1
|
Bardan CR, Ioniță I, Iordache M, Călămar-Popovici D, Todorescu V, Popescu R, Bernad BC, Bardan R, Bernad ES. Epigenetic Biomarkers in Thrombophilia-Related Pregnancy Complications: Mechanisms, Diagnostic Potential, and Therapeutic Implications: A Narrative Review. Int J Mol Sci 2024; 25:13634. [PMID: 39769397 PMCID: PMC11728153 DOI: 10.3390/ijms252413634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/16/2024] [Accepted: 12/18/2024] [Indexed: 01/14/2025] Open
Abstract
Pregnancy complications associated with thrombophilia represent significant risks for maternal and fetal health, leading to adverse outcomes such as pre-eclampsia, recurrent pregnancy loss, and intra-uterine growth restriction (IUGR). They are caused by disruptions in key physiological processes, including the coagulation cascade, trophoblast invasion, angiogenesis, and immune control. Recent advancements in epigenetics have revealed that non-coding RNAs, especially microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and extracellular vesicles (EVs) carrying these RNAs, play crucial roles in the regulation of these biological processes. This review aims to identify the epigenetic biomarkers that are the best candidates for evaluating thrombophilia-related pregnancy complications and for assessing the efficacy of anticoagulant and antiaggregant therapies. We emphasize their potential integration into personalized treatment plans, aiming to improve the risk assessment and therapy strategies for thrombophilic pregnancies. Future research should focus on validating these epigenetic biomarkers and establishing standardized protocols to enable their integration into clinical practice, paving the way for a precision medicine approach in obstetric care.
Collapse
Affiliation(s)
- Claudia Ramona Bardan
- Doctoral School, Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (C.R.B.); (B.C.B.)
- Clinic of Hematology, Municipal Clinical Emergency Hospital, 300254 Timisoara, Romania; (I.I.); (M.I.); (D.C.-P.); (V.T.)
| | - Ioana Ioniță
- Clinic of Hematology, Municipal Clinical Emergency Hospital, 300254 Timisoara, Romania; (I.I.); (M.I.); (D.C.-P.); (V.T.)
- Department of Hematology, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Maria Iordache
- Clinic of Hematology, Municipal Clinical Emergency Hospital, 300254 Timisoara, Romania; (I.I.); (M.I.); (D.C.-P.); (V.T.)
- Department of Hematology, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Despina Călămar-Popovici
- Clinic of Hematology, Municipal Clinical Emergency Hospital, 300254 Timisoara, Romania; (I.I.); (M.I.); (D.C.-P.); (V.T.)
- Department of Hematology, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Violeta Todorescu
- Clinic of Hematology, Municipal Clinical Emergency Hospital, 300254 Timisoara, Romania; (I.I.); (M.I.); (D.C.-P.); (V.T.)
- Department of Hematology, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Roxana Popescu
- Division of Cell and Molecular Biology, Department of Microscopic Morphology, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timisoara, Romania;
| | - Brenda Cristiana Bernad
- Doctoral School, Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (C.R.B.); (B.C.B.)
- Center for Neuropsychology and Behavioral Medicine, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Răzvan Bardan
- Department of Urology, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timisoara, Romania
- Clinic of Urology, “Pius Brînzeu” County Clinical Emergency Hospital, 300723 Timisoara, Romania
| | - Elena Silvia Bernad
- Department of Obstetrics and Gynecology, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timisoara, Romania;
- Clinic of Obstetrics and Gynecology, “Pius Brînzeu” County Clinical Emergency Hospital, 300723 Timisoara, Romania
- Center for Laparoscopy, Laparoscopic Surgery and In Vitro Fertilization, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| |
Collapse
|
2
|
Jo GH, Jung SA, Yoon JS, Lee JH. Inhibition of Cancer Cell Migration and Invasion In Vitro by Recombinant Tyrosine-Sulfated Haemathrin, A Thrombin Inhibitor. Int J Mol Sci 2024; 25:11822. [PMID: 39519372 PMCID: PMC11546549 DOI: 10.3390/ijms252111822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 10/27/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
Thrombin, a key enzyme in the regulation of hemostasis, has been implicated in cancer progression. This study explored the effect of recombinant tyrosine-sulfated haemathrin on cancer cell behavior and signaling pathways compared to wild-type (WT) haemathrin 2. The recombinant proteins, tyrosine-sulfated haemathrin 2 (haemathrin 2S), and WT haemathrin 2 were produced in Escherichia coli and subsequently purified and applied to SKOV3 and MDA-MB-231 cells with and without thrombin stimulation. Cell migration and invasion were assessed using wound healing and Transwell assays, respectively. Haemathrin 2S treatment significantly diminished cell migration and invasion promoted by thrombin in both SKOV3 and MDA-MB-231 cells (p < 0.05). Additionally, haemathrin 2S effectively inhibited thrombin-induced phosphorylation of serine/threonine kinase (Akt) in both cell lines (p < 0.05), while WT haemathrin 2 had this effect only in MDA-MB-231 cells. Furthermore, haemathrin 2S significantly reduced thrombin-activated phosphorylation of extracellular signal-regulated kinases (ERK) and p38 in both cell lines (p < 0.05) and reversed E/N-cadherin expression in thrombin-treated MDA-MB-231 cells (p < 0.05), which were not observed with WT haemathrin 2. Overall, haemathrin 2S was more effective than WT haemathrin 2 in reducing cancer cell migration and invasion, indicating that targeting thrombin with sulfated haemathrin is a promising strategy for cancer therapy. However, further in vivo studies are needed to confirm these results.
Collapse
Affiliation(s)
- Guk Heui Jo
- Department of Cell Biology, Myung-Gok Eye Research Institute, Konyang University College of Medicine, Daejeon 35365, Republic of Korea; (G.H.J.); (S.A.J.)
| | - Sun Ah Jung
- Department of Cell Biology, Myung-Gok Eye Research Institute, Konyang University College of Medicine, Daejeon 35365, Republic of Korea; (G.H.J.); (S.A.J.)
| | - Jin Sook Yoon
- Department of Ophthalmology, Severance Hospital, Institute of Vision Research, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Joon H. Lee
- Department of Cell Biology, Myung-Gok Eye Research Institute, Konyang University College of Medicine, Daejeon 35365, Republic of Korea; (G.H.J.); (S.A.J.)
| |
Collapse
|
3
|
Srivastava P, Jha S, Singh SK, Vyas H, Sethupathi P, Nair RS, Ramachandran K, Rana B, Kumar S, Rana A. Protease activated receptor-1 regulates mixed lineage kinase-3 to drive triple-negative breast cancer tumorigenesis. Cancer Lett 2024; 603:217200. [PMID: 39222677 DOI: 10.1016/j.canlet.2024.217200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Triple-negative breast cancer (TNBC) is difficult to treat breast cancer subtype due to lack or insignificant expressions of targetable estrogen receptor (ER) and human epidermal growth factor receptor 2 (HER2). Therefore, finding a targetable protein or signaling pathway in TNBC would impact patient care. Here, we report that a member of the Mixed Lineage Kinase (MLK) family, MLK3, is an effector of G-protein-coupled protease-activated receptors 1 (PAR1) and targeting MLK3 by a small-molecule inhibitor prevented PAR1-mediated TNBC tumorigenesis. In silico and immunohistochemistry analysis of human breast tumors showed overexpression of PAR1 and MLK3 in TNBC tumors. Treating α-thrombin and PAR1 agonist increased MLK3 and JNK activities and induced cell migration in TNBC cells. The PAR1 positive/high (PAR1+/hi) population of TNBC cells showed aggressive tumor phenotype with increased MLK3 signaling. Moreover, combined inhibition of the PAR1 and MLK3 mitigated the TNBC tumor burden in preclinical TNBC models. Our data suggests that activation of the PAR1-MLK3 axis promotes TNBC tumorigenesis. Therefore, combinatorial therapy targeting MLK3 and PAR1 could effectively reduce TNBC tumor burden.
Collapse
Affiliation(s)
- Piush Srivastava
- Department of Surgery, Division of Surgical Oncology, College of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Saket Jha
- Department of Surgery, Division of Surgical Oncology, College of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Sunil Kumar Singh
- Department of Surgery, Division of Surgical Oncology, College of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Harsh Vyas
- Department of Surgery, Division of Surgical Oncology, College of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Periannan Sethupathi
- Department of Surgery, Division of Surgical Oncology, College of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Rakesh Sathish Nair
- Department of Surgery, Division of Surgical Oncology, College of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Kheerthivasan Ramachandran
- Department of Surgery, Division of Surgical Oncology, College of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Basabi Rana
- Department of Surgery, Division of Surgical Oncology, College of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA; University of Illinois Hospital and Health Sciences System Cancer Center, University of Illinois at Chicago, Chicago, IL, 60612, USA; Research Unit, Jesse Brown VA Medical Center, Chicago, IL, 60612, USA
| | - Sandeep Kumar
- Department of Surgery, Division of Surgical Oncology, College of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA; University of Illinois Hospital and Health Sciences System Cancer Center, University of Illinois at Chicago, Chicago, IL, 60612, USA.
| | - Ajay Rana
- Department of Surgery, Division of Surgical Oncology, College of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA; University of Illinois Hospital and Health Sciences System Cancer Center, University of Illinois at Chicago, Chicago, IL, 60612, USA; Research Unit, Jesse Brown VA Medical Center, Chicago, IL, 60612, USA.
| |
Collapse
|
4
|
Pei Q, Li Z, Zhao J, Zhang H, Qin T, Zhao J. Recombinant hirudin and PAR-1 regulate macrophage polarisation status in diffuse large B-cell lymphoma. BMC Biotechnol 2024; 24:55. [PMID: 39135175 PMCID: PMC11318299 DOI: 10.1186/s12896-024-00879-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 07/22/2024] [Indexed: 08/16/2024] Open
Abstract
BACKGROUND Diffuse large B-cell lymphoma (DLBCL) is a malignant tumour. Although some standard therapies have been established to improve the cure rate, they remain ineffective for specific individuals. Therefore, it is meaningful to find more novel therapeutic approaches. Macrophage polarisation is extensively involved in the process of tumour development. Recombinant hirudin (rH) affects macrophages and has been researched frequently in clinical trials lately. Our article validated the regulatory role of rH in macrophage polarisation and the mechanism of PAR-1 by collecting clinical samples and subsequently establishing a cellular model to provide a scientifically supported perspective for discovering new therapeutic approaches. METHOD We assessed the expression of macrophage polarisation markers, cytokines and PAR-1 in clinical samples. We established a cell model by co-culture with THP-1 and OCI-Ly10 cell. We determined the degree of cell polarisation and expression of validation cytokines by flow cytometry, ELISA, and RT-qPCR to confirm the success of the cell model. Subsequently, different doses of rH were added to discover the function of rH on cell polarisation. We confirmed the mechanism of PAR-1 in macrophage polarisation by transfecting si-PAR-1 and pcDNA3.1-PAR-1. RESULTS We found higher expression of M2 macrophage markers (CD163 + CMAF+) and PAR-1 in 32 DLBCL samples. After inducing monocyte differentiation into M0 macrophages and co-culturing with OCI-Ly10 lymphoma cells, we found a trend of these expressions in the cell model consistent with the clinical samples. Subsequently, we discovered that rH promotes the polarisation of M1 macrophages but inhibits the polarisation of M2 macrophages. We also found that PAR-1 regulates macrophage polarisation, inhibiting cell proliferation, migration, invasion and angiogenic capacity. CONCLUSION rH inhibits macrophage polarisation towards the M2 type and PAR-1 regulates polarisation, proliferation, migration, invasion, and angiogenesis of DLBCL-associated macrophages.
Collapse
Affiliation(s)
- Qiang Pei
- Department of Hematology, The First People's Hospital of Yunnan Province, No. 157 of Jinbi Street, Kunming, 650032, Yunnan, China.
- Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, Yunnan, China.
- Yunnan Province Clinical Center for Hematologic Disease, Yunnan, China.
| | - Zihui Li
- Department of Hematology, The First People's Hospital of Yunnan Province, No. 157 of Jinbi Street, Kunming, 650032, Yunnan, China
- Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, Yunnan, China
- Medical School, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
| | - Jingjing Zhao
- Department of Hematology, The First People's Hospital of Yunnan Province, No. 157 of Jinbi Street, Kunming, 650032, Yunnan, China
- Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, Yunnan, China
- Medical School, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
| | - Haixi Zhang
- Department of Hematology, The First People's Hospital of Yunnan Province, No. 157 of Jinbi Street, Kunming, 650032, Yunnan, China
- Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, Yunnan, China
- Yunnan Province Clinical Center for Hematologic Disease, Yunnan, China
| | - Tao Qin
- Department of Hematology, The First People's Hospital of Yunnan Province, No. 157 of Jinbi Street, Kunming, 650032, Yunnan, China
- Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, Yunnan, China
- Yunnan Province Clinical Center for Hematologic Disease, Yunnan, China
| | - Juan Zhao
- Department of Hematology, The First People's Hospital of Yunnan Province, No. 157 of Jinbi Street, Kunming, 650032, Yunnan, China
- Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, Yunnan, China
- Yunnan Province Clinical Center for Hematologic Disease, Yunnan, China
| |
Collapse
|
5
|
Paul S, Mukherjee T, Das K. Coagulation Protease-Driven Cancer Immune Evasion: Potential Targets for Cancer Immunotherapy. Cancers (Basel) 2024; 16:1568. [PMID: 38672649 PMCID: PMC11048528 DOI: 10.3390/cancers16081568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
Blood coagulation and cancer are intrinsically connected, hypercoagulation-associated thrombotic complications are commonly observed in certain types of cancer, often leading to decreased survival in cancer patients. Apart from the common role in coagulation, coagulation proteases often trigger intracellular signaling in various cancers via the activation of a G protein-coupled receptor superfamily protease: protease-activated receptors (PARs). Although the role of PARs is well-established in the development and progression of certain types of cancer, their impact on cancer immune response is only just emerging. The present review highlights how coagulation protease-driven PAR signaling plays a key role in modulating innate and adaptive immune responses. This is followed by a detailed discussion on the contribution of coagulation protease-induced signaling in cancer immune evasion, thereby supporting the growth and development of certain tumors. A special section of the review demonstrates the role of coagulation proteases, thrombin, factor VIIa, and factor Xa in cancer immune evasion. Targeting coagulation protease-induced signaling might be a potential therapeutic strategy to boost the immune surveillance mechanism of a host fighting against cancer, thereby augmenting the clinical consequences of targeted immunotherapeutic regimens.
Collapse
Affiliation(s)
- Subhojit Paul
- School of Biological Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, West Bengal, India;
| | - Tanmoy Mukherjee
- Department of Cellular and Molecular Biology, The University of Texas at Tyler Health Science Center, Tyler, TX 75708, USA;
| | - Kaushik Das
- Biotechnology Research and Innovation Council-National Institute of Biomedical Genomics, Kalyani 741251, West Bengal, India
| |
Collapse
|
6
|
Monti M, Ferrari G, Grosso V, Missale F, Bugatti M, Cancila V, Zini S, Segala A, La Via L, Consoli F, Orlandi M, Valerio A, Tripodo C, Rossato M, Vermi W. Impaired activation of plasmacytoid dendritic cells via toll-like receptor 7/9 and STING is mediated by melanoma-derived immunosuppressive cytokines and metabolic drift. Front Immunol 2024; 14:1227648. [PMID: 38239354 PMCID: PMC10795195 DOI: 10.3389/fimmu.2023.1227648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 12/04/2023] [Indexed: 01/22/2024] Open
Abstract
Introduction Plasmacytoid dendritic cells (pDCs) infiltrate a large set of human cancers. Interferon alpha (IFN-α) produced by pDCs induces growth arrest and apoptosis in tumor cells and modulates innate and adaptive immune cells involved in anti-cancer immunity. Moreover, effector molecules exert tumor cell killing. However, the activation state and clinical relevance of pDCs infiltration in cancer is still largely controversial. In Primary Cutaneous Melanoma (PCM), pDCs density decreases over disease progression and collapses in metastatic melanoma (MM). Moreover, the residual circulating pDC compartment is defective in IFN-α production. Methods The activation of tumor-associated pDCs was evaluated by in silico and microscopic analysis. The expression of human myxovirus resistant protein 1 (MxA), as surrogate of IFN-α production, and proximity ligation assay (PLA) to test dsDNA-cGAS activation were performed on human melanoma biopsies. Moreover, IFN-α and CXCL10 production by in vitro stimulated (i.e. with R848, CpG-A, ADU-S100) pDCs exposed to melanoma cell lines supernatants (SN-mel) was tested by intracellular flow cytometry and ELISA. We also performed a bulk RNA-sequencing on SN-mel-exposed pDCs, resting or stimulated with R848. Glycolytic rate assay was performed on SN-mel-exposed pDCs using the Seahorse XFe24 Extracellular Flux Analyzer. Results Based on a set of microscopic, functional and in silico analyses, we demonstrated that the melanoma milieu directly impairs IFN-α and CXCL10 production by pDCs via TLR-7/9 and cGAS-STING signaling pathways. Melanoma-derived immunosuppressive cytokines and a metabolic drift represent relevant mechanisms enforcing pDC-mediated melanoma escape. Discussion These findings propose a new window of intervention for novel immunotherapy approaches to amplify the antitumor innate immune response in cutaneous melanoma (CM).
Collapse
Affiliation(s)
- Matilde Monti
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Giorgia Ferrari
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Valentina Grosso
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Francesco Missale
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
- Department of Head & Neck Oncology & Surgery Otorhinolaryngology, Nederlands Kanker Instituut, Amsterdam, Netherlands
| | - Mattia Bugatti
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Valeria Cancila
- Tumor Immunology Unit, Department of Health Sciences, University of Palermo, Palermo, Italy
| | - Stefania Zini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Agnese Segala
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Luca La Via
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Francesca Consoli
- Oncology Unit, Azienda Socio Sanitaria Territoriale (ASST) Spedali Civili di Brescia, Brescia, Italy
| | - Matteo Orlandi
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Alessandra Valerio
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Claudio Tripodo
- Tumor Immunology Unit, Department of Health Sciences, University of Palermo, Palermo, Italy
- IFOM ETS, the AIRC Institute of Molecular Oncology, Milan, Italy
| | - Marzia Rossato
- Department of Biotechnology, University of Verona, Verona, Italy
| | - William Vermi
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, United States
| |
Collapse
|
7
|
Heidari Z, Naeimzadeh Y, Fallahi J, Savardashtaki A, Razban V, Khajeh S. The Role of Tissue Factor In Signaling Pathways of Pathological Conditions and Angiogenesis. Curr Mol Med 2024; 24:1135-1151. [PMID: 37817529 DOI: 10.2174/0115665240258746230919165935] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/10/2023] [Accepted: 07/27/2023] [Indexed: 10/12/2023]
Abstract
Tissue factor (TF) is an integral transmembrane protein associated with the extrinsic coagulation pathway. TF gene expression is regulated in response to inflammatory cytokines, bacterial lipopolysaccharides, and mechanical injuries. TF activity may be affected by phosphorylation of its cytoplasmic domain and alternative splicing. TF acts as the primary initiator of physiological hemostasis, which prevents local bleeding at the injury site. However, aberrant expression of TF, accompanied by the severity of diseases and infections under various pathological conditions, triggers multiple signaling pathways that support thrombosis, angiogenesis, inflammation, and metastasis. Protease-activated receptors (PARs) are central in the downstream signaling pathways of TF. In this study, we have reviewed the TF signaling pathways in different pathological conditions, such as wound injury, asthma, cardiovascular diseases (CVDs), viral infections, cancer and pathological angiogenesis. Angiogenic activities of TF are critical in the repair of wound injuries and aggressive behavior of tumors, which are mainly performed by the actions of vascular endothelial growth factor (VEGF) and hypoxia-inducible factor-1 (HIF1-α). Pro-inflammatory effects of TF have been reported in asthma, CVDs and viral infections, including COVID-19, which result in tissue hypertrophy, inflammation, and thrombosis. TF-FVII induces angiogenesis via clotting-dependent and -independent mechanisms. Clottingdependent angiogenesis is induced via the generation of thrombin and cross-linked fibrin network, which facilitate vessel infiltration and also act as a reservoir for endothelial cells (ECs) growth factors. Expression of TF in tumor cells and ECs triggers clotting-independent angiogenesis through induction of VEGF, urokinase-type plasminogen activator (uPAR), early growth response 1 (EGR1), IL8, and cysteine-rich angiogenic inducer 61 (Cyr61).
Collapse
Affiliation(s)
- Zahra Heidari
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Yasaman Naeimzadeh
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Jafar Fallahi
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Savardashtaki
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Vahid Razban
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sahar Khajeh
- Bone and Joint Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
8
|
Hung HC, Fan MH, Wang D, Miao CH, Su P, Liu CL. Effect of chimeric antigen receptor T cells against protease-activated receptor 1 for treating pancreatic cancer. BMC Med 2023; 21:338. [PMID: 37667257 PMCID: PMC10478223 DOI: 10.1186/s12916-023-03053-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 08/25/2023] [Indexed: 09/06/2023] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is a devastating malignancy with a 5-year survival rate of 6% following a diagnosis, and novel therapeutic modalities are needed. Protease-activated receptor 1 (PAR1) is abundantly overexpressed by both tumor cells and multiple stroma cell subsets in the tumor microenvironment (TME), thereby offering a suitable immunotherapy target. METHODS A chimeric antigen receptor (CAR) strategy was applied to target PAR1 using a human anti-PAR1 scFv antibody fused to the transmembrane region with two co-stimulatory intracellular signaling domains of cluster of differentiation 28 (CD28) and CD137 (4-1BB), added to CD3ζ in tandem. RESULTS The engineered PAR1CAR-T cells eliminated PAR1 overexpression and transforming growth factor (TGF)-β-mediated PAR1-upregulated cancer cells by approximately 80% in vitro. The adoptive transfer of PAR1CAR-T cells was persistently enhanced and induced the specific regression of established MIA PaCa-2 cancer cells by > 80% in xenograft models. Accordingly, proinflammatory cytokines/chemokines increased in CAR-T-cell-treated mouse sera, whereas Ki67 expression in tumors decreased. Furthermore, the targeted elimination of PAR1-expressing tumors reduced matrix metalloproteinase 1 (MMP1) levels, suggesting that the blocking of the PAR1/MMP1 pathway constitutes a new therapeutic option for PDAC treatment. CONCLUSIONS Third-generation PAR1CAR-T cells have antitumor activity in the TME, providing innovative CAR-T-cell immunotherapy against PDAC.
Collapse
Affiliation(s)
- Hao-Chien Hung
- Department of General Surgery, Chang-Gung Memorial Hospital at Linkou, Taoyuan, 33305, Taiwan
| | - Ming-Huei Fan
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 11031, Taiwan
| | - Daniel Wang
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 11031, Taiwan
| | - Carol H Miao
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, 98101, USA
| | - Pong Su
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 11031, Taiwan
| | - Chao-Lien Liu
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 11031, Taiwan.
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan.
| |
Collapse
|
9
|
Chen Z, Li C, Zhou Y, Yao Y, Liu J, Wu M, Su J. Liquid biopsies for cancer: From bench to clinic. MedComm (Beijing) 2023; 4:e329. [PMID: 37492785 PMCID: PMC10363811 DOI: 10.1002/mco2.329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 07/27/2023] Open
Abstract
Over the past two decades, liquid biopsy has been increasingly used as a supplement, or even, a replacement to the traditional biopsy in clinical oncological practice, due to its noninvasive and early detectable properties. The detections can be based on a variety of features extracted from tumor‑derived entities, such as quantitative alterations, genetic changes, and epigenetic aberrations, and so on. So far, the clinical applications of cancer liquid biopsy mainly aimed at two aspects, prediction (early diagnosis, prognosis and recurrent evaluation, therapeutic response monitoring, etc.) and intervention. In spite of the rapid development and great contributions achieved, cancer liquid biopsy is still a field under investigation and deserves more clinical practice. To better open up future work, here we systematically reviewed and compared the latest progress of the most widely recognized circulating components, including circulating tumor cells, cell-free circulating DNA, noncoding RNA, and nucleosomes, from their discovery histories to clinical values. According to the features applied, we particularly divided the contents into two parts, beyond epigenetics and epigenetic-based. The latter was considered as the highlight along with a brief overview of the advances in both experimental and bioinformatic approaches, due to its unique advantages and relatively lack of documentation.
Collapse
Affiliation(s)
- Zhenhui Chen
- School of Biomedical EngineeringSchool of Ophthalmology & Optometry and Eye HospitalWenzhou Medical UniversityWenzhouZhejiangChina
- Oujiang LaboratoryZhejiang Lab for Regenerative MedicineVision and Brain HealthWenzhouZhejiangChina
| | - Chenghao Li
- School of Biomedical EngineeringSchool of Ophthalmology & Optometry and Eye HospitalWenzhou Medical UniversityWenzhouZhejiangChina
| | - Yue Zhou
- School of Biomedical EngineeringSchool of Ophthalmology & Optometry and Eye HospitalWenzhou Medical UniversityWenzhouZhejiangChina
- Oujiang LaboratoryZhejiang Lab for Regenerative MedicineVision and Brain HealthWenzhouZhejiangChina
| | - Yinghao Yao
- Oujiang LaboratoryZhejiang Lab for Regenerative MedicineVision and Brain HealthWenzhouZhejiangChina
| | - Jiaqi Liu
- State Key Laboratory of Molecular OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Min Wu
- Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouZhejiangChina
| | - Jianzhong Su
- School of Biomedical EngineeringSchool of Ophthalmology & Optometry and Eye HospitalWenzhou Medical UniversityWenzhouZhejiangChina
- Oujiang LaboratoryZhejiang Lab for Regenerative MedicineVision and Brain HealthWenzhouZhejiangChina
- Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouZhejiangChina
| |
Collapse
|
10
|
Angelidakis E, Chen S, Zhang S, Wan Z, Kamm RD, Shelton SE. Impact of Fibrinogen, Fibrin Thrombi, and Thrombin on Cancer Cell Extravasation Using In Vitro Microvascular Networks. Adv Healthc Mater 2023; 12:e2202984. [PMID: 37119127 PMCID: PMC10524192 DOI: 10.1002/adhm.202202984] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 04/25/2023] [Indexed: 04/30/2023]
Abstract
A bidirectional association exists between metastatic dissemination and the hypercoagulable state associated with many types of cancer. As such, clinical studies have provided evidence that markers associated with elevated levels of coagulation and fibrinolysis correlate with decreased patient survival. However, elucidating the mechanisms underpinning the effects of different components of the coagulation system on metastasis formation is challenging both in animal models and 2D models lacking the complex cellular interactions necessary to model both thrombosis and metastasis. Here, an in vitro, 3D, microvascular model for observing the formation of fibrin thrombi is described, which is in turn used to study how different aspects of the hypercoagulable state associated with cancer affect the endothelium. Using this platform, cancer cells expressing ICAM-1 are shown to form a fibrinogen-dependent bridge and transmigrate through the endothelium more effectively. Cancer cells are also demonstrated to interact with fibrin thrombi, using them to adhere, spread, and enhance their extravasation efficiency. Finally, thrombin is also shown to enhance cancer cell extravasation. This system presents a physiologically relevant model of fibrin clot formation in the human microvasculature, enabling in-depth investigation of the cellular interactions between cancer cells and the coagulation system affecting cancer cell extravasation.
Collapse
Affiliation(s)
- Emmanouil Angelidakis
- Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Sophia Chen
- Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Shun Zhang
- Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Zhengpeng Wan
- Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Roger D. Kamm
- Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
- Department of Mechanical EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Sarah E. Shelton
- Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
- Department of Medical OncologyDana Farber Cancer InstituteBostonMA02215USA
| |
Collapse
|
11
|
Dysregulated Hemostasis and Immunothrombosis in Cerebral Cavernous Malformations. Int J Mol Sci 2022; 23:ijms232012575. [PMID: 36293431 PMCID: PMC9604397 DOI: 10.3390/ijms232012575] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 11/17/2022] Open
Abstract
Cerebral cavernous malformation (CCM) is a neurovascular disease that affects 0.5% of the general population. For a long time, CCM research focused on genetic mutations, endothelial junctions and proliferation, but recently, transcriptome and proteome studies have revealed that the hemostatic system and neuroinflammation play a crucial role in the development and severity of cavernomas, with some of these publications coming from our group. The aim of this review is to give an overview of the latest molecular insights into the interaction between CCM-deficient endothelial cells with blood components and the neurovascular unit. Specifically, we underscore how endothelial dysfunction can result in dysregulated hemostasis, bleeding, hypoxia and neurological symptoms. We conducted a thorough review of the literature and found a field that is increasingly poised to regard CCM as a hemostatic disease, which may have implications for therapy.
Collapse
|
12
|
Cantrell R, Palumbo JS. Hemostasis and tumor immunity. Res Pract Thromb Haemost 2022; 6:e12728. [PMID: 35647476 PMCID: PMC9130907 DOI: 10.1002/rth2.12728] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/19/2022] [Accepted: 05/01/2022] [Indexed: 12/13/2022] Open
Abstract
Significant data have accumulated demonstrating a reciprocal relationship between cancer and the hemostatic system whereby cancer promotes life‐threatening hemostatic system dysregulation (e.g., thromboembolism, consumptive coagulopathy), and hemostatic system components directly contribute to cancer pathogenesis. The mechanistic underpinnings of this relationship continue to be defined, but it is becoming increasingly clear that many of these mechanisms involve crosstalk between the hemostatic and immune systems. This is perhaps not surprising given that there is ample evidence for bidirectional crosstalk between the hemostatic and immune systems at multiple levels that likely evolved to coordinate the response to injury, host defense, and tissue repair. Much of the data linking hemostasis and immunity in cancer biology focus on innate immune system components. However, the advent of adaptive immunity‐based cancer therapies such as immune checkpoint inhibitors has revealed that the relationship of hemostasis and immunity in cancer extends to the adaptive immune system. Adaptive immunity‐based cancer therapies appear to be associated with an increased risk of thromboembolic complications, and hemostatic system components appear to regulate adaptive immune functions through diverse mechanisms to affect tumor progression. In this review, the evidence for crosstalk between hemostatic and adaptive immune system components is discussed, and the implications of this relationship in the context of cancer therapy are reviewed. A better understanding of these relationships will likely lead to strategies to make existing adaptive immune based therapies safer by decreasing thromboembolic risk and may also lead to novel targets to improve adaptive immune‐based cancer treatments.
Collapse
Affiliation(s)
- Rachel Cantrell
- Cancer and Blood Diseases Institute Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine Cincinnati Ohio USA
| | - Joseph S. Palumbo
- Cancer and Blood Diseases Institute Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine Cincinnati Ohio USA
| |
Collapse
|
13
|
Alexander ET, Gilmour SK. Immunomodulatory role of thrombin in cancer progression. Mol Carcinog 2022; 61:527-536. [PMID: 35338515 DOI: 10.1002/mc.23398] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 11/06/2022]
Abstract
Coagulation proteases and the generation of thrombin are increased in tumors. In addition, chemotherapeutic agents commonly used to treat malignant cancers can exacerbate cancer-associated thromboses. Thrombin can modify tumor cell behavior directly through the activation of protease-activated receptors (PAR) or indirectly by generating fibrin matrices. In addition to its role in generating fibrin to promote hemostasis, thrombin acts directly on multiple effector cells of the immune system impacting both acute and chronic inflammatory processes. Thrombin-mediated release of interleukin-6, tumor necrosis factor-α, and monocyte chemoattractant protein-1 leads to the accumulation of multiple tumor-infiltrating immunosuppressive cell populations including myeloid derived suppresser cells, M2-like macrophages, and T regulatory cells. Ablation of PAR-1 from the tumor microenvironment, but not the tumor, has been shown to dramatically reduce tumor growth and metastasis in multiple tumor models. Thrombin-activated platelets release immunosuppressive cytokines including transforming growth factor-β that can inhibit natural killer cell activity, helping tumor cells to evade host immunosurveillance. Taken together, there is strong evidence that thrombin influences cancer progression via multiple mechanisms, including the tumor immune response, with thrombin emerging as a target for novel therapeutic strategies for cancer.
Collapse
Affiliation(s)
- Eric T Alexander
- Lankenau Institute for Medical Research, Wynnewood, Pennsylvania, USA
| | - Susan K Gilmour
- Lankenau Institute for Medical Research, Wynnewood, Pennsylvania, USA
| |
Collapse
|
14
|
Heterogeneity induced GZMA-F2R communication inefficient impairs antitumor immunotherapy of PD-1 mAb through JAK2/STAT1 signal suppression in hepatocellular carcinoma. Cell Death Dis 2022; 13:213. [PMID: 35256589 PMCID: PMC8901912 DOI: 10.1038/s41419-022-04654-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/04/2022] [Accepted: 02/14/2022] [Indexed: 11/12/2022]
Abstract
Tumor heterogeneity has been associated with immunotherapy and targeted drug resistance in hepatocellular carcinoma (HCC). However, communications between tumor and cytotoxic cells are poorly understood to date. In the present study, thirty-one clusters of cells were discovered in the tumor tissues and adjacent tissues through single-cell sequencing. Moreover, the quantity and function exhaustion of cytotoxic cells was observed to be induced in tumors by the TCR and apoptosis signal pathways. Furthermore, granzyme failure of cytotoxic cells was observed in HCC patients. Importantly, the GZMA secreted by cytotoxic cells was demonstrated to interact with the F2R expressed by the tumor cells both in vivo and in vitro. This interaction induced tumor suppression and T cell-mediated killing of tumor cells via the activation of the JAK2/STAT1 signaling pathway. Mechanistically, the activation of JAK2/STAT1 signaling promoted apoptosis under the mediating effect of the LDPRSFLL motif at the N-terminus of F2R, which interacted with GZMA. In addition, GZMA and F2R were positively correlated with PD-1 and PD-L1 in tumor tissues, while the expressions of F2R and GZMA promoted PD-1 mAb-induced tumor suppression in both mouse model and HCC patients. Finally, in HCC patients, a low expression of GZMA and F2R in the tumor tissues was correlated with aggressive clinicopathological characteristics and poor prognosis. Collectively, GZMA-F2R communication inefficient induces deficient PD-1 mAb therapy and provide a completely novel immunotherapy strategy for tumor suppression in HCC patients.
Collapse
|
15
|
Rovati G, Contursi A, Bruno A, Tacconelli S, Ballerini P, Patrignani P. Antiplatelet Agents Affecting GPCR Signaling Implicated in Tumor Metastasis. Cells 2022; 11:725. [PMID: 35203374 PMCID: PMC8870128 DOI: 10.3390/cells11040725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/10/2022] [Accepted: 02/16/2022] [Indexed: 11/16/2022] Open
Abstract
Metastasis requires that cancer cells survive in the circulation, colonize distant organs, and grow. Despite platelets being central contributors to hemostasis, leukocyte trafficking during inflammation, and vessel stability maintenance, there is significant evidence to support their essential role in supporting metastasis through different mechanisms. In addition to their direct interaction with cancer cells, thus forming heteroaggregates such as leukocytes, platelets release molecules that are necessary to promote a disseminating phenotype in cancer cells via the induction of an epithelial-mesenchymal-like transition. Therefore, agents that affect platelet activation can potentially restrain these prometastatic mechanisms. Although the primary adhesion of platelets to cancer cells is mainly independent of G protein-mediated signaling, soluble mediators released from platelets, such as ADP, thromboxane (TX) A2, and prostaglandin (PG) E2, act through G protein-coupled receptors (GPCRs) to cause the activation of more additional platelets and drive metastatic signaling pathways in cancer cells. In this review, we examine the contribution of the GPCRs of platelets and cancer cells in the development of cancer metastasis. Finally, the possible use of agents affecting GPCR signaling pathways as antimetastatic agents is discussed.
Collapse
Affiliation(s)
- Gianenrico Rovati
- Department of Pharmaceutical Sciences, University of Milan, 20122 Milan, Italy;
| | - Annalisa Contursi
- Laboratory of Systems Pharmacology and Translational Therapies, Center for Advanced Studies and Technology (CAST), School of Medicine, “G. d’Annunzio” University, 66100 Chieti, Italy; (A.C.); (A.B.); (S.T.); (P.B.)
- Department of Neuroscience, Imaging and Clinical Science, School of Medicine, “G. d’Annunzio” University, 66100 Chieti, Italy
| | - Annalisa Bruno
- Laboratory of Systems Pharmacology and Translational Therapies, Center for Advanced Studies and Technology (CAST), School of Medicine, “G. d’Annunzio” University, 66100 Chieti, Italy; (A.C.); (A.B.); (S.T.); (P.B.)
- Department of Neuroscience, Imaging and Clinical Science, School of Medicine, “G. d’Annunzio” University, 66100 Chieti, Italy
| | - Stefania Tacconelli
- Laboratory of Systems Pharmacology and Translational Therapies, Center for Advanced Studies and Technology (CAST), School of Medicine, “G. d’Annunzio” University, 66100 Chieti, Italy; (A.C.); (A.B.); (S.T.); (P.B.)
- Department of Neuroscience, Imaging and Clinical Science, School of Medicine, “G. d’Annunzio” University, 66100 Chieti, Italy
| | - Patrizia Ballerini
- Laboratory of Systems Pharmacology and Translational Therapies, Center for Advanced Studies and Technology (CAST), School of Medicine, “G. d’Annunzio” University, 66100 Chieti, Italy; (A.C.); (A.B.); (S.T.); (P.B.)
- Department of Innovative Technologies in Medicine and Dentistry, “G. d’Annunzio” University, 66100 Chieti, Italy
| | - Paola Patrignani
- Laboratory of Systems Pharmacology and Translational Therapies, Center for Advanced Studies and Technology (CAST), School of Medicine, “G. d’Annunzio” University, 66100 Chieti, Italy; (A.C.); (A.B.); (S.T.); (P.B.)
- Department of Neuroscience, Imaging and Clinical Science, School of Medicine, “G. d’Annunzio” University, 66100 Chieti, Italy
| |
Collapse
|
16
|
Targeting GPCRs and Their Signaling as a Therapeutic Option in Melanoma. Cancers (Basel) 2022; 14:cancers14030706. [PMID: 35158973 PMCID: PMC8833576 DOI: 10.3390/cancers14030706] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 01/27/2022] [Accepted: 01/27/2022] [Indexed: 12/10/2022] Open
Abstract
Simple Summary Sixteen G-protein-coupled receptors (GPCRs) have been involved in melanogenesis or melanomagenesis. Here, we review these GPCRs, their associated signaling, and therapies. Abstract G-protein-coupled receptors (GPCRs) serve prominent roles in melanocyte lineage physiology, with an impact at all stages of development, as well as on mature melanocyte functions. GPCR ligands are present in the skin and regulate melanocyte homeostasis, including pigmentation. The role of GPCRs in the regulation of pigmentation and, consequently, protection against external aggression, such as ultraviolet radiation, has long been established. However, evidence of new functions of GPCRs directly in melanomagenesis has been highlighted in recent years. GPCRs are coupled, through their intracellular domains, to heterotrimeric G-proteins, which induce cellular signaling through various pathways. Such signaling modulates numerous essential cellular processes that occur during melanomagenesis, including proliferation and migration. GPCR-associated signaling in melanoma can be activated by the binding of paracrine factors to their receptors or directly by activating mutations. In this review, we present melanoma-associated alterations of GPCRs and their downstream signaling and discuss the various preclinical models used to evaluate new therapeutic approaches against GPCR activity in melanoma. Recent striking advances in our understanding of the structure, function, and regulation of GPCRs will undoubtedly broaden melanoma treatment options in the future.
Collapse
|
17
|
Zhao J, Jin G, Liu X, Wu K, Yang Y, He Z, Liu D, Zhang C, Zhu D, Jiao J, Li X, Zhao S. PAR1 and PAR4 exert opposite effects on tumor growth and metastasis of esophageal squamous cell carcinoma via STAT3 and NF-κB signaling pathways. Cancer Cell Int 2021; 21:637. [PMID: 34844621 PMCID: PMC8628382 DOI: 10.1186/s12935-021-02354-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/19/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Esophageal carcinogenesis is a multifactorial process in which genetic and environmental factors interact to activate intracellular signals, leading to the uncontrolled survival and growth of esophageal squamous cell carcinoma (ESCC) cells. The intracellular pathways of ESCC cells could be regulated by proteinase activated-receptors (PARs), which are comprised of four receptors (i.e., PAR-1, PAR-2, PAR-3, and PAR-4). Therefore, the function and possible mechanism of PAR1 and PAR4 in the progression of ECSS were explored in our study. METHODS First, we detected the expression levels of PAR1 and PAR4 in 27 cases of ESCC specimens and cell lines by RT-qPCR, IHC and western blot. Meanwhile, the correlation between PAR1/PAR4 expression levels, clinicopathological characteristics, and disease free survival was analyzed. Then, we constructed PAR1/PAR4 knockdown cell models and investigated the role of PAR1/PAR4 knockdown on the proliferation, apoptosis, changes of calcium flow, and metastasis of ESCC cells via MTT, flow cytometry, transwell and wound healing assays in vitro. Further, an experimental metastasis model in vivo was established to explore the role of stable PAR1/PAR4 knockdown on the growth and metastasis of ESCC cells. Finally, the role of nSMase2 in the activation of NF-κB induced by PAR4 and the role of NF-κB and STAT3 signaling pathways in the PAR1/PAR4-mediated tumor promoting or suppressive functions were measured by immunoprecipitation, western blot and immunofluorescence assays. RESULTS First, the integrated results demonstrated the expression levels of PAR1 and PAR4 are inversely proportional in ESCC. PAR1 potently enhanced tumor growth and metastasis, while PAR4 had an inhibitory effect. Further, the co-activation of STAT3 and NF-κB was involved in the PAR1 activation-induced tumor promoting effect, while only NF-κB participated in the PAR4 activation-induced tumor inhibitory effect in ESCC. To be specific, FAK/PI3K/AKT/STAT3/NF-κB signaling mediated PAR1 activation-induced tumor promoting effect and nSMase2/MAPK/NF-κB signaling mediated PAR4 activation-induced tumor inhibitory effect. CONCLUSIONS Overall, the study has provided new insights into the potential implication of PAR1 and PAR4 in the pathogenesis of ESCC. Besides, FAK/PI3K/AKT/STAT3/NF-κB and nSMase2/MAPK/NF-κB pathways may be novel targets for regulating tumor growth and metastasis in ESCC patients.
Collapse
Affiliation(s)
- Jia Zhao
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Guangyu Jin
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xudong Liu
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Kai Wu
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yang Yang
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhanfeng He
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Donglei Liu
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Chunyang Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Dengyan Zhu
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jia Jiao
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xiangnan Li
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| | - Song Zhao
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
18
|
Rabinovitch E, Mihara K, Sananes A, Zaretsky M, Heyne M, Shifman J, Aharoni A, Hollenberg MD, Papo N. A KLK4 proteinase substrate capture approach to antagonize PAR1. Sci Rep 2021; 11:16170. [PMID: 34373558 PMCID: PMC8352894 DOI: 10.1038/s41598-021-95666-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 07/29/2021] [Indexed: 11/08/2022] Open
Abstract
Proteinase-activated receptor-1 (PAR1), triggered by thrombin and other serine proteinases such as tissue kallikrein-4 (KLK4), is a key driver of inflammation, tumor invasiveness and tumor metastasis. The PAR1 transmembrane G-protein-coupled receptor therefore represents an attractive target for therapeutic inhibitors. We thus used a computational design to develop a new PAR1 antagonist, namely, a catalytically inactive human KLK4 that acts as a proteinase substrate-capture reagent, preventing receptor cleavage (and hence activation) by binding to and occluding the extracellular R41-S42 canonical PAR1 proteolytic activation site. On the basis of in silico site-saturation mutagenesis, we then generated KLK4S207A,L185D, a first-of-a-kind 'decoy' PAR1 inhibitor, by mutating the S207A and L185D residues in wild-type KLK4, which strongly binds to PAR1. KLK4S207A,L185D markedly inhibited PAR1 cleavage, and PAR1-mediated MAPK/ERK activation as well as the migration and invasiveness of melanoma cells. This 'substrate-capturing' KLK4 variant, engineered to bind to PAR1, illustrates proof of principle for the utility of a KLK4 'proteinase substrate capture' approach to regulate proteinase-mediated PAR1 signaling.
Collapse
Affiliation(s)
- Eitan Rabinovitch
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, P.O.B. 653, 84105, Beer-Sheva, Israel
| | - Koishiro Mihara
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Amiram Sananes
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, P.O.B. 653, 84105, Beer-Sheva, Israel
| | - Marianna Zaretsky
- Department of Life Sciences, National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Michael Heyne
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, P.O.B. 653, 84105, Beer-Sheva, Israel
- Department of Biological Chemistry, The Hebrew University of Jerusalem, Givat Ram Campus, 91906, Jerusalem, Israel
| | - Julia Shifman
- Department of Biological Chemistry, The Hebrew University of Jerusalem, Givat Ram Campus, 91906, Jerusalem, Israel
| | - Amir Aharoni
- Department of Life Sciences, National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Morley D Hollenberg
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Niv Papo
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, P.O.B. 653, 84105, Beer-Sheva, Israel.
| |
Collapse
|
19
|
Abstract
The serine protease thrombin, a naturally derived enzyme, plays a key role in hemostasis by converting fibrinogen to fibrin and activating coagulation factor XIII whereby the fibrin clot is stabilized. Furthermore, thrombin activates platelets through protease-activated receptors on the platelet surface. Conversely, thrombin also exerts anticoagulant effects, enhancing the protein C activity while complexed with thrombomodulin. During recent years, it has become evident that thrombin has significant effects beyond hemostasis, as it contributes also to modulation of the endothelium, promotes inflammation and angiogenesis, and plays a role in tumor progression. Yet, due to the very short half-life and almost immediate inhibition in fluid phase by antithrombin, thrombin itself remains elusive, and only indirect measurement of thrombin generation is possible. This review provides a description of structure and mechanisms of action of thrombin both in physiological and pathological processes. Furthermore, it summarizes laboratory tests that measure in vivo or ex vivo thrombin generation, and presents knowledge on the value of these biomarkers in bleeding disorders, cardiopulmonary bypass surgery, and thromboembolic risk assessment in different patient populations. Finally, this review outlines further perspectives on using thrombin generation biomarkers for research purposes and in clinical practice.
Collapse
Affiliation(s)
- Julie Brogaard Larsen
- Department of Clinical Biochemistry, Thrombosis and Hemostasis Research Unit, Aarhus University Hospital, Aarhus, Denmark
| | - Anne-Mette Hvas
- Department of Clinical Biochemistry, Thrombosis and Hemostasis Research Unit, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
20
|
Soltantoyeh T, Akbari B, Karimi A, Mahmoodi Chalbatani G, Ghahri-Saremi N, Hadjati J, Hamblin MR, Mirzaei HR. Chimeric Antigen Receptor (CAR) T Cell Therapy for Metastatic Melanoma: Challenges and Road Ahead. Cells 2021; 10:cells10061450. [PMID: 34207884 PMCID: PMC8230324 DOI: 10.3390/cells10061450] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/31/2021] [Accepted: 06/09/2021] [Indexed: 12/11/2022] Open
Abstract
Metastatic melanoma is the most aggressive and difficult to treat type of skin cancer, with a survival rate of less than 10%. Metastatic melanoma has conventionally been considered very difficult to treat; however, recent progress in understanding the cellular and molecular mechanisms involved in the tumorigenesis, metastasis and immune escape have led to the introduction of new therapies. These include targeted molecular therapy and novel immune-based approaches such as immune checkpoint blockade (ICB), tumor-infiltrating lymphocytes (TILs), and genetically engineered T-lymphocytes such as chimeric antigen receptor (CAR) T cells. Among these, CAR T cell therapy has recently made promising strides towards the treatment of advanced hematological and solid cancers. Although CAR T cell therapy might offer new hope for melanoma patients, it is not without its shortcomings, which include off-target toxicity, and the emergence of resistance to therapy (e.g., due to antigen loss), leading to eventual relapse. The present review will not only describe the basic steps of melanoma metastasis, but also discuss how CAR T cells could treat metastatic melanoma. We will outline specific strategies including combination approaches that could be used to overcome some limitations of CAR T cell therapy for metastatic melanoma.
Collapse
Affiliation(s)
- Tahereh Soltantoyeh
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran 1417613151, Iran; (T.S.); (B.A.); (G.M.C.); (N.G.-S.); (J.H.)
| | - Behnia Akbari
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran 1417613151, Iran; (T.S.); (B.A.); (G.M.C.); (N.G.-S.); (J.H.)
| | - Amirali Karimi
- School of Medicine, Tehran University of Medical Sciences, Tehran 1417613151, Iran;
| | - Ghanbar Mahmoodi Chalbatani
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran 1417613151, Iran; (T.S.); (B.A.); (G.M.C.); (N.G.-S.); (J.H.)
| | - Navid Ghahri-Saremi
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran 1417613151, Iran; (T.S.); (B.A.); (G.M.C.); (N.G.-S.); (J.H.)
| | - Jamshid Hadjati
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran 1417613151, Iran; (T.S.); (B.A.); (G.M.C.); (N.G.-S.); (J.H.)
| | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa;
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Hamid Reza Mirzaei
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran 1417613151, Iran; (T.S.); (B.A.); (G.M.C.); (N.G.-S.); (J.H.)
- Correspondence: ; Tel.: +98-21-64053268; Fax: +98-21-66419536
| |
Collapse
|
21
|
Zhou Y, Guo Y, Cui Q, Dong Y, Cai X, Zhang Z, Wu X, Yi K, Zhang M. Application of Thromboelastography to Predict Lung Cancer Stage. Technol Cancer Res Treat 2020; 19:1533033820952351. [PMID: 33084538 PMCID: PMC7588761 DOI: 10.1177/1533033820952351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Objective: Lung cancer is often associated with hypercoagulability. Thromboelastography
provides integrated information on clot formation in whole blood. This study
explored the possible relationship between thromboelastography and lung
cancer. Methods: Lung cancer was staged according to the Tumor, Node, and Metastasis (TNM)
classification system. Thromboelastography parameters in different stages of
disease were compared. The value of thromboelastography for stage prediction
was determined by area under the receiver operating characteristic curve
analysis. Results: A total of 182 patients diagnosed with lung cancer were included.
Thromboelastography parameters, including kinetics time, α-angle, and
maximum amplitude, differed significantly between patients with metastatic
and limited lung cancers (P < 0.05). Kinetics time was
significantly reduced and maximum amplitude was significantly increased in
patients with stage I and II compared with stage III and IV tumors
(P < 0.05). TNM stage was significantly negatively
correlated with kinetics time (r = −0.186), and
significantly positively correlated with α-angle (r =
0.151) and maximum amplitude (r = 0.251) (both
P < 0.05). The area under the curve for kinetics
time in patients with stage I cancer was 0.637 (P <
0.05) and that for α-angle in stage ≥ II was 0.623 (P <
0.05). The areas under the curves for maximum amplitude in stage ≥ III and
stage IV cancer were 0.650 and 0.605, respectively (both P
< 0.05). Thromboelastography parameters were more closely associated with
TNM stage in patients with lung adenocarcinoma than in the whole lung cancer
population. Conclusion: This study identified the diagnostic value of thromboelastography parameters
for determining tumor stage in patients with lung cancer.
Thromboelastography can be used as an independent predictive parameter for
lung cancer severity.
Collapse
Affiliation(s)
- Yaning Zhou
- 71141Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yijun Guo
- 71141Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Qing Cui
- 71141Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yun Dong
- 71141Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoyue Cai
- 71141Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Zhouji Zhang
- 71141Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoting Wu
- 71141Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Kaiyan Yi
- 71141Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Ming Zhang
- 71141Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
22
|
Wang Y, Liao R, Chen X, Ying X, Chen G, Li M, Dong C. Twist-mediated PAR1 induction is required for breast cancer progression and metastasis by inhibiting Hippo pathway. Cell Death Dis 2020; 11:520. [PMID: 32647142 PMCID: PMC7347637 DOI: 10.1038/s41419-020-2725-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 06/24/2020] [Indexed: 02/07/2023]
Abstract
Breast cancer is considered to be the most prevalent cancer in women worldwide, and metastasis is the primary cause of death. Protease-activated receptor 1 (PAR1) is a GPCR family member involved in the invasive and metastatic processes of cancer cells. However, the functions and underlying mechanisms of PAR1 in breast cancer remain unclear. In this study, we found that PAR1 is highly expressed in high invasive breast cancer cells, and predicts poor prognosis in ER-negative and high-grade breast cancer patients. Mechanistically, Twist transcriptionally induces PAR1 expression, leading to inhibition of Hippo pathway and activation of YAP/TAZ; Inhibition of PAR1 suppresses YAP/TAZ-induced epithelial-mesenchymal transition (EMT), invasion, migration, cancer stem cell (CSC)-like properties, tumor growth and metastasis of breast cancer cells in vitro and in vivo. These findings suggest that PAR1 acts as a direct transcriptionally target of Twist, can promote EMT, tumorigenicity and metastasis by controlling the Hippo pathway; this may lead to a potential therapeutic target for treating invasive breast cancer.
Collapse
Affiliation(s)
- Yifan Wang
- Department of Pathology and Pathophysiology, and Department of Surgical Oncology (breast center) of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cancer Institute of Integrative Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, China.,Zhejiang Key Laboratory for Disease Proteomics, Zhejiang University School of Medicine, Hangzhou, China
| | - Ruocen Liao
- Department of Pathology and Pathophysiology, and Department of Surgical Oncology (breast center) of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang Key Laboratory for Disease Proteomics, Zhejiang University School of Medicine, Hangzhou, China
| | - Xingyu Chen
- Department of Pathology and Pathophysiology, and Department of Surgical Oncology (breast center) of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang Key Laboratory for Disease Proteomics, Zhejiang University School of Medicine, Hangzhou, China
| | - Xuhua Ying
- Cancer Institute of Integrative Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Guanping Chen
- Cancer Institute of Integrative Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Mingqian Li
- Cancer Institute of Integrative Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Chenfang Dong
- Department of Pathology and Pathophysiology, and Department of Surgical Oncology (breast center) of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China. .,Zhejiang Key Laboratory for Disease Proteomics, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
23
|
Das SK, Maji S, Wechman SL, Bhoopathi P, Pradhan AK, Talukdar S, Sarkar D, Landry J, Guo C, Wang XY, Cavenee WK, Emdad L, Fisher PB. MDA-9/Syntenin (SDCBP): Novel gene and therapeutic target for cancer metastasis. Pharmacol Res 2020; 155:104695. [PMID: 32061839 PMCID: PMC7551653 DOI: 10.1016/j.phrs.2020.104695] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/12/2020] [Accepted: 02/12/2020] [Indexed: 02/06/2023]
Abstract
The primary cause of cancer-related death from solid tumors is metastasis. While unraveling the mechanisms of this complicated process continues, our ability to effectively target and treat it to decrease patient morbidity and mortality remains disappointing. Early detection of metastatic lesions and approaches to treat metastases (both pharmacological and genetic) are of prime importance to obstruct this process clinically. Metastasis is complex involving both genetic and epigenetic changes in the constantly evolving tumor cell. Moreover, many discrete steps have been identified in metastatic spread, including invasion, intravasation, angiogenesis, attachment at a distant site (secondary seeding), extravasation and micrometastasis and tumor dormancy development. Here, we provide an overview of the metastatic process and highlight a unique pro-metastatic gene, melanoma differentiation associated gene-9/Syntenin (MDA-9/Syntenin) also called syndecan binding protein (SDCBP), which is a major contributor to the majority of independent metastatic events. MDA-9 expression is elevated in a wide range of carcinomas and other cancers, including melanoma, glioblastoma multiforme and neuroblastoma, suggesting that it may provide an appropriate target to intervene in metastasis. Pre-clinical studies confirm that inhibiting MDA-9 either genetically or pharmacologically profoundly suppresses metastasis. An additional benefit to blocking MDA-9 in metastatic cells is sensitization of these cells to a second therapeutic agent, which converts anti-invasion effects to tumor cytocidal effects. Continued mechanistic and therapeutic insights hold promise to advance development of truly effective therapies for metastasis in the future.
Collapse
Affiliation(s)
- Swadesh K Das
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA.
| | - Santanu Maji
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Stephen L Wechman
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Praveen Bhoopathi
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Anjan K Pradhan
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Sarmistha Talukdar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Devanand Sarkar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Joseph Landry
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Chunqing Guo
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Xiang-Yang Wang
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Webster K Cavenee
- Ludwig Institute for Cancer Research, University of California, San Diego, CA, USA
| | - Luni Emdad
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Paul B Fisher
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA.
| |
Collapse
|
24
|
Palhares LC, Brito AS, de Lima MA, Nader HB, London JA, Barsukov IL, Andrade GP, Yates EA, Chavante SF. A further unique chondroitin sulfate from the shrimp Litopenaeus vannamei with antithrombin activity that modulates acute inflammation. Carbohydr Polym 2019; 222:115031. [PMID: 31320064 DOI: 10.1016/j.carbpol.2019.115031] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 06/07/2019] [Accepted: 06/25/2019] [Indexed: 10/26/2022]
|
25
|
MALT1 is a critical mediator of PAR1-driven NF-κB activation and metastasis in multiple tumor types. Oncogene 2019; 38:7384-7398. [PMID: 31420608 DOI: 10.1038/s41388-019-0958-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 04/29/2019] [Accepted: 06/07/2019] [Indexed: 01/15/2023]
Abstract
Protease-activated receptor 1 (PAR1), a thrombin-responsive G protein-coupled receptor (GPCR), is implicated in promoting metastasis in multiple tumor types, including both sarcomas and carcinomas, but the molecular mechanisms responsible remain largely unknown. We previously discovered that PAR1 stimulation in endothelial cells leads to activation of NF-κB, mediated by a protein complex comprised of CARMA3, Bcl10, and the MALT1 effector protein (CBM complex). Given the strong association between NF-κB and metastasis, we hypothesized that this CBM complex could play a critical role in the PAR1-driven metastatic progression of specific solid tumors. In support of our hypothesis, we demonstrate that PAR1 stimulation results in NF-κB activation in both osteosarcoma and breast cancer, which is suppressed by siRNA-mediated MALT1 knockdown, suggesting that an intact CBM complex is required for the response in both tumor cell types. We identify several metastasis-associated genes that are upregulated in a MALT1-dependent manner after PAR1 stimulation in cancer cells, including those encoding the matrix remodeling protein, MMP9, and the cytokines, IL-1β and IL-8. Further, exogenous expression of PAR1 in MCF7 breast cancer cells confers highly invasive and metastatic behavior which can be blocked by CRISPR/Cas9-mediated MALT1 knockout. Importantly, we find that PAR1 stimulation induces MALT1 protease activity in both osteosarcoma and breast cancer cells, an activity that is mechanistically linked to NF-κB activation and potentially other responses associated with aggressive phenotype. Several small molecule MALT1 protease inhibitors have recently been described that could therefore represent promising new therapeutics for the prevention and/or treatment of PAR1-driven tumor metastasis.
Collapse
|
26
|
Arce M, Pinto MP, Galleguillos M, Muñoz C, Lange S, Ramirez C, Erices R, Gonzalez P, Velasquez E, Tempio F, Lopez MN, Salazar-Onfray F, Cautivo K, Kalergis AM, Cruz S, Lladser Á, Lobos-González L, Valenzuela G, Olivares N, Sáez C, Koning T, Sánchez FA, Fuenzalida P, Godoy A, Contreras Orellana P, Leyton L, Lugano R, Dimberg A, Quest AFG, Owen GI. Coagulation Factor Xa Promotes Solid Tumor Growth, Experimental Metastasis and Endothelial Cell Activation. Cancers (Basel) 2019; 11:cancers11081103. [PMID: 31382462 PMCID: PMC6721564 DOI: 10.3390/cancers11081103] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/11/2019] [Accepted: 07/27/2019] [Indexed: 02/06/2023] Open
Abstract
Hypercoagulable state is linked to cancer progression; however, the precise role of the coagulation cascade is poorly described. Herein, we examined the contribution of a hypercoagulative state through the administration of intravenous Coagulation Factor Xa (FXa), on the growth of solid human tumors and the experimental metastasis of the B16F10 melanoma in mouse models. FXa increased solid tumor volume and lung, liver, kidney and lymph node metastasis of tail-vein injected B16F10 cells. Concentrating on the metastasis model, upon coadministration of the anticoagulant Dalteparin, lung metastasis was significantly reduced, and no metastasis was observed in other organs. FXa did not directly alter proliferation, migration or invasion of cancer cells in vitro. Alternatively, FXa upon endothelial cells promoted cytoskeleton contraction, disrupted membrane VE-Cadherin pattern, heightened endothelial-hyperpermeability, increased inflammatory adhesion molecules and enhanced B16F10 adhesion under flow conditions. Microarray analysis of endothelial cells treated with FXa demonstrated elevated expression of inflammatory transcripts. Accordingly, FXa treatment increased immune cell infiltration in mouse lungs, an effect reduced by dalteparin. Taken together, our results suggest that FXa increases B16F10 metastasis via endothelial cell activation and enhanced cancer cell-endothelium adhesion advocating that the coagulation system is not merely a bystander in the process of cancer metastasis.
Collapse
Affiliation(s)
- Maximiliano Arce
- Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile
| | - Mauricio P Pinto
- Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Macarena Galleguillos
- Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Catalina Muñoz
- Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Soledad Lange
- Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Carolina Ramirez
- Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Rafaela Erices
- Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
- Vicerrectoría de Investigación, Universidad Mayor, Santiago 7510041, Chile
| | - Pamela Gonzalez
- Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Ethel Velasquez
- Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
- Comisión Chilena de Energía Nuclear (CCHEN), Santiago, Chile
| | - Fabián Tempio
- Institute of Biomedical Sciences, Faculty of Medicine, University de Chile, Santiago 8380453, Chile
| | - Mercedes N Lopez
- Institute of Biomedical Sciences, Faculty of Medicine, University de Chile, Santiago 8380453, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago 8331150, Chile
| | - Flavio Salazar-Onfray
- Institute of Biomedical Sciences, Faculty of Medicine, University de Chile, Santiago 8380453, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago 8331150, Chile
| | - Kelly Cautivo
- Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Alexis M Kalergis
- Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago 8331150, Chile
- Biomedical Research Consortium of Chile, Santiago 8331010, Chile
| | - Sebastián Cruz
- Laboratory of Immunoncology, Fundación Ciencia & Vida, Santiago, Chile
| | - Álvaro Lladser
- Millennium Institute on Immunology and Immunotherapy, Santiago 8331150, Chile
- Laboratory of Immunoncology, Fundación Ciencia & Vida, Santiago, Chile
| | - Lorena Lobos-González
- Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile
- Laboratory of Immunoncology, Fundación Ciencia & Vida, Santiago, Chile
- Regenerative Medicine Center, Faculty of Medicine, Clinica Alemana-Universidad Del Desarrollo, Santiago 7650568, Chile
| | - Guillermo Valenzuela
- Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Nixa Olivares
- Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Claudia Sáez
- Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Tania Koning
- Immunology Institute, Faculty of Medicine, Universidad Austral de Chile, Valdivia 5110566, Chile
| | - Fabiola A Sánchez
- Immunology Institute, Faculty of Medicine, Universidad Austral de Chile, Valdivia 5110566, Chile
| | - Patricia Fuenzalida
- Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Alejandro Godoy
- Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
- Department of Urology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA
| | - Pamela Contreras Orellana
- Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile
- Laboratory of Cellular Communication, ICBM, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile
| | - Lisette Leyton
- Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile
- Laboratory of Cellular Communication, ICBM, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile
| | - Roberta Lugano
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, 751 85 Uppsala, Sweden
| | - Anna Dimberg
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, 751 85 Uppsala, Sweden
| | - Andrew F G Quest
- Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile
- Laboratory of Cellular Communication, ICBM, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile
| | - Gareth I Owen
- Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile.
- Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile.
- Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile.
- Millennium Institute on Immunology and Immunotherapy, Santiago 8331150, Chile.
| |
Collapse
|
27
|
Tekin C, Shi K, Daalhuisen JB, ten Brink MS, Bijlsma MF, Spek CA. PAR1 signaling on tumor cells limits tumor growth by maintaining a mesenchymal phenotype in pancreatic cancer. Oncotarget 2018; 9:32010-32023. [PMID: 30174793 PMCID: PMC6112838 DOI: 10.18632/oncotarget.25880] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 07/21/2018] [Indexed: 12/19/2022] Open
Abstract
Protease activated receptor-1 (PAR1) expression is associated with disease progression and overall survival in a variety of cancers. However, the importance of tumor cell PAR1 in pancreatic ductal adenocarcinomas (PDAC) remains unexplored. Utilizing orthotopic models with wild type and PAR1-targeted PDAC cells, we show that tumor cell PAR1 negatively affects PDAC growth, yet promotes metastasis. Mechanistically, we show that tumor cell-specific PAR1 expression correlates with mesenchymal signatures in PDAC and that PAR1 is linked to the maintenance of a partial mesenchymal cell state. Indeed, loss of PAR1 expression results in well-differentiated pancreatic tumors in vivo, with enhanced epithelial characteristics both in vitro and in vivo. Taken together, we have identified a novel growth inhibitory role of PAR1 in PDAC, which is linked to the induction, and maintenance of a mesenchymal-like phenotype. The recognition that PAR1 actively limits pancreatic cancer cell growth suggest that the contributions of PAR1 to tumor growth differ between cancers of epithelial origin and that its targeting should be applied with care.
Collapse
Affiliation(s)
- Cansu Tekin
- Amsterdam UMC, University of Amsterdam, Center of Experimental and Molecular Medicine, Amsterdam, The Netherlands
- Amsterdam UMC, University of Amsterdam, Laboratory for Experimental Oncology and Radiobiology, Cancer Center Amsterdam, Amsterdam, The Netherlands
- Oncode Institute, Amsterdam, The Netherlands
| | - Kun Shi
- Amsterdam UMC, University of Amsterdam, Center of Experimental and Molecular Medicine, Amsterdam, The Netherlands
| | - Joost B. Daalhuisen
- Amsterdam UMC, University of Amsterdam, Center of Experimental and Molecular Medicine, Amsterdam, The Netherlands
| | - Marieke S. ten Brink
- Amsterdam UMC, University of Amsterdam, Center of Experimental and Molecular Medicine, Amsterdam, The Netherlands
| | - Maarten F. Bijlsma
- Amsterdam UMC, University of Amsterdam, Laboratory for Experimental Oncology and Radiobiology, Cancer Center Amsterdam, Amsterdam, The Netherlands
- Oncode Institute, Amsterdam, The Netherlands
| | - C. Arnold Spek
- Amsterdam UMC, University of Amsterdam, Center of Experimental and Molecular Medicine, Amsterdam, The Netherlands
| |
Collapse
|
28
|
Ben Baruch B, Blacher E, Mantsur E, Schwartz H, Vaknine H, Erez N, Stein R. Stromal CD38 regulates outgrowth of primary melanoma and generation of spontaneous metastasis. Oncotarget 2018; 9:31797-31811. [PMID: 30159123 PMCID: PMC6112753 DOI: 10.18632/oncotarget.25737] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 06/19/2018] [Indexed: 12/13/2022] Open
Abstract
The outgrowth of primary melanoma, the deadliest skin cancer, and generation of metastasis is supported by the tumor microenvironment (TME) which includes non-cancerous cells. Since the TME plays an important role in melanoma pathogenesis, its targeting is a promising therapeutic approach. Thus, it is important to identify proteins in the melanoma TME that may serve as therapeutic targets. Here we show that the nicotinamide adenine dinucleotide glycohydrolase CD38 is a suitable target for this purpose. Loss of CD38 in the TME as well as inhibition of its enzymatic activity restrained outgrowth of primary melanoma generated by two transplantable models of melanoma, B16F10 and Ret-mCherry-sorted (RMS) melanoma cells. Pathological analysis indicated that loss of CD38 increased cell death and reduced the amount of cancer-associated fibroblasts (CAFs) and blood vessels. Importantly, in addition to inhibiting outgrowth of primary melanoma tumors, loss of CD38 also inhibited spontaneous occurrence of RMS pulmonary and brain metastasis. The underlying mechanism may involve, at least in the brain, inhibition of metastasis expansion, since loss of CD38 inhibited the outgrowth of B16F10 and RMS brain tumors that were generated by direct intracranial implantation. Collectively, our results suggest that targeting CD38 in the melanoma TME provides a new therapeutic approach for melanoma treatment.
Collapse
Affiliation(s)
- Bar Ben Baruch
- Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Eran Blacher
- Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Einav Mantsur
- Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Hila Schwartz
- Department of Pathology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Hananya Vaknine
- Department of Pathology, Wolfson Medical Center and Sackler Faculty of Medicine, Tel Aviv University, Holon, Israel
| | - Neta Erez
- Department of Pathology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Reuven Stein
- Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
29
|
Xu XR, Yousef GM, Ni H. Cancer and platelet crosstalk: opportunities and challenges for aspirin and other antiplatelet agents. Blood 2018. [PMID: 29519806 DOI: 10.1182/blood-2017-05-743187] [Citation(s) in RCA: 222] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Platelets have long been recognized as key players in hemostasis and thrombosis; however, growing evidence suggests that they are also significantly involved in cancer, the second leading cause of mortality worldwide. Preclinical and clinical studies showed that tumorigenesis and metastasis can be promoted by platelets through a wide variety of crosstalk between platelets and cancer cells. For example, cancer changes platelet behavior by directly inducing tumor-platelet aggregates, triggering platelet granule and extracellular vesicle release, altering platelet phenotype and platelet RNA profiles, and enhancing thrombopoiesis. Reciprocally, platelets reinforce tumor growth with proliferation signals, antiapoptotic effect, and angiogenic factors. Platelets also activate tumor invasion and sustain metastasis via inducing an invasive epithelial-mesenchymal transition phenotype of tumor cells, promoting tumor survival in circulation, tumor arrest at the endothelium, and extravasation. Furthermore, platelets assist tumors in evading immune destruction. Hence, cancer cells and platelets maintain a complex, bidirectional communication. Recently, aspirin (acetylsalicylic acid) has been recognized as a promising cancer-preventive agent. It is recommended at daily low dose by the US Preventive Services Task Force for primary prevention of colorectal cancer. The exact mechanisms of action of aspirin in chemoprevention are not very clear, but evidence has emerged that suggests a platelet-mediated effect. In this article, we will introduce how cancer changes platelets to be more cancer-friendly and highlight advances in the modes of action for aspirin in cancer prevention. We also discuss the opportunities, challenges, and opposing viewpoints on applying aspirin and other antiplatelet agents for cancer prevention and treatment.
Collapse
Affiliation(s)
- Xiaohong Ruby Xu
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, and
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
| | - George M Yousef
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, and
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Heyu Ni
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, and
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Canadian Blood Services Centre for Innovation, Toronto, ON, Canada; and
- Department of Medicine and
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
30
|
Gresele P, Momi S, Malvestiti M, Sebastiano M. Platelet-targeted pharmacologic treatments as anti-cancer therapy. Cancer Metastasis Rev 2018; 36:331-355. [PMID: 28707198 DOI: 10.1007/s10555-017-9679-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Platelets act as multifunctional cells participating in immune response, inflammation, allergy, tissue regeneration, and lymphoangiogenesis. Among the best-established aspects of a role of platelets in non-hemostatic or thrombotic disorders, there is their participation in cancer invasion and metastasis. The interaction of many different cancer cells with platelets leads to platelet activation, and on the other hand platelet activation is strongly instrumental to the pro-carcinogenic and pro-metastatic activities of platelets. It is thus obvious that over the last years a lot of interest has focused on the possible chemopreventive effect of platelet-targeted pharmacologic treatments. This article gives an overview of the platelet-targeted pharmacologic approaches that have been attempted in the prevention of cancer development, progression, and metastasis, including the application of anti-platelet drugs currently used for cardiovascular disease and of new and novel pharmacologic strategies. Despite the fact that very promising results have been obtained with some of these approaches in pre-clinical models, with the exclusion of aspirin, clinical evidence of a beneficial effect of anti-platelet agents in cancer is however still largely missing. Future studies with platelet-targeted drugs in cancer must carefully deal with design issues, and in particular with the careful selection of patients, and/or explore novel platelet targets in order to provide a solution to the critical issue of the risk/benefit profile of long-term anti-platelet therapy in the prevention of cancer progression and dissemination.
Collapse
Affiliation(s)
- P Gresele
- Section of Internal and Cardiovascular Medicine, Department of Medicine, University of Perugia, Via Enrico dal Pozzo, 06126, Perugia, Italy.
| | - S Momi
- Section of Internal and Cardiovascular Medicine, Department of Medicine, University of Perugia, Via Enrico dal Pozzo, 06126, Perugia, Italy
| | - M Malvestiti
- Section of Internal and Cardiovascular Medicine, Department of Medicine, University of Perugia, Via Enrico dal Pozzo, 06126, Perugia, Italy
| | - M Sebastiano
- Section of Internal and Cardiovascular Medicine, Department of Medicine, University of Perugia, Via Enrico dal Pozzo, 06126, Perugia, Italy
| |
Collapse
|
31
|
Affiliation(s)
- Suzie Chen
- Susan Lehman Cullman Laboratory for Cancer Research, Ernest Marion School of Pharmacy, Rutgers University, Piscataway, NJ, United States.,Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, United States
| |
Collapse
|
32
|
Liu X, Yu J, Song S, Yue X, Li Q. Protease-activated receptor-1 (PAR-1): a promising molecular target for cancer. Oncotarget 2017; 8:107334-107345. [PMID: 29291033 PMCID: PMC5739818 DOI: 10.18632/oncotarget.21015] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Accepted: 08/27/2017] [Indexed: 12/18/2022] Open
Abstract
PAR-1 is expressed not only in epithelium, neurons, astrocytes, immune cells, but also in cancer-associated fibroblasts, ECs (epithelial cells), myocytes of blood vessels, mast cells, and macrophages in tumor microenvironment, whereas PAR-1 stimulates macrophages to synthesize and secrete thrombin as well as other growth factors, resulting in enhanced cell proliferation, tumor growth and metastasis. Therefore, considerable effort has been devoted to the development of inhibitors targeting PAR-1. Here, we provide a comprehensive review of PAR-1’s role in cancer invasiveness and dissemination, as well as potential therapeutic strategies targeting PAR-1 signaling.
Collapse
Affiliation(s)
- Xuan Liu
- Department of Medical Oncology and Cancer Institute, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.,Department of Traditional Chinese Medicine, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Jiahui Yu
- Department of Traditional Chinese Medicine, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Shangjin Song
- Department of Traditional Chinese Medicine, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Xiaoqiang Yue
- Department of Traditional Chinese Medicine, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Qi Li
- Department of Medical Oncology and Cancer Institute, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
33
|
RGD delivery of truncated coagulase to tumor vasculature affords local thrombotic activity to induce infarction of tumors in mice. Sci Rep 2017; 7:8126. [PMID: 28811469 PMCID: PMC5557930 DOI: 10.1038/s41598-017-05326-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 06/06/2017] [Indexed: 12/19/2022] Open
Abstract
Induction of thrombosis in tumor vasculature represents an appealing strategy for combating cancer. Herein, we combined unique intrinsic coagulation properties of staphylocoagulase with new acquired functional potentials introduced by genetic engineering, to generate a novel bi-functional fusion protein consisting of truncated coagulase (tCoa) bearing an RGD motif on its C-terminus for cancer therapy. We demonstrated that free coagulase failed to elicit any significant thrombotic activity. Conversely, RGD delivery of coagulase retained coagulase activity and afforded favorable interaction of fusion proteins with prothrombin and αvβ3 endothelial cell receptors, as verified by in silico, in vitro, and in vivo experiments. Although free coagulase elicited robust coagulase activity in vitro, only targeted coagulase (tCoa-RGD) was capable of producing extensive thrombosis, and subsequent infarction and massive necrosis of CT26 mouse colon, 4T1 mouse mammary and SKOV3 human ovarian tumors in mice. Additionally, systemic injections of lower doses of tCoa-RGD produced striking tumor growth inhibition of CT26, 4T1 and SKOV3 solid tumors in animals. Altogether, the nontoxic nature, unique shortcut mechanism, minimal effective dose, wide therapeutic window, efficient induction of thrombosis, local effects and susceptibility of human blood to coagulase suggest tCoa-RGD fusion proteins as a novel and promising anticancer therapy for human trials.
Collapse
|
34
|
Lin C, Majoor CJ, Roelofs JJTH, de Kruif MD, Horlings HM, Borensztajn K, Spek CA. Potential importance of protease activated receptor (PAR)-1 expression in the tumor stroma of non-small-cell lung cancer. BMC Cancer 2017; 17:113. [PMID: 28173772 PMCID: PMC5297223 DOI: 10.1186/s12885-017-3081-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 01/23/2017] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Protease activated receptor (PAR)-1 expression is increased in a variety of tumor cells. In preclinical models, tumor cell PAR-1 appeared to be involved in the regulation of lung tumor growth and metastasis; however the role of PAR-1 in the lung tumor microenvironment, which is emerging as a key compartment in driving cancer progression, remained to be explored. METHODS In the present study, PAR-1 gene expression was determined in lung tissue from patients with non-small-cell lung cancer (NSCLC) using a combination of publicly available RNA microarray datasets and in house-made tissue microarrays including tumor biopsies of 94 patients with NSCLC (40 cases of adenocarcinoma, 42 cases of squamous cell carcinoma and 12 cases of other type of NSCLC at different stages). RESULTS PAR-1 gene expression strongly correlated with tumor stromal markers (i.e. macrophage, endothelial cells and (myo) fibroblast markers) but not with epithelial cell markers. Immunohistochemical analysis confirmed the presence of PAR-1 in the tumor stroma and showed that PAR-1 expression was significantly upregulated in malignant tissue compared with normal lung tissue. The overexpression of PAR-1 in tumor stroma of NSCLC appeared to be independent from tumor type, tumor stage, histopathological differentiation status, disease progression and patient survival. CONCLUSION Overall, our data provide evidence that PAR-1 in NSCLC is mainly expressed on cells that constitute the pulmonary tumor microenvironment, including vascular endothelial cells, macrophages and stromal fibroblasts.
Collapse
Affiliation(s)
- Cong Lin
- Center for Experimental and Molecular Medicine, Academic Medical Center, Amsterdam, 1105 AZ, The Netherlands.
| | - Christof J Majoor
- Department of Respiratory Medicine, Academic Medical Center, Amsterdam, 1105 AZ, The Netherlands
| | - Joris J T H Roelofs
- Department of Pathology, Academic Medical Center, Amsterdam, 1105 AZ, The Netherlands
| | - Martijn D de Kruif
- Department of Respiratory Medicine, Academic Medical Center, Amsterdam, 1105 AZ, The Netherlands.,Department of Pulmonology, Zuyderland Hospital, Henri Dunantstraat 5, 6419 PC, Heerlen, The Netherlands
| | - Hugo M Horlings
- Department of Pathology, The Antonie van Leeuwenhoek hospital, Amsterdam, 1066 CX, The Netherlands
| | - Keren Borensztajn
- Center for Experimental and Molecular Medicine, Academic Medical Center, Amsterdam, 1105 AZ, The Netherlands.,Inserm UMR1152, Medical School Xavier Bichat, 16 rue Henri Huchard, 75018, Paris, France.,Département Hospitalo-universtaire FIRE (Fibrosis, Inflammation and Remodeling) and LabEx Inflamex, Paris, France
| | - C Arnold Spek
- Center for Experimental and Molecular Medicine, Academic Medical Center, Amsterdam, 1105 AZ, The Netherlands
| |
Collapse
|
35
|
Wojtukiewicz MZ, Hempel D, Sierko E, Tucker SC, Honn KV. Thrombin-unique coagulation system protein with multifaceted impacts on cancer and metastasis. Cancer Metastasis Rev 2017; 35:213-33. [PMID: 27189210 DOI: 10.1007/s10555-016-9626-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The association between blood coagulation and cancer development is well recognized. Thrombin, the pleiotropic enzyme best known for its contribution to fibrin formation and platelet aggregation during vascular hemostasis, may also trigger cellular events through protease-activated receptors, PAR-1 and PAR-4, leading to cancer progression. Our pioneering findings provided evidence that thrombin contributes to cancer metastasis by increasing adhesive potential of malignant cells. However, there is evidence that thrombin regulates every step of cancer dissemination: (1) cancer cell invasion, detachment from primary tumor, migration; (2) entering the blood vessel; (3) surviving in vasculature; (4) extravasation; (5) implantation in host organs. Recent studies have provided new molecular data about thrombin generation in cancer patients and the mechanisms by which thrombin contributes to transendothelial migration, platelet/tumor cell interactions, angiogenesis, and other processes. Though a great deal is known regarding the role of thrombin in cancer dissemination, there are new data for multiple thrombin-mediated events that justify devoting focus to this topic with a comprehensive approach.
Collapse
Affiliation(s)
- Marek Z Wojtukiewicz
- Department of Oncology, Medical University of Bialystok, 12 Ogrodowa St., 15-025, Bialystok, Poland. .,Department of Clinical Oncology, Comprehensive Cancer Center in Bialystok, Bialystok, Poland.
| | - Dominika Hempel
- Department of Oncology, Medical University of Bialystok, 12 Ogrodowa St., 15-025, Bialystok, Poland.,Department of Radiotherapy, Comprehensive Cancer Center in Bialystok, Bialystok, Poland
| | - Ewa Sierko
- Department of Oncology, Medical University of Bialystok, 12 Ogrodowa St., 15-025, Bialystok, Poland.,Department of Radiotherapy, Comprehensive Cancer Center in Bialystok, Bialystok, Poland
| | - Stephanie C Tucker
- Bioactive Lipids Research Program, Department of Pathology-School of Medicine, Wayne State University, Detroit, MI, USA
| | - Kenneth V Honn
- Bioactive Lipids Research Program, Department of Pathology-School of Medicine, Wayne State University, Detroit, MI, USA.,Department of Chemistry, Wayne State University, Detroit, MI, USA.,Department of Oncology, Karmanos Cancer Institute, Detroit, MI, USA
| |
Collapse
|
36
|
Abstract
Although many studies have demonstrated that components of the hemostatic system may be involved in signaling leading to cancer progression, the potential mechanisms by which they contribute to cancer dissemination are not yet precisely understood. Among known coagulant factors, tissue factor (TF) and thrombin play a pivotal role in cancer invasion. They may be generated in the tumor microenvironment independently of blood coagulation and can induce cell signaling through activation of protease-activated receptors (PARs). PARs are transmembrane G-protein-coupled receptors (GPCRs) that are activated by a unique proteolytic mechanism. They play important roles in vascular physiology, neural tube closure, hemostasis, and inflammation. All of these agents (TF, thrombin, PARs—mainly PAR-1 and PAR-2) are thought to promote cancer invasion and metastasis at least in part by facilitating tumor cell migration, angiogenesis, and interactions with host vascular cells, including platelets, fibroblasts, and endothelial cells lining blood vessels. Here, we discuss the role of PARs and their activators in cancer progression, focusing on TF- and thrombin-mediated actions. Therapeutic options tailored specifically to inhibit PAR-induced signaling in cancer patients are presented as well.
Collapse
|
37
|
Auvergne R, Wu C, Connell A, Au S, Cornwell A, Osipovitch M, Benraiss A, Dangelmajer S, Guerrero-Cazares H, Quinones-Hinojosa A, Goldman SA. PAR1 inhibition suppresses the self-renewal and growth of A2B5-defined glioma progenitor cells and their derived gliomas in vivo. Oncogene 2016; 35:3817-28. [PMID: 26616854 PMCID: PMC4885796 DOI: 10.1038/onc.2015.452] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Revised: 09/14/2015] [Accepted: 10/22/2015] [Indexed: 12/15/2022]
Abstract
Glioblastoma (GBM) remains the most common and lethal intracranial tumor. In a comparison of gene expression by A2B5-defined tumor-initiating progenitor cells (TPCs) to glial progenitor cells derived from normal adult human brain, we found that the F2R gene encoding PAR1 was differentially overexpressed by A2B5-sorted TPCs isolated from gliomas at all stages of malignant development. In this study, we asked if PAR1 is causally associated with glioma progression. Lentiviral knockdown of PAR1 inhibited the expansion and self-renewal of human GBM-derived A2B5(+) TPCs in vitro, while pharmacological inhibition of PAR 1 similarly slowed both the growth and migration of A2B5(+) TPCs in culture. In addition, PAR1 silencing potently suppressed tumor expansion in vivo, and significantly prolonged the survival of mice following intracranial transplantation of human TPCs. These data strongly suggest the importance of PAR1 to the self-renewal and tumorigenicity of A2B5-defined glioma TPCs; as such, the abrogation of PAR1-dependent signaling pathways may prove a promising strategy for gliomas.
Collapse
Affiliation(s)
- R Auvergne
- Department of Neurology, Neurology University of Rochester Medical Center, Center for Translational Neuromedicine, Rochester, NY, USA
- Center for Translational Neuromedicine, Neurology University of Rochester Medical Center, Rochester, NY, USA
| | - C Wu
- Department of Neurology, Neurology University of Rochester Medical Center, Center for Translational Neuromedicine, Rochester, NY, USA
- Center for Translational Neuromedicine, Neurology University of Rochester Medical Center, Rochester, NY, USA
| | - A Connell
- Department of Neurology, Neurology University of Rochester Medical Center, Center for Translational Neuromedicine, Rochester, NY, USA
- Center for Translational Neuromedicine, Neurology University of Rochester Medical Center, Rochester, NY, USA
| | - S Au
- Department of Neurology, Neurology University of Rochester Medical Center, Center for Translational Neuromedicine, Rochester, NY, USA
- Center for Translational Neuromedicine, Neurology University of Rochester Medical Center, Rochester, NY, USA
| | - A Cornwell
- Department of Neurology, Neurology University of Rochester Medical Center, Center for Translational Neuromedicine, Rochester, NY, USA
- Center for Translational Neuromedicine, Neurology University of Rochester Medical Center, Rochester, NY, USA
| | - M Osipovitch
- Department of Neurology, Neurology University of Rochester Medical Center, Center for Translational Neuromedicine, Rochester, NY, USA
- Center for Translational Neuromedicine, Neurology University of Rochester Medical Center, Rochester, NY, USA
| | - A Benraiss
- Department of Neurology, Neurology University of Rochester Medical Center, Center for Translational Neuromedicine, Rochester, NY, USA
- Center for Translational Neuromedicine, Neurology University of Rochester Medical Center, Rochester, NY, USA
| | - S Dangelmajer
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - H Guerrero-Cazares
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - A Quinones-Hinojosa
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - SA Goldman
- Department of Neurology, Neurology University of Rochester Medical Center, Center for Translational Neuromedicine, Rochester, NY, USA
- Center for Translational Neuromedicine, Neurology University of Rochester Medical Center, Rochester, NY, USA
- Center for Basic and Translational Neuroscience, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
38
|
Duan ZZ, Zhang F, Li FY, Luan YF, Guo P, Li YH, Liu Y, Qi SH. Protease activated receptor 1 (PAR1) enhances Src-mediated tyrosine phosphorylation of NMDA receptor in intracerebral hemorrhage (ICH). Sci Rep 2016; 6:29246. [PMID: 27385592 PMCID: PMC4935874 DOI: 10.1038/srep29246] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 06/14/2016] [Indexed: 12/20/2022] Open
Abstract
It has been demonstrated that Src could modulate NMDA receptor, and PAR1 could also affect NMDAR signaling. However, whether PAR1 could regulate NMDAR through Src under ICH has not yet been investigated. In this study, we demonstrated the role of Src-PSD95-GluN2A signaling cascades in rat ICH model and in vitro thrombin challenged model. Using the PAR1 agonist SFLLR, antagonist RLLFS and Src inhibitor PP2, electrophysiological analysis showed that PAR1 regulated NMDA-induced whole-cell currents (INMDA) though Src in primary cultured neurons. Both in vivo and in vitro results showed the elevated phosphorylation of tyrosine in Src and GluN2A and enhanced interaction of the Src-PSD95-GluN2A under model conditions. Treatment with the PAR1 antagonist RLLFS, AS-PSD95 (Antisense oligonucleotide against PSD95) and Src inhibitor PP2 inhibited the interaction among Src-PSD95-GluN2A, and p-Src, p-GluN2A. Co-application of SFLLR and AS-PSD95, PP2, or MK801 (NMDAR inhibitor) abolished the effect of SF. In conclusion, our results demonstrated that activated thrombin receptor PAR1 induced Src activation, enhanced the interaction among Src-PSD95-GluN2A signaling modules, and up-regulated GluN2A phosphorylation after ICH injury. Elucidation of such signaling cascades would possibly provide novel targets for ICH treatment.
Collapse
Affiliation(s)
- Zhen-Zhen Duan
- Research Center for Biochemistry and Molecular Biology and Provincial Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical College, Xuzhou, 221002, P. R. China
| | - Feng Zhang
- Research Center for Biochemistry and Molecular Biology and Provincial Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical College, Xuzhou, 221002, P. R. China
| | - Feng-Ying Li
- Research Center for Biochemistry and Molecular Biology and Provincial Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical College, Xuzhou, 221002, P. R. China
| | - Yi-Fei Luan
- Research Center for Biochemistry and Molecular Biology and Provincial Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical College, Xuzhou, 221002, P. R. China
| | - Peng Guo
- Research Center for Biochemistry and Molecular Biology and Provincial Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical College, Xuzhou, 221002, P. R. China
| | - Yi-Hang Li
- Research Center for Biochemistry and Molecular Biology and Provincial Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical College, Xuzhou, 221002, P. R. China
| | - Yong Liu
- Research Center for Biochemistry and Molecular Biology and Provincial Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical College, Xuzhou, 221002, P. R. China
| | - Su-Hua Qi
- Research Center for Biochemistry and Molecular Biology and Provincial Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical College, Xuzhou, 221002, P. R. China
| |
Collapse
|
39
|
Rosero RA, Villares GJ, Bar-Eli M. Protease-Activated Receptors and other G-Protein-Coupled Receptors: the Melanoma Connection. Front Genet 2016; 7:112. [PMID: 27379162 PMCID: PMC4908108 DOI: 10.3389/fgene.2016.00112] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 06/01/2016] [Indexed: 12/20/2022] Open
Abstract
The vast array of G-protein-coupled receptors (GPCRs) play crucial roles in both physiological and pathological processes, including vision, coagulation, inflammation, autophagy, and cell proliferation. GPCRs also affect processes that augment cell proliferation and metastases in many cancers including melanoma. Melanoma is the deadliest form of skin cancer, yet limited therapeutic modalities are available to patients with metastatic melanoma. Studies have found that both chemokine receptors and protease-activated receptors, both of which are GPCRs, are central to the metastatic melanoma phenotype and may serve as potential targets in novel therapies against melanoma and other cancers.
Collapse
Affiliation(s)
| | | | - Menashe Bar-Eli
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston TX, USA
| |
Collapse
|
40
|
Abu El-Asrar AM, Alam K, Nawaz MI, Mohammad G, Van den Eynde K, Siddiquei MM, Mousa A, De Hertogh G, Opdenakker G. Upregulation of Thrombin/Matrix Metalloproteinase-1/Protease-Activated Receptor-1 Chain in Proliferative Diabetic Retinopathy. Curr Eye Res 2016; 41:1590-1600. [PMID: 27261371 DOI: 10.3109/02713683.2016.1141964] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
PURPOSE Selective proteolytic activation of protease-activated receptor-1 (PAR1) by thrombin and matrix metalloproteinase-1 (MMP-1) plays a central role in enhancing angiogenesis. We investigated the expression levels of thrombin, MMP-1, and PAR1 and correlated these levels with vascular endothelial growth factor (VEGF) in proliferative diabetic retinopathy (PDR). In addition, we examined the expression of PAR1 and thrombin in the retinas of diabetic rats and PAR1 in human retinal microvascular endothelial cells (HRMEC) following exposure to high-glucose, the proinflammatory cytokines interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), and the hypoxia mimetic agent cobalt chloride (CoCl2). METHODS Vitreous samples from 32 PDR and 23 nondiabetic patients, epiretinal membranes from 10 patients with PDR, retinas of rats, and HRMEC were studied by enzyme-linked immunosorbent assay (ELISA), immunohistochemistry, and Western blot analysis. An assay for in vitro cell migration angiogenesis was performed in HRMEC. RESULTS In epiretinal membranes, PAR1 was expressed in vascular endothelial cells, CD45-expressing leukocytes, and myofibroblasts. ELISA and Western blot assays revealed significant increases in the expression levels of thrombin, MMP-1, and VEGF in vitreous samples from PDR patients compared to nondiabetic controls. Significant positive correlations were found between the levels of VEGF and the levels of thrombin (r = 0.41; p = 0.006) and MMP-1 (r = 0.66; p < 0.0001). Significant increases of cleaved PAR1 (approximately 50 kDa) and the proteolytically active thrombin (approximately 50 kDa) were detected in rat retinas after induction of diabetes. The proinflammatory cytokines IL-1β and TNF-α, but not high-glucose and CoCl2, induced upregulation of cleaved PAR1 (approximately 30 kDa) in HRMEC. In addition, thrombin and MMP-1 induced VEGF in HRMEC and vorapaxar, a PAR1 inhibitor, inhibited thrombin-induced migration in HRMEC. CONCLUSIONS Interactions among thrombin, MMP-1, PAR1, and VEGF might facilitate angiogenesis in PDR.
Collapse
Affiliation(s)
- Ahmed M Abu El-Asrar
- a Department of Ophthalmology , College of Medicine, King Saud University , Riyadh , Saudi Arabia.,b Dr. Nasser Al-Rashid Research Chair in Ophthalmology, Department of Ophthalmology, College of Medicine, King Saud University , Riyadh , Saudi Arabia
| | - Kaiser Alam
- a Department of Ophthalmology , College of Medicine, King Saud University , Riyadh , Saudi Arabia
| | - Mohd Imtiaz Nawaz
- a Department of Ophthalmology , College of Medicine, King Saud University , Riyadh , Saudi Arabia
| | - Ghulam Mohammad
- a Department of Ophthalmology , College of Medicine, King Saud University , Riyadh , Saudi Arabia
| | - Kathleen Van den Eynde
- c Laboratory of Histochemistry and Cytochemistry, University of Leuven , KU Leuven , Belgium
| | | | - Ahmed Mousa
- a Department of Ophthalmology , College of Medicine, King Saud University , Riyadh , Saudi Arabia
| | - Gert De Hertogh
- c Laboratory of Histochemistry and Cytochemistry, University of Leuven , KU Leuven , Belgium
| | - Ghislain Opdenakker
- d Department of Microbiology and Immunology , Rega Institute for Medical Research, University of Leuven , KU Leuven , Belgium
| |
Collapse
|
41
|
Tas F, Bilgin E, Karabulut S, Erturk K, Duranyildiz D. Clinical significance of serum Protease-Activated Receptor-1 (PAR-1) levels in patients with cutaneous melanoma. BBA CLINICAL 2016; 5:166-9. [PMID: 27141440 PMCID: PMC4840403 DOI: 10.1016/j.bbacli.2016.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 04/02/2016] [Accepted: 04/04/2016] [Indexed: 12/15/2022]
Abstract
Background Protease-Activated Receptor-1 (PAR-1) plays an important role in the pathogenesis of multiple malignancies and its expression strongly also affects the outcomes of cancer patients. The objective of this study was to determine the clinical significance of the serum levels of PAR-1in cutaneous melanoma patients. Methods A total of 60 patients with a pathologically confirmed diagnosis of cutaneous melanoma were enrolled into this study. Serum PAR-1concentrations were determined by the solid-phase sandwich ELISA method. Results No significant difference in serum PAR-1 levels between melanoma patients and healthy controls was found (p = 0.07). The known clinical variables including age of patient, gender, site of lesion, histology, stage of disease, serum LDH levels and chemotherapy responsiveness were not correlated with serum PAR-1 concentrations (p > 0.05). Likewise, serum PAR-1 concentration had also no prognostic role on survival (p = 0.41). Conclusion Serum levels of PAR-1 have no diagnostic, predictive and prognostic roles in cutaneous melanoma patients. General significance Measurement of PAR-1 in serum is not a clinical significance in cutaneous melanoma patients. PAR-1 plays an important role in the pathogenesis of multiple malignancies. Its expression strongly also affects the outcomes of cancer patients. Serum levels of PAR-1 have no diagnostic, predictive and prognostic roles in cutaneous melanoma patients.
Collapse
Affiliation(s)
- Faruk Tas
- Institute of Oncology, University of Istanbul, Istanbul, Turkey
| | - Elif Bilgin
- Institute of Oncology, University of Istanbul, Istanbul, Turkey
| | - Senem Karabulut
- Institute of Oncology, University of Istanbul, Istanbul, Turkey
| | - Kayhan Erturk
- Institute of Oncology, University of Istanbul, Istanbul, Turkey
| | | |
Collapse
|
42
|
Liu R, Xie H, Luo C, Chen Z, Zhou X, Xia K, Chen X, Zhou M, Cao P, Cao K, Zhou J. Identification of FLOT2 as a novel target for microRNA-34a in melanoma. J Cancer Res Clin Oncol 2015; 141:993-1006. [PMID: 25403318 DOI: 10.1007/s00432-014-1874-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 11/07/2014] [Indexed: 01/07/2023]
Abstract
PURPOSE To confirm whether flotillin 2 (FLOT2) is a direct target of miR-34a and miR-34a/FLOT2 pathway plays a key role in melanoma proliferation and metastasis. METHODS First, miR-34a and FLOT2 expressions were both detected in human tissues and cell lines by qRT-PCR. Then, after transfection of mimics/inhibitor of miR-34a into melanoma cell lines, MTT, colony formation, scratch migration assays and transwell invasion assays were performed to evaluate the impact of miR-34a on cell proliferation and metastasis. Western blot, qRT-RCR and dual luciferase reporter gene assays were carried out to confirm whether FLOT2 is a direct target gene of miR-34a. In functional recovery experiments, proliferation and metastasis ability of WM35 and WM451 was tested after being co-transfected with miR-34a inhibitor/si-FLOT2 or miR-34a mimics/FLOT2 cDNA to confirm that FLOT2 is downregulated by miR-34a. RESULTS The miR-34a significantly lower-expressed in metastasis melanoma tissues compared to in situ melanoma, nevi and normal skin whereas FLOT2 has an opposite trend. The level of miR-34a and FLOT2 in different melanoma cell lines was also tested and found that metastatic melanoma cell lines has lower miR-34a expression and higher FLOT2 expression compare to in situ melanoma cell line. MiR-34a overexpression profoundly inhibits WM451 cell proliferation and metastasis, whereas miR-34a reduction had a promoting effect to proliferation and metastasis of WM35. Results of Western blot, qRT-RCR and dual luciferase reporter gene assays revealed that FLOT2 is a direct target gene of miR-34a. Furthermore, overexpression/blockage of FLOT2 could attenuate effect of miR-34a overexpression/inhibition which indicated miR-34a suppresses melanoma biological behavior partially through FLOT2 inhibition. CONCLUSIONS Our study confirmed that miR-34a is involved in the tumor inhibition of melanoma by directly targeting FLOT2 gene. This finding provides potential novel strategies for therapeutic interventions of melanoma.
Collapse
Affiliation(s)
- Rui Liu
- Department of Plastic and Reconstructive Surgery, Third Xiangya Hospital of Central South University, Changsha, 410013, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Miron-Mendoza M, Graham E, Kivanany P, Quiring J, Petroll WM. The Role of Thrombin and Cell Contractility in Regulating Clustering and Collective Migration of Corneal Fibroblasts in Different ECM Environments. Invest Ophthalmol Vis Sci 2015; 56:2079-90. [PMID: 25736789 PMCID: PMC4373543 DOI: 10.1167/iovs.15-16388] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 02/24/2015] [Indexed: 11/24/2022] Open
Abstract
PURPOSE We previously reported that extracellular matrix composition (fibrin versus collagen) modulates the pattern of corneal fibroblast spreading and migration in 3-D culture. In this study, we investigate the role of thrombin and cell contractility in mediating these differences in cell behavior. METHODS To assess cell spreading, corneal fibroblasts were plated on top of fibrillar collagen and fibrin matrices. To assess 3-dimensional cell migration, compacted collagen matrices seeded with corneal fibroblasts were embedded inside acellular collagen or fibrin matrices. Constructs were cultured in serum-free media containing platelet-derived growth factor (PDGF), with or without thrombin, the Rho kinase inhibitor Y-27632, and/or the myosin II inhibitor blebbistatin. We used 3-dimensional and 4-dimensional imaging to assess cell mechanical behavior, connectivity and cytoskeletal organization. RESULTS Thrombin stimulated increased contractility of corneal fibroblasts. Thrombin also induced Rho kinase-dependent clustering of cells plated on top of compliant collagen matrices, but not on rigid substrates. In contrast, cells on fibrin matrices coalesced into clusters even when Rho kinase was inhibited. In nested matrices, cells always migrated independently through collagen, even in the presence of thrombin. In contrast, cells migrating into fibrin formed an interconnected network. Both Y-27632 and blebbistatin reduced the migration rate in fibrin, but cells continued to migrate collectively. CONCLUSIONS The results suggest that while thrombin-induced actomyosin contraction can induce clustering of fibroblasts plated on top of compliant collagen matrices, it does not induce collective cell migration inside 3-D collagen constructs. Furthermore, increased contractility is not required for clustering or collective migration of corneal fibroblasts interacting with fibin.
Collapse
Affiliation(s)
- Miguel Miron-Mendoza
- Department of Ophthalmology, UT Southwestern Medical Center, Dallas, Texas, United States
| | - Eric Graham
- Department of Ophthalmology, UT Southwestern Medical Center, Dallas, Texas, United States
| | - Pouriska Kivanany
- Department of Ophthalmology, UT Southwestern Medical Center, Dallas, Texas, United States
| | - Jonathan Quiring
- Department of Ophthalmology, UT Southwestern Medical Center, Dallas, Texas, United States
| | - W Matthew Petroll
- Department of Ophthalmology, UT Southwestern Medical Center, Dallas, Texas, United States
| |
Collapse
|
44
|
Lim HC, Multhaupt HAB, Couchman JR. Cell surface heparan sulfate proteoglycans control adhesion and invasion of breast carcinoma cells. Mol Cancer 2015; 14:15. [PMID: 25623282 PMCID: PMC4326193 DOI: 10.1186/s12943-014-0279-8] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 12/22/2014] [Indexed: 12/31/2022] Open
Abstract
Background Cell surface proteoglycans interact with numerous regulators of cell behavior through their glycosaminoglycan chains. The syndecan family of transmembrane proteoglycans are virtually ubiquitous cell surface receptors that are implicated in the progression of some tumors, including breast carcinoma. This may derive from their regulation of cell adhesion, but roles for specific syndecans are unresolved. Methods The MDA-MB231 human breast carcinoma cell line was exposed to exogenous glycosaminoglycans and changes in cell behavior monitored by western blotting, immunocytochemistry, invasion and collagen degradation assays. Selected receptors including PAR-1 and syndecans were depleted by siRNA treatments to assess cell morphology and behavior. Immunohistochemistry for syndecan-2 and its interacting partner, caveolin-2 was performed on human breast tumor tissue arrays. Two-tailed paired t-test and one-way ANOVA with Tukey’s post-hoc test were used in the analysis of data. Results MDA-MB231 cells were shown to be highly sensitive to exogenous heparan sulfate or heparin, promoting increased spreading, focal adhesion and adherens junction formation with concomitantly reduced invasion and matrix degradation. The molecular basis for this effect was revealed to have two components. First, thrombin inhibition contributed to enhanced cell adhesion and reduced invasion. Second, a specific loss of cell surface syndecan-2 was noted. The ensuing junction formation was dependent on syndecan-4, whose role in promoting actin cytoskeletal organization is known. Syndecan-2 interacts with, and may regulate, caveolin-2. Depletion of either molecule had the same adhesion-promoting influence, along with reduced invasion, confirming a role for this complex in maintaining the invasive phenotype of mammary carcinoma cells. Finally, both syndecan-2 and caveolin-2 were upregulated in tissue arrays from breast cancer patients compared to normal mammary tissue. Moreover their expression levels were correlated in triple negative breast cancers. Conclusion Cell surface proteoglycans, notably syndecan-2, may be important regulators of breast carcinoma progression through regulation of cytoskeleton, cell adhesion and invasion.
Collapse
Affiliation(s)
- Hooi Ching Lim
- Department of Biomedical Sciences and Biotech Research & Innovation Center, University of Copenhagen, Biocenter, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark. .,Current address: Stem Cell Center, Lund University, Lund, Sweden.
| | - Hinke A B Multhaupt
- Department of Biomedical Sciences and Biotech Research & Innovation Center, University of Copenhagen, Biocenter, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark.
| | - John R Couchman
- Department of Biomedical Sciences and Biotech Research & Innovation Center, University of Copenhagen, Biocenter, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark.
| |
Collapse
|
45
|
Yuan L, Liu X. Platelets are associated with xenograft tumor growth and the clinical malignancy of ovarian cancer through an angiogenesis-dependent mechanism. Mol Med Rep 2014; 11:2449-58. [PMID: 25502723 PMCID: PMC4337475 DOI: 10.3892/mmr.2014.3082] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 11/05/2014] [Indexed: 12/13/2022] Open
Abstract
Platelets are known to facilitate tumor metastasis and thrombocytosis has been associated with an adverse prognosis in ovarian cancer. However, the role of platelets in primary tumour growth remains to be elucidated. The present study demonstrated that the expression levels of various markers in platelets, endothelial adherence and angiogenesis, including, platelet glycoprotein IIb (CD41), platelet endothelial cell adhesion molecule 1 (CD31), vascular endothelial growth factor (VEGF), lysyl oxidase, focal adhesion kinase and breast cancer anti-estrogen resistance 1, were expressed at higher levels in patients with malignant carcinoma, compared with those with borderline cystadenoma and cystadenoma. In addition, the endothelial markers CD31 and VEGF were found to colocalize with the platelet marker CD41 in the malignant samples. Since mice transplanted with human ovarian cancer cells (SKOV3) demonstrated elevated tumor size and decreased survival rate when treated with thrombin or thrombopoietin (TPO), the platelets appeared to promote primary tumor growth. Depleting platelets using antibodies or by pretreating the cancer cells with hirudin significantly attenuated the transplanted tumor growth. The platelets contributed to late, but not early stages of tumor proliferation, as mice treated with platelet-depleting antibody 1 day prior to and 11 days after tumor transplantation had the same tumor volumes. By contrast, tumor size in the early TPO-injected group was increased significantly compared with the late TPO-injected group. These findings suggested that the interplay between platelets and angiogenesis may contribute to ovarian cancer growth. Therefore, platelets and their associated signaling and adhesive molecules may represent potential therapeutic targets for ovarian cancer.
Collapse
Affiliation(s)
- Lei Yuan
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, P.R. China
| | - Xishi Liu
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, P.R. China
| |
Collapse
|
46
|
BRAF(V600E) melanoma cells secrete factors that activate stromal fibroblasts and enhance tumourigenicity. Br J Cancer 2014; 111:1625-33. [PMID: 25117819 PMCID: PMC4200092 DOI: 10.1038/bjc.2014.452] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 07/02/2014] [Accepted: 07/15/2014] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Melanoma, the most lethal form of skin cancer, is responsible for over 80% of all skin cancer deaths and is highly metastatic, readily spreading to the lymph nodes or metastasising to other organs. The frequent genetic mutation found in metastatic melanoma, BRAF(V600E), results in constitutive activation of the mitogen-activated protein kinase pathway. METHODS In this study, we utilised genetically engineered melanoma cell lines and xenograft mouse models to investigate how BRAF(V600E) affected cytokine (IL-1β, IL-6, and IL-8) and matrix metalloproteinase-1 (MMP-1) expression in tumour cells and in human dermal fibroblasts. RESULTS We found that BRAF(V600E) melanoma cells expressed higher levels of these cytokines and of MMP-1 than wild-type counterparts. Further, conditioned medium from the BRAF(V600E) melanoma cells promoted the activation of stromal fibroblasts, inducing expression of SDF-1 and its receptor CXCR4. This increase was mitigated when the conditioned medium was taken from melanoma cells treated with the BRAF(V600E) specific inhibitor, vemurafenib. CONCLUSIONS Our findings highlight the role of BRAF(V600E) in activating the stroma and suggest a mechanistic link between BRAF(V600E) and MMP-1 in mediating melanoma progression and in activating adjacent fibroblasts in the tumour microenvironment.
Collapse
|
47
|
Abstract
SUMMARY Melanoma cells interact with and depend on seemingly normal cells in their tumour microenvironment to allow the acquisition of the hallmarks of solid cancer. In general, there are three types of interaction of melanoma cells with their microenvironment. First, there is bilateral communication between melanoma cells and the stroma, which includes fibroblasts, endothelial cells, immune cells, soluble molecules, and the extracellular matrix. Second, while under normal conditions keratinocytes control localisation and proliferative behaviour of melanocytes in the epidermis, once this balance is disturbed and a melanoma has developed, melanoma cells may take over the control of their epidermal tumour microenvironment. Finally, there are subcompartments within tumours with different microenvironmental milieu defined by their access to oxygen and nutrients. Therefore, different melanoma cells within a tumour face different microenvironments. Interactions between melanoma cells among each other and with the cell types in their microenvironment happen through endocrine and paracrine communication and/or through direct contact via cell-cell and cell-matrix adhesion, and gap junctional intercellular communication (GJIC). Connexins have been identified as key molecules for direct cell-cell communication and are also thought to be important for the release of signalling molecules from cells to the microenvironment. In this review we provide an update of the alterations in cell-cell communication in melanoma and the tumour microenvironment associated with melanoma development and progression.
Collapse
|
48
|
Bai J, Xie X, Lei Y, An G, He L, Lv X. Ocular albinism type 1-induced melanoma cell migration is mediated through the RAS/RAF/MEK/ERK signaling pathway. Mol Med Rep 2014; 10:491-5. [PMID: 24736838 DOI: 10.3892/mmr.2014.2154] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2013] [Accepted: 03/04/2014] [Indexed: 11/06/2022] Open
Abstract
Malignant melanoma has the highest risk of mortality among all types of skin cancer due to its highly metastatic potential. The ocular albinism type 1 (OA1) protein is a pigment cell‑specific glycoprotein, which shares significant structural and functional features with G protein‑coupled receptors. However, the role of OA1 in melanoma has yet to be elucidated. The present study aimed to investigate whether OA1 is involved in melanoma cell migration. OA1 was found to stimulate cell migration in a dose‑dependent manner in cultured human melanoma cells. Furthermore, knockdown of OA1 using small interfering RNA was observed to significantly inhibit melanoma cell migration. In addition, the mechanism underlying OA1‑induced melanoma cell migration was investigated. Stimulation of the RAS/RAF/mitogen activated protein kinase kinase (MEK)/extracellular signal‑regulated kinase (ERK) pathway using growth factors enhanced OA1 expression and melanoma cell migration, whereas inhibition of this pathway using U0126 was observed to markedly decrease OA1 expression and the number of migrated cells. These findings indicate that OA1 is involved in melanoma cell migration and that OA1‑induced melanoma cell migration is mediated through the RAS/RAF/MEK/ERK signaling pathway. Therefore, OA1 may serve as a novel therapeutic target for melanoma.
Collapse
Affiliation(s)
- Jun Bai
- Department of Medical Oncology, Shaanxi Provincial People's Hospital, The Third Affiliated Hospital of The School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710068, P.R. China
| | - Xin Xie
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, Shaanxi 710069, P.R. China
| | - Yun Lei
- Department of Medical Oncology, Shaanxi Provincial People's Hospital, The Third Affiliated Hospital of The School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710068, P.R. China
| | - Gaili An
- Department of Medical Oncology, Shaanxi Provincial People's Hospital, The Third Affiliated Hospital of The School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710068, P.R. China
| | - Li He
- Department of Medical Oncology, Shaanxi Provincial People's Hospital, The Third Affiliated Hospital of The School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710068, P.R. China
| | - Xiaopeng Lv
- Department of Translational Medicine, Institute of Integrated Medical Information, Xi'an, Shaanxi 710016, P.R. China
| |
Collapse
|
49
|
Uppal A, Wightman SC, Ganai S, Weichselbaum RR, An G. Investigation of the essential role of platelet-tumor cell interactions in metastasis progression using an agent-based model. Theor Biol Med Model 2014; 11:17. [PMID: 24725600 PMCID: PMC4022382 DOI: 10.1186/1742-4682-11-17] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 04/04/2014] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Metastatic tumors are a major source of morbidity and mortality for most cancers. Interaction of circulating tumor cells with endothelium, platelets and neutrophils play an important role in the early stages of metastasis formation. These complex dynamics have proven difficult to study in experimental models. Prior computational models of metastases have focused on tumor cell growth in a host environment, or prediction of metastasis formation from clinical data. We used agent-based modeling (ABM) to dynamically represent hypotheses of essential steps involved in circulating tumor cell adhesion and interaction with other circulating cells, examine their functional constraints, and predict effects of inhibiting specific mechanisms. METHODS We developed an ABM of Early Metastasis (ABMEM), a descriptive semi-mechanistic model that replicates experimentally observed behaviors of populations of circulating tumor cells, neutrophils, platelets and endothelial cells while incorporating representations of known surface receptor, autocrine and paracrine interactions. Essential downstream cellular processes were incorporated to simulate activation in response to stimuli, and calibrated with experimental data. The ABMEM was used to identify potential points of interdiction through examination of dynamic outcomes such as rate of tumor cell binding after inhibition of specific platelet or tumor receptors. RESULTS The ABMEM reproduced experimental data concerning neutrophil rolling over endothelial cells, inflammation-induced binding between neutrophils and platelets, and tumor cell interactions with these cells. Simulated platelet inhibition with anti-platelet drugs produced unstable aggregates with frequent detachment and re-binding. The ABMEM replicates findings from experimental models of circulating tumor cell adhesion, and suggests platelets play a critical role in this pre-requisite for metastasis formation. Similar effects were observed with inhibition of tumor integrin αV/β3. These findings suggest that anti-platelet or anti-integrin therapies may decrease metastasis by preventing stable circulating tumor cell adhesion. CONCLUSION Circulating tumor cell adhesion is a complex, dynamic process involving multiple cell-cell interactions. The ABMEM successfully captures the essential interactions necessary for this process, and allows for in-silico iterative characterization and invalidation of proposed hypotheses regarding this process in conjunction with in-vitro and in-vivo models. Our results suggest that anti-platelet therapies and anti-integrin therapies may play a promising role in inhibiting metastasis formation.
Collapse
Affiliation(s)
| | | | | | | | - Gary An
- Department of Surgery, The University of Chicago Medicine, 5841 S, Maryland Avenue, MC 5094 S-032, Chicago, IL 60637, USA.
| |
Collapse
|
50
|
Turpin B, Miller W, Rosenfeldt L, Kombrinck K, Flick MJ, Steinbrecher KA, Harmel-Laws E, Mullins ES, Shaw M, Witte DP, Revenko A, Monia B, Palumbo JS. Thrombin drives tumorigenesis in colitis-associated colon cancer. Cancer Res 2014; 74:3020-3030. [PMID: 24710407 DOI: 10.1158/0008-5472.can-13-3276] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The established association between inflammatory bowel disease and colorectal cancer underscores the importance of inflammation in colon cancer development. On the basis of evidence that hemostatic proteases are powerful modifiers of both inflammatory pathologies and tumor biology, gene-targeted mice carrying low levels of prothrombin were used to directly test the hypothesis that prothrombin contributes to tumor development in colitis-associated colon cancer (CAC). Remarkably, imposing a modest 50% reduction in circulating prothrombin in fII+/- mice, a level that carries no significant bleeding risk, dramatically decreased adenoma formation following an azoxymethane/dextran sodium sulfate challenge. Similar results were obtained with pharmacologic inhibition of prothrombin expression or inhibition of thrombin proteolytic activity. Detailed longitudinal analyses showed that the role of thrombin in tumor development in CAC was temporally associated with the antecedent inflammatory colitis. However, direct studies of the antecedent colitis showed that mice carrying half-normal prothrombin levels were comparable to control mice in mucosal damage, inflammatory cell infiltration, and associated local cytokine levels. These results suggest that thrombin supports early events coupled to inflammation-mediated tumorigenesis in CAC that are distinct from overall inflammation-induced tissue damage and inflammatory cell trafficking. That prothrombin is linked to early events in CAC was strongly inferred by the observation that prothrombin deficiency dramatically reduced the formation of very early, precancerous aberrant crypt foci. Given the importance of inflammation in the development of colon cancer, these studies suggest that therapeutic interventions at the level of hemostatic factors may be an effective means to prevent and/or impede colitis-associated colon cancer progression.
Collapse
Affiliation(s)
- Brian Turpin
- Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati OH, and ISIS Pharmaceuticals, Carlsbad CA
| | - Whitney Miller
- Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati OH, and ISIS Pharmaceuticals, Carlsbad CA
| | - Leah Rosenfeldt
- Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati OH, and ISIS Pharmaceuticals, Carlsbad CA
| | - Keith Kombrinck
- Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati OH, and ISIS Pharmaceuticals, Carlsbad CA
| | - Matthew J Flick
- Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati OH, and ISIS Pharmaceuticals, Carlsbad CA
| | - Kris A Steinbrecher
- Divisions of Gastroenterology, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati OH, and ISIS Pharmaceuticals, Carlsbad CA
| | - Eleana Harmel-Laws
- Divisions of Gastroenterology, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati OH, and ISIS Pharmaceuticals, Carlsbad CA
| | - Eric S Mullins
- Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati OH, and ISIS Pharmaceuticals, Carlsbad CA
| | - Maureen Shaw
- Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati OH, and ISIS Pharmaceuticals, Carlsbad CA
| | - David P Witte
- Pathology, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati OH, and ISIS Pharmaceuticals, Carlsbad CA
| | - Alexey Revenko
- Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati OH, and ISIS Pharmaceuticals, Carlsbad CA
| | - Brett Monia
- Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati OH, and ISIS Pharmaceuticals, Carlsbad CA
| | - Joseph S Palumbo
- Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati OH, and ISIS Pharmaceuticals, Carlsbad CA
| |
Collapse
|