1
|
Berkel C. Potential Impact of Climate Change-Induced Alterations on Pyroptotic Cell Death in Animal Cells: A Review. Mol Biotechnol 2025; 67:1784-1799. [PMID: 38748072 DOI: 10.1007/s12033-024-01182-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 04/16/2024] [Indexed: 04/10/2025]
Abstract
Climate change-induced alterations in temperature variation, ozone exposure, water salinity and acidification, and hypoxia might influence immunity and thus survival in diverse groups of animals from fish to mammals. Pyroptosis is a type of lytic pro-inflammatory programmed cell death, which participates in the innate immune response, and is involved in multiple diseases characterized by inflammation and cell death, mostly studied in human cells. Diverse extrinsic factors can induce pyroptosis, leading to the extracellular release of pro-inflammatory molecules such as IL-18. Climate change-related factors, either directly or indirectly, can also promote animal cell death via different regulated mechanisms, impacting organismal fitness. However, pyroptosis has been relatively less studied in this context compared to another cell death process, apoptosis. This review covers previous research pointing to the potential impact of climate change, through various abiotic stressors, on pyroptotic cell death in different animal cells in various contexts. It was proposed that temperature, ozone exposure, water salinity, water acidification and hypoxia have the potential to induce pyroptotic cell death in animal cells and promote inflammation, and that these pyroptotic events should be better understood to be able to mitigate the adverse effects of climate change on animal physiology and health. This is of high importance considering the increasing frequency, intensity and duration of climate-based changes in these environmental parameters, and the critical function of pyroptosis in immune responses of animals and in their predisposition to multiple diseases including cancer. Furthermore, the need for further mechanistic studies showing the more direct impact of climate change-induced environmental alterations on pyroptotic cell death in animals at the organismal level was highlighted. A complete picture of the association between climate change and pyroptosis in animals will be also highly valuable in terms of ecological and clinical applications, and it requires an interdisciplinary approach. SIGNIFICANCE: Climate change-induced alterations might influence animal physiology. Pyroptosis is a form of cell death with pro-inflammatory characteristics. Previous research suggests that temperature variation, ozone exposure, water salinity and acidification, and hypoxia might have the potential to contribute to pyroptotic cell death in certain cell types and contexts. Climate change-induced pyroptotic cell death should be better understood to be able to mitigate the adverse effects of climate change on animal health.
Collapse
Affiliation(s)
- Caglar Berkel
- Deparment of Molecular Biology and Genetics, Tokat Gaziosmanpasa University, Tokat, Türkiye.
| |
Collapse
|
2
|
Anagha KS, Kuttippurath J. Surface ozone pollution-driven risks for the yield of major food crops under future climate change scenarios in India. ENVIRONMENTAL RESEARCH 2025; 275:121390. [PMID: 40086574 DOI: 10.1016/j.envres.2025.121390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 03/11/2025] [Accepted: 03/12/2025] [Indexed: 03/16/2025]
Abstract
This study provides a comprehensive assessment of surface ozone (SurfO3) evolution in India under the future shared socio-economic pathway scenarios (SSPs) of the Coupled Model Intercomparison Project phase-6 (CMIP6), and its implications for changes in relative yield loss (RYL) of wheat, rice and maize. Scenarios with insufficient efforts to reduce the emission of precursors (e.g. SSP3-7.0) lead to significant increases in RYL (∼20% for wheat and ∼7% for rice and maize) post-2050. Conversely, SSP1-2.6 and SSP2-4.5 help to minimise RYL by controlling emissions. Accumulated ozone above a threshold of 40 (AOT40) in the growth stages of crops may surpass safer limits (3 ppm.h) by six-fold in the Indo-Gangetic Plain (IGP) for rice and maize, and in Central India for wheat in the SSP3-7.0 and SSP5-8.5 scenarios. Furthermore, climate penalty on SurfO3 is observed in rabi (winter: December-February) and post-kharif (post-monsoon: October-November) seasons, whereas kharif (summer: June-September) shows climate benefit in one model. Positive trends in climate penalties are observed in IGP during most seasons and in Central India during post-kharif and rabi. Wheat is most sensitive to emission pathways with high variability, while rice and maize show more stable projections. Undoubtedly, comprehensive strategies are required for crop yield enhancement, including stringent air pollution regulations, widespread adoption of clean energy, land use management and advancements in low-emission agricultural practices. Safeguarding agriculture productivity requires coordinated efforts to manage air quality and climate, ensuring a transition away from pathways like SSP3-7.0 and toward more sustainable, low-emission futures. Furthermore, efforts to address SurfO3-induced crop yield losses in India are vital for informing strategies to ensure global food security.
Collapse
Affiliation(s)
- K S Anagha
- CORAL, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | | |
Collapse
|
3
|
da Silva MAR, Cunha CS, Silva LLB, Farias IG, Teixeira IF. Chlorine-mediated methane activation: an efficient photocatalytic pathway to valuable chemicals. Chem Commun (Camb) 2025; 61:3934-3945. [PMID: 39936509 DOI: 10.1039/d4cc06303a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
Methane (CH4), a major component of natural gas, is both a valuable energy source and a potent greenhouse gas. Due to the remote locations of many CH4 reserves and the challenges of transportation, converting methane into liquid compounds under mild, sustainable conditions is highly desirable. Photocatalysis, a solar-driven technology, offers a promising approach for methane activation at ambient temperatures, avoiding issues like catalyst deactivation and product overoxidation associated with conventional high-temperature methods. Recent research highlights the potential of photogenerated chlorine radicals for methane conversion, providing a milder oxidative pathway that enhances selectivity for oxygenated products and minimizes overoxidation to CO2. This work reviews advancements in methane activation using chlorine-based photocatalysis, discussing its advantages and areas for further optimization to facilitate methane valorisation into valuable chemicals.
Collapse
Affiliation(s)
- Marcos A R da Silva
- Department of Chemistry, Federal University of São Carlos, 13565-905, São Carlos, SP, Brazil.
| | - Carla S Cunha
- Department of Chemistry, Federal University of São Carlos, 13565-905, São Carlos, SP, Brazil.
| | - Luana L B Silva
- Department of Chemistry, Federal University of São Carlos, 13565-905, São Carlos, SP, Brazil.
| | - Isadora G Farias
- Department of Chemistry, Federal University of São Carlos, 13565-905, São Carlos, SP, Brazil.
| | - Ivo F Teixeira
- Department of Chemistry, Federal University of São Carlos, 13565-905, São Carlos, SP, Brazil.
| |
Collapse
|
4
|
Gao C, Zhang X, Lun X, Gao Y, Guenther A, Zhao H, Zhang S, Huang L, Song K, Huang X, Gao M, Ma P, Jia Z, Xiu A, Zhang Y. BVOCs' role in dynamic shifts of summer ozone formation regimes across China and policy implications. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 376:124150. [PMID: 39970675 DOI: 10.1016/j.jenvman.2025.124150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/16/2024] [Accepted: 01/13/2025] [Indexed: 02/21/2025]
Abstract
Biogenic volatile organic compounds (BVOCs) are crucial players in atmospheric chemistry, significantly impacting the formation of tropospheric ozone (O₃). While China has made substantial strides in reducing anthropogenic VOC (AVOCs) emissions, O₃ levels persist, highlighting the complex interplay between biogenic and anthropogenic sources. A critical knowledge gap exists in understanding how BVOC emissions influence ozone formation regimes (OFRs) and how this knowledge can inform effective air quality policies. This study employs the Model of Emissions of Gases and Aerosols from Nature (MEGAN) version 3.2 and the Community Multiscale Air Quality Modeling System (CMAQ) version 5.3.3 models, combined with process analysis (PA) and the Integrated Source Apportionment Method (ISAM), to evaluate the impact of BVOC emissions on OFRs in China. The models simulate BVOC emissions and their effects on OFRs across various regions during July 2019. The findings highlight that BVOCs play a pivotal role in shifting OFRs, with significant implications for ozone mitigation strategies in China. The study suggests that effective ozone control measures must consider the dual impact of BVOCs and AVOCs, with tailored strategies for different regions and times of day. The study also proposes potential challenges in mitigating BVOC emissions and outlines future research directions for interdisciplinary collaboration to address the complexities of ozone pollution management. This research advances the understanding of BVOCs' roles in ozone formation dynamics and provides a foundation for developing more effective air quality management policies in China, especially as global greening and climate change continue to influence BVOC emissions.
Collapse
Affiliation(s)
- Chao Gao
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China; Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| | - Xuelei Zhang
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China; Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China.
| | - Xiaoxiu Lun
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Yang Gao
- Key Laboratory of Marine Environmental Science and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Alex Guenther
- Earth System Science Department, University of California, Irvine, CA, 92697, USA
| | - Hongmei Zhao
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China; Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| | - Shichun Zhang
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China; Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| | - Ling Huang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Kaishan Song
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| | - Xin Huang
- School of Atmospheric Sciences, Nanjing University, Nanjing, 210023, China
| | - Meng Gao
- Department of Geography, State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong Special Administrative Region, 999077, China
| | - Pengfei Ma
- Satellite Environmental Application Center of the Ministry of Ecology and Environment, Beijing, 100080, China
| | - Zhongjun Jia
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| | - Aijun Xiu
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China; Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| | - Yuanhang Zhang
- College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
5
|
Xu Y, Feng Z, Bao M, Li Y, Xia J, Xu S, Agathokleous E, Kobayashi K, Shang B, Liu B. Warming Mitigates Ozone Damage to Wheat Photosynthesis in a FACE Experiment. PLANT, CELL & ENVIRONMENT 2025; 48:2312-2328. [PMID: 39588789 DOI: 10.1111/pce.15304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/04/2024] [Accepted: 11/11/2024] [Indexed: 11/27/2024]
Abstract
Individual effects of elevated ozone (O3) and warming on wheat (Triticum aestivum L.) are well documented, their combined effects remain poorly understood. In the present study, we investigated the combined impacts of elevated O3 (1.5× ambient O3) and rising canopy temperature (+2°C) on the photosynthesis of wheat leaves in an open-air field experiment. We found that O3-induced oxidative stress reduced the biochemical capacity and inhibited leaf photosynthesis at the end of the grain-filling stage. Night-time warming (NW) increased leaf photosynthesis during the vegetative stage, but whole-day warming (WW) did not. Both WW and NW accelerated wheat development and decreased photosynthesis at the end of the reproductive stage. Neither elevated O3 nor warming stimulated antioxidant enzymes. Significant interaction between O3 and WW indicated that WW mitigated the adverse effect of O3 on leaf photosynthesis. Compared to NW, WW significantly increased daytime canopy temperature and canopy-to-air vapour pressure deficit across O3 treatments. Decreases in leaf water content and increases in grain oxygen isotope discrimination under warming suggested a link of WW-induced protection against O3 stress in photosynthesis with declines in stomatal O3 uptake rather than increases in the antioxidant capacity. Our results indicate the need to consider the warming-induced mitigation of O3 stress on leaf photosynthesis when predicting the effects of elevated O3 on crop growth under warmer climate in the future.
Collapse
Affiliation(s)
- Yansen Xu
- Jiangsu Key Laboratory of Agricultural and Ecological Meteorology, School of Ecology and Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, China
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science & Technology, Nanjing, China
| | - Zhaozhong Feng
- Jiangsu Key Laboratory of Agricultural and Ecological Meteorology, School of Ecology and Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, China
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science & Technology, Nanjing, China
| | - Mingxu Bao
- Jiangsu Key Laboratory of Agricultural and Ecological Meteorology, School of Ecology and Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, China
| | - Yi Li
- Jiangsu Key Laboratory of Agricultural and Ecological Meteorology, School of Ecology and Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, China
| | - Jiaxuan Xia
- National Engineering and Technology Center for Information Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Shiyun Xu
- Jiangsu Key Laboratory of Agricultural and Ecological Meteorology, School of Ecology and Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, China
| | - Evgenios Agathokleous
- Jiangsu Key Laboratory of Agricultural and Ecological Meteorology, School of Ecology and Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, China
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science & Technology, Nanjing, China
| | - Kazuhiko Kobayashi
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Bo Shang
- Jiangsu Key Laboratory of Agricultural and Ecological Meteorology, School of Ecology and Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, China
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science & Technology, Nanjing, China
| | - Bing Liu
- National Engineering and Technology Center for Information Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, Jiangsu, China
| |
Collapse
|
6
|
Liu N, He G, Wang H, He C, Wang H, Liu C, Wang Y, Wang H, Li L, Lu X, Fan S. Rising frequency of ozone-favorable synoptic weather patterns contributes to 2015-2022 ozone increase in Guangzhou. J Environ Sci (China) 2025; 148:502-514. [PMID: 39095184 DOI: 10.1016/j.jes.2023.09.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/20/2023] [Accepted: 09/20/2023] [Indexed: 08/04/2024]
Abstract
Objective weather classification methods have been extensively applied to identify dominant ozone-favorable synoptic weather patterns (SWPs), however, the consistency of different classification methods is rarely examined. In this study, we apply two widely-used objective methods, the self-organizing map (SOM) and K-means clustering analysis, to derive ozone-favorable SWPs at four Chinese megacities in 2015-2022. We find that the two algorithms are largely consistent in recognizing dominant ozone-favorable SWPs for four Chinese megacities. In the case of classifying six SWPs, the derived circulation fields are highly similar with a spatial correlation of 0.99 between the two methods, and the difference in the mean frequency of each SWP is less than 7%. The six dominant ozone-favorable SWPs in Guangzhou are all characterized by anomaly higher radiation and temperature, lower cloud cover, relative humidity, and wind speed, and stronger subsidence compared to climatology mean. We find that during 2015-2022, the occurrence of ozone-favorable SWPs days increases significantly at a rate of 3.2 day/year, faster than the increases in the ozone exceedance days (3.0 day/year). The interannual variability between the occurrence of ozone-favorable SWPs and ozone exceedance days are generally consistent with a temporal correlation coefficient of 0.6. In particular, the significant increase in ozone-favorable SWPs in 2022, especially the Subtropical High type which typically occurs in September, is consistent with a long-lasting ozone pollution episode in Guangzhou during September 2022. Our results thus reveal that enhanced frequency of ozone-favorable SWPs plays an important role in the observed 2015-2022 ozone increase in Guangzhou.
Collapse
Affiliation(s)
- Nanxi Liu
- School of Atmospheric Sciences, Sun Yat-sen University, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China; Guangdong Provincial Observation and Research Station for Climate Environment and Air Quality Change in the Pearl River Estuary, Key Laboratory of Tropical Atmosphere-Ocean System (Sun Yat-sen University), Ministry of Education, Zhuhai 519082, China
| | - Guowen He
- School of Atmospheric Sciences, Sun Yat-sen University, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China; Guangdong Provincial Observation and Research Station for Climate Environment and Air Quality Change in the Pearl River Estuary, Key Laboratory of Tropical Atmosphere-Ocean System (Sun Yat-sen University), Ministry of Education, Zhuhai 519082, China
| | - Haolin Wang
- School of Atmospheric Sciences, Sun Yat-sen University, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China; Guangdong Provincial Observation and Research Station for Climate Environment and Air Quality Change in the Pearl River Estuary, Key Laboratory of Tropical Atmosphere-Ocean System (Sun Yat-sen University), Ministry of Education, Zhuhai 519082, China
| | - Cheng He
- School of Atmospheric Sciences, Sun Yat-sen University, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China; Guangdong Provincial Observation and Research Station for Climate Environment and Air Quality Change in the Pearl River Estuary, Key Laboratory of Tropical Atmosphere-Ocean System (Sun Yat-sen University), Ministry of Education, Zhuhai 519082, China
| | - Haofan Wang
- School of Atmospheric Sciences, Sun Yat-sen University, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China; Guangdong Provincial Observation and Research Station for Climate Environment and Air Quality Change in the Pearl River Estuary, Key Laboratory of Tropical Atmosphere-Ocean System (Sun Yat-sen University), Ministry of Education, Zhuhai 519082, China
| | - Chenxi Liu
- School of Atmospheric Sciences, Sun Yat-sen University, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China; Guangdong Provincial Observation and Research Station for Climate Environment and Air Quality Change in the Pearl River Estuary, Key Laboratory of Tropical Atmosphere-Ocean System (Sun Yat-sen University), Ministry of Education, Zhuhai 519082, China
| | - Yiming Wang
- School of Atmospheric Sciences, Sun Yat-sen University, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China; Guangdong Provincial Observation and Research Station for Climate Environment and Air Quality Change in the Pearl River Estuary, Key Laboratory of Tropical Atmosphere-Ocean System (Sun Yat-sen University), Ministry of Education, Zhuhai 519082, China
| | - Haichao Wang
- School of Atmospheric Sciences, Sun Yat-sen University, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China; Guangdong Provincial Observation and Research Station for Climate Environment and Air Quality Change in the Pearl River Estuary, Key Laboratory of Tropical Atmosphere-Ocean System (Sun Yat-sen University), Ministry of Education, Zhuhai 519082, China
| | - Lei Li
- School of Atmospheric Sciences, Sun Yat-sen University, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China; Guangdong Provincial Observation and Research Station for Climate Environment and Air Quality Change in the Pearl River Estuary, Key Laboratory of Tropical Atmosphere-Ocean System (Sun Yat-sen University), Ministry of Education, Zhuhai 519082, China
| | - Xiao Lu
- School of Atmospheric Sciences, Sun Yat-sen University, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China; Guangdong Provincial Observation and Research Station for Climate Environment and Air Quality Change in the Pearl River Estuary, Key Laboratory of Tropical Atmosphere-Ocean System (Sun Yat-sen University), Ministry of Education, Zhuhai 519082, China.
| | - Shaojia Fan
- School of Atmospheric Sciences, Sun Yat-sen University, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China; Guangdong Provincial Observation and Research Station for Climate Environment and Air Quality Change in the Pearl River Estuary, Key Laboratory of Tropical Atmosphere-Ocean System (Sun Yat-sen University), Ministry of Education, Zhuhai 519082, China.
| |
Collapse
|
7
|
Wieloch T. Shining a new light on the classical concepts of carbon-isotope dendrochronology. THE NEW PHYTOLOGIST 2025; 245:939-944. [PMID: 39562520 PMCID: PMC11711932 DOI: 10.1111/nph.20258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 10/22/2024] [Indexed: 11/21/2024]
Abstract
Retrospective information about plant ecophysiology and the climate system are key inputs in Earth system and vegetation models. Dendrochronology provides such information with large spatiotemporal coverage, and carbon-isotope analysis across tree-ring series is among the most advanced dendrochronological tools. For the past 70 years, this analysis was performed on whole molecules and, to this day, 13C discrimination during carbon assimilation is invoked to explain isotope variation and associated climate signals. However, recently it was reported that tree-ring glucose exhibits multiple isotope signals at the intramolecular level (see Wieloch et al., 2025). Here, I estimated the signals' contribution to whole-molecule isotope variation and found that downstream processes in leaf and stem metabolism each introduce more variation than carbon assimilation. Moreover, downstream processes introduce most of the climate information. These findings are inconsistent with the classical concepts/practices of carbon-isotope dendrochronology. More importantly, intramolecular tree-ring isotope analysis promises novel insights into forest metabolism and the climate of the past.
Collapse
Affiliation(s)
- Thomas Wieloch
- Department of Forest Genetics and Plant PhysiologySwedish University of Agricultural Sciences, Umeå Plant Science Centre90183UmeåSweden
- Division of Geological and Planetary SciencesCalifornia Institute of Technology91125PasadenaCAUSA
| |
Collapse
|
8
|
Havé M, Espinasse C, Cottyn-Boitte B, Puga-Freitas R, Bagard M, Balliau T, Zivy M, Ganeshan S, Chibbar RN, Castell JF, Bethenod O, Leitao L, Repellin A. Triticain alpha represents the major active papain-like cysteine protease in naturally senescing and ozone-treated leaves of wheat. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 219:109380. [PMID: 39653008 DOI: 10.1016/j.plaphy.2024.109380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/30/2024] [Accepted: 12/03/2024] [Indexed: 02/05/2025]
Abstract
Current background tropospheric ozone (O3) concentrations have significant adverse effects on wheat. O3 generally induces oxidative damages and premature leaf senescence leading to important yield losses. As leaf protein degradation and recycling is involved in both maintaining cell longevity during abiotic stresses and performing efficient nitrogen remobilization during senescence, we aimed to identify proteases involved in acidic endoproteolytic activities during natural and O3-induced leaf senescence in wheat. Field-grown plants of two winter wheat cultivars were exposed to ambient and semi-controlled chronic O3 concentrations, from pre-anthesis to grain harvest. Yield parameters were impacted by the most elevated O3 exposure for both cultivars. At the cellular level, our analysis revealed that both natural leaf senescence and O3 treatments induced a stimulation of acidic (pH 5.5) endoproteolytic activities, mostly due to papain-like cysteine proteases (PLCPs). Identification of active PLCPs using activity-based protein profiling (ABPP) revealed that Triticain α was the major active PLCP in senescing flag leaves and the only PLCP whose abundance increased with O3 stress, a result of positive transcriptional regulation. Our study provides novel insight into the implication of PLCP-mediated proteolysis in O3 sensitivity in a major crop.
Collapse
Affiliation(s)
- Marien Havé
- Institute of Ecology and Environmental Sciences of Paris (iEES Paris), Univ Paris Est Creteil, CNRS, INRAE, IRD, IEES, F-94010, Creteil, France.
| | - Christophe Espinasse
- Institute of Ecology and Environmental Sciences of Paris (iEES Paris), Univ Paris Est Creteil, CNRS, INRAE, IRD, IEES, F-94010, Creteil, France
| | - Betty Cottyn-Boitte
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France
| | - Ruben Puga-Freitas
- Institute of Ecology and Environmental Sciences of Paris (iEES Paris), Univ Paris Est Creteil, CNRS, INRAE, IRD, IEES, F-94010, Creteil, France
| | - Matthieu Bagard
- Institute of Ecology and Environmental Sciences of Paris (iEES Paris), Univ Paris Est Creteil, CNRS, INRAE, IRD, IEES, F-94010, Creteil, France
| | - Thierry Balliau
- PAPPSO, Génétique Quantitative et Evolution (GQE), Université Paris-Saclay, INRAE, CNRS, AgroParisTech, F-91190, Gif-sur-Yvette, France
| | - Michel Zivy
- PAPPSO, Génétique Quantitative et Evolution (GQE), Université Paris-Saclay, INRAE, CNRS, AgroParisTech, F-91190, Gif-sur-Yvette, France
| | - Seedhabadee Ganeshan
- Saskatchewan Food Industry Development Centre, 2335 Schuyler Street, Saskatoon, Saskatchewan SK, S7M 5V1, Canada
| | - Ravindra N Chibbar
- Department of Plant Sciences, College of Agriculture and Bioresources, 51 Campus Drive, University of Saskatchewan, Saskatoon, SK, S7N 5A8, Canada
| | | | - Olivier Bethenod
- Université Paris-Saclay, INRAE, AgroParisTech, UMR ECOSYS, 91120, Palaiseau, France
| | - Luis Leitao
- Institute of Ecology and Environmental Sciences of Paris (iEES Paris), Univ Paris Est Creteil, CNRS, INRAE, IRD, IEES, F-94010, Creteil, France.
| | - Anne Repellin
- Institute of Ecology and Environmental Sciences of Paris (iEES Paris), Univ Paris Est Creteil, CNRS, INRAE, IRD, IEES, F-94010, Creteil, France.
| |
Collapse
|
9
|
Farha MN, Brown F, Cernusak LA, Sitch S, Cheesman AW. Examining ozone effects on the tropical C 4 crop Sorghum bicolor. PeerJ 2025; 13:e18844. [PMID: 39850837 PMCID: PMC11756361 DOI: 10.7717/peerj.18844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 12/19/2024] [Indexed: 01/25/2025] Open
Abstract
Ozone (O3), a major air pollutant, can negatively impact plant growth and yield. While O3 impacts have been widely documented in crops such as wheat and soybean, few studies have looked at the effects of O3 on sorghum, a C4 plant and the fifth most important cereal crop worldwide. We exposed grain sorghum (Sorghum bicolor cv. HAT150843) to a range of O3 concentrations (daytime mean O3 concentrations ranged between 20 and 97 ppb) in open-top chambers, and examined how whole plant and leaf morphological traits varied in response to O3 exposure. Results showed no significant impact of realistic O3 exposure on whole plant biomass and its partitioning in sorghum. These findings suggest that sorghum is generally resistant to O3 and should be considered as a favourable crop in O3 polluted regions, while acknowledging further research is needed to understand the mechanistic basis of O3 tolerance in sorghum.
Collapse
Affiliation(s)
- Mst Nahid Farha
- College of Science & Engineering and Centre for Tropical Environmental and Sustainability Science, James Cook University of North Queensland, Cairns, Queensland, Australia
- Department of Chemistry, Rajshahi University of Engineering & Technology, Rajshahi, Bangladesh
| | - Flossie Brown
- Faculty of Environment, Science and Economy, University of Exeter, Exeter, United Kingdom
| | - Lucas A. Cernusak
- College of Science & Engineering and Centre for Tropical Environmental and Sustainability Science, James Cook University of North Queensland, Cairns, Queensland, Australia
| | - Stephen Sitch
- Faculty of Environment, Science and Economy, University of Exeter, Exeter, United Kingdom
| | - Alexander W. Cheesman
- College of Science & Engineering and Centre for Tropical Environmental and Sustainability Science, James Cook University of North Queensland, Cairns, Queensland, Australia
- Faculty of Environment, Science and Economy, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
10
|
Wang Q, Li Y, Zhong F, Wu W, Zhang H, Wang R, Duan Y, Fu Q, Li Q, Wang L, Yu S, Mellouki A, Wong DC, Chen J. Ground ozone rise during the 2022 Shanghai lockdown caused by the unfavorable emission reduction ratio of nitrogen oxides and volatile organic compounds. ATMOSPHERIC ENVIRONMENT (OXFORD, ENGLAND : 1994) 2025; 340:120851. [PMID: 40017803 PMCID: PMC11864278 DOI: 10.1016/j.atmosenv.2024.120851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
Ground-level ozone (O3) pollution has shifted from a scientific issue to a key focus of governmental action in China. In recent years, the concentration of NO2 in Shanghai has shown a decreasing trend of 3.7% annually, but ozone concentrations have exhibited significant interannual variability, particularly with a noticeable increase in 2022. This study focuses on investigating the mechanisms behind the increase in ozone concentration during the COVID-19 pandemic control period in 2022 in Shanghai, utilizing a combination of ground observation data, observation-based models, and chemical transport models for analysis. The results indicate that during the lockdown period, the MDA8 in Shanghai increased by 17 μg/m3 compared to before, with emission-related factors contributing 65.3%, primarily due to a blanket reduction in VOCs and NOx emissions during the lockdown, with a reduction ratio close to 1:1. However, this reduction ratio and intensity are not sufficiently reasonable to alleviate ozone pollution. Meanwhile, adverse meteorological conditions further exacerbated this effect, contributing 34.7%, with temperature rise having the greatest impact. Results from the chemical transport model show that with the total reduction in NOx and VOCs emissions unchanged, the greater the reduction in VOCs emissions, the better the reduction effect on ozone pollution, reducing MDA8 O3 by approximately 10 μg/m3, especially for the control of reactive compounds such as alkenes, aromatics, and OVOCs. However, if the reduction ratio of NOx is greater than that of VOCs, ozone concentrations may not decrease but instead increase. This indicates that ozone concentration is influenced not only by the intensity of emissions reduction but also by the ratio of emissions reduction between NOx and VOCs. Our study emphasizes the critical role of carefully designed strategies, focusing on controlling the ratio of VOCs to NOx and increasing the intensity of VOCs reduction, to effectively alleviate ozone pollution in urban areas.
Collapse
Affiliation(s)
- Qian Wang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP), Department of Environmental Science & Engineering, Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China
- Shanghai Environmental Monitoring Center, Shanghai 200235, China
| | - Yuewu Li
- Shanghai Environmental Monitoring Center, Shanghai 200235, China
| | | | - Wanqi Wu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP), Department of Environmental Science & Engineering, Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China
| | - Hongliang Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP), Department of Environmental Science & Engineering, Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China
| | - Rong Wang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP), Department of Environmental Science & Engineering, Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China
| | - Yusen Duan
- Shanghai Environmental Monitoring Center, Shanghai 200235, China
| | - Qingyan Fu
- Shanghai Environmental Monitoring Center, Shanghai 200235, China
| | - Qing Li
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP), Department of Environmental Science & Engineering, Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China
| | - Lin Wang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP), Department of Environmental Science & Engineering, Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China
| | - Shaocai Yu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Abdewahid Mellouki
- Institut de Combustion, Aérothermique, Réactivité et Environnement, CNRS, 45071 Orléans CEDEX 02, France
| | - David C. Wong
- Center for Environmental Measurement & Modeling, US Environmental Protection Agency, USA
| | - Jianmin Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP), Department of Environmental Science & Engineering, Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China
- Institute of Eco-Chongming (IEC), 3663 N. Zhongshan Rd., Shanghai 200062, China
| |
Collapse
|
11
|
Sorrentino B, Anav A, Calatayud V, Collalti A, Sicard P, Leca S, Fornasier F, Paoletti E, De Marco A. Inconsistency between process-based model and dose-response function in estimating biomass losses in Northern Hemisphere due to elevated O 3. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 364:125379. [PMID: 39581364 DOI: 10.1016/j.envpol.2024.125379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/05/2024] [Accepted: 11/21/2024] [Indexed: 11/26/2024]
Abstract
Tropospheric ozone (O3) concentrations in the Northern Hemisphere have significantly increased since the pre-industrial era, with ongoing growth driven by emissions from industrial, agricultural, and transportation activities, further exacerbated by the warming temperatures and altered atmospheric circulation patterns associated with climate change. This study compared different methodologies for estimating biomass potential losses (BPL) in forests due to elevated O3 using both concentration-based (AOT40) and flux-based (POD1) metrics. Moreover, to further assess the impact of O3 on forest health and carbon uptake across the dominant forest types in the Northern Hemisphere, we also compared BPL estimates from dose-response functions with those derived from the process-based model ORCHIDEE. Our analysis showed that deciduous forests, particularly boreal and continental types, are more sensitive to O3-induced biomass loss compared to evergreen forests. Importantly, the study also revealed significant regional differences, with Europe and North America experiencing higher BPL than Asia and North Africa. Regression analysis between BPL and Gross Primary Production anomalies indicated that the relationship between O3 exposure and forest productivity varied across forest types, with continental deciduous forests showing stronger correlations. The findings highlighted the importance of using flux-based metrics like POD1 in assessing O3 impacts and that current dose-response functions may require further validation across diverse ecological settings to propose effective forest management and conservation strategies.
Collapse
Affiliation(s)
- Beatrice Sorrentino
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Via Anguillarese 301, 00123, Rome, Italy
| | - Alessandro Anav
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Via Anguillarese 301, 00123, Rome, Italy
| | - Vicent Calatayud
- Fundacion CEAM, Parque Tecnologico, Charles R. Darwin 14, Paterna, Spain
| | - Alessio Collalti
- Forest Modelling Lab., Institute for Agriculture and Forestry Systems in the Mediterranean, National Research Council of Italy (CNR-ISAFOM), Via Madonna Alta 128, 06128, Perugia, Italy; National Biodiversity Future Center (NBFC), 90133, Palermo, Italy
| | - Pierre Sicard
- ARGANS, Sophia Antipolis, France; INCDS, Marin Dracea Institute, Romania
| | | | | | - Elena Paoletti
- Research Institute on Terrestrial Ecosystems, National Research Council of Italy (IRET-CNR), Via Madonna del Piano 10, 50019, Sesto Fiorentino, Florence, Italy
| | - Alessandra De Marco
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Via Anguillarese 301, 00123, Rome, Italy; INCDS, Marin Dracea Institute, Romania.
| |
Collapse
|
12
|
Li Z, Bi J, Liu Y, Hu X. Forecasting O 3 and NO 2 concentrations with spatiotemporally continuous coverage in southeastern China using a Machine learning approach. ENVIRONMENT INTERNATIONAL 2025; 195:109249. [PMID: 39765203 DOI: 10.1016/j.envint.2024.109249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/13/2024] [Accepted: 12/30/2024] [Indexed: 01/26/2025]
Abstract
Ozone (O3) is a significant contributor to air pollution and the main constituent ofphotochemical smog that plagues China. Nitrogen dioxide (NO2) is a significant air pollutant and a critical trace gas in the Earth's atmosphere. The presence of O3 and NO2 has detrimental effects on human health, the ecosystem, and agricultural production. Forecasting accurate ambient O3 and NO2 concentrations with full spatiotemporal coverage is pivotal for decision-makers to develop effective mitigation strategies and prevent harmful public exposure. Existing methods, including chemical transport models (CTMs) and time series at air monitoring sites, forecast O3 and NO2 concentrations either with nontrivial uncertainty or without spatiotemporally continuous coverage. In this research, we adopted a forecasting model that integrates the random forest algorithm with NASA's Goddard Earth Observing System "Composing Forecasting" (GEOS-CF) product. This approach offers spatiotemporally continuous forecasts of O3 and NO2 concentrations across southeastern China for up to five days in advance. Both overall validation and spatial cross-validation revealed that our forecast framework significantly surpassed the initial GEOS-CF model for all validation metrics, substantially reducing the errors in the GEOS-CF forecast data. Our model could provide accurate near-real-time O3 and NO2 forecasts with continuous spatiotemporal coverage.
Collapse
Affiliation(s)
- Zeyue Li
- School of Geospatial Engineering and Science, Sun Yat-sen University, Zhuhai 519082, China
| | - Jianzhao Bi
- Department of Environmental & Occupational Health Science, University of Washington, Seattle, WA 98105, USA
| | - Yang Liu
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Xuefei Hu
- School of Geospatial Engineering and Science, Sun Yat-sen University, Zhuhai 519082, China.
| |
Collapse
|
13
|
McHugh K, Cummins T, Aherne J. The threat from ozone to vegetation in Ireland. ENVIRONMENTAL RESEARCH 2024; 262:119974. [PMID: 39270962 DOI: 10.1016/j.envres.2024.119974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/28/2024] [Accepted: 09/08/2024] [Indexed: 09/15/2024]
Abstract
Ozone is the most damaging air pollutant to vegetation globally. Metrics of accumulated ozone above a concentration threshold (e.g. AOT40, ppb·h) have been widely used to assess ozone risk. However, there is growing consensus that accumulated Phytotoxic Ozone Dose (POD) above a receptor-specific critical stomatal flux threshold (y; nmol O3 m-2 s-1), expressed per unit of projected leaf area, provides a more reliable risk assessment, as it considers ozone entering the leaf (PODy, mmol m-2 leaf area). Few studies have assessed both concentration- and flux-based metrics using site-specific observations of ozone and meteorology. In this study we assessed the risk that ozone poses to five vegetation types across eight sites in Ireland during 2005-2021, using AOT40 and PODy risk metrics, and we predicted impacts using dose-response relationships. Long-term trends in both metrics were also assessed. The PODy critical level for vegetation protection was exceeded for all vegetation types, with exceedances most common at Atlantic coastal sites, and for tree species (beech POD1 15.7-25.7 mmol/m2 PLA). When PODy and AOT40 results were normalised based on their respective critical levels, predicted impacts were higher for PODy. There were significant increases in PODy for three vegetation types at rural sites during the study period, which also experienced increases in temperature and global solar radiation. The long-term trends were consistent with other European studies that show decreases in AOT40 and increases in PODy. While ozone concentrations in Ireland are relatively low (39-75 μg/m3 five-year average range), the humid climate and longer growing season may lead to elevated stomatal ozone uptake and thereby a risk to vegetation.
Collapse
Affiliation(s)
- Keelan McHugh
- UCD School of Agriculture and Food Science, University College Dublin, D04 N2E5, Dublin, Ireland.
| | - Thomas Cummins
- UCD School of Agriculture and Food Science, University College Dublin, D04 N2E5, Dublin, Ireland
| | - Julian Aherne
- School of Environment, Trent University, Peterborough, ON, K9L 0G2, Canada
| |
Collapse
|
14
|
Joffe R, Tosens T, Berthe A, Jolivet Y, Niinemets Ü, Gandin A. Reduced mesophyll conductance under chronic O 3 exposure in poplar reflects thicker cell walls and increased subcellular diffusion pathway lengths according to the anatomical model. PLANT, CELL & ENVIRONMENT 2024; 47:4815-4832. [PMID: 39101376 DOI: 10.1111/pce.15049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 06/23/2024] [Accepted: 07/04/2024] [Indexed: 08/06/2024]
Abstract
Ozone (O3) is one of the most harmful and widespread air pollutants, affecting crop yield and plant health worldwide. There is evidence that O3 reduces the major limiting factor of photosynthesis, namely CO2 mesophyll conductance (gm), but there is little quantitative information of O3-caused changes in key leaf anatomical traits and their impact on gm. We exposed two O3-responsive clones of the economically important tree species Populus × canadensis Moench to 120 ppb O3 for 21 days. An anatomical diffusion model within the leaf was used to analyse the entire CO2 diffusion pathway from substomatal cavities to carboxylation sites and determine the importance of each structural and subcellular component as a limiting factor. gm decreased substantially under O3 and was found to be the most important limitation of photosynthesis. This decrease was mostly driven by an increased cell wall thickness and length of subcellular diffusion pathway caused by altered interchloroplast spacing and chloroplast positioning. By contrast, the prominent leaf integrative trait leaf dry mass per area was neither affected nor related to gm under O3. The observed relationship between gm and anatomy, however, was clone-dependent, suggesting that mechanisms regulating gm may differ considerably between closely related plant lines. Our results confirm the need for further studies on factors constraining gm under stress conditions.
Collapse
Affiliation(s)
- Ricardo Joffe
- Faculté des Sciences et Technologies, Université de Lorraine, AgroParisTech, INRAE, SILVA, Nancy, France
| | - Tiina Tosens
- Department of Crop Science and Plant Biology, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu, Estonia
| | - Audrey Berthe
- Faculté des Sciences et Technologies, Université de Lorraine, AgroParisTech, INRAE, SILVA, Nancy, France
| | - Yves Jolivet
- Faculté des Sciences et Technologies, Université de Lorraine, AgroParisTech, INRAE, SILVA, Nancy, France
| | - Ülo Niinemets
- Department of Crop Science and Plant Biology, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu, Estonia
- Estonian Academy of Sciences, Tallinn, Estonia
| | - Anthony Gandin
- Faculté des Sciences et Technologies, Université de Lorraine, AgroParisTech, INRAE, SILVA, Nancy, France
| |
Collapse
|
15
|
Mishra AK, Gupta GS, Agrawal SB, Tiwari S. Understanding the impact of elevated CO 2 and O 3 on growth and yield in Indian wheat cultivars: Implications for food security in a changing climate. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 362:124990. [PMID: 39303935 DOI: 10.1016/j.envpol.2024.124990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/29/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
The pressing issue of increasing tropospheric ozone (O3) levels necessitates the development of effective stress management strategies for plant protection. While considerable research has elucidated the adverse impacts of O3, understanding the combined effects of O3 and CO2 requires further investigation. This study focuses on assessing the response of stomatal O3 flux under various O3 and CO2 treatments, individually and in combination, and their repercussions on physiological, growth, and yield attributes in two Indian wheat cultivars, HUW-55 and PBW-550, which exhibit varying levels of sensitivities against elevated O3. Results indicated significant alterations in stomatal O3 flux in both O3-sensitive and tolerant wheat cultivars across different treatments, influencing the overall yield outcomes. Particularly, the ECO2+EO3 treatment demonstrated more positive yield protection in the O3-sensitive cultivar PBW-550, compared to HUW-55 indicating enhanced allocation of photosynthates towards reproductive development in PBW-550, compared to the tolerant cultivar HUW-55, as evidenced by higher harvest index (HI). Furthermore, the study revealed a stronger correlation between yield response and stomatal O3 flux in PBW-550 (R2 = 0.88) compared to HUW-55 (R2 = 0.79), as indicated by a steeper regression slope for PBW-550. The research also confirmed the role of elevated CO2 in reducing stomatal O3- flux in the tested cultivars, with discernible effects on their respective yield responses. Further experimentation is necessary to confirm these results across different cultivars exhibiting varying sensitivities to O3. These findings can potentially revolutionize agricultural productivity in regions affected by O3 stress. The criteria for recommending cultivars for agricultural practices should not be based only on their sensitivity/tolerance to O3. Still, they should also consider the effect of CO2 fertilization in the growing area. This experiment offers hope to sustain global food security, as the O3-sensitive wheat cultivar also showed promising results at elevated CO2. In essence, this research could pave the way for more resilient agricultural systems in the era of changing climate under elevated O3 and CO2 conditions.
Collapse
Affiliation(s)
- Ashish Kumar Mishra
- Laboratory of Ecotoxicology, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Gereraj Sen Gupta
- Laboratory of Ecotoxicology, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Shashi Bhushan Agrawal
- Laboratory of Air Pollution and Global Climate Change, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| | - Supriya Tiwari
- Laboratory of Ecotoxicology, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
16
|
Du C, Pei J, Feng Z. Unraveling the complex interactions between ozone pollution and agricultural productivity in China's main winter wheat region using an interpretable machine learning framework. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176293. [PMID: 39284447 DOI: 10.1016/j.scitotenv.2024.176293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/04/2024] [Accepted: 09/13/2024] [Indexed: 09/20/2024]
Abstract
Surface ozone has become a significant atmospheric pollutant in China, exerting a profound impact on crop production and posing a serious threat to food security. Previous studies have extensively explored the physiological mechanisms of ozone damage to plants. However, the effects of ozone interactions with other environmental factors, such as climate change, on agricultural productivity at the regional scale, particularly under natural conditions, remain insufficiently understood. In this study, we employed an interpretable machine learning framework, specifically the eXtreme Gradient Boosting (XGBoost) algorithm enhanced by SHapley Additive exPlanations (SHAP), to investigate the influence of ozone and its interactions with environmental factors on crop production in China's primary winter wheat region. Additionally, a structural equation model was developed to elucidate the mechanisms driving these interactions. Our findings demonstrate that ozone pollution exerts a significant negative effect on winter wheat productivity (r = -0.47, P < 0.001), with productivity losses escalating from -12.28 % to -22.09 % as ozone levels increase. Notably, the impact of ozone is spatially heterogeneous, with western Shandong province identified as a hotspot for ozone-induced damage. Furthermore, our results confirm the complexity of the relationship between ozone pollution and agricultural productivity, which is influenced by multiple interacting environmental factors. Specifically, we found that severe ozone pollution, when combined with high aerosol concentrations or elevated temperatures, significantly exacerbates crop productivity losses, although drought conditions can partially mitigate these adverse effects. Our study highlights the importance of incorporating the interactive effects of air pollution and climate change into future crop models. The comprehensive framework developed in this study, which integrates statistical modeling with explainable machine learning, provides a valuable methodological reference for quantitatively assessing the impact of air pollution on crop productivity at a regional scale.
Collapse
Affiliation(s)
- Chenxi Du
- School of Geospatial Engineering and Science, Sun Yat-sen University, Zhuhai 519082, China
| | - Jie Pei
- School of Geospatial Engineering and Science, Sun Yat-sen University, Zhuhai 519082, China; Key Laboratory of Natural Resources Monitoring in Tropical and Subtropical Area of South China, Ministry of Natural Resources, Zhuhai 519082, China.
| | - Zhaozhong Feng
- Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), School of Ecology and Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| |
Collapse
|
17
|
Chang-Espino MC, González-Fernández I, Prieto-Benítez S, Araus JL, Ben Amor A, Bermejo-Bermejo V. Nitrogen modulates the ozone response of Mediterranean wheat: Considerations for ozone risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175718. [PMID: 39181251 DOI: 10.1016/j.scitotenv.2024.175718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
The experiment was conducted in an Open Top Chamber facility located in the Mediterranean basin to investigate how nitrogen (N) fertilization affects the response of wheat to ozone (O3) exposure. The study considered the response of Artur Nick, a modern wheat cultivar commonly used in the area, to three O3 exposure levels (ambient and elevated ambient, +20 and +40 nL L-1 O3), and two N fertilization doses (100 and 200 kg ha-1). Measurements included leaf gas exchange, leaf chlorophyll content, leaf and grain N content, plant growth and yield parameters. Ozone × N interactive effects were studied and quantified based on accumulated O3 concentrations above a 40 nL L-1 threshold (AOT40) and phytotoxic O3 dose (POD) indices, which are used in O3-risk assessments, from which critical levels (CL) for a 5 % effect were derived. Results revealed that O3 impacts on growth and yield parameters were stronger under the highest N fertilization dose. In consequence, O3 Critical Levels (CL) were as much as 3-4 times lower for grain yield in the high-N compared to the low-N treatment. Interestingly, O3 limited the fertilizer stimulus, strongly reducing the N use efficiency for grain yield and the agronomic efficiency of N for protein yield. Another important aspect was that 71 % of the POD was accumulated before anthesis, stressing the potential importance of O3 exposure during the vegetative phase of wheat under Mediterranean conditions, which is usually considered less important than post-anthesis exposure. In conclusion, this study suggests the need to consider crop N management in the derivation of O3 CLs, due to its effect on dose-response relationships used for CL derivation, including the potential O3 effects in N use efficiency. Therefore, N modulation could be considered in the O3-risk assessment methodology to be applied in risk exercises when negotiating air pollution abatement policies.
Collapse
Affiliation(s)
- M C Chang-Espino
- Unit of Ecotoxicology of Air Pollution, Environmental Dept. CIEMAT, Madrid, Spain; Integrative Crop Ecophysiology Group, Faculty of Biology, University of Barcelona, Barcelona, Spain.
| | - I González-Fernández
- Unit of Ecotoxicology of Air Pollution, Environmental Dept. CIEMAT, Madrid, Spain
| | - S Prieto-Benítez
- Unit of Ecotoxicology of Air Pollution, Environmental Dept. CIEMAT, Madrid, Spain
| | - J L Araus
- Integrative Crop Ecophysiology Group, Faculty of Biology, University of Barcelona, Barcelona, Spain; AGROTECNIO (Center for Research in Agrotechnology), Lleida, Spain
| | - A Ben Amor
- Unit of Ecotoxicology of Air Pollution, Environmental Dept. CIEMAT, Madrid, Spain; Institute of Arid Regions, Mednine, Tunisia
| | - V Bermejo-Bermejo
- Unit of Ecotoxicology of Air Pollution, Environmental Dept. CIEMAT, Madrid, Spain
| |
Collapse
|
18
|
Yuan X, Du Y, Feng Z, Gun S, Qu L, Agathokleous E. Differential responses and mechanisms of monoterpene emissions from broad-leaved and coniferous species under elevated ozone scenarios. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175291. [PMID: 39117227 DOI: 10.1016/j.scitotenv.2024.175291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/01/2024] [Accepted: 08/03/2024] [Indexed: 08/10/2024]
Abstract
Although ozone (O3) pollution affects plant growth and monoterpene (MT) emissions, the responses of MT emission rates to elevated O3 and the related mechanisms are not entirely understood. To gain an insight into these effects and mechanisms, we evaluated physiological (leaf MT synthesis ability, including precursor availability and enzyme kinetics) and physicochemical limiting factors (e.g. leaf thickness of the lower and upper epidermis, palisade and spongy tissue, and size of resin ducts and stomatal aperture) affecting MT emissions simultaneously from two broad-leaved and two coniferous species after one growing season of field experiment. The effects of elevated O3 on MT emissions and the related mechanisms differed between plant functional types. Specifically, long-term moderate O3 exposure significantly reduced MT emissions in broad-leaved species, primarily attributed to a systematic decrease in MT synthesis ability, including reductions in all MT precursors, geranyl diphosphate content, and MT synthase protein levels. In contrast, the same O3 exposure significantly enhanced MT emissions in coniferous species. However, the change in MT emissions in coniferous species was not due to modifications in leaf MT synthesis ability but rather because of alterations in leaf anatomical structure characteristics, particularly the size of resin ducts and stomatal aperture. These findings provide an important understanding of the mechanisms driving MT emissions from different tree functional groups and can enlighten the estimation of MT emissions in the context of O3 pollution scenarios as well as the development of MT emission algorithms.
Collapse
Affiliation(s)
- Xiangyang Yuan
- Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), Nanjing University of Information Science and Technology, Nanjing 210044, Jiangsu, China
| | - Yingdong Du
- Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), Nanjing University of Information Science and Technology, Nanjing 210044, Jiangsu, China
| | - Zhaozhong Feng
- Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), Nanjing University of Information Science and Technology, Nanjing 210044, Jiangsu, China.
| | - Siyu Gun
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Haidian District, No. 18, Shuangqing Road, Beijing 100085, China
| | - Laiye Qu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Haidian District, No. 18, Shuangqing Road, Beijing 100085, China
| | - Evgenios Agathokleous
- Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), Nanjing University of Information Science and Technology, Nanjing 210044, Jiangsu, China
| |
Collapse
|
19
|
Gao L, Guan K, He L, Jiang C, Wu X, Lu X, Ainsworth EA. Tropospheric ozone pollution increases the sensitivity of plant production to vapor pressure deficit across diverse ecosystems in the Northern Hemisphere. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175748. [PMID: 39182770 DOI: 10.1016/j.scitotenv.2024.175748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 07/16/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
Tropospheric ozone (O3) pollution often accompanies droughts and heatwaves, which could collectively reduce plant productivity. Previous research suggested that O3 pollution can alter plant responses to drought by interfering with stomatal closure while drought can reduce stomatal conductance and provide protection against O3 stress. However, the interactions between O3 pollution and drought stress remain poorly understood at ecosystem scales with diverse plant functional types. To address this research gap, we used 10-year (2012-2021) satellite near-infrared reflectance of vegetation (NIRv) observations, reanalysis data of vapor pressure deficit (VPD), soil moisture (SM), and air temperature (Ta), along with O3 measurements and reanalysis data across the Northern Hemisphere to statistically disentangle the interconnections between NIRv, VPD, SM, and Ta under varying O3 levels. We found that high O3 concentrations significantly exacerbate the sensitivity of NIRv to VPD while have no notable impacts on the sensitivity of NIRv to Ta or SM for all plant functional types, indicating an enhanced combined impact of VPD and O3 on plants. Specifically, the sensitivity of NIRv to VPD increased by >75 % when O3 anomalies increased from the lowest 10 to the highest 10 percentiles across diverse plant functional types. This is likely because long-term exposure to high O3 concentrations can inhibit stomatal closure and photosynthetic enzyme activities, resulting in reduced water use efficiency and photosynthetic efficiency. This study highlights the need to consider O3 in understanding plant responses to climate factors and that O3 can alter plant responses to VPD independently of Ta and SM.
Collapse
Affiliation(s)
- Lun Gao
- Agroecosystem Sustainability Center, Institute for Sustainability, Energy, and Environment, University of Illinois Urbana-Champaign, Urbana, IL, USA; Department of Natural Resources and Environmental Sciences, College of Agricultural, Consumers, and Environmental Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA.
| | - Kaiyu Guan
- Agroecosystem Sustainability Center, Institute for Sustainability, Energy, and Environment, University of Illinois Urbana-Champaign, Urbana, IL, USA; Department of Natural Resources and Environmental Sciences, College of Agricultural, Consumers, and Environmental Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA; National Center for Supercomputing Applications, University of Illinois Urbana-Champaign, Urbana, IL, USA.
| | - Liyin He
- Department of Global Ecology, Carnegie Institution for Science, Stanford, CA, USA
| | - Chongya Jiang
- Agroecosystem Sustainability Center, Institute for Sustainability, Energy, and Environment, University of Illinois Urbana-Champaign, Urbana, IL, USA; Department of Natural Resources and Environmental Sciences, College of Agricultural, Consumers, and Environmental Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Xiaocui Wu
- Agroecosystem Sustainability Center, Institute for Sustainability, Energy, and Environment, University of Illinois Urbana-Champaign, Urbana, IL, USA; Department of Natural Resources and Environmental Sciences, College of Agricultural, Consumers, and Environmental Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Xiaoman Lu
- Agroecosystem Sustainability Center, Institute for Sustainability, Energy, and Environment, University of Illinois Urbana-Champaign, Urbana, IL, USA; Department of Natural Resources and Environmental Sciences, College of Agricultural, Consumers, and Environmental Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Elizabeth A Ainsworth
- Agroecosystem Sustainability Center, Institute for Sustainability, Energy, and Environment, University of Illinois Urbana-Champaign, Urbana, IL, USA; Department of Plant Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA; USDA-ARS, Global Change and Photosynthesis Research Unit, Urbana, IL 61801, USA.
| |
Collapse
|
20
|
Yang J, Zeren Y, Guo H, Wang Y, Lyu X, Zhou B, Gao H, Yao D, Wang Z, Zhao S, Li J, Zhang G. Wintertime ozone surges: The critical role of alkene ozonolysis. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 22:100477. [PMID: 39280590 PMCID: PMC11402162 DOI: 10.1016/j.ese.2024.100477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 09/18/2024]
Abstract
Ozone (O3) pollution is usually linked to warm weather and strong solar radiation, making it uncommon in cold winters. However, an unusual occurrence of four high O3 episode days (with maximum hourly concentrations exceeding 100 ppbv and peaking at 121 ppbv) was recorded in January 2018 in Lanzhou city, China. During these episodes, the average daytime concentration of total non-methane volatile organic compounds (TVOCs) reached 153.4 ± 19.0 ppbv, with alkenes-largely emitted from the local petrochemical industry-comprising 82.3 ± 13.1 ppbv. Here we show a photochemical box model coupled with a Master Chemical Mechanism to elucidate the mechanisms behind this unusual wintertime O3 pollution. We find that the typically low temperatures (-1.7 ± 1.3 °C) and weak solar radiation (263.6 ± 60.7 W m- 2) of those winter episode days had a minimal effect on the reactivity of VOCs with OH radicals. Instead, the ozonolysis of alkenes generated Criegee intermediates, which rapidly decomposed into substantial RO x radicals (OH, HO2, and RO2) without sunlight. This radical production led to the oxidation of VOCs, with alkene ozonolysis ultimately contributing to 89.6 ± 8.7% of the O3 formation during these episodes. This mechanism did not activate at night due to the depletion of O3 by the NO titration effect. Furthermore, the findings indicate that a reduction of alkenes by 28.6% or NO x by 27.7% in the early afternoon could significantly mitigate wintertime O3 pollution. Overall, this study unravels the unique mechanism of alkene-induced winter O3 pollution and offers a reference for winter O3 reduction strategies in the petrochemical industrial regions.
Collapse
Affiliation(s)
- Jin Yang
- Air Quality Studies, Department of Civil and Environmental Engineering, Kowloon, 999077, The Hong Kong Polytechnic University, Hong Kong, China
| | - Yangzong Zeren
- Air Quality Studies, Department of Civil and Environmental Engineering, Kowloon, 999077, The Hong Kong Polytechnic University, Hong Kong, China
- Research Institute for Land and Space, The Hong Kong Polytechnic University, Kowloon, 999077, Hong Kong, China
| | - Hai Guo
- Air Quality Studies, Department of Civil and Environmental Engineering, Kowloon, 999077, The Hong Kong Polytechnic University, Hong Kong, China
- Research Institute for Land and Space, The Hong Kong Polytechnic University, Kowloon, 999077, Hong Kong, China
| | - Yu Wang
- Air Quality Studies, Department of Civil and Environmental Engineering, Kowloon, 999077, The Hong Kong Polytechnic University, Hong Kong, China
- Research Institute for Land and Space, The Hong Kong Polytechnic University, Kowloon, 999077, Hong Kong, China
| | - Xiaopu Lyu
- Department of Geography & Smart Society Lab, Hong Kong Baptist University, Kowloon, 999077, Hong Kong, China
| | - Beining Zhou
- Air Quality Studies, Department of Civil and Environmental Engineering, Kowloon, 999077, The Hong Kong Polytechnic University, Hong Kong, China
| | - Hong Gao
- Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, Gansu, 730050, China
| | - Dawen Yao
- Air Quality Studies, Department of Civil and Environmental Engineering, Kowloon, 999077, The Hong Kong Polytechnic University, Hong Kong, China
| | - Zhanxiang Wang
- Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, Gansu, 730050, China
| | - Shizhen Zhao
- Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 511443, China
| | - Jun Li
- Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 511443, China
| | - Gan Zhang
- Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 511443, China
| |
Collapse
|
21
|
Lee Jones A, Ormondroyd A, Hayes F, Jeffers ES. Reflections of stress: Ozone damage in broadleaf saplings can be identified from hyperspectral leaf reflectance. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 360:124642. [PMID: 39095003 DOI: 10.1016/j.envpol.2024.124642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
Tropospheric ozone (O3) causes widespread damage to vegetation; however, monitoring of O3 induced damage is often reliant on manual leaf inspection. Reflectance spectroscopy of vegetation can identify and detect unique spectral signatures of different abiotic and biotic stressors. In this study, we tested the use of hyperspectral leaf reflectance to detect O3 stress in alder, beech, birch, crab apple, and oak saplings exposed to five long-term O3 regimes (ranging from daily target maxima of 30 ppb O3 to 110 ppb). Hyperspectral reflectance varied significantly between O3 treatments, both in whole spectra analysis and when simplified to representative components. O3 damage had a multivariate impact on leaf reflectance, underpinned by changes in pigment balance, water content and structural composition. Vegetation indices derived from reflectance which characterised the visible green peak were able to differentiate between O3 treatments. Iterative normalised difference spectral indices across the hyperspectral wavelength range were correlated to visual damage scores to identify significant wavelengths for O3 damage detection. We propose a new Ozone Damage Index (OzDI), which characterises the reflectance peak in the shortwave infrared region and outperformed existing vegetation indices in terms of correlation to O3 treatment. These results demonstrate the potential application of hyperspectral reflectance as a high throughput method of O3 damage detection in a range of common broadleaf. species.
Collapse
Affiliation(s)
- Anna Lee Jones
- Department of Biology, University of Oxford, South Parks Road, Oxford, OX13SZ, UK.
| | - Adam Ormondroyd
- Kavli Institute for Cosmology, University of Cambridge, Madingley Road, Cambridge, CB3 0HA, UK
| | - Felicity Hayes
- UK Centre for Ecology & Hydrology, Environment Centre Wales, Deiniol Road, Bangor, LL57 2UW, UK
| | - Elizabeth S Jeffers
- Department of Biology, University of Oxford, South Parks Road, Oxford, OX13SZ, UK
| |
Collapse
|
22
|
Bhattarai H, Tai APK, Val Martin M, Yung DHY. Responses of fine particulate matter (PM 2.5) air quality to future climate, land use, and emission changes: Insights from modeling across shared socioeconomic pathways. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174611. [PMID: 38992356 DOI: 10.1016/j.scitotenv.2024.174611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/26/2024] [Accepted: 07/06/2024] [Indexed: 07/13/2024]
Abstract
Air pollution induced by fine particulate matter with diameter ≤ 2.5 μm (PM2.5) poses a significant challenge for global air quality management. Understanding how factors such as climate change, land use and land cover change (LULCC), and changing emissions interact to impact PM2.5 remains limited. To address this gap, we employed the Community Earth System Model and examined both the individual and combined effects of these factors on global surface PM2.5 in 2010 and projected scenarios for 2050 under different Shared Socioeconomic Pathways (SSPs). Our results reveal biomass-burning and anthropogenic emissions as the primary drivers of surface PM2.5 across all SSPs. Less polluted regions like the US and Europe are expected to experience substantial PM2.5 reduction in all future scenarios, reaching up to ~5 μg m-3 (70 %) in SSP1. However, heavily polluted regions like India and China may experience varied outcomes, with a potential decrease in SSP1 and increase under SSP3. Eastern China witness ~20 % rise in PM2.5 under SSP3, while northern India may experience ~70 % increase under same scenario. Depending on the region, climate change alone is expected to change PM2.5 up to ±5 μg m-3, while the influence of LULCC appears even weaker. The modest changes in PM2.5 attributable to LULCC and climate change are associated with aerosol chemistry and meteorological effects, including biogenic volatile organic compound emissions, SO2 oxidation, and NH4NO3 formation. Despite their comparatively minor role, LULCC and climate change can still significantly shape future air quality in specific regions, potentially counteracting the benefits of emission control initiatives. This study underscores the pivotal role of changes in anthropogenic emissions in shaping future PM2.5 across all SSP scenarios. Thus, addressing all contributing factors, with a primary focus on reducing anthropogenic emissions, is crucial for achieving sustainable reduction in surface PM2.5 levels and meeting sustainable pollution mitigation goals.
Collapse
Affiliation(s)
- Hemraj Bhattarai
- Earth and Environmental Sciences Programme and Graduate Division of Earth and Atmospheric Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong, China
| | - Amos P K Tai
- Earth and Environmental Sciences Programme and Graduate Division of Earth and Atmospheric Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong, China; State Key Laboratory of Agrobiotechnology and Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, Hong Kong, China.
| | - Maria Val Martin
- Leverhulme Centre for Climate Change Mitigation, School of Biosciences, University of Sheffield, Sheffield, UK.
| | - David H Y Yung
- Earth and Environmental Sciences Programme and Graduate Division of Earth and Atmospheric Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
23
|
Sharma A, Hazarika M, Heisnam P, Pandey H, Devadas VASN, Kesavan AK, Kumar P, Singh D, Vashishth A, Jha R, Misra V, Kumar R. Controlled Environment Ecosystem: A Cutting-Edge Technology in Speed Breeding. ACS OMEGA 2024; 9:29114-29138. [PMID: 39005787 PMCID: PMC11238293 DOI: 10.1021/acsomega.3c09060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 05/25/2024] [Accepted: 05/31/2024] [Indexed: 07/16/2024]
Abstract
The controlled environment ecosystem is a meticulously designed plant growing chamber utilized for cultivating biofortified crops and microgreens, addressing hidden hunger and malnutrition prevalent in the growing population. The integration of speed breeding within such controlled environments effectively eradicates morphological disruptions encountered in traditional breeding methods such as inbreeding depression, male sterility, self-incompatibility, embryo abortion, and other unsuccessful attempts. In contrast to the unpredictable climate conditions that often prolong breeding cycles to 10-15 years in traditional breeding and 4-5 years in transgenic breeding within open ecosystems, speed breeding techniques expedite the achievement of breeding objectives and F1-F6 generations within 2-3 years under controlled growing conditions. In comparison, traditional breeding may take 5-10 years for plant population line creation, 3-5 years for field trials, and 1-2 years for variety release. The effectiveness of speed breeding in trait improvement and population line development varies across different crops, requiring approximately 4 generations in rice and groundnut, 5 generations in soybean, pea, and oat, 6 generations in sorghum, Amaranthus sp., and subterranean clover, 6-7 generations in bread wheat, durum wheat, and chickpea, 7 generations in broad bean, 8 generations in lentil, and 10 generations in Arabidopsis thaliana annually within controlled environment ecosystems. Artificial intelligence leverages neural networks and algorithm models to screen phenotypic traits and assess their role in diverse crop species. Moreover, in controlled environment systems, mechanistic models combined with machine learning effectively regulate stable nutrient use efficiency, water use efficiency, photosynthetic assimilation product, metabolic use efficiency, climatic factors, greenhouse gas emissions, carbon sequestration, and carbon footprints. However, any negligence, even minor, in maintaining optimal photoperiodism, temperature, humidity, and controlling pests or diseases can lead to the deterioration of crop trials and speed breeding techniques within the controlled environment system. Further comparative studies are imperative to comprehend and justify the efficacy of climate management techniques in controlled environment ecosystems compared to natural environments, with or without soil.
Collapse
Affiliation(s)
- Avinash Sharma
- Faculty of Agricultural Sciences, Arunachal University of Studies, Namsai, Arunachal Pradesh 792103, India
| | - Mainu Hazarika
- Faculty of Agricultural Sciences, Arunachal University of Studies, Namsai, Arunachal Pradesh 792103, India
| | - Punabati Heisnam
- College of Agriculture, Central Agricultural University, Iroisemba, Manipur 795004, India
| | - Himanshu Pandey
- PG Department of Agriculture, Khalsa College, Amritsar, Punjab 143002, India
| | | | - Ajith Kumar Kesavan
- Faculty of Agricultural Sciences, Arunachal University of Studies, Namsai, Arunachal Pradesh 792103, India
| | - Praveen Kumar
- Agricultural Research Station, Agriculture University, Jodhpur, Rajasthan 342304, India
| | - Devendra Singh
- Faculty of Biotechnology, Shri Ramswaroop Memorial University, Barabanki, Uttar Pradesh 225003, India
| | - Amit Vashishth
- Patanjali Herbal Research Department, Patanjali Research Institute, Haridwar, Uttarakhand 249405, India
| | - Rani Jha
- ISBM University, Gariyaband, Chhattishgarh 493996, India
| | - Varucha Misra
- Division of Crop Improvement, ICAR-Indian Institute of Sugarcane Research, Lucknow, Uttar Pradesh 226002, India
| | - Rajeev Kumar
- Division of Plant Physiology and Biochemistry, ICAR-Indian Institute of Sugarcane Research, Lucknow, Uttar Pradesh 226002, India
| |
Collapse
|
24
|
Orts A, Navarro-Torre S, Macías-Benítez S, Orts JM, Naranjo E, Castaño A, Parrado J. A new biostimulant derived from soybean by-products enhances plant tolerance to abiotic stress triggered by ozone. BMC PLANT BIOLOGY 2024; 24:580. [PMID: 38890606 PMCID: PMC11186251 DOI: 10.1186/s12870-024-05290-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 06/12/2024] [Indexed: 06/20/2024]
Abstract
BACKGROUND Tropospheric ozone is an air pollutant that causes negative effects on vegetation, leading to significant losses in crop productivity. It is generated by chemical reactions in the presence of sunlight between primary pollutants resulting from human activity, such as nitrogen oxides and volatile organic compounds. Due to the constantly increasing emission of ozone precursors, together with the influence of a warming climate on ozone levels, crop losses may be aggravated in the future. Therefore, the search for solutions to mitigate these losses becomes a priority. Ozone-induced abiotic stress is mainly due to reactive oxygen species generated by the spontaneous decomposition of ozone once it reaches the apoplast. In this regard, compounds with antioxidant activity offer a viable option to alleviate ozone-induced damage. Using enzymatic technology, we have developed a process that enables the production of an extract with biostimulant properties from okara, an industrial soybean byproduct. The biostimulant, named as OEE (Okara Enzymatic Extract), is water-soluble and is enriched in bioactive compounds present in okara, such as isoflavones. Additionally, it contains a significant fraction of protein hydrolysates contributing to its functional effect. Given its antioxidant capacity, we aimed to investigate whether OEE could alleviate ozone-induced damage in plants. For that, pepper plants (Capsicum annuum) exposed to ozone were treated with a foliar application of OEE. RESULTS OEE mitigated ozone-induced damage, as evidenced by the net photosynthetic rate, electron transport rate, effective quantum yield of PSII, and delayed fluorescence. This protection was confirmed by the level of expression of genes associated with photosystem II. The beneficial effect was primarily due to its antioxidant activity, as evidenced by the lipid peroxidation rate measured through malondialdehyde content. Additionally, OEE triggered a mild oxidative response, indicated by increased activities of antioxidant enzymes in leaves (catalase, superoxide dismutase, and guaiacol peroxidase) and the oxidative stress index, providing further protection against ozone-induced stress. CONCLUSIONS The present results support that OEE protects plants from ozone exposure. Taking into consideration that the promotion of plant resistance against abiotic damage is an important goal of biostimulants, we assume that its use as a new biostimulant could be considered.
Collapse
Affiliation(s)
- Angel Orts
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla. C/Profesor García González, Nº2. 41012, Seville, Spain
| | - Salvadora Navarro-Torre
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de Sevilla. C/Profesor García González, Nº2. 41012, Seville, Spain
| | - Sandra Macías-Benítez
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla. C/Profesor García González, Nº2. 41012, Seville, Spain
| | - José M Orts
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla. C/Profesor García González, Nº2. 41012, Seville, Spain
| | - Emilia Naranjo
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla. C/Profesor García González, Nº2. 41012, Seville, Spain
| | - Angélica Castaño
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla. C/Profesor García González, Nº2. 41012, Seville, Spain.
| | - Juan Parrado
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla. C/Profesor García González, Nº2. 41012, Seville, Spain
| |
Collapse
|
25
|
Aishan T, Sun Y, Halik Ü, Betz F, Yusup A, Rezhake R. Spatiotemporal changes in fine particulate matter and ozone in the oasis city of Korla, northeastern Tarim Basin of China. Sci Rep 2024; 14:12904. [PMID: 38839810 PMCID: PMC11153575 DOI: 10.1038/s41598-024-63856-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 06/03/2024] [Indexed: 06/07/2024] Open
Abstract
Air pollution is a serious environmental health concern for humans and other living organisms. This study analyzes the spatial and temporal characteristics of air pollutant concentrations, changes in the degree of pollution, and the wavelet coherence of the air quality index (AQI) with pollutants in various monitoring stations. The analysis is based on long-term time series data (January 2016 to December 2023) of air pollutants (PM2.5, PM10, and O3) from Korla, an oasis city in the northeastern part of the Tarim Basin, China. The concentrations of PM2.5, PM10, and O3 in Korla showed a cyclical trend from 2016 to 2023; PM10 concentrations exhibited all-season exceedance and PM2.5 exhibited exceedance only in spring. PM2.5 and PM10 showed a seasonal distribution of spring > winter > fall > summer; O3 concentrations showed a seasonal distribution of summer > spring > fall > winter. Strong positive wavelet coherence between PM and Air Quality Index (AQI) data series suggests that the AQI data series can effectively characterize fluctuating trends in PM concentrations. Moreover, PM10 levels IV and VI were maintained at approximately 10%, indicating that sand and dust have a substantial influence on air quality and pose potential threats to the health of urban inhabitants. Based on the results of this study, future efforts must strengthen relative countermeasures for sand prevention and control, select urban greening species with anti-pollution capabilities, rationally expand urban green spaces, and restrict regulations for reducing particulate matter emissions within city areas.
Collapse
Affiliation(s)
- Tayierjiang Aishan
- College of Ecology and Environment, Xinjiang University, Urumqi, 830046, China
- Ministry of Education Key Laboratory of Oasis Ecology, Xinjiang University, Urumqi, 830046, China
| | - Yaxin Sun
- College of Ecology and Environment, Xinjiang University, Urumqi, 830046, China
| | - Ümüt Halik
- College of Ecology and Environment, Xinjiang University, Urumqi, 830046, China.
- Ministry of Education Key Laboratory of Oasis Ecology, Xinjiang University, Urumqi, 830046, China.
| | - Florian Betz
- Faculty of Mathematics and Geography, University of Eichstaett-Ingolstadt, Eichstaett, 85071, Germany
| | - Asadilla Yusup
- Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Remila Rezhake
- Affiliated Cancer Hospital of Xinjiang Medical University, Urumqi, 830017, China
| |
Collapse
|
26
|
Zeydan Ö, Ülker U. Assessment of ground-level ozone pollution in Türkiye according to new WHO limits. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:549. [PMID: 38743179 DOI: 10.1007/s10661-024-12718-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024]
Abstract
Ground-level ozone is a secondary pollutant and is attributable to respiratory diseases and mortality. For this reason, the World Health Organization (WHO) implemented a new long-term (peak season) limit value for ozone. The previous studies related to ozone in Türkiye were spatially limited to certain locations. In this study, annual mean and peak season ozone concentrations, and limit exceedances were investigated for Türkiye for the year 2021. Moreover, ozone peak seasons were determined for the first time for 126 air quality monitoring stations. The annual mean ozone concentration was determined as 44.3 ± 19.3 µg/m3 whereas the peak season average ozone level was 68.4 ± 27.2 µg/m3. April-September period was the most frequently observed ozone peak season. Among all stations, Erzurum Palandöken was by far the most polluted station in terms of annual mean and limit exceedances of ozone. Ankara Siteler stations have the highest rank in peak season mean. 87 and 83 stations exceeded the short-term and long-term recommendations of WHO, respectively. Four hotspot regions were revealed in terms of peak season exceedance: Adana and surrounding provinces, the surroundings of Burdur and Isparta provinces, and the northeastern and northwestern parts of Türkiye. To protect public health, WHO recommendations for 8-h and peak season limits should be immediately implemented in Turkish regulations.
Collapse
Affiliation(s)
- Özgür Zeydan
- Department of Environmental Engineering, Zonguldak Bülent Ecevit University, 67100, Zonguldak, Türkiye.
| | - Uğur Ülker
- Department of Environmental Engineering, Zonguldak Bülent Ecevit University, 67100, Zonguldak, Türkiye
| |
Collapse
|
27
|
Liu X, Wang Y, Wasti S, Lee T, Li W, Zhou S, Flynn J, Sheesley RJ, Usenko S, Liu F. Impacts of anthropogenic emissions and meteorology on spring ozone differences in San Antonio, Texas between 2017 and 2021. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169693. [PMID: 38160845 DOI: 10.1016/j.scitotenv.2023.169693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/23/2023] [Accepted: 12/24/2023] [Indexed: 01/03/2024]
Abstract
San Antonio has been designated as ozone nonattainment under the current National Ambient Air Quality Standards (NAAQS). Ozone events in the city typically occur in two peaks, characterized by a pronounced spring peak followed by a late summer peak. Despite higher ozone levels, the spring peak has received less attention than the summer peak. To address this research gap, we used the Weather Research and Forecasting (WRF)-driven GEOS-Chem (WRF-GC) model to simulate San Antonio's ozone changes in the spring month of May from 2017 to 2021 and quantified the respective contributions from changes in anthropogenic emissions and meteorology. In addition to modeling, observations from the San Antonio Field Studies (SAFS), the Texas Commission on Environmental Quality (TCEQ) Continuous Ambient Monitoring Stations (CAMS), and the spaceborne TROPOspheric Monitoring Instrument (TROPOMI) are used to examine and validate changes in ozone and precursors. Results show that the simulated daytime mean surface ozone in May 2021 is 3.8 ± 0.6 ppbv lower than in May 2017, which is slightly less than the observed average differences of -5.3 ppbv at CAMS sites. The model predicted that the anthropogenic emission-induced changes contribute to a 1.4 ± 0.5 ppbv reduction in daytime ozone levels, while the meteorology-induced changes account for a 2.4 ± 0.6 ppbv reduction over 2017-2021. This suggests that meteorology plays a relatively more important role than anthropogenic emissions in explaining the spring ozone differences between the two years. We additionally identified (1) reduced NO2 and HCHO concentrations as chemical reasons, and (2) lower temperature, higher humidity, increased wind speed, and a stronger Bermuda High as meteorological reasons for lower ozone levels in 2021 compared to 2017. The quantification of the different roles of meteorology and ozone precursor concentrations helps understand the cause and variation of ozone changes in San Antonio over recent years.
Collapse
Affiliation(s)
- Xueying Liu
- Department of Earth and Atmospheric Sciences, University of Houston, Houston, TX, USA
| | - Yuxuan Wang
- Department of Earth and Atmospheric Sciences, University of Houston, Houston, TX, USA.
| | - Shailaja Wasti
- Department of Earth and Atmospheric Sciences, University of Houston, Houston, TX, USA
| | - Tabitha Lee
- Department of Earth and Atmospheric Sciences, University of Houston, Houston, TX, USA
| | - Wei Li
- Department of Earth and Atmospheric Sciences, University of Houston, Houston, TX, USA
| | - Shan Zhou
- Department of Earth and Atmospheric Sciences, University of Houston, Houston, TX, USA
| | - James Flynn
- Department of Earth and Atmospheric Sciences, University of Houston, Houston, TX, USA
| | | | - Sascha Usenko
- Department of Environmental Science, Baylor University, Waco, TX, USA
| | - Fei Liu
- Morgan State University, Goddard Earth Sciences Technology and Research (GESTAR) II, Baltimore, MD 21251, USA; Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD, USA
| |
Collapse
|
28
|
Pei J, Liu P, Feng Z, Chang M, Wang J, Fang H, Wang L, Huang B. Long-term trajectory of ozone impact on maize and soybean yields in the United States: A 40-year spatial-temporal analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 344:123407. [PMID: 38244900 DOI: 10.1016/j.envpol.2024.123407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 01/22/2024]
Abstract
Understanding the long-term change trends of ozone-induced yield losses is crucial for formulating strategies to alleviate ozone damaging effects, aiming towards achieving the Zero Hunger Sustainable Development Goal. Despite a wealth of experimental research indicating that ozone's influence on agricultural production exhibits marked fluctuations and differs significantly across various geographical locations, previous studies using global statistical models often failed to capture this spatial-temporal variability, leading to uncertainties in ozone impact estimation. To address this issue, we conducted a comprehensive assessment of the spatial-temporal variability of ozone impacts on maize and soybean yields in the United States (1981-2021) using a geographically and temporally weighted regression (GTWR) model. Our results revealed that over the past four decades, ozone pollution has led to average yield losses of -3.5% for maize and -6.1% for soybean, translating into an annual economic loss of approximately $2.6 billion. Interestingly, despite an overall downward trend in ozone impacts on crop yields following the implementation of stringent ozone emission control measures in 1997, our study identified distinct peaks of abnormally high yield reduction rates in drought years. Significant spatial heterogeneity was detected in ozone impacts across the study area, with ozone damage hotspots located in the Southeast Region and the Mississippi River Basin for maize and soybean, respectively. Furthermore, we discovered that hydrothermal factors modulate crop responses to ozone, with maize showing an inverted U-shaped yield loss trend with temperature increases, while soybean demonstrated an upward trend. Both crops experienced amplified ozone-induced yield losses with rising precipitation. Overall, our study highlights the necessity of incorporating spatiotemporal variability into assessments of crop yield losses attributable to ozone pollution. The insights garnered from our findings can contribute to the formulation of region-specific pollutant emission policies, based on the distinct profiles of ozone-induced agricultural damage across different regions.
Collapse
Affiliation(s)
- Jie Pei
- School of Geospatial Engineering and Science, Sun Yat-sen University, Zhuhai, 519082, China; Key Laboratory of Natural Resources Monitoring in Tropical and Subtropical Area of South China, Ministry of Natural Resources, Zhuhai, 519082, China
| | - Pengyu Liu
- School of Geospatial Engineering and Science, Sun Yat-sen University, Zhuhai, 519082, China
| | - Zhaozhong Feng
- Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), School of Ecology and Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, 210044, China.
| | - Ming Chang
- Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Institute for Environmental and Climate Research, Jinan University, Guangzhou, 510632, China
| | - Jian Wang
- Department of Geography, The Ohio State University, Columbus, OH, 43210, USA
| | - Huajun Fang
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; The Zhongke-Ji'an Institute for Eco-Environmental Sciences, Ji'an, 343000, China
| | - Li Wang
- State Key Laboratory of Remote Sensing Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100094, China
| | - Bo Huang
- Department of Geography, The University of Hong Kong, Pokfulam Road, Hong Kong
| |
Collapse
|
29
|
Li B, Ni J, Liu J, Zhao Y, Liu L, Jin J, He C. Spatiotemporal patterns of surface ozone exposure inequality in China. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:265. [PMID: 38351419 DOI: 10.1007/s10661-024-12426-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 02/02/2024] [Indexed: 02/16/2024]
Abstract
Rising surface ozone (O3) levels in China are increasingly emphasizing the potential threats to public health, ecological balance, and economic sustainability. Using a 1 km × 1 km dataset of O3 concentrations, this research employs subpopulation demographic data combined with a population-weighted quality model. Its aim is to evaluate quantitatively the differences in O3 exposure among various subpopulations within China, both at a provincial and urban cluster level. Additionally, an exposure disparity indicator was devised to establish unambiguous exposure risks among significant urban agglomerations at varying O3 concentration levels. The findings reveal that as of 2018, the population-weighted average concentration of O3 for all subgroups has experienced a significant uptick, surpassing the average O3 concentration (118 μg/m3). Notably, the middle-aged demographic exhibited the highest O3 exposure level at 135.7 μg/m3, which is significantly elevated compared to other age brackets. Concurrently, there exists a prominent positive correlation between educational attainment and O3 exposure levels, with the medium-income bracket showing the greatest susceptibility to O3 exposure risks. From an industrial vantage point, the secondary sector demographic is the most adversely impacted by O3 exposure. In terms of urban-rural structure, urban groups in all regions had higher levels of exposure to O3 than rural areas, with North and East China having the most significant levels of exposure. These findings not only emphasize the intricate interplay between public health and environmental justice but further highlight the indispensability of segmented subgroup strategies in environmental health risk assessment. Moreover, this research furnishes invaluable scientific groundwork for crafting targeted public health interventions and sustainable air quality management policies.
Collapse
Affiliation(s)
- Bin Li
- College of Resources and Environment, Yangtze University, Wuhan, 430100, China
- Hubei Key Laboratory of Petroleum Geochemistry and Environment, Yangtze University, Wuhan, 430100, China
| | - Jinmian Ni
- College of Resources and Environment, Yangtze University, Wuhan, 430100, China
- Hubei Key Laboratory of Petroleum Geochemistry and Environment, Yangtze University, Wuhan, 430100, China
| | - Jianhua Liu
- College of Resources and Environment, Yangtze University, Wuhan, 430100, China
- Hubei Key Laboratory of Petroleum Geochemistry and Environment, Yangtze University, Wuhan, 430100, China
| | - Yue Zhao
- College of Resources and Environment, Yangtze University, Wuhan, 430100, China
- Hubei Key Laboratory of Petroleum Geochemistry and Environment, Yangtze University, Wuhan, 430100, China
| | - Lijun Liu
- College of Resources and Environment, Yangtze University, Wuhan, 430100, China
- Hubei Key Laboratory of Petroleum Geochemistry and Environment, Yangtze University, Wuhan, 430100, China
| | - Jiming Jin
- College of Resources and Environment, Yangtze University, Wuhan, 430100, China
- Hubei Key Laboratory of Petroleum Geochemistry and Environment, Yangtze University, Wuhan, 430100, China
| | - Chao He
- College of Resources and Environment, Yangtze University, Wuhan, 430100, China.
- Hubei Key Laboratory of Petroleum Geochemistry and Environment, Yangtze University, Wuhan, 430100, China.
| |
Collapse
|
30
|
Mašek J, Tumajer J, Lange J, Vejpustková M, Kašpar J, Šamonil P, Chuman T, Kolář T, Rybníček M, Jeníček M, Vašíčková I, Čada V, Kaczka R, Rydval M, Svoboda M, Nedělčev O, Hais M, Treml V. Shifting climatic responses of tree rings and NDVI along environmental gradients. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168275. [PMID: 37923267 DOI: 10.1016/j.scitotenv.2023.168275] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/07/2023]
Abstract
Variations in the growth of aboveground biomass compartments such as tree stem and foliage significantly influence the carbon cycle of forest ecosystems. Yet the patterns of climate-driven responses of stem and foliage and their modulating factors remain poorly understood. In this study, we investigate the climatic response of Norway spruce (Picea abies) at 138 sites covering wide spatial and site fertility gradients in temperate forests in Central Europe. To characterize the annual growth rate of stem biomass and seasonal canopy vigor, we used tree-ring chronologies and time-series of NDVI derived from Landsat imagery. We calculated correlations of tree-ring width and NDVI with mean growing season temperature and standardized precipitation evapotranspiration index (SPEI). We evaluated how these climate responses varied with aridity index, soil category, stand age, and topographical factors. The results show that the climate-growth responses of tree rings shift from positive to negative for SPEI and from negative to positive for temperature from dry (warm) to wet (cold) areas. By contrast, NDVI revealed a negative response to temperature across the entire climatic gradient. The negative response of NDVI to temperature likely results from drought effects in warm areas and supporting effects of cloudy conditions on foliage greenness in wet areas. Contrary to NDVI, climate responses of tree rings differed according to stand age and were unaffected by local topographical features and soil conditions. Our findings demonstrate that the decoupling of stem and foliage climatic responses may result from their different climatic limitation along environmental gradients. These results imply that in temperate forest ecosystems, the canopy vigor may show different trends compared to stem growth under ongoing climate change.
Collapse
Affiliation(s)
- Jiří Mašek
- Department of Physical Geography and Geoecology, Faculty of Science, Charles University, Albertov 6, 128 43 Prague, Czech Republic.
| | - Jan Tumajer
- Department of Physical Geography and Geoecology, Faculty of Science, Charles University, Albertov 6, 128 43 Prague, Czech Republic
| | - Jelena Lange
- Department of Physical Geography and Geoecology, Faculty of Science, Charles University, Albertov 6, 128 43 Prague, Czech Republic
| | - Monika Vejpustková
- Forestry and Game Management Research Institute, Strnady 136, 252 02 Jíloviště, Czech Republic
| | - Jakub Kašpar
- Department of Forest Ecology, The Silva Tarouca Research Institute, Lidická 971/25, 602 Brno, Czech Republic
| | - Pavel Šamonil
- Department of Forest Ecology, The Silva Tarouca Research Institute, Lidická 971/25, 602 Brno, Czech Republic
| | - Tomáš Chuman
- Department of Physical Geography and Geoecology, Faculty of Science, Charles University, Albertov 6, 128 43 Prague, Czech Republic
| | - Tomáš Kolář
- Department of Wood Science and Technology, Faculty of Forestry and Wood Technology, Mendel University in Brno, Lesnická 3, 613 00 Brno, Czech Republic; Global Change Research Institute of the Czech Academy of Sciences, Bělidla 986/4a, 603 00 Brno, Czech Republic
| | - Michal Rybníček
- Department of Wood Science and Technology, Faculty of Forestry and Wood Technology, Mendel University in Brno, Lesnická 3, 613 00 Brno, Czech Republic; Global Change Research Institute of the Czech Academy of Sciences, Bělidla 986/4a, 603 00 Brno, Czech Republic
| | - Michal Jeníček
- Department of Physical Geography and Geoecology, Faculty of Science, Charles University, Albertov 6, 128 43 Prague, Czech Republic
| | - Ivana Vašíčková
- Department of Forest Ecology, The Silva Tarouca Research Institute, Lidická 971/25, 602 Brno, Czech Republic
| | - Vojtěch Čada
- Department of Forest Ecology, Faculty of Forestry and Wood Science, Czech University of Life Science, Kamýcká 129, 165 00 Prague, Czech Republic
| | - Ryszard Kaczka
- Department of Physical Geography and Geoecology, Faculty of Science, Charles University, Albertov 6, 128 43 Prague, Czech Republic
| | - Miloš Rydval
- Department of Forest Ecology, Faculty of Forestry and Wood Science, Czech University of Life Science, Kamýcká 129, 165 00 Prague, Czech Republic
| | - Miroslav Svoboda
- Department of Forest Ecology, Faculty of Forestry and Wood Science, Czech University of Life Science, Kamýcká 129, 165 00 Prague, Czech Republic
| | - Ondřej Nedělčev
- Department of Physical Geography and Geoecology, Faculty of Science, Charles University, Albertov 6, 128 43 Prague, Czech Republic
| | - Martin Hais
- Department of Ecosystem Biology, Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05 České Budějovice, Czech Republic
| | - Václav Treml
- Department of Physical Geography and Geoecology, Faculty of Science, Charles University, Albertov 6, 128 43 Prague, Czech Republic
| |
Collapse
|
31
|
Nowroz F, Hasanuzzaman M, Siddika A, Parvin K, Caparros PG, Nahar K, Prasad PV. Elevated tropospheric ozone and crop production: potential negative effects and plant defense mechanisms. FRONTIERS IN PLANT SCIENCE 2024; 14:1244515. [PMID: 38264020 PMCID: PMC10803661 DOI: 10.3389/fpls.2023.1244515] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 12/15/2023] [Indexed: 01/25/2024]
Abstract
Ozone (O3) levels on Earth are increasing because of anthropogenic activities and natural processes. Ozone enters plants through the leaves, leading to the overgeneration of reactive oxygen species (ROS) in the mesophyll and guard cell walls. ROS can damage chloroplast ultrastructure and block photosynthetic electron transport. Ozone can lead to stomatal closure and alter stomatal conductance, thereby hindering carbon dioxide (CO2) fixation. Ozone-induced leaf chlorosis is common. All of these factors lead to a reduction in photosynthesis under O3 stress. Long-term exposure to high concentrations of O3 disrupts plant physiological processes, including water and nutrient uptake, respiration, and translocation of assimilates and metabolites. As a result, plant growth and reproductive performance are negatively affected. Thus, reduction in crop yield and deterioration of crop quality are the greatest effects of O3 stress on plants. Increased rates of hydrogen peroxide accumulation, lipid peroxidation, and ion leakage are the common indicators of oxidative damage in plants exposed to O3 stress. Ozone disrupts the antioxidant defense system of plants by disturbing enzymatic activity and non-enzymatic antioxidant content. Improving photosynthetic pathways, various physiological processes, antioxidant defense, and phytohormone regulation, which can be achieved through various approaches, have been reported as vital strategies for improving O3 stress tolerance in plants. In plants, O3 stress can be mitigated in several ways. However, improvements in crop management practices, CO2 fertilization, using chemical elicitors, nutrient management, and the selection of tolerant crop varieties have been documented to mitigate O3 stress in different plant species. In this review, the responses of O3-exposed plants are summarized, and different mitigation strategies to decrease O3 stress-induced damage and crop losses are discussed. Further research should be conducted to determine methods to mitigate crop loss, enhance plant antioxidant defenses, modify physiological characteristics, and apply protectants.
Collapse
Affiliation(s)
- Farzana Nowroz
- Department of Agronomy, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
| | - Mirza Hasanuzzaman
- Department of Agronomy, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
| | - Ayesha Siddika
- Department of Agronomy, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
| | - Khursheda Parvin
- Department of Horticulture, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
| | - Pedro Garcia Caparros
- Agronomy Department of Superior School Engineering, University of Almería, Almería, Spain
| | - Kamrun Nahar
- Department of Agricultural Botany, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
| | - P.V. Vara Prasad
- Department of Agronomy, Kansas State University, Manhattan, KS, United States
| |
Collapse
|
32
|
Zhang Y, Gao J, Zhu Y, Liu Y, Li H, Yang X, Zhong X, Zhao M, Wang W, Che F, Zhou D, Wang S, Zhi G, Xue L, Li H. Evolution of Ozone Formation Sensitivity during a Persistent Regional Ozone Episode in Northeastern China and Its Implication for a Control Strategy. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:617-627. [PMID: 38112179 PMCID: PMC10786154 DOI: 10.1021/acs.est.3c03884] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 12/06/2023] [Accepted: 12/08/2023] [Indexed: 12/21/2023]
Abstract
In recent years, the magnitude and frequency of regional ozone (O3) episodes have increased in China. We combined ground-based measurements, observation-based model (OBM), and the Weather Research and Forecasting and Community Multiscale Air Quality (WRF-CMAQ) model to analyze a typical persistent O3 episode that occurred across 88 cities in northeastern China during June 19-30, 2021. The meteorological conditions, particularly the wind convergence centers, played crucial roles in the evolution of O3 pollution. Daily analysis of the O3 formation sensitivity showed that O3 formation was in the volatile organic compound (VOC)-limited or transitional regime at the onset of the pollution episode in 92% of the cities. Conversely, it tended to be or eventually became a NOx-limited regime as the episode progressed in the most polluted cities. Based on the emission-reduction scenario simulations, mitigation of the regional O3 pollution was found to be most effective through a phased control strategy, namely, reduction of a high ratio of VOCs to NOx at the onset of the pollution and lower ratio during evolution of the O3 episode. This study presents a new possibility for regional O3 pollution abatement in China based on a reasonable combination of OBM and the WRF-CMAQ model.
Collapse
Affiliation(s)
- Yujie Zhang
- State
Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jian Gao
- State
Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yujiao Zhu
- Environment
Research Institute, Shandong University, Qingdao 266237, China
| | - Yi Liu
- Nanjing CLIMBLUE Technology Co., LTD., Nanjing 211135, China
| | - Hong Li
- State
Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xin Yang
- State
Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xuelian Zhong
- Environment
Research Institute, Shandong University, Qingdao 266237, China
| | - Min Zhao
- Environment
Research Institute, Shandong University, Qingdao 266237, China
| | - Wan Wang
- State
Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Fei Che
- State
Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Derong Zhou
- Joint
International Research Laboratory of Atmospheric and Earth System
Sciences & School of Atmospheric Sciences, Nanjing University, Nanjing 210023, China
| | - Shuai Wang
- China
National Environmental Monitoring Centre, Beijing 100012, China
| | - Guorui Zhi
- State
Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Likun Xue
- Environment
Research Institute, Shandong University, Qingdao 266237, China
| | - Haisheng Li
- State
Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
33
|
Zhu Y, Liu Y, Li S, Wang H, Lu X, Wang H, Shen C, Chen X, Chan P, Shen A, Wang H, Jin Y, Xu Y, Fan S, Fan Q. Assessment of tropospheric ozone simulations in a regional chemical transport model using GEOS-Chem outputs as chemical boundary conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167485. [PMID: 37802345 DOI: 10.1016/j.scitotenv.2023.167485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/25/2023] [Accepted: 09/28/2023] [Indexed: 10/08/2023]
Abstract
Regional chemical transport models (e.g., Community Multiscale Air Quality (CMAQ) Modeling System) are widely used to simulate the physical and chemical process of regional ozone (O3) pollution and its variation trend in recent years. However, chemical boundary condition (CBC) is an important input of these models and contributes to the model bias against observations. In this study, we develop a tool named GC2CMAQ that provides the CMAQ model with the CBCs from the GEOS-Chem simulation. Two experiments using different CBCs were conducted to evaluate their effect on seasonal O3 simulation in China. The Default experiment utilized the model-default static condition (the relatively clean atmosphere in the eastern United States), and the GC experiment employed the GEOS-Chem simulation results. Compared with the observation, the GC experiment has a much better performance in reproducing elevated O3 levels in the higher troposphere and lower stratosphere during different seasons. Near the earth's surface, the simulated concentrations of pollutants O3 (and PM2.5) in the GC experiment were also closer to the observation in April and July. The accuracy of simulation results in provinces close to the boundary was improved by approximately 20 %-30 % relative to the Default experiment. The CBCs provided by GEOS-Chem enabled a better simulation of stratosphere-troposphere O3 exchange in late spring and early summer, which then affected the pollutant concentration near surfaces through vertical transport. This finding was confirmed by a case study in southwestern Tibet on April 28, 2017, in which we quantified the contributions of different physical and chemical processes to O3 variations at different altitudes using the process analysis method. This study highlights the importance of using a reliable CBC for the regional chemical transport model to derive a better performance of O3 simulation.
Collapse
Affiliation(s)
- Yuqi Zhu
- School of Atmospheric Sciences, Sun Yat-sen University, Key Laboratory of Tropical Atmosphere-Ocean System, Ministry of Education, Zhuhai, China; Guangdong Provincial Observation and Research Station for Climate Environment and Air Quality Change in the Pearl River Estuary, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Yiming Liu
- School of Atmospheric Sciences, Sun Yat-sen University, Key Laboratory of Tropical Atmosphere-Ocean System, Ministry of Education, Zhuhai, China; Guangdong Provincial Observation and Research Station for Climate Environment and Air Quality Change in the Pearl River Estuary, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China.
| | - Siting Li
- School of Atmospheric Sciences, Sun Yat-sen University, Key Laboratory of Tropical Atmosphere-Ocean System, Ministry of Education, Zhuhai, China; Guangdong Provincial Observation and Research Station for Climate Environment and Air Quality Change in the Pearl River Estuary, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Haolin Wang
- School of Atmospheric Sciences, Sun Yat-sen University, Key Laboratory of Tropical Atmosphere-Ocean System, Ministry of Education, Zhuhai, China; Guangdong Provincial Observation and Research Station for Climate Environment and Air Quality Change in the Pearl River Estuary, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Xiao Lu
- School of Atmospheric Sciences, Sun Yat-sen University, Key Laboratory of Tropical Atmosphere-Ocean System, Ministry of Education, Zhuhai, China; Guangdong Provincial Observation and Research Station for Climate Environment and Air Quality Change in the Pearl River Estuary, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Haichao Wang
- School of Atmospheric Sciences, Sun Yat-sen University, Key Laboratory of Tropical Atmosphere-Ocean System, Ministry of Education, Zhuhai, China; Guangdong Provincial Observation and Research Station for Climate Environment and Air Quality Change in the Pearl River Estuary, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Chong Shen
- Guangzhou Climate and Agrometeorology Center, Guangzhou, China
| | - Xiaoyang Chen
- Institute of Tropical and Marine Meteorology, China Meteorological Administration, Guangzhou, China
| | | | - Ao Shen
- School of Atmospheric Sciences, Sun Yat-sen University, Key Laboratory of Tropical Atmosphere-Ocean System, Ministry of Education, Zhuhai, China; Guangdong Provincial Observation and Research Station for Climate Environment and Air Quality Change in the Pearl River Estuary, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Haofan Wang
- School of Atmospheric Sciences, Sun Yat-sen University, Key Laboratory of Tropical Atmosphere-Ocean System, Ministry of Education, Zhuhai, China; Guangdong Provincial Observation and Research Station for Climate Environment and Air Quality Change in the Pearl River Estuary, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Yinbao Jin
- School of Atmospheric Sciences, Sun Yat-sen University, Key Laboratory of Tropical Atmosphere-Ocean System, Ministry of Education, Zhuhai, China; Guangdong Provincial Observation and Research Station for Climate Environment and Air Quality Change in the Pearl River Estuary, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Yifei Xu
- School of Atmospheric Sciences, Sun Yat-sen University, Key Laboratory of Tropical Atmosphere-Ocean System, Ministry of Education, Zhuhai, China; Guangdong Provincial Observation and Research Station for Climate Environment and Air Quality Change in the Pearl River Estuary, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Shaojia Fan
- School of Atmospheric Sciences, Sun Yat-sen University, Key Laboratory of Tropical Atmosphere-Ocean System, Ministry of Education, Zhuhai, China; Guangdong Provincial Observation and Research Station for Climate Environment and Air Quality Change in the Pearl River Estuary, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Qi Fan
- School of Atmospheric Sciences, Sun Yat-sen University, Key Laboratory of Tropical Atmosphere-Ocean System, Ministry of Education, Zhuhai, China; Guangdong Provincial Observation and Research Station for Climate Environment and Air Quality Change in the Pearl River Estuary, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China.
| |
Collapse
|
34
|
Wu G, Guan K, Ainsworth EA, Martin DG, Kimm H, Yang X. Solar-induced chlorophyll fluorescence captures the effects of elevated ozone on canopy structure and acceleration of senescence in soybean. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:350-363. [PMID: 37702411 DOI: 10.1093/jxb/erad356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 09/11/2023] [Indexed: 09/14/2023]
Abstract
Solar-induced chlorophyll fluorescence (SIF) provides an opportunity to rapidly and non-destructively investigate how plants respond to stress. Here, we explored the potential of SIF to detect the effects of elevated O3 on soybean in the field where soybean was subjected to ambient and elevated O3 throughout the growing season in 2021. Exposure to elevated O3 resulted in a significant decrease in canopy SIF at 760 nm (SIF760), with a larger decrease in the late growing season (36%) compared with the middle growing season (13%). Elevated O3 significantly decreased the fraction of absorbed photosynthetically active radiation by 8-15% in the middle growing season and by 35% in the late growing stage. SIF760 escape ratio (fesc) was significantly increased under elevated O3 by 5-12% in the late growth stage due to a decrease of leaf chlorophyll content and leaf area index. Fluorescence yield of the canopy was reduced by 5-11% in the late growing season depending on the fesc estimation method, during which leaf maximum carboxylation rate and maximum electron transport were significantly reduced by 29% and 20% under elevated O3. These results demonstrated that SIF could capture the elevated O3 effect on canopy structure and acceleration of senescence in soybean and provide empirical support for using SIF for soybean stress detection and phenotyping.
Collapse
Affiliation(s)
- Genghong Wu
- Agroecosystem Sustainability Center, Institute for Sustainability, Energy, and Environment, University of Illinois Urbana Champaign, Urbana, IL 61801, USA
- Department of Natural Resources and Environmental Sciences, College of Agricultural, Consumers, and Environmental Sciences, University of Illinois Urbana Champaign, Urbana, IL 61801, USA
- Institute of Bio- and Geosciences, IBG-2: Plant Sciences, Forschungszentrum Jülich GmbH, Jülich 52425, Germany
| | - Kaiyu Guan
- Agroecosystem Sustainability Center, Institute for Sustainability, Energy, and Environment, University of Illinois Urbana Champaign, Urbana, IL 61801, USA
- Department of Natural Resources and Environmental Sciences, College of Agricultural, Consumers, and Environmental Sciences, University of Illinois Urbana Champaign, Urbana, IL 61801, USA
- National Center for Supercomputing Applications, University of Illinois Urbana Champaign, Urbana, IL 61801, USA
| | - Elizabeth A Ainsworth
- Agroecosystem Sustainability Center, Institute for Sustainability, Energy, and Environment, University of Illinois Urbana Champaign, Urbana, IL 61801, USA
- Department of Plant Biology, University of Illinois Urbana Champaign, Urbana, IL 61801, USA
- USDA-ARS, Global Change and Photosynthesis Research Unit, Urbana, IL 61801, USA
| | - Duncan G Martin
- Department of Plant Biology, University of Illinois Urbana Champaign, Urbana, IL 61801, USA
| | - Hyungsuk Kimm
- Department of Natural Resources and Environmental Sciences, College of Agricultural, Consumers, and Environmental Sciences, University of Illinois Urbana Champaign, Urbana, IL 61801, USA
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, South Korea
| | - Xi Yang
- Department of Environmental Sciences, University of Virginia, Charlottesville, VA 22903, USA
| |
Collapse
|
35
|
Hu F, Zhang Y, Guo J. Effects of drought stress on photosynthetic physiological characteristics, leaf microstructure, and related gene expression of yellow horn. PLANT SIGNALING & BEHAVIOR 2023; 18:2215025. [PMID: 37243677 DOI: 10.1080/15592324.2023.2215025] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/28/2023] [Accepted: 05/01/2023] [Indexed: 05/29/2023]
Abstract
Yellow horn grows in northern China and has a high tolerance to drought and poor soil. Improving photosynthetic efficiency and increasing plant growth and yield under drought conditions have become important research content for researchers worldwide. Our study goal is to provide comprehensive information on photosynthesis and some candidate genes breeding of yellow horn under drought stress. In this study, seedlings' stomatal conductance, chlorophyll content, and fluorescence parameters decreased under drought stress, but non-photochemical quenching increased. The leaf microstructure showed that stomata underwent a process from opening to closing, guard cells from complete to dry, and surrounding leaf cells from smooth to severe shrinkage. The chloroplast ultrastructure showed that the changes of starch granules were different under different drought stress, while plastoglobules increased and expanded continuously. In addition, we found some differentially expressed genes related to photosystem, electron transport component, oxidative phosphate ATPase, stomatal closure, and chloroplast ultrastructure. These results laid a foundation for further genetic improvement and deficit resistance breeding of yellow horn under drought stress.
Collapse
Affiliation(s)
- Fang Hu
- College of Forestry, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Yunxiang Zhang
- College of Forestry, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Jinping Guo
- College of Forestry, Shanxi Agricultural University, Jinzhong, Shanxi, China
| |
Collapse
|
36
|
Gupta GS, Madheshiya P, Tiwari S. Using soil nitrogen amendments in mitigating ozone stress in agricultural crops: a case study of cluster beans. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 196:13. [PMID: 38052762 DOI: 10.1007/s10661-023-12146-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 11/13/2023] [Indexed: 12/07/2023]
Abstract
The climate change scenario in the coming years is liable to have serious negative consequences on agricultural productivity. Increasing tropospheric ozone concentration is an important aspect of climate change, which, due to its oxidative nature, is injurious to the plants. Due to the multifarious nature and continuously increasing concentration of tropospheric ozone, it is prerequisite to develop strategies to manage ozone stress in plants. Present study not only evaluates the potential of soil nitrogen amendments in ameliorating ozone stress in plants, but also focuses upon the mechanistic approaches adopted by the different plant cultivars to combat ozone stress. Three doses of nitrogen amendments, recommended (N1), 1.5× recommended (N2) and 2× recommended (N3), were given to two cultivars (S-151 and PUSA-N) of Cymopsis tetragonoloba exposed to ambient ozone stress. Control plants were also maintained in which no nitrogen treatment was given. Nitrogen supplementation reduced the root nodulation frequency and leghaemoglobin content, which subsequently increased the cellular nitrogen metabolism as evident through increase in the activities of nitrate reductase and nitrite reductase in both the test cultivars. The positive effects of nitrogen amendments are clearly evident in the 1D protein profile studies which showed a greater accumulation of larger sub-units of RuBisCO in nitrogen amended plants. The results clearly indicate that N2 treatment effectively enhanced the yield of both the cultivars (84.8% and 76.37%, in S-151 and PUSA-N, respectively); however, the mechanistic approach adopted by the two cultivars was different. Whereas the yield quantity showed higher increments in S-151, the yield quality parameters (carbohydrates and nitrogen contents) responded more positively in PUSA-N.
Collapse
Affiliation(s)
- Gereraj Sen Gupta
- Department of Botany, Institute of Science, Centre of Advanced Studies, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Parvati Madheshiya
- Department of Botany, Institute of Science, Centre of Advanced Studies, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Supriya Tiwari
- Department of Botany, Institute of Science, Centre of Advanced Studies, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India.
| |
Collapse
|
37
|
Li S, Leakey ADB, Moller CA, Montes CM, Sacks EJ, Lee D, Ainsworth EA. Similar photosynthetic but different yield responses of C 3 and C 4 crops to elevated O 3. Proc Natl Acad Sci U S A 2023; 120:e2313591120. [PMID: 37948586 PMCID: PMC10655586 DOI: 10.1073/pnas.2313591120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/06/2023] [Indexed: 11/12/2023] Open
Abstract
The deleterious effects of ozone (O3) pollution on crop physiology, yield, and productivity are widely acknowledged. It has also been assumed that C4 crops with a carbon concentrating mechanism and greater water use efficiency are less sensitive to O3 pollution than C3 crops. This assumption has not been widely tested. Therefore, we compiled 46 journal articles and unpublished datasets that reported leaf photosynthetic and biochemical traits, plant biomass, and yield in five C3 crops (chickpea, rice, snap bean, soybean, and wheat) and four C4 crops (sorghum, maize, Miscanthus × giganteus, and switchgrass) grown under ambient and elevated O3 concentration ([O3]) in the field at free-air O3 concentration enrichment (O3-FACE) facilities over the past 20 y. When normalized by O3 exposure, C3 and C4 crops showed a similar response of leaf photosynthesis, but the reduction in chlorophyll content, fluorescence, and yield was greater in C3 crops compared with C4 crops. Additionally, inbred and hybrid lines of rice and maize showed different sensitivities to O3 exposure. This study quantitatively demonstrates that C4 crops respond less to elevated [O3] than C3 crops. This understanding could help maintain cropland productivity in an increasingly polluted atmosphere.
Collapse
Affiliation(s)
- Shuai Li
- Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL61801
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL61801
- Institute for Sustainability, Energy, and Environment, University of Illinois at Urbana-Champaign, Urbana, IL61801
| | - Andrew D. B. Leakey
- Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL61801
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL61801
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL61801
| | - Christopher A. Moller
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL61801
- Global Change and Photosynthesis Research Unit, US Department of Agriculture, Agricultural Research Service, Urbana, IL61801
| | - Christopher M. Montes
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL61801
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL61801
- Global Change and Photosynthesis Research Unit, US Department of Agriculture, Agricultural Research Service, Urbana, IL61801
| | - Erik J. Sacks
- Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL61801
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL61801
| | - DoKyoung Lee
- Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL61801
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL61801
| | - Elizabeth A. Ainsworth
- Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL61801
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL61801
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL61801
- Global Change and Photosynthesis Research Unit, US Department of Agriculture, Agricultural Research Service, Urbana, IL61801
| |
Collapse
|
38
|
Ramya A, Dhevagi P, Poornima R, Avudainayagam S, Watanabe M, Agathokleous E. Effect of ozone stress on crop productivity: A threat to food security. ENVIRONMENTAL RESEARCH 2023; 236:116816. [PMID: 37543123 DOI: 10.1016/j.envres.2023.116816] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/29/2023] [Accepted: 08/01/2023] [Indexed: 08/07/2023]
Abstract
Tropospheric ozone (O3), the most important phytotoxic air pollutant, can deteriorate crop quality and productivity. Notably, satellite and ground-level observations-based multimodel simulations demonstrate that the present and future predicted O3 exposures could threaten food security. Hence, the present study aims at reviewing the phytotoxicity caused by O3 pollution, which threatens the food security. The present review encompasses three major aspects; wherein the past and prevailing O3 concentrations in various regions were compiled at first, followed by discussing the physiological, biochemical and yield responses of economically important crop species, and considering the potential of O3 protectants to alleviate O3-induced phytotoxicity. Finally, the empirical data reported in the literature were quantitatively analysed to show that O3 causes detrimental effect on physiological traits, photosynthetic pigments, growth and yield attributes. The review on prevailing O3 concentrations over various regions, where economically important crop are grown, and their negative impact would support policy makers to implement air pollution regulations and the scientific community to develop countermeasures against O3 phytotoxicity for maintaining food security.
Collapse
Affiliation(s)
- Ambikapathi Ramya
- Department of Environmental Sciences, Tamil Nadu Agricultural University, Tamil Nadu, 641003, India
| | - Periyasamy Dhevagi
- Department of Environmental Sciences, Tamil Nadu Agricultural University, Tamil Nadu, 641003, India.
| | - Ramesh Poornima
- Department of Environmental Sciences, Tamil Nadu Agricultural University, Tamil Nadu, 641003, India
| | - S Avudainayagam
- Department of Environmental Sciences, Tamil Nadu Agricultural University, Tamil Nadu, 641003, India
| | - Makoto Watanabe
- Institute of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8509, Japan
| | - Evgenios Agathokleous
- Department of Ecology, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China.
| |
Collapse
|
39
|
Leisner CP, Potnis N, Sanz-Saez A. Crosstalk and trade-offs: Plant responses to climate change-associated abiotic and biotic stresses. PLANT, CELL & ENVIRONMENT 2023; 46:2946-2963. [PMID: 36585762 DOI: 10.1111/pce.14532] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/07/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
As sessile organisms, plants are constantly challenged by a dynamic growing environment. This includes fluctuations in temperature, water availability, light levels, and changes in atmospheric constituents such as carbon dioxide (CO2 ) and ozone (O3 ). In concert with changes in abiotic conditions, plants experience changes in biotic stress pressures, including plant pathogens and herbivores. Human-induced increases in atmospheric CO2 levels have led to alterations in plant growth environments that impact their productivity and nutritional quality. Additionally, it is predicted that climate change will alter the prevalence and virulence of plant pathogens, further challenging plant growth. A knowledge gap exists in the complex interplay between plant responses to biotic and abiotic stress conditions. Closing this gap is crucial for developing climate resilient crops in the future. Here, we briefly review the physiological responses of plants to elevated CO2 , temperature, tropospheric O3 , and drought conditions, as well as the interaction of these abiotic stress factors with plant pathogen pressure. Additionally, we describe the crosstalk and trade-offs involved in plant responses to both abiotic and biotic stress, and outline targets for future work to develop a more sustainable future food supply considering future climate change.
Collapse
Affiliation(s)
- Courtney P Leisner
- Department of Biological Sciences, Auburn University, Auburn, Alabama, USA
| | - Neha Potnis
- Department of Entomology and Plant Pathology, Auburn University, Auburn, Alabama, USA
| | - Alvaro Sanz-Saez
- Department of Crop, Soil and Environmental Science, Auburn University, Auburn, Alabama, USA
| |
Collapse
|
40
|
Clifton OE, Schwede D, Hogrefe C, Bash JO, Bland S, Cheung P, Coyle M, Emberson L, Flemming J, Fredj E, Galmarini S, Ganzeveld L, Gazetas O, Goded I, Holmes CD, Horváth L, Huijnen V, Li Q, Makar PA, Mammarella I, Manca G, Munger JW, Pérez-Camanyo JL, Pleim J, Ran L, Jose RS, Silva SJ, Staebler R, Sun S, Tai APK, Tas E, Vesala T, Weidinger T, Wu Z, Zhang L. A single-point modeling approach for the intercomparison and evaluation of ozone dry deposition across chemical transport models (Activity 2 of AQMEII4). ATMOSPHERIC CHEMISTRY AND PHYSICS 2023; 23:9911-9961. [PMID: 37990693 PMCID: PMC10659075 DOI: 10.5194/acp-23-9911-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
A primary sink of air pollutants and their precursors is dry deposition. Dry deposition estimates differ across chemical transport models, yet an understanding of the model spread is incomplete. Here, we introduce Activity 2 of the Air Quality Model Evaluation International Initiative Phase 4 (AQMEII4). We examine 18 dry deposition schemes from regional and global chemical transport models as well as standalone models used for impact assessments or process understanding. We configure the schemes as single-point models at eight Northern Hemisphere locations with observed ozone fluxes. Single-point models are driven by a common set of site-specific meteorological and environmental conditions. Five of eight sites have at least 3 years and up to 12 years of ozone fluxes. The interquartile range across models in multiyear mean ozone deposition velocities ranges from a factor of 1.2 to 1.9 annually across sites and tends to be highest during winter compared with summer. No model is within 50 % of observed multiyear averages across all sites and seasons, but some models perform well for some sites and seasons. For the first time, we demonstrate how contributions from depositional pathways vary across models. Models can disagree with respect to relative contributions from the pathways, even when they predict similar deposition velocities, or agree with respect to the relative contributions but predict different deposition velocities. Both stomatal and nonstomatal uptake contribute to the large model spread across sites. Our findings are the beginning of results from AQMEII4 Activity 2, which brings scientists who model air quality and dry deposition together with scientists who measure ozone fluxes to evaluate and improve dry deposition schemes in the chemical transport models used for research, planning, and regulatory purposes.
Collapse
Affiliation(s)
- Olivia E. Clifton
- NASA Goddard Institute for Space Studies, New York, NY, USA
- Center for Climate Systems Research, Columbia Climate School, Columbia University in the City of New York, New York, NY, USA
| | - Donna Schwede
- Office of Research and Development, United States Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Christian Hogrefe
- Office of Research and Development, United States Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Jesse O. Bash
- Office of Research and Development, United States Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Sam Bland
- Stockholm Environment Institute, Environment and Geography Department, University of York, York, UK
| | - Philip Cheung
- Air Quality Research Division, Atmospheric Science and Technology Directorate, Environment and Climate Change Canada, Toronto, Canada
| | - Mhairi Coyle
- United Kingdom Centre for Ecology and Hydrology, Bush Estate, Penicuik, Midlothian, UK
- The James Hutton Institute, Craigiebuckler, Aberdeen, UK
| | - Lisa Emberson
- Environment and Geography Department, University of York, York, UK
| | | | - Erick Fredj
- Department of Computer Science, The Jerusalem College of Technology, Jerusalem, Israel
| | | | - Laurens Ganzeveld
- Meteorology and Air Quality Section, Wageningen University, Wageningen, the Netherlands
| | - Orestis Gazetas
- Joint Research Centre (JRC), European Commission, Ispra, Italy
| | - Ignacio Goded
- Joint Research Centre (JRC), European Commission, Ispra, Italy
| | - Christopher D. Holmes
- Department of Earth, Ocean and Atmospheric Science, Florida State University, Tallahassee, FL, USA
| | - László Horváth
- ELKH-SZTE Photoacoustic Research Group, Department of Optics and Quantum Electronics, University of Szeged, Szeged, Hungary
| | - Vincent Huijnen
- Royal Netherlands Meteorological Institute, De Bilt, the Netherlands
| | - Qian Li
- The Institute of Environmental Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Paul A. Makar
- Air Quality Research Division, Atmospheric Science and Technology Directorate, Environment and Climate Change Canada, Toronto, Canada
| | - Ivan Mammarella
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki, Finland
| | - Giovanni Manca
- Joint Research Centre (JRC), European Commission, Ispra, Italy
| | - J. William Munger
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA, USA
| | | | - Jonathan Pleim
- Center for Environmental Measurement and Modeling, United States Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Limei Ran
- Natural Resources Conservation Service, United States Department of Agriculture, Greensboro, NC, USA
| | - Roberto San Jose
- Computer Science School, Technical University of Madrid (UPM), Madrid, Spain
| | - Sam J. Silva
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, USA
| | - Ralf Staebler
- Air Quality Research Division, Atmospheric Science and Technology Directorate, Environment and Climate Change Canada, Toronto, Canada
| | - Shihan Sun
- Earth and Environmental Sciences Programme, Faculty of Science, The Chinese University of Hong Kong, Hong Kong, China
| | - Amos P. K. Tai
- Earth and Environmental Sciences Programme, Faculty of Science, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
- Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, Hong Kong, China
| | - Eran Tas
- The Institute of Environmental Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Timo Vesala
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki, Finland
- Institute for Atmospheric and Earth System Research/Forest Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| | - Tamás Weidinger
- Department of Meteorology, Institute of Geography and Earth Sciences, Eötvös Loránd University, Budapest, Hungary
| | - Zhiyong Wu
- ORISE Fellow at Center for Environmental Measurement and Modeling, United States Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Leiming Zhang
- Air Quality Research Division, Atmospheric Science and Technology Directorate, Environment and Climate Change Canada, Toronto, Canada
| |
Collapse
|
41
|
Garnier J, Billen G, Aguilera E, Lassaletta L, Einarsson R, Serra J, Cameira MDR, Marques-Dos-Santos C, Sanz-Cobena A. How much can changes in the agro-food system reduce agricultural nitrogen losses to the environment? Example of a temperate-Mediterranean gradient. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 337:117732. [PMID: 36944291 DOI: 10.1016/j.jenvman.2023.117732] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 03/03/2023] [Accepted: 03/10/2023] [Indexed: 06/18/2023]
Abstract
Ammonia (NH3) volatilization, nitrous oxide (N2O) emissions, and nitrate (NO3-) leaching from agriculture cause severe environmental hazards. Research studies and mitigation strategies have mostly focused on one of these nitrogen (N) losses at a time, often without an integrated view of the agro-food system. Yet, at the regional scale, N2O, NH3, and NO3- loss patterns reflect the structure of the whole agro-food system. Here, we analyzed at the resolution of NUTS2 administrative European Union (EU) regions, N fluxes through the agro-food systems of a Temperate-Mediterranean gradient (France, Spain, and Portugal) experiencing contrasting climate and soil conditions. We assessed the atmospheric and hydrological N emissions from soils and livestock systems. Expressed per ha agricultural land, NH3 volatilization varied in the range 6.2-44.4 kg N ha-1 yr-1, N2O emission and NO3 leaching 0.3-4.9 kg N ha-1 yr-1 and 5.4-154 kg N ha-1 yr-1 respectively. Overall, lowest N2O emission was found in the Mediterranean regions, where NO3- leaching was greater. NH3 volatilization in both temperate and Mediterranean regions roughly follows the distribution of livestock density. We showed that these losses are also closely correlated with the level of fertilization intensity and agriculture system specialization into either stockless crop farming or intensive livestock farming in each region. Moreover, we explored two possible future scenarios at the 2050 horizon: (1) a scenario based on the prescriptions of the EU-Farm-to-Fork (F2F) strategy, with 25% of organic farming, 10% of land set aside for biodiversity, 20% reduction in N fertilizers, and no diet change; and (2) a hypothetical agro-ecological (AE) scenario with generalized organic farming, reconnection of crop and livestock farming, and a healthier human diet with an increase in the share of vegetal protein to 65% (i.e., the Mediterranean diet). Results showed that the AE scenario, owing to its profound reconfiguration of the entire agro-food system would have the potential for much greater reductions in NH3, N2O, and NO3- emissions, namely, 60-81% reduction, while the F2F scenario would only reach 24-35% reduction of N losses.
Collapse
Affiliation(s)
- Josette Garnier
- SU CNRS EPHE, Umr Metis 7619, 4 Place Jussieu, 75005, Paris, France.
| | - Gilles Billen
- SU CNRS EPHE, Umr Metis 7619, 4 Place Jussieu, 75005, Paris, France
| | - Eduardo Aguilera
- ETSI Agronomica, Alimentaria y de Biosistemas, CEIGRAM Universidad Politécnica de Madrid, Spain
| | - Luis Lassaletta
- ETSI Agronomica, Alimentaria y de Biosistemas, CEIGRAM Universidad Politécnica de Madrid, Spain
| | - Rasmus Einarsson
- ETSI Agronomica, Alimentaria y de Biosistemas, CEIGRAM Universidad Politécnica de Madrid, Spain; Department of Energy and Technology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - João Serra
- Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017, Lisbon, Portugal
| | - Maria do Rosário Cameira
- LEAF-Linking Landscape, Environment, Agriculture and Food-Research Center, Associated Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017, Lisbon, Portugal
| | | | - Alberto Sanz-Cobena
- ETSI Agronomica, Alimentaria y de Biosistemas, CEIGRAM Universidad Politécnica de Madrid, Spain
| |
Collapse
|
42
|
Kaylor SD, Snell Taylor SJ, Herrick JD. Estimates of biomass reductions of ozone sensitive herbaceous plants in California. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 878:163134. [PMID: 37001658 PMCID: PMC10543089 DOI: 10.1016/j.scitotenv.2023.163134] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 05/13/2023]
Abstract
Exposure to tropospheric ozone pollution impairs photosynthesis and growth in plants and this can have consequences for ecosystems. However, exposure-response research in the United States (U.S.) has historically focused on trees and crops, and less attention has been given to non-crop herbaceous species. We combined U.S. Environmental Protection Agency ozone monitoring data from the entirety of 2016 with published exposure-response relationships from controlled exposure experiments for twenty herbaceous plant species occurring in California. The U.S. Department of Agriculture PLANTS database was used to identify county-level occurrence data of these plant species. A kriged ozone exposure surface for 2016 was generated using data from monitoring stations in California and surrounding states, using Accumulated Ozone exposure over a Threshold of 40 ppb (AOT40) as an exposure metric. County-wide ozone exposure estimations were then combined with published exposure response functions for focal plants, and maps were created to estimate ozone-induced growth losses in the counties where the plants occur. Plant species had estimated annual growth losses from <1 % to >20 % based on exposure levels and sensitivity. Of the 20 species, 17 had predicted biomass loss >5 % in at least one county, emphasizing the vulnerability of herbaceous species at recent ozone concentrations. Butte, Nevada, Plumas, San Luis Obispo, and Shasta Counties, an area of about 31,652 km2, had the highest number of species (6) with >10 % estimated biomass loss, the loss threshold for European critical levels. White clover (Trifolium repens L.) was one of the most affected species with more than an estimated 10 % annual estimated growth loss over 59 % of the state. Overall, these estimated growth losses demonstrate potential for shifts in plant communities and negative effects on ecosystems. This study addresses critical policy needs for risk assessments on herbaceous species in a single year of ozone exposure.
Collapse
Affiliation(s)
- S Douglas Kaylor
- United States Environmental Protection Agency, Office of Research and Development, Center for Public Health and Environmental Assessment, 109 TW Alexander Dr, Research Triangle Park, NC 27709, USA.
| | - Sara J Snell Taylor
- Department of Biology, University of North Carolina, CB 3280, Chapel Hill, NC 27599, USA
| | - Jeffery D Herrick
- United States Environmental Protection Agency, Office of Research and Development, Center for Public Health and Environmental Assessment, 109 TW Alexander Dr, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
43
|
Wang M, Li G, Feng Z, Liu Y, Yuan X, Uscola M. A wider spectrum of avoidance and tolerance mechanisms explained ozone sensitivity of two white poplar ploidy levels. ANNALS OF BOTANY 2023; 131:655-666. [PMID: 36694346 PMCID: PMC10147324 DOI: 10.1093/aob/mcad019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/23/2023] [Indexed: 05/20/2023]
Abstract
BACKGROUND AND AIMS Polyploidization can improve plant mass yield for bioenergy support, yet few studies have investigated ozone (O3) sensitivity linked to internal regulatory mechanisms at different ploidy levels. METHODS Diploid and triploid Populus tomentosa plants were exposed to ambient and ambient plus 60 ppb [O3]. We explored their differences in sensitivity (leaf morphological, physiological and biochemical traits, and plant mass) as well as mechanisms of avoidance (stomatal conductance, xanthophyll cycle, thermal dissipation) and tolerance (ROS scavenging system) in response to O3 at two developmental phases. KEY RESULTS Triploid plants had the highest plant growth under ambient O3, even under O3 fumigation. However, triploid plants were the most sensitive to O3 and under elevated O3 showed the largest decreases in photosynthetic capacity and performance, as well as increased shoot:root ratio, and the highest lipid peroxidation. Thus, plant mass production could be impacted in triploid plants under long-term O3 contamination. Both diploid and triploid plants reduced stomatal aperture in response to O3, thereby reducing O3 entrance, yet only in diploid plants was reduced stomatal aperture associated with minimal (non-significant) damage to photosynthetic pigments and lower lipid peroxidation. CONCLUSIONS Tolerance mechanisms of plants of both ploidy levels mainly focused on the enzymatic reduction of hydrogen peroxide through catalase and peroxidase, yet these homeostatic regulatory mechanisms were higher in diploid plants. Our study recommends triploid white poplar as a bioenergy species only under short-term O3 contamination. Under continuously elevated O3 over the long term, diploid white poplar may perform better.
Collapse
Affiliation(s)
- Miaomiao Wang
- Key Laboratory for Silviculture and Conservation, Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - Guolei Li
- Key Laboratory for Silviculture and Conservation, Ministry of Education, Beijing Forestry University, Beijing 100083, China
- Research Center of Deciduous Oaks, Beijing Forestry University, Beijing 100083, China
- National Innovation Alliance of Valuable Deciduous Tree Industry, Beijing Forestry University, Beijing 100083, China
| | - Zhaozhong Feng
- Key Laboratory of Agrometeorology of Jiangsu Province, Institute of Ecology, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Yong Liu
- Key Laboratory for Silviculture and Conservation, Ministry of Education, Beijing Forestry University, Beijing 100083, China
- Research Center of Deciduous Oaks, Beijing Forestry University, Beijing 100083, China
- National Innovation Alliance of Valuable Deciduous Tree Industry, Beijing Forestry University, Beijing 100083, China
| | - Xiangyang Yuan
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Mercedes Uscola
- Universidad de Alcalá, Forest Ecology and Restoration Group, Departamento de Ciencias de la Vida, U.D. Ecología, Apdo. 20, E-28805, Alcalá de Henares, Madrid, Spain
| |
Collapse
|
44
|
Aspray EK, Mies TA, McGrath JA, Montes CM, Dalsing B, Puthuval KK, Whetten A, Herriott J, Li S, Bernacchi CJ, DeLucia EH, Leakey ADB, Long SP, McGrath JM, Miglietta F, Ort DR, Ainsworth EA. Two decades of fumigation data from the Soybean Free Air Concentration Enrichment facility. Sci Data 2023; 10:226. [PMID: 37081032 PMCID: PMC10119297 DOI: 10.1038/s41597-023-02118-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 03/28/2023] [Indexed: 04/22/2023] Open
Abstract
The Soybean Free Air Concentration Enrichment (SoyFACE) facility is the longest running open-air carbon dioxide and ozone enrichment facility in the world. For over two decades, soybean, maize, and other crops have been exposed to the elevated carbon dioxide and ozone concentrations anticipated for late this century. The facility, located in East Central Illinois, USA, exposes crops to different atmospheric concentrations in replicated octagonal ~280 m2 Free Air Concentration Enrichment (FACE) treatment plots. Each FACE plot is paired with an untreated control (ambient) plot. The experiment provides important ground truth data for predicting future crop productivity. Fumigation data from SoyFACE were collected every four seconds throughout each growing season for over two decades. Here, we organize, quality control, and collate 20 years of data to facilitate trend analysis and crop modeling efforts. This paper provides the rationale for and a description of the SoyFACE experiments, along with a summary of the fumigation data and collation process, weather and ambient data collection procedures, and explanations of air pollution metrics and calculations.
Collapse
Affiliation(s)
- Elise Kole Aspray
- Global Change and Photosynthesis Research Unit, United States Department of Agriculture, Agricultural Research Service, Urbana, IL, 61801, USA
- Department of Plant Biology, University of Illinois at Urbana-Champaign, 505 S. Goodwin Ave, Urbana, IL, 61801, USA
- Institute of Genomic Biology, University of Illinois at Urbana-Champaign, 1206 W. Gregory Drive, Urbana, IL, 61801, USA
| | - Timothy A Mies
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, 1102 S. Goodwin Ave, Urbana, IL, 61801, USA
| | - Jesse A McGrath
- Department of Plant Biology, University of Illinois at Urbana-Champaign, 505 S. Goodwin Ave, Urbana, IL, 61801, USA
| | - Christopher M Montes
- Global Change and Photosynthesis Research Unit, United States Department of Agriculture, Agricultural Research Service, Urbana, IL, 61801, USA
- Department of Plant Biology, University of Illinois at Urbana-Champaign, 505 S. Goodwin Ave, Urbana, IL, 61801, USA
| | - Bradley Dalsing
- Department of Plant Biology, University of Illinois at Urbana-Champaign, 505 S. Goodwin Ave, Urbana, IL, 61801, USA
| | - Kannan K Puthuval
- Department of Plant Biology, University of Illinois at Urbana-Champaign, 505 S. Goodwin Ave, Urbana, IL, 61801, USA
| | - Andrew Whetten
- Global Change and Photosynthesis Research Unit, United States Department of Agriculture, Agricultural Research Service, Urbana, IL, 61801, USA
- Department of Mathematical Sciences, University of Wisconsin-Milwaukee, 2200 E Kenwood Blvd, Milwaukee, WI, 53211, USA
| | - Jelena Herriott
- Department of Plant Biology, University of Illinois at Urbana-Champaign, 505 S. Goodwin Ave, Urbana, IL, 61801, USA
- Department of Agriculture and Applied Sciences, Langston University, 701 Sammy Davis Jr. Drive, Langston, OK, 73050, USA
| | - Shuai Li
- Global Change and Photosynthesis Research Unit, United States Department of Agriculture, Agricultural Research Service, Urbana, IL, 61801, USA
- Department of Plant Biology, University of Illinois at Urbana-Champaign, 505 S. Goodwin Ave, Urbana, IL, 61801, USA
- Institute of Genomic Biology, University of Illinois at Urbana-Champaign, 1206 W. Gregory Drive, Urbana, IL, 61801, USA
| | - Carl J Bernacchi
- Global Change and Photosynthesis Research Unit, United States Department of Agriculture, Agricultural Research Service, Urbana, IL, 61801, USA
- Department of Plant Biology, University of Illinois at Urbana-Champaign, 505 S. Goodwin Ave, Urbana, IL, 61801, USA
- Institute of Genomic Biology, University of Illinois at Urbana-Champaign, 1206 W. Gregory Drive, Urbana, IL, 61801, USA
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, 1102 S. Goodwin Ave, Urbana, IL, 61801, USA
| | - Evan H DeLucia
- Department of Plant Biology, University of Illinois at Urbana-Champaign, 505 S. Goodwin Ave, Urbana, IL, 61801, USA
- Institute of Genomic Biology, University of Illinois at Urbana-Champaign, 1206 W. Gregory Drive, Urbana, IL, 61801, USA
| | - Andrew D B Leakey
- Department of Plant Biology, University of Illinois at Urbana-Champaign, 505 S. Goodwin Ave, Urbana, IL, 61801, USA
- Institute of Genomic Biology, University of Illinois at Urbana-Champaign, 1206 W. Gregory Drive, Urbana, IL, 61801, USA
| | - Stephen P Long
- Department of Plant Biology, University of Illinois at Urbana-Champaign, 505 S. Goodwin Ave, Urbana, IL, 61801, USA
- Institute of Genomic Biology, University of Illinois at Urbana-Champaign, 1206 W. Gregory Drive, Urbana, IL, 61801, USA
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, 1102 S. Goodwin Ave, Urbana, IL, 61801, USA
| | - Justin M McGrath
- Global Change and Photosynthesis Research Unit, United States Department of Agriculture, Agricultural Research Service, Urbana, IL, 61801, USA
- Department of Plant Biology, University of Illinois at Urbana-Champaign, 505 S. Goodwin Ave, Urbana, IL, 61801, USA
| | - Franco Miglietta
- National Research Council of Italy, Institute for Bioeconomy (CNR IBE), Florence, Italy
| | - Donald R Ort
- Department of Plant Biology, University of Illinois at Urbana-Champaign, 505 S. Goodwin Ave, Urbana, IL, 61801, USA
- Institute of Genomic Biology, University of Illinois at Urbana-Champaign, 1206 W. Gregory Drive, Urbana, IL, 61801, USA
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, 1102 S. Goodwin Ave, Urbana, IL, 61801, USA
| | - Elizabeth A Ainsworth
- Global Change and Photosynthesis Research Unit, United States Department of Agriculture, Agricultural Research Service, Urbana, IL, 61801, USA.
- Department of Plant Biology, University of Illinois at Urbana-Champaign, 505 S. Goodwin Ave, Urbana, IL, 61801, USA.
- Institute of Genomic Biology, University of Illinois at Urbana-Champaign, 1206 W. Gregory Drive, Urbana, IL, 61801, USA.
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, 1102 S. Goodwin Ave, Urbana, IL, 61801, USA.
| |
Collapse
|
45
|
Mata-Pérez C, Sánchez-Vicente I, Arteaga N, Gómez-Jiménez S, Fuentes-Terrón A, Oulebsir CS, Calvo-Polanco M, Oliver C, Lorenzo Ó. Functions of nitric oxide-mediated post-translational modifications under abiotic stress. FRONTIERS IN PLANT SCIENCE 2023; 14:1158184. [PMID: 37063215 PMCID: PMC10101340 DOI: 10.3389/fpls.2023.1158184] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 03/14/2023] [Indexed: 06/19/2023]
Abstract
Environmental conditions greatly impact plant growth and development. In the current context of both global climate change and land degradation, abiotic stresses usually lead to growth restriction limiting crop production. Plants have evolved to sense and respond to maximize adaptation and survival; therefore, understanding the mechanisms involved in the different converging signaling networks becomes critical for improving plant tolerance. In the last few years, several studies have shown the plant responses against drought and salinity, high and low temperatures, mechanical wounding, heavy metals, hypoxia, UV radiation, or ozone stresses. These threats lead the plant to coordinate a crosstalk among different pathways, highlighting the role of phytohormones and reactive oxygen and nitrogen species (RONS). In particular, plants sense these reactive species through post-translational modification (PTM) of macromolecules such as nucleic acids, proteins, and fatty acids, hence triggering antioxidant responses with molecular implications in the plant welfare. Here, this review compiles the state of the art about how plant systems sense and transduce this crosstalk through PTMs of biological molecules, highlighting the S-nitrosylation of protein targets. These molecular mechanisms finally impact at a physiological level facing the abiotic stressful traits that could lead to establishing molecular patterns underlying stress responses and adaptation strategies.
Collapse
|
46
|
Holland R, Khan AH, Derwent RG, Lynch J, Ahmed F, Grace S, Bacak A, Shallcross DE. Gas‐phase kinetics, POCPs, and an investigation of the contributions of VOCs to urban ozone production in the UK. INT J CHEM KINET 2023. [DOI: 10.1002/kin.21640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2023]
Affiliation(s)
- Rayne Holland
- School of Chemistry University of Bristol Bristol UK
| | - Anwar H. Khan
- School of Chemistry University of Bristol Bristol UK
| | | | - Josie Lynch
- School of Chemistry University of Bristol Bristol UK
| | - Fahima Ahmed
- School of Chemistry University of Bristol Bristol UK
| | - Sophia Grace
- School of Chemistry University of Bristol Bristol UK
| | - Asan Bacak
- Turkish Accelerator & Radiation Laboratory Ankara University Golbasi Ankara Turkey
| | | |
Collapse
|
47
|
Zhang K, Zentella R, Burkey KO, Liao HL, Tisdale RH. Microbial community dynamics responding to nutrient allocation associated with soybean cultivar 'Jake' ozone adaptation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 864:161008. [PMID: 36549524 DOI: 10.1016/j.scitotenv.2022.161008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
Tropospheric ozone (O3), a major air pollutant, leads to significant global yield loss in soybean [Glycine max (L.) Merr.]. Soybean cultivar 'Jake' shows O3 resilient traits in above-ground organs, but the root system remains sensitive to elevated O3 (eO3). Changing carbon (C) and nitrogen (N) resource composition during eO3 stress suggests that eO3 presumably alters belowground soil microbial communities and their driven nutrient transformation. Yet, the responses of belowground microbes to eO3 and their feedback on nutrient cycling in 'Jake' are unknown. In this study, we holistically investigated soil microbial communities associated with C and N dynamics and bacterial-fungal inter-kingdom networks in the rhizosphere and bulk soil at different developmental stages of 'Jake' grown under sub-ambient O3 [charcoal-filtered (CF) air, 12 h mean: 20 ppb] or eO3 (12 h mean: 87 ppb). The results demonstrated eO3 significantly decreased fungal diversity and complexity of microbial networks at different 'Jake' developmental stages, whereas bacterial diversity was more tolerant to eO3 in both bulk soil and rhizosphere. In the bulk soil, no O3-responsive microbial biomarkers were found to be associated with C and N content, implying eO3 may stimulate niche-based processes during 'Jake' growth. In contrast, this study identified O3-responsive microbial biomarkers that may contribute to the N acquisition (Chloroflexales) and C dynamics (Caldilineales, Thermomicrobiales, and Hypocreales) in the rhizosphere, which may support the O3 resilience of the 'Jake' cultivar. However, further investigation is required to confirm their specific contributions by determining changes in microbial gene expression. Overall, these findings conduce to an expanding knowledge base that O3 induces temporal and spatial changes in the effects of microbial and nutrient networks in the O3-tolerant agriculture ecosystems.
Collapse
Affiliation(s)
- Kaile Zhang
- North Florida Research and Education Center, University of Florida, Quincy, FL 32351, USA; Department of Soil, Water, and Ecosystem Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Rodolfo Zentella
- U.S. Department of Agriculture, Agricultural Research Service, Plant Science Research Unit, Raleigh, 27607, NC, USA; Department of Crop and Soil Sciences, North Carolina State University, Raleigh, 27695, NC, USA
| | - Kent O Burkey
- U.S. Department of Agriculture, Agricultural Research Service, Plant Science Research Unit, Raleigh, 27607, NC, USA; Department of Crop and Soil Sciences, North Carolina State University, Raleigh, 27695, NC, USA
| | - Hui-Ling Liao
- North Florida Research and Education Center, University of Florida, Quincy, FL 32351, USA; Department of Soil, Water, and Ecosystem Sciences, University of Florida, Gainesville, FL 32611, USA.
| | - Ripley H Tisdale
- U.S. Department of Agriculture, Agricultural Research Service, Plant Science Research Unit, Raleigh, 27607, NC, USA; Department of Crop and Soil Sciences, North Carolina State University, Raleigh, 27695, NC, USA.
| |
Collapse
|
48
|
Sampedro J, Waldhoff S, Sarofim M, Van Dingenen R. Marginal Damage of Methane Emissions: Ozone Impacts on Agriculture. ENVIRONMENTAL & RESOURCE ECONOMICS 2023; 84:1095-1126. [PMID: 39376640 PMCID: PMC11457165 DOI: 10.1007/s10640-022-00750-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 12/17/2022] [Indexed: 10/09/2024]
Abstract
Methane directly contributes to air pollution, as an ozone precursor, and to climate change, generating physical and economic damages to different systems, namely agriculture, vegetation, energy, human health, or biodiversity. The methane-related damages to climate, measured as the Social Cost of Methane, and to human health have been analyzed by different studies and considered by government rulemaking in the last decades, but the ozone-related damages to crop revenues associated to methane emissions have not been incorporated to policy agenda. Using a combination of the Global Change Analysis Model and the TM5-FASST Scenario Screening Tool, we estimate that global marginal agricultural damages range from ~423 to 556 $2010/t-CH4, of which 98 $2010/t-CH4 occur in the USA, which is the most affected region due to its role as a major crop producer, followed by China, EU-15, and India. These damages would represent 39-59% of the climate damages and 28-64% of the human health damages associated with methane emissions by previous studies. The marginal damages to crop revenues calculated in this study complement the damages from methane to climate and human health, and provides valuable information to be considered in future cost-benefits analyses.
Collapse
Affiliation(s)
- Jon Sampedro
- Joint Global Change Research Institute, Pacific Northwest National Laboratory, College Park, MD, USA
- Basque Centre For Climate Change (BC3), Leioa, Spain
| | - Stephanie Waldhoff
- Joint Global Change Research Institute, Pacific Northwest National Laboratory, College Park, MD, USA
| | - Marcus Sarofim
- U.S. Environmental Protection Agency (USEPA, 6207A), 1200 Pennsylvania Ave NW, Washington, DC 20460, USA
| | | |
Collapse
|
49
|
Prieto-Benítez S, Ruiz-Checa R, González-Fernández I, Elvira S, Rucandio I, Alonso R, Bermejo-Bermejo V. Ozone and Temperature May Hinder Adaptive Capacity of Mediterranean Perennial Grasses to Future Global Change Scenarios. PLANTS (BASEL, SWITZERLAND) 2023; 12:664. [PMID: 36771748 PMCID: PMC9920155 DOI: 10.3390/plants12030664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/24/2023] [Accepted: 01/29/2023] [Indexed: 06/18/2023]
Abstract
Climate warming is recognized as a factor that threatens plant species in Mediterranean mountains. Tropospheric ozone (O3) should also be considered as another relevant stress factor for these ecosystems since current levels chronically exceed thresholds for plant protection in these areas. The main aim of the present study was to study the sensitivity of four Mediterranean perennial grasses to O3 and temperature based on plant growth, gas exchange parameters (photosynthesis-A, stomatal conductance-gs, and water use efficiency-WUE), and foliar macro- (N, K, Ca, Mg, P, and S) and micronutrients (B, Cu, Fe, Mn, Mo, and Zn) content. The selected species were grasses inhabiting different Mediterranean habitats from mountain-top to semi-arid grasslands. Plants were exposed to four O3 treatments in Open-Top chambers, ranging from preindustrial to above ambient levels, representing predicted future levels. Chamber-less plots were considered to study the effect of temperature increase. Despite the general tolerance of the grasses to O3 and temperature in terms of biomass growth, WUE and foliar nutrient composition were the most affected parameters. The grass species studied showed some degree of similarity in their response to temperature, more related with phylogeny than to their tolerance to drought. In some species, O3 or temperature stress resulted in low A or WUE, which can potentially hinder plant tolerance to climate change. The relationship between O3 and temperature effects on foliar nutrient composition and plant responses in terms of vegetative growth, A, gs, and WUE constitute a complex web of interactions that merits further study. In conclusion, both O3 and temperature might be modifying the adaptation capacity of Mediterranean perennial grass species to the global change. Air pollution should be considered among the driving favors of biodiversity changes in Mediterranean grassland habitats.
Collapse
Affiliation(s)
- Samuel Prieto-Benítez
- Ecotoxicology of Air Pollution, Environmental Department CIEMAT, 28040 Madrid, Spain
| | - Raquel Ruiz-Checa
- Ecotoxicology of Air Pollution, Environmental Department CIEMAT, 28040 Madrid, Spain
| | | | - Susana Elvira
- Ecotoxicology of Air Pollution, Environmental Department CIEMAT, 28040 Madrid, Spain
| | - Isabel Rucandio
- Spectroscopy, Technology Department CIEMAT, 28040 Madrid, Spain
| | - Rocío Alonso
- Ecotoxicology of Air Pollution, Environmental Department CIEMAT, 28040 Madrid, Spain
| | | |
Collapse
|
50
|
Deb Roy S, Bano S, Beig G, Murthy B. Impact assessment of surface ozone exposure on crop yields at three tropical stations over India. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:338. [PMID: 36705803 DOI: 10.1007/s10661-022-10889-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 12/22/2022] [Indexed: 06/18/2023]
Abstract
Surface ozone is a damaging pollutant for crops and ecosystems, and the ozone-induced crop losses over India remain uncertain and a topic of debate due to a lack of sufficient observations and uncertainties involved in the modeled results. In this study, we have used the observational data from MAPAN (Modelling Air Pollution And Networking) for the first time to estimate the relative yield losses, crop production losses, and economic losses for the two major crops (wheat and rice). The detailed estimation has been done focusing on three individual suburban sites over India (Patiala, Tezpur, and Delhi) and compared with other related studies over the Indian region. We have used the concentration-based metric (M7, 7-h average from 09:00 to 15:59 h) along with the cumulative ozone exposure indices (AOT40, accumulated exposure over a threshold of 40 ppb) and applied the exposure-response (E-R) functions for the calculation of the crop losses. Our study shows that the yearly crop losses can reach the level of 12.4-40.8% and 2.0-11.1% for the wheat and rice crops, respectively, at certain places like Patiala in India. The annual economic loss can be as high as $4.6 million and $0.7 million for wheat and rice crops, respectively, even at individual locations in India. Our estimated %RYL (relative yield loss) lies in the range of 0.3 + /0.6 times the recent regional model estimates which use only the AOT40 metric. Region-specific E-R functions based on factors suitable for the Indian region needs to be developed.
Collapse
Affiliation(s)
- Sompriti Deb Roy
- Indian Institute of Tropical Meteorology (IITM), Pune-411008, Maharashtra, India.
| | - Shahana Bano
- Indian Institute of Tropical Meteorology (IITM), Pune-411008, Maharashtra, India
| | - Gufran Beig
- National Institute of Advanced Studies, Indian Institute of Science Campus, Bengaluru, 560012, India
| | - Bandarusatya Murthy
- Indian Institute of Tropical Meteorology (IITM), Pune-411008, Maharashtra, India
| |
Collapse
|