1
|
Shin HJ, Moon JH, Woo S, Lee CW, Jung GY, Lim HG. Recent Advances in Alginate Lyase Engineering for Efficient Conversion of Alginate to Value-Added Products. Microb Biotechnol 2025; 18:e70150. [PMID: 40293191 PMCID: PMC12035875 DOI: 10.1111/1751-7915.70150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 04/03/2025] [Accepted: 04/09/2025] [Indexed: 04/30/2025] Open
Abstract
Alginate lyases depolymerize alginate and generate alginate oligosaccharides (AOS) and eventually 4-deoxy-L-erythro-5-hexoseulose uronate (DEH), a monosaccharide. Recently, alginate lyases have garnered significant attention due to the increasing demand for AOS, which exhibit bioactivities beneficial to human health, livestock productivity, and agricultural efficiency. Additionally, these enzymes play a crucial role in producing DEH, essential in alginate catabolism in bacteria. This review explains the industrial value of AOS and DEH, which contribute broadly to industries ranging from the food industry to biorefinery processes. This review also highlights recent advances in alginate lyase applications and engineering, including domain truncation, chimeric enzyme design, rational mutagenesis, and directed evolution. These approaches have enhanced enzyme performance for efficient AOS and DEH production. We also discuss current challenges and future directions toward industrial-scale bioconversion of alginate-rich biomass.
Collapse
Affiliation(s)
- Hyo Jeong Shin
- Department of Chemical EngineeringPohang University of Science and TechnologyPohangGyeongbukRepublic of Korea
| | - Jo Hyun Moon
- Department of Chemical EngineeringPohang University of Science and TechnologyPohangGyeongbukRepublic of Korea
| | - Sunghwa Woo
- Department of Chemical EngineeringPohang University of Science and TechnologyPohangGyeongbukRepublic of Korea
| | - Chung Won Lee
- School of Interdisciplinary Bioscience and BioengineeringPohang University of Science and TechnologyPohangGyeongbukRepublic of Korea
| | - Gyoo Yeol Jung
- Department of Chemical EngineeringPohang University of Science and TechnologyPohangGyeongbukRepublic of Korea
- School of Interdisciplinary Bioscience and BioengineeringPohang University of Science and TechnologyPohangGyeongbukRepublic of Korea
| | - Hyun Gyu Lim
- Department of Biological Sciences and BioengineeringInha UniversityIncheonKorea
| |
Collapse
|
2
|
Mugivhisa LL, Manganyi MC. Green Catalysis: The Role of Medicinal Plants as Food Waste Decomposition Enhancers/Accelerators. Life (Basel) 2025; 15:552. [PMID: 40283107 PMCID: PMC12028435 DOI: 10.3390/life15040552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 03/21/2025] [Accepted: 03/23/2025] [Indexed: 04/29/2025] Open
Abstract
The escalating global issue of food waste, valued at billions of USD annually and significantly impacting sustainability across social, economic, and environmental dimensions, necessitates innovative solutions to enhance waste management processes. Conventional decomposition techniques frequently encounter challenges related to inefficiencies and extended processing durations. This investigation examines the potential contributions of medicinal plants as green catalysts in the decomposition of food waste, utilizing their bioactive compounds to mitigate these obstacles. Medicinal plants facilitate the decomposition process through various mechanisms as follows: they secrete enzymes and metabolites that aid in the disintegration of organic matter, enhancing microbial activity and soil pH and structure. Furthermore, they foster nitrogen cycling and generate growth regulators that further optimize the efficiency of decomposition. The symbiotic associations between medicinal plants and microorganisms, including mycorrhizal fungi and rhizobacteria, are also instrumental in enhancing nutrient cycling and improving rates of decomposition. The utilization of medicinal plants in food waste management not only accelerates the decomposition process but also underpins sustainable practices by converting waste into valuable compost, thereby enriching soil health and lessening dependence on chemical fertilizers. This methodology is congruent with the 2030 Agenda for Sustainable Development and presents a plausible trajectory toward a circular economy and improved environmental sustainability.
Collapse
Affiliation(s)
| | - Madira C. Manganyi
- Department of Biological and Environmental Science, Sefako Makgatho Health Sciences University, P.O. Box 139, Ga-Rankuwa, Pretoria 0204, South Africa;
| |
Collapse
|
3
|
Meng Q, Abraham B, Hu J, Jiang Y. Cutting-edge advances in strain and process engineering for boosting cellulase production in Trichoderma reesei. BIORESOURCE TECHNOLOGY 2025; 419:132015. [PMID: 39719201 DOI: 10.1016/j.biortech.2024.132015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 12/16/2024] [Accepted: 12/21/2024] [Indexed: 12/26/2024]
Abstract
Low-cost production of cellulases is a key factor in advancing the commercialization of lignocellulosic biorefinery. Thus far, Trichoderma reesei is the leading cellulase producer for biorefinery applications. Over 70 years of research, considerable advancements have been made in comprehending the mechanisms underlying cellulases biosynthesis and secretion in T. reesei, as well as enzymatic cellulose hydrolysis. However, many unknowns still hinder the rational design of strains for robust cellulase production, with an optimized ratio of cellulolytic enzymes to reduce the required dosage for cellulose hydrolysis. Moreover, large-scale cellulase production relies on submerged fermentation, which suffers from several mass transfer limitations. As the mycelia grow, the fermentation broth rapidly develops non-Newtonian properties, necessitating energy-intensive mixing and aeration to facilitate oxygen transfer essential for strain growth. Herein, this paper critically reviews updated progress in these regards, highlights challenges, and outlines potential solutions.
Collapse
Affiliation(s)
- Qingshan Meng
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta, Canada
| | - Brett Abraham
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta, Canada
| | - Jinguang Hu
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta, Canada
| | - Yi Jiang
- Key Laboratory of Shandong Microbial Engineering, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250353, People's Republic of China; Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta, Canada.
| |
Collapse
|
4
|
Forsberg Z, Tuveng TR, Eijsink VGH. A modular enzyme with combined hemicellulose-removing and LPMO activity increases cellulose accessibility in softwood. FEBS J 2025; 292:75-93. [PMID: 39190632 PMCID: PMC11705215 DOI: 10.1111/febs.17250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/05/2024] [Accepted: 08/13/2024] [Indexed: 08/29/2024]
Abstract
Because of the association with other complex polysaccharides, extracting and utilizing cellulose from lignocellulosic materials requires the combined action of a broad range of carbohydrate-active enzymes, including multiple glycoside hydrolases (GHs) and lytic polysaccharide monooxygenases (LPMOs). The interplay between these enzymes and the way in which Nature orchestrates their co-existence and combined action are topics of great scientific and industrial interest. To gain more insight into these issues, we have studied the lignocellulose-degrading abilities of an enzyme from Caldibacillus cellulovorans (CcLPMO10-Man5), comprising an LPMO domain, a GH5 mannanase domain and two family 3 carbohydrate-binding modules (CBM3). Using a natural softwood substrate, we show that this enzyme promotes cellulase activity, i.e., saccharification of cellulose, both by removing mannan covering the cellulose and by oxidatively breaking up the cellulose structure. Synergy with CcLPMO10-Man5 was most pronounced for two tested cellobiohydrolases, whereas effects were smaller for a tested endoglucanase, which is in line with the notion that cellobiohydrolases and LPMOs attack the same crystalline regions of the cellulose, whereas endoglucanases attack semi-crystalline and amorphous regions. Importantly, the LPMO domain of CcLPMO10-Man5 is incapable of accessing the softwood cellulose in absence of the mannanase domain. Considering that LPMOs not bound to a substrate are sensitive to autocatalytic inactivation, this intramolecular synergy provides a perfect rationale for the evolution of modular enzymes such as CcLPMO10-Man5. The intramolecular coupling of the LPMO with a mannanase and two CBMs ensures that the LPMO is directed to areas where mannans are removed and cellulose thus becomes available.
Collapse
Affiliation(s)
- Zarah Forsberg
- Faculty of Chemistry, Biotechnology and Food ScienceNorwegian University of Life Sciences (NMBU)ÅsNorway
| | - Tina R. Tuveng
- Faculty of Chemistry, Biotechnology and Food ScienceNorwegian University of Life Sciences (NMBU)ÅsNorway
| | - Vincent G. H. Eijsink
- Faculty of Chemistry, Biotechnology and Food ScienceNorwegian University of Life Sciences (NMBU)ÅsNorway
| |
Collapse
|
5
|
Støpamo FG, Sulaeva I, Budischowsky D, Rahikainen J, Marjamaa K, Kruus K, Potthast A, Eijsink VGH, Várnai A. The impact of the carbohydrate-binding module on how a lytic polysaccharide monooxygenase modifies cellulose fibers. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:118. [PMID: 39182111 PMCID: PMC11344300 DOI: 10.1186/s13068-024-02564-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 08/09/2024] [Indexed: 08/27/2024]
Abstract
BACKGROUND In recent years, lytic polysaccharide monooxygenases (LPMOs) that oxidatively cleave cellulose have gained increasing attention in cellulose fiber modification. LPMOs are relatively small copper-dependent redox enzymes that occur as single domain proteins but may also contain an appended carbohydrate-binding module (CBM). Previous studies have indicated that the CBM "immobilizes" the LPMO on the substrate and thus leads to more localized oxidation of the fiber surface. Still, our understanding of how LPMOs and their CBMs modify cellulose fibers remains limited. RESULTS Here, we studied the impact of the CBM on the fiber-modifying properties of NcAA9C, a two-domain family AA9 LPMO from Neurospora crassa, using both biochemical methods as well as newly developed multistep fiber dissolution methods that allow mapping LPMO action across the fiber, from the fiber surface to the fiber core. The presence of the CBM in NcAA9C improved binding towards amorphous (PASC), natural (Cell I), and alkali-treated (Cell II) cellulose, and the CBM was essential for significant binding of the non-reduced LPMO to Cell I and Cell II. Substrate binding of the catalytic domain was promoted by reduction, allowing the truncated CBM-free NcAA9C to degrade Cell I and Cell II, albeit less efficiently and with more autocatalytic enzyme degradation compared to the full-length enzyme. The sequential dissolution analyses showed that cuts by the CBM-free enzyme are more evenly spread through the fiber compared to the CBM-containing full-length enzyme and showed that the truncated enzyme can penetrate deeper into the fiber, thus giving relatively more oxidation and cleavage in the fiber core. CONCLUSIONS These results demonstrate the capability of LPMOs to modify cellulose fibers from surface to core and reveal how variation in enzyme modularity can be used to generate varying cellulose-based materials. While the implications of these findings for LPMO-based cellulose fiber engineering remain to be explored, it is clear that the presence of a CBM is an important determinant of the three-dimensional distribution of oxidation sites in the fiber.
Collapse
Affiliation(s)
| | - Irina Sulaeva
- University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| | - David Budischowsky
- University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| | | | - Kaisa Marjamaa
- VTT Technical Research Centre of Finland, Espoo, Finland
| | - Kristiina Kruus
- VTT Technical Research Centre of Finland, Espoo, Finland
- Aalto University, Espoo, Finland
| | - Antje Potthast
- University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| | | | - Anikó Várnai
- Norwegian University of Life Sciences (NMBU), Ås, Norway.
| |
Collapse
|
6
|
Sulaeva I, Sto̷pamo FG, Melikhov I, Budischowsky D, Rahikainen JL, Borisova A, Marjamaa K, Kruus K, Eijsink VGH, Várnai A, Potthast A. Beyond the Surface: A Methodological Exploration of Enzyme Impact along the Cellulose Fiber Cross-Section. Biomacromolecules 2024; 25:3076-3086. [PMID: 38634234 PMCID: PMC11094719 DOI: 10.1021/acs.biomac.4c00152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/26/2024] [Accepted: 03/26/2024] [Indexed: 04/19/2024]
Abstract
Despite the wide range of analytical tools available for the characterization of cellulose, the in-depth characterization of inhomogeneous, layered cellulose fiber structures remains a challenge. When treating fibers or spinning man-made fibers, the question always arises as to whether the changes in the fiber structure affect only the surface or the entire fiber. Here, we developed an analysis tool based on the sequential limited dissolution of cellulose fiber layers. The method can reveal potential differences in fiber properties along the cross-sectional profile of natural or man-made cellulose fibers. In this analytical approach, carbonyl groups are labeled with a carbonyl selective fluorescence label (CCOA), after which thin fiber layers are sequentially dissolved with the solvent system DMAc/LiCl (9% w/v) and analyzed with size exclusion chromatography coupled with light scattering and fluorescence detection. The analysis of these fractions allowed for the recording of the changes in the chemical structure across the layers, resulting in a detailed cross-sectional profile of the different functionalities and molecular weight distributions. The method was optimized and tested in practice with LPMO (lytic polysaccharide monooxygenase)-treated cotton fibers, where it revealed the depth of fiber modification by the enzyme.
Collapse
Affiliation(s)
- Irina Sulaeva
- Core
Facility Analysis of Lignocellulosics (ALICE), University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad Lorenz-Strasse 24, A-3430 Tulln an der Donau, Austria
| | - Fredrik Gjerstad Sto̷pamo
- Faculty
of Chemistry, Biotechnology and Food Science, NMBU − Norwegian University of Life Sciences, 1432 Ås, Norway
| | - Ivan Melikhov
- Institute
of Chemistry of Renewable Resources, Department of Chemistry, University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad Lorenz-Strasse
24, A-3430 Tulln
an der Donau, Austria
| | - David Budischowsky
- Institute
of Chemistry of Renewable Resources, Department of Chemistry, University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad Lorenz-Strasse
24, A-3430 Tulln
an der Donau, Austria
| | - Jenni L. Rahikainen
- Solutions
for Natural Resources and Environment, VTT
Technical Research Centre of Finland Ltd., Tietotie 2, FI-02044 Espoo, Finland
| | - Anna Borisova
- Solutions
for Natural Resources and Environment, VTT
Technical Research Centre of Finland Ltd., Tietotie 2, FI-02044 Espoo, Finland
| | - Kaisa Marjamaa
- Solutions
for Natural Resources and Environment, VTT
Technical Research Centre of Finland Ltd., Tietotie 2, FI-02044 Espoo, Finland
| | - Kristiina Kruus
- Solutions
for Natural Resources and Environment, VTT
Technical Research Centre of Finland Ltd., Tietotie 2, FI-02044 Espoo, Finland
- School
of Chemical Engineering, Aalto University, P.O. Box 16100, 00076 Espoo, Finland
| | - Vincent G. H. Eijsink
- Faculty
of Chemistry, Biotechnology and Food Science, NMBU − Norwegian University of Life Sciences, 1432 Ås, Norway
| | - Anikó Várnai
- Faculty
of Chemistry, Biotechnology and Food Science, NMBU − Norwegian University of Life Sciences, 1432 Ås, Norway
| | - Antje Potthast
- Institute
of Chemistry of Renewable Resources, Department of Chemistry, University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad Lorenz-Strasse
24, A-3430 Tulln
an der Donau, Austria
| |
Collapse
|
7
|
Akram F, Fatima T, Ibrar R, Shabbir I, Shah FI, Haq IU. Trends in the development and current perspective of thermostable bacterial hemicellulases with their industrial endeavors: A review. Int J Biol Macromol 2024; 265:130993. [PMID: 38508567 DOI: 10.1016/j.ijbiomac.2024.130993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 03/12/2024] [Accepted: 03/17/2024] [Indexed: 03/22/2024]
Abstract
Hemicellulases are enzymes that hydrolyze hemicelluloses, common polysaccharides in nature. Thermophilic hemicellulases, derived from microbial strains, are extensively studied as natural biofuel sources due to the complex structure of hemicelluloses. Recent research aims to elucidate the catalytic principles, mechanisms and specificity of hemicellulases through investigations into their high-temperature stability and structural features, which have applications in biotechnology and industry. This review article targets to serve as a comprehensive resource, highlighting the significant progress in the field and emphasizing the vital role of thermophilic hemicellulases in eco-friendly catalysis. The primary goal is to improve the reliability of hemicellulase enzymes obtained from thermophilic bacterial strains. Additionally, with their ability to break down lignocellulosic materials, hemicellulases hold immense potential for biofuel production. Despite their potential, the commercial viability is hindered by their high enzyme costs, necessitating the development of efficient bioprocesses involving waste pretreatment with microbial consortia to overcome this challenge.
Collapse
Affiliation(s)
- Fatima Akram
- Institute of Industrial Biotechnology, Government College University, Lahore 54000, Pakistan.
| | - Taseer Fatima
- Institute of Industrial Biotechnology, Government College University, Lahore 54000, Pakistan
| | - Ramesha Ibrar
- Institute of Industrial Biotechnology, Government College University, Lahore 54000, Pakistan
| | - Ifrah Shabbir
- Institute of Industrial Biotechnology, Government College University, Lahore 54000, Pakistan
| | | | - Ikram Ul Haq
- Institute of Industrial Biotechnology, Government College University, Lahore 54000, Pakistan; Pakistan Academy of Sciences, Islamabad, Pakistan
| |
Collapse
|
8
|
Gao W, Li T, Zhou H, Ju J, Yin H. Carbohydrate-binding modules enhance H 2O 2 tolerance by promoting lytic polysaccharide monooxygenase active site H 2O 2 consumption. J Biol Chem 2024; 300:105573. [PMID: 38122901 PMCID: PMC10825053 DOI: 10.1016/j.jbc.2023.105573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/26/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023] Open
Abstract
Lytic polysaccharide monooxygenases (LPMOs) oxidatively depolymerize recalcitrant polysaccharides, which is important for biomass conversion. The catalytic domains of many LPMOs are linked to carbohydrate-binding modules (CBMs) through flexible linkers, but the function of these CBMs in LPMO catalysis is not well understood. In this study, we utilized MtLPMO9L and MtLPMO9G derived from Myceliophthora thermophila to investigate the impact of CBMs on LPMO activity, with particular emphasis on their influence on H2O2 tolerance. Using truncated forms of MtLPMO9G generated by removing the CBM, we found reduced substrate binding affinity and enzymatic activity. Conversely, when the CBM was fused to the C terminus of the single-domain MtLPMO9L to create MtLPMO9L-CBM, we observed a substantial improvement in substrate binding affinity, enzymatic activity, and notably, H2O2 tolerance. Furthermore, molecular dynamics simulations confirmed that the CBM fusion enhances the proximity of the active site to the substrate, thereby promoting multilocal cleavage and impacting the exposure of the copper active site to H2O2. Importantly, the fusion of CBM resulted in more efficient consumption of H2O2 by LPMO, leading to improved enzymatic activity and reduced auto-oxidative damage of the copper active center.
Collapse
Affiliation(s)
- Wa Gao
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Dalian Technology Innovation Center for Green Agriculture, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China; University of Chinese Academy of Sciences, Beijing, China
| | - Tang Li
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Dalian Technology Innovation Center for Green Agriculture, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Haichuan Zhou
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Dalian Technology Innovation Center for Green Agriculture, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Jiu Ju
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Dalian Technology Innovation Center for Green Agriculture, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Heng Yin
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Dalian Technology Innovation Center for Green Agriculture, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
9
|
Mengkrog Holen M, Tuveng TR, Kent MP, Vaaje‐Kolstad G. The gastric mucosa of Atlantic salmon (Salmo salar) is abundant in highly active chitinases. FEBS Open Bio 2024; 14:23-36. [PMID: 37581908 PMCID: PMC10761930 DOI: 10.1002/2211-5463.13694] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 07/19/2023] [Accepted: 08/14/2023] [Indexed: 08/16/2023] Open
Abstract
Atlantic salmon (Salmo salar) possesses a genome containing 10 genes encoding chitinases, yet their functional roles remain poorly understood. In other fish species, chitinases have been primarily linked to digestion, but also to other functions, as chitinase-encoding genes are transcribed in a variety of non-digestive organs. In this study, we investigated the properties of two chitinases belonging to the family 18 glycoside hydrolase group, namely Chia.3 and Chia.4, both isolated from the stomach mucosa. Chia.3 and Chia.4, exhibiting 95% sequence identity, proved inseparable using conventional chromatographic methods, necessitating their purification as a chitinase pair. Biochemical analysis revealed sustained chitinolytic activity against β-chitin for up to 24 h, spanning a pH range of 2 to 6. Moreover, subsequent in vitro investigations established that this chitinase pair efficiently degrades diverse chitin-containing substrates into chitobiose, highlighting the potential of Atlantic salmon to utilize novel chitin-containing feed sources. Analysis of the gastric matrix proteome demonstrates that the chitinases are secreted and rank among the most abundant proteins in the gastric matrix. This finding correlates well with the previously observed high transcription of the corresponding chitinase genes in Atlantic salmon stomach tissue. By shedding light on the secreted chitinases in the Atlantic salmon's stomach mucosa and elucidating their functional characteristics, this study enhances our understanding of chitinase biology in this species. Moreover, the observed capacity to effectively degrade chitin-containing materials implies the potential utilization of alternative feed sources rich in chitin, offering promising prospects for sustainable aquaculture practices.
Collapse
Affiliation(s)
- Matilde Mengkrog Holen
- Center for Integrative Genetics, Department of Animal and Aquacultural Sciences, Faculty of BiosciencesNorwegian University of Life SciencesÅsNorway
| | - Tina Rise Tuveng
- Faculty of Chemistry, Biotechnology and Food ScienceNorwegian University of Life SciencesÅsNorway
| | - Matthew Peter Kent
- Center for Integrative Genetics, Department of Animal and Aquacultural Sciences, Faculty of BiosciencesNorwegian University of Life SciencesÅsNorway
| | - Gustav Vaaje‐Kolstad
- Faculty of Chemistry, Biotechnology and Food ScienceNorwegian University of Life SciencesÅsNorway
| |
Collapse
|
10
|
Liu G, Zhang K, Gong H, Yang K, Wang X, Zhou G, Cui W, Chen Y, Yang Y. Whole genome sequencing and the lignocellulose degradation potential of Bacillus subtilis RLI2019 isolated from the intestine of termites. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:130. [PMID: 37598218 PMCID: PMC10439612 DOI: 10.1186/s13068-023-02375-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 07/25/2023] [Indexed: 08/21/2023]
Abstract
BACKGROUND Lignocellulosic biomass is the most abundant and renewable terrestrial raw material for conversion into bioproducts and biofuels. However, the low utilization efficiency of lignocellulose causes environmental pollution and resource waste, which limits the large-scale application of bioconversion. The degradation of lignocellulose by microorganisms is an efficient and cost-effective way to overcome the challenge of utilizing plant biomass resources. This work aimed to screen valuable cellulolytic bacteria, explore its molecular mechanism from genomic insights, and investigate the ability of the strain to biodegrade wheat straw. RESULTS Bacillus subtilis (B. subtilis) RLI2019 was isolated from the intestine of Reticulitermes labralis. The strain showed comprehensive enzyme activities related to lignocellulose degradation, which were estimated as 4.06, 1.97, 4.12, 0.74, and 17.61 U/mL for endoglucanase, β-glucosidase, PASC enzyme, filter paper enzyme, and xylanase, respectively. Whole genome sequencing was performed to better understand the genetic mechanism of cellulose degradation. The genome size of B. subtilis RLI2019 was 4,195,306 bp with an average GC content of 43.54%, and the sequence characteristics illustrated an extremely high probability (99.41%) as a probiotic. The genome contained 4,381 protein coding genes with an average GC content of 44.20%, of which 145 genes were classified into six carbohydrate-active enzyme (CAZyme) families and 57 subfamilies. Eight cellulose metabolism enzyme-related genes and nine hemicellulose metabolism enzyme-related genes were annotated by the CAZyme database. The starch and sucrose metabolic pathway (ko00500) was the most enriched with 46 genes in carbohydrate metabolism. B. subtilis RLI2019 was co-cultured with wheat straw for 7 days of fermentation, the contents of neutral detergent fiber, acid detergent fiber, hemicellulose, and lignin were significantly reduced by 5.8%, 10.3%, 1.0%, and 4.7%, respectively. Moreover, the wheat straw substrate exhibited 664.9 μg/mL of reducing sugars, 1.22 U/mL and 6.68 U/mL of endoglucanase and xylanase activities, respectively. Furthermore, the fiber structures were effectively disrupted, and the cellulose crystallinity was significantly reduced from 40.2% to 36.9%. CONCLUSIONS The complex diversity of CAZyme composition mainly contributed to the strong cellulolytic attribute of B. subtilis RLI2019. These findings suggest that B. subtilis RLI2019 has favorable potential for biodegradation applications, thus it can be regarded as a promising candidate bacterium for lignocellulosic biomass degradation.
Collapse
Affiliation(s)
- Gongwei Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Ke Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Hanxuan Gong
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Kaiyao Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xiaoyu Wang
- Qinling Giant Panda Breeding Research Center, Shaanxi Academy of Forestry Sciences, Zhouzhi, 710402, Shaanxi, China
| | - Guangchen Zhou
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Wenyuan Cui
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yulin Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Yuxin Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
11
|
Hu S, Zhu R, Yu XY, Wang BT, Ruan HH, Jin FJ. A High-Quality Genome Sequence of the Penicillium oxalicum 5-18 Strain Isolated from a Poplar Plantation Provides Insights into Its Lignocellulose Degradation. Int J Mol Sci 2023; 24:12745. [PMID: 37628925 PMCID: PMC10454814 DOI: 10.3390/ijms241612745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/06/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
Studies on the degradation of plant cell wall polysaccharides by fungal extracellular enzymes have attracted recent attention from researchers. Xylan, abundant in hemicellulose, that play great role in connection between cellulose and lignin, has seen interest in its hydrolytic enzymatic complex. In this study, dozens of fungus species spanning genera were isolated from rotting leaves based on their ability to decompose xylan. Among these isolates, a strain with strong xylanase-producing ability was selected for further investigation by genome sequencing. Based on phylogenetic analysis of ITS (rDNA internal transcribed spacer) and LSU (Large subunit 28S rDNA) regions, the isolate was identified as Penicillium oxalicum. Morphological analysis also supported this finding. Xylanase activity of this isolated P. oxalicum 5-18 strain was recorded to be 30.83 U/mL using the 3,5-dinitro-salicylic acid (DNS) method. Further genome sequencing reveals that sequenced reads were assembled into a 30.78 Mb genome containing 10,074 predicted protein-encoding genes. In total, 439 carbohydrate-active enzymes (CAZymes) encoding genes were predicted, many of which were associated with cellulose, hemicellulose, pectin, chitin and starch degradation. Further analysis and comparison showed that the isolate P. oxalicum 5-18 contains a diverse set of CAZyme genes involved in degradation of plant cell wall components, particularly cellulose and hemicellulose. These findings provide us with valuable genetic information about the plant biomass-degrading enzyme system of P. oxalicum, facilitating a further exploration of the repertoire of industrially relevant lignocellulolytic enzymes of P. oxalicum 5-18.
Collapse
Affiliation(s)
| | | | | | | | | | - Feng-Jie Jin
- College of Biology and the Environment, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (S.H.); (R.Z.); (X.-Y.Y.); (B.-T.W.); (H.-H.R.)
| |
Collapse
|
12
|
Berto GL, Mattos BD, Velasco J, Zhao B, Segato F, Rojas OJ, Arantes V. Endoglucanase effects on energy consumption in mechanical fibrillation of cellulose fibers into nanocelluloses. Int J Biol Macromol 2023:125002. [PMID: 37217053 DOI: 10.1016/j.ijbiomac.2023.125002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/16/2023] [Accepted: 05/19/2023] [Indexed: 05/24/2023]
Abstract
Enzymatic processing is seen as a promising means of moving toward environment-friendly industrial processes such as the use of endoglucanase (EG) enzyme in the production of nanocellulose. However, the properties that make EG pretreatment effective in the isolation of fibrillated cellulose remain a subject of debate. To address this issue, we considered EGs from four glycosyl hydrolase (GH) families (5, 6, 7 and 12) and investigated the roles of the tri-dimensional structures and catalytic features depending on the presence of a carbohydrate binding module (CBM). By using eucalyptus Kraft wood fibers, we produced cellulose nanofibrils (CNF) using mild enzymatic pretreatment followed by disc ultra-refining. Compared with the control (in the absence of pretreatment), the GH5 and GH12 enzymes (CBM free) reduced the fibrillation energy by approximately 15 %. The most efficient energy reduction, 25 and 32 %, was achieved with GH5 and GH6 linked to CBM, respectively. They improved the rheological properties of the CNF suspensions (noting that neither of these EGs released soluble products). Interestingly, while the hydrolytic activity was significant (released soluble products), GH7-CBM did not lead to a reduction in fibrillation energy. Hence, the large molecular weight and wide cleft of GH7-CBM led to soluble sugar release but contributed little to fibrillation. Our findings suggest that the improved fibrillation observed upon EG pretreatment is not a consequence of hydrolytic activity or release of products but mostly related to efficient adsorption on the substrate and modification of the surface viscoelastic (amorphogenesis).
Collapse
Affiliation(s)
- Gabriela L Berto
- Department of Biotechnology, Lorena School of Engineering, University of São Paulo, Lorena, SP 12602-810, Brazil; Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Espoo, Finland.
| | - Bruno D Mattos
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Espoo, Finland
| | - Josman Velasco
- Department of Biotechnology, Lorena School of Engineering, University of São Paulo, Lorena, SP 12602-810, Brazil
| | - Bin Zhao
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Espoo, Finland
| | - Fernando Segato
- Department of Biotechnology, Lorena School of Engineering, University of São Paulo, Lorena, SP 12602-810, Brazil
| | - Orlando J Rojas
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Espoo, Finland; Bioproducts Institute, Department of Chemical and Biological Engineering, Department of Chemistry and Department of Wood Science, University of British Columbia, 2360 East Mall, Vancouver, BC, Canada
| | - Valdeir Arantes
- Department of Biotechnology, Lorena School of Engineering, University of São Paulo, Lorena, SP 12602-810, Brazil.
| |
Collapse
|
13
|
Østby H, Várnai A. Hemicellulolytic enzymes in lignocellulose processing. Essays Biochem 2023; 67:533-550. [PMID: 37068264 PMCID: PMC10160854 DOI: 10.1042/ebc20220154] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/25/2023] [Accepted: 01/30/2023] [Indexed: 04/19/2023]
Abstract
Lignocellulosic biomass is the most abundant source of carbon-based material on a global basis, serving as a raw material for cellulosic fibers, hemicellulosic polymers, platform sugars, and lignin resins or monomers. In nature, the various components of lignocellulose (primarily cellulose, hemicellulose, and lignin) are decomposed by saprophytic fungi and bacteria utilizing specialized enzymes. Enzymes are specific catalysts and can, in many cases, be produced on-site at lignocellulose biorefineries. In addition to reducing the use of often less environmentally friendly chemical processes, the application of such enzymes in lignocellulose processing to obtain a range of specialty products can maximize the use of the feedstock and valorize many of the traditionally underutilized components of lignocellulose, while increasing the economic viability of the biorefinery. While cellulose has a rich history of use in the pulp and paper industries, the hemicellulosic fraction of lignocellulose remains relatively underutilized in modern biorefineries, among other reasons due to the heterogeneous chemical structure of hemicellulose polysaccharides, the composition of which varies significantly according to the feedstock and the choice of pretreatment method and extraction solvent. This paper reviews the potential of hemicellulose in lignocellulose processing with focus on what can be achieved using enzymatic means. In particular, we discuss the various enzyme activities required for complete depolymerization of the primary hemicellulose types found in plant cell walls and for the upgrading of hemicellulosic polymers, oligosaccharides, and pentose sugars derived from hemicellulose depolymerization into a broad spectrum of value-added products.
Collapse
Affiliation(s)
- Heidi Østby
- Norwegian University of Life Sciences (NMBU), Faculty of Chemistry, Biotechnology and Food Science, P.O. Box 5003, N-1432 Aas, Norway
| | - Anikó Várnai
- Norwegian University of Life Sciences (NMBU), Faculty of Chemistry, Biotechnology and Food Science, P.O. Box 5003, N-1432 Aas, Norway
| |
Collapse
|
14
|
Junghare M, Manavalan T, Fredriksen L, Leiros I, Altermark B, Eijsink VGH, Vaaje-Kolstad G. Biochemical and structural characterisation of a family GH5 cellulase from endosymbiont of shipworm P. megotara. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:61. [PMID: 37016457 PMCID: PMC10071621 DOI: 10.1186/s13068-023-02307-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 03/24/2023] [Indexed: 04/06/2023]
Abstract
BACKGROUND Cellulases play a key role in the enzymatic conversion of plant cell-wall polysaccharides into simple and economically relevant sugars. Thus, the discovery of novel cellulases from exotic biological niches is of great interest as they may present properties that are valuable in the biorefining of lignocellulosic biomass. RESULTS We have characterized a glycoside hydrolase 5 (GH5) domain of a bi-catalytic GH5-GH6 multi-domain enzyme from the unusual gill endosymbiont Teredinibacter waterburyi of the wood-digesting shipworm Psiloteredo megotara. The catalytic GH5 domain, was cloned and recombinantly produced with or without a C-terminal family 10 carbohydrate-binding module (CBM). Both variants showed hydrolytic endo-activity on soluble substrates such as β-glucan, carboxymethylcellulose and konjac glucomannan, respectively. However, low activity was observed towards the crystalline form of cellulose. Interestingly, when co-incubated with a cellulose-active LPMO, a clear synergy was observed that boosted the overall hydrolysis of crystalline cellulose. The crystal structure of the GH5 catalytic domain was solved to 1.0 Å resolution and revealed a substrate binding cleft extension containing a putative + 3 subsite, which is uncommon in this enzyme family. The enzyme was active in a wide range of pH, temperatures and showed high tolerance for NaCl. CONCLUSIONS This study provides significant knowledge in the discovery of new enzymes from shipworm gill endosymbionts and sheds new light on biochemical and structural characterization of cellulolytic cellulase. Study demonstrated a boost in the hydrolytic activity of cellulase on crystalline cellulose when co-incubated with cellulose-active LPMO. These findings will be relevant for the development of future enzyme cocktails that may be useful for the biotechnological conversion of lignocellulose.
Collapse
Affiliation(s)
- Madan Junghare
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, 1432, Ås, Norway.
| | - Tamilvendan Manavalan
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, 1432, Ås, Norway
| | - Lasse Fredriksen
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, 1432, Ås, Norway
| | - Ingar Leiros
- The Norwegian Structural Biology Centre, Department of Chemistry, The Arctic University of Norway, 9037, Tromsø, Norway
| | - Bjørn Altermark
- The Norwegian Structural Biology Centre, Department of Chemistry, The Arctic University of Norway, 9037, Tromsø, Norway
| | - Vincent G H Eijsink
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, 1432, Ås, Norway
| | - Gustav Vaaje-Kolstad
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, 1432, Ås, Norway.
| |
Collapse
|
15
|
Shi Q, Abdel-Hamid AM, Sun Z, Cheng Y, Tu T, Cann I, Yao B, Zhu W. Carbohydrate-binding modules facilitate the enzymatic hydrolysis of lignocellulosic biomass: Releasing reducing sugars and dissociative lignin available for producing biofuels and chemicals. Biotechnol Adv 2023; 65:108126. [PMID: 36921877 DOI: 10.1016/j.biotechadv.2023.108126] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/05/2023] [Accepted: 03/08/2023] [Indexed: 03/16/2023]
Abstract
The microbial decomposition and utilization of lignocellulosic biomass present in the plant tissues are driven by a series of carbohydrate active enzymes (CAZymes) acting in concert. As the non-catalytic domains widely found in the modular CAZymes, carbohydrate-binding modules (CBMs) are intimately associated with catalytic domains (CDs) that effect the diverse hydrolytic reactions. The CBMs function as auxiliary components for the recognition, adhesion, and depolymerization of the complex substrate mediated by the associated CDs. Therefore, CBMs are deemed as significant biotools available for enzyme engineering, especially to facilitate the enzymatic hydrolysis of dense and insoluble plant tissues to acquire more fermentable sugars. This review aims at presenting the taxonomies and biological properties of the CBMs currently curated in the CAZy database. The molecular mechanisms that CBMs use in assisting the enzymatic hydrolysis of plant polysaccharides and the regulatory factors of CBM-substrate interactions are outlined in detail. In addition, guidelines for the rational designs of CBM-fused CAZymes are proposed. Furthermore, the potential to harness CBMs for industrial applications, especially in enzymatic pretreatment of the recalcitrant lignocellulose, is evaluated. It is envisaged that the ideas outlined herein will aid in the engineering and production of novel CBM-fused enzymes to facilitate efficient degradation of lignocellulosic biomass to easily fermentable sugars for production of value-added products, including biofuels.
Collapse
Affiliation(s)
- Qicheng Shi
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China
| | - Ahmed M Abdel-Hamid
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, IL 61801, USA
| | - Zhanying Sun
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China
| | - Yanfen Cheng
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China.
| | - Tao Tu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Isaac Cann
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, IL 61801, USA; Department of Animal Science, University of Illinois at Urbana-Champaign, IL 61801, USA; Department of Microbiology, University of Illinois at Urbana-Champaign, IL 61801, USA; Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, IL 61801, USA; Center for East Asian and Pacific Studies, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Bin Yao
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Weiyun Zhu
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
16
|
Chaudhari YB, Várnai A, Sørlie M, Horn SJ, Eijsink VGH. Engineering cellulases for conversion of lignocellulosic biomass. Protein Eng Des Sel 2023; 36:gzad002. [PMID: 36892404 PMCID: PMC10394125 DOI: 10.1093/protein/gzad002] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 02/13/2023] [Accepted: 02/24/2023] [Indexed: 03/10/2023] Open
Abstract
Lignocellulosic biomass is a renewable source of energy, chemicals and materials. Many applications of this resource require the depolymerization of one or more of its polymeric constituents. Efficient enzymatic depolymerization of cellulose to glucose by cellulases and accessory enzymes such as lytic polysaccharide monooxygenases is a prerequisite for economically viable exploitation of this biomass. Microbes produce a remarkably diverse range of cellulases, which consist of glycoside hydrolase (GH) catalytic domains and, although not in all cases, substrate-binding carbohydrate-binding modules (CBMs). As enzymes are a considerable cost factor, there is great interest in finding or engineering improved and robust cellulases, with higher activity and stability, easy expression, and minimal product inhibition. This review addresses relevant engineering targets for cellulases, discusses a few notable cellulase engineering studies of the past decades and provides an overview of recent work in the field.
Collapse
Affiliation(s)
- Yogesh B Chaudhari
- Faculty of Chemistry, Biotechnology, and Food Science, NMBU-Norwegian University of Life Sciences, P.O. Box 5003, 1432 Ås, Norway
| | - Anikó Várnai
- Faculty of Chemistry, Biotechnology, and Food Science, NMBU-Norwegian University of Life Sciences, P.O. Box 5003, 1432 Ås, Norway
| | - Morten Sørlie
- Faculty of Chemistry, Biotechnology, and Food Science, NMBU-Norwegian University of Life Sciences, P.O. Box 5003, 1432 Ås, Norway
| | - Svein J Horn
- Faculty of Chemistry, Biotechnology, and Food Science, NMBU-Norwegian University of Life Sciences, P.O. Box 5003, 1432 Ås, Norway
| | - Vincent G H Eijsink
- Faculty of Chemistry, Biotechnology, and Food Science, NMBU-Norwegian University of Life Sciences, P.O. Box 5003, 1432 Ås, Norway
| |
Collapse
|
17
|
Penneru SK, Saharay M, Krishnan M. CelS-Catalyzed Processive Cellulose Degradation and Cellobiose Extraction for the Production of Bioethanol. J Chem Inf Model 2022; 62:6628-6638. [PMID: 35649216 DOI: 10.1021/acs.jcim.2c00239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Bacterial cellulase enzymes are potent candidates for the efficient production of bioethanol, a promising alternative to fossil fuels, from cellulosic biomass. These enzymes catalyze the breakdown of cellulose in plant biomass into simple sugars and then to bioethanol. In the absence of the enzyme, the cellulosic biomass is recalcitrant to decomposition due to fermentation-resistant lignin and pectin coatings on the cellulose surface, which make them inaccessible for hydrolysis. Cellobiohydrolase CelS is a microbial enzyme that binds to cellulose fiber and efficiently cleaves it into a simple sugar (cellobiose) by a repeated processive chopping mechanism. The two contributing factors to the catalytic reaction rate and the yield of cellobiose are the efficient product expulsion from the product binding site of CelS and the movement of the substrate or cellulose chain into the active site. Despite progress in understanding product expulsion in other cellulases, much remains to be understood about the molecular mechanism of processive action of these enzymes. Here, nonequilibrium molecular dynamics simulations using suitable reaction coordinates are carried out to investigate the energetics and mechanism of the substrate dynamics and product expulsion in CelS. The calculated free energy barrier for the product expulsion is three times lower than that for the processive action indicating that product removal is relatively easier and faster than the sliding of the substrate to the catalytic active site. The water traffic near the active site in response to the product expulsion and the processive action is also explored.
Collapse
Affiliation(s)
- Sree Kavya Penneru
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, 1311 Cumberland Avenue, Knoxville, Tennessee 37996-1939, United States
| | - Moumita Saharay
- Department of Systems and Computational Biology, School of Life Sciences, University of Hyderabad, Prof. C. R. Rao Road, Gachibowli, Hyderabad 500046, Telangana, India
| | - Marimuthu Krishnan
- Center for Computational Natural Sciences and Bioinformatics (CCNSB), International Institute of Information Technology, Gachibowli, Hyderabad 500032, India
| |
Collapse
|
18
|
On the impact of carbohydrate-binding modules (CBMs) in lytic polysaccharide monooxygenases (LPMOs). Essays Biochem 2022; 67:561-574. [PMID: 36504118 PMCID: PMC10154629 DOI: 10.1042/ebc20220162] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 12/14/2022]
Abstract
Abstract
Lytic polysaccharide monooxygenases (LPMOs) have revolutionized our understanding of how enzymes degrade insoluble polysaccharides. Compared with the substantial knowledge developed on the structure and mode of action of the catalytic LPMO domains, the (multi)modularity of LPMOs has received less attention. The presence of other domains, in particular carbohydrate-binding modules (CBMs), tethered to LPMOs has profound implications for the catalytic performance of the full-length enzymes. In the last few years, studies on LPMO modularity have led to advancements in elucidating how CBMs, other domains, and linker regions influence LPMO structure and function. This mini review summarizes recent literature, with particular focus on comparative truncation studies, to provide an overview of the diversity in LPMO modularity and the functional implications of this diversity.
Collapse
|
19
|
Improve Enzymatic Hydrolysis of Lignocellulosic Biomass by Modifying Lignin Structure via Sulfite Pretreatment and Using Lignin Blockers. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8100558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Even traditional pretreatments can partially remove or degrade lignin and hemicellulose from lignocellulosic biomass for enhancing its enzymatic digestibility, the remaining lignin in pretreated biomass still restricts its enzymatic hydrolysis by limiting cellulose accessibility and lignin-enzyme nonproductive interaction. Therefore, many pretreatments that can modify lignin structure in a unique way and approaches to block the lignin’s adverse impact have been proposed to directly improve the enzymatic digestibility of pretreated biomass. In this review, recent development in sulfite pretreatment that can transform the native lignin into lignosulfonate and subsequently enhance saccharification of pretreated biomass under certain conditions was summarized. In addition, we also reviewed the approaches of the addition of reactive agents to block the lignin’s reactive sites and limit the cellulase-enzyme adsorption during hydrolysis. It is our hope that this summary can provide a guideline for workers engaged in biorefining for the goal of reaching high enzymatic digestibility of lignocellulose.
Collapse
|
20
|
Prabmark K, Boonyapakron K, Bunterngsook B, Arunrattanamook N, Uengwetwanit T, Chitnumsub P, Champreda V. Enhancement of catalytic activity and alkaline stability of cellobiohydrolase by structure-based protein engineering. 3 Biotech 2022; 12:269. [PMID: 36097631 PMCID: PMC9463429 DOI: 10.1007/s13205-022-03339-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 08/16/2022] [Indexed: 11/30/2022] Open
Abstract
Alkaline cellobiohydrolases have the potential for application in various industries, including pulp processing and laundry where operation under high pH conditions is preferred. In this study, variants of CtCel6A cellobiohydrolase from Chaetomium thermophilum were generated by structural-based protein engineering with the rationale of increasing catalytic activity and alkaline stability. The variants included removal of the carbohydrate-binding module (CBM) and substitution of residues 173 and 200. The CBM-deleted enzyme with Y200F mutation predicted to mediate conformational change at the N-terminal loop demonstrated increased alkaline stability at 60 °C, pH 8.0 for 24 h up to 2.25-fold compared with the wild-type enzyme. Another CBM-deleted enzyme with L173E mutation predicted to induce a new hydrogen bond in the substrate-binding cleft showed enhanced hydrolysis yield of pretreated sugarcane trash up to 4.65-fold greater than that of the wild-type enzyme at the pH 8.0. The variant enzymes could thus be developed for applications on cellulose hydrolysis and plant fiber modification operated under alkaline conditions. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-022-03339-4.
Collapse
Affiliation(s)
- Kanoknart Prabmark
- Enzyme Technology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, 113 Thailand Science Park, Phahonyothin Road, Khlong Luang, Pathum Thani, 12120 Thailand
| | - Katewadee Boonyapakron
- Enzyme Technology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, 113 Thailand Science Park, Phahonyothin Road, Khlong Luang, Pathum Thani, 12120 Thailand
| | - Benjarat Bunterngsook
- Enzyme Technology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, 113 Thailand Science Park, Phahonyothin Road, Khlong Luang, Pathum Thani, 12120 Thailand
| | - Nattapol Arunrattanamook
- Enzyme Technology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, 113 Thailand Science Park, Phahonyothin Road, Khlong Luang, Pathum Thani, 12120 Thailand
| | - Tanaporn Uengwetwanit
- Microarray Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, 113 Thailand Science Park, Phahonyothin Road, Khlong Luang, Pathum Thani, 12120 Thailand
| | - Penchit Chitnumsub
- Biomolecular Analysis and Application Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, 113 Thailand Science Park, Phahonyothin Road, Khlong Luang, Pathum Thani, 12120 Thailand
| | - Verawat Champreda
- Enzyme Technology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, 113 Thailand Science Park, Phahonyothin Road, Khlong Luang, Pathum Thani, 12120 Thailand
| |
Collapse
|
21
|
Long L, Hu Y, Sun F, Gao W, Hao Z, Yin H. Advances in lytic polysaccharide monooxygenases with the cellulose-degrading auxiliary activity family 9 to facilitate cellulose degradation for biorefinery. Int J Biol Macromol 2022; 219:68-83. [PMID: 35931294 DOI: 10.1016/j.ijbiomac.2022.07.240] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/29/2022] [Accepted: 07/30/2022] [Indexed: 11/18/2022]
Abstract
One crucial step in processing the recalcitrant lignocellulosic biomass is the fast hydrolysis of natural cellulose to fermentable sugars that can be subsequently converted to biofuels and bio-based chemicals. Recent studies have shown that lytic polysaccharide monooxygenase (LPMOs) with auxiliary activity family 9 (AA9) are capable of efficiently depolymerizing the crystalline cellulose via regioselective oxidation reaction. Intriguingly, the catalysis by AA9 LPMOs requires reductant to provide electrons, and lignin and its phenolic derivatives can be oxidized, releasing reductant to activate the reaction. The activity of AA9 LPMOs can be enhanced by in-situ generation of H2O2 in the presence of O2. Although scientific understanding of these enzymes remains somewhat unknown or controversial, structure modifications on AA9 LPMOs through protein engineering have emerged in recent years, which are prerequisite for their extensive applications in the development of cellulase-mediated lignocellulosic biorefinery processes. In this review, we critically comment on advances in studies for AA9 LPMOs, i.e., characteristic of AA9 LPMOs catalysis, external electron donors to AA9 LPMOs, especially the role of the oxidization of lignin and its derivatives, and AA9 LPMOs protein engineering as well as their extensive applications in the bioprocessing of lignocellulosic biomass. Perspectives are also highlighted for addressing the challenges.
Collapse
Affiliation(s)
- Lingfeng Long
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Yun Hu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Fubao Sun
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| | - Wa Gao
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS(, Dalian 116023, China
| | - Zhikui Hao
- Institute of Applied Biotechnology, School of Medicine and Pharmaceutical Engineering, Taizhou Vocational and Technical College, Taizhou 318000, China
| | - Heng Yin
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS(, Dalian 116023, China
| |
Collapse
|
22
|
Wu MH, Kao MR, Li CW, Yu SM, Ho THD. A unique self-truncation of bacterial GH5 endoglucanases leads to enhanced activity and thermostability. BMC Biol 2022; 20:137. [PMID: 35681203 PMCID: PMC9185962 DOI: 10.1186/s12915-022-01334-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 05/18/2022] [Indexed: 11/10/2022] Open
Abstract
Background β-1,4-endoglucanase (EG) is one of the three types of cellulases used in cellulose saccharification during lignocellulosic biofuel/biomaterial production. GsCelA is an EG secreted by the thermophilic bacterium Geobacillus sp. 70PC53 isolated from rice straw compost in southern Taiwan. This enzyme belongs to glycoside hydrolase family 5 (GH5) with a TIM-barrel structure common among all members of this family. GsCelA exhibits excellent lignocellulolytic activity and thermostability. In the course of investigating the regulation of this enzyme, it was fortuitously discovered that GsCelA undergoes a novel self-truncation/activation process that appears to be common among GH5 enzymes. Results Three diverse Gram-positive bacterial GH5 EGs, but not a GH12 EG, undergo an unexpected self-truncation process by removing a part of their C-terminal region. This unique process has been studied in detail with GsCelA. The purified recombinant GsCelA was capable of removing a 53-amino-acid peptide from the C-terminus. Natural or engineered GsCelA truncated variants, with up to 60-amino-acid deletion from the C-terminus, exhibited higher specific activity and thermostability than the full-length enzyme. Interestingly, the C-terminal part that is removed in this self-truncation process is capable of binding to cellulosic substrates of EGs. The protein truncation, which is pH and temperature dependent, occurred between amino acids 315 and 316, but removal of these two amino acids did not stop the process. Furthermore, mutations of E142A and E231A, which are essential for EG activity, did not affect the protein self-truncation process. Conversely, two single amino acid substitution mutations affected the self-truncation activity without much impact on EG activities. In Geobacillus sp. 70PC53, the full-length GsCelA was first synthesized in the cell but progressively transformed into the truncated form and eventually secreted. The GsCelA self-truncation was not affected by standard protease inhibitors, but could be suppressed by EDTA and EGTA and enhanced by certain divalent ions, such as Ca2+, Mg2+, and Cu2+. Conclusions This study reveals novel insights into the strategy of Gram-positive bacteria for directing their GH5 EGs to the substrate, and then releasing the catalytic part for enhanced activity via a spontaneous self-truncation process. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01334-y.
Collapse
Affiliation(s)
- Mei-Huey Wu
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, 701, Taiwan, Republic of China.,Institute of Plant and Microbial Biology, Academia Sinica, Nankang, Taipei, 115, Taiwan, Republic of China
| | - Mu-Rong Kao
- Institute of Plant and Microbial Biology, Academia Sinica, Nankang, Taipei, 115, Taiwan, Republic of China
| | - Chen-Wei Li
- Institute of Plant and Microbial Biology, Academia Sinica, Nankang, Taipei, 115, Taiwan, Republic of China
| | - Su-May Yu
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei, 115, Taiwan, Republic of China. .,Biotechnology Research Center, National Chung Hsing University, Taichung, 402, Taiwan, Republic of China. .,Department of Life Sciences, National Chung Hsing University, Taichung, 402, Taiwan, Republic of China.
| | - Tuan-Hua David Ho
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, 701, Taiwan, Republic of China. .,Institute of Plant and Microbial Biology, Academia Sinica, Nankang, Taipei, 115, Taiwan, Republic of China. .,Biotechnology Research Center, National Chung Hsing University, Taichung, 402, Taiwan, Republic of China.
| |
Collapse
|
23
|
Ye TJ, Huang KF, Ko TP, Wu SH. Synergic action of an inserted carbohydrate-binding module in a glycoside hydrolase family 5 endoglucanase. Acta Crystallogr D Struct Biol 2022; 78:633-646. [PMID: 35503211 PMCID: PMC9063844 DOI: 10.1107/s2059798322002601] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/07/2022] [Indexed: 11/24/2022] Open
Abstract
Most known cellulase-associated carbohydrate-binding modules (CBMs) are attached to the N- or C-terminus of the enzyme or are expressed separately and assembled into multi-enzyme complexes (for example to form cellulosomes), rather than being an insertion into the catalytic domain. Here, by solving the crystal structure, it is shown that MtGlu5 from Meiothermus taiwanensis WR-220, a GH5-family endo-β-1,4-glucanase (EC 3.2.1.4), has a bipartite architecture consisting of a Cel5A-like catalytic domain with a (β/α)8 TIM-barrel fold and an inserted CBM29-like noncatalytic domain with a β-jelly-roll fold. Deletion of the CBM significantly reduced the catalytic efficiency of MtGlu5, as determined by isothermal titration calorimetry using inactive mutants of full-length and CBM-deleted MtGlu5 proteins. Conversely, insertion of the CBM from MtGlu5 into TmCel5A from Thermotoga maritima greatly enhanced the substrate affinity of TmCel5A. Bound sugars observed between two tryptophan side chains in the catalytic domains of active full-length and CBM-deleted MtGlu5 suggest an important stacking force. The synergistic action of the catalytic domain and CBM of MtGlu5 in binding to single-chain polysaccharides was visualized by substrate modeling, in which additional surface tryptophan residues were identified in a cross-domain groove. Subsequent site-specific mutagenesis results confirmed the pivotal role of several other tryptophan residues from both domains of MtGlu5 in substrate binding. These findings reveal a way to incorporate a CBM into the catalytic domain of an existing enzyme to make a robust cellulase.
Collapse
Affiliation(s)
- Ting-Juan Ye
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
- Department of Chemistry, National Taiwan University, Taipei 115, Taiwan
| | - Kai-Fa Huang
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Tzu-Ping Ko
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Shih-Hsiung Wu
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
- Institute of Biochemical Sciences, National Taiwan University, Taipei 115, Taiwan
| |
Collapse
|
24
|
Wei R, von Haugwitz G, Pfaff L, Mican J, Badenhorst CP, Liu W, Weber G, Austin HP, Bednar D, Damborsky J, Bornscheuer UT. Mechanism-Based Design of Efficient PET Hydrolases. ACS Catal 2022; 12:3382-3396. [PMID: 35368328 PMCID: PMC8939324 DOI: 10.1021/acscatal.1c05856] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/04/2022] [Indexed: 01/06/2023]
Abstract
Polyethylene terephthalate (PET) is the most widespread synthetic polyester, having been utilized in textile fibers and packaging materials for beverages and food, contributing considerably to the global solid waste stream and environmental plastic pollution. While enzymatic PET recycling and upcycling have recently emerged as viable disposal methods for a circular plastic economy, only a handful of benchmark enzymes have been thoroughly described and subjected to protein engineering for improved properties over the last 16 years. By analyzing the specific material properties of PET and the reaction mechanisms in the context of interfacial biocatalysis, this Perspective identifies several limitations in current enzymatic PET degradation approaches. Unbalanced enzyme-substrate interactions, limited thermostability, and low catalytic efficiency at elevated reaction temperatures, and inhibition caused by oligomeric degradation intermediates still hamper industrial applications that require high catalytic efficiency. To overcome these limitations, successful protein engineering studies using innovative experimental and computational approaches have been published extensively in recent years in this thriving research field and are summarized and discussed in detail here. The acquired knowledge and experience will be applied in the near future to address plastic waste contributed by other mass-produced polymer types (e.g., polyamides and polyurethanes) that should also be properly disposed by biotechnological approaches.
Collapse
Affiliation(s)
- Ren Wei
- Institute
of Biochemistry, Department of Biotechnology & Enzyme Catalysis, University of Greifswald, Felix-Hausdorff-Str. 4, D-17487 Greifswald, Germany
| | - Gerlis von Haugwitz
- Institute
of Biochemistry, Department of Biotechnology & Enzyme Catalysis, University of Greifswald, Felix-Hausdorff-Str. 4, D-17487 Greifswald, Germany
| | - Lara Pfaff
- Institute
of Biochemistry, Department of Biotechnology & Enzyme Catalysis, University of Greifswald, Felix-Hausdorff-Str. 4, D-17487 Greifswald, Germany
| | - Jan Mican
- Loschmidt
Laboratories, Department of Experimental Biology and RECETOX, Faculty
of Science, Masaryk University, 625 00 Brno, Czech Republic
- International
Clinical Research Center, St. Anne’s University Hospital and
Faculty of Medicine, Masaryk University, 656 91 Brno, Czech Republic
| | - Christoffel P.
S. Badenhorst
- Institute
of Biochemistry, Department of Biotechnology & Enzyme Catalysis, University of Greifswald, Felix-Hausdorff-Str. 4, D-17487 Greifswald, Germany
| | - Weidong Liu
- Tianjin
Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport
Economic Area, Tianjin, 300308, China
| | - Gert Weber
- Macromolecular
Crystallography, Helmholtz-Zentrum Berlin
für Materialien und Energie, Albert-Einstein-Straße 15, D-12489 Berlin, Germany
| | - Harry P. Austin
- Institute
of Biochemistry, Department of Biotechnology & Enzyme Catalysis, University of Greifswald, Felix-Hausdorff-Str. 4, D-17487 Greifswald, Germany
| | - David Bednar
- Loschmidt
Laboratories, Department of Experimental Biology and RECETOX, Faculty
of Science, Masaryk University, 625 00 Brno, Czech Republic
- International
Clinical Research Center, St. Anne’s University Hospital and
Faculty of Medicine, Masaryk University, 656 91 Brno, Czech Republic
| | - Jiri Damborsky
- Loschmidt
Laboratories, Department of Experimental Biology and RECETOX, Faculty
of Science, Masaryk University, 625 00 Brno, Czech Republic
- International
Clinical Research Center, St. Anne’s University Hospital and
Faculty of Medicine, Masaryk University, 656 91 Brno, Czech Republic
| | - Uwe T. Bornscheuer
- Institute
of Biochemistry, Department of Biotechnology & Enzyme Catalysis, University of Greifswald, Felix-Hausdorff-Str. 4, D-17487 Greifswald, Germany
| |
Collapse
|
25
|
Industrially Important Genes from Trichoderma. Fungal Biol 2022. [DOI: 10.1007/978-3-030-91650-3_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
26
|
Plaza PE, Coca M, Lucas Yagüe S, Fernández‐Delgado M, López‐Linares JC, García‐Cubero MT. Exploring the use of high solid loadings in enzymatic hydrolysis to improve biobutanol production from brewers' spent grains. CAN J CHEM ENG 2021. [DOI: 10.1002/cjce.24150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Pedro E. Plaza
- Institute of Sustainable Processes/Department of Chemical Engineering and Environmental Technology University of Valladolid Valladolid Spain
| | - Mónica Coca
- Institute of Sustainable Processes/Department of Chemical Engineering and Environmental Technology University of Valladolid Valladolid Spain
| | - Susana Lucas Yagüe
- Institute of Sustainable Processes/Department of Chemical Engineering and Environmental Technology University of Valladolid Valladolid Spain
| | - Marina Fernández‐Delgado
- Institute of Sustainable Processes/Department of Chemical Engineering and Environmental Technology University of Valladolid Valladolid Spain
| | - Juan C. López‐Linares
- Institute of Sustainable Processes/Department of Chemical Engineering and Environmental Technology University of Valladolid Valladolid Spain
| | - María T. García‐Cubero
- Institute of Sustainable Processes/Department of Chemical Engineering and Environmental Technology University of Valladolid Valladolid Spain
| |
Collapse
|
27
|
Ellis LD, Rorrer NA, Sullivan KP, Otto M, McGeehan JE, Román-Leshkov Y, Wierckx N, Beckham GT. Chemical and biological catalysis for plastics recycling and upcycling. Nat Catal 2021. [DOI: 10.1038/s41929-021-00648-4] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
28
|
Akram F, Akram R, Ikram Ul Haq, Nawaz A, Jabbar Z, Ahmed Z. Biotechnological Eminence of Chitinases: A Focus on Thermophilic Enzyme Sources, Production Strategies and Prominent Applications. Protein Pept Lett 2021; 28:1009-1022. [PMID: 33602064 DOI: 10.2174/0929866528666210218215359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/24/2020] [Accepted: 01/20/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Chitin, the second most abundant polysaccharide in nature, is a constantly valuable and renewable raw material after cellulose. Due to advancement in technology, industrial interest has grown to take advantage of the chitin. OBJECTIVE Now, biomass is being treated with diverse microbial enzymes or cells for the production of desired products under best industrial conditions. Glycosidic bonds in chitin structure are degraded by chitinase enzymes, which are characterized into number of glycoside hydrolase (GHs) families. METHODS Thermophilic microorganisms are remarkable sources of industrially important thermostable enzymes, having ability to survive harsh industrial processing conditions. Thermostable chitinases have an edge over mesophilic chitinases as they can hydrolyse the substrate at relatively high temperatures and exhibit decreased viscosity, significantly reduced contamination risk, thermal and chemical stability and increased solubility. Various methods are employed to purify the enzyme and increase its yield by optimizing various parameters such as temperature, pH, agitation, and by investigating the effect of different chemicals and metal ions etc. Results: Thermostable chitinase enzymes show high specific activity at elevated temperature which distinguish them from mesophiles. Genetic engineering can be used for further improvement of natural chitinases, and unlimited potential for the production of thermophilic chitinases has been highlighted due to advancement in synthetic biological techniques. Thermostable chitinases are then used in different fields such as bioremediation, medicine, agriculture and pharmaceuticals. CONCLUSION This review will provide information about chitinases, biotechnological potential of thermostable enzyme and the methods by which they are being produced and optimized for several industrial applications. Some of the applications of thermostable chitinases have also been briefly described.
Collapse
Affiliation(s)
- Fatima Akram
- Institute of Industrial Biotechnology, GC University, Lahore-54000, . Pakistan
| | - Rabia Akram
- Institute of Industrial Biotechnology, GC University, Lahore-54000, . Pakistan
| | - Ikram Ul Haq
- Institute of Industrial Biotechnology, GC University, Lahore-54000, . Pakistan
| | - Ali Nawaz
- Institute of Industrial Biotechnology, GC University, Lahore-54000, . Pakistan
| | - Zuriat Jabbar
- Institute of Industrial Biotechnology, GC University, Lahore-54000, . Pakistan
| | - Zeeshan Ahmed
- Institute of Industrial Biotechnology, GC University, Lahore-54000, . Pakistan
| |
Collapse
|
29
|
Leadbeater DR, Oates NC, Bennett JP, Li Y, Dowle AA, Taylor JD, Alponti JS, Setchfield AT, Alessi AM, Helgason T, McQueen-Mason SJ, Bruce NC. Mechanistic strategies of microbial communities regulating lignocellulose deconstruction in a UK salt marsh. MICROBIOME 2021; 9:48. [PMID: 33597033 PMCID: PMC7890819 DOI: 10.1186/s40168-020-00964-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 12/06/2020] [Indexed: 05/29/2023]
Abstract
BACKGROUND Salt marshes are major natural repositories of sequestered organic carbon with high burial rates of organic matter, produced by highly productive native flora. Accumulated carbon predominantly exists as lignocellulose which is metabolised by communities of functionally diverse microbes. However, the organisms that orchestrate this process and the enzymatic mechanisms employed that regulate the accumulation, composition and permanence of this carbon stock are not yet known. We applied meta-exo-proteome proteomics and 16S rRNA gene profiling to study lignocellulose decomposition in situ within the surface level sediments of a natural established UK salt marsh. RESULTS Our studies revealed a community dominated by Gammaproteobacteria, Bacteroidetes and Deltaproteobacteria that drive lignocellulose degradation in the salt marsh. We identify 42 families of lignocellulolytic bacteria of which the most active secretors of carbohydrate-active enzymes were observed to be Prolixibacteracea, Flavobacteriaceae, Cellvibrionaceae, Saccharospirillaceae, Alteromonadaceae, Vibrionaceae and Cytophagaceae. These families secreted lignocellulose-active glycoside hydrolase (GH) family enzymes GH3, GH5, GH6, GH9, GH10, GH11, GH13 and GH43 that were associated with degrading Spartina biomass. While fungi were present, we did not detect a lignocellulolytic contribution from fungi which are major contributors to terrestrial lignocellulose deconstruction. Oxidative enzymes such as laccases, peroxidases and lytic polysaccharide monooxygenases that are important for lignocellulose degradation in the terrestrial environment were present but not abundant, while a notable abundance of putative esterases (such as carbohydrate esterase family 1) associated with decoupling lignin from polysaccharides in lignocellulose was observed. CONCLUSIONS Here, we identify a diverse cohort of previously undefined bacteria that drive lignocellulose degradation in the surface sediments of the salt marsh environment and describe the enzymatic mechanisms they employ to facilitate this process. Our results increase the understanding of the microbial and molecular mechanisms that underpin carbon sequestration from lignocellulose within salt marsh surface sediments in situ and provide insights into the potential enzymatic mechanisms regulating the enrichment of polyphenolics in salt marsh sediments. Video Abstract.
Collapse
Affiliation(s)
- Daniel R Leadbeater
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, YO10 5DD, UK.
| | - Nicola C Oates
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, YO10 5DD, UK
| | - Joseph P Bennett
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, YO10 5DD, UK
| | - Yi Li
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, YO10 5DD, UK
| | - Adam A Dowle
- Bioscience Technology Facility, Department of Biology, University of York, York, YO10 5DD, UK
| | - Joe D Taylor
- School of Chemistry and Biosciences, University of Bradford, Bradford, West Yorkshire, BD7 1DP, UK
| | - Juliana Sanchez Alponti
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, YO10 5DD, UK
| | - Alexander T Setchfield
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, YO10 5DD, UK
| | - Anna M Alessi
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, YO10 5DD, UK
| | | | - Simon J McQueen-Mason
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, YO10 5DD, UK.
| | - Neil C Bruce
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, YO10 5DD, UK.
| |
Collapse
|
30
|
Álvarez SP, Ardisana EFH. Biotechnology of Beneficial Bacteria and Fungi Useful in Agriculture. Fungal Biol 2021. [DOI: 10.1007/978-3-030-54422-5_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
31
|
Nemmaru B, Ramirez N, Farino CJ, Yarbrough JM, Kravchenko N, Chundawat SPS. Reduced type-A carbohydrate-binding module interactions to cellulose I leads to improved endocellulase activity. Biotechnol Bioeng 2020; 118:1141-1151. [PMID: 33245142 DOI: 10.1002/bit.27637] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 11/12/2020] [Accepted: 11/15/2020] [Indexed: 12/24/2022]
Abstract
Dissociation of nonproductively bound cellulolytic enzymes from cellulose is hypothesized to be a key rate-limiting factor impeding cost-effective biomass conversion to fermentable sugars. However, the role of carbohydrate-binding modules (CBMs) in enabling nonproductive enzyme binding is not well understood. Here, we examine the subtle interplay of CBM binding and cellulose hydrolysis activity for three models type-A CBMs (Families 1, 3a, and 64) tethered to multifunctional endoglucanase (CelE) on two distinct cellulose allomorphs (i.e., cellulose I and III). We generated a small library of mutant CBMs with varying cellulose affinity, as determined by equilibrium binding assays, followed by monitoring cellulose hydrolysis activity of CelE-CBM fusion constructs. Finally, kinetic binding assays using quartz crystal microbalance with dissipation were employed to measure CBM adsorption and desorption rate constants k on and k off , respectively, towards nanocrystalline cellulose derived from both allomorphs. Overall, our results indicate that reduced CBM equilibrium binding affinity towards cellulose I alone, resulting from increased desorption rates ( k off ) and reduced effective adsorption rates ( nk on ), is correlated to overall improved endocellulase activity. Future studies could employ similar approaches to unravel the role of CBMs in nonproductive enzyme binding and develop improved cellulolytic enzymes for industrial applications.
Collapse
Affiliation(s)
| | - Nicholas Ramirez
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Cindy J Farino
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - John M Yarbrough
- Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado, USA
| | - Nicholas Kravchenko
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Shishir P S Chundawat
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| |
Collapse
|
32
|
Boonyapakron K, Chitnumsub P, Kanokratana P, Champreda V. Enhancement of catalytic performance of a metagenome-derived thermophilic oligosaccharide-specific xylanase by binding module removal and random mutagenesis. J Biosci Bioeng 2020; 131:13-19. [PMID: 33067124 DOI: 10.1016/j.jbiosc.2020.09.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 10/23/2022]
Abstract
Xylo-oligosaccharide (XO) is a promising pre-biotic with applications in food, feed and healthcare products. XO can be produced by enzymatic digestion of xylan with xylanase. In this study, we aimed to improve the biochemical properties relevant to catalysis and kinetics of X11, a thermophilic glycosyl hydrolase (GH) family 11 endo-β-1,4-xylanase derived from a metagenomic library isolated from sugarcane bagasse, under high-temperature conditions preferred for XO synthesis. Removal of a carbohydrate-binding module (X11C) resulted in 6.5 fold greater catalytic efficiency. X11C was further improved by a Pro71Thr mutation in the X11P variant obtained from a random mutagenesis library, which exhibited 15.9 fold greater catalytic efficiency compared with wild-type X11 under the enzyme's optimal conditions of 80°C and pH 6.0. Homology modeling suggested that the improved performance of X11P could be attributed to formation of an extra H-bond between Thr71 and Ser75, which stabilizes the key catalytic residue Glu180 at the active pocket and β-sheet layers and agrees with the respective increase in melting temperature (Tm) where X11P >X11C >X11 as determined by differential scanning fluorimetry. The X11P variant was tested for hydrolysis of beechwood xylan, which showed X6 as the major product followed by X3 and X4 XOs. The highest yield of 5.5 g total XOs product/mg enzyme was observed for X11P, equivalent to 3.7 fold higher than that of wild-type with XO production of >800 mg/g xylan. The X11P enzyme could be developed as a thermophilic biocatalyst for XO synthesis in biorefineries.
Collapse
Affiliation(s)
- Katewadee Boonyapakron
- Enzyme Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, 113 Thailand Science Park, Phahonyothin Road, Khlong Luang, Pathumthani 12120, Thailand
| | - Penchit Chitnumsub
- Biomolecular Analysis and Application Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, 113 Thailand Science Park, Phahonyothin Road, Khlong Luang, Pathumthani 12120, Thailand
| | - Pattanop Kanokratana
- Enzyme Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, 113 Thailand Science Park, Phahonyothin Road, Khlong Luang, Pathumthani 12120, Thailand
| | - Verawat Champreda
- Enzyme Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, 113 Thailand Science Park, Phahonyothin Road, Khlong Luang, Pathumthani 12120, Thailand.
| |
Collapse
|
33
|
Tokunaga Y, Nagata T, Kondo K, Katahira M, Watanabe T. NMR elucidation of nonproductive binding sites of lignin models with carbohydrate-binding module of cellobiohydrolase I. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:164. [PMID: 33042221 PMCID: PMC7541279 DOI: 10.1186/s13068-020-01805-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 09/27/2020] [Indexed: 05/30/2023]
Abstract
BACKGROUND Highly efficient enzymatic saccharification of pretreated lignocellulose is a key step in achieving lignocellulosic biorefinery. Cellobiohydrolase I (Cel7A) secreted by Trichoderma reesei is an industrially used cellulase that possesses carbohydrate-binding module 1 (TrCBM1) at the C-terminal domain. The nonproductive binding of TrCBM1 to lignin significantly decreases the enzymatic saccharification efficiency and increases the cost of biomass conversion because of the additionally required enzymes. Understanding the interaction mechanism between lignin and TrCBM1 is essential for realizing a cost-effective biofuel production; however, the binding sites in lignin have not been clearly elucidated. RESULTS Three types of 13C-labeled β-O-4 lignin oligomer models were synthesized and characterized. The 2D 1H-13C heteronuclear single-quantum correlation (HSQC) spectra of the 13C-labeled lignin models confirmed that the three types of the 13C labels were correctly incorporated in the (1) aromatic rings and β positions, (2) α positions, and (3) methoxy groups, respectively. The TrCBM1-binding sites in lignin were analyzed by observing NMR chemical shift perturbations (CSPs) using the synthetic 13C-labeled β-O-4 lignin oligomer models. Obvious CSPs were observed in signals from the aromatic regions in oligomers bound to TrCBM1, whereas perturbations in the signals from aliphatic regions and methoxy groups were insignificant. These findings indicated that hydrophobic interactions and π-π stacking were dominating factors in nonproductive binding. The synthetic lignin models have two configurations whose terminal units were differently aligned and donated C(I) and C(II). The C(I) ring showed remarkable perturbation compared with the C(II), which indicated that the binding of TrCBM1 was markedly affected by the configuration of the lignin models. The long-chain lignin models (degree of polymerization (DP) 4.16-4.70) clearly bound to TrCBM1. The interactions of TrCBM1 with the short-chain lignin models (DP 2.64-3.12) were insignificant, indicating that a DP greater than 4 was necessary for TrCBM1 binding. CONCLUSION The CSP analysis using 13C-labeled β-O-4 lignin oligomer models enabled the identification of the TrCBM1 binding sites in lignins at the atomic level. This specific interaction analysis will provide insights for new molecular designs of cellulase having a controlled affinity to cellulose and lignin for a cost-effective biorefinery process.
Collapse
Affiliation(s)
- Yuki Tokunaga
- Research Institute for Sustainable Humanosphere (RISH), Kyoto University, Uji, Kyoto 611-0011 Japan
| | - Takashi Nagata
- Institute of Advanced Energy (IAE), Kyoto University, Uji, Kyoto 611-0011 Japan
| | - Keiko Kondo
- Institute of Advanced Energy (IAE), Kyoto University, Uji, Kyoto 611-0011 Japan
| | - Masato Katahira
- Institute of Advanced Energy (IAE), Kyoto University, Uji, Kyoto 611-0011 Japan
| | - Takashi Watanabe
- Research Institute for Sustainable Humanosphere (RISH), Kyoto University, Uji, Kyoto 611-0011 Japan
| |
Collapse
|
34
|
Østby H, Hansen LD, Horn SJ, Eijsink VGH, Várnai A. Enzymatic processing of lignocellulosic biomass: principles, recent advances and perspectives. J Ind Microbiol Biotechnol 2020; 47:623-657. [PMID: 32840713 PMCID: PMC7658087 DOI: 10.1007/s10295-020-02301-8] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 07/30/2020] [Indexed: 02/06/2023]
Abstract
Efficient saccharification of lignocellulosic biomass requires concerted development of a pretreatment method, an enzyme cocktail and an enzymatic process, all of which are adapted to the feedstock. Recent years have shown great progress in most aspects of the overall process. In particular, increased insights into the contributions of a wide variety of cellulolytic and hemicellulolytic enzymes have improved the enzymatic processing step and brought down costs. Here, we review major pretreatment technologies and different enzyme process setups and present an in-depth discussion of the various enzyme types that are currently in use. We pay ample attention to the role of the recently discovered lytic polysaccharide monooxygenases (LPMOs), which have led to renewed interest in the role of redox enzyme systems in lignocellulose processing. Better understanding of the interplay between the various enzyme types, as they may occur in a commercial enzyme cocktail, is likely key to further process improvements.
Collapse
Affiliation(s)
- Heidi Østby
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1432, Aas, Norway
| | - Line Degn Hansen
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1432, Aas, Norway
| | - Svein J Horn
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1432, Aas, Norway
| | - Vincent G H Eijsink
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1432, Aas, Norway
| | - Anikó Várnai
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1432, Aas, Norway.
| |
Collapse
|
35
|
Christensen SJ, Badino SF, Cavaleiro AM, Borch K, Westh P. Functional analysis of chimeric TrCel6A enzymes with different carbohydrate binding modules. Protein Eng Des Sel 2020; 32:401-409. [PMID: 32100026 DOI: 10.1093/protein/gzaa003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 01/10/2019] [Accepted: 01/13/2019] [Indexed: 11/14/2022] Open
Abstract
The glycoside hydrolase (GH) family 6 is an important group of enzymes that constitute an essential part of industrial enzyme cocktails used to convert lignocellulose into fermentable sugars. In nature, enzymes from this family often have a carbohydrate binding module (CBM) from the CBM family 1. These modules are known to promote adsorption to the cellulose surface and influence enzymatic activity. Here, we have investigated the functional diversity of CBMs found within the GH6 family. This was done by constructing five chimeric enzymes based on the model enzyme, TrCel6A, from the soft-rot fungus Trichoderma reesei. The natural CBM of this enzyme was exchanged with CBMs from other GH6 enzymes originating from different cellulose degrading fungi. The chimeric enzymes were expressed in the same host and investigated in adsorption and quasi-steady-state kinetic experiments. Our results quantified functional differences of these phylogenetically distant binding modules. Thus, the partitioning coefficient for substrate binding varied 4-fold, while the maximal turnover (kcat) showed a 2-fold difference. The wild-type enzyme showed the highest cellulose affinity on all tested substrates and the highest catalytic turnover. The CBM from Serendipita indica strongly promoted the enzyme's ability to form productive complexes with sites on the substrate surface but showed lower turnover of the complex. We conclude that the CBM plays an important role for the functional differences between GH6 wild-type enzymes.
Collapse
Affiliation(s)
- Stefan Jarl Christensen
- Research Unit for Functional Biomaterials, Department of Science and Environment, Roskilde University, building 28B, DK-4000, Roskilde, Denmark
| | - Silke Flindt Badino
- Research Unit for Functional Biomaterials, Department of Science and Environment, Roskilde University, building 28B, DK-4000, Roskilde, Denmark
| | - Ana Mafalda Cavaleiro
- Research Unit for Functional Biomaterials, Department of Science and Environment, Roskilde University, building 28B, DK-4000, Roskilde, Denmark.,Novozymes A/S, Department of Enzyme Discovery, Rævehøjvej 32A, DK-2800 Kgs. Lyngby, Denmark
| | - Kim Borch
- Novozymes A/S, Department of Enzyme Discovery, Rævehøjvej 32A, DK-2800 Kgs. Lyngby, Denmark
| | - Peter Westh
- Department of Biotechnology and Biomedicine, Technical University of Denmark, building 224, DK-2800, Kgs. Lyngby, Denmark
| |
Collapse
|
36
|
Gu X, Yang S, Yang X, Yao L, Gao X, Zhang M, Liu W, Zhao H, Wang Q, Li Z, Li Z, Ding J. Comparative transcriptome analysis of two Cercospora sojina strains reveals differences in virulence under nitrogen starvation stress. BMC Microbiol 2020; 20:166. [PMID: 32546122 PMCID: PMC7298872 DOI: 10.1186/s12866-020-01853-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 06/12/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cercospora sojina is a fungal pathogen that causes frogeye leaf spot in soybean-producing regions, leading to severe yield losses worldwide. It exhibits variations in virulence due to race differentiation between strains. However, the candidate virulence-related genes are unknown because the infection process is slow, making it difficult to collect transcriptome samples. RESULTS In this study, virulence-related differentially expressed genes (DEGs) were obtained from the highly virulent Race 15 strain and mildly virulent Race1 strain under nitrogen starvation stress, which mimics the physiology of the pathogen during infection. Weighted gene co-expression network analysis (WGCNA) was then used to find co-expressed gene modules and assess the relationship between gene networks and phenotypes. Upon comparison of the transcriptomic differences in virulence between the strains, a total of 378 and 124 DEGs were upregulated, while 294 and 220 were downregulated in Race 1 and Race 15, respectively. Annotation of these DEGs revealed that many were associated with virulence differences, including scytalone dehydratase, 1,3,8-trihydroxynaphthalene reductase, and β-1,3-glucanase. In addition, two modules highly correlated with the highly virulent strain Race 15 and 36 virulence-related DEGs were found to contain mostly β-1,4-glucanase, β-1,4-xylanas, and cellobiose dehydrogenase. CONCLUSIONS These important nitrogen starvation-responsive DEGs are frequently involved in the synthesis of melanin, polyphosphate storage in the vacuole, lignocellulose degradation, and cellulose degradation during fungal development and differentiation. Transcriptome analysis indicated unique gene expression patterns, providing further insight into pathogenesis.
Collapse
Affiliation(s)
- Xin Gu
- Jiamusi Branch of Heilongjiang Academy of Agricultural Sciences, Jiamusi, China
| | - Shuai Yang
- Potato Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| | - Xiaohe Yang
- Jiamusi Branch of Heilongjiang Academy of Agricultural Sciences, Jiamusi, China
| | - Liangliang Yao
- Jiamusi Branch of Heilongjiang Academy of Agricultural Sciences, Jiamusi, China
| | - Xuedong Gao
- Jiamusi Branch of Heilongjiang Academy of Agricultural Sciences, Jiamusi, China
| | - Maoming Zhang
- Jiamusi Branch of Heilongjiang Academy of Agricultural Sciences, Jiamusi, China
| | - Wei Liu
- Jiamusi Branch of Heilongjiang Academy of Agricultural Sciences, Jiamusi, China
| | - Haihong Zhao
- Jiamusi Branch of Heilongjiang Academy of Agricultural Sciences, Jiamusi, China
| | - Qingsheng Wang
- Jiamusi Branch of Heilongjiang Academy of Agricultural Sciences, Jiamusi, China
| | - Zengjie Li
- Jiamusi Branch of Heilongjiang Academy of Agricultural Sciences, Jiamusi, China
| | - Zhimin Li
- Jiamusi Branch of Heilongjiang Academy of Agricultural Sciences, Jiamusi, China
| | - Junjie Ding
- Jiamusi Branch of Heilongjiang Academy of Agricultural Sciences, Jiamusi, China.
| |
Collapse
|
37
|
Liu J, Yang J, Wang R, Liu L, Zhang Y, Bao H, Jang JM, Wang E, Yuan H. Comparative characterization of extracellular enzymes secreted by Phanerochaete chrysosporium during solid-state and submerged fermentation. Int J Biol Macromol 2020; 152:288-294. [DOI: 10.1016/j.ijbiomac.2020.02.256] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/22/2020] [Accepted: 02/23/2020] [Indexed: 01/22/2023]
|
38
|
Berlemont R, Winans N, Talamantes D, Dang H, Tsai HW. MetaGeneHunt for protein domain annotation in short-read metagenomes. Sci Rep 2020; 10:7712. [PMID: 32382098 PMCID: PMC7205989 DOI: 10.1038/s41598-020-63775-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 04/03/2020] [Indexed: 12/13/2022] Open
Abstract
The annotation of short-reads metagenomes is an essential process to understand the functional potential of sequenced microbial communities. Annotation techniques based solely on the identification of local matches tend to confound local sequence similarity and overall protein homology and thus don't mirror the complex multidomain architecture and the shuffling of functional domains in many protein families. Here, we present MetaGeneHunt to identify specific protein domains and to normalize the hit-counts based on the domain length. We used MetaGeneHunt to investigate the potential for carbohydrate processing in the mouse gastrointestinal tract. We sampled, sequenced, and analyzed the microbial communities associated with the bolus in the stomach, intestine, cecum, and colon of five captive mice. Focusing on Glycoside Hydrolases (GHs) we found that, across samples, 58.3% of the 4,726,023 short-read sequences matching with a GH domain-containing protein were located outside the domain of interest. Next, before comparing the samples, the counts of localized hits matching the domains of interest were normalized to account for the corresponding domain length. Microbial communities in the intestine and cecum displayed characteristic GH profiles matching distinct microbial assemblages. Conversely, the stomach and colon were associated with structurally and functionally more diverse and variable microbial communities. Across samples, despite fluctuations, changes in the functional potential for carbohydrate processing correlated with changes in community composition. Overall MetaGeneHunt is a new way to quickly and precisely identify discrete protein domains in sequenced metagenomes processed with MG-RAST. In addition, using the sister program "GeneHunt" to create custom Reference Annotation Table, MetaGeneHunt provides an unprecedented way to (re)investigate the precise distribution of any protein domain in short-reads metagenomes.
Collapse
Affiliation(s)
- R Berlemont
- Department of biological Sciences, California State University, Long Beach, California, USA.
| | - N Winans
- Department of biological Sciences, California State University, Long Beach, California, USA
| | - D Talamantes
- Department of biological Sciences, California State University, Long Beach, California, USA
- Department of Bioinformatics, University of Georgia Athens, Athens, Georgia, USA
| | - H Dang
- Department of biological Sciences, California State University, Long Beach, California, USA
| | - H-W Tsai
- Department of biological Sciences, California State University, Long Beach, California, USA
| |
Collapse
|
39
|
Zerva A, Pentari C, Grisel S, Berrin JG, Topakas E. A new synergistic relationship between xylan-active LPMO and xylobiohydrolase to tackle recalcitrant xylan. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:142. [PMID: 32793303 PMCID: PMC7419196 DOI: 10.1186/s13068-020-01777-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 07/29/2020] [Indexed: 05/06/2023]
Abstract
BACKGROUND Hemicellulose accounts for a significant part of plant biomass, and still poses a barrier to the efficient saccharification of lignocellulose. The recalcitrant part of hemicellulose is a serious impediment to the action of cellulases, despite the use of xylanases in the cellulolytic cocktail mixtures. However, the complexity and variety of hemicelluloses in different plant materials require the use of highly specific enzymes for a complete breakdown. Over the last few years, new fungal enzymes with novel activities on hemicelluloses have emerged. In the present study, we explored the synergistic relationships of the xylan-active AA14 lytic polysaccharide monooxygenase (LPMO), PcAA14B, with the recently discovered glucuronoxylan-specific xylanase TtXyn30A, of the (sub)family GH30_7, displaying xylobiohydrolase activity, and with commercial cellobiohydrolases, on pretreated natural lignocellulosic substrates. RESULTS PcAA14B and TtXyn30A showed a strong synergistic interaction on the degradation of the recalcitrant part of xylan. PcAA14B was able to increase the release of xylobiose from TtXyn30A, showing a degree of synergism (DS) of 3.8 on birchwood cellulosic fibers, and up to 5.7 on pretreated beechwood substrates. The increase in activity was dose- and time- dependent. A screening study on beechwood materials pretreated with different methods showed that the effect of the PcAA14B-TtXyn30A synergism was more prominent on substrates with low hemicellulose content, indicating that PcAA14B is mainly active on the recalcitrant part of xylan, which is in close proximity to the underlying cellulose fibers. Simultaneous addition of both enzymes resulted in higher DS than sequential addition. Moreover, PcAA14B was found to enhance cellobiose release from cellobiohydrolases during hydrolysis of pretreated lignocellulosic substrates, as well as microcrystalline cellulose. CONCLUSIONS The results of the present study revealed a new synergistic relationship not only among two recently discovered xylan-active enzymes, the LPMO PcAA14B, and the GH30_7 glucuronoxylan-active xylobiohydrolase TtXyn30A, but also among PcAA14B and cellobiohydrolases. We hypothesize that PcAA14B creates free ends in the xylan polymer, which can be used as targets for the action of TtXyn30A. The results are of special importance for the design of next-generation enzymatic cocktails, able to efficiently remove hemicelluloses, allowing complete saccharification of cellulose in plant biomass.
Collapse
Affiliation(s)
- Anastasia Zerva
- Industrial Biotechnology and Biocatalysis Group, School of Chemical Engineering, National Technical University of Athens, 9 Iroon Polytechniou Str., Zografou Campus, 15780 Athens, Greece
- INRAE, Aix Marseille University, Biodiversité Et Biotechnologie Fongiques (BBF), UMR1163, 13009 Marseille, France
| | - Christina Pentari
- Industrial Biotechnology and Biocatalysis Group, School of Chemical Engineering, National Technical University of Athens, 9 Iroon Polytechniou Str., Zografou Campus, 15780 Athens, Greece
| | - Sacha Grisel
- INRAE, Aix Marseille University, Biodiversité Et Biotechnologie Fongiques (BBF), UMR1163, 13009 Marseille, France
| | - Jean-Guy Berrin
- INRAE, Aix Marseille University, Biodiversité Et Biotechnologie Fongiques (BBF), UMR1163, 13009 Marseille, France
| | - Evangelos Topakas
- Industrial Biotechnology and Biocatalysis Group, School of Chemical Engineering, National Technical University of Athens, 9 Iroon Polytechniou Str., Zografou Campus, 15780 Athens, Greece
| |
Collapse
|
40
|
Schiano‐di‐Cola C, Kołaczkowski B, Sørensen TH, Christensen SJ, Cavaleiro AM, Windahl MS, Borch K, Morth JP, Westh P. Structural and biochemical characterization of a family 7 highly thermostable endoglucanase from the fungusRasamsonia emersonii. FEBS J 2019; 287:2577-2596. [DOI: 10.1111/febs.15151] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 11/01/2019] [Accepted: 11/20/2019] [Indexed: 01/21/2023]
Affiliation(s)
| | | | - Trine Holst Sørensen
- Department of Science and Environment Roskilde University Denmark
- Novozymes A/S Lyngby Denmark
| | | | | | - Michael Skovbo Windahl
- Department of Science and Environment Roskilde University Denmark
- Novozymes A/S Lyngby Denmark
| | | | - Jens Preben Morth
- Department of Biotechnology and Biomedicine Technical University of Denmark Lyngby Denmark
| | - Peter Westh
- Department of Science and Environment Roskilde University Denmark
- Department of Biotechnology and Biomedicine Technical University of Denmark Lyngby Denmark
| |
Collapse
|
41
|
A biochemical comparison of fungal GH6 cellobiohydrolases. Biochem J 2019; 476:2157-2172. [DOI: 10.1042/bcj20190185] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 07/14/2019] [Accepted: 07/16/2019] [Indexed: 02/02/2023]
Abstract
AbstractCellobiohydrolases (CBHs) from glycoside hydrolase family 6 (GH6) make up an important part of the secretome in many cellulolytic fungi. They are also of technical interest, particularly because they are part of the enzyme cocktails that are used for the industrial breakdown of lignocellulosic biomass. Nevertheless, functional studies of GH6 CBHs are scarce and focused on a few model enzymes. To elucidate functional breadth among GH6 CBHs, we conducted a comparative biochemical study of seven GH6 CBHs originating from fungi living in different habitats, in addition to one enzyme variant. The enzyme sequences were investigated by phylogenetic analyses to ensure that they were not closely related phylogenetically. The selected enzymes were all heterologously expressed in Aspergillus oryzae, purified and thoroughly characterized biochemically. This approach allowed direct comparisons of functional data, and the results revealed substantial variability. For example, the adsorption capacity on cellulose spanned two orders of magnitude and kinetic parameters, derived from two independent steady-state methods also varied significantly. While the different functional parameters covered wide ranges, they were not independent since they changed in parallel between two poles. One pole was characterized by strong substrate interactions, high adsorption capacity and low turnover number while the other showed weak substrate interactions, poor adsorption and high turnover. The investigated enzymes essentially defined a continuum between these two opposites, and this scaling of functional parameters raises interesting questions regarding functional plasticity and evolution of GH6 CBHs.
Collapse
|
42
|
Nguyen SN, Flores A, Talamantes D, Dar F, Valdez A, Schwans J, Berlemont R. GeneHunt for rapid domain-specific annotation of glycoside hydrolases. Sci Rep 2019; 9:10137. [PMID: 31300677 PMCID: PMC6626019 DOI: 10.1038/s41598-019-46290-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 06/26/2019] [Indexed: 12/20/2022] Open
Abstract
The identification of glycoside hydrolases (GHs) for efficient polysaccharide deconstruction is essential for the development of biofuels. Here, we investigate the potential of sequential HMM-profile identification for the rapid and precise identification of the multi-domain architecture of GHs from various datasets. First, as a validation, we successfully reannotated >98% of the biochemically characterized enzymes listed on the CAZy database. Next, we analyzed the 43 million non-redundant sequences from the M5nr data and identified 322,068 unique GHs. Finally, we searched 129 assembled metagenomes retrieved from MG-RAST for environmental GHs and identified 160,790 additional enzymes. Although most identified sequences corresponded to single domain enzymes, many contained several domains, including known accessory domains and some domains never identified in association with GH. Several sequences displayed multiple catalytic domains and few of these potential multi-activity proteins combined potentially synergistic domains. Finally, we produced and confirmed the biochemical activities of a GH5-GH10 cellulase-xylanase and a GH11-CE4 xylanase-esterase. Globally, this "gene to enzyme pipeline" provides a rationale for mining large datasets in order to identify new catalysts combining unique properties for the efficient deconstruction of polysaccharides.
Collapse
Affiliation(s)
- S N Nguyen
- Department of Biological Sciences, California State University Long Beach, Long Beach, California, USA
| | - A Flores
- Department of Biological Sciences, California State University Long Beach, Long Beach, California, USA
| | - D Talamantes
- Department of Biological Sciences, California State University Long Beach, Long Beach, California, USA
| | - F Dar
- Department of Biological Sciences, California State University Long Beach, Long Beach, California, USA
| | - A Valdez
- Department of Biological Sciences, California State University Long Beach, Long Beach, California, USA
| | - J Schwans
- Department of Chemistry and Biochemistry, California State University Long Beach, Long Beach, California, USA
| | - R Berlemont
- Department of Biological Sciences, California State University Long Beach, Long Beach, California, USA.
| |
Collapse
|
43
|
Gunnoo M, Cazade PA, Orlowski A, Chwastyk M, Liu H, Ta DT, Cieplak M, Nash M, Thompson D. Steered molecular dynamics simulations reveal the role of Ca 2+ in regulating mechanostability of cellulose-binding proteins. Phys Chem Chem Phys 2019; 20:22674-22680. [PMID: 30132772 DOI: 10.1039/c8cp00925b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The conversion of cellulosic biomass into biofuels requires degradation of the biomass into fermentable sugars. The most efficient natural cellulase system for carrying out this conversion is an extracellular multi-enzymatic complex named the cellulosome. In addition to temperature and pH stability, mechanical stability is important for functioning of cellulosome domains, and experimental techniques such as Single Molecule Force Spectroscopy (SMFS) have been used to measure the mechanical strength of several cellulosomal proteins. Molecular dynamics computer simulations provide complementary atomic-resolution quantitative maps of domain mechanical stability for identification of experimental leads for protein stabilization. In this study, we used multi-scale steered molecular dynamics computer simulations, benchmarked against new SMFS measurements, to measure the intermolecular contacts that confer high mechanical stability to a family 3 Carbohydrate Binding Module protein (CBM3) derived from the archetypal Clostridium thermocellum cellulosome. Our data predicts that electrostatic interactions in the calcium binding pocket modulate the mechanostability of the cellulose-binding module, which provides an additional design rule for the rational re-engineering of designer cellulosomes for biotechnology. Our data offers new molecular insights into the origins of mechanostability in cellulose binding domains and gives leads for synthesis of more robust cellulose-binding protein modules. On the other hand, simulations predict that insertion of a flexible strand can promote alternative unfolding pathways and dramatically reduce the mechanostability of the carbohydrate binding module, which gives routes to rational design of tailormade fingerprint complexes for force spectroscopy experiments.
Collapse
Affiliation(s)
- Melissabye Gunnoo
- Department of Physics, Bernal Institute, University of Limerick, V94 T9PX, Ireland.
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Lam MQ, Oates NC, Thevarajoo S, Tokiman L, Goh KM, McQueen-Mason SJ, Bruce NC, Chong CS. Genomic analysis of a lignocellulose degrading strain from the underexplored genus Meridianimaribacter. Genomics 2019; 112:952-960. [PMID: 31201854 DOI: 10.1016/j.ygeno.2019.06.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 05/13/2019] [Accepted: 06/11/2019] [Indexed: 02/06/2023]
Abstract
The genus Meridianimaribacter is one of the least-studied genera within Cytophaga-Flavobacteria. To date, no genomic analysis of Meridianimaribacter has been reported. In this study, Meridianimaribacter sp. strain CL38, a lignocellulose degrading halophile was isolated from mangrove soil. The genome of strain CL38 was sequenced and analyzed. The assembled genome contains 17 contigs with 3.33 Mbp, a GC content of 33.13% and a total of 2982 genes predicted. Lignocellulose degrading enzymes such as cellulases (GH3, 5, 9, 16, 74 and 144), xylanases (GH43 and CE4) and mannanases (GH5, 26, 27 and 130) are encoded in the genome. Furthermore, strain CL38 demonstrated its ability to decompose empty fruit bunch, a lignocellulosic waste residue arising from palm oil industry. The genome information coupled with experimental studies confirmed the ability of strain CL38 to degrade lignocellulosic biomass. Therefore, Meridianimaribacter sp. strain CL38, with its halotolerance, could be useful for seawater based lignocellulosic biorefining.
Collapse
Affiliation(s)
- Ming Quan Lam
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| | - Nicola C Oates
- Centre for Novel Agricultural Products, Department of Biology, University of York, Wentworth Way, York, YO10 5DD, United Kingdom
| | - Suganthi Thevarajoo
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| | - Lili Tokiman
- Johor National Parks Corporation, Kota Iskandar, 79575 Iskandar Puteri, Johor, Malaysia
| | - Kian Mau Goh
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| | - Simon J McQueen-Mason
- Centre for Novel Agricultural Products, Department of Biology, University of York, Wentworth Way, York, YO10 5DD, United Kingdom
| | - Neil C Bruce
- Centre for Novel Agricultural Products, Department of Biology, University of York, Wentworth Way, York, YO10 5DD, United Kingdom.
| | - Chun Shiong Chong
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia.
| |
Collapse
|
45
|
Novel Endotype Xanthanase from Xanthan-Degrading Microbacterium sp. Strain XT11. Appl Environ Microbiol 2019; 85:AEM.01800-18. [PMID: 30413476 DOI: 10.1128/aem.01800-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 10/27/2018] [Indexed: 11/20/2022] Open
Abstract
Under general aqueous conditions, xanthan appears in an ordered conformation, which makes its backbone largely resistant to degradation by known cellulases. Therefore, the xanthan degradation mechanism is still unclear because of the lack of an efficient hydrolase. Here, we report the catalytic properties of MiXen, a xanthan-degrading enzyme identified from the genus Microbacterium MiXen is a 952-amino-acid protein that is unique to strain XT11. Both the sequence and structural features suggested that MiXen belongs to a new branch of the GH9 family and has a multimodular structure in which a catalytic (α/α)6 barrel is flanked by an N-terminal Ig-like domain and by a C-terminal domain that has very few homologues in sequence databases and functions as a carbohydrate-binding module (CBM). Based on circular dichroism, shear-dependent viscosity, and reducing sugar and gel permeation chromatography analysis, we demonstrated that recombinant MiXen efficiently and randomly cleaved glucosidic bonds within the highly ordered xanthan substrate. A MiXen mutant free of the C-terminal CBM domain partially lost its xanthan-hydrolyzing ability because of decreased affinity toward xanthan, indicating the CBM domain assisted MiXen in hydrolyzing highly ordered xanthan via recognizing and binding to the substrate. Furthermore, side chain substituents and the terminal mannosyl residue significantly influenced the activity of MiXen via the formation of barriers to enzymolysis. Overall, the results of this study provide insight into the hydrolysis mechanism and enzymatic properties of a novel endotype xanthanase that will benefit future applications.IMPORTANCE This work characterized a novel endotype xanthanase, MiXen, and elucidated that the C-terminal carbohydrate-binding module of MiXen could drastically enhance the hydrolysis activity of the enzyme toward highly ordered xanthan. Both the sequence and structural analysis demonstrated that the catalytic domain and carbohydrate-binding module of MiXen belong to the novel branch of the GH9 family and CBMs, respectively. This xanthan cleaver can help further reveal the enzymolysis mechanism of xanthan and provide an efficient tool for the production of molecular modified xanthan with new physicochemical and physiological functions.
Collapse
|
46
|
Chalak A, Villares A, Moreau C, Haon M, Grisel S, d’Orlando A, Herpoël-Gimbert I, Labourel A, Cathala B, Berrin JG. Influence of the carbohydrate-binding module on the activity of a fungal AA9 lytic polysaccharide monooxygenase on cellulosic substrates. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:206. [PMID: 31508147 PMCID: PMC6721207 DOI: 10.1186/s13068-019-1548-y] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 08/24/2019] [Indexed: 05/12/2023]
Abstract
BACKGROUND Cellulose-active lytic polysaccharide monooxygenases (LPMOs) secreted by filamentous fungi play a key role in the degradation of recalcitrant lignocellulosic biomass. They can occur as multidomain proteins fused to a carbohydrate-binding module (CBM). From a biotech perspective, LPMOs are promising innovative tools for producing nanocelluloses and biofuels, but their direct action on cellulosic substrates is not fully understood. RESULTS In this study, we probed the role of the CBM from family 1 (CBM1) appended to the LPMO9H from Podospora anserina (PaLPMO9H) using model cellulosic substrates. Deletion of the CBM1 weakened the binding to cellulose nanofibrils, amorphous and crystalline cellulose. Although the release of soluble sugars from cellulose was drastically reduced under standard conditions, the truncated LPMO retained some activity on soluble oligosaccharides. The cellulolytic action of the truncated LPMO was demonstrated using synergy experiments with a cellobiohydrolase (CBH). The truncated LPMO was still able to improve the efficiency of the CBH on cellulose nanofibrils in the same range as the full-length LPMO. Increasing the substrate concentration enhanced the performance of PaLPMO9H without CBM in terms of product release. Interestingly, removing the CBM also altered the regioselectivity of PaLPMO9H, significantly increasing cleavage at the C1 position. Analysis of the insoluble fraction of cellulosic substrates evaluated by optical and atomic force microscopy confirmed that the CBM1 module was not strictly required to promote disruption of the cellulose network. CONCLUSIONS Absence of the CBM1 does not preclude the activity of the LPMO on cellulose but its presence has an important role in driving the enzyme to the substrate and releasing more soluble sugars (both oxidized and non-oxidized), thus facilitating the detection of LPMO activity at low substrate concentration. These results provide insights into the mechanism of action of fungal LPMOs on cellulose to produce nanocelluloses and biofuels.
Collapse
Affiliation(s)
- Amani Chalak
- Biopolymères Interactions Assemblages, INRA, Nantes, France
- Biodiversité et Biotechnologie Fongiques, UMR1163, INRA, Aix Marseille Université, Marseille, France
| | - Ana Villares
- Biopolymères Interactions Assemblages, INRA, Nantes, France
| | - Celine Moreau
- Biopolymères Interactions Assemblages, INRA, Nantes, France
| | - Mireille Haon
- Biodiversité et Biotechnologie Fongiques, UMR1163, INRA, Aix Marseille Université, Marseille, France
| | - Sacha Grisel
- Biodiversité et Biotechnologie Fongiques, UMR1163, INRA, Aix Marseille Université, Marseille, France
| | | | - Isabelle Herpoël-Gimbert
- Biodiversité et Biotechnologie Fongiques, UMR1163, INRA, Aix Marseille Université, Marseille, France
| | - Aurore Labourel
- Biodiversité et Biotechnologie Fongiques, UMR1163, INRA, Aix Marseille Université, Marseille, France
| | | | - Jean-Guy Berrin
- Biodiversité et Biotechnologie Fongiques, UMR1163, INRA, Aix Marseille Université, Marseille, France
| |
Collapse
|
47
|
Berto GL, Velasco J, Tasso Cabos Ribeiro C, Zanphorlin LM, Noronha Domingues M, Tyago Murakami M, Polikarpov I, de Oliveira LC, Ferraz A, Segato F. Functional characterization and comparative analysis of two heterologous endoglucanases from diverging subfamilies of glycosyl hydrolase family 45. Enzyme Microb Technol 2019; 120:23-35. [DOI: 10.1016/j.enzmictec.2018.09.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 07/26/2018] [Accepted: 09/17/2018] [Indexed: 12/31/2022]
|
48
|
Fanelli E, Troccoli A, De Luca F. Functional Variation of Two Novel Cellulases, Pv-eng-5 and Pv-eng-8, and the Heat Shock 90 Gene, Pv-hsp-90, in Pratylenchus vulnus and Their Expression in Response to Different Temperature Stress. Int J Mol Sci 2018; 20:E107. [PMID: 30597892 PMCID: PMC6337429 DOI: 10.3390/ijms20010107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 12/12/2018] [Accepted: 12/20/2018] [Indexed: 11/18/2022] Open
Abstract
Functional characterization of two novel endoglucanase genes, Pv-eng-5 and Pv-eng-8, of the root-lesion nematode Pratylenchus vulnus was carried out. In situ-hybridization experiments revealed that Pv-eng-8 transcript was localized in the pharyngeal glands. Silencing of Pv-eng-5 and Pv-eng-8 resulted in a significant reduction of expression level (52% and 67%, respectively). Furthermore, the silencing of Pv-eng-8 determined a reduction (41%) in nematode reproduction, suggesting that treated nematodes are much less able to process food. Surprisingly, no significant difference on reproduction rate was observed with Pv-eng-5 dsRNA nematodes, suggesting a neofunctionalization of Pv-eng-5 despite the high similarity with nematode endoglucanases. Pratylenchus species are poikilothermic organisms showing close relationships with the environmental temperature. The effects of different temperature ranges revealed that the reproductive potential of P. vulnus increased with increasing temperature from 23 °C to 28 °C, but no reproduction was observed at 33 °C. In real time, increasing temperature from 23 °C to 28 °C the heat shock gene Pv-hsp-90 was differentially expressed in adult stages, while the levels of the effector genes Pv-eng-1 and Pv-eng-8 in females showed no significant differences compared to those observed at 23 °C, only in males Pv-eng-8 level decreased (45%). The upregulation of Pv-hsp-90 in both adult stages suggests a protective mechanism in order to cope with unfavorable environmental conditions.
Collapse
Affiliation(s)
- Elena Fanelli
- Istituto per la Protezione Sostenibile delle Piante (IPSP), SS-Bari, Consiglio Nazionale delle Ricerche, (CNR), 70126 Bari, Italy.
| | - Alberto Troccoli
- Istituto per la Protezione Sostenibile delle Piante (IPSP), SS-Bari, Consiglio Nazionale delle Ricerche, (CNR), 70126 Bari, Italy.
| | - Francesca De Luca
- Istituto per la Protezione Sostenibile delle Piante (IPSP), SS-Bari, Consiglio Nazionale delle Ricerche, (CNR), 70126 Bari, Italy.
| |
Collapse
|
49
|
Bissaro B, Várnai A, Røhr ÅK, Eijsink VGH. Oxidoreductases and Reactive Oxygen Species in Conversion of Lignocellulosic Biomass. Microbiol Mol Biol Rev 2018; 82:e00029-18. [PMID: 30257993 PMCID: PMC6298611 DOI: 10.1128/mmbr.00029-18] [Citation(s) in RCA: 172] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Biomass constitutes an appealing alternative to fossil resources for the production of materials and energy. The abundance and attractiveness of vegetal biomass come along with challenges pertaining to the intricacy of its structure, evolved during billions of years to face and resist abiotic and biotic attacks. To achieve the daunting goal of plant cell wall decomposition, microorganisms have developed many (enzymatic) strategies, from which we seek inspiration to develop biotechnological processes. A major breakthrough in the field has been the discovery of enzymes today known as lytic polysaccharide monooxygenases (LPMOs), which, by catalyzing the oxidative cleavage of recalcitrant polysaccharides, allow canonical hydrolytic enzymes to depolymerize the biomass more efficiently. Very recently, it has been shown that LPMOs are not classical monooxygenases in that they can also use hydrogen peroxide (H2O2) as an oxidant. This discovery calls for a revision of our understanding of how lignocellulolytic enzymes are connected since H2O2 is produced and used by several of them. The first part of this review is dedicated to the LPMO paradigm, describing knowns, unknowns, and uncertainties. We then present different lignocellulolytic redox systems, enzymatic or not, that depend on fluxes of reactive oxygen species (ROS). Based on an assessment of these putatively interconnected systems, we suggest that fine-tuning of H2O2 levels and proximity between sites of H2O2 production and consumption are important for fungal biomass conversion. In the last part of this review, we discuss how our evolving understanding of redox processes involved in biomass depolymerization may translate into industrial applications.
Collapse
Affiliation(s)
- Bastien Bissaro
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Aas, Norway
| | - Anikó Várnai
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Aas, Norway
| | - Åsmund K Røhr
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Aas, Norway
| | - Vincent G H Eijsink
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Aas, Norway
| |
Collapse
|
50
|
Kari J, Olsen JP, Jensen K, Badino SF, Krogh KBRM, Borch K, Westh P. Sabatier Principle for Interfacial (Heterogeneous) Enzyme Catalysis. ACS Catal 2018. [DOI: 10.1021/acscatal.8b03547] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Jeppe Kari
- Research Unit for Functional Biomaterials, Roskilde University, 1 Universitetsvej, DK-4000 Roskilde, Denmark
| | - Johan P. Olsen
- Novozymes A/S, Krogshøjvej 36, DK-2880 Bagsværd, Denmark
| | - Kenneth Jensen
- Novozymes A/S, Krogshøjvej 36, DK-2880 Bagsværd, Denmark
| | - Silke F. Badino
- Research Unit for Functional Biomaterials, Roskilde University, 1 Universitetsvej, DK-4000 Roskilde, Denmark
| | | | - Kim Borch
- Novozymes A/S, Krogshøjvej 36, DK-2880 Bagsværd, Denmark
| | - Peter Westh
- Research Unit for Functional Biomaterials, Roskilde University, 1 Universitetsvej, DK-4000 Roskilde, Denmark
| |
Collapse
|