1
|
Key J, Almaguer-Mederos LE, Kandi AR, Sen NE, Gispert S, Köpf G, Meierhofer D, Auburger G. ATXN2L primarily interacts with NUFIP2, the absence of ATXN2L results in NUFIP2 depletion, and the ATXN2-polyQ expansion triggers NUFIP2 accumulation. Neurobiol Dis 2025; 209:106903. [PMID: 40220918 DOI: 10.1016/j.nbd.2025.106903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 04/04/2025] [Accepted: 04/04/2025] [Indexed: 04/14/2025] Open
Abstract
The cytoplasmic Ataxin-2 (ATXN2) protein associates with TDP-43 in stress granules (SG) where RNA quality control occurs. Mutations in this pathway underlie Spinocerebellar Ataxia type 2 (SCA2) and Amyotrophic Lateral Sclerosis. In contrast, Ataxin-2-like (ATXN2L) is predominantly perinuclear, more abundant, and essential for embryonic life. Its sequestration into ATXN2 aggregates may contribute to disease. In this study, we utilized two approaches to clarify the roles of ATXN2L. First, we identified interactors through co-immunoprecipitation in both wild-type and ATXN2L-null murine embryonic fibroblasts. Second, we assessed the proteome profile effects using mass spectrometry in these cells. Additionally, we examined the accumulation of ATXN2L interactors in the SCA2 mouse model, Atxn2-CAG100-KnockIn (KIN). We observed that RNA-binding proteins, including PABPN1, NUFIP2, MCRIP2, RBMS1, LARP1, PTBP1, FMR1, RPS20, FUBP3, MBNL2, ZMAT3, SFPQ, CSDE1, HNRNPK, and HNRNPDL, exhibit a stronger association with ATXN2L compared to established interactors like ATXN2, PABPC1, LSM12, and G3BP2. Additionally, ATXN2L interacted with components of the actin complex, such as SYNE2, LMOD1, ACTA2, FYB, and GOLGA3. We noted that oxidative stress increased HNRNPK but decreased SYNE2 association, which likely reflects the relocalization of SG. Proteome profiling revealed that NUFIP2 and SYNE2 are depleted in ATXN2L-null fibroblasts. Furthermore, NUFIP2 homodimers and SYNE1 accumulate during the ATXN2 aggregation process in KIN 14-month-old spinal cord tissues. The functions of ATXN2L and its interactors are therefore critical in RNA granule trafficking and surveillance, particularly for the maintenance of differentiated neurons.
Collapse
Affiliation(s)
- Jana Key
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Experimental Neurology, Heinrich- Hoffmann-Str. 7, 60528 Frankfurt am Main, Germany
| | - Luis-Enrique Almaguer-Mederos
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Experimental Neurology, Heinrich- Hoffmann-Str. 7, 60528 Frankfurt am Main, Germany
| | - Arvind Reddy Kandi
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Experimental Neurology, Heinrich- Hoffmann-Str. 7, 60528 Frankfurt am Main, Germany
| | - Nesli-Ece Sen
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Experimental Neurology, Heinrich- Hoffmann-Str. 7, 60528 Frankfurt am Main, Germany
| | - Suzana Gispert
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Experimental Neurology, Heinrich- Hoffmann-Str. 7, 60528 Frankfurt am Main, Germany
| | - Gabriele Köpf
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Experimental Neurology, Heinrich- Hoffmann-Str. 7, 60528 Frankfurt am Main, Germany
| | - David Meierhofer
- Max Planck Institute for Molecular Genetics, Ihnestraße 63-73, 14195 Berlin, Germany
| | - Georg Auburger
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Experimental Neurology, Heinrich- Hoffmann-Str. 7, 60528 Frankfurt am Main, Germany; Institute for Clinical Neuroanatomy, Dr. Senckenberg Anatomy, Fachbereich Medizin, Goethe University Frankfurt, Frankfurt am Main, Germany.
| |
Collapse
|
2
|
Kawaguchi S, Isshiki W, Kai T. Factories without walls: The molecular architecture and functions of non-membrane organelles in small RNA-guided genome protection. Biochim Biophys Acta Gen Subj 2025; 1869:130811. [PMID: 40319768 DOI: 10.1016/j.bbagen.2025.130811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 04/10/2025] [Accepted: 04/16/2025] [Indexed: 05/07/2025]
Abstract
Non-membrane organelles, Yb body and nuage, play an essential role in piRNA-guided genome defense in Drosophila gonad by mediating piRNA biogenesis and transposon silencing. Yb body, found in somatic follicle cells, is responsible for primary piRNA processing, while nuage, located in germline cells, facilitates the ping-pong cycle to amplify the piRNAs corresponding to both sense and antisense strands of the expressed transposons. These organelles are assembled by liquid-liquid phase separation (LLPS) and protein-protein interactions, integrating RNA helicases (Vasa, Armitage), Tudor domain-containing proteins (Krimper, Tejas, Qin/Kumo), and proteins containing both domains (Yb, SoYb, Spn-E). Within these condensates, we summarize the protein-protein interactions experimentally validated and predicted by AlphaFold3, providing new structural insights into the non-membrane organelle assembly. This review highlights how the dynamic organization of Yb body and nuage enables efficient RNA processing, ensuring transposon suppression and genome stability.
Collapse
Affiliation(s)
- Shinichi Kawaguchi
- Graduate School of Frontier Biosciences, The University of Osaka, Osaka 565-0871, Japan.
| | - Wakana Isshiki
- Graduate School of Frontier Biosciences, The University of Osaka, Osaka 565-0871, Japan
| | - Toshie Kai
- Graduate School of Frontier Biosciences, The University of Osaka, Osaka 565-0871, Japan.
| |
Collapse
|
3
|
Demeshkina NA, Ferré-D'Amaré AR. Large-scale purifications reveal yeast and human stress granule cores are heterogeneous particles with complex transcriptomes and proteomes. Cell Rep 2025; 44:115738. [PMID: 40413746 DOI: 10.1016/j.celrep.2025.115738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 03/14/2025] [Accepted: 05/02/2025] [Indexed: 05/27/2025] Open
Abstract
Stress granules are a conserved response of eukaryotic cells to environmental insults. These cytoplasmic ribonucleoprotein condensates have hitherto been primarily studied by microscopy, which showed previously that they comprise dense ∼200 nm cores embedded in a diffuse shell. We have developed large-scale purifications of budding yeast and mammalian (HEK293T cell) stress granule cores that do not rely on immunoprecipitation of candidate protein constituents. These unbiased preparations reveal that stress granule cores are discrete particles with variable size (average, 135 and 225 nm for yeast and human, respectively) and shape. Proteomics and transcriptomics demonstrate complex composition. The results of hybridization chain reaction fluorescence in situ hybridization (FISH) analyses in HEK293T cells are consistent with stress granule cores having heterogeneous composition, i.e., each stress granule core particle contains only a limited number of mRNA species. Biochemical purification now opens the way to mechanistic analysis of the heterogeneity and complexity of stress granules.
Collapse
Affiliation(s)
- Natalia A Demeshkina
- Laboratory of Nucleic Acids, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Adrian R Ferré-D'Amaré
- Laboratory of Nucleic Acids, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
4
|
Ito-Harashima S, Miura N. Compartmentation of multiple metabolic enzymes and their preparation in vitro and in cellulo. Biochim Biophys Acta Gen Subj 2025; 1869:130787. [PMID: 40058614 DOI: 10.1016/j.bbagen.2025.130787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 02/27/2025] [Accepted: 03/03/2025] [Indexed: 03/15/2025]
Abstract
Compartmentalization of multiple enzymes in cellulo and in vitro is a means of controlling the cascade reaction of metabolic enzymes. The compartmentation of enzymes through liquid-liquid phase separation may facilitate the reversible control of biocatalytic cascade reactions, thereby reducing the transcriptional and translational burden. This has attracted attention as a potential application in bioproduction. Recent research has demonstrated the existence and regulatory mechanisms of various enzyme compartments within cells. Mounting evidence suggests that enzyme compartmentation allows in vitro and in vivo regulation of cellular metabolism. However, the comprehensive regulatory mechanisms of enzyme condensates in cells and ideal organization of cellular systems remain unknown. This review provides an overview of the recent progress in multiple enzyme compartmentation in cells and summarizes strategies to reconstruct multiple enzyme assemblies in vitro and in cellulo. By examining parallel examples, we have evaluated the consensus and future perspectives of enzyme condensation.
Collapse
Affiliation(s)
- Sayoko Ito-Harashima
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Osaka Metropolitan University, Sakai 599-8531, Japan
| | - Natsuko Miura
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Osaka Metropolitan University, Sakai 599-8531, Japan.
| |
Collapse
|
5
|
Chen CW, Papadopoli D, Szkop KJ, Guan BJ, Alzahrani M, Wu J, Jobava R, Asraf MM, Krokowski D, Vourekas A, Merrick WC, Komar AA, Koromilas AE, Gorospe M, Payea MJ, Wang F, Clayton BLL, Tesar PJ, Schaffer A, Miron A, Bederman I, Jankowsky E, Vogel C, Valášek LS, Dinman JD, Zhang Y, Tirosh B, Larsson O, Topisirovic I, Hatzoglou M. Plasticity of the mammalian integrated stress response. Nature 2025; 641:1319-1328. [PMID: 40140574 PMCID: PMC12119373 DOI: 10.1038/s41586-025-08794-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 02/14/2025] [Indexed: 03/28/2025]
Abstract
An increased level of phosphorylation of eukaryotic translation initiation factor 2 subunit-α (eIF2α, encoded by EIF2S1; eIF2α-p) coupled with decreased guanine nucleotide exchange activity of eIF2B is a hallmark of the 'canonical' integrated stress response (c-ISR)1. It is unclear whether impaired eIF2B activity in human diseases including leukodystrophies2, which occurs in the absence of eIF2α-p induction, is synonymous with the c-ISR. Here we describe a mechanism triggered by decreased eIF2B activity, distinct from the c-ISR, which we term the split ISR (s-ISR). The s-ISR is characterized by translational and transcriptional programs that are different from those observed in the c-ISR. Opposite to the c-ISR, the s-ISR requires eIF4E-dependent translation of the upstream open reading frame 1 and subsequent stabilization of ATF4 mRNA. This is followed by altered expression of a subset of metabolic genes (for example, PCK2), resulting in metabolic rewiring required to maintain cellular bioenergetics when eIF2B activity is attenuated. Overall, these data demonstrate a plasticity of the mammalian ISR, whereby the loss of eIF2B activity in the absence of eIF2α-p induction activates the eIF4E-ATF4-PCK2 axis to maintain energy homeostasis.
Collapse
Affiliation(s)
- Chien-Wen Chen
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - David Papadopoli
- Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, Montreal, Quebec, Canada
- Gerald Bronfman Department of Oncology, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Krzysztof J Szkop
- Department of Oncology-Pathology, Karolinska Institute, Science of Life Laboratory, Solna, Sweden
| | - Bo-Jhih Guan
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Mohammed Alzahrani
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH, USA
- College of Sciences and Health Profession, King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
- King Abdullah International Medical Research Center, Jeddah, Saudi Arabia
| | - Jing Wu
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Raul Jobava
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Mais M Asraf
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Dawid Krokowski
- Department of Molecular Biology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| | - Anastasios Vourekas
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - William C Merrick
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH, USA
| | - Anton A Komar
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH, USA
- Center for Gene Regulation in Health and Disease, Cleveland State University, Cleveland, OH, USA
| | - Antonis E Koromilas
- Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, Montreal, Quebec, Canada
- Gerald Bronfman Department of Oncology, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
- Division of Clinical and Translational Research, Department of Medicine, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute of Aging Intramural Research Program, NIH, Baltimore, MD, USA
| | - Matthew J Payea
- Laboratory of Genetics and Genomics, National Institute of Aging Intramural Research Program, NIH, Baltimore, MD, USA
| | - Fangfang Wang
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, USA
| | - Benjamin L L Clayton
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
- Institute for Glial Sciences, Case Western Reserve University, School of Medicine, Cleveland, OH, USA
| | - Paul J Tesar
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
- Institute for Glial Sciences, Case Western Reserve University, School of Medicine, Cleveland, OH, USA
| | - Ashleigh Schaffer
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Alexander Miron
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Ilya Bederman
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Eckhard Jankowsky
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH, USA
| | - Christine Vogel
- Department of Biology, New York University, New York, NY, USA
| | - Leoš Shivaya Valášek
- Laboratory of Regulation of Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jonathan D Dinman
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, USA
| | - Youwei Zhang
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, USA
| | - Boaz Tirosh
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH, USA
| | - Ola Larsson
- Department of Oncology-Pathology, Karolinska Institute, Science of Life Laboratory, Solna, Sweden.
| | - Ivan Topisirovic
- Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, Montreal, Quebec, Canada.
- Gerald Bronfman Department of Oncology, Faculty of Medicine, McGill University, Montreal, Quebec, Canada.
- Division of Clinical and Translational Research, Department of Medicine, Faculty of Medicine, McGill University, Montreal, Quebec, Canada.
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada.
| | - Maria Hatzoglou
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
6
|
André AA, Rehnberg N, Garg A, Kjærgaard M. Toward Design Principles for Biomolecular Condensates for Metabolic Pathways. Adv Biol (Weinh) 2025; 9:e2400672. [PMID: 40195042 PMCID: PMC12078866 DOI: 10.1002/adbi.202400672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/14/2025] [Indexed: 04/09/2025]
Abstract
Biology uses membrane-less organelles or biomolecular condensates as dynamic reaction compartments that can form or dissolve to regulate biochemical pathways. This has led to a flurry of research aiming to design new synthetic organelles that function as reaction crucibles for enzymes and biomolecular cascades in biotechnology. The mechanisms by which a condensate can enhance multistep biochemical processes including mass action, tuning the chemical environment, scaffolding and metabolic channelling is reviewed. These mechanisms are not inherently beneficial for the rate of enzymatic processes but can also inhibit a reaction. Similarly, some aspects of condensates are likely intrinsically inhibitory including retardation of diffusion, where the net effect of a condensate will be a trade-off between inhibitory and stimulatory effects. It is discussed which generalizable conclusions can be drawn so far and how close it is to design principles for condensates for enzyme cascades in microbial cell factories including which reactions are likely to be enhanced by condensates and which type of condensate will be suited for which reaction.
Collapse
Affiliation(s)
- Alain A.M. André
- Department of Molecular Biology and GeneticsAarhus University, Denmar
- Interdisciplinary Nanoscience Center (iNANO)Aarhus University, Denmark
| | - Nikita Rehnberg
- Department of Molecular Biology and GeneticsAarhus University, Denmar
- Interdisciplinary Nanoscience Center (iNANO)Aarhus University, Denmark
| | - Ankush Garg
- Department of Molecular Biology and GeneticsAarhus University, Denmar
- Interdisciplinary Nanoscience Center (iNANO)Aarhus University, Denmark
| | - Magnus Kjærgaard
- Department of Molecular Biology and GeneticsAarhus University, Denmar
- Interdisciplinary Nanoscience Center (iNANO)Aarhus University, Denmark
- The Danish Research Institute for Translational Neuroscience (DANDRITE)Aarhus University, Denmark
| |
Collapse
|
7
|
Ma R, Zheng L, Yu H, Huo D, Zhao H, Zhang H. Chirality engineering-regulated liquid-liquid phase separation of stress granules and its role in chemo-sensitization and side effect mitigation. J Colloid Interface Sci 2025; 685:637-647. [PMID: 39862843 DOI: 10.1016/j.jcis.2025.01.177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 01/19/2025] [Accepted: 01/19/2025] [Indexed: 01/27/2025]
Abstract
In recent years, the chiral biological effects of nanomedicines have garnered significant interest. Research has focused on understanding how material chirality affects cellular transcription and metabolism. Stress granules, which are membraneless organelles formed through liquid-liquid phase separation of G3BP1 proteins and related compartments, have been extensively studied and are closely associated with cellular damage repair and metabolism. The role and mechanism of chiral nanomaterials in modulating stress granules remain unclear. This study aimed to investigate the expression and structural characteristics of stress granules under the influence of chiral nanomaterials, both individually and in combination with chemotherapy. A library of chiral ligand-modified materials was constructed, and techniques such as immunofluorescence, live-cell imaging, fluorescence recovery after photobleaching assays, and proximity labeling combined with proteomics analysis were employed. These methods helped identify the protein corona adsorbed on the surface of the nanomaterials and explore their relationship with nanomaterial chirality. The findings suggest that the assembly of stress granules is influenced by chirality and can be regulated by chiral nanomaterials. Additionally, chemotherapy sensitivity in cancer cells was enhanced, and normal cells were protected by leveraging the chiral-dependent modulation of material assembly in stress granules. This study offers insights into the regulation of membraneless cellular structures based on chiral biological effects.
Collapse
Affiliation(s)
- Ruxuan Ma
- Department of Oncology, the First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, PR China
| | - Liuting Zheng
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing 211166, PR China
| | - Han Yu
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing 211166, PR China
| | - Da Huo
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing 211166, PR China.
| | - Huiyue Zhao
- School of Material Engineering, Jinling Institute of Technology, Nanjing, 211169, PR China.
| | - Hao Zhang
- Department of Oncology, the First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, PR China.
| |
Collapse
|
8
|
Li NN, Rao LL, Su D, Liu BH, Ma GQ, Wang HF, Zhang ZL, Ying Z. NSCLC cells sustain phase separation of cytoplasmic membrane-less organelles to protect themselves against cisplatin treatment. Acta Pharmacol Sin 2025:10.1038/s41401-025-01551-5. [PMID: 40247038 DOI: 10.1038/s41401-025-01551-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Accepted: 03/20/2025] [Indexed: 04/19/2025]
Abstract
Cisplatin is the first platinum compound used for anticancer therapy, including non-small cell lung cancer (NSCLC). However, the clinical efficacy of cisplatin is strongly limited by cisplatin resistance. Hence, illuminating the mechanism of cisplatin resistance will aid in the development of therapeutic strategies that improve the sensitivity of cancer cells to cisplatin. Interestingly, membrane-less organelles, which are formed through biomolecular condensation in association with phase separation, have been recently linked with cancers. Here, we reveal a new molecular basis of cisplatin resistance in NSCLC, showing that cisplatin kills cancer cells by the alteration of cytoplasmic membrane-less organelles. Specifically, cisplatin treatment results in the disassembly of processing bodies (PBs) and the assembly of stress granule (SG)-like granules which are different from canonical SGs in NSCLC cells, but not cisplatin-resistant NSCLC cells. Moreover, alterations of PBs and noncanonical SG-like granules are associated with cisplatin-induced cancer cell death. Importantly, we found that disrupting PBs and canonical SGs with cycloheximide and FDA-approved pyrvinium helps cisplatin to kill cisplatin-resistant NSCLC cells. Taken together, our findings provide insight into the role of membrane-less organelle regulation in cisplatin resistance and offer an effective solution for overcoming cisplatin resistance in NSCLC.
Collapse
Affiliation(s)
- Ning-Ning Li
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Ling-Ling Rao
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Dan Su
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Bin-Hao Liu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Guo-Qiang Ma
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Hong-Feng Wang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China.
- MOE Key Laboratory of Geriatric Diseases and Immunology, College of Pharmaceutical Sciences, Suzhou Medical College of Soochow University, Suzhou, 215004, China.
| | - Zeng-Li Zhang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Soochow University, Suzhou, 215123, China.
| | - Zheng Ying
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China.
- MOE Key Laboratory of Geriatric Diseases and Immunology, College of Pharmaceutical Sciences, Suzhou Medical College of Soochow University, Suzhou, 215004, China.
- Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
9
|
Yang G, Wang Y, Guo J, Rui T. Connecting the Dots: Stress Granule and Cardiovascular Diseases. J Cardiovasc Transl Res 2025:10.1007/s12265-025-10619-w. [PMID: 40229624 DOI: 10.1007/s12265-025-10619-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 04/07/2025] [Indexed: 04/16/2025]
Abstract
Stress granules (SGs) are membrane-less cytoplasmic assemblies composed of mRNAs and RNA-binding proteins (RBPs) that transiently form to cope with various cellular stressors by halting mRNA translation and, consequently, protein synthesis. SG formation plays a crucial role in regulating multiple cellular processes, including cellular senescence, inflammatory responses, and adaptation to oxidative stress under both physiological and pathological conditions. Dysregulation of SG assembly and disassembly has been implicated in the pathogenesis of various diseases, including cardiovascular diseases (CVDs), cancer, viral and bacterial infections, and degenerative diseases. In this review, we survey the key aspects of SGs biogenesis and biological functions, with a particular focus on their causal involvement in CVDs. Furthermore, we summarized several SG-modulating compounds and discussed the therapeutic potential of small molecules targeting SG-related diseases in clinical settings.
Collapse
Affiliation(s)
- Gaowei Yang
- Division of Cardiology, Department of Medicine, The Affiliated People's Hospital of Jiangsu University, 8 Dianli Road, Zhenjiang, Jiangsu, 212002, People's Republic of China
| | - Yiming Wang
- Division of Cardiology, Department of Medicine, The Affiliated People's Hospital of Jiangsu University, 8 Dianli Road, Zhenjiang, Jiangsu, 212002, People's Republic of China
| | - Junfang Guo
- Division of Cardiology, Department of Medicine, The Affiliated People's Hospital of Jiangsu University, 8 Dianli Road, Zhenjiang, Jiangsu, 212002, People's Republic of China
| | - Tao Rui
- Division of Cardiology, Department of Medicine, The Affiliated People's Hospital of Jiangsu University, 8 Dianli Road, Zhenjiang, Jiangsu, 212002, People's Republic of China.
| |
Collapse
|
10
|
Gill SK, Gomer RH. Translational Regulators in Pulmonary Fibrosis: MicroRNAs, Long Non-Coding RNAs, and Transcript Modifications. Cells 2025; 14:536. [PMID: 40214489 PMCID: PMC11988943 DOI: 10.3390/cells14070536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/27/2025] [Accepted: 04/01/2025] [Indexed: 04/14/2025] Open
Abstract
Fibrosing disorders including idiopathic pulmonary fibrosis (IPF) are progressive irreversible diseases, often with poor prognoses, characterized by the accumulation of excessive scar tissue and extracellular matrix. Translational regulation has emerged as a critical aspect of gene expression control, and the dysregulation of key effectors is associated with disease pathogenesis. This review examines the current literature on translational regulators in IPF, focusing on microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and RNA transcript modifications including alternative polyadenylation and chemical modification. Some of these translational regulators potentiate fibrosis, and some of the regulators inhibit fibrosis. In IPF, some of the profibrotic regulators are upregulated, and some of the antifibrotic regulators are downregulated. Correcting these defects in IPF-associated translational regulators could be an intriguing avenue for therapeutics.
Collapse
Affiliation(s)
| | - Richard H. Gomer
- Department of Biology, Texas A&M University, College Station, TX 77843, USA;
| |
Collapse
|
11
|
Huang Z, Liu Z, Chen L, Liu Y, Yan G, Ni Y, Yan Q, He W, Liu J, Luo S, Xie J. Liquid-liquid phase separation in cell physiology and cancer biology: recent advances and therapeutic implications. Front Oncol 2025; 15:1540427. [PMID: 40231263 PMCID: PMC11994588 DOI: 10.3389/fonc.2025.1540427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 03/13/2025] [Indexed: 04/16/2025] Open
Abstract
Liquid-liquid phase separation (LLPS) is a pivotal biophysical phenomenon that plays a critical role in cellular organization and has garnered significant attention in the fields of molecular mechanism and pathophysiology of cancer. This dynamic process involves the spontaneous segregation of biomolecules, primarily proteins and nucleic acids, into condensed, liquid-like droplets under specific conditions. LLPS drives the formation of biomolecular condensates, which are crucial for various cellular functions. Increasing evidences link alterations in LLPS to the onset and progression of various diseases, particularly cancer. This review explores the diverse roles of LLPS in cancer, highlighting its underlying molecular mechanisms and far-reaching implications. We examine how dysregulated LLPS contributes to cancer development by influencing key processes such as genomic instability, metabolism, and immune evasion. Furthermore, we discuss emerging therapeutic strategies aimed at modulating LLPS, underscoring their potential to revolutionize cancer treatment.
Collapse
Affiliation(s)
- Ziyuan Huang
- Department of Urology, The First Huizhou Affiliated Hospital of Guangdong Medical University, Huizhou, China
- Computational Medicine and Epidemiology Laboratory (CMEL), Guangdong Medical University, Zhanjiang, China
| | - Zimeng Liu
- School of Medicine, Sun Yat-Sen University, Shenzhen, China
| | - Lieqian Chen
- Department of Urology, The First Huizhou Affiliated Hospital of Guangdong Medical University, Huizhou, China
| | - Yanlin Liu
- Computational Medicine and Epidemiology Laboratory (CMEL), Guangdong Medical University, Zhanjiang, China
| | - Gaofei Yan
- Department of Clinical Medicine, Hunan University of Medicine, Huaihua, Hunan, China
| | - Yizheng Ni
- School of Medicine, Sun Yat-Sen University, Shenzhen, China
| | - Qiuxia Yan
- Department of Urology, The First Huizhou Affiliated Hospital of Guangdong Medical University, Huizhou, China
| | - Wenqian He
- School of Medicine, Sun Yat-Sen University, Shenzhen, China
| | - Junhong Liu
- School of Medicine, Sun Yat-Sen University, Shenzhen, China
| | - Shufang Luo
- Department of Critical Care Medicine, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Jindong Xie
- Department of Urology, The First Huizhou Affiliated Hospital of Guangdong Medical University, Huizhou, China
| |
Collapse
|
12
|
Ricolo D, Casanova J, Giannios P. Drosophila and human Headcase define a new family of ribonucleotide granule proteins required for stress response. SCIENCE ADVANCES 2025; 11:eads2086. [PMID: 40153502 PMCID: PMC11952099 DOI: 10.1126/sciadv.ads2086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 02/25/2025] [Indexed: 03/30/2025]
Abstract
Cells have means to adapt to environmental stresses such as temperature fluctuations, toxins, or nutrient availability. Stress responses, being dynamic, extend beyond transcriptional control and encompass post-transcriptional mechanisms allowing for rapid changes in protein synthesis. Previous research has established headcase as a fundamental gene for stress responses and survival of the Drosophila adult progenitor cells (APCs). However, the molecular role of Headcase has remained elusive. Here, we identify Headcase as a component of ribonucleoprotein (RNP) granules. We also show that, Headcase is required for proper RNP granule formation and remodeling upon stress and is crucial for translation control. Likewise, the human Headcase homolog (HECA) is identified as a component of RNP granules and has similar roles in translational regulation and stress protection. Thus, Headcase proteins define a new family contributing to specific roles among the RNP heterogeneous network.
Collapse
Affiliation(s)
- Delia Ricolo
- Institut de Biologia Molecular de Barcelona (CSIC), Baldiri Reixac 4, 08028 Barcelona, Catalonia, Spain
- Institut de Recerca Biomèdica de Barcelona, (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10, 08028 Barcelona, Catalonia, Spain
| | - Jordi Casanova
- Institut de Biologia Molecular de Barcelona (CSIC), Baldiri Reixac 4, 08028 Barcelona, Catalonia, Spain
- Institut de Recerca Biomèdica de Barcelona, (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10, 08028 Barcelona, Catalonia, Spain
| | - Panagiotis Giannios
- Institut de Biologia Molecular de Barcelona (CSIC), Baldiri Reixac 4, 08028 Barcelona, Catalonia, Spain
- Institut de Recerca Biomèdica de Barcelona, (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10, 08028 Barcelona, Catalonia, Spain
| |
Collapse
|
13
|
Torun A, Tuğral H, Banerjee S. Crosstalk Between Phase-Separated Membraneless Condensates and Membrane-Bound Organelles in Cellular Function and Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025. [PMID: 40095243 DOI: 10.1007/5584_2025_852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Compartmentalization in eukaryotic cells allows the spatiotemporal regulation of biochemical processes, in addition to allowing specific sets of proteins to interact in a regulated as well as stochastic manner. Although membrane-bound organelles are thought to be the key players of cellular compartmentalization, membraneless biomolecular condensates such as stress granules, P bodies, and many others have recently emerged as key players that are also thought to bring order to a highly chaotic environment. Here, we have evaluated the latest studies on biomolecular condensates, specifically focusing on how they interact with membrane-bound organelles and modulate each other's functions. We also highlight the importance of this interaction in neurodegenerative and cardiovascular diseases as well as in cancer.
Collapse
Affiliation(s)
- Aydan Torun
- Department of Biological Sciences, Orta Dogu Teknik Universitesi, Ankara, Türkiye
| | - Hoşnaz Tuğral
- Department of Biological Sciences, Orta Dogu Teknik Universitesi, Ankara, Türkiye
| | - Sreeparna Banerjee
- Department of Biological Sciences, Orta Dogu Teknik Universitesi, Ankara, Türkiye.
| |
Collapse
|
14
|
Gombás BG, Németh‐Szatmári O, Nagy‐Mikó B, Villányi Z. Role of Assemblysomes in Cellular Stress Responses. WILEY INTERDISCIPLINARY REVIEWS. RNA 2025; 16:e70009. [PMID: 40110655 PMCID: PMC11923940 DOI: 10.1002/wrna.70009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 02/28/2025] [Accepted: 03/01/2025] [Indexed: 03/22/2025]
Abstract
Assemblysomes are recently discovered intracellular RNA-protein complexes that play important roles in cellular stress response, regulation of gene expression, and also in co-translational protein assembly. In this review, a wide spectrum overview of assemblysomes is provided, including their discovery, mechanism of action, characteristics, and potential applications in several fields. Assemblysomes are distinct liquid-liquid phase-separated condensates; they have certain unique properties differentiating them from other cellular granules. They are composed of ribosome-nascent protein chain complexes and are resistant to cycloheximide and EDTA. The discovery and observation of intracellular condensates, like assemblysomes, have further expanded our knowledge of cellular stress response mechanisms, particularly in DNA repair processes and defense against proteotoxicity. Ribosome profiling experiments and next-generation sequencing of cDNA libraries extracted from EDTA-resistant pellets-of ultracentrifuged cell lysates-have shed light on the composition and dynamics of assemblysomes, revealing their role as repositories for pre-made stress-responsive ribosome-nascent chain complexes. This review gives an exploration of assemblysomes' potential clinical applications from multiple aspects, including their usefulness as diagnostic biomarkers for chemotherapy resistance and their implications in cancer therapy. In addition, in this overview, we raise some theoretical ideas of industrial and agricultural applications connected to these membraneless organelles. However, we see several challenges. On one hand, we need to understand the complexity of assemblysomes' multiple functions and regulations; on the other hand, it is essential to bridge the gap between fundamental research and practical applications. Overall, assemblysome research can be perceived as a promising upcomer in the improvement of biomedical settings as well as those connected to agricultural and industrial aspects.
Collapse
Affiliation(s)
- Bence György Gombás
- Department of Biochemistry and Molecular BiologyUniversity of SzegedSzegedHungary
| | | | - Bence Nagy‐Mikó
- Department of Biochemistry and Molecular BiologyUniversity of SzegedSzegedHungary
| | - Zoltán Villányi
- Department of Biochemistry and Molecular BiologyUniversity of SzegedSzegedHungary
- Delta Bio 2000 LtdSzegedHungary
| |
Collapse
|
15
|
More N, Joseph J. Disruption of ER-mitochondria contact sites induces autophagy-dependent loss of P-bodies through the Ca2+-CaMKK2-AMPK pathway. J Cell Sci 2025; 138:JCS263652. [PMID: 40071500 DOI: 10.1242/jcs.263652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 01/17/2025] [Indexed: 05/13/2025] Open
Abstract
P-bodies (PBs) and stress granules (SGs) are conserved, non-membranous cytoplasmic condensates of RNA-protein complexes. PBs are implicated in post-transcriptional regulation of gene expression through mRNA decay, translational repression and/or storage. Although much is known about the de novo formation of PBs and SGs involving liquid-liquid phase separation through multiple protein-protein and protein-RNA interactions, their subcellular localization and turnover mechanisms are less understood. Here, we report the presence of a subpopulation of PBs and SGs that are in proximity to ER-mitochondria contact sites (ERMCSs) in mammalian cells. Disruption of ERMCSs, achieved through depletion of ER-mitochondria tethering proteins, leads to the disappearance of PBs but not SGs. This effect can be reversed by inhibiting autophagy through both genetic and pharmacological means. Additionally, we find that the disruption of ERMCSs leads to cytosolic Ca2+-induced activation of CaMKK2 and AMP-activated protein kinase (AMPK), ultimately resulting in an autophagy-dependent decrease in PB abundance. Collectively, our findings unveil a mechanism wherein disturbances in ERMCSs induce autophagy-dependent loss of PBs via activation of the Ca2+-CaMKK2-AMPK pathway, thus potentially linking the dynamics and functions of ERMCS with post-transcriptional gene regulation.
Collapse
Affiliation(s)
- Nikhil More
- BRIC-National Centre for Cell Science, S.P. Pune University Campus, Ganeshkhind, Pune-411007, India
| | - Jomon Joseph
- BRIC-National Centre for Cell Science, S.P. Pune University Campus, Ganeshkhind, Pune-411007, India
| |
Collapse
|
16
|
Huang X, Zhang J, Yao J, Mi N, Yang A. Phase separation of p62: roles and regulations in autophagy. Trends Cell Biol 2025:S0962-8924(25)00033-9. [PMID: 40011090 DOI: 10.1016/j.tcb.2025.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 01/30/2025] [Accepted: 01/31/2025] [Indexed: 02/28/2025]
Abstract
The phase separation of the cargo receptor sequestome-1/p62 (SQSTM1/p62) is a critical mechanism for assembling signaling complexes in autophagy. During this process, p62 undergoes phase separation upon binding to polyubiquitin chains, concentrating ubiquitinated substrates within p62 droplets. These droplets further gather membrane sources and core autophagy machineries to facilitate autophagosome formation. The dynamics of p62 droplets are finely tuned in response to autophagy signals triggered by cellular stresses. Recent studies have revealed new regulatory mechanisms that highlight the significance of p62 phase separation in regulating autophagy. This review summarizes and discusses the molecular mechanisms of p62 phase separation and its roles in autophagy, with particular emphasis on the regulation of p62 droplets and their interaction modes with autophagic membranes.
Collapse
Affiliation(s)
- Xue Huang
- School of Life Sciences, Chongqing University, Chongqing 401331, China; Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Jinpei Zhang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of Central Asian High Incidence Diseases, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, Xinjiang, China; Basic Medical College, Xinjiang Medical University, Urumqi, 830011, Xinjiang, China; Key Laboratory of High Incidence Disease Research in Xinjiang (Xinjiang Medical University), Ministry of Education, Urumqi, 830011, Xinjiang, China
| | - Jia Yao
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Na Mi
- State Key Laboratory of Pathogenesis, Prevention and Treatment of Central Asian High Incidence Diseases, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, Xinjiang, China; Basic Medical College, Xinjiang Medical University, Urumqi, 830011, Xinjiang, China; Key Laboratory of High Incidence Disease Research in Xinjiang (Xinjiang Medical University), Ministry of Education, Urumqi, 830011, Xinjiang, China.
| | - Aimin Yang
- School of Life Sciences, Chongqing University, Chongqing 401331, China.
| |
Collapse
|
17
|
Iuchi S, Paulo JA. The role of MKI67 in the regulation of 60S pre-ribosome nucleolar export, transcripts, energy supply, and apoptosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.13.638155. [PMID: 39990431 PMCID: PMC11844515 DOI: 10.1101/2025.02.13.638155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
MKI67 (Ki67) is expressed exclusively in proliferating cells in human tissues, rendering it as a valuable diagnostic marker for cancer. However, the function of this protein in cells remains unclear. In this study, we present the findings on the regulatory functions of MKI67 in conjunction with its partner proteins GNL2 and MDN1, which are involved in pre-ribosome processing, as well as the regulatory functions in its absence. In proliferating HEK293T cells, MKI67 binds contiguously to the chromatin in conjunction with GNL2 and MDN1, localizing most densely to the nucleolar periphery to regulate 60S pre-ribosome export. On the other hand, RNA-seq analysis reveals that these three proteins can independently regulate many target transcripts, but they often share their target transcripts, yet often regulate them at different expression levels. MDN1 depletion strongly downregulates RNA gene transcripts involved in ribosome biogenesis and splicing. In contrast, MKI67 depletion strongly upregulates transcripts of protein-coding genes, including synapse-specific proteins and the mitosis-related protein NEK7. Furthermore, MKI67 depletion coordinately up- or down-regulates the levels of transcripts of several pathways, thereby enabling MKI67-depleted cells to adapt to less active metabolic states. The underlying mechanism by which MKI67 depletion upregulates transcripts appears to involve attenuation of transcript levels in cooperation with mRNA degradation systems, as evidenced by analysis of NEK7 and UNC13A translations. In conclusion, the present results indicate that MKI67 contributes to proliferation via nucleolar export of 60S pre-ribosome particles and high energy supply. Conversely, its absence leads the cells to adapt to the senescent and differentiated conditions.
Collapse
|
18
|
Monti M, Fiorentino J, Miltiadis-Vrachnos D, Bini G, Cotrufo T, Sanchez de Groot N, Armaos A, Tartaglia GG. catGRANULE 2.0: accurate predictions of liquid-liquid phase separating proteins at single amino acid resolution. Genome Biol 2025; 26:33. [PMID: 39979996 PMCID: PMC11843755 DOI: 10.1186/s13059-025-03497-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 02/06/2025] [Indexed: 02/22/2025] Open
Abstract
Liquid-liquid phase separation (LLPS) enables the formation of membraneless organelles, essential for cellular organization and implicated in diseases. We introduce catGRANULE 2.0 ROBOT, an algorithm integrating physicochemical properties and AlphaFold-derived structural features to predict LLPS at single-amino-acid resolution. The method achieves high performance and reliably evaluates mutation effects on LLPS propensity, providing detailed predictions of how specific mutations enhance or inhibit phase separation. Supported by experimental validations, including microscopy data, it predicts LLPS across diverse organisms and cellular compartments, offering valuable insights into LLPS mechanisms and mutational impacts. The tool is freely available at https://tools.tartaglialab.com/catgranule2 and https://doi.org/10.5281/zenodo.14205831 .
Collapse
Affiliation(s)
- Michele Monti
- Center for Life Nano- & NeuroScience, Fondazione Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161, Rome, Italy
- RNA Systems Biology Lab, Centre for Human Technologies, Fondazione Istituto Italiano di Tecnologia, Via Enrico Melen 83, 16152, Genoa, Italy
| | - Jonathan Fiorentino
- Center for Life Nano- & NeuroScience, Fondazione Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161, Rome, Italy
- RNA Systems Biology Lab, Centre for Human Technologies, Fondazione Istituto Italiano di Tecnologia, Via Enrico Melen 83, 16152, Genoa, Italy
| | - Dimitrios Miltiadis-Vrachnos
- RNA Systems Biology Lab, Centre for Human Technologies, Fondazione Istituto Italiano di Tecnologia, Via Enrico Melen 83, 16152, Genoa, Italy
- Department of Biology and Biotechnologies, University of Rome Sapienza, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Giorgio Bini
- RNA Systems Biology Lab, Centre for Human Technologies, Fondazione Istituto Italiano di Tecnologia, Via Enrico Melen 83, 16152, Genoa, Italy
- Physics Department, University of Genoa, Via Dodecaneso 33, 16146, Genoa, Italy
| | - Tiziana Cotrufo
- Departament de Biologia Cellular, Fisiologia i Immunologia, Universitat de Barcelona, Avenida Diagonal 643, 08028, Barcelona, Spain
| | - Natalia Sanchez de Groot
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), 08193, Barcelona, Spain
| | - Alexandros Armaos
- Center for Life Nano- & NeuroScience, Fondazione Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161, Rome, Italy
- RNA Systems Biology Lab, Centre for Human Technologies, Fondazione Istituto Italiano di Tecnologia, Via Enrico Melen 83, 16152, Genoa, Italy
| | - Gian Gaetano Tartaglia
- Center for Life Nano- & NeuroScience, Fondazione Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161, Rome, Italy.
- RNA Systems Biology Lab, Centre for Human Technologies, Fondazione Istituto Italiano di Tecnologia, Via Enrico Melen 83, 16152, Genoa, Italy.
| |
Collapse
|
19
|
Vachias C, Tourlonias C, Grelée L, Gueguen N, Renaud Y, Venugopal P, Richard G, Pouchin P, Brasset E, Mirouse V. Gap junctions allow transfer of metabolites between germ cells and somatic cells to promote germ cell growth in the Drosophila ovary. PLoS Biol 2025; 23:e3003045. [PMID: 39965028 PMCID: PMC11864552 DOI: 10.1371/journal.pbio.3003045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/26/2025] [Accepted: 01/29/2025] [Indexed: 02/20/2025] Open
Abstract
Gap junctions allow the exchange of small molecules between cells. How this function could be used to promote cell growth is not yet fully understood. During Drosophila ovarian follicle development, germ cells, which are surrounded by epithelial somatic cells, undergo massive growth. We found that this growth depends on gap junctions between these cell populations, with a requirement for Innexin4 and Innexin2, in the germ cells and the somatic cells, respectively. Translatomic analyses revealed that somatic cells express enzymes and transporters involved in amino acid metabolism that are absent in germ cells. Among them, we identified a putative amino acid transporter required for germline growth. Its ectopic expression in the germline can partially compensate for its absence or the one of Innexin2 in somatic cells. Moreover, affecting either gap junctions or the import of some amino acids in somatic cells induces P-bodies in the germ cells, a feature usually associated with an arrest of translation. Finally, in somatic cells, innexin2 expression and gap junction assembly are regulated by the insulin receptor/PI3K kinase pathway, linking the growth of the two tissues. Overall, these results support the view that metabolic transfer through gap junction promotes cell growth and illustrate how such a mechanism can be integrated into a developmental program, coupling growth control by extrinsic systemic signals with the intrinsic coordination between cell populations.
Collapse
Affiliation(s)
- Caroline Vachias
- Université Clermont Auvergne, Institute of Genetics, Reproduction and Development (iGReD), UMR CNRS 6293—INSERM U1103, Faculté de Médecine, Clermont-Ferrand, France
| | - Camille Tourlonias
- Université Clermont Auvergne, Institute of Genetics, Reproduction and Development (iGReD), UMR CNRS 6293—INSERM U1103, Faculté de Médecine, Clermont-Ferrand, France
| | - Louis Grelée
- Université Clermont Auvergne, Institute of Genetics, Reproduction and Development (iGReD), UMR CNRS 6293—INSERM U1103, Faculté de Médecine, Clermont-Ferrand, France
| | - Nathalie Gueguen
- Université Clermont Auvergne, Institute of Genetics, Reproduction and Development (iGReD), UMR CNRS 6293—INSERM U1103, Faculté de Médecine, Clermont-Ferrand, France
| | - Yoan Renaud
- Université Clermont Auvergne, Institute of Genetics, Reproduction and Development (iGReD), UMR CNRS 6293—INSERM U1103, Faculté de Médecine, Clermont-Ferrand, France
| | - Parvathy Venugopal
- Université Clermont Auvergne, Institute of Genetics, Reproduction and Development (iGReD), UMR CNRS 6293—INSERM U1103, Faculté de Médecine, Clermont-Ferrand, France
| | - Graziella Richard
- Université Clermont Auvergne, Institute of Genetics, Reproduction and Development (iGReD), UMR CNRS 6293—INSERM U1103, Faculté de Médecine, Clermont-Ferrand, France
| | - Pierre Pouchin
- Université Clermont Auvergne, Institute of Genetics, Reproduction and Development (iGReD), UMR CNRS 6293—INSERM U1103, Faculté de Médecine, Clermont-Ferrand, France
| | - Emilie Brasset
- Université Clermont Auvergne, Institute of Genetics, Reproduction and Development (iGReD), UMR CNRS 6293—INSERM U1103, Faculté de Médecine, Clermont-Ferrand, France
| | - Vincent Mirouse
- Université Clermont Auvergne, Institute of Genetics, Reproduction and Development (iGReD), UMR CNRS 6293—INSERM U1103, Faculté de Médecine, Clermont-Ferrand, France
| |
Collapse
|
20
|
Kodali S, Sands CM, Guo L, Huang Y, Di Stefano B. Biomolecular condensates in immune cell fate. Nat Rev Immunol 2025:10.1038/s41577-025-01130-z. [PMID: 39875604 DOI: 10.1038/s41577-025-01130-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/02/2025] [Indexed: 01/30/2025]
Abstract
Fate decisions during immune cell development require temporally precise changes in gene expression. Evidence suggests that the dynamic modulation of these changes is associated with the formation of diverse, membrane-less nucleoprotein assemblies that are termed biomolecular condensates. These condensates are thought to orchestrate fate-determining transcriptional and post-transcriptional processes by locally and transiently concentrating DNA or RNA molecules alongside their regulatory proteins. Findings have established a link between condensate formation and the gene regulatory networks that ensure the proper development of immune cells. Conversely, condensate dysregulation has been linked to impaired immune cell fates, including ageing and malignant transformation. This Review explores the putative mechanistic links between condensate assembly and the gene regulatory frameworks that govern normal and pathological development in the immune system.
Collapse
Affiliation(s)
- Srikanth Kodali
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Caroline M Sands
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Lei Guo
- Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA
- Department of Translational Medical Sciences, School of Medicine, Texas A&M University, Houston, TX, USA
| | - Yun Huang
- Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA
- Department of Translational Medical Sciences, School of Medicine, Texas A&M University, Houston, TX, USA
| | - Bruno Di Stefano
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA.
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA.
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
21
|
Gellée N, Legrand N, Jouve M, Devaux PJ, Dubuquoy L, Sobolewski C. Tristetraprolin Family Members and Processing Bodies: A Complex Regulatory Network Involved in Fatty Liver Disease, Viral Hepatitis and Hepatocellular Carcinoma. Cancers (Basel) 2025; 17:348. [PMID: 39941720 PMCID: PMC11815756 DOI: 10.3390/cancers17030348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/15/2025] [Accepted: 01/18/2025] [Indexed: 02/16/2025] Open
Abstract
Chronic liver diseases, such as those encountered with obesity, chronic/abusive alcohol consumption or viral infections, represent not only major public health concerns with limited therapeutic options but also important risk factors for the onset of hepatocellular carcinoma (HCC). Deciphering the molecular traits underlying these disorders is of high interest for designing new and effective treatments. The tristetraprolin (TTP) family members are of particular importance given their ability to control the expression of a wide range of genes involved in metabolism, inflammation and carcinogenesis at the post-transcriptional level. This regulation can occur within small cytoplasmic granules, namely, processing bodies (P-bodies), where the mRNA degradation occurs. Increasing evidence indicates that TTP family members and P-bodies are involved in the development of chronic liver diseases and cancers. In this review, we discuss the role of this regulatory mechanism in metabolic-dysfunction-associated steatotic liver disease (MASLD), alcohol-related liver disease (ALD), hepatic viral infections and HCC.
Collapse
Affiliation(s)
| | | | | | | | | | - Cyril Sobolewski
- Univ Lille, Inserm, CHU Lille, U1286-INFINITE-Institute for Translational Research in Inflammation, F-59000 Lille, France; (N.G.); (N.L.); (M.J.); (L.D.)
| |
Collapse
|
22
|
Akaree N, Secco V, Levy-Adam F, Younis A, Carra S, Shalgi R. Regulation of physiological and pathological condensates by molecular chaperones. FEBS J 2025. [PMID: 39756021 DOI: 10.1111/febs.17390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 11/17/2024] [Accepted: 12/23/2024] [Indexed: 01/07/2025]
Abstract
Biomolecular condensates are dynamic membraneless compartments that regulate a myriad of cellular functions. A particular type of physiological condensate called stress granules (SGs) has gained increasing interest due to its role in the cellular stress response and various diseases. SGs, composed of several hundred RNA-binding proteins, form transiently in response to stress to protect mRNAs from translation and disassemble when the stress subsides. Interestingly, SGs contain several aggregation-prone proteins, such as TDP-43, FUS, hnRNPA1, and others, which are typically found in pathological inclusions seen in autopsy tissues from amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) patients. Moreover, mutations in these genes lead to the familial form of ALS and FTD. This has led researchers to propose that pathological aggregation is seeded by aberrant SGs: SGs that fail to properly disassemble, lose their dynamic properties, and become pathological condensates which finally 'mature' into aggregates. Here, we discuss the evidence supporting this model for various ALS/FTD-associated proteins. We further continue to focus on molecular chaperone-mediated regulation of ALS/FTD-associated physiological condensates on one hand, and pathological condensates on the other. In addition to SGs, we review ALS/FTD-relevant nuclear condensates, namely paraspeckles, anisosomes, and nucleolar amyloid bodies, and discuss their emerging regulation by chaperones. As the majority of chaperoning mechanisms regulate physiological condensate disassembly, we highlight parallel themes of physiological and pathological condensation regulation across different chaperone families, underscoring the potential for early disease intervention.
Collapse
Affiliation(s)
- Nadeen Akaree
- Department of Biochemistry, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Valentina Secco
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Italy
| | - Flonia Levy-Adam
- Department of Biochemistry, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Amal Younis
- Department of Biochemistry, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Serena Carra
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Italy
| | - Reut Shalgi
- Department of Biochemistry, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
23
|
Benedetto MM, Malcolm M, Bruera MG, Penazzi LG, Guido ME, Contín MA, Garbarino-Pico E. Stress Granule Induction in Rat Retinas Damaged by Constant LED Light. Invest Ophthalmol Vis Sci 2025; 66:38. [PMID: 39813056 PMCID: PMC11741064 DOI: 10.1167/iovs.66.1.38] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 12/19/2024] [Indexed: 01/16/2025] Open
Abstract
Purpose Stress granules (SGs) are cytoplasmic biocondensates formed in response to various cellular stressors, contributing to cell survival. Although implicated in diverse pathologies, their role in retinal degeneration (RD) remains unclear. We aimed to investigate SG formation in the retina and its induction by excessive LED light in an RD model. Methods Rat retinas were immunohistochemically analyzed for SG markers G3BP1 and eIF3, and SGs were also visualized by RNA fluorescence in situ hybridization. Additionally, SGs were induced in primary retinal cell and eyeball cultures using sodium arsenite. Light exposure experiments used LED lamps with a color temperature of 5500 K and 200 lux intensity for short-term or two- to eight-day exposures. Results SGs were predominantly detected in retinal ganglion cells (RGCs) and inner nuclear layer (INL) cells, with arsenite-induction verified in RGCs. SG abundance was higher in animals exposed to light for 2-8 days compared to light/dark cycle controls. RGCs consistently exhibited more SGs than INL cells, and INL cells more than outer nuclear layer (ONL) cells (Scheirer-Ray-Hare test: H = 13.2, P = 0.0103 for light condition, and H = 278.2, P < 0.00001 for retinal layer). These observations were consistent across four independent experiments, each with three animals per light condition. Conclusions This study characterizes SGs in the mammalian retina for the first time, with increased prevalence after excessive LED light exposure. RGCs and INL cells showed heightened SG formation, suggesting a potential protective mechanism against photodamage. Further investigations are warranted to elucidate the role of SGs in shielding against light stress and their implications in retinopathies.
Collapse
Affiliation(s)
- María M. Benedetto
- Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Química Biológica Ranwel Caputto. Córdoba, Argentina
- CONICET. Universidad Nacional de Córdoba. Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Córdoba, Argentina
| | - Melisa Malcolm
- Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Química Biológica Ranwel Caputto. Córdoba, Argentina
- CONICET. Universidad Nacional de Córdoba. Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Córdoba, Argentina
| | - Manuel G. Bruera
- Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Química Biológica Ranwel Caputto. Córdoba, Argentina
- CONICET. Universidad Nacional de Córdoba. Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Córdoba, Argentina
| | - Laura G. Penazzi
- Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Química Biológica Ranwel Caputto. Córdoba, Argentina
- CONICET. Universidad Nacional de Córdoba. Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Córdoba, Argentina
| | - Mario E. Guido
- Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Química Biológica Ranwel Caputto. Córdoba, Argentina
- CONICET. Universidad Nacional de Córdoba. Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Córdoba, Argentina
| | - María A. Contín
- Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Química Biológica Ranwel Caputto. Córdoba, Argentina
- CONICET. Universidad Nacional de Córdoba. Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Córdoba, Argentina
| | - Eduardo Garbarino-Pico
- Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Química Biológica Ranwel Caputto. Córdoba, Argentina
- CONICET. Universidad Nacional de Córdoba. Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Córdoba, Argentina
| |
Collapse
|
24
|
Yu J, Zhao N, Wang Y, Ding N, Guo Z, He Z, Zhang Q, Zhang J, Yang X, Zhang M, Du X, Zhang K, Chen L. DCP1A, a MEK substrate, regulates the self-renewal and differentiation of mouse embryonic stem cells. Cell Rep 2024; 43:115058. [PMID: 39671288 DOI: 10.1016/j.celrep.2024.115058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/27/2024] [Accepted: 11/21/2024] [Indexed: 12/15/2024] Open
Abstract
Mitogen-activated extracellular signal-regulated kinase (MEK) inhibitors are widely applied to maintain pluripotency, while prolonged MEK inhibition compromises the developmental potential of mouse embryonic stem cells (ESCs). To understand the mechanism of MEK in pluripotency maintenance, we first demonstrated that MEK regulates gene expression at post-transcriptional steps. Consistently, many of the 66 MEK substrates identified by quantitative phosphoproteomics analysis are involved in RNA processing. We further confirmed that MEK1 phosphorylates S563 of DCP1A, an mRNA decapping cofactor and processing body (P body) component. DCP1A, as well as two other P body components, EDC4 and DCP2, are required for the self-renewal and differentiation of ESCs, indicating the role of P bodies in ESCs. Dephosphorylation of DCP1A S563 facilitates both self-renewal and differentiation of ESCs through promoting P body formation and RNA storage. In summary, our study identified 66 MEK substrates supporting the extracellular signal-regulated kinase (ERK)-independent function of MEK and revealed that DCP1A, phosphorylated by MEK, regulates ESC self-renewal and differentiation through modulating P body formation.
Collapse
Affiliation(s)
- Jiayu Yu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Frontiers Science Center for Cell Responses, National Demonstration Center for Experimental Biology Education and College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Nannan Zhao
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Frontiers Science Center for Cell Responses, National Demonstration Center for Experimental Biology Education and College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yuying Wang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Frontiers Science Center for Cell Responses, National Demonstration Center for Experimental Biology Education and College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Nan Ding
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Frontiers Science Center for Cell Responses, National Demonstration Center for Experimental Biology Education and College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Zhenchang Guo
- Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin 300203, China
| | - Zichan He
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Frontiers Science Center for Cell Responses, National Demonstration Center for Experimental Biology Education and College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Qingye Zhang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Frontiers Science Center for Cell Responses, National Demonstration Center for Experimental Biology Education and College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Jingai Zhang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Frontiers Science Center for Cell Responses, National Demonstration Center for Experimental Biology Education and College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xiaoqiong Yang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Frontiers Science Center for Cell Responses, National Demonstration Center for Experimental Biology Education and College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Ming Zhang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Frontiers Science Center for Cell Responses, National Demonstration Center for Experimental Biology Education and College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xiaoling Du
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Frontiers Science Center for Cell Responses, National Demonstration Center for Experimental Biology Education and College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Kai Zhang
- Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin 300203, China
| | - Lingyi Chen
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Frontiers Science Center for Cell Responses, National Demonstration Center for Experimental Biology Education and College of Life Sciences, Nankai University, Tianjin 300071, China.
| |
Collapse
|
25
|
Gull B, Ahmad W, Baby J, Panicker NG, Khader TA, Rizvi TA, Mustafa F. Identification and characterization of host miRNAs that target the mouse mammary tumour virus (MMTV) genome. Open Biol 2024; 14:240203. [PMID: 39657819 PMCID: PMC11631425 DOI: 10.1098/rsob.240203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/07/2024] [Accepted: 11/07/2024] [Indexed: 12/12/2024] Open
Abstract
The intricate interplay between viruses and hosts involves microRNAs (miRNAs) to regulate gene expression by targeting cellular/viral messenger RNAs (mRNAs). Mouse mammary tumour virus (MMTV), the aetiological agent of breast cancer and leukaemia/lymphomas in mice, provides an ideal model to explore how viral and host miRNAs interact to modulate virus replication and tumorigenesis. We previously reported dysregulation of host miRNAs in MMTV-infected mammary glands and MMTV-induced tumours, suggesting a direct interaction between MMTV and miRNAs. To explore this further, we systematically examined all potential interactions between host miRNAs and the MMTV genome using advanced prediction tools. Leveraging miRNA sequencing data from MMTV-expressing cells, we identified dysregulated miRNAs capable of targeting MMTV. Docking analysis validated the interaction of three dysregulated miRNAs with the MMTV genome, followed by confirmation with RNA immunoprecipitation assays. We further identified host targets of these miRNAs using mRNA sequencing data from MMTV-expressing cells. These findings should enhance our understanding of how MMTV replicates and interacts with the host to induce cancer in mice, a model important for cancer research. Given MMTV's potential zoonosis and association with human breast cancer/lymphomas, if confirmed, our work could further lead to novel miRNA-based antivirals/therapeutics to prevent possible MMTV transmission and associated cancers in humans.
Collapse
Affiliation(s)
- Bushra Gull
- Department of Biochemistry & Molecular Biology, College of Medicine & Health Sciences (CMHS), United Arab Emirates University, Al Ain, UAE
| | - Waqar Ahmad
- Department of Biochemistry & Molecular Biology, College of Medicine & Health Sciences (CMHS), United Arab Emirates University, Al Ain, UAE
| | - Jasmin Baby
- Department of Biochemistry & Molecular Biology, College of Medicine & Health Sciences (CMHS), United Arab Emirates University, Al Ain, UAE
| | - Neena G. Panicker
- Department of Biochemistry & Molecular Biology, College of Medicine & Health Sciences (CMHS), United Arab Emirates University, Al Ain, UAE
| | - Thanumol Abdul Khader
- Department of Biochemistry & Molecular Biology, College of Medicine & Health Sciences (CMHS), United Arab Emirates University, Al Ain, UAE
| | - Tahir A. Rizvi
- Department of Microbiology & Immunology, College of Medicine & Health Sciences (CMHS), United Arab Emirates University, Al Ain, UAE
- Zayed Center for Health Sciences (ZCHS), United Arab Emirates University, Al Ain, UAE
- ASPIRE Research Institute in Precision Medicine, Abu Dhabi, UAE
| | - Farah Mustafa
- Department of Biochemistry & Molecular Biology, College of Medicine & Health Sciences (CMHS), United Arab Emirates University, Al Ain, UAE
- Zayed Center for Health Sciences (ZCHS), United Arab Emirates University, Al Ain, UAE
- ASPIRE Research Institute in Precision Medicine, Abu Dhabi, UAE
| |
Collapse
|
26
|
Williams TD, Rousseau A. Translation regulation in response to stress. FEBS J 2024; 291:5102-5122. [PMID: 38308808 PMCID: PMC11616006 DOI: 10.1111/febs.17076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/07/2023] [Accepted: 01/22/2024] [Indexed: 02/05/2024]
Abstract
Cell stresses occur in a wide variety of settings: in disease, during industrial processes, and as part of normal day-to-day rhythms. Adaptation to these stresses requires cells to alter their proteome. Cells modify the proteins they synthesize to aid proteome adaptation. Changes in both mRNA transcription and translation contribute to altered protein synthesis. Here, we discuss the changes in translational mechanisms that occur following the onset of stress, and the impact these have on stress adaptation.
Collapse
Affiliation(s)
- Thomas D. Williams
- MRC‐PPU, School of Life SciencesUniversity of DundeeUK
- Sir William Dunn School of PathologyUniversity of OxfordUK
| | | |
Collapse
|
27
|
Shaw B, Thwin PH, Jia N, Weng H, Ma C, Zhu H, Wang L. Stress granules play a critical role in hexavalent chromium-induced malignancy in a G3BP1 dependent manner. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 362:124997. [PMID: 39306064 PMCID: PMC11563910 DOI: 10.1016/j.envpol.2024.124997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/28/2024] [Accepted: 09/18/2024] [Indexed: 09/27/2024]
Abstract
Stress granules (SGs) are dynamic membraneless organelles influencing multiple cellular pathways including cell survival, proliferation, and malignancy. Hexavalent chromium [Cr(VI)] is a toxic heavy metal associated with severe environmental health risks. Low-level environmental exposure to Cr(VI) has been reported to cause cancer, but the role of SGs in Cr(VI)-induced health effects remains unclear. This study was intended to elucidate the impact of Cr(VI) exposure on SG dynamics and the role of SGs in Cr(VI)-induced malignancy. Results showed that both acute exposure to high concentration of Cr(VI) and prolonged exposure to low concentration of Cr(VI)-induced SG formation in human bronchial epithelium BEAS-2B cells. Cells pre-exposed to Cr(VI) exhibited a more robust SG response compared to cells without pre-exposure. An up-regulated SG response was associated with increased malignant properties in cells exposed to low concentration Cr(VI) for an extended period of time up to 12 months. Knocking out the SG core protein G3BP1 in Cr(VI)-transformed (CrT) cells reduced SG formation and malignant properties, including proliferation rate, sphere formation, and malignant markers. The results support a critical role for SGs in mediating Cr(VI)-induced malignancy in a G3BP1-dependent manner, representing a novel mechanism and a potential therapeutic target.
Collapse
Affiliation(s)
- Brian Shaw
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, 85721, USA; Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, 85721, USA
| | - Phyo Han Thwin
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, 85721, USA
| | - Nan Jia
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, 85721, USA
| | - Hope Weng
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, 85721, USA
| | - Chunlong Ma
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, 85721, USA
| | - Haining Zhu
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, 85721, USA; Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, 85721, USA; Research Service, Department of Veteran Affairs Southern Arizona Health Care, Tucson, AZ, 85723, USA.
| | - Lei Wang
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, 85721, USA.
| |
Collapse
|
28
|
Duran J, Salinas JE, Wheaton RP, Poolsup S, Allers L, Rosas-Lemus M, Chen L, Cheng Q, Pu J, Salemi M, Phinney B, Ivanov P, Lystad AH, Bhaskar K, Rajaiya J, Perkins DJ, Jia J. Calcium signaling from damaged lysosomes induces cytoprotective stress granules. EMBO J 2024; 43:6410-6443. [PMID: 39533058 PMCID: PMC11649789 DOI: 10.1038/s44318-024-00292-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 09/18/2024] [Accepted: 10/11/2024] [Indexed: 11/16/2024] Open
Abstract
Lysosomal damage induces stress granule (SG) formation. However, the importance of SGs in determining cell fate and the precise mechanisms that mediate SG formation in response to lysosomal damage remain unclear. Here, we describe a novel calcium-dependent pathway controlling SG formation, which promotes cell survival during lysosomal damage. Mechanistically, the calcium-activated protein ALIX transduces lysosomal damage signals to SG formation by controlling eIF2α phosphorylation after sensing calcium leakage. ALIX enhances eIF2α phosphorylation by promoting the association between PKR and its activator PACT, with galectin-3 inhibiting this interaction; these regulatory events occur on damaged lysosomes. We further find that SG formation plays a crucial role in promoting cell survival upon lysosomal damage caused by factors such as SARS-CoV-2ORF3a, adenovirus, malarial pigment, proteopathic tau, or environmental hazards. Collectively, these data provide insights into the mechanism of SG formation upon lysosomal damage and implicate it in diseases associated with damaged lysosomes and SGs.
Collapse
Affiliation(s)
- Jacob Duran
- Center for Global Health, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, 87106, USA
- Autophagy, Inflammation and Metabolism Center of Biochemical Research Excellence, Albuquerque, NM, 87106, USA
| | - Jay E Salinas
- Center for Global Health, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, 87106, USA
- Autophagy, Inflammation and Metabolism Center of Biochemical Research Excellence, Albuquerque, NM, 87106, USA
| | - Rui Ping Wheaton
- Center for Global Health, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, 87106, USA
- Autophagy, Inflammation and Metabolism Center of Biochemical Research Excellence, Albuquerque, NM, 87106, USA
| | - Suttinee Poolsup
- Center for Global Health, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, 87106, USA
- Autophagy, Inflammation and Metabolism Center of Biochemical Research Excellence, Albuquerque, NM, 87106, USA
| | - Lee Allers
- Autophagy, Inflammation and Metabolism Center of Biochemical Research Excellence, Albuquerque, NM, 87106, USA
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM, 87106, USA
| | - Monica Rosas-Lemus
- Autophagy, Inflammation and Metabolism Center of Biochemical Research Excellence, Albuquerque, NM, 87106, USA
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM, 87106, USA
| | - Li Chen
- Autophagy, Inflammation and Metabolism Center of Biochemical Research Excellence, Albuquerque, NM, 87106, USA
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM, 87106, USA
| | - Qiuying Cheng
- Center for Global Health, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, 87106, USA
| | - Jing Pu
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM, 87106, USA
| | - Michelle Salemi
- Proteomics Core Facility, University of California Davis Genome Center, University of California, Davis, CA, 95616, USA
| | - Brett Phinney
- Proteomics Core Facility, University of California Davis Genome Center, University of California, Davis, CA, 95616, USA
| | - Pavel Ivanov
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School; HMS Initiative for RNA Medicine, Boston, MA, 02115, USA
| | - Alf Håkon Lystad
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo; Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Kiran Bhaskar
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM, 87106, USA
- Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, NM, 87106, USA
| | - Jaya Rajaiya
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM, 87106, USA
| | - Douglas J Perkins
- Center for Global Health, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, 87106, USA
| | - Jingyue Jia
- Center for Global Health, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, 87106, USA.
- Autophagy, Inflammation and Metabolism Center of Biochemical Research Excellence, Albuquerque, NM, 87106, USA.
| |
Collapse
|
29
|
Lin J, Sumara I. Cytoplasmic nucleoporin assemblage: the cellular artwork in physiology and disease. Nucleus 2024; 15:2387534. [PMID: 39135336 PMCID: PMC11323873 DOI: 10.1080/19491034.2024.2387534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/29/2024] [Accepted: 07/29/2024] [Indexed: 08/16/2024] Open
Abstract
Nucleoporins, essential proteins building the nuclear pore, are pivotal for ensuring nucleocytoplasmic transport. While traditionally confined to the nuclear envelope, emerging evidence indicates their presence in various cytoplasmic structures, suggesting potential non-transport-related roles. This review consolidates findings on cytoplasmic nucleoporin assemblies across different states, including normal physiological conditions, stress, and pathology, exploring their structural organization, formation dynamics, and functional implications. We summarize the current knowledge and the latest concepts on the regulation of nucleoporin homeostasis, aiming to enhance our understanding of their unexpected roles in physiological and pathological processes.
Collapse
Affiliation(s)
- Junyan Lin
- Department of Development and Stem Cells, Institute of Genetics and Molecular and Cellular Biology (IGBMC), Illkirch, France
- Centre National de la Recherche Scientifique UMR 7104, Strasbourg, France
- Institut National de la Santé et de la Recherche Médicale U964, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
| | - Izabela Sumara
- Department of Development and Stem Cells, Institute of Genetics and Molecular and Cellular Biology (IGBMC), Illkirch, France
- Centre National de la Recherche Scientifique UMR 7104, Strasbourg, France
- Institut National de la Santé et de la Recherche Médicale U964, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
| |
Collapse
|
30
|
Graeve FD, Debreuve E, Pushpalatha KV, Zhang X, Rahmoun S, Kozlowski D, Cedilnik N, Vijayakumar J, Cassini P, Schaub S, Descombes X, Besse F. An image-based RNAi screen identifies the EGFR signaling pathway as a regulator of Imp RNP granules. J Cell Sci 2024; 137:jcs262119. [PMID: 39479884 PMCID: PMC11698055 DOI: 10.1242/jcs.262119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 10/18/2024] [Indexed: 12/12/2024] Open
Abstract
Biomolecular condensates have recently retained much attention given that they provide a fundamental mechanism of cellular organization. Among those, cytoplasmic ribonucleoprotein (RNP) granules selectively and reversibly concentrate RNA molecules and regulatory proteins, thus contributing to the spatiotemporal regulation of associated RNAs. Extensive in vitro work has unraveled the molecular and chemical bases of RNP granule assembly. The signaling pathways controlling this process in a cellular context are, however, still largely unknown. Here, we aimed at identifying regulators of cytoplasmic RNP granules characterized by the presence of the evolutionarily conserved Imp RNA-binding protein (a homolog of IGF2BP proteins). We performed a high-content image-based RNAi screen targeting all Drosophila genes encoding RNA-binding proteins, phosphatases and kinases. This led to the identification of dozens of genes regulating the number of Imp-positive RNP granules in S2R+ cells, among which were components of the MAPK pathway. Combining functional approaches, phospho-mapping and generation of phospho-variants, we further showed that EGFR signaling inhibits Imp-positive RNP granule assembly through activation of the MAPK-ERK pathway and downstream phosphorylation of Imp at the S15 residue. This work illustrates how signaling pathways can regulate cellular condensate assembly by post-translational modifications of specific components.
Collapse
Affiliation(s)
- Fabienne De Graeve
- Université Côte D'Azur, CNRS, Inserm, Institut de Biologie Valrose, 06108 Nice, France
| | - Eric Debreuve
- Université Côte D'Azur, CNRS, INRIA, I3S, 06902 Sophia Antipolis, France
| | | | - Xuchun Zhang
- Université Côte D'Azur, INRIA, CNRS, I3S, 06902 Sophia Antipolis, France
| | - Somia Rahmoun
- Université Côte D'Azur, INRIA, CNRS, I3S, 06902 Sophia Antipolis, France
| | - Djampa Kozlowski
- Université Côte D'Azur, CNRS, Inserm, Institut de Biologie Valrose, 06108 Nice, France
| | - Nicolas Cedilnik
- Université Côte D'Azur, CNRS, Inserm, Institut de Biologie Valrose, 06108 Nice, France
| | - Jeshlee Vijayakumar
- Université Côte D'Azur, CNRS, Inserm, Institut de Biologie Valrose, 06108 Nice, France
| | - Paul Cassini
- Université Côte D'Azur, CNRS, Inserm, Institut de Biologie Valrose, 06108 Nice, France
| | - Sebastien Schaub
- Université Côte D'Azur, CNRS, Inserm, Institut de Biologie Valrose, 06108 Nice, France
- Université Sorbonne, CNRS, LBDV, 06230 Villefranche-sur-mer, France
| | - Xavier Descombes
- Université Côte D'Azur, INRIA, CNRS, I3S, 06902 Sophia Antipolis, France
| | - Florence Besse
- Université Côte D'Azur, CNRS, Inserm, Institut de Biologie Valrose, 06108 Nice, France
| |
Collapse
|
31
|
Yun T, Hua J, Chen L, Ye W, Ni Z, Zhu Y, Zhang C. Infection with novel duck reovirus induces stress granule and methylation-mediated host translational shutoff in Muscovy ducklings. Commun Biol 2024; 7:1549. [PMID: 39572728 PMCID: PMC11582818 DOI: 10.1038/s42003-024-07259-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 11/13/2024] [Indexed: 11/24/2024] Open
Abstract
The recently identified novel duck reovirus (NDRV) is a waterfowl reovirus that can seriously harm or kill various waterfowl species. However, how NDRV interacts with host cells in Muscovy ducklings beyond the typical pathogenesis resulting from a viral infection is unknown. The current study examined the global translation efficiency of the Fabricius bursa of Muscovy ducklings infected with NDRV HN10 using mass spectrometry and ribosome footprint sequencing. Protein-protein interactions were investigated using immunogold labeling, transmission electron microscopy, and immunocytochemistry. An analysis of the relationship between m6A and translation was performed using RNA immunoprecipitation and m6A methylation immunoprecipitation. We found that both in vivo and in vitro, the translation efficiency of RNA modified with m6A could be significantly reduced by σB, a structural protein component of NDRV HN10. Furthermore, σB might simultaneously interact with the stress granule complex CAPRIN1 and G3BP1 and the m6A reader protein YTHDF1/3. Significant overlap was observed between m6A-modified and G3BP1-enriched RNA, indicating that granule stress could capture m6A-methylated RNA. We discovered a new function for NDRV HN10 in translational shutoff by recruiting m6A-modified RNA into stress granules located in the Fabricius bursa of Muscovy ducklings.
Collapse
Affiliation(s)
- Tao Yun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| | - Jionggang Hua
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Liu Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Weicheng Ye
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Zheng Ni
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Yinchu Zhu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Cun Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| |
Collapse
|
32
|
He SL, Wang X, Kim SI, Kong L, Liu A, Wang L, Wang Y, Shan L, He P, Jang JC. Modulation of stress granule dynamics by phosphorylation and ubiquitination in plants. iScience 2024; 27:111162. [PMID: 39569378 PMCID: PMC11576400 DOI: 10.1016/j.isci.2024.111162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 11/22/2024] Open
Abstract
The Arabidopsis tandem CCCH zinc finger 1 (TZF1) is an RNA-binding protein that plays a pivotal role in plant growth and stress response. In this report, we show that TZF1 contains two intrinsically disordered regions necessary for its localization to stress granules (SGs). TZF1 recruits mitogen-activated protein kinase (MAPK) signaling components and an E3 ubiquitin ligase KEEP-ON-GOING (KEG) to SGs. TZF1 is phosphorylated by MPKs and ubiquitinated by KEG. Using a high throughput Arabidopsis protoplasts transient expression system, mutant studies reveal that the phosphorylation of specific residues plays differential roles in enhancing or reducing TZF1 SG assembly and protein-protein interaction with mitogen-activated kinase kinase 5 in SGs. Ubiquitination appears to play a positive role in TZF1 SG assembly, because mutations cause a reduction of typical SGs, while enhancing the assembly of large SGs encompassing the nucleus. Together, our results demonstrate that plant SG assembly is distinctively regulated by phosphorylation and ubiquitination.
Collapse
Affiliation(s)
- Siou-Luan He
- Department of Horticulture and Crop Science, Center for Applied Plant Sciences, and Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Xiling Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, and University of Chinese Academy of Sciences, Beijing 10093, China
| | - Sung-Il Kim
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-1085, USA
| | - Liang Kong
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-1085, USA
| | - Ailing Liu
- Department of Horticulture and Crop Science, Center for Applied Plant Sciences, and Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, Hunan, China
| | - Lei Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, and University of Chinese Academy of Sciences, Beijing 10093, China
| | - Ying Wang
- Plant Pathology Department and Plant Molecular Cellular Biology Program, University of Florida, Gainesville, FL 32611, USA
| | - Libo Shan
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-1085, USA
| | - Ping He
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-1085, USA
| | - Jyan-Chyun Jang
- Department of Horticulture and Crop Science, Center for Applied Plant Sciences, and Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
33
|
Kumar A, Tanaka K, Schwartz MA. Focal adhesion-derived liquid-liquid phase separations regulate mRNA translation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.22.568289. [PMID: 38045367 PMCID: PMC10690234 DOI: 10.1101/2023.11.22.568289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Liquid-liquid phase separation (LLPS) has emerged as a major organizing principle in cells. Recent work showed that multiple components of integrin-mediated focal adhesions including p130Cas can form LLPS, which govern adhesion dynamics and related cell behaviors. In this study, we found that the focal adhesion protein p130Cas drives formation of structures with the characteristics of LLPS that bud from focal adhesions into the cytoplasm. Condensing concentrated cytoplasm around p130Cas-coated beads allowed their isolation, which were enriched in a subset of focal adhesion proteins, mRNAs and RNA binding proteins, including those implicated in inhibiting mRNA translation. Plating cells on very high concentrations of fibronectin to induce large focal adhesions inhibited message translation which required p130Cas and correlated with droplet formation. Photo-induction of p130Cas condensates using the Cry2 system also reduced translation. These results identify a novel regulatory mechanism in which high adhesion limits message translation via induction of p130Cas-dependent cytoplasmic LLPS. This mechanism may contribute to the quiescent state of very strongly adhesive myofibroblasts and senescent cells.
Collapse
Affiliation(s)
- Abhishek Kumar
- Yale Cardiovascular Research Center, Department of Internal Medicine (Division of Cardiovascular Medicine), 300 George St. New Haven CT 06511
| | - Keiichiro Tanaka
- Yale Cardiovascular Research Center, Department of Internal Medicine (Division of Cardiovascular Medicine), 300 George St. New Haven CT 06511
| | - Martin A Schwartz
- Yale Cardiovascular Research Center, Department of Internal Medicine (Division of Cardiovascular Medicine), 300 George St. New Haven CT 06511
- Department of Cell Biology, Yale School of Medicine
- Department of Biomedical Engineering, Yale University
| |
Collapse
|
34
|
Adachi Y, Williams AM, Masuda M, Taketani Y, Anderson PJ, Ivanov P. Chronic stress antagonizes formation of Stress Granules. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.29.620814. [PMID: 39554104 PMCID: PMC11565828 DOI: 10.1101/2024.10.29.620814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Chronic stress mediates cellular changes that can contribute to human disease. However, fluctuations in RNA metabolism caused by chronic stress have been largely neglected in the field. Stress granules (SGs) are cytoplasmic ribonucleoprotein condensates formed in response to stress-induced inhibition of mRNA translation and polysome disassembly. Despite the broad interest in SG assembly and disassembly in response to acute stress, SG assembly in response to chronic stress has not been extensively investigated. In this study, we show that cells pre-conditioned with low dose chronic (24-hour exposure) stresses such as oxidative stress, endoplasmic reticulum stress, mitochondrial stress, and starvation, fail to assemble SGs in response to acute stress. While translation is drastically decreased by acute stress in pre-conditioned cells, polysome profiling analysis reveals the partial preservation of polysomes resistant to puromycin-induced disassembly. We showed that chronic stress slows down the rate of mRNA translation at the elongation phase and triggers phosphorylation of translation elongation factor eEF2. Polysome profiling followed by RNase treatment confirmed that chronic stress induces ribosome stalling. Chronic stress-induced ribosome stalling is distinct from ribosome collisions that are known to trigger a specific stress response pathway. In summary, chronic stress triggers ribosome stalling, which blocks polysome disassembly and SG formation by subsequent acute stress. Significant statements Stress granules (SGs) are dynamic cytoplasmic biocondensates assembled in response to stress-induced inhibition of mRNA translation and polysome disassembly. SGs have been proposed to contribute to the survival of cells exposed to toxic conditions. Although the mechanisms of SG assembly and disassembly in the acute stress response are well understood, the role of SGs in modulating the response to chronic stress is unclear. Here, we show that human cells pre-conditioned with chronic stress fail to assemble SGs in response to acute stress despite inhibition of mRNA translation. Mechanistically, chronic stress induces ribosome stalling, which prevents polysome disassembly and subsequent SG formation. This finding suggests that chronically stressed or diseased human cells may have a dysfunctional SG response that could inhibit cell survival and promote disease.
Collapse
|
35
|
Pamula MC, Lehmann R. How germ granules promote germ cell fate. Nat Rev Genet 2024; 25:803-821. [PMID: 38890558 DOI: 10.1038/s41576-024-00744-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2024] [Indexed: 06/20/2024]
Abstract
Germ cells are the only cells in the body capable of giving rise to a new organism, and this totipotency hinges on their ability to assemble membraneless germ granules. These specialized RNA and protein complexes are hallmarks of germ cells throughout their life cycle: as embryonic germ granules in late oocytes and zygotes, Balbiani bodies in immature oocytes, and nuage in maturing gametes. Decades of developmental, genetic and biochemical studies have identified protein and RNA constituents unique to germ granules and have implicated these in germ cell identity, genome integrity and gamete differentiation. Now, emerging research is defining germ granules as biomolecular condensates that achieve high molecular concentrations by phase separation, and it is assigning distinct roles to germ granules during different stages of germline development. This organization of the germ cell cytoplasm into cellular subcompartments seems to be critical not only for the flawless continuity through the germline life cycle within the developing organism but also for the success of the next generation.
Collapse
Affiliation(s)
| | - Ruth Lehmann
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA.
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
36
|
Hanley SE, Willis SD, Friedson B, Cooper KF. Med13 is required for efficient P-body recruitment and autophagic degradation of Edc3 following nitrogen starvation. Mol Biol Cell 2024; 35:ar142. [PMID: 39320938 PMCID: PMC11617093 DOI: 10.1091/mbc.e23-12-0470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 09/17/2024] [Accepted: 09/19/2024] [Indexed: 09/26/2024] Open
Abstract
The Cdk8 kinase module (CKM), a conserved, detachable unit of the Mediator complex, plays a vital role in regulating transcription and communicating stress signals from the nucleus to other organelles. Here, we describe a new transcription-independent role for Med13, a CKM scaffold protein, following nitrogen starvation. In Saccharomyces cerevisiae, nitrogen starvation triggers Med13 to translocate to the cytoplasm. This stress also induces the assembly of conserved membraneless condensates called processing bodies (P-bodies) that dynamically sequester translationally inactive messenger ribonucleoprotein particles. Cytosolic Med13 colocalizes with P-bodies, where it helps recruit Edc3, a highly conserved decapping activator and P-body assembly factor, into these conserved ribonucleoprotein granules. Moreover, Med13 orchestrates the autophagic degradation of Edc3 through a selective cargo-hitchhiking autophagy pathway that utilizes Ksp1 as its autophagic receptor protein. In contrast, the autophagic degradation of Xrn1, another conserved P-body assembly factor, is Med13 independent. These results place Med13 as a new player in P-body assembly and regulation following nitrogen starvation. They support a model in which Med13 acts as a conduit between P-bodies and phagophores, two condensates that use liquid-liquid phase separation in their assembly.
Collapse
Affiliation(s)
- Sara E. Hanley
- Department of Molecular Biology, Virtua Health College of Medicine and Life Sciences, Rowan University, Stratford, NJ 08084
| | - Stephen D. Willis
- Department of Molecular Biology, Virtua Health College of Medicine and Life Sciences, Rowan University, Stratford, NJ 08084
| | - Brittany Friedson
- Department of Molecular Biology, Virtua Health College of Medicine and Life Sciences, Rowan University, Stratford, NJ 08084
| | - Katrina F. Cooper
- Department of Molecular Biology, Virtua Health College of Medicine and Life Sciences, Rowan University, Stratford, NJ 08084
| |
Collapse
|
37
|
Seto E, Kina S, Kawabata-Iwakawa R, Suzuki M, Onizuka Y, Nakajima-Shimada J. Trypanosoma cruzi assembles host cytoplasmic processing bodies to evade the innate immune response. Biochim Biophys Acta Gen Subj 2024; 1868:130686. [PMID: 39122157 DOI: 10.1016/j.bbagen.2024.130686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/03/2024] [Accepted: 07/28/2024] [Indexed: 08/12/2024]
Abstract
Processing bodies (P-bodies, PBs) are cytoplasmic foci formed by condensation of translationally inactivated messenger ribonucleoprotein particles (mRNPs). Infection with the protozoan parasite Trypanosoma cruzi (T. cruzi) promotes PB accumulation in host cells, suggesting their involvement in host mRNA metabolism during parasite infection. To identify PB-regulated mRNA targets during T. cruzi infection, we established a PB-defective human fibrosarcoma cell line by knocking out the enhancer of mRNA decapping 4 (EDC4), an essential component of PB assembly. Next-generation sequencing was used to establish transcriptome profiles for wild-type (WT) and EDC4 knockout (KO) cells infected with T. cruzi for 0, 3, and 24 h. Ingenuity pathway analysis based on the differentially expressed genes revealed that PB depletion increased the activation of several signaling pathways involved in the innate immune response. The proinflammatory cytokine IL-1β was significantly upregulated following infection of PB-deficient KO cells, but not in WT cells, at the mRNA and protein levels. Furthermore, the rescue of PB assembly in KO cells by GFP-tagged wild-type EDC4 (+WT) suppressed IL-1β expression, whereas KO cells with the C-terminal-deleted mutant EDC4 (+Δ) failed to rescue PB assembly and downregulate IL-1β production. Our results suggest that T. cruzi assembles host PBs to counteract antiparasitic innate immunity.
Collapse
Affiliation(s)
- Eri Seto
- Education and Research Support Center, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan.
| | - Shinichiro Kina
- Center for Medical Education, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan
| | - Reika Kawabata-Iwakawa
- Division of Integrated Oncology Research, Gunma University Initiative for Advanced Research, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan
| | - Makiko Suzuki
- Department of Molecular and Cellular Parasitology, Gunma University Graduate School of Health Sciences, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan
| | - Yoko Onizuka
- Department of Molecular and Cellular Parasitology, Gunma University Graduate School of Health Sciences, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan
| | - Junko Nakajima-Shimada
- Department of Molecular and Cellular Parasitology, Gunma University Graduate School of Health Sciences, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan
| |
Collapse
|
38
|
Gavrilova AA, Neklesova MV, Zagryadskaya YA, Kuznetsova IM, Turoverov KK, Fonin AV. Stress-Induced Evolution of the Nucleolus: The Role of Ribosomal Intergenic Spacer (rIGS) Transcripts. Biomolecules 2024; 14:1333. [PMID: 39456266 PMCID: PMC11505599 DOI: 10.3390/biom14101333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/04/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
It became clear more than 20 years ago that the nucleolus not only performs the most important biological function of assembling ribonucleic particles but is also a key controller of many cellular processes, participating in cellular adaptation to stress. The nucleolus's multifunctionality is due to the peculiarities of its biogenesis. The nucleolus is a multilayered biomolecular condensate formed by liquid-liquid phase separation (LLPS). In this review, we focus on changes occurring in the nucleolus during cellular stress, molecular features of the nucleolar response to abnormal and stressful conditions, and the role of long non-coding RNAs transcribed from the intergenic spacer region of ribosomal DNA (IGS rDNA).
Collapse
Affiliation(s)
- Anastasia A. Gavrilova
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia; (A.A.G.); (M.V.N.); (I.M.K.); (K.K.T.)
| | - Margarita V. Neklesova
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia; (A.A.G.); (M.V.N.); (I.M.K.); (K.K.T.)
| | | | - Irina M. Kuznetsova
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia; (A.A.G.); (M.V.N.); (I.M.K.); (K.K.T.)
| | - Konstantin K. Turoverov
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia; (A.A.G.); (M.V.N.); (I.M.K.); (K.K.T.)
| | - Alexander V. Fonin
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia; (A.A.G.); (M.V.N.); (I.M.K.); (K.K.T.)
| |
Collapse
|
39
|
Wu J, Xiao Y, Liu Y, Wen L, Jin C, Liu S, Paul S, He C, Regev O, Fei J. Dynamics of RNA localization to nuclear speckles are connected to splicing efficiency. SCIENCE ADVANCES 2024; 10:eadp7727. [PMID: 39413186 PMCID: PMC11482332 DOI: 10.1126/sciadv.adp7727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 09/11/2024] [Indexed: 10/18/2024]
Abstract
Nuclear speckles are nuclear membraneless organelles in higher eukaryotic cells playing a vital role in gene expression. Using an in situ reverse transcription-based sequencing method, we study nuclear speckle-associated human transcripts. Our data indicate the existence of three gene groups whose transcripts demonstrate different speckle localization properties: stably enriched in nuclear speckles, transiently enriched in speckles at the pre-messenger RNA stage, and not enriched. We find that stably enriched transcripts contain inefficiently excised introns and that disruption of nuclear speckles specifically affects splicing of speckle-enriched transcripts. We further reveal RNA sequence features contributing to transcript speckle localization, indicating a tight interplay between transcript speckle enrichment, genome organization, and splicing efficiency. Collectively, our data highlight a role of nuclear speckles in both co- and posttranscriptional splicing regulation. Last, we show that genes with stably enriched transcripts are over-represented among genes with heat shock-up-regulated intron retention, hinting at a connection between speckle localization and cellular stress response.
Collapse
Affiliation(s)
- Jinjun Wu
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Yu Xiao
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
- Howard Hughes Medical Institute, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
| | - Yunzheng Liu
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Li Wen
- Department of Physics, The University of Chicago, Chicago, IL 60637, USA
| | - Chuanyang Jin
- Courant Institute of Mathematical Sciences, New York University, New York, NY 10012, USA
| | - Shun Liu
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
- Howard Hughes Medical Institute, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
| | - Sneha Paul
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Chuan He
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
- Howard Hughes Medical Institute, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
| | - Oded Regev
- Courant Institute of Mathematical Sciences, New York University, New York, NY 10012, USA
| | - Jingyi Fei
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
40
|
Riggs CL, Kedersha N, Amarsanaa M, Zubair SN, Ivanov P, Anderson P. UBAP2L contributes to formation of P-bodies and modulates their association with stress granules. J Cell Biol 2024; 223:e202307146. [PMID: 39007803 PMCID: PMC11248227 DOI: 10.1083/jcb.202307146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 03/06/2024] [Accepted: 06/10/2024] [Indexed: 07/16/2024] Open
Abstract
Stress triggers the formation of two distinct cytoplasmic biomolecular condensates: stress granules (SGs) and processing bodies (PBs), both of which may contribute to stress-responsive translation regulation. Though PBs can be present constitutively, stress can increase their number and size and lead to their interaction with stress-induced SGs. The mechanism of such interaction, however, is largely unknown. Formation of canonical SGs requires the RNA binding protein Ubiquitin-Associated Protein 2-Like (UBAP2L), which is a central SG node protein in the RNA-protein interaction network of SGs and PBs. UBAP2L binds to the essential SG and PB proteins G3BP and DDX6, respectively. Research on UBAP2L has mostly focused on its role in SGs, but not its connection to PBs. We find that UBAP2L is not solely an SG protein but also localizes to PBs in certain conditions, contributes to PB biogenesis and SG-PB interactions, and can nucleate hybrid granules containing SG and PB components in cells. These findings inform a new model for SG and PB formation in the context of UBAP2L's role.
Collapse
Affiliation(s)
- Claire L Riggs
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Nancy Kedersha
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Misheel Amarsanaa
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Department of Biological Sciences, Wellesley College, Wellesley, MA, USA
| | - Safiyah Noor Zubair
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Pavel Ivanov
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Paul Anderson
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
41
|
Aye HM, Li FJ, He CY. Dynamic composition of stress granules in Trypanosoma brucei. PLoS Pathog 2024; 20:e1012666. [PMID: 39480887 PMCID: PMC11556693 DOI: 10.1371/journal.ppat.1012666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 11/12/2024] [Accepted: 10/14/2024] [Indexed: 11/02/2024] Open
Abstract
Stress granules (SGs) are stress-induced RNA condensates consisting of stalled initiation complexes resulting from translational inhibition. The biochemical composition and function of SGs are highly diverse, and this diversity has been attributed to different stress conditions, signalling pathways involved and specific cell types. Interestingly, mRNA decay components, which are found in ubiquitous cytoplasmic foci known as processing bodies (PB), have also been identified in SG proteomes. A major challenge in current SG studies is to understand the cause of SG diversity, as well as the function of SG under different stress conditions. Trypanosoma brucei is a single-cellular parasite that causes Human African Trypanosomiasis (sleeping sickness). In this study, we showed that by varying the supply of extracellular carbon sources during starvation, cellular ATP levels changed rapidly, resulting in SGs of different compositions and dynamics. We identified a subset of SG components, which dissociated from the SGs in response to cellular ATP depletion. Using expansion microscopy, we observed sub-granular compartmentalization of PB- and SG-components within the stress granules. Our results highlight the importance of cellular ATP in SG composition and dynamics, providing functional insight to SGs formed under different stress conditions.
Collapse
Affiliation(s)
- Htay Mon Aye
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Feng-Jun Li
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Cynthia Y. He
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| |
Collapse
|
42
|
Naseem S, Sun L, Qiu J. Stress granules in atherosclerosis: Insights and therapeutic opportunities. Curr Probl Cardiol 2024; 49:102760. [PMID: 39059785 DOI: 10.1016/j.cpcardiol.2024.102760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
Atherosclerosis, a complex inflammatory and metabolic disorder, is the underlying cause of several life-threatening cardiovascular diseases. Stress granules (SG) are biomolecular condensates composed of proteins and mRNA that form in response to stress. Recent studies suggest a potential link between SG and atherosclerosis development. However, there remain gaps in understanding SG role in atherosclerosis development. Here we provide a thorough analysis of the role of SG in atherosclerosis, covering cellular stresses stimulation, core components, and regulatory genes in SG formation. Furthermore, we explore atherosclerosis induced factors such as inflammation, low or oscillatory shear stress (OSS), and oxidative stress (OS) may impact SG formation and then the development of atherosclerotic lesions. We have assessed how changes in SG dynamics impact pro-atherogenic processes like endothelial dysfunction, lipid metabolism, and immune cell recruitment in atherosclerosis. In summary, this review emphasizes the complex interplay between SG and atherosclerosis that could open innovative directions for targeted therapeutic strategies in preventing or treating atherosclerotic cardiovascular diseases.
Collapse
Affiliation(s)
- Sahar Naseem
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Lijuan Sun
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Juhui Qiu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China.
| |
Collapse
|
43
|
Cozzi M, Magri S, Tedesco B, Patelli G, Ferrari V, Casarotto E, Chierichetti M, Pramaggiore P, Cornaggia L, Piccolella M, Galbiati M, Rusmini P, Crippa V, Mandrioli J, Pareyson D, Pisciotta C, D'Arrigo S, Ratti A, Nanetti L, Mariotti C, Sarto E, Pensato V, Gellera C, Di Bella D, Cristofani RM, Taroni F, Poletti A. Altered molecular and cellular mechanisms in KIF5A-associated neurodegenerative or neurodevelopmental disorders. Cell Death Dis 2024; 15:692. [PMID: 39333504 PMCID: PMC11437142 DOI: 10.1038/s41419-024-07096-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 09/17/2024] [Accepted: 09/19/2024] [Indexed: 09/29/2024]
Abstract
Mutations targeting distinct domains of the neuron-specific kinesin KIF5A associate with different neurodegenerative/neurodevelopmental disorders, but the molecular bases of this clinical heterogeneity are unknown. We characterised five key mutants covering the whole spectrum of KIF5A-related phenotypes: spastic paraplegia (SPG, R17Q and R280C), Charcot-Marie-Tooth disease (CMT, R864*), amyotrophic lateral sclerosis (ALS, N999Vfs*40), and neonatal intractable myoclonus (NEIMY, C975Vfs*73) KIF5A mutants. CMT-R864*-KIF5A and ALS-N999Vfs*40-KIF5A showed impaired autoinhibition and peripheral localisation accompanied by altered mitochondrial distribution, suggesting transport competence disruption. ALS-N999Vfs*40-KIF5A formed SQSTM1/p62-positive inclusions sequestering WT-KIF5A, indicating a gain of toxic function. SPG-R17Q-KIF5A and ALS-N999Vfs*40-KIF5A evidenced a shorter half-life compared to WT-KIF5A, and proteasomal blockage determined their accumulation into detergent-insoluble inclusions. Interestingly, SPG-R280C-KIF5A and ALS-N999Vfs*40-KIF5A both competed for degradation with proteasomal substrates. Finally, NEIMY-C975Vfs*73-KIF5A displayed a similar, but more severe aberrant behaviour compared to ALS-N999Vfs*40-KIF5A; these two mutants share an abnormal tail but cause disorders on the opposite end of KIF5A-linked phenotypic spectrum. Thus, our observations support the pathogenicity of novel KIF5A mutants, highlight abnormalities of recurrent variants, and demonstrate that both unique and shared mechanisms underpin KIF5A-related diseases.
Collapse
Affiliation(s)
- Marta Cozzi
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti" (DiSFeB), Università degli Studi di Milano, 20133, Milan, Italy
| | - Stefania Magri
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133, Milan, Italy
| | - Barbara Tedesco
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti" (DiSFeB), Università degli Studi di Milano, 20133, Milan, Italy
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133, Milan, Italy
| | - Guglielmo Patelli
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti" (DiSFeB), Università degli Studi di Milano, 20133, Milan, Italy
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133, Milan, Italy
| | - Veronica Ferrari
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti" (DiSFeB), Università degli Studi di Milano, 20133, Milan, Italy
| | - Elena Casarotto
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti" (DiSFeB), Università degli Studi di Milano, 20133, Milan, Italy
| | - Marta Chierichetti
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti" (DiSFeB), Università degli Studi di Milano, 20133, Milan, Italy
| | - Paola Pramaggiore
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti" (DiSFeB), Università degli Studi di Milano, 20133, Milan, Italy
| | - Laura Cornaggia
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti" (DiSFeB), Università degli Studi di Milano, 20133, Milan, Italy
| | - Margherita Piccolella
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti" (DiSFeB), Università degli Studi di Milano, 20133, Milan, Italy
| | - Mariarita Galbiati
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti" (DiSFeB), Università degli Studi di Milano, 20133, Milan, Italy
| | - Paola Rusmini
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti" (DiSFeB), Università degli Studi di Milano, 20133, Milan, Italy
| | - Valeria Crippa
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti" (DiSFeB), Università degli Studi di Milano, 20133, Milan, Italy
| | - Jessica Mandrioli
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Centre for Neuroscience and Neurotechnology (CfNN), 41125, Modena, Italy
- Department of Neurosciences, Azienda Ospedaliero-Universitaria di Modena, 41126, Modena, Italy
| | - Davide Pareyson
- Unit of Rare Neurological Diseases, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133, Milan, Italy
| | - Chiara Pisciotta
- Unit of Rare Neurological Diseases, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133, Milan, Italy
| | - Stefano D'Arrigo
- Department of Pediatric Neurosciences, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133, Milan, Italy
| | - Antonia Ratti
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, 20054, Segrate, Italy
- Department of Neuroscience - Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, 20095, Cusano Milanino, Italy
| | - Lorenzo Nanetti
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133, Milan, Italy
| | - Caterina Mariotti
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133, Milan, Italy
| | - Elisa Sarto
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133, Milan, Italy
| | - Viviana Pensato
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133, Milan, Italy
| | - Cinzia Gellera
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133, Milan, Italy
| | - Daniela Di Bella
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133, Milan, Italy
| | - Riccardo M Cristofani
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti" (DiSFeB), Università degli Studi di Milano, 20133, Milan, Italy
| | - Franco Taroni
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133, Milan, Italy.
| | - Angelo Poletti
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti" (DiSFeB), Università degli Studi di Milano, 20133, Milan, Italy.
| |
Collapse
|
44
|
Zhang Y, Kang HR, Jun Y, Kang H, Bang G, Ma R, Ju S, Yoon DE, Kim Y, Kim K, Kim JY, Han K. Neurodevelopmental disorder-associated CYFIP2 regulates membraneless organelles and eIF2α phosphorylation via protein interactors and actin cytoskeleton. Hum Mol Genet 2024; 33:1671-1687. [PMID: 38981622 DOI: 10.1093/hmg/ddae107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 05/10/2024] [Accepted: 07/02/2024] [Indexed: 07/11/2024] Open
Abstract
De novo variants in the Cytoplasmic FMR1-interacting protein 2 (CYFIP2) have been repeatedly associated with neurodevelopmental disorders and epilepsy, underscoring its critical role in brain development and function. While CYFIP2's role in regulating actin polymerization as part of the WAVE regulatory complex (WRC) is well-established, its additional molecular functions remain relatively unexplored. In this study, we performed unbiased quantitative proteomic analysis, revealing 278 differentially expressed proteins (DEPs) in the forebrain of Cyfip2 knock-out embryonic mice compared to wild-type mice. Unexpectedly, these DEPs, in conjunction with previously identified CYFIP2 brain interactors, included not only other WRC components but also numerous proteins associated with membraneless organelles (MLOs) involved in mRNA processing and translation within cells, including the nucleolus, stress granules, and processing bodies. Additionally, single-cell transcriptomic analysis of the Cyfip2 knock-out forebrain revealed gene expression changes linked to cellular stress responses and MLOs. We also observed morphological changes in MLOs in Cyfip2 knock-out brains and CYFIP2 knock-down cells under basal and stress conditions. Lastly, we demonstrated that CYFIP2 knock-down in cells, potentially through WRC-dependent actin regulation, suppressed the phosphorylation levels of the alpha subunit of eukaryotic translation initiation factor 2 (eIF2α), thereby enhancing protein synthesis. These results suggest a physical and functional connection between CYFIP2 and various MLO proteins and also extend CYFIP2's role within the WRC from actin regulation to influencing eIF2α phosphorylation and protein synthesis. With these dual functions, CYFIP2 may fine-tune the balance between MLO formation/dynamics and protein synthesis, a crucial aspect of proper mRNA processing and translation.
Collapse
Affiliation(s)
- Yinhua Zhang
- Department of Neuroscience, Korea University College of Medicine, 73, Goryeodae-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Hyae Rim Kang
- Department of Neuroscience, Korea University College of Medicine, 73, Goryeodae-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
- Department of Biomedical Sciences, Korea University College of Medicine, 73, Goryeodae-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Yukyung Jun
- Division of National Supercomputing, Korea Institute of Science and Technology Information (KISTI), 245, Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Hyojin Kang
- Division of National Supercomputing, Korea Institute of Science and Technology Information (KISTI), 245, Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Geul Bang
- Digital Omics Research Center, Korea Basic Science Institute (KBSI), 162, Yeongudanji-ro, Cheongwon-gu, Ochang 28119, Republic of Korea
| | - Ruiying Ma
- Department of Neuroscience, Korea University College of Medicine, 73, Goryeodae-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
- Department of Biomedical Sciences, Korea University College of Medicine, 73, Goryeodae-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Sungjin Ju
- Department of Biomedical Sciences, Korea University College of Medicine, 73, Goryeodae-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
- Department of Physiology, Korea University College of Medicine, 73, Goryeodae-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Da Eun Yoon
- Department of Biomedical Sciences, Korea University College of Medicine, 73, Goryeodae-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
- Department of Physiology, Korea University College of Medicine, 73, Goryeodae-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Yoonhee Kim
- Department of Neuroscience, Korea University College of Medicine, 73, Goryeodae-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Kyoungmi Kim
- Department of Biomedical Sciences, Korea University College of Medicine, 73, Goryeodae-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
- Department of Physiology, Korea University College of Medicine, 73, Goryeodae-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Jin Young Kim
- Digital Omics Research Center, Korea Basic Science Institute (KBSI), 162, Yeongudanji-ro, Cheongwon-gu, Ochang 28119, Republic of Korea
- Critical Diseases Diagnostics Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125, Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Kihoon Han
- Department of Neuroscience, Korea University College of Medicine, 73, Goryeodae-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
- Department of Biomedical Sciences, Korea University College of Medicine, 73, Goryeodae-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| |
Collapse
|
45
|
Baer MH, Cascarina SM, Paul KR, Ross ED. Rational Tuning of the Concentration-independent Enrichment of Prion-like Domains in Stress Granules. J Mol Biol 2024; 436:168703. [PMID: 39004265 PMCID: PMC11486480 DOI: 10.1016/j.jmb.2024.168703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/27/2024] [Accepted: 07/09/2024] [Indexed: 07/16/2024]
Abstract
Stress granules (SGs) are large ribonucleoprotein assemblies that form in response to acute stress in eukaryotes. SG formation is thought to be initiated by liquid-liquid phase separation (LLPS) of key proteins and RNA. These molecules serve as a scaffold for recruitment of client molecules. LLPS of scaffold proteins in vitro is highly concentration-dependent, yet biomolecular condensates in vivo contain hundreds of unique proteins, most of which are thought to be clients rather than scaffolds. Many proteins that localize to SGs contain low-complexity, prion-like domains (PrLDs) that have been implicated in LLPS and SG recruitment. The degree of enrichment of proteins in biomolecular condensates such as SGs can vary widely, but the underlying basis for these differences is not fully understood. Here, we develop a toolkit of model PrLDs to examine the factors that govern efficiency of PrLD recruitment to stress granules. Recruitment was highly sensitive to amino acid composition: enrichment in SGs could be tuned through subtle changes in hydrophobicity. By contrast, SG recruitment was largely insensitive to PrLD concentration at both a population level and single-cell level. These observations point to a model wherein PrLDs are enriched in SGs through either simple solvation effects or interactions that are effectively non-saturable even at high expression levels.
Collapse
Affiliation(s)
- Matthew H Baer
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Sean M Cascarina
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Kacy R Paul
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Eric D Ross
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA.
| |
Collapse
|
46
|
Mathias C, Rodrigues AC, Baal SCS, de Azevedo ALK, Kozak VN, Alves LF, de Oliveira JC, Guil S, Gradia DF. The landscape of lncRNAs in cell granules: Insights into their significance in cancer. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1870. [PMID: 39268566 DOI: 10.1002/wrna.1870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 08/22/2024] [Accepted: 08/27/2024] [Indexed: 09/17/2024]
Abstract
Cellular compartmentalization, achieved through membrane-based compartments, is a fundamental aspect of cell biology that contributes to the evolutionary success of cells. While organelles have traditionally been the focus of research, membrane-less organelles (MLOs) are emerging as critical players, exhibiting distinct morphological features and unique molecular compositions. Recent research highlights the pivotal role of long noncoding RNAs (lncRNAs) in MLOs and their involvement in various cellular processes across different organisms. In the context of cancer, dysregulation of MLO formation, influenced by altered lncRNA expression, impacts chromatin organization, oncogenic transcription, signaling pathways, and telomere lengthening. This review synthesizes the current understanding of lncRNA composition within MLOs, delineating their functions and exploring how their dysregulation contributes to human cancers. Environmental challenges in tumorigenesis, such as nutrient deprivation and hypoxia, induce stress granules, promoting cancer cell survival and progression. Advancements in biochemical techniques, particularly single RNA imaging methods, offer valuable tools for studying RNA functions within live cells. However, detecting low-abundance lncRNAs remains challenging due to their limited expression levels. The correlation between lncRNA expression and pathological conditions, particularly cancer, should be explored, emphasizing the importance of single-cell studies for precise biomarker identification and the development of personalized therapeutic strategies. This article is categorized under: RNA Export and Localization > RNA Localization RNA in Disease and Development > RNA in Disease RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes.
Collapse
Affiliation(s)
- Carolina Mathias
- Post-Graduation Program in Genetics, Department of Genetics, Federal University of Parana, Curitiba, PR, Brazil
| | - Ana Carolina Rodrigues
- Post-Graduation Program in Genetics, Department of Genetics, Federal University of Parana, Curitiba, PR, Brazil
| | - Suelen Cristina Soares Baal
- Post-Graduation Program in Genetics, Department of Genetics, Federal University of Parana, Curitiba, PR, Brazil
| | | | - Vanessa Nascimento Kozak
- Post-Graduation Program in Genetics, Department of Genetics, Federal University of Parana, Curitiba, PR, Brazil
| | | | | | - Sonia Guil
- Josep Carreras Leukaemia Research Institute (IJC), Barcelona, Catalonia, Spain
| | - Daniela Fiori Gradia
- Post-Graduation Program in Genetics, Department of Genetics, Federal University of Parana, Curitiba, PR, Brazil
| |
Collapse
|
47
|
Qu Y, Gao N, Zhang S, Gao L, He B, Wang C, Gong C, Shi Q, Li Z, Yang S, Xiao Y. Role of N6-methyladenosine RNA modification in cancer. MedComm (Beijing) 2024; 5:e715. [PMID: 39252821 PMCID: PMC11381670 DOI: 10.1002/mco2.715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 08/13/2024] [Accepted: 08/13/2024] [Indexed: 09/11/2024] Open
Abstract
N6-methyladenosine (m6A) is the most abundant modification of RNA in eukaryotic cells. Previous studies have shown that m6A is pivotal in diverse diseases especially cancer. m6A corelates with the initiation, progression, resistance, invasion, and metastasis of cancer. However, despite these insights, a comprehensive understanding of its specific roles and mechanisms within the complex landscape of cancer is still elusive. This review begins by outlining the key regulatory proteins of m6A modification and their posttranslational modifications (PTMs), as well as the role in chromatin accessibility and transcriptional activity within cancer cells. Additionally, it highlights that m6A modifications impact cancer progression by modulating programmed cell death mechanisms and affecting the tumor microenvironment through various cancer-associated immune cells. Furthermore, the review discusses how microorganisms can induce enduring epigenetic changes and oncogenic effect in microorganism-associated cancers by altering m6A modifications. Last, it delves into the role of m6A modification in cancer immunotherapy, encompassing RNA therapy, immune checkpoint blockade, cytokine therapy, adoptive cell transfer therapy, and direct targeting of m6A regulators. Overall, this review clarifies the multifaceted role of m6A modification in cancer and explores targeted therapies aimed at manipulating m6A modification, aiming to advance cancer research and improve patient outcomes.
Collapse
Affiliation(s)
- Yi Qu
- Department of Gastroenterology Xinqiao Hospital Army Medical University Chongqing China
| | - Nannan Gao
- Department of Gastroenterology Xinqiao Hospital Army Medical University Chongqing China
| | - Shengwei Zhang
- Department of Gastroenterology Xinqiao Hospital Army Medical University Chongqing China
| | - Limin Gao
- Department of Gastroenterology Xinqiao Hospital Army Medical University Chongqing China
| | - Bing He
- Department of Gastroenterology Xinqiao Hospital Army Medical University Chongqing China
| | - Chao Wang
- Department of Gastroenterology Xinqiao Hospital Army Medical University Chongqing China
| | - Chunli Gong
- Department of Gastroenterology Xinqiao Hospital Army Medical University Chongqing China
| | - Qiuyue Shi
- Department of Gastroenterology the First Affiliated Hospital of Guangxi Medical University Nanning Guangxi China
| | - Zhibin Li
- Department of Gastroenterology Xinqiao Hospital Army Medical University Chongqing China
| | - Shiming Yang
- Department of Gastroenterology Xinqiao Hospital Army Medical University Chongqing China
| | - Yufeng Xiao
- Department of Gastroenterology Xinqiao Hospital Army Medical University Chongqing China
| |
Collapse
|
48
|
Xie Y, Shu T, Liu T, Spindler MC, Mahamid J, Hocky GM, Gresham D, Holt LJ. Polysome collapse and RNA condensation fluidize the cytoplasm. Mol Cell 2024; 84:2698-2716.e9. [PMID: 39059370 PMCID: PMC11539954 DOI: 10.1016/j.molcel.2024.06.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 03/25/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024]
Abstract
The cell interior is packed with macromolecules of mesoscale size, and this crowded milieu significantly influences cellular physiology. Cellular stress responses almost universally lead to inhibition of translation, resulting in polysome collapse and release of mRNA. The released mRNA molecules condense with RNA-binding proteins to form ribonucleoprotein (RNP) condensates known as processing bodies and stress granules. Here, we show that polysome collapse and condensation of RNA transiently fluidize the cytoplasm, and coarse-grained molecular dynamic simulations support this as a minimal mechanism for the observed biophysical changes. Increased mesoscale diffusivity correlates with the efficient formation of quality control bodies (Q-bodies), membraneless organelles that compartmentalize misfolded peptides during stress. Synthetic, light-induced RNA condensation also fluidizes the cytoplasm. Together, our study reveals a functional role for stress-induced translation inhibition and formation of RNP condensates in modulating the physical properties of the cytoplasm to enable efficient response of cells to stress conditions.
Collapse
Affiliation(s)
- Ying Xie
- Institute for Systems Genetics, New York University Langone Medical Center, New York, NY, USA; Department of Biology, New York University, New York, NY, USA
| | - Tong Shu
- Institute for Systems Genetics, New York University Langone Medical Center, New York, NY, USA
| | - Tiewei Liu
- Institute for Systems Genetics, New York University Langone Medical Center, New York, NY, USA; Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Marie-Christin Spindler
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Julia Mahamid
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany; Cell Biology and Biophysics Unit, EMBL, Heidelberg, Germany
| | - Glen M Hocky
- Department of Chemistry and Simons Center for Computational Physical Chemistry, New York University, New York, NY, USA
| | - David Gresham
- Department of Biology, New York University, New York, NY, USA.
| | - Liam J Holt
- Institute for Systems Genetics, New York University Langone Medical Center, New York, NY, USA.
| |
Collapse
|
49
|
Shen X, Peng X, Guo Y, Dai Z, Cui L, Yu W, Liu Y, Liu CY. YAP/TAZ enhances P-body formation to promote tumorigenesis. eLife 2024; 12:RP88573. [PMID: 39046443 PMCID: PMC11268890 DOI: 10.7554/elife.88573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024] Open
Abstract
The role of processing bodies (P-bodies) in tumorigenesis and tumor progression is not well understood. Here, we showed that the oncogenes YAP/TAZ promote P-body formation in a series of cancer cell lines. Mechanistically, both transcriptional activation of the P-body-related genes SAMD4A, AJUBA, and WTIP and transcriptional suppression of the tumor suppressor gene PNRC1 are involved in enhancing the effects of YAP/TAZ on P-body formation in colorectal cancer (CRC) cells. By reexpression of PNRC1 or knockdown of P-body core genes (DDX6, DCP1A, and LSM14A), we determined that disruption of P-bodies attenuates cell proliferation, cell migration, and tumor growth induced by overexpression of YAP5SA in CRC. Analysis of a pancancer CRISPR screen database (DepMap) revealed co-dependencies between YAP/TEAD and the P-body core genes and correlations between the mRNA levels of SAMD4A, AJUBA, WTIP, PNRC1, and YAP target genes. Our study suggests that the P-body is a new downstream effector of YAP/TAZ, which implies that reexpression of PNRC1 or disruption of P-bodies is a potential therapeutic strategy for tumors with active YAP.
Collapse
Affiliation(s)
- Xia Shen
- Department of Colorectal and Anal Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Colorectal Cancer Research CenterShanghaiChina
| | - Xiang Peng
- Department of Colorectal and Anal Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Colorectal Cancer Research CenterShanghaiChina
| | - YueGui Guo
- Department of Colorectal and Anal Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Colorectal Cancer Research CenterShanghaiChina
| | - Zhujiang Dai
- Department of Colorectal and Anal Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Colorectal Cancer Research CenterShanghaiChina
| | - Long Cui
- Department of Colorectal and Anal Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Colorectal Cancer Research CenterShanghaiChina
| | - Wei Yu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan UniversityShanghaiChina
| | - Yun Liu
- Department of Colorectal and Anal Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Colorectal Cancer Research CenterShanghaiChina
| | - Chen-Ying Liu
- Department of Colorectal and Anal Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Colorectal Cancer Research CenterShanghaiChina
| |
Collapse
|
50
|
Li L, Wang M, Huang L, Zheng X, Wang L, Miao H. Ataxin-2: a powerful RNA-binding protein. Discov Oncol 2024; 15:298. [PMID: 39039334 PMCID: PMC11263328 DOI: 10.1007/s12672-024-01158-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/15/2024] [Indexed: 07/24/2024] Open
Abstract
Ataxin-2 (ATXN2) was originally discovered in the context of spinocerebellar ataxia type 2 (SCA2), but it has become a key player in various neurodegenerative diseases. This review delves into the multifaceted roles of ATXN2 in human diseases, revealing its diverse molecular and cellular pathways. The impact of ATXN2 on diseases extends beyond functional outcomes; it mainly interacts with various RNA-binding proteins (RBPs) to regulate different stages of post-transcriptional gene expression in diseases. With the progress of research, ATXN2 has also been found to play an important role in the development of various cancers, including breast cancer, gastric cancer, pancreatic cancer, colon cancer, and esophageal cancer. This comprehensive exploration underscores the crucial role of ATXN2 in the pathogenesis of diseases and warrants further investigation by the scientific community. By reviewing the latest discoveries on the regulatory functions of ATXN2 in diseases, this article helps us understand the complex molecular mechanisms of a series of human diseases related to this intriguing protein.
Collapse
Affiliation(s)
- Lulu Li
- School of Basic Medical Science, Southwest Medical University, Luzhou, 646000, China
- Department of Clinical and Military Laboratory Medicine, College of Medical Laboratory Science, Army Medical University, Chongqing, 400038, China
| | - Meng Wang
- Department of Pathophysiology, College of High Altitude Military Medicine, Army Medical University, Chongqing, 400038, China
| | - Lai Huang
- Department of Clinical and Military Laboratory Medicine, College of Medical Laboratory Science, Army Medical University, Chongqing, 400038, China
| | - Xiaoli Zheng
- School of Basic Medical Science, Southwest Medical University, Luzhou, 646000, China.
| | - Lina Wang
- Department of Clinical and Military Laboratory Medicine, College of Medical Laboratory Science, Army Medical University, Chongqing, 400038, China.
| | - Hongming Miao
- Department of Pathophysiology, College of High Altitude Military Medicine, Army Medical University, Chongqing, 400038, China.
| |
Collapse
|