Interference
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Seed Storage Proteins/genetics
- Seed Storage Proteins/metabolism
- Seeds/metabolism
- Transformation, Genetic
- Transgenes
- beta-Glucosidase/genetics
- beta-Glucosidase/metabolism
Collapse
Affiliation(s)
- Makoto Hayashi
- Department of Cell Biology, National Institute for Basic Biology, Okazaki 444-8585, Japan.
| | | | | | | | | | | | | |
Collapse
|
45
|
Takahashi S, Yanai H, Nakamaru Y, Uchida A, Nakayama K, Satoh H. Molecular cloning, characterization and analysis of the intracellular localization of a water-soluble Chl-binding protein from Brussels sprouts (Brassica oleracea var. gemmifera). PLANT & CELL PHYSIOLOGY 2012; 53:879-91. [PMID: 22419824 DOI: 10.1093/pcp/pcs031] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
A water-soluble Chl-binding protein from Brussels sprouts (Brassica oleracea var. gemmifera), hereafter termed BoWSCP, is categorized into the Class II WSCPs (non-photoconvertible WSCPs). Previous studies on BoWSCP have focused mainly on its biochemical characterization. In this study, we cloned the cDNA encoding BoWSCP. Sequence analysis revealed that the BoWSCP gene was composed of a single exon corresponding to 654 bp of an open reading frame encoding 218 amino acid residues, including 19 residues of a deduced signal peptide targeted to the endoplasmic reticulum (ER). Matrix-assisted laser desorption ionization time-of-flight mass spectrometry analysis of native BoWSCP revealed that the molecular mass of the subunit was 19,008.523 Da, corresponding to a mature protein of 178 amino acids, indicating the removal of 21 residues in the C-terminal region. Functional BoWSCP was expressed in Escherichia coli as a hexa-histidine fusion protein (BoWSCP-His). When BoWSCP-His was mixed with thylakoid membranes in aqueous solution, BoWSCP-His was able to remove Chls from the thylakoid membranes. The absorption spectrum of the reconstituted BoWSCP-His was identical to that of the native BoWSCP. Chl binding analyses of BoWSCP-His revealed that the BoWSCP-His bound both Chl a and Chl b with almost the same affinity in 40% methanol solution, although the native BoWSCP had a higher content of Chl a. To reveal the intracellular localization of BoWSCP, we constructed a transgenic plant expressing the fluorescent protein fused with the N-terminal deduced signal peptide of BoWSCP. The fluorescence emitted from the chimeric protein was detected in the ER body, an ER-derived compartment observed only in Brassicaceae plants.
Collapse
Affiliation(s)
- Shigekazu Takahashi
- Department of Biomolecular Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan
| | | | | | | | | | | |
Collapse
|
46
|
Yamada K, Hara-Nishimura I, Nishimura M. Unique defense strategy by the endoplasmic reticulum body in plants. PLANT & CELL PHYSIOLOGY 2011; 52:2039-49. [PMID: 22102697 DOI: 10.1093/pcp/pcr156] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The endoplasmic reticulum (ER) is a site for the production of secretory proteins. Plants have developed ER subdomains for protein storage. The ER body is one such structure, which is observed in Brassicaceae plants. ER bodies accumulate in seedlings and roots or in wounded leaves in Arabidopsis. ER bodies contain high amounts of the β-glucosidases PYK10/BGLU23 in seedlings and roots or BGLU18 in wounded tissues. These results suggest that ER bodies are involved in the metabolism of glycoside molecules, presumably to produce repellents against pests and fungi. When Arabidopsis roots are homogenized, PYK10 formed large protein aggregates that include other β-glucosidases (BGLU21 and BGLU22), GDSL lipase-like proteins (GLL22) and cytosolic jacalin-related lectins (PBP1/JAL30, JAL31, JAL33, JAL34 and JAL35). Glucosidase activity increases by the aggregate formation. NAI1, a basic helix-loop-helix transcription factor, regulates the expression of the ER body proteins PYK10 and NAI2. Reduced expression of NAI2, PYK10 and BGLU21 resulted in abnormal ER body formation, indicating that these components regulate ER body formation. PYK10, BGLU21 and BGLU22 possess hydrolytic activity for scopolin, a coumaroyl glucoside that accumulates in the roots of Arabidopsis, and nai1 and pyk10 mutants are more susceptible to the symbiotic fungus Piriformospora indica. Therefore, it appears that the ER body is a unique organelle of Brassicaceae plants that is important for defense against pests and fungi.
Collapse
Affiliation(s)
- Kenji Yamada
- Department of Cell Biology, National Institute for Basic Biology, Nishigo-naka 38, Okazaki 444-8585, Aichi, Japan
| | | | | |
Collapse
|
47
|
Comprehensive network analysis of anther-expressed genes in rice by the combination of 33 laser microdissection and 143 spatiotemporal microarrays. PLoS One 2011; 6:e26162. [PMID: 22046259 PMCID: PMC3202526 DOI: 10.1371/journal.pone.0026162] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Accepted: 09/21/2011] [Indexed: 11/23/2022] Open
Abstract
Co-expression networks systematically constructed from large-scale transcriptome data reflect the interactions and functions of genes with similar expression patterns and are a powerful tool for the comprehensive understanding of biological events and mining of novel genes. In Arabidopsis (a model dicot plant), high-resolution co-expression networks have been constructed from very large microarray datasets and these are publicly available as online information resources. However, the available transcriptome data of rice (a model monocot plant) have been limited so far, making it difficult for rice researchers to achieve reliable co-expression analysis. In this study, we performed co-expression network analysis by using combined 44 K agilent microarray datasets of rice, which consisted of 33 laser microdissection (LM)-microarray datasets of anthers, and 143 spatiotemporal transcriptome datasets deposited in RicexPro. The entire data of the rice co-expression network, which was generated from the 176 microarray datasets by the Pearson correlation coefficient (PCC) method with the mutual rank (MR)-based cut-off, contained 24,258 genes and 60,441 genes pairs. Using these datasets, we constructed high-resolution co-expression subnetworks of two specific biological events in the anther, “meiosis” and “pollen wall synthesis”. The meiosis network contained many known or putative meiotic genes, including genes related to meiosis initiation and recombination. In the pollen wall synthesis network, several candidate genes involved in the sporopollenin biosynthesis pathway were efficiently identified. Hence, these two subnetworks are important demonstrations of the efficiency of co-expression network analysis in rice. Our co-expression analysis included the separated transcriptomes of pollen and tapetum cells in the anther, which are able to provide precise information on transcriptional regulation during male gametophyte development in rice. The co-expression network data presented here is a useful resource for rice researchers to elucidate important and complex biological events.
Collapse
|
48
|
Alvarez S, Hicks LM, Pandey S. ABA-dependent and -independent G-protein signaling in Arabidopsis roots revealed through an iTRAQ proteomics approach. J Proteome Res 2011; 10:3107-22. [PMID: 21545083 DOI: 10.1021/pr2001786] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Heterotrimeric G-proteins are important signal transducers in all eukaryotes. The plant hormone abscisic acid (ABA) has emerged as a key regulator of G-protein-mediated signaling pathways in plants. ABA-regulation of G-protein signaling involves both conventional and novel mechanisms. We have utilized the null mutant of the Arabidopsis G-protein α subunit gpa1 to evaluate to what extent ABA-dependent changes in the proteome are regulated by G-proteins. We used Arabidopsis root tissue as both ABA and G-proteins, individually and in combination, affect root growth and development. We identified 720 proteins, of which 42 showed GPA1-dependent and 74 showed ABA-dependent abundance changes. A majority of ABA-regulated proteins were also GPA1-dependent. Our data provide insight into how tissue specificity might be achieved in ABA-regulated G-protein signaling. A number of proteins related to ER body formation and intracellular trafficking were altered in gpa1 mutant, suggesting a novel role for GPA1 in these pathways. A potential link between ABA metabolism and ABA signaling was also revealed. The comparison of protein abundance changes in the absence of ABA offers clues to the role of GPA1 in ABA-independent signaling pathways, for example, regulation of cell division. These findings substantially contribute to our knowledge of G-protein signaling mechanisms in plants.
Collapse
Affiliation(s)
- Sophie Alvarez
- Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, Missouri 63132, USA
| | | | | |
Collapse
|
49
|
Takác T, Pechan T, Richter H, Müller J, Eck C, Böhm N, Obert B, Ren H, Niehaus K, Samaj J. Proteomics on brefeldin A-treated Arabidopsis roots reveals profilin 2 as a new protein involved in the cross-talk between vesicular trafficking and the actin cytoskeleton. J Proteome Res 2010; 10:488-501. [PMID: 21090759 DOI: 10.1021/pr100690f] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The growing importance of vesicular trafficking and cytoskeleton dynamic reorganization during plant development requires the exploitation of novel experimental approaches. Several genetic and cell biological studies have used diverse pharmaceutical drugs that inhibit vesicular trafficking and secretion to study these phenomena. Here, proteomic and cell biology approaches were applied to study effects of brefeldin A (BFA), an inhibitor of vesicle recycling and secretion, in Arabidopsis roots. The main aim of this study was to obtain an overview of proteins affected by BFA, but especially to identify new proteins involved in the vesicular trafficking and its cross-talk to the actin cytoskeleton. The results showed that BFA altered vesicular trafficking and caused the formation of BFA-compartments which was accompanied by differential expression of several proteins in root cells. Some of the BFA-up-regulated proteins belong to the class of the vesicular trafficking proteins, such as V-ATPase and reversibly glycosylated polypeptide, while others, such as profilin 2 and elongation factor 1 alpha, are rather involved in the remodeling of the actin cytoskeleton. Upregulation of profilin 2 by BFA was verified by immunoblot and live imaging at subcellular level. The latter approach also revealed that profilin 2 accumulated in BFA-compartments which was accompanied by remodeling of the actin cytoskeleton in BFA-treated root cells. Thus, profilin 2 seems to be involved in the cross-talk between vesicular trafficking and the actin cytoskeleton, in a BFA-dependent manner.
Collapse
Affiliation(s)
- Tomás Takác
- Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Department of Cell Biology, Palacký University, Olomouc, Czech Republic.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Peremyslov VV, Prokhnevsky AI, Dolja VV. Class XI myosins are required for development, cell expansion, and F-Actin organization in Arabidopsis. THE PLANT CELL 2010; 22:1883-97. [PMID: 20581304 PMCID: PMC2910955 DOI: 10.1105/tpc.110.076315] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2010] [Revised: 05/26/2010] [Accepted: 06/10/2010] [Indexed: 05/18/2023]
Abstract
The actomyosin system is conserved throughout eukaryotes. Although F-actin is essential for cell growth and plant development, roles of the associated myosins are poorly understood. Using multiple gene knockouts in Arabidopsis thaliana, we investigated functional profiles of five class XI myosins, XI-K, XI-1, XI-2, XI-B, and XI-I. Plants lacking three myosins XI showed stunted growth and delayed flowering, whereas elimination of four myosins further exacerbated these defects. Loss of myosins led to decreased leaf cell expansion, with the most severe defects observed in the larger leaf cells. Root hair length in myosin-deficient plants was reduced approximately 10-fold, with quadruple knockouts showing morphological abnormalities. It was also found that trafficking of Golgi and peroxisomes was entirely myosin dependent. Surprisingly, myosins were required for proper organization of F-actin and the associated endoplasmic reticulum networks, revealing a novel, architectural function of the class XI myosins. These results establish critical roles of myosin-driven transport and F-actin organization during polarized and diffuse cell growth and indicate that myosins are key factors in plant growth and development.
Collapse
|