1
|
Zhang M, Zhang L, Liu J, Zhao J, Mei J, Zou J, Luo Y, Cai C. Mammary stem cells: molecular cues, orchestrated regulatory mechanisms and its implications in breast cancer. J Genet Genomics 2025:S1673-8527(25)00116-X. [PMID: 40254157 DOI: 10.1016/j.jgg.2025.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 04/03/2025] [Accepted: 04/11/2025] [Indexed: 04/22/2025]
Abstract
Mammary stem cells (MaSCs), endowed with self-renewal and multilineage differentiation capabilities, are crucial for mammary gland development, function, and disease initiation. Recent advances in MaSCs biology research encompass molecular marker identification, regulatory pathway dissection, and microenvironmental crosstalk. This review synthesizes key progress and remaining challenges in MaSC research. Molecular profiling advances have identified key markers recently, such as Procr, Dll1, Bcl11b, and PD-L1. Central to their regulatory logic are evolutionarily conserved pathways, including Wnt, Notch, Hedgehog, and Hippo, which exhibit context-dependent thresholds to balance self-renewal and differentiation. Beyond intrinsic signaling, the dynamic interplay between MaSCs and their microenvironment, such as luminal-derived Wnt4, macrophage-mediated TNF-α signaling, and adrenergic inputs from sympathetic nerves, spatially orchestrates stem cell behavior. In addition, this review also discusses the roles of breast cancer stem cells (BCSCs) in tumorigenesis and therapeutic resistance, focusing on the molecular mechanisms underlying MaSC transformation into BCSCs. Despite progress, challenges remain: human MaSCs functional assays lack standardization, pathway inhibitors risk off-target effects, and delivery systems lack precision. Emerging tools like spatial multi-omics, organoids, and biomimetic scaffolds address these gaps. By integrating MaSCs and BCSCs biology, this review links mechanisms to breast cancer and outlines strategies to target malignancy to accelerate clinical translation.
Collapse
Affiliation(s)
- Mengna Zhang
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310024, China
| | - Lingxian Zhang
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310024, China
| | - Jie Liu
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310024, China
| | - Jiahui Zhao
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310024, China
| | - Jiayu Mei
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310024, China
| | - Jiahua Zou
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310024, China
| | - Yaogan Luo
- Mengniu Institute of Nutrition Science, Shanghai 200124, China
| | - Cheguo Cai
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310024, China.
| |
Collapse
|
2
|
Wang Q, Pan G, Zhang Y, Ni Y, Mu Y, Luo D. Emerging insights into thyroid cancer from immunotherapy perspective: A bibliometric analysis. Hum Vaccin Immunother 2024; 20:2403170. [PMID: 39294892 DOI: 10.1080/21645515.2024.2403170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/21/2024] [Accepted: 09/07/2024] [Indexed: 09/21/2024] Open
Abstract
Thyroid cancer is a common endocrine malignancy that poses considerable therapeutic challenges in treating anaplastic carcinoma and advanced aggressive disease. Immunotherapy has become a prominent strategy for cancer treatment, and has shown remarkable advancements in recent years. In this study, we utilized visualization and bibliometric tools to analyze publications on thyroid cancer immunotherapy from the Web of Science Core Collection (WoSCC). A total of 409 articles were included, with an annual increase in both publications and citations since 2016. China leads research efforts in this area, while the University of Texas System and UTMD Anderson Cancer Center rank first in publication output. The journal Thyroid has garnered the highest citations. Notable authors contributing to this field include Antonelli Alessandro, Fallahi Poupak, and Wang Yu. Current research hotspots include immune checkpoint inhibitors, combination therapies involving immunotherapy with targeted therapy, CAR-T cell therapy, and modulation of the tumor microenvironment, all of which underscore the evolving landscape and potential for innovative treatments in thyroid cancer.
Collapse
Affiliation(s)
- Qianyu Wang
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou First People's Hospital, Hangzhou, Zhejiang, China
| | - Gang Pan
- Department of Oncological Surgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
| | - Yu Zhang
- Department of Oncological Surgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
| | - Yiqin Ni
- Department of Oncological Surgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
| | - Yuzhu Mu
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou First People's Hospital, Hangzhou, Zhejiang, China
| | - Dingcun Luo
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou First People's Hospital, Hangzhou, Zhejiang, China
- Department of Oncological Surgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
- College of Mathematical Medicine, Zhejiang Normal University, Jinhua, Zhejiang, China
| |
Collapse
|
3
|
Buchholz MB, Scheerman DI, Levato R, Wehrens EJ, Rios AC. Human breast tissue engineering in health and disease. EMBO Mol Med 2024; 16:2299-2321. [PMID: 39179741 PMCID: PMC11473723 DOI: 10.1038/s44321-024-00112-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 08/26/2024] Open
Abstract
The human mammary gland represents a highly organized and dynamic tissue, uniquely characterized by postnatal developmental cycles. During pregnancy and lactation, it undergoes extensive hormone-stimulated architectural remodeling, culminating in the formation of specialized structures for milk production to nourish offspring. Moreover, it carries significant health implications, due to the high prevalence of breast cancer. Therefore, gaining insight into the unique biology of the mammary gland can have implications for managing breast cancer and promoting the well-being of both women and infants. Tissue engineering techniques hold promise to narrow the translational gap between existing breast models and clinical outcomes. Here, we provide an overview of the current landscape of breast tissue engineering, outline key requirements, and the challenges to overcome for achieving more predictive human breast models. We propose methods to validate breast function and highlight preclinical applications for improved understanding and targeting of breast cancer. Beyond mammary gland physiology, representative human breast models can offer new insight into stem cell biology and developmental processes that could extend to other organs and clinical contexts.
Collapse
Affiliation(s)
- Maj-Britt Buchholz
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Demi I Scheerman
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Riccardo Levato
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
- Department of Orthopedics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Ellen J Wehrens
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Anne C Rios
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands.
- Oncode Institute, Utrecht, The Netherlands.
| |
Collapse
|
4
|
Bozal SB, Sjogren G, Costa AP, Brown JS, Roberts S, Baker D, Gabriel P, Ristau BT, Samuels M, Flynn WF, Robson P, Courtois ET. Development of an automated 3D high content cell screening platform for organoid phenotyping. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2024; 29:100182. [PMID: 39245180 DOI: 10.1016/j.slasd.2024.100182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 09/10/2024]
Abstract
The use of organoid models in biomedical research has grown substantially since their inception. As they gain popularity among scientists seeking more complex and biologically relevant systems, there is a direct need to expand and clarify potential uses of such systems in diverse experimental contexts. Herein we outline a high-content screening (HCS) platform that allows researchers to screen drugs or other compounds against three-dimensional (3D) cell culture systems in a multi-well format (384-well). Furthermore, we compare the quality of robotic liquid handling with manual pipetting and characterize and contrast the phenotypic effects detected by confocal imaging and biochemical assays in response to drug treatment. We show that robotic liquid handling is more consistent and amendable to high throughput experimental designs when compared to manual pipetting due to improved precision and automated randomization capabilities. We also show that image-based techniques are more sensitive to detecting phenotypic changes within organoid cultures than traditional biochemical assays that evaluate cell viability, supporting their integration into organoid screening workflows. Finally, we highlight the enhanced capabilities of confocal imaging in this organoid screening platform as they relate to discerning organoid drug responses in single-well co-cultures of organoids derived from primary human biopsies and patient-derived xenograft (PDX) models. Altogether, this platform enables automated, imaging-based HCS of 3D cellular models in a non-destructive manner, opening the path to complementary analysis through integrated downstream methods.
Collapse
Affiliation(s)
- Suleyman B Bozal
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, United States; Yale School of Medicine, Yale University, New Haven, CT, United States; Department of Biomedical Engineering, School of Engineering and Applied Sciences, Yale University, New Haven, CT, United States
| | - Greg Sjogren
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, United States
| | - Antonio P Costa
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, CT, United States
| | - Joseph S Brown
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, United States
| | - Shannon Roberts
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, United States
| | - Dylan Baker
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, United States
| | - Paul Gabriel
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, United States
| | | | - Michael Samuels
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, United States
| | - William F Flynn
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, United States
| | - Paul Robson
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, United States; Departments of Genetics & Genome Sciences and Cell Biology, UConn Health, Farmington, CT, United States.
| | - Elise T Courtois
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, United States; Department of Obstetrics and Gynecology, UConn Health, Farmington, CT, United States.
| |
Collapse
|
5
|
Muthuswamy SK, Brugge JS. Organoid Cultures for the Study of Mammary Biology and Breast Cancer: The Promise and Challenges. Cold Spring Harb Perspect Med 2024; 14:a041661. [PMID: 38110241 PMCID: PMC11216180 DOI: 10.1101/cshperspect.a041661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
During the last decade, biomedical research has experienced a resurgence in the use of three-dimensional culture models for studies of normal and cancer biology. This resurgence has been driven by the development of models in which primary cells are grown in tissue-mimicking media and extracellular matrices to create organoid or organotypic cultures that more faithfully replicate the complex architecture and physiology of normal tissues and tumors. In addition, patient-derived tumor organoids preserve the three-dimensional organization and characteristics of the patient tumors ex vivo, becoming excellent preclinical models to supplement studies of tumor xenografts transplanted into immunocompromised mice. In this perspective, we provide an overview of how organoids are being used to investigate normal mammary biology and as preclinical models of breast cancer and discuss improvements that would enhance their utility and relevance to the field.
Collapse
Affiliation(s)
- Senthil K Muthuswamy
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), Bethesda, Maryland 20894, USA
| | - Joan S Brugge
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
- Ludwig Center at Harvard, Harvard Medical School Boston, Boston, Massachusetts 02115, USA
| |
Collapse
|
6
|
De Magalhães CG, Cvekl A, Jaeger RG, Yan CYI. Lens placode modulates extracellular matrix formation during early eye development. Differentiation 2024; 138:100792. [PMID: 38935992 PMCID: PMC11247415 DOI: 10.1016/j.diff.2024.100792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/13/2024] [Accepted: 06/20/2024] [Indexed: 06/29/2024]
Abstract
The role extracellular matrix (ECM) in multiple events of morphogenesis has been well described, little is known about its specific role in early eye development. One of the first morphogenic events in lens development is placodal thickening, which converts the presumptive lens ectoderm from cuboidal to pseudostratified epithelium. This process occurs in the anterior pre-placodal ectoderm when the optic vesicle approaches the cephalic ectoderm and is regulated by transcription factor Pax6 and secreted BMP4. Since cells and ECM have a dynamic relationship of interdependence and modulation, we hypothesized that the ECM evolves with cell shape changes during lens placode formation. This study investigates changes in optic ECM including both protein distribution deposition, extracellular gelatinase activity and gene expression patterns during early optic development using chicken and mouse models. In particular, the expression of Timp2, a metalloprotease inhibitor, corresponds with a decrease in gelatinase activity within the optic ECM. Furthermore, we demonstrate that optic ECM remodeling depends on BMP signaling in the placode. Together, our findings suggest that the lens placode plays an active role in remodeling the optic ECM during early eye development.
Collapse
Affiliation(s)
- Cecília G De Magalhães
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, 05508-900, Brazil
| | - Ales Cvekl
- Department of Ophthalmology and Visual Sciences and Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Ruy G Jaeger
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, 05508-900, Brazil
| | - C Y Irene Yan
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, 05508-900, Brazil.
| |
Collapse
|
7
|
Chen B, Du C, Wang M, Guo J, Liu X. Organoids as preclinical models of human disease: progress and applications. MEDICAL REVIEW (2021) 2024; 4:129-153. [PMID: 38680680 PMCID: PMC11046574 DOI: 10.1515/mr-2023-0047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 02/28/2024] [Indexed: 05/01/2024]
Abstract
In the field of biomedical research, organoids represent a remarkable advancement that has the potential to revolutionize our approach to studying human diseases even before clinical trials. Organoids are essentially miniature 3D models of specific organs or tissues, enabling scientists to investigate the causes of diseases, test new drugs, and explore personalized medicine within a controlled laboratory setting. Over the past decade, organoid technology has made substantial progress, allowing researchers to create highly detailed environments that closely mimic the human body. These organoids can be generated from various sources, including pluripotent stem cells, specialized tissue cells, and tumor tissue cells. This versatility enables scientists to replicate a wide range of diseases affecting different organ systems, effectively creating disease replicas in a laboratory dish. This exciting capability has provided us with unprecedented insights into the progression of diseases and how we can develop improved treatments. In this paper, we will provide an overview of the progress made in utilizing organoids as preclinical models, aiding our understanding and providing a more effective approach to addressing various human diseases.
Collapse
Affiliation(s)
- Baodan Chen
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Cijie Du
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Mengfei Wang
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jingyi Guo
- Innovation Centre for Advanced Interdisciplinary Medicine, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xingguo Liu
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
| |
Collapse
|
8
|
De Magalhães CG, Cvekl A, Jaeger RG, Yan CYI. Lens Placode Modulates Extracellular Matrix Formation During Early Eye Development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.30.569417. [PMID: 38076974 PMCID: PMC10705410 DOI: 10.1101/2023.11.30.569417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
The role extracellular matrix (ECM) in multiple events of morphogenesis has been well described, little is known about its specific role in early eye development. One of the first morphogenic events in lens development is placodal thickening, which converts the presumptive lens ectoderm from cuboidal to pseudostratified epithelium. This process occurs in the anterior pre-placodal ectoderm when the optic vesicle approaches the cephalic ectoderm. Since cells and ECM have a dynamic relationship of interdependence and modulation, we hypothesized that the ECM evolves with cell shape changes during lens placode formation. This study investigates changes in optic ECM including both protein distribution deposition, extracellular gelatinase activity and gene expression patterns during early optic development using chicken and mouse models. In particular, the expression of Timp2 , a metalloprotease inhibitor, corresponds with a decrease in gelatinase activity within the optic ECM. Furthermore, we demonstrate that optic ECM remodeling depends on BMP signaling in the placode. Together, our findings suggest that the lens placode plays an active role in remodeling the optic ECM during early eye development.
Collapse
|
9
|
Koskinen LM, Nieminen L, Arjonen A, Guzmán C, Peurla M, Peuhu E. Spatial Engineering of Mammary Epithelial Cell Cultures with 3D Bioprinting Reveals Growth Control by Branch Point Proximity. J Mammary Gland Biol Neoplasia 2024; 29:5. [PMID: 38416267 PMCID: PMC10902034 DOI: 10.1007/s10911-024-09557-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 02/20/2024] [Indexed: 02/29/2024] Open
Abstract
The three-dimensional (3D) structure of the ductal epithelium and the surrounding extracellular matrix (ECM) are integral aspects of the breast tissue, and they have important roles during mammary gland development, function and malignancy. However, the architecture of the branched mammary epithelial network is poorly recapitulated in the current in vitro models. 3D bioprinting is an emerging approach to improve tissue-mimicry in cell culture. Here, we developed and optimized a protocol for 3D bioprinting of normal and cancerous mammary epithelial cells into a branched Y-shape to study the role of cell positioning in the regulation of cell proliferation and invasion. Non-cancerous cells formed continuous 3D cell networks with several organotypic features, whereas the ductal carcinoma in situ (DCIS) -like cancer cells exhibited aberrant basal polarization and defective formation of the basement membrane (BM). Quantitative analysis over time demonstrated that both normal and cancerous cells proliferate more at the branch tips compared to the trunk region of the 3D-bioprinted cultures, and particularly at the tip further away from the branch point. The location-specific rate of proliferation was independent of TGFβ signaling but invasion of the DCIS-like breast cancer cells was reduced upon the inhibition of TGFβ. Thus, our data demonstrate that the 3D-bioprinted cells can sense their position in the branched network of cells and proliferate at the tips, thus recapitulating this feature of mammary epithelial branching morphogenesis. In all, our results demonstrate the capacity of the developed 3D bioprinting method for quantitative analysis of the relationships between tissue structure and cell behavior in breast morphogenesis and cancer.
Collapse
Affiliation(s)
- Leena M Koskinen
- Institute of Biomedicine, Cancer Laboratory FICAN West, University of Turku, Turku, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | | | | | | | - Markus Peurla
- Institute of Biomedicine, Cancer Laboratory FICAN West, University of Turku, Turku, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Emilia Peuhu
- Institute of Biomedicine, Cancer Laboratory FICAN West, University of Turku, Turku, Finland.
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland.
| |
Collapse
|
10
|
Gu Y, Chen Q, Yin H, Zeng M, Gao S, Wang X. Cancer-associated fibroblasts in neoadjuvant setting for solid cancers. Crit Rev Oncol Hematol 2024; 193:104226. [PMID: 38056580 DOI: 10.1016/j.critrevonc.2023.104226] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/15/2023] [Accepted: 11/30/2023] [Indexed: 12/08/2023] Open
Abstract
Therapeutic approaches for cancer have become increasingly diverse in recent times. A comprehensive understanding of the tumor microenvironment (TME) holds great potential for enhancing the precision of tumor therapies. Neoadjuvant therapy offers the possibility of alleviating patient symptoms and improving overall quality of life. Additionally, it may facilitate the reduction of inoperable tumors and prevent potential preoperative micrometastases. Within the TME, cancer-associated fibroblasts (CAFs) play a prominent role as they generate various elements that contribute to tumor progression. Particularly, extracellular matrix (ECM) produced by CAFs prevents immune cell infiltration into the TME, hampers drug penetration, and diminishes therapeutic efficacy. Therefore, this review provides a summary of the heterogeneity and interactions of CAFs within the TME, with a specific focus on the influence of neoadjuvant therapy on the microenvironment, particularly CAFs. Finally, we propose several potential and promising therapeutic strategies targeting CAFs, which may efficiently eliminate CAFs to decrease stroma density and impair their functions.
Collapse
Affiliation(s)
- Yanan Gu
- Department of Radiology, Zhongshan Hospital and Shanghai Institute of Medical Imaging, Fudan University, Shanghai 200032, China; Department of Interventional Radiology, Zhongshan Hospital Fudan University Shanghai, 200032, China
| | - Qiangda Chen
- Department of Pancreatic Surgery, Zhongshan Hospital Fudan University, Shanghai 200032, China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Hanlin Yin
- Department of Pancreatic Surgery, Zhongshan Hospital Fudan University, Shanghai 200032, China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Mengsu Zeng
- Department of Radiology, Zhongshan Hospital and Shanghai Institute of Medical Imaging, Fudan University, Shanghai 200032, China
| | - Shanshan Gao
- Department of Radiology, Zhongshan Hospital and Shanghai Institute of Medical Imaging, Fudan University, Shanghai 200032, China.
| | - Xiaolin Wang
- Department of Radiology, Zhongshan Hospital and Shanghai Institute of Medical Imaging, Fudan University, Shanghai 200032, China; Department of Interventional Radiology, Zhongshan Hospital Fudan University Shanghai, 200032, China.
| |
Collapse
|
11
|
Caruso M, Saberiseyedabad K, Mourao L, Scheele CLGJ. A Decision Tree to Guide Human and Mouse Mammary Organoid Model Selection. Methods Mol Biol 2024; 2764:77-105. [PMID: 38393590 DOI: 10.1007/978-1-0716-3674-9_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
Over the past 50 years, researchers from the mammary gland field have launched a collection of distinctive 3D cell culture systems to study multiple aspects of mammary gland physiology and disease. As our knowledge about the mammary gland evolves, more sophisticated 3D cell culture systems are required to answer more and more complex questions. Nowadays, morphologically complex mammary organoids can be generated in distinct 3D settings, along with reproduction of multiple aspects of the gland microenvironment. Yet, each 3D culture protocol comes with its advantages and limitations, where some culture systems are best suited to study stemness potential, whereas others are tailored towards the study of mammary gland morphogenesis. Therefore, prior to starting a 3D mammary culture experiment, it is important to consider and select the ideal culture model to address the biological question of interest. The number and technical requirements of novel 3D cell culture methods vastly increased over the past decades, making it currently challenging and time consuming to identify the best experimental testing. In this chapter, we provide a summary of the most promising murine and human 3D organoid models that are currently used in mammary gland biology research. For each model, we will provide a brief description of the protocol and an overview of the expected morphological outcome, the advantages of the model, and the potential pitfalls, to guide the reader to the best model of choice for specific applications.
Collapse
Affiliation(s)
- Marika Caruso
- VIB-KU Leuven Center for Cancer Biology, Department of Oncology, Leuven, Belgium
| | | | - Larissa Mourao
- VIB-KU Leuven Center for Cancer Biology, Department of Oncology, Leuven, Belgium
| | | |
Collapse
|
12
|
Daneshdoust D, Luo M, Li Z, Mo X, Alothman S, Kallakury B, Schlegel R, Zhang J, Guo D, Furth PA, Liu X, Li J. Unlocking Translational Potential: Conditionally Reprogrammed Cells in Advancing Breast Cancer Research. Cells 2023; 12:2388. [PMID: 37830602 PMCID: PMC10572051 DOI: 10.3390/cells12192388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/07/2023] [Accepted: 09/19/2023] [Indexed: 10/14/2023] Open
Abstract
Preclinical in vitro models play an important role in studying cancer cell biology and facilitating translational research, especially in the identification of drug targets and drug discovery studies. This is particularly relevant in breast cancer, where the global burden of disease is quite high based on prevalence and a relatively high rate of lethality. Predictive tools to select patients who will be responsive to invasive or morbid therapies (radiotherapy, chemotherapy, immunotherapy, and/or surgery) are relatively lacking. To be clinically relevant, a model must accurately replicate the biology and cellular heterogeneity of the primary tumor. Addressing these requirements and overcoming the limitations of most existing cancer cell lines, which are typically derived from a single clone, we have recently developed conditional reprogramming (CR) technology. The CR technology refers to a co-culture system of primary human normal or tumor cells with irradiated murine fibroblasts in the presence of a Rho-associated kinase inhibitor to allow the primary cells to acquire stem cell properties and the ability to proliferate indefinitely in vitro without any exogenous gene or viral transfection. This innovative approach fulfills many of these needs and offers an alternative that surpasses the deficiencies associated with traditional cancer cell lines. These CR cells (CRCs) can be reprogrammed to maintain a highly proliferative state and reproduce the genomic and histological characteristics of the parental tissue. Therefore, CR technology may be a clinically relevant model to test and predict drug sensitivity, conduct gene profile analysis and xenograft research, and undertake personalized medicine. This review discusses studies that have applied CR technology to conduct breast cancer research.
Collapse
Affiliation(s)
- Danyal Daneshdoust
- Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA
| | - Mingjue Luo
- Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA
| | - Zaibo Li
- Departments of Pathology, Wexner Medical Center, Ohio State University, Columbus, OH 43210, USA
| | - Xiaokui Mo
- Department of Biostatics and Bioinformatics, Wexner Medical Center, Ohio State University, Columbus, OH 43210, USA
| | - Sahar Alothman
- Departments of Oncology and Medicine, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA
| | - Bhaskar Kallakury
- Departments of Pathology, Lombardi Comprehensive Cancer Center, Center for Cell Reprogramming, Georgetown University, Washington, DC 20057, USA
| | - Richard Schlegel
- Departments of Pathology, Lombardi Comprehensive Cancer Center, Center for Cell Reprogramming, Georgetown University, Washington, DC 20057, USA
| | - Junran Zhang
- Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA
- Department of Radiation Oncology, Wexner Medical Center, Ohio State University, Columbus, OH 43210, USA
| | - Deliang Guo
- Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA
- Department of Radiation Oncology, Wexner Medical Center, Ohio State University, Columbus, OH 43210, USA
| | - Priscilla A. Furth
- Departments of Oncology and Medicine, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA
| | - Xuefeng Liu
- Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA
- Departments of Pathology, Urology, and Radiation Oncology, Wexner Medical Center, Ohio State University, Columbus, OH 43210, USA
| | - Jenny Li
- Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
13
|
Frerichs LM, Frerichs B, Petzsch P, Köhrer K, Windolf J, Bittersohl B, Hoffmann MJ, Grotheer V. Tumorigenic effects of human mesenchymal stromal cells and fibroblasts on bladder cancer cells. Front Oncol 2023; 13:1228185. [PMID: 37781195 PMCID: PMC10534007 DOI: 10.3389/fonc.2023.1228185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/11/2023] [Indexed: 10/03/2023] Open
Abstract
Background Patients with muscle-invasive bladder cancer face a poor prognosis due to rapid disease progression and chemoresistance. Thus, there is an urgent need for a new therapeutic treatment. The tumor microenvironment (TME) has crucial roles in tumor development, growth, progression, and therapy resistance. TME cells may also survive standard treatment of care and fire up disease recurrence. However, whether specific TME components have tumor-promoting or tumor-inhibitory properties depends on cell type and cancer entity. Thus, a deeper understanding of the interaction mechanisms between the TME and cancer cells is needed to develop new cancer treatment approaches that overcome therapy resistance. Little is known about the function and interaction between mesenchymal stromal cells (MSC) or fibroblasts (FB) as TME components and bladder cancer cells. Methods We investigated the functional impact of conditioned media (CM) from primary cultures of different donors of MSC or FB on urothelial carcinoma cell lines (UCC) representing advanced disease stages, namely, BFTC-905, VMCUB-1, and UMUC-3. Underlying mechanisms were identified by RNA sequencing and protein analyses of cancer cells and of conditioned media by oncoarrays. Results Both FB- and MSC-CM had tumor-promoting effects on UCC. In some experiments, the impact of MSC-CM was more pronounced. CM augmented the aggressive phenotype of UCC, particularly of those with epithelial phenotype. Proliferation and migratory and invasive capacity were significantly increased; cisplatin sensitivity was reduced. RNA sequencing identified underlying mechanisms and molecules contributing to the observed phenotype changes. NRF2 and NF-κB signaling was affected, contributing to improved cisplatin detoxification. Likewise, interferon type I signaling was downregulated and regulators of epithelial mesenchymal transition (EMT) were increased. Altered protein abundance of CXCR4, hyaluronan receptor CD44, or TGFβ-signaling was induced by CM in cancer cells and may contribute to phenotypical changes. CM contained high levels of CCL2/MCP-1, MMPs, and interleukins which are well known for their impact on other cancer entities. Conclusions The CM of two different TME components had overlapping tumor-promoting effects and increased chemoresistance. We identified underlying mechanisms and molecules contributing to the aggressiveness of bladder cancer cells. These need to be further investigated for targeting the TME to improve cancer therapy.
Collapse
Affiliation(s)
- Lucie M. Frerichs
- Department of Orthopedics and Trauma Surgery, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
| | - Bastian Frerichs
- Department of Orthopedics and Trauma Surgery, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
| | - Patrick Petzsch
- Biological and Medical Research Center (BMFZ), Heinrich-Heine-University, Düsseldorf, Germany
| | - Karl Köhrer
- Biological and Medical Research Center (BMFZ), Heinrich-Heine-University, Düsseldorf, Germany
| | - Joachim Windolf
- Department of Orthopedics and Trauma Surgery, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
| | - Bernd Bittersohl
- Department of Orthopedics and Trauma Surgery, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
| | - Michèle J. Hoffmann
- Department of Urology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
| | - Vera Grotheer
- Department of Orthopedics and Trauma Surgery, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
| |
Collapse
|
14
|
Yang D, Liu J, Qian H, Zhuang Q. Cancer-associated fibroblasts: from basic science to anticancer therapy. Exp Mol Med 2023; 55:1322-1332. [PMID: 37394578 PMCID: PMC10394065 DOI: 10.1038/s12276-023-01013-0] [Citation(s) in RCA: 185] [Impact Index Per Article: 92.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 03/09/2023] [Accepted: 03/15/2023] [Indexed: 07/04/2023] Open
Abstract
Cancer-associated fibroblasts (CAFs), as a central component of the tumor microenvironment in primary and metastatic tumors, profoundly influence the behavior of cancer cells and are involved in cancer progression through extensive interactions with cancer cells and other stromal cells. Furthermore, the innate versatility and plasticity of CAFs allow their education by cancer cells, resulting in dynamic alterations in stromal fibroblast populations in a context-dependent manner, which highlights the importance of precise assessment of CAF phenotypical and functional heterogeneity. In this review, we summarize the proposed origins and heterogeneity of CAFs as well as the molecular mechanisms regulating the diversity of CAF subpopulations. We also discuss current strategies to selectively target tumor-promoting CAFs, providing insights and perspectives for future research and clinical studies involving stromal targeting.
Collapse
Affiliation(s)
- Dakai Yang
- Department of General Practice, Affiliated Hospital of Jiangsu University, Zhenjiang, People's Republic of China.
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, People's Republic of China.
| | - Jing Liu
- Microbiology and Immunity Department, Shanghai, People's Republic of China
- Collaborative Innovation Center for Biomedicines, Shanghai University of Medicine & Health Sciences, Shanghai, People's Republic of China
| | - Hui Qian
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, People's Republic of China.
| | - Qin Zhuang
- Department of General Practice, Affiliated Hospital of Jiangsu University, Zhenjiang, People's Republic of China.
| |
Collapse
|
15
|
Huang J, Zhang L, Lu A, Liang C. Organoids as Innovative Models for Bone and Joint Diseases. Cells 2023; 12:1590. [PMID: 37371060 DOI: 10.3390/cells12121590] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/08/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
Bone is one of the key components of the musculoskeletal system. Bone and joint disease are the fourth most widespread disease, in addition to cardiovascular disease, cancer, and diabetes, which seriously affect people's quality of life. Bone organoids seem to be a great model by which to promote the research method, which further could improve the treatment of bone and joint disease in the future. Here, we introduce the various bone and joint diseases and their biology, and the conditions of organoid culture, comparing the in vitro models among 2D, 3D, and organoids. We summarize the differing potential methods for culturing bone-related organoids from pluripotent stem cells, adult stem cells, or progenitor cells, and discuss the current and promising bone disease organoids for drug screening and precision medicine. Lastly, we discuss the challenges and difficulties encountered in the application of bone organoids and look to the future in order to present potential methods via which bone organoids might advance organoid construction and application.
Collapse
Affiliation(s)
- Jie Huang
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
- Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Lingqiang Zhang
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Aiping Lu
- Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai 200052, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou 510120, China
| | - Chao Liang
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
- Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| |
Collapse
|
16
|
Zhou Y, Ye Z, Wei W, Zhang M, Huang F, Li J, Cai C. Macrophages maintain mammary stem cell activity and mammary homeostasis via TNF-α-PI3K-Cdk1/Cyclin B1 axis. NPJ Regen Med 2023; 8:23. [PMID: 37130846 PMCID: PMC10154328 DOI: 10.1038/s41536-023-00296-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 04/20/2023] [Indexed: 05/04/2023] Open
Abstract
Adult stem cell niche is a special environment composed of a variety stromal cells and signals, which cooperatively regulate tissue development and homeostasis. It is of great interest to study the role of immune cells in niche. Here, we show that mammary resident macrophages regulate mammary epithelium cell division and mammary development through TNF-α-Cdk1/Cyclin B1 axis. In vivo, depletion of macrophages reduces the number of mammary basal cells and mammary stem cells (MaSCs), while increases mammary luminal cells. In vitro, we establish a three-dimensional culture system in which mammary basal cells are co-cultured with macrophages, and interestingly, macrophage co-culture promotes the formation of branched functional mammary organoids. Moreover, TNF-α produced by macrophages activates the intracellular PI3K/Cdk1/Cyclin B1 signaling in mammary cells, thereby maintaining the activity of MaSCs and the formation of mammary organoids. Together, these findings reveal the functional significance of macrophageal niche and intracellular PI3K/Cdk1/Cyclin B1 axis for maintaining MaSC activity and mammary homeostasis.
Collapse
Affiliation(s)
- Yu Zhou
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University; Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, 430071, China
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Zi Ye
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University; Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, 430071, China
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Wei Wei
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University; Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, 430071, China
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Mengna Zhang
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University; Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, 430071, China
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Fujing Huang
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University; Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, 430071, China
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Jinpeng Li
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University; Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, 430071, China.
| | - Cheguo Cai
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University; Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, 430071, China.
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China.
| |
Collapse
|
17
|
Benzon B, Marijan S, Pervan M, Čikeš Čulić V. Eta polycaprolactone (ε-PCL) implants appear to cause a partial differentiation of breast cancer lung metastasis in a murine model. BMC Cancer 2023; 23:343. [PMID: 37055783 PMCID: PMC10103376 DOI: 10.1186/s12885-023-10813-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 04/05/2023] [Indexed: 04/15/2023] Open
Abstract
BACKGROUND Cells in every epithelium can be roughly divided in three compartments: stem cell (SC) compartment, transient amplifying cell (TA) compartment and terminally differentiated (TD) compartment. Maturation of stem cells is characterized by epithelial stromal interaction and sequential maturational movement of stem cell's progeny through those compartments. In this work we hypothesize that providing an artificial stroma, which murine breast cancer metastatic cells can infiltrate, will induce their differentiation. METHODS BALB/c female mice were injected with 106 isogenic 4T1 breast cancer cells labeled with GFP. After 20 days primary tumors were removed, and artificial ε-PCL implants were implanted on the contralateral side. After 10 more days mice were sacrificed and implants along with lung tissue were harvested. Mice were divided in four groups: tumor removal with sham implantation surgery (n = 5), tumor removal with ε-PCL implant (n = 5), tumor removal with VEGF enriched ε-PCL implant (n = 7) and mice without tumor with VEGF enriched ε-PCL implant (n = 3). Differentiational status of GFP + cells was assessed by Ki67 and activated caspase 3 expression, thus dividing the population in SC like cells (Ki67+/dim aCasp3-), TA like cells (Ki67+/dim aCasp3+/dim) and TD like cells (Ki67- aCasp3+/dim) on flow cytometry. RESULTS Lung metastatic load was reduced by 33% in mice with simple ε-PCL implant when compared to tumor bearing group with no implant. Mice with VEGF enriched implants had 108% increase in lung metastatic load in comparison to tumor bearing mice with no implants. Likewise, amount of GFP + cells was higher in simple ε-PCL implant in comparison to VEGF enriched implants. Differentiation-wise, process of metastasizing to lungs reduces the average fraction of SC like cells when compared to primary tumor. This effect is made more uniform by both kinds of ε-PCL implants. The opposite process is mirrored in TA like cells compartment when it comes to averages. Effects of both types of implants on TD like cells were negligible. Furthermore, if gene expression signatures that mimic tissue compartments are analyzed in human breast cancer metastases, it turns out that TA signature is associated with increased survival probability. CONCLUSION ε-PCL implants without VEGF can reduce metastatic loads in lungs, after primary tumor removal. Both types of implants cause lung metastasis differentiation by shifting cancer cells from SC to TA compartment, leaving the TD compartment unaffected.
Collapse
Affiliation(s)
- Benjamin Benzon
- Department of Anatomy, Histology and Embryology, University of Split, School of Medicine, Split, Croatia.
| | - Sandra Marijan
- Department of Medical Chemistry and Biochemistry, University of Split, School of Medicine, Split, Croatia
| | - Matij Pervan
- Medical Studies Program, University of Split, School of Medicine, Split, Croatia
| | - Vedrana Čikeš Čulić
- Department of Medical Chemistry and Biochemistry, University of Split, School of Medicine, Split, Croatia
| |
Collapse
|
18
|
Demicheli R, Hrushesky WJM. Reimagining Cancer: Moving from the Cellular to the Tissue Level. Cancer Res 2023; 83:173-180. [PMID: 36264185 DOI: 10.1158/0008-5472.can-22-1601] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/25/2022] [Accepted: 10/13/2022] [Indexed: 01/20/2023]
Abstract
The current universally accepted explanation of cancer origin and behavior, the somatic mutation theory, is cell-centered and rooted in perturbation of gene function independent of the external environmental context. However, tumors consist of various epithelial and stromal cell populations temporally and spatially organized into an integrated neoplastic community, and they can have properties similar to normal tissues. Accordingly, we review specific normal cellular and tissue traits and behaviors with adaptive temporal and spatial self-organization that result in ordered patterns and structures. A few recent theories have described these tissue-level cancer behaviors, invoking a conceptual shift from the cellular level and highlighting the need for methodologic approaches based on the analysis of complex systems. We propose extending the analytical approach of regulatory networks to the tissue level and introduce the concept of "cancer attractors." These concepts require reevaluation of cancer imaging and investigational approaches and challenge the traditional reductionist approach of cancer molecular biology.
Collapse
Affiliation(s)
- Romano Demicheli
- Department of Biomedical and Clinical Sciences (DIBIC) "L. Sacco" & DSRC, LITA Vialba Campus, Università degli Studi di Milano, Milano, Italy
| | - William J M Hrushesky
- School of Medicine and College of Pharmacy, University of South Carolina, Columbia, South Carolina.,WJB Dorn VA Medical Center, Columbia, South Carolina
| |
Collapse
|
19
|
Lewis SM, Callaway MK, dos Santos CO. Clinical applications of 3D normal and breast cancer organoids: A review of concepts and methods. Exp Biol Med (Maywood) 2022; 247:2176-2183. [PMID: 36408534 PMCID: PMC9899987 DOI: 10.1177/15353702221131877] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
While mouse models and two-dimensional (2D) cell culture systems have dominated as research tools for cancer biology, three-dimensional (3D) cultures have gained traction as a new approach that retains features of in vivo biology within an in vitro system. Over time, 3D culture systems have evolved from spheroids and tumorspheres to organoids, and by doing so, they have become more complex and representative of original tissue. Such technological improvements have mostly benefited the study of heterogeneous solid tumors, like those found in breast cancer (BC), by providing an attractive avenue for scalable drug testing and biobank generation. Experimentally, organoids have been used in the BC field to dissect mechanisms related to cellular invasion and metastasis-and through co-culture methods-epithelial interactions with stromal and immune cells. In addition, organoid studies of wild-type mouse models and healthy donor samples have provided insight into the basic developmental cellular and molecular biology of the mammary gland, which may inform one's understanding of the initial stages of cancer development and progression.
Collapse
Affiliation(s)
- Steven M Lewis
- Cold Spring Harbor Laboratory, Cold
Spring Harbor, NY 11724, USA,Graduate Program in Genetics, Stony
Brook University, Stony Brook, NY 11794, USA
| | | | - Camila O dos Santos
- Cold Spring Harbor Laboratory, Cold
Spring Harbor, NY 11724, USA,Camila O dos Santos.
| |
Collapse
|
20
|
Wong KY, Cheung AH, Chen B, Chan WN, Yu J, Lo KW, Kang W, To KF. Cancer-associated fibroblasts in nonsmall cell lung cancer: From molecular mechanisms to clinical implications. Int J Cancer 2022; 151:1195-1215. [PMID: 35603909 PMCID: PMC9545594 DOI: 10.1002/ijc.34127] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 05/08/2022] [Accepted: 05/12/2022] [Indexed: 11/14/2022]
Abstract
Lung cancer is the common and leading cause of cancer death worldwide. The tumor microenvironment has been recognized to be instrumental in tumorigenesis. To have a deep understanding of the molecular mechanism of nonsmall cell lung carcinoma (NSCLC), cancer-associated fibroblasts (CAFs) have gained increasing research interests. CAFs belong to the crucial and dominant cell population in the tumor microenvironment to support the cancer cells. The interplay and partnership between cancer cells and CAFs contribute to each stage of tumorigenesis. CAFs exhibit prominent heterogeneity and secrete different kinds of cytokines and chemokines, growth factors and extracellular matrix proteins involved in cancer cell proliferation, invasion, metastasis and chemoresistance. Many studies focused on the protumorigenic functions of CAFs, yet many challenges about the heterogeneity of CAFS remain unresolved. This review comprehensively summarized the tumor-promoting role and molecular mechanisms of CAFs in NSCLC, including their origin, phenotypic changes and heterogeneity and their functional roles in carcinogenesis. Meanwhile, we also highlighted the updated molecular classifications based on the molecular features and functional roles of CAFs. With the development of cutting-edge platforms and further investigations of CAFs, novel therapeutic strategies for accurately targeting CAFs in NSCLC may be developed based on the increased understanding of the relevant molecular mechanisms.
Collapse
Affiliation(s)
- Kit Yee Wong
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational OncologyPrince of Wales Hospital, The Chinese University of Hong KongHong KongSARChina
- Institute of Digestive Disease, State Key Laboratory of Digestive Disease, The Chinese University of Hong KongHong KongSARChina
- Li Ka Shing Institute of Health Science, Sir Y.K. Pao Cancer Center, The Chinese University of Hong KongHong KongSARChina
| | - Alvin Ho‐Kwan Cheung
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational OncologyPrince of Wales Hospital, The Chinese University of Hong KongHong KongSARChina
- Institute of Digestive Disease, State Key Laboratory of Digestive Disease, The Chinese University of Hong KongHong KongSARChina
- Li Ka Shing Institute of Health Science, Sir Y.K. Pao Cancer Center, The Chinese University of Hong KongHong KongSARChina
| | - Bonan Chen
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational OncologyPrince of Wales Hospital, The Chinese University of Hong KongHong KongSARChina
- Institute of Digestive Disease, State Key Laboratory of Digestive Disease, The Chinese University of Hong KongHong KongSARChina
- Li Ka Shing Institute of Health Science, Sir Y.K. Pao Cancer Center, The Chinese University of Hong KongHong KongSARChina
| | - Wai Nok Chan
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational OncologyPrince of Wales Hospital, The Chinese University of Hong KongHong KongSARChina
- Institute of Digestive Disease, State Key Laboratory of Digestive Disease, The Chinese University of Hong KongHong KongSARChina
- Li Ka Shing Institute of Health Science, Sir Y.K. Pao Cancer Center, The Chinese University of Hong KongHong KongSARChina
| | - Jun Yu
- Institute of Digestive Disease, State Key Laboratory of Digestive Disease, The Chinese University of Hong KongHong KongSARChina
- Department of Medicine and TherapeuticsThe Chinese University of Hong KongHong KongSARChina
| | - Kwok Wai Lo
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational OncologyPrince of Wales Hospital, The Chinese University of Hong KongHong KongSARChina
- Institute of Digestive Disease, State Key Laboratory of Digestive Disease, The Chinese University of Hong KongHong KongSARChina
- Li Ka Shing Institute of Health Science, Sir Y.K. Pao Cancer Center, The Chinese University of Hong KongHong KongSARChina
| | - Wei Kang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational OncologyPrince of Wales Hospital, The Chinese University of Hong KongHong KongSARChina
- Institute of Digestive Disease, State Key Laboratory of Digestive Disease, The Chinese University of Hong KongHong KongSARChina
- Li Ka Shing Institute of Health Science, Sir Y.K. Pao Cancer Center, The Chinese University of Hong KongHong KongSARChina
| | - Ka Fai To
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational OncologyPrince of Wales Hospital, The Chinese University of Hong KongHong KongSARChina
- Institute of Digestive Disease, State Key Laboratory of Digestive Disease, The Chinese University of Hong KongHong KongSARChina
- Li Ka Shing Institute of Health Science, Sir Y.K. Pao Cancer Center, The Chinese University of Hong KongHong KongSARChina
| |
Collapse
|
21
|
Ren X, Chen W, Yang Q, Li X, Xu L. Patient-derived cancer organoids for drug screening: Basic technology and clinical application. J Gastroenterol Hepatol 2022; 37:1446-1454. [PMID: 35771719 DOI: 10.1111/jgh.15930] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/16/2022] [Accepted: 06/25/2022] [Indexed: 12/13/2022]
Abstract
Cancer organoids, a three-dimensional (3D) culture system of cancer cells derived from tumor tissues, recapitulate physiological structure of the parental tumor. Different tumor organoids have been established for a variety of tumor types, such as colorectal, liver, stomach, pancreatic and brain tumors. Some tumor organoid biobanks are built to screen and discover novel antitumor drug targets. Moreover, patients-derived tumor organoids (PDOs) could predict treatment response to chemoradiotherapy, targeted therapy and immunotherapy to provide guidance for personalized cancer therapy. In this review, we provide an updated overview of tumor organoid development, summarize general approach to establish tumor organoids, and discuss the application of anti-cancer drug screening based on tumor organoid and its application in personalized therapy. We also outline the opportunities and challenges for organoids to guide precision medicine.
Collapse
Affiliation(s)
- Xiaoxue Ren
- Department of Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Weikang Chen
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qingxia Yang
- Department of Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaoxing Li
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lixia Xu
- Department of Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
22
|
Sahu S, Albaugh ME, Martin BK, Patel NL, Riffle L, Mackem S, Kalen JD, Sharan SK. Growth factor dependency in mammary organoids regulates ductal morphogenesis during organ regeneration. Sci Rep 2022; 12:7200. [PMID: 35504930 PMCID: PMC9065107 DOI: 10.1038/s41598-022-11224-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 04/20/2022] [Indexed: 12/28/2022] Open
Abstract
Signaling pathways play an important role in cell fate determination in stem cells and regulate a plethora of developmental programs, the dysregulation of which can lead to human diseases. Growth factors (GFs) regulating these signaling pathways therefore play a major role in the plasticity of adult stem cells and modulate cellular differentiation and tissue repair outcomes. We consider murine mammary organoid generation from self-organizing adult stem cells as a tool to understand the role of GFs in organ development and tissue regeneration. The astounding capacity of mammary organoids to regenerate a gland in vivo after transplantation makes it a convenient model to study organ regeneration. We show organoids grown in suspension with minimal concentration of Matrigel and in the presence of a cocktail of GFs regulating EGF and FGF signaling can recapitulate key epithelial layers of adult mammary gland. We establish a toolkit utilizing in vivo whole animal imaging and ultrasound imaging combined with ex vivo approaches including tissue clearing and confocal imaging to study organ regeneration and ductal morphogenesis. Although the organoid structures were severely impaired in vitro when cultured in the presence of individual GFs, ex vivo imaging revealed ductal branching after transplantation albeit with significantly reduced number of terminal end buds. We anticipate these imaging modalities will open novel avenues to study mammary gland morphogenesis in vivo and can be beneficial for monitoring mammary tumor progression in pre-clinical and clinical settings.
Collapse
Affiliation(s)
- Sounak Sahu
- Mouse Cancer Genetics Program, Centre for Cancer Research, National Cancer Institute, Bldg- 560, Room 32-33, 1050 Boyles Street, Frederick, MD, 21702, USA
| | - Mary E Albaugh
- Mouse Cancer Genetics Program, Centre for Cancer Research, National Cancer Institute, Bldg- 560, Room 32-33, 1050 Boyles Street, Frederick, MD, 21702, USA
- Leidos Biomedical Sciences, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Betty K Martin
- Mouse Cancer Genetics Program, Centre for Cancer Research, National Cancer Institute, Bldg- 560, Room 32-33, 1050 Boyles Street, Frederick, MD, 21702, USA
- Leidos Biomedical Sciences, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Nimit L Patel
- Leidos Biomedical Sciences, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
- Small Animal Imaging Program, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Lisa Riffle
- Leidos Biomedical Sciences, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
- Small Animal Imaging Program, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Susan Mackem
- Cancer and Developmental Biology Laboratory, Centre for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | - Joseph D Kalen
- Leidos Biomedical Sciences, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
- Small Animal Imaging Program, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Shyam K Sharan
- Mouse Cancer Genetics Program, Centre for Cancer Research, National Cancer Institute, Bldg- 560, Room 32-33, 1050 Boyles Street, Frederick, MD, 21702, USA.
- Centre for Advanced Preclinical Research, National Cancer Institute, Bldg- 560, Room 32-33, 1050 Boyles Street, Frederick, MD, 21702, USA.
| |
Collapse
|
23
|
Bartlett AP, Harman RM, Weiss JR, Van de Walle GR. Establishment and characterization of equine mammary organoids using a method translatable to other non-traditional model species. Development 2022; 149:274742. [DOI: 10.1242/dev.200412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/21/2022] [Indexed: 11/20/2022]
Abstract
ABSTRACT
Mammary organoid (MaO) models are only available for a few traditional model organisms, limiting our ability to investigate mammary gland development and cancer across mammals. This study established equine mammary organoids (EqMaOs) from cryopreserved mammary tissue, in which mammary tissue fragments were isolated and embedded into a 3D matrix to produce EqMaOs. We evaluated viability, proliferation and budding capacity of EqMaOs at different time points during culture, showing that although the number of proliferative cells decreased over time, viability was maintained and budding increased. We further characterized EqMaOs based on expression of stem cell, myoepithelial and luminal markers, and found that EqMaOs expressed these markers throughout culture and that a bilayered structure as seen in vivo was recapitulated. We used the milk-stimulating hormone prolactin to induce milk production, which was verified by the upregulation of milk proteins, most notably β-casein. Additionally, we showed that our method is also applicable to additional non-traditional mammalian species, particularly domesticated animals such as cats, pigs and rabbits. Collectively, MaO models across species will be a useful tool for comparative developmental and cancer studies.
Collapse
Affiliation(s)
- Arianna P. Bartlett
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Rebecca M. Harman
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Jennifer R. Weiss
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Gerlinde R. Van de Walle
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
24
|
Caruso M, Huang S, Mourao L, Scheele CLGJ. A Mammary Organoid Model to Study Branching Morphogenesis. Front Physiol 2022; 13:826107. [PMID: 35399282 PMCID: PMC8988230 DOI: 10.3389/fphys.2022.826107] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/31/2022] [Indexed: 11/17/2022] Open
Abstract
Branching morphogenesis is the process that gives rise to branched structures in several organs, such as the lung, the kidney, and the mammary gland. Although morphologically well described, the exact mechanisms driving branch elongation and bifurcation are still poorly understood. Signaling cues from the stroma and extracellular matrix have an important role in driving branching morphogenesis. Organoid models derived from primary mammary epithelial cells have emerged as a powerful tool to gain insight into branching morphogenesis of the mammary gland. However, current available mammary organoid culture protocols result in morphologically simple structures which do not resemble the complex branched structure of the in vivo mammary gland. Supplementation of growth factors to mammary organoids cultured in basement membrane extract or collagen I were shown to induce bud formation and elongation but are not sufficient to drive true branching events. Here, we present an improved culture approach based on 3D primary mammary epithelial cell culture to develop branched organoids with a complex morphology. By alternating the addition of fibroblast growth factor 2 and epidermal growth factor to mammary organoids cultured in a basement membrane extract matrix enriched with collagen type I fibers, we obtain complex mammary organoid structures with primary, secondary, and tertiary branches over a period of 15-20 days. Mammary organoid structures grow >1 mm in size and show an elongated and branched shape which resembles in vivo mammary gland morphology. This novel branched mammary organoid model offers many possibilities to study the mechanisms of branching in the developing mammary gland.
Collapse
Affiliation(s)
- Marika Caruso
- Laboratory for Intravital Imaging and Dynamics of Tumor Progression, VIB Center for Cancer Biology, KU Leuven, Leuven, Belgium
| | - Sjanie Huang
- Laboratory for Intravital Imaging and Dynamics of Tumor Progression, VIB Center for Cancer Biology, KU Leuven, Leuven, Belgium
| | - Larissa Mourao
- Laboratory for Intravital Imaging and Dynamics of Tumor Progression, VIB Center for Cancer Biology, KU Leuven, Leuven, Belgium
- Department of Oncology, KU Leuven, Leuven, Belgium
| | - Colinda L. G. J. Scheele
- Laboratory for Intravital Imaging and Dynamics of Tumor Progression, VIB Center for Cancer Biology, KU Leuven, Leuven, Belgium
- Department of Oncology, KU Leuven, Leuven, Belgium
| |
Collapse
|
25
|
Synthetic developmental biology: Engineering approaches to guide multicellular organization. Stem Cell Reports 2022; 17:715-733. [PMID: 35276092 PMCID: PMC9023767 DOI: 10.1016/j.stemcr.2022.02.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 02/05/2022] [Accepted: 02/07/2022] [Indexed: 11/30/2022] Open
Abstract
Multicellular organisms of various complexities self-organize in nature. Organoids are in vitro 3D structures that display important aspects of the anatomy and physiology of their in vivo counterparts and that develop from pluripotent or tissue-specific stem cells through a self-organization process. In this review, we describe the multidisciplinary concept of “synthetic developmental biology” where engineering approaches are employed to guide multicellular organization in an experimental setting. We introduce a novel classification of engineering approaches based on the extent of microenvironmental manipulation applied to organoids. In the final section, we discuss how engineering tools might help overcome current limitations in organoid construction.
Collapse
|
26
|
Sumbal J, Koledova Z. Single Organoids Droplet-Based Staining Method for High-End 3D Imaging of Mammary Organoids. Methods Mol Biol 2022; 2471:259-269. [PMID: 35175602 DOI: 10.1007/978-1-0716-2193-6_14] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In the last decade, organoids became a tremendously popular technique in developmental and cancer biology for their high pathophysiological relevance to in vivo models with the advantage of easier manipulation, real-time observation, potential for high-throughput studies, and reduced ethical issues. Among other fundamental biological questions, mammary organoids have helped to reveal mechanisms of mammary epithelial morphogenesis, mammary stem cell potential, regulation of lineage specification, mechanisms of breast cancer invasion or resistance to therapy, and their regulation by stromal microenvironment. To exploit the potential of organoid technology to the fullest, together with optimal organoid culture protocols, visualization of organoid architecture and composition in high resolution in three dimensions (3D) is required. Whole-mount imaging of immunolabeled organoids enables preservation of the 3D cellular context, but conventional confocal microscopy of organoid cultures struggles with the large organoid sample size and relatively long distance from the objective to the organoid due to the 3D extracellular matrix (ECM) that surrounds the organoid. We have overcome these issues by physical separation of single organoids with their immediate stroma from the bulk ECM. Here we provide a detail protocol for the procedure, which entails single organoid collection and droplet-based staining and clearing to allow visualization of organoids in the greatest detail.
Collapse
Affiliation(s)
- Jakub Sumbal
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Zuzana Koledova
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.
| |
Collapse
|
27
|
Li C, Teixeira AF, Zhu HJ, Ten Dijke P. Cancer associated-fibroblast-derived exosomes in cancer progression. Mol Cancer 2021; 20:154. [PMID: 34852849 PMCID: PMC8638446 DOI: 10.1186/s12943-021-01463-y] [Citation(s) in RCA: 193] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 11/11/2021] [Indexed: 02/08/2023] Open
Abstract
To identify novel cancer therapies, the tumor microenvironment (TME) has received a lot of attention in recent years in particular with the advent of clinical successes achieved by targeting immune checkpoint inhibitors (ICIs). The TME consists of multiple cell types that are embedded in the extracellular matrix (ECM), including immune cells, endothelial cells and cancer associated fibroblasts (CAFs), which communicate with cancer cells and each other during tumor progression. CAFs are a dominant and heterogeneous cell type within the TME with a pivotal role in controlling cancer cell invasion and metastasis, immune evasion, angiogenesis and chemotherapy resistance. CAFs mediate their effects in part by remodeling the ECM and by secreting soluble factors and extracellular vesicles. Exosomes are a subtype of extracellular vesicles (EVs), which contain various biomolecules such as nucleic acids, lipids, and proteins. The biomolecules in exosomes can be transmitted from one to another cell, and thereby affect the behavior of the receiving cell. As exosomes are also present in circulation, their contents can also be explored as biomarkers for the diagnosis and prognosis of cancer patients. In this review, we concentrate on the role of CAFs-derived exosomes in the communication between CAFs and cancer cells and other cells of the TME. First, we introduce the multiple roles of CAFs in tumorigenesis. Thereafter, we discuss the ways CAFs communicate with cancer cells and interplay with other cells of the TME, and focus in particular on the role of exosomes. Then, we elaborate on the mechanisms by which CAFs-derived exosomes contribute to cancer progression, as well as and the clinical impact of exosomes. We conclude by discussing aspects of exosomes that deserve further investigation, including emerging insights into making treatment with immune checkpoint inhibitor blockade more efficient.
Collapse
Affiliation(s)
- Chao Li
- Oncode Institute and Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | - Adilson Fonseca Teixeira
- Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Hong-Jian Zhu
- Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Peter Ten Dijke
- Oncode Institute and Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands.
| |
Collapse
|
28
|
Mohan SC, Lee TY, Giuliano AE, Cui X. Current Status of Breast Organoid Models. Front Bioeng Biotechnol 2021; 9:745943. [PMID: 34805107 PMCID: PMC8602090 DOI: 10.3389/fbioe.2021.745943] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 10/22/2021] [Indexed: 11/28/2022] Open
Abstract
Breast cancer (BC) is the most frequently diagnosed malignancy among women globally. Although mouse models have been critical in advancing the knowledge of BC tumorigenesis and progression, human breast models comprising the breast tissue microenvironment are needed to help elucidate the underlying mechanisms of BC risk factors. As such, it is essential to identify an ex vivo human breast tissue mimetic model that can accurately pinpoint the effects of these factors in BC development. While two-dimensional models have been invaluable, they are not suitable for studying patient-specific tumor biology and drug response. Recent developments in three-dimensional (3D) models have led to the prominence of organized structures grown in a 3D environment called “organoids.” Breast organoids can accurately recapitulate the in vivo breast microenvironment and have been used to examine factors that affect signaling transduction, gene expression, and tissue remodeling. In this review, the applications, components, and protocols for development of breast organoids are discussed. We summarize studies that describe the utility of breast organoids, including in the study of normal mammary gland development and tumorigenesis. Finally, we provide an overview of protocols for development of breast organoids, and the advantages and disadvantages of different techniques in studies are described. The included studies have shown that breast organoids will continue to serve as a crucial platform for understanding of progression of BC tumors and the testing of novel therapeutics.
Collapse
Affiliation(s)
- Srivarshini Cherukupalli Mohan
- Department of Surgery, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Tian-Yu Lee
- Department of Surgery, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Armando E Giuliano
- Department of Surgery, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Xiaojiang Cui
- Department of Surgery, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| |
Collapse
|
29
|
Arras J, Thomas KS, Myers PJ, Cross AM, Osei AD, Vazquez GE, Atkins KA, Conaway MR, Jones MK, Lazzara MJ, Bouton AH. Breast Cancer Antiestrogen Resistance 3 (BCAR3) promotes tumor growth and progression in triple-negative breast cancer. Am J Cancer Res 2021; 11:4768-4787. [PMID: 34765292 PMCID: PMC8569345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/09/2021] [Indexed: 06/13/2023] Open
Abstract
Triple-Negative Breast Cancers (TNBCs) constitute roughly 10-20% of breast cancers and are associated with poor clinical outcomes. Previous work from our laboratory and others has determined that the cytoplasmic adaptor protein Breast Cancer Antiestrogen Resistance 3 (BCAR3) is an important promoter of cell motility and invasion of breast cancer cells. In this study, we use both in vivo and in vitro approaches to extend our understanding of BCAR3 function in TNBC. We show that BCAR3 is upregulated in ductal carcinoma in situ (DCIS) and invasive carcinomas compared to normal mammary tissue, and that survival of TNBC patients whose tumors contained elevated BCAR3 mRNA is reduced relative to individuals whose tumors had less BCAR3 mRNA. Using mouse orthotopic tumor models, we further show that BCAR3 is required for efficient TNBC tumor growth. Analysis of publicly available RNA expression databases revealed that MET receptor signaling is strongly correlated with BCAR3 mRNA expression. A functional role for BCAR3-MET coupling is supported by data showing that both proteins participate in a single pathway to control proliferation and migration of TNBC cells. Interestingly, the mechanism through which this functional interaction operates appears to differ in different genetic backgrounds of TNBC, stemming in one case from potential differences in the strength of downstream signaling by the MET receptor and in another from BCAR3-dependent activation of an autocrine loop involving the production of HGF mRNA. Together, these data open the possibility for new approaches to personalized therapy for individuals with TNBCs.
Collapse
Affiliation(s)
- Janet Arras
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of Medicine and Cancer CenterCharlottesville, VA 22908, USA
| | - Keena S Thomas
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of Medicine and Cancer CenterCharlottesville, VA 22908, USA
| | - Paul J Myers
- Department of Chemical Engineering, University of VirginiaCharlottesville, VA 22904, USA
| | - Allison M Cross
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of Medicine and Cancer CenterCharlottesville, VA 22908, USA
| | - Amare D Osei
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of Medicine and Cancer CenterCharlottesville, VA 22908, USA
| | - Gabriel E Vazquez
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of Medicine and Cancer CenterCharlottesville, VA 22908, USA
| | - Kristen A Atkins
- Department of Pathology, University of Virginia School of Medicine and Cancer CenterCharlottesville, VA 22908, USA
| | - Mark R Conaway
- Department of Public Health Sciences, University of Virginia School of Medicine and Cancer CenterCharlottesville, VA 22908, USA
| | - Marieke K Jones
- Claude Moore Health Sciences Library, University of VirginiaCharlottesville, VA 22908, USA
| | - Matthew J Lazzara
- Department of Chemical Engineering, University of VirginiaCharlottesville, VA 22904, USA
| | - Amy H Bouton
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of Medicine and Cancer CenterCharlottesville, VA 22908, USA
| |
Collapse
|
30
|
Cisterna B, Costanzo M, Lacavalla MA, Galiè M, Angelini O, Tabaracci G, Malatesta M. Low Ozone Concentrations Differentially Affect the Structural and Functional Features of Non-Activated and Activated Fibroblasts In Vitro. Int J Mol Sci 2021; 22:10133. [PMID: 34576295 PMCID: PMC8466365 DOI: 10.3390/ijms221810133] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 09/13/2021] [Accepted: 09/17/2021] [Indexed: 12/13/2022] Open
Abstract
Oxygen-ozone (O2-O3) therapy is increasingly applied as a complementary/adjuvant treatment for several diseases; however, the biological mechanisms accounting for the efficacy of low O3 concentrations need further investigations to understand the possibly multiple effects on the different cell types. In this work, we focused our attention on fibroblasts as ubiquitous connective cells playing roles in the body architecture, in the homeostasis of tissue-resident cells, and in many physiological and pathological processes. Using an established human fibroblast cell line as an in vitro model, we adopted a multimodal approach to explore a panel of cell structural and functional features, combining light and electron microscopy, Western blot analysis, real-time quantitative polymerase chain reaction, and multiplex assays for cytokines. The administration of O2-O3 gas mixtures induced multiple effects on fibroblasts, depending on their activation state: in non-activated fibroblasts, O3 stimulated proliferation, formation of cell surface protrusions, antioxidant response, and IL-6 and TGF-β1 secretion, while in LPS-activated fibroblasts, O3 stimulated only antioxidant response and cytokines secretion. Therefore, the low O3 concentrations used in this study induced activation-like responses in non-activated fibroblasts, whereas in already activated fibroblasts, the cell protective capability was potentiated.
Collapse
Affiliation(s)
- Barbara Cisterna
- Department of Neurosciences, Biomedicine and Movement Sciences, Anatomy and Histology Section, University of Verona, Strada Le Grazie 8, I-37134 Verona, Italy; (B.C.); (M.C.); (M.A.L.); (M.G.)
| | - Manuela Costanzo
- Department of Neurosciences, Biomedicine and Movement Sciences, Anatomy and Histology Section, University of Verona, Strada Le Grazie 8, I-37134 Verona, Italy; (B.C.); (M.C.); (M.A.L.); (M.G.)
| | - Maria Assunta Lacavalla
- Department of Neurosciences, Biomedicine and Movement Sciences, Anatomy and Histology Section, University of Verona, Strada Le Grazie 8, I-37134 Verona, Italy; (B.C.); (M.C.); (M.A.L.); (M.G.)
| | - Mirco Galiè
- Department of Neurosciences, Biomedicine and Movement Sciences, Anatomy and Histology Section, University of Verona, Strada Le Grazie 8, I-37134 Verona, Italy; (B.C.); (M.C.); (M.A.L.); (M.G.)
| | - Osvaldo Angelini
- San Rocco Clinic, Via Monsignor G.V. Moreni 95, I-25018 Montichari, Italy; (O.A.); (G.T.)
| | - Gabriele Tabaracci
- San Rocco Clinic, Via Monsignor G.V. Moreni 95, I-25018 Montichari, Italy; (O.A.); (G.T.)
| | - Manuela Malatesta
- Department of Neurosciences, Biomedicine and Movement Sciences, Anatomy and Histology Section, University of Verona, Strada Le Grazie 8, I-37134 Verona, Italy; (B.C.); (M.C.); (M.A.L.); (M.G.)
| |
Collapse
|
31
|
Dynamic Expression of Membrane Type 1-Matrix Metalloproteinase (Mt1-mmp/Mmp14) in the Mouse Embryo. Cells 2021; 10:cells10092448. [PMID: 34572097 PMCID: PMC8465375 DOI: 10.3390/cells10092448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/03/2021] [Accepted: 09/15/2021] [Indexed: 01/13/2023] Open
Abstract
MT1-MMP/MMP14 belongs to a subgroup of the matrix metalloproteinases family that presents a transmembrane domain, with a cytosolic tail and the catalytic site exposed to the extracellular space. Deficient mice for this enzyme result in early postnatal death and display severe defects in skeletal, muscle and lung development. By using a transgenic line expressing the LacZ reporter under the control of the endogenous Mt1-mmp promoter, we reported a dynamic spatiotemporal expression pattern for Mt1-mmp from early embryonic to perinatal stages during cardiovascular development and brain formation. Thus, Mt1-mmp shows expression in the endocardium of the heart and the truncus arteriosus by E8.5, and is also strongly detected during vascular system development as well as in endothelial cells. In the brain, LacZ reporter expression was detected in the olfactory bulb, the rostral cerebral cortex and the caudal mesencephalic tectum. LacZ-positive cells were observed in neural progenitors of the spinal cord, neural crest cells and the intersomitic region. In the limb, Mt1-mmp expression was restricted to blood vessels, cartilage primordium and muscles. Detection of the enzyme was confirmed by Western blot and immunohistochemical analysis. We suggest novel functions for this metalloproteinase in angiogenesis, endocardial formation and vascularization during organogenesis. Moreover, Mt1-mmp expression revealed that the enzyme may contribute to heart, muscle and brain throughout development.
Collapse
|
32
|
Biofabrication of advanced in vitro and ex vivo cancer models for disease modeling and drug screening. FUTURE DRUG DISCOVERY 2021. [DOI: 10.4155/fdd-2020-0034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Bioengineered in vitro models have advanced from 2D cultures and simple 3D cell aggregates to more complex organoids and organ-on-a-chip platforms. This shift has been substantial in cancer research; while simple systems remain in use, multi-tissue type tumor and tissue chips and patient-derived tumor organoids have grown rapidly. These more advanced models offer new tools to cancer researchers based on human tumor physiology and the potential for interactions with nontumor tissue physiology while avoiding critical differences between human and animal biology. In this focused review, the authors discuss the importance of organoid and organ-on-a-chip platforms, with a particular focus on modeling cancer, to highlight oncology-focused in vitro model platform technologies that improve upon the simple 2D cultures and 3D spheroid models of the past.
Collapse
|
33
|
P2Y2 promotes fibroblasts activation and skeletal muscle fibrosis through AKT, ERK, and PKC. BMC Musculoskelet Disord 2021; 22:680. [PMID: 34380439 PMCID: PMC8359595 DOI: 10.1186/s12891-021-04569-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 07/22/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Skeletal muscle atrophy and fibrosis are pathological conditions that contribute to morbidity in numerous conditions including aging, cachexia, and denervation. Muscle atrophy is characterized as reduction of muscle fiber size and loss of muscle mass while muscle fibrosis is due to fibroblasts activation and excessive production of extracellular matrix. Purinergic receptor P2Y2 has been implicated in fibrosis. This study aims to elucidate the roles of P2Y2 in sleketal muscle atrophy and fibrosis. METHODS Primary muscle fibroblasts were isolated from wild type and P2Y2 knockout (KO) mice and their proliferating and migrating abilities were assessed by CCK-8 and Transwell migration assays respectively. Fibroblasts were activated with TGF-β1 and assessed by western blot of myofibroblast markers including α-SMA, CTGF, and collagen I. Muscle atrophy and fibrosis were induced by transection of distal sciatic nerve and assessed using Masson staining. RESULTS P2Y2 KO fibroblasts proliferated and migrated significantly slower than WT fibroblasts with or without TGF-β1.The proliferation and ECM production were enhanced by P2Y2 agonist PSB-1114 and inhibited by antagonist AR-C118925. TGF-β1 induced fibrotic activation was abolished by P2Y2 ablation and inhibited by AKT, ERK, and PKC inhibitors. Ablation of P2Y2 reduced denervation induced muscle atrophy and fibrosis. CONCLUSIONS P2Y2 is a promoter of skeletal muscle atrophy and activation of fibroblasts after muscle injury, which signaling through AKT, ERK and PKC. P2Y2 could be a potential intervention target after muscle injury.
Collapse
|
34
|
Aggarwal V, Tuli HS, Varol M, Tuorkey M, Sak K, Parashar NC, Barwal TS, Sharma U, Iqubal A, Parashar G, Jain A. NOTCH signaling: Journey of an evolutionarily conserved pathway in driving tumor progression and its modulation as a therapeutic target. Crit Rev Oncol Hematol 2021; 164:103403. [PMID: 34214610 DOI: 10.1016/j.critrevonc.2021.103403] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/15/2021] [Accepted: 06/15/2021] [Indexed: 02/06/2023] Open
Abstract
Notch signaling, an evolutionarily conserved signaling cascade, is critical for normal biological processes of cell differentiation, development, and homeostasis. Deregulation of the Notch signaling pathway has been associated with tumor progression. Thus, Notch presents as an interesting target for a variety of cancer subtypes and its signaling mechanisms have been actively explored from the therapeutic viewpoint. However, besides acting as an oncogene, Notch pathway can possess also tumor suppressive functions, being implicated in inhibition of cancer development. Given such interesting dual and dynamic role of Notch, in this review, we discuss how the evolutionarily conserved Notch signaling pathway drives hallmarks of tumor progression and how it could be targeted for a promising treatment and management of cancer. In addition, the up-to-date information on the inhibitors currently under clinical trials for Notch targets is presented along with how NOTCH inhibitors can be used in conjunction with established chemotherapy/radiotherapy regimes.
Collapse
Affiliation(s)
- Vaishali Aggarwal
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, USA.
| | - Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, 133 207, Haryana, India.
| | - Mehmet Varol
- Department of Molecular Biology and Genetics, Faculty of Science, Mugla Sitki Kocman University, Mugla, TR48000, Turkey.
| | - Muobarak Tuorkey
- Division of Physiology, Zoology Department, Faculty of Science, Damanhour University, Damanhour, Egypt.
| | | | - Nidarshana Chaturvedi Parashar
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, 133 207, Haryana, India.
| | - Tushar Singh Barwal
- Department of Zoology, Central University of Punjab, Village-Ghudda, 151 401, Punjab, India.
| | - Uttam Sharma
- Department of Zoology, Central University of Punjab, Village-Ghudda, 151 401, Punjab, India.
| | - Ashif Iqubal
- Department of Pharmacology, School of Pharmaceutical Education and Research (Formerly Faculty of Pharmacy), Jamia Hamdard (Deemed to be University), Delhi, India.
| | - Gaurav Parashar
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, 133 207, Haryana, India.
| | - Aklank Jain
- Department of Zoology, Central University of Punjab, Village-Ghudda, 151 401, Punjab, India.
| |
Collapse
|
35
|
Single-cell RNA sequencing of freshly isolated bovine milk cells and cultured primary mammary epithelial cells. Sci Data 2021; 8:177. [PMID: 34267220 PMCID: PMC8282601 DOI: 10.1038/s41597-021-00972-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 06/07/2021] [Indexed: 11/08/2022] Open
Abstract
Bovine mammary function at molecular level is often studied using mammary tissue or primary bovine mammary epithelial cells (pbMECs). However, bulk tissue and primary cells are heterogeneous with respect to cell populations, adding further transcriptional variation in addition to genetic background. Thus, understanding of the variation in gene expression profiles of cell populations and their effect on function are limited. To investigate the mononuclear cell composition in bovine milk, we analyzed a single-cell suspension from a milk sample. Additionally, we harvested cultured pbMECs to characterize gene expression in a homogeneous cell population. Using the Drop-seq technology, we generated single-cell RNA datasets of somatic milk cells and pbMECs. The final datasets after quality control filtering contained 7,119 and 10,549 cells, respectively. The pbMECs formed 14 indefinite clusters displaying intrapopulation heterogeneity, whereas the milk cells formed 14 more distinct clusters. Our datasets constitute a molecular cell atlas that provides a basis for future studies of milk cell composition and gene expression, and could serve as reference datasets for milk cell analysis.
Collapse
|
36
|
Slepicka PF, Somasundara AVH, Dos Santos CO. The molecular basis of mammary gland development and epithelial differentiation. Semin Cell Dev Biol 2021; 114:93-112. [PMID: 33082117 PMCID: PMC8052380 DOI: 10.1016/j.semcdb.2020.09.014] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 09/28/2020] [Accepted: 09/30/2020] [Indexed: 02/07/2023]
Abstract
Our understanding of the molecular events underpinning the development of mammalian organ systems has been increasing rapidly in recent years. With the advent of new and improved next-generation sequencing methods, we are now able to dig deeper than ever before into the genomic and epigenomic events that play critical roles in determining the fates of stem and progenitor cells during the development of an embryo into an adult. In this review, we detail and discuss the genes and pathways that are involved in mammary gland development, from embryogenesis, through maturation into an adult gland, to the role of pregnancy signals in directing the terminal maturation of the mammary gland into a milk producing organ that can nurture the offspring. We also provide an overview of the latest research in the single-cell genomics of mammary gland development, which may help us to understand the lineage commitment of mammary stem cells (MaSCs) into luminal or basal epithelial cells that constitute the mammary gland. Finally, we summarize the use of 3D organoid cultures as a model system to study the molecular events during mammary gland development. Our increased investigation of the molecular requirements for normal mammary gland development will advance the discovery of targets to predict breast cancer risk and the development of new breast cancer therapies.
Collapse
Affiliation(s)
- Priscila Ferreira Slepicka
- Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | | | - Camila O Dos Santos
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
37
|
Monika P, Waiker PV, Chandraprabha MN, Rangarajan A, Murthy KNC. Myofibroblast progeny in wound biology and wound healing studies. Wound Repair Regen 2021; 29:531-547. [PMID: 34009713 DOI: 10.1111/wrr.12937] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/15/2021] [Accepted: 05/07/2021] [Indexed: 12/19/2022]
Abstract
Fibroblasts and myofibroblasts play a myriad of important roles in human tissue function, especially in wound repair and healing. Among all cells, fibroblasts are group of cells that decide the status of wound as they maintain tissue homeostasis. Currently, the increase in the deleterious effects of chronic wound and their morbidity rate has necessitated the need to understand the influence of fibroblasts and myofibroblasts, which chiefly originate locally from tissue-resident fibroblasts to address the same. Wound pathophysiology is complex, herein, we have discussed fibroblast and myofibroblast heterogeneity in skin and different organs by understanding the phenotypical and functional properties of each of its sub-populations in the process of wound healing. Recent advancements in fibroblast activation, differentiation to myofibroblasts, proliferation and migration are discussed in detail. Fibroblasts and myofibroblasts are key players in wound healing and wound remodelling, respectively, and their significance in wound repair is discussed. An increased understanding of their biology during wound healing also gives an opportunity to explore more of fibroblast and myofibroblast focused therapies to treat chronic wounds which are clinical challenges. In this regard, in the current review, we have described the different methods for isolation of primary fibroblasts and myofibroblasts from both animal models and humans, and their characterization. Additionally, we have also provided details on possible molecular targets for better understanding of prognosis, diagnosis and treatment of chronic wounds. Information will help both researchers and clinicians in providing molecular insight that enable them for effective chronic wound management. The knowledge of intimate dialogue between the fibroblast, sub-populations like, myofibroblast and their microenvironment, will serve useful in determining novel, efficient and specific therapeutic targets to treat pathological wound conditions.
Collapse
Affiliation(s)
- Prakash Monika
- Department of Biotechnology, M. S. Ramaiah Institute of Technology, Bangalore, India
| | | | | | - Annapoorni Rangarajan
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India
| | | |
Collapse
|
38
|
Morato A, Martignani E, Miretti S, Baratta M, Accornero P. External and internal EGFR-activating signals drive mammary epithelial cells proliferation and viability. Mol Cell Endocrinol 2021; 520:111081. [PMID: 33181234 DOI: 10.1016/j.mce.2020.111081] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 10/20/2020] [Accepted: 11/09/2020] [Indexed: 12/24/2022]
Abstract
During puberty, the mammary gland undergoes an intense growth, dependent on the interplay between the Epidermal Growth Factor Receptor (EGFR) in the stroma and different mammary epithelial receptors. We hypothesize that EGFR expressed in the mammary epithelium also has a role in puberty and the epithelial cells can self-sustain by EGFR-mediated autocrine signaling. We adopted mammary cell lines from different species, as in vitro model for the epithelium, and we observed that EGFR-signaling positively affects their survival and proliferation. Once deprived of external growth factors, mammary cells still showed strong Erk 1/2 phosphorylation, abolished upon EGFR inhibition, coupled with a further reduction in survival and proliferation. Based on gene expression analysis, three EGFR-ligands (AREG, EREG and HBEGF) are likely to mediate this autocrine signaling. In conclusion, internal EGFR-activating signals sustain mammary epithelial cell proliferation and survival in vitro.
Collapse
Affiliation(s)
- Alessia Morato
- Department of Veterinary Sciences, University of Turin, Grugliasco, TO, Italy
| | - Eugenio Martignani
- Department of Veterinary Sciences, University of Turin, Grugliasco, TO, Italy
| | - Silvia Miretti
- Department of Veterinary Sciences, University of Turin, Grugliasco, TO, Italy
| | - Mario Baratta
- Department of Veterinary Sciences, University of Turin, Grugliasco, TO, Italy
| | - Paolo Accornero
- Department of Veterinary Sciences, University of Turin, Grugliasco, TO, Italy.
| |
Collapse
|
39
|
The not-so-sweet side of sugar: Influence of the microenvironment on the processes that unleash cancer. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165960. [PMID: 32919034 DOI: 10.1016/j.bbadis.2020.165960] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 08/31/2020] [Accepted: 09/01/2020] [Indexed: 12/30/2022]
Abstract
The role of "aerobic glycolysis" in cancer has been examined often in the past. Results from those studies, most of which were performed on two dimensional conditions (2D, tissue culture plastic), demonstrate that aerobic glycolysis occurs as a consequence of oncogenic events. These oncogenic events often drive malignant cell growth and survival. Although 2D based experiments are useful in elucidating the molecular mechanisms of oncogenesis, they fail to take contributions of the extracellular microenvironment into account. Indeed we, and others, have shown that the cellular microenvironment is essential in regulating processes that induce and/or suppress the malignant phenotype/properties. This regulation between the cell and its microenvironment is both dynamic and reciprocal and involves the integration of cellular signaling networks in the right context. Therefore, given our previous demonstration of the effect of the microenvironment including tissue architecture and media composition on gene expression and the integration of signaling events observed in three-dimension (3D), we hypothesized that glucose uptake and metabolism must also be essential components of the tissue's signal "integration plan" - that is, if uptake and metabolism of glucose were hyperactivated, the canonical oncogenic pathways should also be similarly activated. This hypothesis, if proven true, suggests that direct inhibition of glucose metabolism in cancer cells should either suppress or revert the malignant phenotype in 3D. Here, we review the up-to-date progress that has been made towards understanding the role that glucose metabolism plays in oncogenesis and re-establishing basally polarized acini in malignant human breast cells.
Collapse
|
40
|
Padmanaban V, Grasset EM, Neumann NM, Fraser AK, Henriet E, Matsui W, Tran PT, Cheung KJ, Georgess D, Ewald AJ. Organotypic culture assays for murine and human primary and metastatic-site tumors. Nat Protoc 2020; 15:2413-2442. [PMID: 32690957 PMCID: PMC8202162 DOI: 10.1038/s41596-020-0335-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 04/16/2020] [Indexed: 01/20/2023]
Abstract
Cancer invasion and metastasis are challenging to study in vivo since they occur deep inside the body over extended time periods. Organotypic 3D culture of fresh tumor tissue enables convenient real-time imaging, genetic and microenvironmental manipulation and molecular analysis. Here, we provide detailed protocols to isolate and culture heterogenous organoids from murine and human primary and metastatic site tumors. The time required to isolate organoids can vary based on the tissue and organ type but typically takes <7 h. We describe a suite of assays that model specific aspects of metastasis, including proliferation, survival, invasion, dissemination and colony formation. We also specify comprehensive protocols for downstream applications of organotypic cultures that will allow users to (i) test the role of specific genes in regulating various cellular processes, (ii) distinguish the contributions of several microenvironmental factors and (iii) test the effects of novel therapeutics.
Collapse
Affiliation(s)
- Veena Padmanaban
- Department of Cell Biology, Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Eloise M. Grasset
- Department of Cell Biology, Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Neil M. Neumann
- Department of Cell Biology, Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Andrew K. Fraser
- Department of Cell Biology, Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Elodie Henriet
- Department of Cell Biology, Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - William Matsui
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Phuoc T. Tran
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Radiation Oncology and Molecular Radiation Sciences, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Kevin J. Cheung
- Department of Cell Biology, Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA,Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Dan Georgess
- Department of Cell Biology, Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA,Department of Natural Sciences, School of Arts & Sciences, Lebanese American University, Beirut, Lebanon
| | - Andrew J. Ewald
- Department of Cell Biology, Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA,Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Author for Correspondence: Andrew J. Ewald, 855 N. Wolfe Street, Rangos 452, Baltimore, MD 21205, Tel: 410-614-9288,
| |
Collapse
|
41
|
Wang T, Wang L, Wang G, Zhuang Y. Leveraging and manufacturing in vitro multicellular spheroid-based tumor cell model as a preclinical tool for translating dysregulated tumor metabolism into clinical targets and biomarkers. BIORESOUR BIOPROCESS 2020. [DOI: 10.1186/s40643-020-00325-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
42
|
Chauhan G, Mehta A, Gupta S. Stromal-AR influences the growth of epithelial cells in the development of benign prostate hyperplasia. Mol Cell Biochem 2020; 471:129-142. [PMID: 32504365 DOI: 10.1007/s11010-020-03773-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 05/31/2020] [Indexed: 11/24/2022]
Abstract
Activation of epithelial-AR signaling is identified as the major cause of hyperproliferation of the cells during benign and malignant prostate conditions. However, the contribution of stromal-AR is also precarious due to its secretory actions that contribute to the progression of benign and malignant tumors. The present study was aimed to understand the influence of stromal-AR mediated actions on epithelial cells during BPH condition. The secretome (conditioned media-CM) was collected from AR agonist (testosterone-propionate-TP) and antagonist (Nilutamide-Nil) treated BPH patient-derived stromal cells and exposed to BPH epithelial cells. Epithelial cells exhibited increased cell proliferation with the treatment of CM derived from TP-treated stromal cells (TP-CM) but did not support the clonogenic growth of BPH epithelial cells. However, CM derived from Nil-treated stromal cells (Nil-CM) depicted delayed and aggressive BPH epithelial cell proliferation with increased clonogenicity of BPH epithelial cells. Further, decreased AR levels with increased cMyc transcripts and pAkt levels also validated the clonogenic transformation under the paracrine influence of inhibition of stromal-AR. Moreover, the CM of stromal-AR activation imparted positive regulation of basal/progenitor pool through LGR4, β-Catenin, and ΔNP63α expression. Hence, the present study highlighted the restricted disease progression and retains the basal/progenitor state of BPH epithelial cells through the activation of stromal-AR. On the contrary, AR-independent aggressive BPH epithelial cell growth due to paracrine action of loss stromal-AR directs us to reform AR pertaining treatment regimes for better clinical outcomes.
Collapse
Affiliation(s)
- Gaurav Chauhan
- Department of Biochemistry, The M. S. University of Baroda, Vadodara, Gujarat, 390002, India
| | - Avani Mehta
- Department of Biochemistry, The M. S. University of Baroda, Vadodara, Gujarat, 390002, India.,Division of Biological Sciences, Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, 560012, India
| | - Sarita Gupta
- Department of Biochemistry, The M. S. University of Baroda, Vadodara, Gujarat, 390002, India.
| |
Collapse
|
43
|
Sakib S, Goldsmith T, Voigt A, Dobrinski I. Testicular organoids to study cell-cell interactions in the mammalian testis. Andrology 2019; 8:835-841. [PMID: 31328437 DOI: 10.1111/andr.12680] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 06/03/2019] [Accepted: 06/19/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Over the last ten years, three-dimensional organoid culture has garnered renewed interest, as organoids generated from primary cells or stem cells with cell associations and functions similar to organs in vivo can be a powerful tool to study tissue-specific cell-cell interactions in vitro. Very recently, a few interesting approaches have been put forth for generating testicular organoids for studying the germ cell niche microenvironment. AIM To review different model systems that have been employed to study germ cell biology and testicular cell-cell interactions and discuss how the organoid approach can address some of the shortcomings of those systems. RESULTS AND CONCLUSION Testicular organoids that bear architectural and functional similarities to their in vivo counterparts are a powerful model system to study cell-cell interactions in the germ cell niche. Organoids enable studying samples in humans and other large animals where in vivo experiments are not possible, allow modeling of testicular disease and malignancies and may provide a platform to design more precise therapeutic interventions.
Collapse
Affiliation(s)
- S Sakib
- Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AL, Canada.,Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AL, Canada
| | - T Goldsmith
- Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AL, Canada.,Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AL, Canada
| | - A Voigt
- Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AL, Canada
| | - I Dobrinski
- Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AL, Canada.,Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AL, Canada
| |
Collapse
|
44
|
Sun W, Fu S. Role of cancer-associated fibroblasts in tumor structure, composition and the microenvironment in ovarian cancer. Oncol Lett 2019; 18:2173-2178. [PMID: 31452720 PMCID: PMC6676664 DOI: 10.3892/ol.2019.10587] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 07/05/2019] [Indexed: 12/28/2022] Open
Abstract
Ovarian cancer (OVAC) remains the most lethal gynecological malignancy; it is ranked fifth among the most common types of cancer that affect women worldwide. Several aspects of the disease, including molecular pathogenesis, epidemiology, histological subtypes, poor prognosis at early stages due to the absence of specific signs and symptoms, and curative treatments in the advanced stages are all responsible for the poor survival rate, which is evaluated to be at 5 years once the cancer is diagnosed and treatment begins. A better understanding of the pathogenesis of ovarian cancer is therefore crucial, even though unexplored pathways, in order to improve the prognosis of patients with OVAC and to develop novel therapeutic approaches. Accordingly, the tumor microenvironment, defined as the combination of proteins produced by all tumor cells and by non-cancerous cells or the stroma, and composed of several cells, including those from the immune, inflammatory and adipose systems, as well as the mesenchymal stem, endothelial and fibroblasts cells, has recently attracted attention. Of particular interest are fibroblasts, which can be activated into cancer-associated fibroblast (CAFs) to become a potent supporter of carcinogenesis, promoting the initiation of epithelial tumor formation, tumor growth, angiogenesis and metastasis, as well as therapeutic resistance and immunosuppression. Thus, the targeting of CAFs for early diagnosis and effective therapy warrants our attention. In this review, we discuss the mechanisms through which CAFs may affect the structure, composition and microenvironment of the ovarian tumor. We also aim to highlight important aspects of OVAC pathobiology involving CAFs, in an attempt to provide insight into novel diagnostic windows and provide new therapeutic perspectives.
Collapse
Affiliation(s)
- Wei Sun
- Department of Gynecology, Τhe First Affiliated Hospital of Nanjing Medical University, Nanjing Jiangsu 210029, P.R. China
| | - Shilong Fu
- Department of Gynecology, Τhe First Affiliated Hospital of Nanjing Medical University, Nanjing Jiangsu 210029, P.R. China
| |
Collapse
|
45
|
Septin 9 isoforms promote tumorigenesis in mammary epithelial cells by increasing migration and ECM degradation through metalloproteinase secretion at focal adhesions. Oncogene 2019; 38:5839-5859. [PMID: 31285548 PMCID: PMC6859949 DOI: 10.1038/s41388-019-0844-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 05/09/2019] [Accepted: 05/10/2019] [Indexed: 02/07/2023]
Abstract
The cytoskeletal interacting protein Septin 9 (SEPT9), a member of the septin gene family, has been proposed to have oncogenic functions. It is a known hot spot of retroviral tagging insertion and a fusion partner of both de novo and therapy-induced mixed lineage leukemia (MLL). Of all septins, SEPT9 holds the strongest link to cancer, especially breast cancer. Murine models of breast cancer frequently exhibit Sept9 amplification in the form of double minute chromosomes, and about 20% of human breast cancer display genomic amplification and protein over expression at the SEPT9 locus. Yet, a clear mechanism by which SEPT9 elicits tumor-promoting functions is lacking. To obtain unbiased insights on molecular signatures of SEPT9 upregulation in breast tumors, we overexpressed several of its isoforms in breast cancer cell lines. Global transcriptomic profiling supports a role of SEPT9 in invasion. Functional studies reveal that SEPT9 upregulation is sufficient to increase degradation of the extracellular matrix, while SEPT9 downregulation inhibits this process. The degradation pattern is peripheral and associated with focal adhesions (FA), where it is coupled with increased expression of matrix metalloproteinases. SEPT9 overexpression induces MMP upregulation in human tumors and in culture models and promotes MMP3 secretion to the media at FAs. Downregulation of SEPT9 or chemical inhibition of septin filament assembly impairs recruitment of MMP3 to FAs. Our results indicate that SEPT9 promotes upregulation and both trafficking and secretion of MMPs near FAs, thus enhancing migration and invasion of breast cancer cells.
Collapse
|
46
|
Sakib S, Voigt A, Goldsmith T, Dobrinski I. Three-dimensional testicular organoids as novel in vitro models of testicular biology and toxicology. ENVIRONMENTAL EPIGENETICS 2019; 5:dvz011. [PMID: 31463083 PMCID: PMC6705190 DOI: 10.1093/eep/dvz011] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 06/06/2019] [Accepted: 07/03/2019] [Indexed: 05/05/2023]
Abstract
Organoids are three dimensional structures consisting of multiple cell types that recapitulate the cellular architecture and functionality of native organs. Over the last decade, the advent of organoid research has opened up many avenues for basic and translational studies. Following suit of other disciplines, research groups working in the field of male reproductive biology have started establishing and characterizing testicular organoids. The three-dimensional architectural and functional similarities of organoids to their tissue of origin facilitate study of complex cell interactions, tissue development and establishment of representative, scalable models for drug and toxicity screening. In this review, we discuss the current state of testicular organoid research, their advantages over conventional monolayer culture and their potential applications in the field of reproductive biology and toxicology.
Collapse
Affiliation(s)
- Sadman Sakib
- Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Canada
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Canada
| | - Anna Voigt
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Canada
| | - Taylor Goldsmith
- Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Canada
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Canada
| | - Ina Dobrinski
- Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Canada
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Canada
- Correspondence address. Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Room 404, Heritage Medical Research Building, 3300 Hospital Drive NW, Calgary, Alberta T2N 4N1, Canada. Tel: 4032106523; Fax: 4032108821; E-mail:
| |
Collapse
|
47
|
Chua ACY, Ananthanarayanan A, Ong JJY, Wong JY, Yip A, Singh NH, Qu Y, Dembele L, McMillian M, Ubalee R, Davidson S, Tungtaeng A, Imerbsin R, Gupta K, Andolina C, Lee F, S-W Tan K, Nosten F, Russell B, Lange A, Diagana TT, Rénia L, Yeung BKS, Yu H, Bifani P. Hepatic spheroids used as an in vitro model to study malaria relapse. Biomaterials 2019; 216:119221. [PMID: 31195301 DOI: 10.1016/j.biomaterials.2019.05.032] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 05/19/2019] [Indexed: 12/27/2022]
Abstract
Hypnozoites are the liver stage non-dividing form of the malaria parasite that are responsible for relapse and acts as a natural reservoir for human malaria Plasmodium vivax and P. ovale as well as a phylogenetically related simian malaria P. cynomolgi. Our understanding of hypnozoite biology remains limited due to the technical challenge of requiring the use of primary hepatocytes and the lack of robust and predictive in vitro models. In this study, we developed a malaria liver stage model using 3D spheroid-cultured primary hepatocytes. The infection of primary hepatocytes in suspension led to increased infectivity of both P. cynomolgi and P. vivax infections. We demonstrated that this hepatic spheroid model was capable of maintaining long term viability, hepatocyte specific functions and cell polarity which enhanced permissiveness and thus, permitting for the complete development of both P. cynomolgi and P. vivax liver stage parasites in the infected spheroids. The model described here was able to capture the full liver stage cycle starting with sporozoites and ending in the release of hepatic merozoites capable of invading simian erythrocytes in vitro. Finally, we showed that this system can be used for compound screening to discriminate between causal prophylactic and cidal antimalarials activity in vitro for relapsing malaria.
Collapse
Affiliation(s)
- Adeline C Y Chua
- Novartis Institute for Tropical Diseases, 138670, Singapore; Department of Microbiology and Immunology, University of Otago, Dunedin 9054, New Zealand; Singapore Immunology Network (SIgN), A*STAR, 138648, Singapore
| | | | - Jessica Jie Ying Ong
- Novartis Institute for Tropical Diseases, 138670, Singapore; Department of Microbiology and Immunology, University of Otago, Dunedin 9054, New Zealand
| | | | - Andy Yip
- Novartis Institute for Tropical Diseases, 138670, Singapore
| | | | | | - Laurent Dembele
- Novartis Institute for Tropical Diseases, 138670, Singapore; Université des Sciences, des Techniques et des Technologies de Bamako (USTTB); MRTC - DEAP - Faculty of Pharmacy, Bamako, Mali
| | - Michael McMillian
- Invitrocue Pte Ltd. 138667, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University Health System, 117597, Singapore
| | - Ratawan Ubalee
- Department of Entomology, Armed Forces Research Institute of Medical Science (AFRIMS), Bangkok 10400,Thailand
| | - Silas Davidson
- Department of Entomology, Armed Forces Research Institute of Medical Science (AFRIMS), Bangkok 10400,Thailand
| | - Anchalee Tungtaeng
- Department of Veterinary Medicine, Armed Forces Research Institute of Medical Science (AFRIMS), Bangkok 10400,Thailand
| | - Rawiwan Imerbsin
- Department of Veterinary Medicine, Armed Forces Research Institute of Medical Science (AFRIMS), Bangkok 10400,Thailand
| | - Kapish Gupta
- Mechanobiology Institute, National University of Singapore, 117411, Singapore
| | - Chiara Andolina
- Shoklo Malaria Research Unit (SMRU), Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Fan Lee
- Institute of Bioengineering and Nanotechnology, A*STAR, 138669, Singapore
| | - Kevin S-W Tan
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 119077, Singapore
| | - François Nosten
- Shoklo Malaria Research Unit (SMRU), Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Bruce Russell
- Department of Microbiology and Immunology, University of Otago, Dunedin 9054, New Zealand
| | - Amber Lange
- Laboratory Animal Services, Scientific Operations, Novartis Institutes for Biomedical Research, East Hanover, NJ, 07936-1080, USA
| | | | - Laurent Rénia
- Singapore Immunology Network (SIgN), A*STAR, 138648, Singapore; Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 119077, Singapore
| | | | - Hanry Yu
- Invitrocue Pte Ltd. 138667, Singapore; Mechanobiology Institute, National University of Singapore, 117411, Singapore; Institute of Bioengineering and Nanotechnology, A*STAR, 138669, Singapore
| | - Pablo Bifani
- Novartis Institute for Tropical Diseases, 138670, Singapore; Singapore Immunology Network (SIgN), A*STAR, 138648, Singapore; Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 119077, Singapore.
| |
Collapse
|
48
|
Xia X, Li F, He J, Aji R, Gao D. Organoid technology in cancer precision medicine. Cancer Lett 2019; 457:20-27. [PMID: 31078736 DOI: 10.1016/j.canlet.2019.04.039] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 04/22/2019] [Accepted: 04/25/2019] [Indexed: 12/13/2022]
Abstract
Organoid technology has been remarkably improved over the last decade. Various organoids have been derived from different types of tissues and recapitulate their organ-specific gene expression signatures, particular tissue spatial structures and functions of their original tissue. The patient-derived organoids (PDOs) have been used to elucidate crucial scientific questions, including the relationships between genetic/epigenetic alterations and drug responses, cell plasticity during disease progressions, and mechanisms of drug resistances. With the great expectations, PDOs will be widely used to facilitate the personalized medical decisions, which have the potential to profoundly improve patient outcomes. In this review, we will discuss the developmental details, current achievements, applications and challenges of organoid technology in precision cancer medicine.
Collapse
Affiliation(s)
- Xinyi Xia
- State Key Laboratory of Cell Biology, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China; CAS Key Laboratory of Systems Biology, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China; CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Fei Li
- State Key Laboratory of Cell Biology, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China; CAS Key Laboratory of Systems Biology, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China; CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Juan He
- State Key Laboratory of Cell Biology, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China; CAS Key Laboratory of Systems Biology, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China; CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Rebiguli Aji
- State Key Laboratory of Cell Biology, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China; CAS Key Laboratory of Systems Biology, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China; CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Dong Gao
- State Key Laboratory of Cell Biology, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China; CAS Key Laboratory of Systems Biology, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China; CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China.
| |
Collapse
|
49
|
Xu W, Gulvady AC, Goreczny GJ, Olson EC, Turner CE. Paxillin-dependent regulation of apical-basal polarity in mammary gland morphogenesis. Development 2019; 146:dev.174367. [PMID: 30967426 DOI: 10.1242/dev.174367] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 04/03/2019] [Indexed: 01/31/2023]
Abstract
Establishing apical-basal epithelial cell polarity is fundamental for mammary gland duct morphogenesis during mammalian development. While the focal adhesion adapter protein paxillin is a well-characterized regulator of mesenchymal cell adhesion signaling, F-actin cytoskeleton remodeling and single cell migration, its role in epithelial tissue organization and mammary gland morphogenesis in vivo has not been investigated. Here, using a newly developed paxillin conditional knockout mouse model with targeted ablation in the mammary epithelium, in combination with ex vivo three-dimensional organoid and acini cultures, we identify new roles for paxillin in the establishment of apical-basal epithelial cell polarity and lumen formation, as well as mammary gland duct diameter and branching. Paxillin is shown to be required for the integrity and apical positioning of the Golgi network, Par complex and the Rab11/MyoVb trafficking machinery. Paxillin depletion also resulted in reduced levels of apical acetylated microtubules, and rescue experiments with the HDAC6 inhibitor tubacin highlight the central role for paxillin-dependent regulation of HDAC6 activity and associated microtubule acetylation in controlling epithelial cell apical-basal polarity and tissue branching morphogenesis.
Collapse
Affiliation(s)
- Weiyi Xu
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA
| | - Anushree C Gulvady
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA
| | - Gregory J Goreczny
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA
| | - Eric C Olson
- Department of Neuroscience and Physiology, State University of New York Upstate Medical University, 505 Irving Ave, Syracuse, NY 13210, USA
| | - Christopher E Turner
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA
| |
Collapse
|
50
|
Fiori ME, Di Franco S, Villanova L, Bianca P, Stassi G, De Maria R. Cancer-associated fibroblasts as abettors of tumor progression at the crossroads of EMT and therapy resistance. Mol Cancer 2019; 18:70. [PMID: 30927908 PMCID: PMC6441236 DOI: 10.1186/s12943-019-0994-2] [Citation(s) in RCA: 432] [Impact Index Per Article: 72.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 02/28/2019] [Indexed: 12/21/2022] Open
Abstract
In the last decades, the role of the microenvironment in tumor progression and therapeutic outcome has gained increasing attention. Cancer-associated fibroblasts (CAFs) have emerged as key players among stromal cells, owing to their abundance in most solid tumors and their diverse tumor-restraining/promoting roles. The interplay between tumor cells and neighboring CAFs takes place by both paracrine signals (cytokines, exosomes and metabolites) or by the multifaceted functions of the surrounding extracellular matrix. Here, we dissect the most recent identified mechanisms underlying CAF-mediated control of tumor progression and therapy resistance, which include induction of the epithelial-to-mesenchymal transition (EMT), activation of survival pathways or stemness-related programs and metabolic reprogramming in tumor cells. Importantly, the recently unveiled heterogeneity in CAFs claims tailored therapeutic efforts aimed at eradicating the specific subset facilitating tumor progression, therapy resistance and relapse. However, despite the large amount of pre-clinical data, much effort is still needed to translate CAF-directed anti-cancer strategies from the bench to the clinic.
Collapse
Affiliation(s)
- Micol Eleonora Fiori
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161, Rome, Italy
| | - Simone Di Franco
- Department of Surgical Oncological and Stomatological Sciences, University of Palermo, 90127, Palermo, Italy
| | - Lidia Villanova
- Istituto di Patologia Generale, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168, Rome, Italy
| | - Paola Bianca
- Department of Surgical Oncological and Stomatological Sciences, University of Palermo, 90127, Palermo, Italy
| | - Giorgio Stassi
- Department of Surgical Oncological and Stomatological Sciences, University of Palermo, 90127, Palermo, Italy.
| | - Ruggero De Maria
- Istituto di Patologia Generale, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168, Rome, Italy. .,Scientific Vice-Direction - Fondazione Policlinico Universitario "A. Gemelli" - I.R.C.C.S, Largo Francesco Vito 1-8, 00168, Rome, Italy.
| |
Collapse
|