1
|
Elshaer N, Eldeeb AM, Aioub AA, Hashem AS, Ghosh S, Alkeridis LA, Alshehri MA, Shukry M, Almalki DA, Alkhatabi HA, Afifi M, AL-Farga A, Hendawy MA, El-Sobki AE. Zinc nanoparticles mitigate azoxystrobin and its nanoencapsulation-induced hepatic and renal toxicity in rats. Redox Rep 2025; 30:2491318. [PMID: 40254739 PMCID: PMC12010655 DOI: 10.1080/13510002.2025.2491318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2025] Open
Abstract
This study sought to ascertain if zinc nanoparticles (ZnNPs) could lessen the toxicity of azoxystrobin (AZ). This naturally occurring methoxyacrylate is one of the most often used fungicides in agriculture in male albino rats. Six sets of 60 mature male albino rats were randomly assigned: control (distilled water), Azoxystrobin formulation (AZOF), Azoxystrobin nano-formula (AZON), ZnNPs, AZOF + ZnNPs, and AZON + ZnNPs. Blood and tissues were obtained for further immunohistochemical, pathological, and biochemical examination. The results showed that exposure to AZOF and AZON significantly increased the levels of the oxidative stress indicators glutathione peroxidase (GPx), catalase (CAT), superoxide dismutase (SOD), and malondialdehyde (MDA). Additionally, AZOF significantly impacts liver function bioindicators, including aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels. AZOF and AZON induced damage to the liver and kidney by disrupting vascular dilatation and causing hemorrhages, apoptosis, inflammatory lymphocytes, and necrosis. Furthermore, co-administration of ZnNPs with fungicides (AZOF and AZON) can gently enhance the alterations of oxidative stress and liver function bioindicators levels. These findings showed that ZnNPs could help male rats receiving AZ treat their histologically abnormal liver and kidney.
Collapse
Affiliation(s)
- Nashwa Elshaer
- Plant Protection Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Ahmed M. Eldeeb
- Plant Protection Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Ahmed A.A. Aioub
- Plant Protection Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Ahmed S. Hashem
- Stored Product Pests Research Department, Plant Protection Research Institute, Agricultural Research Center, Kafr El-Sheikh, Egypt
| | - Soumya Ghosh
- Natural & Medical Science Research Center, University of Nizwa, Nizwa, Oman
| | - Lamya Ahmed Alkeridis
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | | | - Mustafa Shukry
- Department of Physiology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Daklallah A. Almalki
- Biology Department, Faculty of Science and Arts, Al-Baha University, Al-Mikhwah, Saudi Arebia
| | - Hind A. Alkhatabi
- Department of Biological Sciences, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Mohamed Afifi
- Department of Biological Sciences, College of Science, University of Jeddah, Jeddah, Saudi Arabia
- Department of Biochemistry, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Ammar AL-Farga
- Department of Biological Sciences, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Mohamed A. Hendawy
- Plant Protection Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Ahmed E.A. El-Sobki
- Plant Protection Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| |
Collapse
|
2
|
Zhou X, Zhang D, Han M, Ma Y, Li W, Yu N. Carbohydrate polymer-functionalized metal nanoparticles in cancer therapy: A review. Int J Biol Macromol 2025; 306:141235. [PMID: 39986501 DOI: 10.1016/j.ijbiomac.2025.141235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 01/31/2025] [Accepted: 02/16/2025] [Indexed: 02/24/2025]
Abstract
Metal nanoparticles have been emerged as promising candidates in cancer therapy because of their large surface area, optical properties and ROS generation. Therefore, these nanoparticles are able to mediate cell death through hyperthermia, photothermal therapy and ROS-triggered apoptosis. The various metal nanoparticles including gold, silver and iron oxide nanostructures have been exploited for the theranostic application. Moreover, precision oncology and off-targeting features can be improved by metal nanoparticles. The modification of metal nanoparticles with carbohydrate polymers including chitosan, hyaluronic acid, cellulose, agarose, starch and pectin, among others can significantly improve their anti-cancer activities. Carbohydrate polymers have been idea for the purpose of drug delivery due to their biocompatibility, biodegradability and increasing nanoparticle stability. In addition, carbohydrate polymers are able to improve drug delivery, cellular uptake and sustained release of cargo. Such nanoparticles are capable of responding to the specific stimuli in the tumor microenvironment including pH and light. Furthermore, the carbohydrate polymer-modified metal nanoparticles can be utilized for the combination of chemotherapy, phototherapy and immunotherapy. Since the biocompatibility and long-term safety are critical factors for the clinical translation of nanoparticles, the modification of metal nanoparticles with carbohydrate polymers can improve this way to the application in clinic.
Collapse
Affiliation(s)
- Xi Zhou
- Department of Occupational Pulmonology, Shandong Academy of Occupational Health and Occupational Medicine, Occupational Disease Hospital of Shandong First Medical University (Shandong Province Hospital Occupational Disease Hospital), Jinan, Shandong, China
| | - Dongbin Zhang
- Department of Anesthesiology, Affiliated Hospital Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Mingming Han
- Department of Pharmacy and Medical Devices, Shandong Academy of Occupational Health and Occupational Medicine, Occupational Disease Hospital of Shandong First Medical University (Shandong Province Hospital Occupational Disease Hospital), Jinan, Shandong, China
| | - Yanhong Ma
- Department of Rehabilitation, Shandong Academy of Occupational Health and Occupational Medicine, Occupational Disease Hospital of Shandong First Medical University (Shandong Province Hospital Occupational Disease Hospital), Jinan, Shandong, China.
| | - Wentao Li
- Department of Traditional Chinese Medicine, Shandong Academy of Occupational Health and Occupational Medicine, Occupational Disease Hospital of Shandong First Medical University (Shandong Province Hospital Occupational Disease Hospital), Jinan, Shandong, China.
| | - Ning Yu
- Department of Occupational Pulmonology, Shandong Academy of Occupational Health and Occupational Medicine, Occupational Disease Hospital of Shandong First Medical University (Shandong Province Hospital Occupational Disease Hospital), Jinan, Shandong, China.
| |
Collapse
|
3
|
Asif K, Rahman MM, Canzonieri V, Caligiuri I, Rizzolio F, Adeel M. Self-targeted nanosystem for enhanced chemodynamic cancer therapy. Biomater Sci 2025; 13:2320-2331. [PMID: 40099529 DOI: 10.1039/d4bm01683a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Chemodynamic therapy (CDT) could have a significant potential for advancing cancer treatment via the utilization of Fenton and Fenton-like reactions, which produce toxic reactive species. Nonetheless, the efficacy of CDT is constrained by the limited availability of catalyst ions capable of decomposing pre-existing intracellular H2O2 and generating reactive oxygen species (ROS) necessary to achieve a therapeutic response. To address these limitations, a tailored strategy has been developed to enhance the efficacy of Fenton-like reactions to eradicate selectively cancer cells. This innovative approach involves the utilization of dual metal cations (Zn2+, Fe2+) within zinc nitroprusside (ZnNP) material. Remarkably, this method takes advantage of the acidic conditions prevalent in tumors, thus eliminating the need for external stimuli. Through these advancements, the tailored approach exhibits the potential to specifically target and eliminate cancer cells, overcoming the mentioned limitations. A simple mixing technique was utilized to synthesize ZnNP, which was structurally and morphologically characterized. Furthermore, extensive in vitro investigations were conducted to assess its anti-tumoral mechanism of action. ZnNP exhibits a remarkable capability to increase intracellular H2O2 within cells. This process leads to the generation of various reactive species, including hydroxyl (˙OH) and superoxide (O2˙-) radicals, and peroxynitrite (ONOO-), which act as apoptotic inducers specifically targeting cancer cells. Cellular uptake studies have shown that ZnNP enters the lysosomes, evades degradation, and takes advantage of their acidic pH environment to significantly increase the production of ROS. These findings are further supported by the activation of multiple oxidative genes. Furthermore, the biocompatibility of ZnNP has been demonstrated in ex vivo models using healthy liver cells. Notably, ZnNP exhibited therapeutic effectiveness in high-grade serous ovarian cancer (HGSOC) patient-derived tumor organoids (PDTO), further confirming its potential as a therapeutic agent. The present study highlights the therapeutic potential of ZnNP as a generator of multiple ROS via a Fenton-like reaction. This research offers a promising therapeutic approach for CDT application in combatting HGSOC, a highly aggressive and life-threatening cancer.
Collapse
Affiliation(s)
- Kanwal Asif
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (C.R.O.) IRCCS, 33081, Aviano, Italy.
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, 30172, Venice, Italy.
- Centre for Endocrinology, Charterhouse Square, Queen Mary University of London, London EC1M 6BQ, UK
| | - Md Mahbubur Rahman
- Department of Energy Materials Science & Engineering, Konkuk University, Chungju 27478, Republic of Korea
| | - Vincenzo Canzonieri
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (C.R.O.) IRCCS, 33081, Aviano, Italy.
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34149, Trieste, Italy
| | - Isabella Caligiuri
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (C.R.O.) IRCCS, 33081, Aviano, Italy.
| | - Flavio Rizzolio
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (C.R.O.) IRCCS, 33081, Aviano, Italy.
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, 30172, Venice, Italy.
| | - Muhammad Adeel
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (C.R.O.) IRCCS, 33081, Aviano, Italy.
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, 30172, Venice, Italy.
- Department of Bioengineering, Royal School of Mines, Imperial College London, London, SW7 2AZ, UK
| |
Collapse
|
4
|
Hashim M, Anjum S, Mujahid H, Alotaibi KS, Albattal SB, Ghamry HI, Soliman MM. Thymoquinone loaded zinc oxide Nanoformulations synthesis, characterization and evaluation of their efficacy against carbon tetrachloride induced Hepatorenal toxicity in rats. Toxicol Res (Camb) 2025; 14:tfaf037. [PMID: 40103576 PMCID: PMC11912352 DOI: 10.1093/toxres/tfaf037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/24/2025] [Accepted: 03/04/2025] [Indexed: 03/20/2025] Open
Abstract
Thymoquinone (THQ), a strong antioxidant and anti-inflammatory bioactive compound has been reported in numerous studies to prevent the hepatorenal toxicity caused by various xenobiotics. Similarly, the zinc oxide nanoparticles (ZnONPs) have been used to protect against the hepatorenal damages caused by oxidative stress due to their potent antioxidant properties. The aim of this study was to synthesize and investigate the possible protective effects of THQ, ZnONPs and THQ-loaded ZnONPs against CCl4 induced hepatorenal toxicity in albino rats. ZnONPs and THQ-loaded ZnONPs were synthesized and characterized by various techniques. For the in-vivo study, thirty albino rats were randomly divided into five groups of six rats each. The control group received normal saline and 2nd group (injury group) received CCl4 only. The 3rd group (T1-group) received CCl4 + ZnONPs, the 4th group (T2-group) received CCl4 + THQ, and the 5th group (T3-group) received CCl4 + THQ-loaded ZnONPs. Renal and hepatic biomarkers (total bilirubin, AST, ALT, ALP, blood urea nitrogen and creatinine), lipid profiles, antioxidant levels and histopathological studies were investigated. The synthesized NPs showed a spherical shape with an average size of 16-30 nm and exhibited hexagonal structures. Results showed that THQ-loaded ZnONPs resulted in a decrease in liver and kidney biomarkers as well as a reduction in TC, TG, and LDL levels compared to groups received ZnONPs and THQ alone. CAT, SOD, GR and DPPH-radical scavenging ability were maintained at normal levels in group T3, which received THQ-loaded ZnONPs compared to T1 and T2 groups. Hepatic histopathological analysis revealed a reduction in hydropic degeneration and hepatocyte congestion in the central veins, alongside a decrease in tubular cell swelling and normalization of renal histology in the THQ-loaded ZnONPs groups. In conclusion, results of this investigation demonstrate that THQ-loaded ZnONPs can act as an efficient protectant and antioxidant against oxidative stress and hepatorenal toxicity caused by various xenobiotics.
Collapse
Affiliation(s)
- Mariam Hashim
- Department of Biotechnology, Kinnaird College for Women University, Jail Road, Lahore 54000, Pakistan
| | - Sumaira Anjum
- Department of Biotechnology, Kinnaird College for Women University, Jail Road, Lahore 54000, Pakistan
| | - Huma Mujahid
- Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Khalid S Alotaibi
- General Science and English Language Department, College of Applied Sciences, AlMaarefa University, Riyadh 71666, Saudi Arabia
| | - Shatha B Albattal
- General Science and English Language Department, College of Applied Sciences, AlMaarefa University, Riyadh 71666, Saudi Arabia
| | - Heba I Ghamry
- Nutrition and Food Science, Department of Biology, College of Science, King Khalid University, P.O. Box 960, Abha 61421, Saudi Arabia
| | - Mohamed Mohamed Soliman
- Clinical laboratory Sciences Department, Turabah University College, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| |
Collapse
|
5
|
Yao C, Zhang C, Fan D, Li X, Zhang S, Liu D. Advancements in research on the precise eradication of cancer cells through nanophotocatalytic technology. Front Oncol 2025; 15:1523444. [PMID: 40236645 PMCID: PMC11996665 DOI: 10.3389/fonc.2025.1523444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 03/14/2025] [Indexed: 04/17/2025] Open
Abstract
The rapid development of nanotechnology has significantly advanced the application of nanophotocatalysis in the medical field, particularly for cancer therapy. Traditional cancer treatments, such as chemotherapy and radiotherapy, often cause severe side effects, including damage to healthy tissues and the development of drug resistance. In contrast, nanophotocatalytic therapy offers a promising approach by utilizing nanomaterials that generate reactive oxygen species (ROS) under light activation, allowing for precise tumor targeting and minimizing collateral damage to surrounding tissues. This review systematically explores the latest advancements in highly efficient nanophotocatalysts for cancer treatment, focusing on their toxicological profiles, underlying mechanisms for cancer cell eradication, and potential for clinical application. Recent research shows that nanophotocatalysts, such as TiO2, In2O3, and g-C3N4 composites, along with photocatalysts with high conduction band or high valence band positions, generate ROS under light irradiation, which induces oxidative stress and leads to cancer cell apoptosis or necrosis. These ROS cause cellular damage by interacting with key biological molecules such as DNA, proteins, and lipids, triggering a cascade of biochemical reactions that ultimately result in cancer cell death. Furthermore, strategies such as S-scheme heterojunctions and oxygen vacancies (OVs) have been incorporated to enhance charge separation efficiency and light absorption, resulting in increased ROS generation, which improves photocatalytic performance for cancer cell targeting. Notably, these photocatalysts exhibit low toxicity to healthy cells, making them a safe and effective treatment modality. The review also discusses the challenges associated with photocatalytic cancer therapy, including limitations in light penetration and the need for improved biocompatibility. The findings suggest that nanophotocatalytic technology holds significant potential for precision cancer therapy, paving the way for safer and more effective treatment strategies.
Collapse
Affiliation(s)
- Changyang Yao
- Department of General Surgery, Fengyang County People’s Hospital, Chuzhou, China
| | - Chensong Zhang
- Department of Surgical Oncology Surgery (General Ward), The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Dongwei Fan
- Department of General Surgery, Affiliated Hospital of West Anhui Health Vocational College, Lu’an, Anhui, China
| | - Xuanhe Li
- Department of Surgical Oncology Surgery (General Ward), The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Shaofa Zhang
- Department of General Surgery, Fengyang County People’s Hospital, Chuzhou, China
| | - Daoxin Liu
- Department of General Surgery, Fengyang County People’s Hospital, Chuzhou, China
| |
Collapse
|
6
|
Saosamniang P, Matsumura K, Okajima MK, Kaneko T. Directing mineralization of ZnO nanoparticles in cyanobacterial liquid crystalline polysaccharides for cancer therapies. Int J Biol Macromol 2025; 304:140716. [PMID: 39920940 DOI: 10.1016/j.ijbiomac.2025.140716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 01/20/2025] [Accepted: 02/04/2025] [Indexed: 02/10/2025]
Abstract
Effective cancer therapy faces significant challenges, including non-selective toxicity, limited structural stability, inconsistent nanoparticle (NP) morphology, and instability under varying biological conditions. These issues hindering targeted delivery and therapeutic efficacy. Previous approaches using polysaccharide-based nanomaterials have shown promise; however, problems such as inconsistent NP sizes and shapes, poor mechanical stability, and limited pH resilience restrict their clinical potential. This study hypothesized that sacran, a cyanobacterial liquid crystalline (LC) polysaccharide, can stabilize ZnO NPs, allowing for controlled mineralization, enhanced stability, and selective cytotoxicity. We developed ZnO nanocomposite xerogels in an LC sacran matrix, yielding block-like ZnO NPs (25-70 nm) with high surface-area-to-volume ratios that improve cellular uptake in tumor environments. Incorporating these NPs into chemically crosslinked sacran matrices resulted in a 3-fold increase in mechanical strength and a 10-fold improvement in swelling capacity compared to physically crosslinked systems. Additionally, the sacran-ZnO nanocomposites demonstrated robust stability under various pH conditions, indicating their resilience in diverse biological environments. Cytotoxicity assays revealed that higher concentrations of ZnO NP selectively increased toxicity toward human lung cancer cells (A549), with less impact on human dermal fibroblasts (HDFa). Moreover, HDFa successfully attached to and proliferated on the smooth surfaces of the xerogels, emphasizing their compatibility with normal cells. This highlights the potential of sacran-ZnO nanocomposite xerogels as cancer-selective therapeutic materials, offering stability and effectiveness even under varying biological conditions, while addressing key challenges associated with earlier NP-based therapies.
Collapse
Affiliation(s)
- Pruetsakorn Saosamniang
- Graduate School of Advanced Science and Technology, Energy and Environment Area, Japan Advanced Institute of Science and Technology (JAIST), 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| | - Kazuaki Matsumura
- Graduate School of Advanced Science and Technology, Energy and Environment Area, Japan Advanced Institute of Science and Technology (JAIST), 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| | - Maiko K Okajima
- Key Laboratory of Synthetic and Biological Colloids, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China; Graduate School of Advanced Science and Technology, Energy and Environment Area, Japan Advanced Institute of Science and Technology (JAIST), 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| | - Tatsuo Kaneko
- Key Laboratory of Synthetic and Biological Colloids, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China; Graduate School of Advanced Science and Technology, Energy and Environment Area, Japan Advanced Institute of Science and Technology (JAIST), 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan.
| |
Collapse
|
7
|
Guo Y, Morshedi M. Cutting-edge nanotechnology: unveiling the role of zinc oxide nanoparticles in combating deadly gastrointestinal tumors. Front Bioeng Biotechnol 2025; 13:1547757. [PMID: 40182988 PMCID: PMC11966175 DOI: 10.3389/fbioe.2025.1547757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 02/21/2025] [Indexed: 04/05/2025] Open
Abstract
Zinc oxide nanoparticles (ZnO-NPs) have gained significant attention in cancer therapy due to their unique physical and chemical properties, particularly in treating gastrointestinal (GI) cancers such as gastric, colorectal, and hepatocellular carcinoma. These nanoparticles generate reactive oxygen species (ROS) upon entering cancer cells, causing oxidative stress that leads to cellular damage, DNA fragmentation, and apoptosis. ZnO-NPs affect the expression of key proteins involved in apoptosis, including p53, Bax, and Bcl-2, which regulate cell cycle arrest and programmed cell death. Additionally, ZnO-NPs can reduce mitochondrial membrane potential, further enhancing apoptosis in cancer cells. Furthermore, ZnO-NPs inhibit cancer cell proliferation by interfering with cell cycle progression. They reduce levels of cyclins and cyclin-dependent kinases (CDKs), leading to cell cycle arrest. ZnO-NPs also exhibit anti-metastatic properties by inhibiting the migration and invasion of cancer cells through modulation of signaling pathways that affect cell adhesion and cytoskeletal dynamics. The efficacy of ZnO-NPs in overcoming chemotherapy resistance has been demonstrated by their ability to reduce the IC50 values of chemotherapeutic agents, making cancer cells more susceptible to drug-induced cell death. In this review, we summarize the mechanisms by which ZnO-NPs exert anticancer effects in GI cancers, focusing on apoptosis, cell cycle regulation, and metastasis inhibition, while also highlighting the current limitations in translating these findings into effective clinical treatments.
Collapse
Affiliation(s)
- Yonggang Guo
- Pingdingshan College, Pingdingshan, Henan, China
| | | |
Collapse
|
8
|
Jiménez-López MC, Moreno-Maldonado AC, Martín-Morales N, O'Valle F, Ibarra MR, Goya GF, Molina IJ. Novel cisplatin-magnetoliposome complex shows enhanced antitumor activity via Hyperthermia. Sci Rep 2025; 15:4780. [PMID: 39922848 PMCID: PMC11807125 DOI: 10.1038/s41598-025-88533-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 01/29/2025] [Indexed: 02/10/2025] Open
Abstract
There are several methods to improve cancer patient survival rates by inducing hyperthermia in tumor tissues, which involves raising their temperature above 41 °C. These methods utilize different energy sources to deliver heat to the target region, including light, microwaves or radiofrequency electromagnetic fields. We have developed a new, magnetically responsive nanocarrier, consisting of liposomes loaded with magnetic nanoparticles and cis-diamminedichloroplatinum (II) (CDDP), commonly known as Cisplatin. The resulting magnetoliposome (ML) is rapidly internalized by lung and pancreas tumor cell lines, stored in intracellular vesicles, and capable of inducing hyperthermia under magnetic fields. The ML has no significant toxicity both in vitro and in vivo and, most importantly, enhances cell death by apoptosis after magnetic hyperthermia. Remarkably, mice bearing induced lung tumors, treated with CDDP-loaded nanocarriers and subjected to an applied electromagnetic field, showed an improved survival rate over those treated with either soluble CDDP or hyperthermia alone. Therefore, our approach of magnetic hyperthermia plus CDDP-ML significantly enhances in vitro cell death and in vivo survival of treated animals.
Collapse
Affiliation(s)
- M Carmen Jiménez-López
- Institute of Biopathology and Regenerative Medicine, Center for Biomedical Research. Health Sciences Technology Park, University of Granada, Granada, Spain
| | | | - Natividad Martín-Morales
- Institute of Biopathology and Regenerative Medicine, Center for Biomedical Research. Health Sciences Technology Park, University of Granada, Granada, Spain
| | - Francisco O'Valle
- Institute of Biopathology and Regenerative Medicine, Center for Biomedical Research. Health Sciences Technology Park, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria, ibs.GRANADA, Granada, Spain
| | - M Ricardo Ibarra
- Institute of Nanoscience and Materials of Aragón, CSIC-University of Zaragoza, Zaragoza, Spain
| | - Gerardo F Goya
- Institute of Nanoscience and Materials of Aragón, CSIC-University of Zaragoza, Zaragoza, Spain.
| | - Ignacio J Molina
- Institute of Biopathology and Regenerative Medicine, Center for Biomedical Research. Health Sciences Technology Park, University of Granada, Granada, Spain.
- Instituto de Investigación Biosanitaria, ibs.GRANADA, Granada, Spain.
| |
Collapse
|
9
|
El-Fitiany RA, El Nahas R, Al Balkhi S, Aljaeedi S, Alblooshi A, Hassan FM, Khaleel A, Samadi A, Khasawneh MA. Alchemy in Nature: The Role of Lawsonia inermis Extract Choice in Crafting Potent Anticancer Metal Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2025; 17:4637-4661. [PMID: 39798120 PMCID: PMC11759054 DOI: 10.1021/acsami.4c19585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 12/29/2024] [Accepted: 12/30/2024] [Indexed: 01/15/2025]
Abstract
Phyto-nanotechnology provides an eco-friendly approach for synthesizing biocompatible metal nanoparticles (NPs) with therapeutic potential. Lawsonia inermis (LI) has been historically valued for its diverse medicinal applications, especially its exceptional biological potency against various skin diseases, attributed to its rich abundance of bioactive compounds. Therefore, herein, plant-based iron and zinc NPs were biofabricated via sustainable and simple methods, using crude extracts of the aerial parts of LI as reducing, coating, and stabilizing agents. Since the extraction method affects the type of extracted phytocompounds, two extraction approaches─aqueous and hydro-alcoholic─were applied to determine the influence of the extraction route on the physicochemical and biological properties of the formed NPs. These properties were characterized via various analytical techniques and assays. The UV-Vis spectra revealed absorption bands ranging from 265 to 270 nm, while FT-IR confirmed the successful coating of the NPs with the extracts' phytochemicals, validating the biofabrication of the proposed NPs. The alcoholic-based NPs displayed higher total phenolic content, total flavonoid content, and antioxidant effect compared to their aqueous-based counterparts, reaching up to 55.13 μg of GAE/1 mg of dry weight (DW), 30.48 μg of QU/1 mg of DW, and IC50 of 46.02 μg/mL, respectively. All tested samples, except for Fe NPs, displayed significant cytotoxic effects against skin cancer, resulting in a cell viability as low as 1% at 1000 μg/mL. QTOF-LC/MS/MS analyses of LI extracts revealed tentative identification of more than 100 metabolites with phenolic compounds representing the largest share. Orthogonal Projections to Latent Structures Discriminant Analysis modeling revealed a clear separation between both extracts, with more than 40 marker compounds. The results indicated that both extracts were effective for the green synthesis of Fe and Zn NPs for biomedical applications, with the alcoholic extract of LI as a superior coating candidate and the aqueous extract as a stronger reducing agent. This work showcases the influence of extraction protocols on physicochemical and biological characteristics of the resulting nanoparticles.
Collapse
Affiliation(s)
- Rana Ahmed El-Fitiany
- Department
of Chemistry, College of Science, United
Arab Emirates University, Al Ain, 15551, United
Arab Emirates
- Pharmacognosy
Department, Faculty of Pharmacy, Egyptian
Chinese University, Cairo, 19346, Egypt
| | - Riham El Nahas
- Department
of Chemistry, College of Science, United
Arab Emirates University, Al Ain, 15551, United
Arab Emirates
| | - Seba Al Balkhi
- Department
of Chemistry, College of Science, United
Arab Emirates University, Al Ain, 15551, United
Arab Emirates
| | - Shouq Aljaeedi
- Department
of Chemistry, College of Science, United
Arab Emirates University, Al Ain, 15551, United
Arab Emirates
| | - Afra Alblooshi
- Department
of Chemistry, College of Science, United
Arab Emirates University, Al Ain, 15551, United
Arab Emirates
| | - Fathy M. Hassan
- Department
of Chemistry, College of Science, United
Arab Emirates University, Al Ain, 15551, United
Arab Emirates
| | - Abbas Khaleel
- Department
of Chemistry, College of Science, United
Arab Emirates University, Al Ain, 15551, United
Arab Emirates
| | - Abdelouahid Samadi
- Department
of Chemistry, College of Science, United
Arab Emirates University, Al Ain, 15551, United
Arab Emirates
| | - Mohammad A. Khasawneh
- Department
of Chemistry, College of Science, United
Arab Emirates University, Al Ain, 15551, United
Arab Emirates
| |
Collapse
|
10
|
Eixenberger JE, Anders CB, Hermann R, Wada K, Reddy KM, Montenegro-Brown RJ, Fologea D, Wingett DG. On-demand release of encapsulated ZnO nanoparticles and chemotherapeutics for drug delivery applications. RSC PHARMACEUTICS 2025; 2:82-93. [PMID: 39703205 PMCID: PMC11650639 DOI: 10.1039/d4pm00189c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 10/17/2024] [Indexed: 12/21/2024]
Abstract
Nanomedicines offer high promise for the treatment of various diseases, and numerous novel approaches using nanomaterials have been developed over the years. In this report, we introduce a new strategy utilizing ZnO nanoparticles (nZnO) to trigger the rapid release of lipid-encapsulated therapeutics upon photo-irradiation with UV light (365 nm). In vitro studies demonstrate that encapsulation of nZnO effectively eliminates the cytotoxicity of nZnO, but this can be re-established upon release from the lipid coating. Using 5(6)-carboxyfluorescein as a model for hydrophilic drug loading, we show the ability to co-load drugs with nZnO into liposomes. Kinetic studies reveal the ability to release the majority of the dye within 60 minutes post-photo-irradiation and provide insights into factors that impact release kinetics. To further explore this, Jurkat T cell leukemia and T47D breast cancer cells were treated with co-encapsulated nZnO and the hydrophobic cancer drug paclitaxel. These studies revealed enhanced toxicity of the triggered release groups with an extreme difference noted in the viability profiles of the T47D breast cancer cell model. Taken together, these studies indicate that this system of co-encapsulating nZnO and chemotherapeutic drugs has the potential to minimize systemic toxicity, by controlling therapeutic release, while allowing for the localized selective destruction of cancer.
Collapse
Affiliation(s)
- Josh E Eixenberger
- Biomolecular Sciences Graduate Program, Boise State University Boise ID 83725 USA +208-426-2231
- Department of Physics, Boise State University Boise ID 83725 USA
| | - Catherine B Anders
- Biomolecular Sciences Graduate Program, Boise State University Boise ID 83725 USA +208-426-2231
| | - Rebecca Hermann
- Department of Biological Sciences, Boise State, University Boise ID 83725 USA +208-426-2921
| | - Katelyn Wada
- Department of Physics, Boise State University Boise ID 83725 USA
| | - Kongara M Reddy
- Department of Physics, Boise State University Boise ID 83725 USA
| | | | - Daniel Fologea
- Biomolecular Sciences Graduate Program, Boise State University Boise ID 83725 USA +208-426-2231
- Department of Physics, Boise State University Boise ID 83725 USA
| | - Denise G Wingett
- Biomolecular Sciences Graduate Program, Boise State University Boise ID 83725 USA +208-426-2231
- Department of Biological Sciences, Boise State, University Boise ID 83725 USA +208-426-2921
| |
Collapse
|
11
|
Hu Q. The protective effect of zinc oxide nanoparticles on boar sperm during preservation at 17 °C. Anim Reprod 2025; 22:e20230013. [PMID: 39867304 PMCID: PMC11758902 DOI: 10.1590/1984-3143-ar2023-0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 11/18/2024] [Indexed: 01/28/2025] Open
Abstract
More than 90% of spermatozoa of boars in pork producing countries is stored in liquid at 17 °C; however, the quality of these spermatozoa is affected by bacterial breeding and oxidative damage. This study analyzed sperm quality and sperm capacitation after storage to study the effects of the effects of ZnO nanoparticles (ZnO NPs) supplementation on seminal plasma (SP)-free sperm preservation. We investigated the effects of adding 20, 50, 100 and 200 μg/mL of ZnO NPs to a seminal free boar sperm diluent over a 7-day period at 17 °C to assess the changes in non-capacitated/capacitated sperm quality parameters, antioxidant capacity, ATP content and extent of protein tyrosine phosphorylation. The addition of different doses of ZnO NPs to stored sperm did not induce significant effects on the sperm motility and ATP content when compared to the sperm without ZnO NPs treatment. However, the addition of 50, 100, 200 μg/mL ZnO NPs to stored sperm improved total antioxidant capacity (T-AOC) and CuZn-superoxide dismutase (CuZn-SOD) (p < 0.05). ZnO NPs also reduced the malondialdehyde (MDA) content of the preserved sperm (p < 0.05). Moreover, our results indicate that the supplementation of 50 μg/mL ZnO NPs to preserved sperm improved the sperm membrane integrity (p < 0.05). ZnO NPs exerted protective effects on protein tyrosine phosphorylation, especially with regards to membrane proteins. Following incubation and capacitation, sperm exhibited good levels of protein tyrosine phosphorylation and ATP levels with high T-AOC and CuZn-SOD activity and low MDA content. ZnO NPs exerted protective capacity to a preservation extender used for SP-free boar sperm during storage at 17 °C. The optimal concentration of ZnO NPs for preservation extender was 50 μg/mL.
Collapse
Affiliation(s)
- Qimeng Hu
- Hebei Key Laboratory of Animal Diversity, College of Life Sciences, Langfang Normal University, Hebei Langfang, China
| |
Collapse
|
12
|
Shaik MR, Panda SP, Hussain SA, Deepak P, Thiyagarajulu N, Shaik B, Murugan R, Guru A. Enhancing the efficacy of zinc oxide nanoparticles by beta-carotene conjugation for improved anti-microbial and anti-tumor therapy for dental application. Pharm Dev Technol 2025; 30:101-113. [PMID: 39737541 DOI: 10.1080/10837450.2024.2448620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 12/27/2024] [Accepted: 12/27/2024] [Indexed: 01/01/2025]
Abstract
Zinc oxide NPs (ZnO NPs) are notable in nanomedicine for their exceptional physicochemical and biological properties. This study synthesizes and characterizes beta-carotene-coated ZnO NPs (BT-ZnO NPs) for potential anti-cancer and antimicrobial applications, demonstrating significant efficacy against dental pathogens and oral cancer cells. Scanning Electron Microscopy, EDAX, UV, FTIR, XRD, and Zeta potential analysis of prepared BT-ZnO NPs revealed uniform flower-like crystalline structures with intricate morphology and an average particle size of 38.06 nm. FTIR spectra identified various functional groups, suggesting a complex organic compound coated with ZnO NPs. Zeta potential measurements showed pH-dependent surface charge variations, which are crucial for understanding colloidal stability. The antimicrobial activity was potent against dental pathogens, with minimum inhibitory concentration (MIC) values of 50 µg/mL highlighting significant inhibition. Molecular docking studies demonstrated strong binding affinities of BT to key receptor proteins of dental pathogens. BT-ZnO NPs exhibited notable antioxidant activity of 68%, comparable to ascorbic acid, and significant anti-inflammatory effects of 75.1% at 100 µg/mL. Cytotoxicity assays indicated a concentration-dependent suppression of KB cell proliferation, decreasing cell viability to 37.19%, and gene expression studies showed elevated P53 expression, suggesting a strong apoptotic response. These multifaceted properties underscore the potential of BT-ZnO NPs as an integrated therapeutic approach for dental healthcare and oncology.
Collapse
Affiliation(s)
- Mohammed Rafi Shaik
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Siva Prasad Panda
- Institute of Pharmaceutical Research, GLA University, Mathura, India
| | - Shaik Althaf Hussain
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Paramasivam Deepak
- Department of Life sciences, Kristu Jayanti College (Autonomous) K. Narayanapura, Bengaluru, India
| | - Nathiya Thiyagarajulu
- Department of Life sciences, Kristu Jayanti College (Autonomous) K. Narayanapura, Bengaluru, India
| | - Baji Shaik
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Republic of Korea
| | - Raghul Murugan
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, India
| | - Ajay Guru
- Department of Cariology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| |
Collapse
|
13
|
Hirad AH, Alarfaj AA, Ravindran B, Narasimhamoorthi SP. Betanin inspired zinc oxide nanoparticles: The potential antioxidant and anticancer activity against human lung cancer cell line (A549). Biochem Biophys Res Commun 2025; 742:151019. [PMID: 39642708 DOI: 10.1016/j.bbrc.2024.151019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 10/21/2024] [Accepted: 11/18/2024] [Indexed: 12/09/2024]
Abstract
BACKGROUND INFORMATION Lung cancer is the most frequently reported disease on a global scale. The bioactive substances are less successful in specifically destroying cancer cells. To prevent early inactivation and ensure targeted delivery of bioactive chemicals to cancer cells. Betanin is known as nitrogenous water-soluble molecule which possess anti-inflammatory, hepatoprotective, antioxidant, and anticancer properties. AIM OF THE STUDY This work evaluates the anti-cancer and anti-oxidant properties of Betanin coated zinc oxide nanoparticles on the A549 lung cancer cell line. MATERIALS AND METHODS In the current work, Betanin coated Zinc oxide nanoparticles (Betanin coated ZnO NPs) were made utilizing Betanin, a phytochemical. SEM, FTIR, DLS, and UV-Vis were used to evaluate their properties. Trypan blue and MTT were used to confirm cell survival and cytotoxicity of ZnO nanoparticles at various dosages. The morphological evaluation of A549 cells was investigated by phase contrast microscopy and apoptosis by propidium iodide staining. The membrane integrity of mitochondria was investigated by rhodamine 123 staining and observed under fluorescence microscope. The anti-oxidant ability of ZnO nanoparticles was analyzed by level of catalase, glutathione, nitric oxide, lipid peroxidation, and superoxide dismutase using UV spectrophotometric analysis. Studies on gene expression (Bcl2, P53and BAX) were conducted to assess the molecular mechanism of apoptosis mediated by synthesized nanoparticle and level of matrix metalloproteinase -2 (MMP-2) by gelatin zymography. RESULTS At the peak of 383 nm in the UV band, zinc oxide NP synthesis was confirmed. The FT-IR data demonstrated that zinc oxide nanoparticles were effectively coated with Betanin and by dynamic light scattering analysis confirmed particle size to be 100.8 nm. The presence of cubic, spherical, and platelet-shaped zinc oxide nanoparticles has been observed by SEM analysis. The nanoparticles of zinc oxide (ZnO) were synthesized chemically and exhibited decreasing cell viability and increasing cytotoxicity and apoptosis in dose dependent manner. The levels of LPO activity increased significantly and NO, antioxidant enzymes (GSH, SOD, and CAT) activity decreased significantly (P <0.0001). Our results demonstrated that A549 cells treated with Betanin loaded ZnO nanoparticles to prevent oxidation by scavenging free radicals and increased levels of gene expression related to apoptotic proteins BAX, p53 and decreased level of expression in Bcl2. Further, level of matrix metalloproteinase -2 (MMP-2) decreased with increase in concentration of nanoparticle. CONCLUSION As per the research described above, lung cancer cells were effectively targeted by the anticancer and antioxidant abilities of ZnO nanoparticles inspired by Betanin (A549).
Collapse
Affiliation(s)
- Abdurahman Hajinur Hirad
- Department of Botany and Microbiology, College of Science, King Saud University, P.O Box.2455, Riyadh, 11451, Saudi Arabia
| | - Abdullah A Alarfaj
- Department of Botany and Microbiology, College of Science, King Saud University, P.O Box.2455, Riyadh, 11451, Saudi Arabia
| | - Balasubramani Ravindran
- Department of Environmental Energy and Engineering, Kyonggi University, Yeongtong-Gu, Suwon, Gyeonggi-Do, 16227, Republic of Korea
| | - Shilpa Perumal Narasimhamoorthi
- Centre for Applied Research, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu, India.
| |
Collapse
|
14
|
Alhaddad R, Abualsoud BM, Al-Deeb I, Nsairat H. Green synthesized Zingiber officinale-ZnO nanoparticles: anticancer efficacy against 3D breast cancer model. Future Sci OA 2024; 10:2419806. [PMID: 39539163 PMCID: PMC11572278 DOI: 10.1080/20565623.2024.2419806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 10/09/2024] [Indexed: 11/16/2024] Open
Abstract
Aim: ZnO NPs were prepared via green synthesis utilizing Zingiber Officinale.Methodology: Physical characterization and biological activity were performed against 2D, and 3D spheroids MCF-7 cell lines.Results: The NPs exhibited 188.9, 175.7 and 171.2 nm size with charge of -8.2, -11.7 and -9.7 mV for the 2%, 3% and 4% formulations. XRD confirmed a wurtzite hexagonal phase. FTIR spectra showed Zn-O stretching vibrations. The 2%, 3% and 4% formulations presented IC50 values of 14.7, 26.2 and 47 μg/ml, respectively, with complete destruction of MCF-7 spheroids. Elevated TNF-α levels suggested an inflammatory-mediated mechanism of action.Conclusion: 2% Zingiber officinale-derived ZnO NPs showed antitumor potential against deserving further mechanistic and in vivo explorations.
Collapse
Affiliation(s)
- Ruqaya Alhaddad
- Pharmacological & Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, 19328, Jordan
| | - Bassam M Abualsoud
- Pharmacological & Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, 19328, Jordan
| | - Ibrahim Al-Deeb
- Pharmacological & Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, 19328, Jordan
- Department of Clinical Pharmacy, Faculty of Pharmacy, Zarqa University, Zarqa, 13110, Jordan
| | - Hamdi Nsairat
- Pharmacological & Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, 19328, Jordan
| |
Collapse
|
15
|
Girigoswami A, Deepika B, Udayakumar S, Janani G, Mercy DJ, Girigoswami K. Peony-shaped zinc oxide nanoflower synthesized via hydrothermal route exhibits promising anticancer and anti-amyloid activity. BMC Pharmacol Toxicol 2024; 25:101. [PMID: 39736727 DOI: 10.1186/s40360-024-00830-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 12/19/2024] [Indexed: 01/01/2025] Open
Abstract
BACKGROUND Cancer is the deadliest disease, and neurological disorders are also marked as slow progressive diseases, ultimately leading to death. Stopping two mouths with one morsel was the strategy that we used in this study. METHODS We have synthesized peony-shaped zinc oxide nanoflowers (ZnO-NFs) and characterized them using various photophysical tools like UV-vis spectroscopy, zeta potential analysis, dynamic light scattering (DLS), FTIR, and scanning electron microscopy (SEM), and utilized these nanoflowers to monitor their anticancer and anti-amyloid activity. In vitro biocompatibility was assessed using fibroblasts and undifferentiated rat phaeochromocytoma cells, and in vivo, biocompatibility was estimated using haemolysis assay and zebrafish embryo development. RESULTS The results demonstrated high biocompatibility of the as-synthesized ZnO-NFs up to a dose of 200 µg/ml. In vitro anticancer activity was evaluated using adherent (A375) and non-adherent (Dalton's Lymphoma Ascites, DLA) cancer cell lines. The results indicated that the ZnO-NFs significantly killed the cancer cells in a dose-dependent way, showing an extraordinary effect on DLA cells. The anti-amyloid activity in vitro was explored using a spectrum of assays that were hallmarks in anti-amyloid studies like ThT fluorescence assay, DLS, turbidity assay, atomic force microscopy (AFM), and SEM analysis. Excellent anti-amyloid activity was observed in vitro at 50 µg/ml of ZnO-NFs. CONCLUSION We can conclude from the above results that the as-synthesized ZnO-NFs have a dual role as an anticancer as well as an anti-amyloid agent. In the future, animal models can be used to study the efficacy of the ZnO-NFs in cancer inhibition and amyloid degradation.
Collapse
Affiliation(s)
- Agnishwar Girigoswami
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chettinad Health City, Kelambakkam, Tamilnadu, 603103, India
| | - Balasubramanian Deepika
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chettinad Health City, Kelambakkam, Tamilnadu, 603103, India
| | - Saranya Udayakumar
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chettinad Health City, Kelambakkam, Tamilnadu, 603103, India
| | - Gopalarethinam Janani
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chettinad Health City, Kelambakkam, Tamilnadu, 603103, India
| | - Devadass Jessy Mercy
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chettinad Health City, Kelambakkam, Tamilnadu, 603103, India
| | - Koyeli Girigoswami
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chettinad Health City, Kelambakkam, Tamilnadu, 603103, India.
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai, 602101, India.
| |
Collapse
|
16
|
Subramaniam H, Lim CK, Tey LH, Wong LS, Djearamane S. Oxidative stress-induced cytotoxicity of HCC2998 colon carcinoma cells by ZnO nanoparticles synthesized from Calophyllum teysmannii. Sci Rep 2024; 14:30198. [PMID: 39632962 PMCID: PMC11618351 DOI: 10.1038/s41598-024-81384-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024] Open
Abstract
The field of green synthesis, namely using plant extracts for the production of metal nanoparticles, is rapidly gaining traction. Therefore, this study investigated the process of producing zinc oxide nanoparticles (ZnO NPs) using a water-based extract derived from the stem bark of Calophyllum teysmannii. Notably, this is the first documented utilization of this particular plant source. The presence of a distinct Ultraviolet-Visible (UV-Vis) absorption peak at 372 nm provided evidence for the creation of ZnO nanoparticles. The X-ray Diffractometer (XRD) and Field Emission Scanning Electron Microscopy (FESEM) investigations indicated that the nanoparticles exhibited sizes ranging from 31.5 to 59.9 nm and had spherical morphologies. Energy Dispersive X-ray Diffractometer (EDX) analysis verified the elemental composition of the ZnO nanoparticles, whereas the Fourier Transform Infrared (FTIR) spectra showed clear peaks, demonstrating their production. The FTIR examination of the C. teysmannii extract revealed peaks at around 3370 cm- 1, indicating the presence of phenolic compounds. These chemicals are likely responsible for the reduction and stabilization of the ZnO NPs. The high-resolution X-ray Photoelectron Spectroscopy (XPS) spectra clearly revealed separate peaks corresponding to Zn 2p and O 1s, providing confirmation of the chemical states and bonding contexts. The Raman Spectroscopy analysis revealed a distinct peak at around 425 cm⁻¹, confirming the presence of the wurtzite structure. The harmful effects of ZnO nanoparticles on HCC2998 (a kind of human colon cancer) and Vero (a type of monkey kidney epithelial) cells were evaluated using 3-(4, 5-dimethylthiazolyl-2)-2, 5-diphenyltetrazolium bromide (MTT), dichlorodihydrofluorescein diacetate (DCFH-DA), and boron-Dipyrromethene (BODIPY) assays. The cancer cells underwent cell death due to oxidative stress in a dose-dependent manner, as confirmed by microscopic and flow cytometry investigations.
Collapse
Affiliation(s)
- Hemaroopini Subramaniam
- Department of Allied Health Sciences, Faculty of Science, Universiti Tunku Abdul Rahman (UTAR), Kampar Campus, Jalan Universiti, Bandar Barat, Kampar, Perak, 31900, Malaysia
| | - Chan Kiang Lim
- Department of Chemical Science, Faculty of Science, Universiti Tunku Abdul Rahman (UTAR), Kampar Campus, Jalan Universiti, Bandar Barat, Kampar, Perak, 31900, Malaysia
| | - Lai Hock Tey
- Department of Chemical Science, Faculty of Science, Universiti Tunku Abdul Rahman (UTAR), Kampar Campus, Jalan Universiti, Bandar Barat, Kampar, Perak, 31900, Malaysia
| | - Ling Shing Wong
- Life Science Division, Faculty of Health and Life Sciences, INTI International University, Nilai, 71800, Malaysia
| | - Sinouvassane Djearamane
- Department of Allied Health Sciences, Faculty of Science, Universiti Tunku Abdul Rahman (UTAR), Kampar Campus, Jalan Universiti, Bandar Barat, Kampar, Perak, 31900, Malaysia.
- Biomedical Research Unit and Lab Animal Research Centre, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College, Saveetha University, Chennai, 602 105, India.
| |
Collapse
|
17
|
Suwannasing C, Suwannasom N, Soonthornchookiat P, Srisai P, Pattaweerakul C, Kothan S, Prapan A. The potential of HSA-stabilized zinc oxide nanoparticles as radiosensitizers to enhance the cytotoxic effects and radiosensitivity of cervical cancer cells. Cancer Nanotechnol 2024; 15:59. [DOI: 10.1186/s12645-024-00298-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 11/14/2024] [Indexed: 02/02/2025] Open
|
18
|
Virych P, Virych P, Prokopiuk V, Onishchenko A, Ischenko M, Doroschuk V, Kurovska V, Tkachenko A, Kutsevol N. Dextran-Graft-Polyacrylamide/Zinc Oxide Nanoparticles Inhibit of Cancer Cells in vitro and in vivo. Int J Nanomedicine 2024; 19:11719-11743. [PMID: 39553459 PMCID: PMC11566607 DOI: 10.2147/ijn.s485106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 11/03/2024] [Indexed: 11/19/2024] Open
Abstract
Introduction Tumor drug resistance and systemic toxicity are major challenges of modern anticancer therapy. Nanotechnology makes it possible to create new materials with the required properties for anticancer therapy. Methods In this research, Dextran-graft-Polyacrylamide/ZnO nanoparticles were used. The study was carried out using prostate (DU-145, LNCaP, PC-3), breast (MDA-MB-231, MCF-7, MCF-7 Dox) cancer cells and non-malignant (MAEC, BALB/3T3 clone A31) cells. Zinc was visualized with fluorescence in vitro and in vivo. ROS and apoptotic markers were identified by cytometry. Zinc accumulation and histopathological changes in the tumor, liver, kidney, and spleen were evaluated in a rat model. Results ZnO nanoparticles dissociation and release of Zn2+ into the cytosol occurs in 2-3 hours for cancerous and non-cancerous cells. ROS upregulation was detected in all cells. For non-malignant cells, the difference between the initial ROS level was insignificant. The rate of carbohydrate metabolism in cancer cells was reduced by nanosystems. Zinc level in the tumor was upregulated by 25% and 39% after treatment with nanosystems and doxorubicin combined, respectively. The tumor Walker-256 carcinosarcoma volume was reduced twice following mono-treatment with the nanocomplex and 65-fold lower when the nanocomplex was combined with doxorubicin compared with controls. In the liver, kidney and spleen, the zinc level increased by 10-15% but no significant pathological alterations in the tissues were detected. Conclusion D-PAA/ZnO NPs nanosystems were internalized by prostate, breast cancer cells and non-malignant cells via endocytosis after short time, but cytotoxicity against non-cancer cells were significantly lower in vitro and in vivo. D-PAA/ZnO NPs nanocomplex efficiently promoted cell death of tumor cells without showing cytotoxicity against non-malignant cells making it a promising anti-cancer agent.
Collapse
Affiliation(s)
- Petro Virych
- Laboratory of Mechanisms of Drug Resistance, R.E. Kavetsky Institute for Experimental Pathology, Oncology and Radiobiology, Kyiv, Ukraine
| | - Pavlo Virych
- Faculty of Chemistry, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Volodymyr Prokopiuk
- Research Institute of Experimental and Clinical Medicine, Kharkiv National Medical University, Kharkiv, Ukraine
- Department of Cryobiochemistry, Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine, Kharkiv, Ukraine
| | - Anatolii Onishchenko
- Research Institute of Experimental and Clinical Medicine, Kharkiv National Medical University, Kharkiv, Ukraine
| | - Mykola Ischenko
- Faculty of Chemistry, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Volodymyr Doroschuk
- Faculty of Chemistry, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Valentyna Kurovska
- Educational and Scientific Center “Institute of Biology and Medicine”, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Anton Tkachenko
- Department of Cryobiochemistry, Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine, Kharkiv, Ukraine
| | - Nataliya Kutsevol
- Faculty of Chemistry, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| |
Collapse
|
19
|
Kahil N, Abouzeinab NS, Hussein MAA, Khalil MI. Intraperitoneal hepatorenal toxicity of zinc oxide and nickel oxide nanoparticles in rats: a systematic review. Nanotoxicology 2024; 18:583-598. [PMID: 39319754 DOI: 10.1080/17435390.2024.2407352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/28/2024] [Accepted: 09/17/2024] [Indexed: 09/26/2024]
Abstract
Zinc oxide (ZnO) and nickel oxide (NiO) nanoparticles (NPs) are widely used in various industries due to their distinctive physico-chemical and biological properties. However, concerns have been raised about their potential toxicity in humans. While many studies have reviewed their effects on visceral organs upon ingestion, inhalation, or skin contact, limited reviews are available regarding their adverse consequences on the liver and kidneys resulting from intraperitoneal administration in rats. Hence, this systematic review is the first to uniquely address this issue. A systematic search was performed on PubMed and Google scholar to identify articles that explored the toxic effects of ZnO-NPs and NiO-NPs in rats following intraperitoneal injection. The quality of the articles was assessed using SYCLE's risk of bias tool, leading to the selection of 16 articles; 14 for ZnO-NPs, 1 for NiO-NPs and 1 for both NPs. This review revealed that ZnO-NPs induces an acute toxicity in liver and kidney that is dose dependent. The impairments were marked by changes in organs functional markers, lipid and glucose levels and antioxidant deficiencies and lipid peroxidation. NiO-NPs also showed considerable toxicity, despite the limited studies. Further, variability of physico-chemical properties among studies complicated the toxicity assessment. To conclude, this study provides a novel contribution by summarizing the literature findings that suggest potential adverse intraperitoneal hepatorenal toxic outcomes associated with ZnO-NPs and NiO-NPs. Future research should focus on long-term effects and standardizing protocols to ensure the safe use of ZnO-NPs and NiO-NPs in industrial and clinical practices.
Collapse
Affiliation(s)
- Nour Kahil
- Department of Biological Sciences, Beirut Arab University, Beirut, Lebanon
| | - Noura S Abouzeinab
- Department of Biological Sciences, Beirut Arab University, Beirut, Lebanon
| | - Mohamed A A Hussein
- Department of Internal Medicine, Beirut Arab University, Beirut, Lebanon
- Department of Internal Medicine, Alexandria University, Alexandria, Egypt
| | - Mahmoud I Khalil
- Department of Biological Sciences, Beirut Arab University, Beirut, Lebanon
- Molecular Biology Unit, Department of Zoology, Alexandria University, Alexandria, Egypt
| |
Collapse
|
20
|
El-Fitiany RA, AlBlooshi A, Samadi A, Khasawneh MA. Phytosynthesis, Characterization, Phenolic and Biological Evaluation of Leptadenia pyrotechnica-Based Zn and Fe Nanoparticles Utilizing Two Different Extraction Techniques. Int J Nanomedicine 2024; 19:11003-11021. [PMID: 39502631 PMCID: PMC11537101 DOI: 10.2147/ijn.s480716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 10/09/2024] [Indexed: 11/08/2024] Open
Abstract
Introduction Phyto-nanotechnology offers a sustainable method for synthesizing biocompatible metal nanoparticles (NPs) with therapeutic potential. The diverse medicinal flora in the UAE, particularly Leptadenia pyrotechnica (LP), provides a vital resource for advancing this research area. This plant is historically valued in the region for its wide medicinal applications due to its abundance of bioactive compounds. Methods In this study, eco-friendly, straightforward, and low-temperature hydrothermal synthesis methods were applied to synthesize potentially therapeutic Zn and Fe NPs using LP extracts. The generated NPs were characterized using UV-VIS, FT-IR, SEM, EDX, XRD and DLS. Moreover, they were investigated for their total phenolic and flavonoid contents, along with their antioxidant and skin anticancer effects. Results The UV-Vis spectra disclosed absorption band at about 275 nm, and the FT-IR confirmed the successful coating of the NPs with the plants' phytochemicals, thus ensuring the successful bio-fabrication of the proposed NPs. SEM/EDX outcomes suggest a more potent reducing effect of the aqueous extract, while a more effective coating of the alcoholic extract. DLS revealed monodispersed NPs, with average sizes ranging from 43.82 to 207.8 nm. LFeC demonstrated the highest phenolic and flavonoid contents (49.96±4.76 μg of GAE/mg of DW and 43.89±2.89 μg of Qu/mg of DW, respectively) and the greatest potency against skin cancer cell lines (IC50=263.56 µg/mL). However, LZnC exhibited the strongest radical scavenging effect against DPPH and ABTS radicals (IC50=139.45µg/mL and 35.1µg/mL, respectively). Discussion The results of this study demonstrated that both extracts of LP are effective in the green synthesis of Fe and Zn nanoparticles for biomedical applications, with alcoholic extracts providing superior coating, capping, and stabilizing properties, leading to lower agglomeration, higher carbon content, total phenolic and flavonoid contents, along with enhanced anticancer and antioxidant effects. This work gives a showcase of sustainable materials that are promising for therapeutic applications.
Collapse
Affiliation(s)
- Rana Ahmed El-Fitiany
- Department of Chemistry, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
- Pharmacognosy Department, Faculty of Pharmacy, Egyptian Chinese University, Cairo, Egypt
| | - Afra AlBlooshi
- Department of Chemistry, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Abdelouahid Samadi
- Department of Chemistry, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Mohammad A Khasawneh
- Department of Chemistry, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
21
|
Buntinx M, Vanheusden C, Hermans D. Processing and Properties of Polyhydroxyalkanoate/ZnO Nanocomposites: A Review of Their Potential as Sustainable Packaging Materials. Polymers (Basel) 2024; 16:3061. [PMID: 39518271 PMCID: PMC11548525 DOI: 10.3390/polym16213061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/25/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
The escalating environmental concerns associated with conventional plastic packaging have accelerated the development of sustainable alternatives, making food packaging a focus area for innovation. Bioplastics, particularly polyhydroxyalkanoates (PHAs), have emerged as potential candidates due to their biobased origin, biodegradability, and biocompatibility. PHAs stand out for their good mechanical and medium gas permeability properties, making them promising materials for food packaging applications. In parallel, zinc oxide (ZnO) nanoparticles (NPs) have gained attention for their antimicrobial properties and ability to enhance the mechanical and barrier properties of (bio)polymers. This review aims to provide a comprehensive introduction to the research on PHA/ZnO nanocomposites. It starts with the importance and current challenges of food packaging, followed by a discussion on the opportunities of bioplastics and PHAs. Next, the synthesis, properties, and application areas of ZnO NPs are discussed to introduce their potential use in (bio)plastic food packaging. Early research on PHA/ZnO nanocomposites has focused on solvent-assisted production methods, whereas novel technologies can offer additional possibilities with regard to industrial upscaling, safer or cheaper processing, or more specific incorporation of ZnO NPs in the matrix or on the surface of PHA films or fibers. Here, the use of solvent casting, melt processing, electrospinning, centrifugal fiber spinning, miniemulsion encapsulation, and ultrasonic spray coating to produce PHA/ZnO nanocomposites is explained. Finally, an overview is given of the reported effects of ZnO NP incorporation on thermal, mechanical, gas barrier, UV barrier, and antimicrobial properties in ZnO nanocomposites based on poly(3-hydroxybutyrate), poly(3-hydroxybutyrate-co-3-hydroxyvalerate), and poly(3-hydroxybutyrate-co-3-hydroxyhexanoate). We conclude that the functionality of PHA materials can be improved by optimizing the ZnO incorporation process and the complex interplay between intrinsic ZnO NP properties, dispersion quality, matrix-filler interactions, and crystallinity. Further research regarding the antimicrobial efficiency and potential migration of ZnO NPs in food (simulants) and the End-of-Life will determine the market potential of PHA/ZnO nanocomposites as active packaging material.
Collapse
Affiliation(s)
- Mieke Buntinx
- Materials and Packaging Research & Services (MPPR&S), Institute for Materials Research (Imo-Imomec), Hasselt University, Martelarenlaan 42, B-3500 Hasselt, Belgium; (C.V.); (D.H.)
- Imec, Imo-Imomec, Wetenschapspark 1, B-3590 Diepenbeek, Belgium
| | - Chris Vanheusden
- Materials and Packaging Research & Services (MPPR&S), Institute for Materials Research (Imo-Imomec), Hasselt University, Martelarenlaan 42, B-3500 Hasselt, Belgium; (C.V.); (D.H.)
- Imec, Imo-Imomec, Wetenschapspark 1, B-3590 Diepenbeek, Belgium
| | - Dries Hermans
- Materials and Packaging Research & Services (MPPR&S), Institute for Materials Research (Imo-Imomec), Hasselt University, Martelarenlaan 42, B-3500 Hasselt, Belgium; (C.V.); (D.H.)
- Imec, Imo-Imomec, Wetenschapspark 1, B-3590 Diepenbeek, Belgium
| |
Collapse
|
22
|
Şendal K, Üstün Özgür M, Ortadoğulu Sucu E, Findik MB, Erdoğan Ö, Oryaşin E, Çevik Ö. Investigation of antibacterial and anticancer activities of biosynthesized metal-doped and undoped zinc oxide nanoparticles. Biotechnol Appl Biochem 2024. [PMID: 39462852 DOI: 10.1002/bab.2683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 10/05/2024] [Indexed: 10/29/2024]
Abstract
Over the past 10 years, nanotechnology has emerged as a very promising technique for a wide range of biomedical applications. Green synthesized metal and metal oxide nanoparticles (NPs) are cheap, easy to produce in large quantities, and safe for the environment. Currently, efforts are being made to dope ZnO in order to improve its optical, electrical, and ferromagnetic qualities as well as its crystallographic quality. Actually, doping is one of the simplest methods for enhancing an NP's physicochemical characteristics because it involves introducing impure ions into the crystal lattice of the particle. In this study, the biosynthesis of zinc oxide NPs (ZnONPs) and metal-doped (Mg2+ and Ag+) ZnONPs was carried out by using aqueous and water-alcoholic extracts of Cynara scolymus L. leaves, Carthamus tinctorius L. flowers, and Rheum ribes L. (RrL) plant, which are rich in phytochemical content. Plant extracts act as a natural reducing, capping, and stabilizing agent in the production. The produced NPs were characterized using a variety of methods, such as ultraviolet-visible spectroscopy, Fourier transform infrared (FTIR) spectroscopy, dynamic light scattering (DLS), and scanning electron microscopy (SEM). The produced metal-doped and undoped ZnONPs exhibited characteristic absorption peaks between 365 and 383 nm due to their surface plasmon resonance bands. SEM analysis revealed that the NPs were oval, nearly spherical, and spherical. In the FTIR spectra, the Zn-O bonding peak ranges from 400 to 700 cm-1. The peaks obtained in the range of 407-562 cm-1 clearly represent the Zn-O bond. In addition, the FTIR results showed that there were notable amounts of phenol and flavonoid compounds in both the prepared extract and ZnONPs. According to DLS analysis results, the size distribution of produced NPs is between 120 and 786 nm. The antibacterial properties of green produced NPs on Gram-positive (Staphylococcus aureus RN4220) and Gram-negative (Escherichia coli DH10B) bacterial strains were investigated by agar well diffusion method. In studies investigating the anticancer activities of biosynthesized NPs, mouse fibroblast cells (L929) were used as healthy cells and human cervical cancer cells (HeLa) were used as cancer cells. Only the produced Ag-ZnONPs showed potent dose-dependent antibacterial activity (at concentrations higher than 100 µg/mL) against Gram-positive and Gram-negative bacteria. RrL-ZnONP-600 and RrL-ZnONP-800 NPs produced with water-ethanol extract of RrL plant and calcined at 600 and 800°C were effective at high concentrations in healthy cells and at low concentrations in HeLa cancer cells, showing that they have the potential to be anticancer agents. The study's findings highlight the potential of green synthesis techniques in the production of medicinal nanomaterials for the treatment of cancer and other biological uses.
Collapse
Affiliation(s)
- Kaan Şendal
- Department of Chemistry, Faculty of Arts and Science, Yildiz Technical University, Istanbul, Turkey
| | - Mahmure Üstün Özgür
- Department of Chemistry, Faculty of Arts and Science, Yildiz Technical University, Istanbul, Turkey
| | - Ebru Ortadoğulu Sucu
- Department of Chemistry, Faculty of Arts and Science, Yildiz Technical University, Istanbul, Turkey
| | - Melike Başak Findik
- Department of Chemistry, Faculty of Arts and Science, Yildiz Technical University, Istanbul, Turkey
| | - Ömer Erdoğan
- Department of Biochemistry, School of Medicine, Gaziantep Islamic Science and Technology University, Gaziantep, Turkey
| | - Erman Oryaşin
- Department of Medical Laboratory Techniques, Aydın Vocational School of Health Services, Aydın Adnan Menderes University, Aydın, Turkey
| | - Özge Çevik
- Department of Biochemistry, School of Medicine, Aydın Adnan Menderes University, Aydın, Turkey
| |
Collapse
|
23
|
Maher AM, Elsanosy GA, Ghareeb DA, Elblehi SS, Saleh SR. 10-Hydroxy Decanoic Acid and Zinc Oxide Nanoparticles Retrieve Nrf2/HO-1 and Caspase-3/Bax/Bcl-2 Signaling in Lead-Induced Testicular Toxicity. Biol Trace Elem Res 2024:10.1007/s12011-024-04374-3. [PMID: 39349706 DOI: 10.1007/s12011-024-04374-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 09/10/2024] [Indexed: 12/14/2024]
Abstract
There has been a significant increase in human exposure to heavy metals (HMs) over the course of the previous century, primarily due to the extensive industrial processes. Male infertility is a prominent complication associated with lead exposure, wherein lead has the potential to accumulate within the testes, resulting in oxidative stress and inflammation. In addition, 10-hydroxydecanoic acid (10-HDA) is a component found in the secretions of worker bees and possesses the capacity to mitigate oxidative stress and prevent inflammation. Due to their advantageous properties, zinc oxide nanoparticles (ZnO-NPs) possess a wide range of applications in the field of biomedicine. This study aimed to assess the therapeutic effect of 10-HDA and ZnO-NPs on testicular toxicity in rats induced by lead acetate (PbAc). PbAc was administered orally for a period of 3 months. Following that, 10-HDA and/or ZnO-NPs were administrated for 1 month. PbAc deformed seminal analysis, decreased seminal fructose and sex hormonal levels, and resulted in the development of histopathological complications. Additionally, PbAc increased MDA and decreased Nrf2 and HO-1 expression, confirmed by the declined antioxidant defense system. Furthermore, an increase in testicular inflammatory markers and the Bax/Bcl-2 ratio was observed subsequent to the administration of PbAc. The administration of 10-HDA and ZnO-NPs demonstrated significant efficacy in the restoration of semen quality, pituitary/gonadal hormones, antioxidants, and testicular histoarchitecture. Moreover, 10-HDA and ZnO-NPs decreased testicular inflammatory markers and apoptotic proteins (caspase-3 and Bax expression levels). In conclusion, combining 10-HDA and ZnO-NPs demonstrated synergistic potential in treating PbAc-induced testicular toxicity, thereby presenting a promising approach in nanomedicine and natural drugs.
Collapse
Affiliation(s)
- Adham M Maher
- Bio-Screening and Preclinical Trial Lab, Department of Biochemistry, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt.
| | - Ghidaa A Elsanosy
- Bio-Screening and Preclinical Trial Lab, Department of Biochemistry, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt
| | - Doaa A Ghareeb
- Bio-Screening and Preclinical Trial Lab, Department of Biochemistry, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt
- Pharmaceutical and Fermentation Industries Development Centre (PFIDC), The City of Scientific Research and Technological Applications (SRTA-City), Borg Al‑Arab, Alexandria, Egypt
- Research Projects Unit, Pharos University, Alexandria, Egypt
| | - Samar S Elblehi
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Alexandria, 21944, Egypt
| | - Samar R Saleh
- Bio-Screening and Preclinical Trial Lab, Department of Biochemistry, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt.
| |
Collapse
|
24
|
Patel KD, Keskin-Erdogan Z, Sawadkar P, Nik Sharifulden NSA, Shannon MR, Patel M, Silva LB, Patel R, Chau DYS, Knowles JC, Perriman AW, Kim HW. Oxidative stress modulating nanomaterials and their biochemical roles in nanomedicine. NANOSCALE HORIZONS 2024; 9:1630-1682. [PMID: 39018043 DOI: 10.1039/d4nh00171k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Many pathological conditions are predominantly associated with oxidative stress, arising from reactive oxygen species (ROS); therefore, the modulation of redox activities has been a key strategy to restore normal tissue functions. Current approaches involve establishing a favorable cellular redox environment through the administration of therapeutic drugs and redox-active nanomaterials (RANs). In particular, RANs not only provide a stable and reliable means of therapeutic delivery but also possess the capacity to finely tune various interconnected components, including radicals, enzymes, proteins, transcription factors, and metabolites. Here, we discuss the roles that engineered RANs play in a spectrum of pathological conditions, such as cancer, neurodegenerative diseases, infections, and inflammation. We visualize the dual functions of RANs as both generator and scavenger of ROS, emphasizing their profound impact on diverse cellular functions. The focus of this review is solely on inorganic redox-active nanomaterials (inorganic RANs). Additionally, we deliberate on the challenges associated with current RANs-based approaches and propose potential research directions for their future clinical translation.
Collapse
Affiliation(s)
- Kapil D Patel
- John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601, Australia.
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
- School of Cellular and Molecular Medicine, University of Bristol, BS8 1TD, UK
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea.
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea
| | - Zalike Keskin-Erdogan
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, University College London, Royal Free Hospital, Rowland Hill Street, NW3 2PF, London, UK
- Department of Chemical Engineering, Imperial College London, Exhibition Rd, South Kensington, SW7 2BX, London, UK
| | - Prasad Sawadkar
- Division of Surgery and Interventional Science, UCL, London, UK
- The Griffin Institute, Northwick Park Institute for Medical Research, Northwick Park and St Mark's Hospitals, London, HA1 3UJ, UK
| | - Nik Syahirah Aliaa Nik Sharifulden
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, University College London, Royal Free Hospital, Rowland Hill Street, NW3 2PF, London, UK
| | - Mark Robert Shannon
- John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601, Australia.
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
- School of Cellular and Molecular Medicine, University of Bristol, BS8 1TD, UK
| | - Madhumita Patel
- Department of Chemistry and Nanoscience, Ewha Women University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| | - Lady Barrios Silva
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, University College London, Royal Free Hospital, Rowland Hill Street, NW3 2PF, London, UK
| | - Rajkumar Patel
- Energy & Environment Sciences and Engineering (EESE), Integrated Sciences and Engineering Division (ISED), Underwood International College, Yonsei University, 85 Songdongwahak-ro, Yeonsungu, Incheon 21938, Republic of Korea
| | - David Y S Chau
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, University College London, Royal Free Hospital, Rowland Hill Street, NW3 2PF, London, UK
| | - Jonathan C Knowles
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, University College London, Royal Free Hospital, Rowland Hill Street, NW3 2PF, London, UK
| | - Adam W Perriman
- John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601, Australia.
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
- School of Cellular and Molecular Medicine, University of Bristol, BS8 1TD, UK
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea.
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea
- Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan 31116, Republic of Korea
- Cell & Matter Institute, Dankook University, Cheonan 31116, Republic of Korea
| |
Collapse
|
25
|
Chai X, Lou Y, Nie L, Shavandi A, Yunusov KE, Sun Y, Jiang G. A three-dimensional printable conductive composite dressing for accelerating wound healing under electrical stimulation. Colloids Surf B Biointerfaces 2024; 245:114264. [PMID: 39332056 DOI: 10.1016/j.colsurfb.2024.114264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/10/2024] [Accepted: 09/21/2024] [Indexed: 09/29/2024]
Abstract
In this study, a bioink based on poly(vinyl alcohol) (PVA) and κ-carrageenan network was prepared using conductive polymer (PEDOT:PSS) as conducting medium, and (+)-Catechin-loaded mesoporous ZnO (CmZnO) as antibacterial and anti-inflammatory active medium. 3D conductive composite dressing was further fabricated by an extrusion 3D printing technology. Our results showed that the as-obtained composite dressing had suitable conductivity, efficient blood clotting capacity, and good adhesiveness. It also showed that the as-fabricated conductive composite had 92.9 % and 95.6 % antibacterial activity against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli), respectively. Furthermore, the conductive dressing with an optimal electrical stimulation (ES) parameter showed in vivo blood clotting capacity, and it enhanced in vivo wound healing process in a full-thickness skin defect model than commercial dressings by upregulating the gene expression of growth factors including CD-31 and downregulating inflammatory factor expression of IL-6.
Collapse
Affiliation(s)
- Xinxiang Chai
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China; International Scientific and Technological Cooperation Base of Intelligent Biomaterials and Functional Fibers of Zhejiang Province, Hangzhou 310018, China
| | - Yanzhen Lou
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China; International Scientific and Technological Cooperation Base of Intelligent Biomaterials and Functional Fibers of Zhejiang Province, Hangzhou 310018, China
| | - Lei Nie
- College of Life Sciences, Xinyang Normal University, Xinyang 464000, China
| | - Amin Shavandi
- Université libre de Bruxelles (ULB), École polytechnique de Bruxelles, 3BIO, BioMatter, Avenue F.D. Roosevelt, 50 - CP 165/61, Brussels 1050, Belgium
| | - Khaydar E Yunusov
- Institute of Polymer Chemistry and Physics, Uzbekistan Academy of Sciences, Tashkent 100128, Uzbekistan
| | - Yanfang Sun
- College of Life Science and Medical Medicine, Zhejiang Sci-Tech University, 310018, China
| | - Guohua Jiang
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China; International Scientific and Technological Cooperation Base of Intelligent Biomaterials and Functional Fibers of Zhejiang Province, Hangzhou 310018, China.
| |
Collapse
|
26
|
Yao H, Fan Y, Emre EST, Li N, Ge M, Wang J, Wei J. Alginate-modified ZnO anti-planktonic and anti-biofilm nanoparticles for infected wound healing. Int J Biol Macromol 2024; 280:135739. [PMID: 39299433 DOI: 10.1016/j.ijbiomac.2024.135739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 09/13/2024] [Accepted: 09/15/2024] [Indexed: 09/22/2024]
Abstract
Bacterial infections is one of the main factors delaying the wound healing, which has become a serious challenge for healthcare systems. Zinc oxide nanoparticles (ZnO NPs), which show broad-spectrum and excellent antibacterial activity, tend to aggregate easily and therefore hardly penetrate into bacterial biofilms, showing limited anti-biofilm properties. Herein,alginate (ALG) modified ZnO NPs (ZnO@ALG) were prepared via the combination of mussel-inspired method and "thiol-Michael" click reaction, which showed excellent dispersion and biocompatibility. Besides, the interactions between ZnO@ALG and bacteria was much better than that of ZnO NPs, and makes the bacteria produced more reactive oxygen species (ROS) than bare ZnO NPs. The anti-planktonic activity of ZnO@ALG (250 μg/mL) could reach almost 100 %, which was 2-3 times higher than that of bare ZnO NPs. In addition, the ZnO@ALG could significantly accelerate the healing of S. aureus infected wounds, and the wound healing rate of ZnO@ALG group was about 79.2 %, which was significantly higher than that of ZnO NPs (~65.8 %). This study demonstrates that the ZnO@ALG holds a great potential in the anti-planktonic and anti-biofilm fields, and the ALG-modification method can be an effective strategy to enhance the antibacterial properties of nanomaterials.
Collapse
Affiliation(s)
- Haiyan Yao
- School of Stomatology, Jiangxi Medical College, Nanchang University, Nanchang 330006, China; School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China; Jiangxi Province Key Laboratory of Oral Disease, Nanchang 330006, China
| | - Yuan Fan
- School of Stomatology, Jiangxi Medical College, Nanchang University, Nanchang 330006, China; Jiangxi Province Clinical Research Center for Oral Disease, Nanchang 330006, China
| | | | - Na Li
- Department of Stomatology, The First Affiliate Hospital of Nanchang University, Nanchang 330006, China
| | - Min Ge
- School of Stomatology, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Jiaolong Wang
- School of Stomatology, Jiangxi Medical College, Nanchang University, Nanchang 330006, China; Jiangxi Province Key Laboratory of Oral Disease, Nanchang 330006, China; Jiangxi Province Clinical Research Center for Oral Disease, Nanchang 330006, China.
| | - Junchao Wei
- School of Stomatology, Jiangxi Medical College, Nanchang University, Nanchang 330006, China; School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China; Jiangxi Province Key Laboratory of Oral Disease, Nanchang 330006, China; Jiangxi Province Clinical Research Center for Oral Disease, Nanchang 330006, China.
| |
Collapse
|
27
|
Kim JH, Dareowolabi BO, Thiruvengadam R, Moon EY. Application of Nanotechnology and Phytochemicals in Anticancer Therapy. Pharmaceutics 2024; 16:1169. [PMID: 39339205 PMCID: PMC11435124 DOI: 10.3390/pharmaceutics16091169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/22/2024] [Accepted: 08/31/2024] [Indexed: 09/30/2024] Open
Abstract
Cancer is well recognized as a leading cause of mortality. Although surgery tends to be the primary treatment option for many solid cancers, cancer surgery is still a risk factor for metastatic diseases and recurrence. For this reason, a variety of medications has been adopted for the postsurgical care of patients with cancer. However, conventional medicines have shown major challenges such as drug resistance, a high level of drug toxicity, and different drug responses, due to tumor heterogeneity. Nanotechnology-based therapeutic formulations could effectively overcome the challenges faced by conventional treatment methods. In particular, the combined use of nanomedicine with natural phytochemicals can enhance tumor targeting and increase the efficacy of anticancer agents with better solubility and bioavailability and reduced side effects. However, there is limited evidence in relation to the application of phytochemicals in cancer treatment, particularly focusing on nanotechnology. Therefore, in this review, first, we introduce the drug carriers used in advanced nanotechnology and their strengths and limitations. Second, we provide an update on well-studied nanotechnology-based anticancer therapies related to the carcinogenesis process, including signaling pathways related to transforming growth factor-β (TGF-β), mitogen-activated protein kinase (MAPK), phosphatidylinositol 3 kinase (PI3K), Wnt, poly(ADP-ribose) polymerase (PARP), Notch, and Hedgehog (HH). Third, we introduce approved nanomedicines currently available for anticancer therapy. Fourth, we discuss the potential roles of natural phytochemicals as anticancer drugs. Fifth, we also discuss the synergistic effect of nanocarriers and phytochemicals in anticancer therapy.
Collapse
Affiliation(s)
- Jin Hee Kim
- Department of Integrative Bioscience & Biotechnology, Sejong University, Seoul 05006, Republic of Korea; (B.O.D.); (E.-Y.M.)
| | - Boluwatife Olamide Dareowolabi
- Department of Integrative Bioscience & Biotechnology, Sejong University, Seoul 05006, Republic of Korea; (B.O.D.); (E.-Y.M.)
| | - Rekha Thiruvengadam
- Center for Global Health Research, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha Medical College, Saveetha University, Chennai 600077, India;
| | - Eun-Yi Moon
- Department of Integrative Bioscience & Biotechnology, Sejong University, Seoul 05006, Republic of Korea; (B.O.D.); (E.-Y.M.)
| |
Collapse
|
28
|
Samad A, Shahid S, Mansoor S, Afzal S, Javed M, Zidan A, Shoaib A, Jaber F, Iqbal S, Saad M, Mahmood S, Awwad NS, Ibrahium HA. Fabrication of novel vildagliptin loaded ZnO nanoparticles for anti diabetic activity. Sci Rep 2024; 14:17893. [PMID: 39095369 PMCID: PMC11297240 DOI: 10.1038/s41598-024-67420-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 07/11/2024] [Indexed: 08/04/2024] Open
Abstract
Diabetes mellitus (DM) is a rapidly prevailing disease throughout the world that poses boundless risk factors linked to several health problems. Vildagliptin is the standard dipeptidyl peptidase-4 (DPP-4) inhibitor type of medication that is used for the treatment of diabetes anti-hyperglycemic agent (anti-diabetic drug). The current study aimed to synthesize vildagliptin-loaded ZnO NPs for enhanced efficacy in terms of increased retention time minimizing side effects and increased hypoglycemic effects. Herein, Zinc Oxide (ZnO) nanoparticles (NPs) were constructed by precipitation method then the drug vildagliptin was loaded and drug loading efficiency was estimated by the HPLC method. X-ray diffraction analysis (XRD), UV-vis spectroscopy, FT-IR, scanning electron microscope (SEM), and EDX analysis were performed for the characterization of synthesized vildagliptin-loaded ZnO NPs. The UV-visible spectrum shows a distinct peak at 363 nm which confirms the creation of ZnO NPs and SEM showed mono-dispersed sphere-shaped NPs. EDX analysis shows the presence of desired elements along with the elemental composition. The physio-sorption studies, which used adsorption isotherms to assess adsorption capabilities, found that the Freundlich isotherm model explains the data very well and fits best. The maximum adsorption efficiency of 58.83% was obtained. Further, In vitro, anti-diabetic activity was evaluated by determining the α-amylase and DPP IV inhibition activity of the product formed. The formulation gave maximum inhibition of 82.06% and 94.73% of α-amylase and DPP IV respectively. While at 1000 µg/ml concentration with IC50 values of 24.11 μg/per ml and 42.94 μg/ml. The inhibition of α-amylase can be ascribed to the interactive effect of ZnO NPs and vildagliptin.
Collapse
Affiliation(s)
- Abdul Samad
- Department of Chemistry, School of Science, University of Management and Technology, Lahore, 54770, Pakistan
| | - Sammia Shahid
- Department of Chemistry, School of Science, University of Management and Technology, Lahore, 54770, Pakistan
| | - Sana Mansoor
- Department of Chemistry, School of Science, University of Management and Technology, Lahore, 54770, Pakistan
| | - Sehrish Afzal
- Department of Chemistry, School of Science, University of Management and Technology, Lahore, 54770, Pakistan
| | - Mohsin Javed
- Department of Chemistry, School of Science, University of Management and Technology, Lahore, 54770, Pakistan
| | - Ammar Zidan
- Biomedical Engineering Department, College of Engineering and Technologies, Al-Mustaqbal University, Babylon, 51001, Iraq
| | - Abdullah Shoaib
- Department of Chemistry, School of Science, University of Management and Technology, Lahore, 54770, Pakistan
| | - Fadi Jaber
- Department of Biomedical Engineering, Ajman University, Ajman, UAE.
- Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, UAE.
| | - Shahid Iqbal
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, Ningbo, 315100, China.
| | - Muhammad Saad
- Centre for Organic and Nanohybrid Electronics, Silesian University of Technology, Konarskiego 22B, 44-100, Gliwice, Poland.
- Joint Doctoral School, Silesian University of Technology, Akademicka 2A, 44-100, Gliwice, Poland.
| | - Sajid Mahmood
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, Ningbo, 315100, China.
- Functional Materials Group, Gulf University for Science and Technology, 32093, Mishref, Kuwait.
| | - Nasser S Awwad
- Chemistry Department, Faculty of Science, King Khalid University, PO Box 9004, 61413, Abha, Saudi Arabia
| | - Hala A Ibrahium
- Biology Department, Faculty of Science, King Khalid University, PO Box 9004, 61413, Abha, Saudi Arabia
| |
Collapse
|
29
|
Dar MR, Khan AK, Inam M, Hano C, Anjum S. Differential Impact of Zinc Salt Precursors on Physiognomies, Anticancerous, and Antibacterial Activities of Zinc Oxide Nanoparticles. Appl Biochem Biotechnol 2024; 196:4874-4899. [PMID: 37979085 DOI: 10.1007/s12010-023-04781-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2023] [Indexed: 11/19/2023]
Abstract
Zinc oxide nanoparticles (ZnONPs) are enormously popular semi-conductor metal oxides with diverse applications in every field of science. Many physical and chemical methods applied for the synthesis of ZnONPs are being rejected due to their environmental hazards. Therefore, ZnONPs synthesized from plant extracts are steered as eco-friendly showing more biocompatibility and biodegradability. Additionally, various synthesis conditions such as the type of precursor salt also play a role in influencing the physicochemical and biological properties of ZnONPs. In this study, green synthesis of ZnONPs from Acacia nilotica was carried out using zinc acetate (ZA-AN-ZNPs), zinc nitrate (ZN-AN-ZNPs), and zinc sulfate (ZS-AN-ZNPs) precursor salts. Surprisingly, characterization of ZnONPs using UV-visible spectroscopy, TEM, XRD, and EDX revealed the important role precursor salts played in influencing the size and shape of ZnONPs, i.e., 20-23 nm spherical (ZA-AN-ZNPs), 55-59 nm triangular (ZN-AN-ZNPs), and 94-97 nm nano-flowers (ZS-AN-ZNPs). FTIR analysis showed the involvement of alkaloids, alcohols, carboxylic acid, and phenolic compounds present in Acacia nilotica extract during the synthesis process. Since different precursor salts showed different morphology of ZnONPs, their biological activities were also variable. ZN-AN-ZNPs showed the highest cytotoxicity towards HepG2 cells with the lowest cell viability (28.92 ± 0.99%), highest ROS/RNS production (3425.3 ± 184.58 relative DHR123 fluorescence), and loss of mitochondrial membrane potential (1645.2 ± 32.12 relative fluorescence unit) as well as induced significant caspase-3 gene expression. In addition to this, studying the zone of inhibitions and minimum bactericidal and inhibitory concentrations of ZnONPs showed their exceptional potential as antibacterial agents. At MIC as low as 8 µg/mL, ZA-AN-ZNPs and ZN-AN-ZNPs exhibited significant bactericidal activities against human pathogens Klebsiella pneumoniae and Listeria monocytogenes, respectively. Furthermore, alkaline phosphatase, DNA/RNA leakage, and phosphate ion leakage studies revealed that a damage to the bacterial cell membrane and cell wall is involved in mediating the antibacterial effects of ZnONPs.
Collapse
Affiliation(s)
- Momina Riaz Dar
- Department of Biotechnology, Kinnaird College for Women, 93-Jail Road, Lahore, 54000, Pakistan
| | - Amna Komal Khan
- Department of Biotechnology, Kinnaird College for Women, 93-Jail Road, Lahore, 54000, Pakistan
| | - Mubashra Inam
- Department of Biotechnology, Kinnaird College for Women, 93-Jail Road, Lahore, 54000, Pakistan
| | - Christophe Hano
- Laboratoire de Biologie Des Ligneux Et Des Grandes Cultures, INRAE USC1328, University of Orleans, 45067CEDEX 2, Orleans, France
| | - Sumaira Anjum
- Department of Biotechnology, Kinnaird College for Women, 93-Jail Road, Lahore, 54000, Pakistan.
| |
Collapse
|
30
|
Khalifa HO, Oreiby A, Abdelhamid MAA, Ki MR, Pack SP. Biomimetic Antifungal Materials: Countering the Challenge of Multidrug-Resistant Fungi. Biomimetics (Basel) 2024; 9:425. [PMID: 39056866 PMCID: PMC11274442 DOI: 10.3390/biomimetics9070425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/05/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
In light of rising public health threats like antifungal and antimicrobial resistance, alongside the slowdown in new antimicrobial development, biomimetics have shown promise as therapeutic agents. Multidrug-resistant fungi pose significant challenges as they quickly develop resistance, making traditional antifungals less effective. Developing new antifungals is also complicated by the need to target eukaryotic cells without harming the host. This review examines biomimetic antifungal materials that mimic natural biological mechanisms for targeted and efficient action. It covers a range of agents, including antifungal peptides, alginate-based antifungals, chitosan derivatives, nanoparticles, plant-derived polyphenols, and probiotic bacteria. These agents work through mechanisms such as disrupting cell membranes, generating reactive oxygen species, and inhibiting essential fungal processes. Despite their potential, challenges remain in terms of ensuring biocompatibility, optimizing delivery, and overcoming potential resistance. Production scalability and economic viability are also concerns. Future research should enhance the stability and efficacy of these materials, integrate multifunctional approaches, and develop sophisticated delivery systems. Interdisciplinary efforts are needed to understand interactions between these materials, fungal cells, and the host environment. Long-term health and environmental impacts, fungal resistance mechanisms, and standardized testing protocols require further study. In conclusion, while biomimetic antifungal materials represent a revolutionary approach to combating multidrug-resistant fungi, extensive research and development are needed to fully realize their potential.
Collapse
Affiliation(s)
- Hazim O. Khalifa
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain P.O. Box 1555, United Arab Emirates
- Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Atef Oreiby
- Department of Animal Medicine, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt;
| | - Mohamed A. A. Abdelhamid
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-ro 2511, Sejong 30019, Republic of Korea; (M.A.A.A.); (M.-R.K.)
- Department of Botany and Microbiology, Faculty of Science, Minia University, Minia 61519, Egypt
| | - Mi-Ran Ki
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-ro 2511, Sejong 30019, Republic of Korea; (M.A.A.A.); (M.-R.K.)
- Institute of Industrial Technology, Korea University, Sejong-ro 2511, Sejong 30019, Republic of Korea
| | - Seung Pil Pack
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-ro 2511, Sejong 30019, Republic of Korea; (M.A.A.A.); (M.-R.K.)
| |
Collapse
|
31
|
Rahimkhoei V, Alzaidy AH, Abed MJ, Rashki S, Salavati-Niasari M. Advances in inorganic nanoparticles-based drug delivery in targeted breast cancer theranostics. Adv Colloid Interface Sci 2024; 329:103204. [PMID: 38797070 DOI: 10.1016/j.cis.2024.103204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 04/10/2024] [Accepted: 05/21/2024] [Indexed: 05/29/2024]
Abstract
Theranostic nanoparticles (NPs) have the potential to dramatically improve cancer management by providing personalized medicine. Inorganic NPs have attracted widespread interest from academic and industrial communities because of their unique physicochemical properties (including magnetic, thermal, and catalytic performance) and excellent functions with functional surface modifications or component dopants (e.g., imaging and controlled release of drugs). To date, only a restricted number of inorganic NPs are deciphered into clinical practice. This review highlights the recent advances of inorganic NPs in breast cancer therapy. We believe that this review can provides various approaches for investigating and developing inorganic NPs as promising compounds in the future prospects of applications in breast cancer treatment and material science.
Collapse
Affiliation(s)
- Vahid Rahimkhoei
- Institute of Nano Science and Nano Technology, University of Kashan, P.O. Box 87317-51167, Kashan, Islamic Republic of Iran
| | - Asaad H Alzaidy
- Department of Laboratory and Clinical Science, College of Pharmacy, University of Al-Qadisiyah, Diwaniyah, Iraq
| | - May Jaleel Abed
- Department of Chemistry, College of Education, University of Al-Qadisiyah, Diwaniyah, Iraq
| | - Somaye Rashki
- Department of Microbiology, Iranshahr University of Medical Sciences, Iranshahr, Islamic Republic of Iran
| | - Masoud Salavati-Niasari
- Institute of Nano Science and Nano Technology, University of Kashan, P.O. Box 87317-51167, Kashan, Islamic Republic of Iran.
| |
Collapse
|
32
|
Pei J, Natarajan PM, Umapathy VR, Swamikannu B, Sivaraman NM, Krishnasamy L, Palanisamy CP. Advancements in the Synthesis and Functionalization of Zinc Oxide-Based Nanomaterials for Enhanced Oral Cancer Therapy. Molecules 2024; 29:2706. [PMID: 38893579 PMCID: PMC11173400 DOI: 10.3390/molecules29112706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 05/25/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
The fabrication of zinc oxide-based nanomaterials (including natural and synthetic polymers like sulfated polysaccharide, chitosan, and polymethyl methacrylate) has potential to improve oral cancer treatment strategies. This comprehensive review explores the diverse synthesis methods employed to fabricate zinc oxide nanomaterials tailored for oral cancer applications. Several synthesis processes, particularly sol-gel, hydrothermal, and chemical vapor deposition approaches, are thoroughly studied, highlighting their advantages and limitations. The review also examines how synthesis parameters, such as precursor selection, the reaction temperature, and growth conditions, influence both the physicochemical attributes and biological efficacy of the resulting nanomaterials. Furthermore, recent advancements in surface functionalization and modification strategies targeted at improving the targeting specificity and pharmaceutical effectiveness of zinc oxide-based nanomaterials in oral cancer therapy are elucidated. Additionally, the review provides insights into the existing issues and prospective views in the field, emphasizing the need for further research to optimize synthesis methodologies and elucidate the mechanisms underlying the efficacy of zinc oxide-based nanoparticles in oral cancer therapy.
Collapse
Affiliation(s)
- Jinjin Pei
- Qinba State Key Laboratory of Biological Resources and Ecological Environment, 2011 QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C., Shaanxi Province Key Laboratory of Bio-Resources, College of Bioscience and Bioengineering, Shaanxi University of Technology, Hanzhong 723001, China;
| | - Prabhu Manickam Natarajan
- Department of Clinical Sciences, d Centre of Medical and Bio-Allied Health Sciences and Research, College of Dentistry, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| | - Vidhya Rekha Umapathy
- Department of Public Health Dentistry, Thai Moogambigai Dental College and Hospital, Chennai 600 107, Tamil Nadu, India;
| | - Bhuminathan Swamikannu
- Department of Prosthodontics, Sree Balaji Dental College and Hospital, Pallikaranai, Chennai 600 100, Tamil Nadu, India;
| | - Nandini Manickam Sivaraman
- Department of Microbiology, Sree Balaji Medical College and Hospital, Bharath University, Chennai 600 100, Tamil Nadu, India; (N.M.S.); (L.K.)
| | - Lakshmi Krishnasamy
- Department of Microbiology, Sree Balaji Medical College and Hospital, Bharath University, Chennai 600 100, Tamil Nadu, India; (N.M.S.); (L.K.)
| | - Chella Perumal Palanisamy
- Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
33
|
Mosleh AM, El-Sherif AA, El-Sayed AA, Fahmy HM. Characterization and Cytotoxicity Assessment of Synthesized Palladium (II) Complex-Encapsulated Zinc Oxide Nanoparticles for Cancer Treatment. Cell Biochem Biophys 2024; 82:1225-1234. [PMID: 38744782 DOI: 10.1007/s12013-024-01273-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/08/2024] [Indexed: 05/16/2024]
Abstract
The treatment of cancer often leads to a range of adverse effects. Encapsulating drugs can mitigate these effects and enhance drug efficacy by enabling a controlled release at the site of interest. This study details the successful synthesis of zinc oxide nanoparticles (ZnONPs) through the precipitation of Zn(NO3)2·6H2O with KOH. A Pd(II) complex drug was synthesized from a Schiff base ligand derived from 2-hydroxybenzohydrazide and (E)-1-(2-(p-tolyl)hydrazono)propan-2-one using potassium tetrachloropalladate(II). This complex was subsequently incorporated into ZnONPs. Characterization of the resulting compounds was performed using Transmission Electron Microscopy (TEM), Dynamic Light Scattering (DLS), Zeta Potential, Fourier Transform Infrared (FTIR) Spectroscopy, and UV-visible spectroscopy. TEM imaging revealed particle sizes of 160.69 ± 4.74 nm for ZnONPs and 185.28 ± 2.3 nm for the Pd(II) complex-encapsulated ZnONPs. The Zeta potential values were 6.53 mV for ZnONPs and 7.36 mV for Pd(II) complex-encapsulated ZnONPs. UV-visible spectroscopy showed an absorption peak at 360 nm for ZnONPs, while the Pd(II) complex-encapsulated ZnONPs exhibited a peak at 410 nm. FTIR analysis indicated the presence of the Pd(II) complex within the ZnONPs, as evidenced by a consistent Zn-O vibrational band at 832 cm-1 and a shift in another peak from 460 to 413 cm-1. Additionally, the detection of a C = N stretching vibration at 1548 cm-1 and a carbonyl stretch at 1626 cm-1 was observed. The Encapsulation Efficiency (E.E.) of the Pd(II) complex was 97.2%. A drug release experiment conducted at pH 7 showed a steady-state release pattern after 16 h, with a cumulative release of 44.3%. The cytotoxic effects of the Pd(II) complex and its encapsulated form in ZnONPs on the MCF-7 cell line were assessed via MTT test. The Pd(II) complex encapsulated within ZnONPs exhibited decreased toxicity relative to the unencapsulated drug, as evidenced by a higher IC50 value of 418.5 μg/ml. This suggests that the encapsulation facilitates a sustained release, which allows for targeted accumulation within cells. The elevated IC50 value indicates that the drug delivery system may be engineered to modulate the release of the drug in a more controlled manner, potentially resulting in a prolonged release profile rather than an immediate therapeutic impact.
Collapse
Affiliation(s)
- Ayaat M Mosleh
- Biophysics Department, Faculty of Science, Cairo University, Cairo, Egypt
| | - Ahmed A El-Sherif
- Chemistry Department, Faculty of Science, Cairo University, Cairo, Egypt
| | - Anwar A El-Sayed
- Biophysics Department, Faculty of Science, Cairo University, Cairo, Egypt
| | - Heba M Fahmy
- Biophysics Department, Faculty of Science, Cairo University, Cairo, Egypt.
| |
Collapse
|
34
|
Bellala S, Viswanathan K, Guntakanti U, Kowthalam A, Han SS, Kummara MR, Obireddy SR, Lai WF. Composite Microgels Loaded with Doxorubicin-Conjugated Amine-Functionalized Zinc Ferrite Nanoparticles for Stimuli-Responsive Sustained Drug Release. Int J Nanomedicine 2024; 19:5059-5070. [PMID: 38836007 PMCID: PMC11149627 DOI: 10.2147/ijn.s448594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 03/08/2024] [Indexed: 06/06/2024] Open
Abstract
Purpose The purpose of this study is to address the need for efficient drug delivery with high drug encapsulation efficiency and sustained drug release. We aim to create nanoparticle-loaded microgels for potential applications in treatment development. Methods We adopted the process of ionic gelation to generate microgels from sodium alginate and carboxymethyl cellulose. These microgels were loaded with doxorubicin-conjugated amine-functionalized zinc ferrite nanoparticles (AZnFe-NPs). The systems were characterized using various techniques. Toxicity was evaluated in MCF-7 cells. In vitro release studies were conducted at different pH levels at 37 oC, with the drug release kinetics being analyzed using various models. Results The drug encapsulation efficiency of the created carriers was as high as 70%. The nanoparticle-loaded microgels exhibited pH-responsive behavior and sustained drug release. Drug release from them was mediated via a non-Fickian type of diffusion. Conclusion Given their high drug encapsulation efficiency, sustained drug release and pH-responsiveness, our nanoparticle-loaded microgels show promise as smart carriers for future treatment applications. Further development and research can significantly benefit the field of drug delivery and treatment development.
Collapse
Affiliation(s)
- Shirisha Bellala
- Department of Chemistry, Sri Krishnadevaraya University, Anantapur, Andhra Pradesh, 515003, India
| | - Karthika Viswanathan
- Department of Nanoscience and Technology, Alagappa University, Karaikudi, Tamil Nadu, 630 003, India
| | - Ujwala Guntakanti
- Department of Chemistry, G. Pulla Reddy Engineering College, Kurnool, Andhra Pradesh, 518 007, India
| | - Anitha Kowthalam
- Department of Chemistry, Sri Krishnadevaraya University, Anantapur, Andhra Pradesh, 515003, India
| | - Sung Soo Han
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | | | - Sreekanth Reddy Obireddy
- Department of Chemistry, Sri Krishnadevaraya University, Anantapur, Andhra Pradesh, 515003, India
- Department of Urology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Zhejiang, 310014, China
| | - Wing-Fu Lai
- Department of Urology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Zhejiang, 310014, China
- School of Food Science and Nutrition, University of Leeds, Leeds, LS2 9JT, UK
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| |
Collapse
|
35
|
Narenkumar J, Kannabiran A, Ramalingam S, Parthipan P, Das B, AlSalhi MS, Devanesan S, Kamala-Kannan S, Thanigaivel S, Rajasekar A. Photo-catalytic dye degradation potentials of Ag-Pd bimetallic nanoparticles synthesized from Vitex negundo. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:200. [PMID: 38696110 DOI: 10.1007/s10653-024-01978-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 04/02/2024] [Indexed: 06/17/2024]
Abstract
Plant extracts are a great alternative to synthesizing nanoparticles of different metals and metal oxides. This green synthesis method has opened up numerous possibilities in various scientific domains. In present study, Leaf extract from Vitex negundo is a non-deciduous, long-lasting shrub from the Verbenaceae family is used as capping and reducing agents for the synthesis of silver and palladium nanoparticles. The characterization study UV-vis spectrophotometer analysis showed absorbance value around 320 nm which confirming that Ag-Pd nanoparticles have been successfully obtained. Further, SEM is used to investigate the morphology of Ag-Pd NPs, which revealing their spherical and rod-like configuration, aggregation, and the size of the particles are obtained between 50 and 100 nm. The successful synthesis of Ag-Pd NPs was further confirmed by the EDAX chart, which displayed the peak of Ag and Pd at bending energies between 0.5 and 1.5 keV. According to the quantitative study, Ag and Pd ions found about 5.24 and 13.28%, respectively. In addition, surface studies with TEM confirming that synthesized Ag-Pd NPs are predominates with spheres structure morphologies, with sizes averaging 11.20 nm and ranging from 10 to 20 nm. Further, Ag-Pd nanoparticles was applied as potential photocatalyst materials to degrade methylene blue dye and found about 85% of the degradation efficiency within 150 min of the sunlight exposure thus could be used as catalyst to removal of hazardous organic dye molecules.
Collapse
Affiliation(s)
- Jayaraman Narenkumar
- Department of Environmental and Water Resources Engineering, School of Civil Engineering (SCE), Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
| | - Ajitha Kannabiran
- Centre for Materials Engineering and Regenerative Medicine, Bharath Institute of Higher Education and Research, Chennai, India
| | - Shenbhagaraman Ramalingam
- Centre for Materials Engineering and Regenerative Medicine, Bharath Institute of Higher Education and Research, Chennai, India
| | - Punniyakotti Parthipan
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, Tamil Nadu, 603 203, India.
| | - Bhaskar Das
- Department of Environmental and Water Resources Engineering, School of Civil Engineering (SCE), Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Mohamad S AlSalhi
- Department of Physics and Astronomy, College of Science, King Saud University, P. O. Box 2455, 11451, Riyadh, Saudi Arabia
| | - Sandhanasamy Devanesan
- Department of Physics and Astronomy, College of Science, King Saud University, P. O. Box 2455, 11451, Riyadh, Saudi Arabia
| | - Seralathan Kamala-Kannan
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, 54596, South Korea
| | - Sundaram Thanigaivel
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, Tamil Nadu, 603 203, India
| | - Aruliah Rajasekar
- Environmental Molecular Microbiology Research Laboratory, Department of Biotechnology, Thiruvalluvar University, Serkkadu, Vellore, Tamilnadu, 632115, India
- Adjunct Faculty, Department of Prothodontics, Saveetha Dental Collge and Hospital, Chennai, Tamil Nadu, 600 077, India
| |
Collapse
|
36
|
Hayat M, Rehman A, Khan FA, Anees M, Naz I, Qasim M, Kanwal N. Phytogenic-Mediated Zinc Oxide Nanoparticles Using the Seed Extract of Citrullus lanatus and Its Integrated Potency against Multidrug Resistant Bacteria. ACS OMEGA 2024; 9:16832-16841. [PMID: 38617622 PMCID: PMC11007856 DOI: 10.1021/acsomega.4c01554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/08/2024] [Accepted: 03/12/2024] [Indexed: 04/16/2024]
Abstract
In the current research study, zinc oxide nanoparticles (ZnO-NPs) were synthesized via a green synthesis technique using the seed extract of Citrullus lanatus. The study further intended to evaluate the potential synergistic effects of ZnO-NPs with antibiotics against multidrug resistant (MDR) bacteria. It was observed that C. lanatus seed extracts obtained by n-hexane and methanolic solvents revealed the presence of constituents, such as tannins, flavonoids, and terpenoids. Furthermore, the extract of n-hexane displayed the strongest antibacterial activity against Yersinia species (17 ± 1.2 mm) and Escherichia coli (17 ± 2.6 mm), while the methanolic extract showed the maximum antibacterial activity against E. coli (17 ± 0.8 mm). Additionally, the ZnO-NP synthesis was confirmed by ultraviolet-visible analysis with a characteristic absorption peak at 280 nm. The Fourier transform infrared spectroscopy analysis suggested the absorption peaks in the 500-3800 cm-1 range, which corresponds to various groups of tertiary alcohol, aldehyde, amine, ester, aromatic compounds, thiol, amine salt, and primary amine. The scanning electron microscopy spectra of ZnO-NPs demonstrated the presence of zero-dimensional spherical particles with well-dispersed character. Moreover, encapsulation with ZnO-NPs improved the antimicrobial activity of antibiotics against the panel of MDR bacteria, and the increases in the effectiveness of particular antibiotics against MDR bacteria were significant (P = 0.0005). In essence, the synthesized ZnO-NPs have the potential as drug carriers with powerful bactericidal properties that work against MDR bacterial strains. These outcomes are an indication of such significance in pharmaceutical science, giving possibilities for further research and development in this field.
Collapse
Affiliation(s)
- Munaza Hayat
- Department
of Microbiology and Biotechnology, Faculty of Life Sciences, Abasyn University Peshawar Campus, Peshawar, Khyber Pakhtunkhwa 25000,Pakistan
| | - Abdul Rehman
- Department
of Microbiology, Kohat University of Science
and Technology (KUST), Kohat, Khyber Pakhtunkhwa 26000, Pakistan
| | - Faheem Ahmed Khan
- Department
of Allied Health Sciences, Iqra National
University, Phase 2, Hayat Abad, Peshawar, Khyber Pakhtunkhwa 25000,Pakistan
| | - Muhammad Anees
- Department
of Microbiology, Kohat University of Science
and Technology (KUST), Kohat, Khyber Pakhtunkhwa 26000, Pakistan
| | - Iffat Naz
- Department
of Biology, College of Science, Qassim University, Almolaydah, Buraydah51452, Saudi Arabia
| | - Muhammad Qasim
- Department
of Microbiology, Kohat University of Science
and Technology (KUST), Kohat, Khyber Pakhtunkhwa 26000, Pakistan
| | - Nosheen Kanwal
- Department
of Chemistry, College of Sciences, Qassim
University, Almolaydah, Buraidah51452, Saudi Arabia
| |
Collapse
|
37
|
Krishna SBN, Jakmunee J, Mishra YK, Prakash J. ZnO based 0-3D diverse nano-architectures, films and coatings for biomedical applications. J Mater Chem B 2024; 12:2950-2984. [PMID: 38426529 DOI: 10.1039/d4tb00184b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Thin-film nano-architecting is a promising approach that controls the properties of nanoscale surfaces to increase their interdisciplinary applications in a variety of fields. In this context, zinc oxide (ZnO)-based various nano-architectures (0-3D) such as quantum dots, nanorods/nanotubes, nanothin films, tetrapods, nanoflowers, hollow structures, etc. have been extensively researched by the scientific community in the past decade. Owing to its unique surface charge transport properties, optoelectronic properties and reported biomedical applications, ZnO has been considered as one of the most important futuristic bio-nanomaterials. This review is focused on the design/synthesis and engineering of 0-3D nano-architecture ZnO-based thin films and coatings with tunable characteristics for multifunctional biomedical applications. Although ZnO has been extensively researched, ZnO thin films composed of 0-3D nanoarchitectures with promising thin film device bio-nanotechnology applications have rarely been reviewed. The current review focuses on important details about the technologies used to make ZnO-based thin films, as well as the customization of properties related to bioactivities, characterization, and device fabrication for modern biomedical uses that are relevant. It features biosensing, tissue engineering/wound healing, antibacterial, antiviral, and anticancer activity, as well as biomedical diagnosis and therapy with an emphasis on a better understanding of the mechanisms of action. Eventually, key issues, experimental parameters and factors, open challenges, etc. in thin film device fabrications and applications, and future prospects will be discussed, followed by a summary and conclusion.
Collapse
Affiliation(s)
- Suresh Babu Naidu Krishna
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban-4000, South Africa
- Department of Biomedical and Clinical Technology, Durban University of Technology, Durban-4000, South Africa
| | - Jaroon Jakmunee
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Yogendra Kumar Mishra
- Mads Clausen Institute, NanoSYD, University of Southern Denmark, Alsion 2, 6400, Sønderborg, Denmark
| | - Jai Prakash
- Department of Chemistry, National Institute of Technology Hamirpur, Hamirpur 177005, (H.P.), India.
| |
Collapse
|
38
|
Li Z, Yin X, Lyu C, Wang J, Liu K, Cui S, Ding S, Wang Y, Wang J, Guo D, Xu R. Zinc Oxide Nanoparticles Trigger Autophagy in the Human Multiple Myeloma Cell Line RPMI8226: an In Vitro Study. Biol Trace Elem Res 2024; 202:913-926. [PMID: 37432567 DOI: 10.1007/s12011-023-03737-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 06/18/2023] [Indexed: 07/12/2023]
Abstract
Multiple myeloma (MM) is a malignant clonal proliferative plasma cell tumor. Zinc oxide nanoparticles (ZnO NPs) are used for antibacterial and antitumor applications in the biomedical field. This study investigated the autophagy-induced effects of ZnO NPs on the MM cell line RPMI8226 and the underlying mechanism. After RPMI8226 cells were exposed to various concentrations of ZnO NPs, the cell survival rate, morphological changes, lactate dehydrogenase (LDH) levels, cell cycle arrest, and autophagic vacuoles were monitored. Moreover, we investigated the expression of Beclin 1 (Becn1), autophagy-related gene 5 (Atg5), and Atg12 at the mRNA and protein levels, as well as the level of light chain 3 (LC3). The results showed that ZnO NPs could effectively inhibit the proliferation and promote the death of RPMI8226 cells in vitro in a dose- and time-dependent manner. ZnO NPs increased LDH levels, enhanced monodansylcadaverine (MDC) fluorescence intensity, and induced cell cycle arrest at the G2/M phases in RPMI8226 cells. Moreover, ZnO NPs significantly increased the expression of Becn1, Atg5, and Atg12 at the mRNA and protein levels and stimulated the production of LC3. We further validated the results using the autophagy inhibitor 3-methyladenine (3‑MA). Overall, we observed that ZnO NPs can trigger autophagy signaling in RPMI8226 cells, which may be a potential therapeutic approach for MM.
Collapse
Affiliation(s)
- Zonghong Li
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China
| | - Xuewei Yin
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China
| | - Chunyi Lyu
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China
| | - Jingyi Wang
- Department of Hematology, the Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No. 16369#, Jingshi Road, Jinan, 250014, Shandong Province, China
| | - Kui Liu
- Department of Hematology, the Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No. 16369#, Jingshi Road, Jinan, 250014, Shandong Province, China
| | - Siyuan Cui
- Department of Hematology, the Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No. 16369#, Jingshi Road, Jinan, 250014, Shandong Province, China
| | - Shumin Ding
- Department of Hematology, the Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No. 16369#, Jingshi Road, Jinan, 250014, Shandong Province, China
| | - Yingying Wang
- Department of Hematology, the Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No. 16369#, Jingshi Road, Jinan, 250014, Shandong Province, China
| | - Jinxin Wang
- Department of Hematology, the Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No. 16369#, Jingshi Road, Jinan, 250014, Shandong Province, China
| | - Dadong Guo
- Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Shandong Academy of Eye Disease Prevention and Therapy, Affiliated Eye Hospital of Shandong, University of Traditional Chinese Medicine, No. 48#, Yingxiongshan Road, Jinan, Shandong Province, China.
| | - Ruirong Xu
- Department of Hematology, the Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No. 16369#, Jingshi Road, Jinan, 250014, Shandong Province, China.
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Hematology, Health Commission of Shandong Province, Jinan, 250014, China.
- Institute of Hematology, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China.
| |
Collapse
|
39
|
Saxena P, Harish, Shah D, Rani K, Miglani R, Singh AK, Sangela V, Rajput VD, Minkina T, Mandzhieva S, Sushkova S. A critical review on fate, behavior, and ecotoxicological impact of zinc oxide nanoparticles on algae. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:19105-19122. [PMID: 38376781 DOI: 10.1007/s11356-024-32439-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 02/03/2024] [Indexed: 02/21/2024]
Abstract
The rapid inclusion of zinc oxide nanoparticles (ZnO NPs) in nanotechnology-based products over the last decade has generated a new threat in the apprehension of the environment. The massive use of zinc nanosized products will certainly be disposed of and be released, eventually entering the aquatic ecosystem, posing severe environmental hazards. Moreover, nanosized ZnO particles owing the larger surface area per volume exhibit different chemical interactions within the aquatic ecosystem. They undergo diverse potential transformations because of their unique physiochemical properties and the feature of receiving medium. Therefore, assessment of their impact is critical not only for scavenging the present situation but also for preventing unintended environmental hazards. Algae being a primary producer of the aquatic ecosystem help assess the risk of massive NPs usage in environmental health. Because of their nutritional needs and position at the base of aquatic food webs, algal indicators exhibit relatively unique information concerning ecosystem conditions. Moreover, algae are presently the most vital part of the circular economy. Hence, it is imperative to understand the physiologic, metabolic, and morphologic changes brought by the ZnO NPs to the algal cells along with the development of the mechanism imparting toxicity mechanism. We also need to develop an appropriate scientific strategy in the innovation process to restrain the exposure of NPs at safer levels. This review provides the details of ZnO NP interaction with algae. Moreover, their impact, mechanism, and factors affecting toxicity to the algae are discussed.
Collapse
Affiliation(s)
- Pallavi Saxena
- Soil Health Laboratory, Academy of Biology and Biotechnology, Southern Federal University, Rostov-On-Don, 44090, Russia.
| | - Harish
- Plant Biotechnology Laboratory, Department of Botany, Mohanlal Sukhadia University, Udaipur, 313001, Rajasthan, India
| | - Diksha Shah
- Department of Environmental Sciences, G.B. Pant University of Agriculture & Technology: Govind, Ballabh Pant University of Agriculture & Technology, Uttarakhand, 263145, India
| | - Kanika Rani
- Centre for Bio-Nanotechnology, Department of Molecular Biology and Biotechnology, CCS HAU, Hisar, Haryana, 125004, India
| | - Rashi Miglani
- Department of Environmental Sciences, G.B. Pant University of Agriculture & Technology: Govind, Ballabh Pant University of Agriculture & Technology, Uttarakhand, 263145, India
| | - Amit Kumar Singh
- Laboratory of Alternative Protocols in Zoology & Biotechnology Research Laboratory, Department of Zoology, D.S.B Campus, Kumaun University, Nainital, 263002, India
- Plant Ecology Laboratory, Department of Botany, BMK Govt. Girls College, Balod, Chhattisgarh, 491226, India
| | - Vishambhar Sangela
- Plant Biotechnology Laboratory, Department of Botany, Mohanlal Sukhadia University, Udaipur, 313001, Rajasthan, India
| | - Vishnu Dayal Rajput
- Soil Health Laboratory, Academy of Biology and Biotechnology, Southern Federal University, Rostov-On-Don, 44090, Russia
| | - Tatiana Minkina
- Soil Health Laboratory, Academy of Biology and Biotechnology, Southern Federal University, Rostov-On-Don, 44090, Russia
| | - Saglara Mandzhieva
- Soil Health Laboratory, Academy of Biology and Biotechnology, Southern Federal University, Rostov-On-Don, 44090, Russia
| | - Svetlana Sushkova
- Soil Health Laboratory, Academy of Biology and Biotechnology, Southern Federal University, Rostov-On-Don, 44090, Russia
| |
Collapse
|
40
|
Ryu JH, Mangal U, Yoo J, Youm JH, Kim JY, Seo JY, Kim D, Kwon JS, Choi SH. Low concentration zinc oxide nanoparticles enrichment enhances bacterial and pro-inflammatory resistance of calcium silicate-based cements. J Mech Behav Biomed Mater 2024; 151:106399. [PMID: 38244423 DOI: 10.1016/j.jmbbm.2024.106399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 01/22/2024]
Abstract
Calcium silicate-based cement (CSC) is a commonly used material in endodontic treatment. However, it has limited antibacterial activity, especially for cases involving primary infections. Zinc oxide nanoparticles (ZnO-NPs) are recognized for their potential in biomedical applications due to their antibacterial properties and ability to reduce inflammation. This study aims to optimize CSC by incorporating ZnO-NPs to maintain its physical properties, enhance its antibacterial activity, and reduce the production of pro-inflammatory cytokines. ZnO-NPs were integrated into a commercial CSC (Endocem MTA) at 1 wt% (CSZ1) or 3 wt% (CSZ3). Setting time, compressive strength, and X-ray diffraction were then measured. In addition, pH, calcium ion release, and zinc ion release were measured for 7 days. Antibacterial activity against Enterococcus faecalis and viability of murine macrophages (RAW264.7) were determined using colorimetric assays. Gene expression levels of pro-inflammatory cytokines in lipopolysaccharide induced RAW264.7 were evaluated using quantitative polymerase chain reaction. Results were compared to an unmodified CSC group. In the CSZ3 group, there was a significant increase of approximately 12% in setting time and a reduction of about 36.4% in compressive strength compared to the control and CSZ1 groups. The presence of ZnO-NPs was detected in both CSZ1 and CSZ3. Both CSC and CSZ1 groups maintained an alkaline pH and released calcium ions, while zinc ions were significantly released in the CSZ1 group. Additionally, CSZ1 showed a 1.8-fold reduction of bacterial activity and exhibited around 85% reduction in colony-forming units compared to the CSC group. Furthermore, the CSZ1 group showed a more than 39% reduction in pro-inflammatory cytokine levels compared to the CSC group. Thus, enriching CSC with 1 wt% ZnO-NPs can enhance its antibacterial activity and reduce pro-inflammatory cytokines without showing any tangible adverse effects on its physical properties.
Collapse
Affiliation(s)
- Jeong-Hyun Ryu
- Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Utkarsh Mangal
- Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea; BK21 FOUR Project, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Jaeyong Yoo
- Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Ji-Hun Youm
- BK21 FOUR Project, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea; Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Ji-Yeong Kim
- Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Ji-Young Seo
- Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Dohyun Kim
- Department of Conservative Dentistry, Oral Science Research Center, College of Dentistry, Yonsei University, Seoul, 03722, Republic of Korea
| | - Jae-Sung Kwon
- BK21 FOUR Project, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea; Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| | - Sung-Hwan Choi
- Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| |
Collapse
|
41
|
Azizi A, Ghasemirad M, Mortezagholi B, Movahed E, Aryanezhad SS, Makiya A, Ghodrati H, Nasiri K. Study of Cytotoxic and Antibacterial Activity of Ag- and Mg-Dual-Doped ZnO Nanoparticles. ChemistryOpen 2024; 13:e202300093. [PMID: 37955867 PMCID: PMC10924039 DOI: 10.1002/open.202300093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/12/2023] [Indexed: 11/14/2023] Open
Abstract
A non-laborious process for the fabrication of silver and magnesium dual doped zinc oxide nanoparticles (Ag/Mg-ZnO NP) is described. The wurtzite ZnO nano-structures and the dual doped NP were analyzed by PXRD. SEM data showed the hexagonal morphology of our product, while the gathered anti-bacterial outcomes towards Streptococcus mutans bacteria through micro-dilution technic affirmed the enhanced performance of doped NP compared to the native ones. Furthermore, we gauged the toxic impacts of synthesized pure and Ag/Mg-ZnO NP against a breast cancer (MDA-MB-231) cell line through an MTT trial, which highlighted the superiority of the doped when compared to the native nanoparticles. In light of these comparisons, the applicability of Ag/Mg-ZnO NP in dental and medical science is proposed.
Collapse
Affiliation(s)
- Aytan Azizi
- Department of Endodontics Dental SchoolQazvin university of medical sciencesshahid bahounar boulevard, P.O. Box: 3419759811QazvinIran
| | - Mohammad Ghasemirad
- Department of Periodontics Faculty of DentistryRafsanjan University of Medical SciencesKhalije Fars Blvd., Pasdaran street, P.O. Box: 1946853314RafsanjanIran
| | - Bardia Mortezagholi
- Dental Research Center Faculty of DentistryIslamic Azad University of Medical SciencesShariati St, P.O. Box 19395-1495TehranIran
| | - Emad Movahed
- Dental Research Center Faculty of DentistryIslamic Azad University of Medical SciencesShariati St, P.O. Box 19395-1495TehranIran
| | - Seyed Sasan Aryanezhad
- Oral and Maxillofacial Radiology, Private PracticeDaroost street, P.O. Box 1944614581TehranIran
| | - Ali Makiya
- Student Research Committee, Faculty of DentistryMashhad University of Medical ScienceMashhadIran
| | - Hoda Ghodrati
- Department of ProsthodonticsShahid Beheshti University of Medical SciencesDaneshjoo Blvd, Velenjak, St., P.O. Box 1983969411TehranIran
| | - Kamyar Nasiri
- Department of dentistryIslamic Azad University of Medical SciencesP.O. Box 19585-466TehranIran
| |
Collapse
|
42
|
Arafat M, Sakkal M, Beiram R, AbuRuz S. Nanomedicines: Emerging Platforms in Smart Chemotherapy Treatment-A Recent Review. Pharmaceuticals (Basel) 2024; 17:315. [PMID: 38543101 PMCID: PMC10974155 DOI: 10.3390/ph17030315] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/21/2024] [Accepted: 02/24/2024] [Indexed: 01/06/2025] Open
Abstract
Cancer continues to pose one of the most critical challenges in global healthcare. Despite the wide array of existing cancer drugs, the primary obstacle remains in selectively targeting and eliminating cancer cells while minimizing damage to healthy ones, thereby reducing treatment side effects. The revolutionary approach of utilizing nanomaterials for delivering cancer therapeutic agents has significantly enhanced the efficacy and safety of chemotherapeutic drugs. This crucial shift is attributed to the unique properties of nanomaterials, enabling nanocarriers to transport therapeutic agents to tumor sites in both passive and active modes, while minimizing drug elimination from delivery systems. Furthermore, these nanocarriers can be designed to respond to internal or external stimuli, thus facilitating controlled drug release. However, the production of nanomedications for cancer therapy encounters various challenges that can impede progress in this field. This review aims to provide a comprehensive overview of the current state of nanomedication in cancer treatment. It explores a variety of nanomaterials, focusing on their unique properties that are crucial for overcoming the limitations of conventional chemotherapy. Additionally, the review delves into the properties and functionalities of nanocarriers, highlighting their significant impact on the evolution of nanomedicine. It also critically assesses recent advancements in drug delivery systems, covering a range of innovative delivery methodologies. Finally, the review succinctly addresses the challenges encountered in developing nanomedications, offering insightful perspectives to guide future research in this field.
Collapse
Affiliation(s)
- Mosab Arafat
- College of Pharmacy, Al Ain University, Al Ain P.O. Box 64141, United Arab Emirates; (M.A.)
| | - Molham Sakkal
- College of Pharmacy, Al Ain University, Al Ain P.O. Box 64141, United Arab Emirates; (M.A.)
| | - Rami Beiram
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates
| | - Salahdein AbuRuz
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates
- Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, The University of Jordan, Amman 11942, Jordan
| |
Collapse
|
43
|
Chabattula SC, Patra B, Gupta PK, Govarthanan K, Rayala SK, Chakraborty D, Verma RS. Anti-cancer Application of Nat-ZnFe 2O 4 Nanoparticles on 2D Tumor Models. Appl Biochem Biotechnol 2024; 196:1058-1078. [PMID: 37318689 DOI: 10.1007/s12010-023-04582-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2023] [Indexed: 06/16/2023]
Abstract
Metal/Metal Oxide nanoparticles (M/MO NPs) exhibit potential biomedical applications due to their tunable physicochemical properties. Recently, the biogenic synthesis of M/MO NPs has gained massive attention due to their economical and eco-friendly nature. In the present study, Nyctanthes arbor-tristis (Nat) flower extract-derived Zinc Ferrite NPs (Nat-ZnFe2O4 NPs) were synthesized and physicochemically characterized by FTIR, XRD, FE-SEM, DLS, and other instruments to study their crystallinity, size, shape, net charge, presence of phytocompounds on NP's surface and several other features. The average particle size of Nat-ZnFe2O4 NPs was approx. 25.87 ± 5.67 nm. XRD results showed the crystalline nature of Nat-ZnFe2O4 NPs. The net surface charge on NPs was -13.28 ± 7.18 mV. When tested on mouse fibroblasts and human RBCs, these NPs were biocompatible and hemocompatible. Later, these Nat-ZnFe2O4 NPs exhibited potent anti-neoplastic activity against pancreatic, lung, and cervical cancer cells. In addition, NPs induced apoptosis in tested cancer cells through ROS generation. These in vitro studies confirmed that Nat-ZnFe2O4 NPs could be used for cancer therapy. Moreover, further studies are recommended on ex vivo platforms for future clinical applications.
Collapse
Affiliation(s)
- Siva Chander Chabattula
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai, 600036, Tamil Nadu, India
| | - Bamadeb Patra
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai, 600036, Tamil Nadu, India
| | - Piyush Kumar Gupta
- Department of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Greater Noida, 201310, Uttar Pradesh, India
- Department of Biotechnology, Graphic Era Deemed to be University, Dehradun, 248002, Uttarakhand, India
- Faculty of Health and Life Sciences, INTI International University, 71800, Nilai, Malaysia
| | - Kavitha Govarthanan
- Centre for Cardiovascular Biology and Disease, Institute for Stem Cell Science and Regenerative Medicine, Bengaluru, Karnataka, 560065, India
| | - Suresh Kumar Rayala
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai, 600036, Tamil Nadu, India
| | - Debashis Chakraborty
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036, Tamil Nadu, India.
| | - Rama Shanker Verma
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai, 600036, Tamil Nadu, India.
| |
Collapse
|
44
|
Mohamed SY, Elshoky HA, El-Sayed NM, Fahmy HM, Ali MA. Ameliorative effect of zinc oxide-chitosan conjugates on the anticancer activity of cisplatin: Approach for breast cancer treatment. Int J Biol Macromol 2024; 257:128597. [PMID: 38056740 DOI: 10.1016/j.ijbiomac.2023.128597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/30/2023] [Accepted: 12/02/2023] [Indexed: 12/08/2023]
Abstract
Breast cancer is the second most prevalent cancer affecting both males and females, comprising nearly 30 % of all cancer cases. While chemotherapeutic agents, such as cisplatin (Cis), have proven successful in cancer treatment, concerns persist regarding their efficacy and the potentially dangerous side effects. Consequently, there is a crucial and ongoing need to develop approaches that minimize side effects associated with chemotherapy. In the present work, various types of nanoparticles (NPs) were synthesized and loaded with Cis. Cis was conjugated with nanocarriers such as zinc oxide (ZnO), ZnO modified with mandelic acid and graphene oxide (GO), chitosan (CS), and CS modified with ZnO and GO to enhance the selectivity of Cis towards cancer cells. Zeta potentials and particles size were assessed using electrophoretic light scattering and dynamic light scattering. NPs were characterized using transmission electron microscopy, Fourier-transform infrared spectroscopy, and X-ray diffraction. The impact of standalone Cis as well as its nanoconjugated form on the behavior of MCF-7 cell line was investigated using WST-1 cell proliferation and apoptosis/necrosis assays. Experimental findings revealed that among the various NPs tested, ZnO, and CS NPs exhibited the highest loading percentage of Cis, surpassing the loading percentages achieved with other NPs. Cytotoxicity assay showed the enhanced effect of Cis when conjugated with ZnO and CS NPs. Flow cytometry-based assays and confocal microscopy confirmed that ZnO/Cis and CS/Cis induced apoptosis. The cisplatin-nanocomplex exhibited a descending order of early apoptosis and late apoptosis in the following order: ZnO, Cis, CS, ZnO-M, CS-GO, ZnO-GO, CS-ZnO, and CS-ZnO, Cis, CS, CS-GO, ZnO-M, ZnO, ZnO-GO, respectively. None of the nanoparticle complexes displayed a significant percentage of necrotic cells, with the highest percentage reaching 4.65 % in the case of CS-GO/Cis.
Collapse
Affiliation(s)
- Salma Y Mohamed
- Biophysics Department, Faculty of Science, Cairo University, Giza 12613, Egypt.
| | - Hisham A Elshoky
- Tumor Biology Research Program, Department of Research, Children's Cancer Hospital Egypt 57357, Cairo 11441, Egypt; Nanotechnology and Advanced Materials Central Lab., Agricultural Research Center, Giza 12619, Egypt; Regional Center for Food and Feed, Agricultural Research Center, Giza 12619, Egypt.
| | - Nayera M El-Sayed
- Physics Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt.
| | - Heba M Fahmy
- Biophysics Department, Faculty of Science, Cairo University, Giza 12613, Egypt.
| | - Maha A Ali
- Biophysics Department, Faculty of Science, Cairo University, Giza 12613, Egypt.
| |
Collapse
|
45
|
Ding J, Ding X, Liao W, Lu Z. Red blood cell-derived materials for cancer therapy: Construction, distribution, and applications. Mater Today Bio 2024; 24:100913. [PMID: 38188647 PMCID: PMC10767221 DOI: 10.1016/j.mtbio.2023.100913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/02/2023] [Accepted: 12/11/2023] [Indexed: 01/09/2024] Open
Abstract
Cancer has become an increasingly important public health issue owing to its high morbidity and mortality rates. Although traditional treatment methods are relatively effective, they have limitations such as highly toxic side effects, easy drug resistance, and high individual variability. Meanwhile, emerging therapies remain limited, and their actual anti-tumor effects need to be improved. Nanotechnology has received considerable attention for its development and application. In particular, artificial nanocarriers have emerged as a crucial approach for tumor therapy. However, certain deficiencies persist, including immunogenicity, permeability, targeting, and biocompatibility. The application of erythrocyte-derived materials will help overcome the above problems and enhance therapeutic effects. Erythrocyte-derived materials can be acquired via the application of physical and chemical techniques from natural erythrocyte membranes, or through the integration of these membranes with synthetic inner core materials using cell membrane biomimetic technology. Their natural properties such as biocompatibility and long circulation time make them an ideal choice for drug delivery or nanoparticle biocoating. Thus, red blood cell-derived materials are widely used in the field of biomedicine. However, further studies are required to evaluate their efficacy, in vivo metabolism, preparation, design, and clinical translation. Based on the latest research reports, this review summarizes the biology, synthesis, characteristics, and distribution of red blood cell-derived materials. Furthermore, we provide a reference for further research and clinical transformation by comprehensively discussing the applications and technical challenges faced by red blood cell-derived materials in the treatment of malignant tumors.
Collapse
Affiliation(s)
- Jianghua Ding
- Department of Hematology & Oncology, Clinical Medical College/Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, 332005, China
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, 332005, China
| | - Xinjing Ding
- Oncology of Department, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 332000, China
| | - Weifang Liao
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, 332005, China
- Department of Medical Laboratory, Clinical Medical College/Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, 332005, China
| | - Zhihui Lu
- Oncology of Department, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 332000, China
| |
Collapse
|
46
|
Shoaib A, Shahid S, Mansoor S, Javed M, Iqbal S, Mahmood S, Bahadur A, Jaber F, Alshalwi M. Tailoring of an anti-diabetic drug empagliflozin onto zinc oxide nanoparticles: characterization and in vitro evaluation of anti-hyperglycemic potential. Sci Rep 2024; 14:2499. [PMID: 38291095 PMCID: PMC10827742 DOI: 10.1038/s41598-024-52523-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/19/2024] [Indexed: 02/01/2024] Open
Abstract
Diabetes is a serious health issue that can be a great risk factor related to numerous physical problems. A class of drugs "Gliflozin" especially Sodium Glucose Co. Transporter 2 was inhibited by a novel drug, which is known as "empagliflozin". While ZnO nanoparticles (NPs) had considerable promise for combating diabetes, it was employed in the treatment and management of type-2 diabetes mellitus. The new drug empagliflozin was initially incorporated into Zinc Oxide NPs in this study using the surface physio-sorption technique, and the degree of drug adsorption was assessed using the HPLC method. The tailored product was characterized by using the FTIR, EDX, Ultraviolet-Visible, XRD and SEM techniques. With an average particle size of 17 nm, SEM revealed mono-dispersion of NPs and sphere-like form. The Freundlich isotherm model best fits and explains the data for the physio-sorption investigation, which examined adsorption capabilities using adsorption isotherms. The enzymes α-amylase and α-glucosidase, which are involved in the human metabolism of carbohydrates, were used in the in-vitro anti-diabetic assays. It was discovered that the composite showed the highest levels of 81.72 and 92.77% inhibition of -α-amylase and -glucosidase at an absolute concentration of 1000 μg per ml with IC50 values of 30.6 μg per ml and 72 μg per ml.
Collapse
Affiliation(s)
- Abdullah Shoaib
- Department of Chemistry, School of Science, University of Management and Technology, Lahore, 54770, Pakistan
| | - Sammia Shahid
- Department of Chemistry, School of Science, University of Management and Technology, Lahore, 54770, Pakistan
| | - Sana Mansoor
- Department of Chemistry, School of Science, University of Management and Technology, Lahore, 54770, Pakistan
| | - Mohsin Javed
- Department of Chemistry, School of Science, University of Management and Technology, Lahore, 54770, Pakistan
| | - Shahid Iqbal
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, Ningbo, 315100, China.
| | - Sajid Mahmood
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, Ningbo, 315100, China
- Functional Materials Group, Gulf University for Science and Technology, 32093, Mishref, Kuwait
| | - Ali Bahadur
- Department of Chemistry, College of Science, Mathematics, and Technology, Wenzhou-Kean University, Wenzhou, 325060, China.
- Dorothy and George Hennings College of Science, Mathematics and Technology, Kean University, 1000 Morris Ave, Union, New Jersey, 07083, USA.
| | - Fadi Jaber
- Department of Biomedical Engineering, Ajman University, Ajman, UAE.
- Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, UAE.
| | - Matar Alshalwi
- Department of Chemistry, College of Science, King Saud University, PO Box 2455, 11541, Riyadh, Saudi Arabia
| |
Collapse
|
47
|
Somaghian SA, Mirzaei SZ, Shakib MEK, Marzban A, Alsallameh S, Lashgarian HE. Biogenic zinc selenide nanoparticles fabricated using Rosmarinus officinalis leaf extract with potential biological activity. BMC Complement Med Ther 2024; 24:20. [PMID: 38178178 PMCID: PMC10768302 DOI: 10.1186/s12906-023-04329-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 12/25/2023] [Indexed: 01/06/2024] Open
Abstract
Zinc selenide nanoparticles (ZnSe) are semiconductor metals of zinc and selenium. ZnSe NPs are advantageous for biomedical and bio-imaging applications due to their low toxicity. ZnSe NPs can be used as a therapeutic agent by synthesizing those using biologically safe methods. As a novel facet of these NPs, plant-based ZnSe NPs were fabricated from an aqueous extract of Rosmarinus officinalis L. (RO extract). Physiochemical analyses such as UV-visible and FTIR spectroscopy, SEM-EDX and TEM Imaging, XRD and DLS-Zeta potential analyses confirmed the biological fabrication of RO-ZnSe NPs. Additionally, Ro-ZnSe NPs were investigated for their bioactivity. There was an apparent peak in the UV-visible spectrum at 398 nm to confirm the presence of ZnSe NPs. FTIR analysis confirmed RO-extract participation in ZnSe NPs synthesis by identifying putative functional groups associated with biomolecules. TEM and SEM analyses revealed that RO-ZnSe NPs have spherical shapes in the range of 90-100 nm. According to XRD and EDX analysis, RO-ZnSe NPs had a crystallite size of 42.13 nm and contain Se and Zn (1:2 ratio). These NPs demonstrated approximately 90.6% antioxidant and antibacterial activity against a range of bacterial strains at 100 µg/ml. Antibiofilm activity was greatest against Candida glabrata and Pseudomonas aeruginosa at 100 g/ml. Accordingly, the IC50 values for anticancer activity against HTB-9, SW742, and HF cell lines were 14.16, 8.03, and 35.35 g/ml, respectively. In light of the multiple applications for ZnSe NPs, our research indicates they may be an excellent option for biological and therapeutic purposes in treating cancers and infections. Therefore, additional research is required to determine their efficacy.
Collapse
Affiliation(s)
- Shahram Ahmadi Somaghian
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Seyedeh Zahra Mirzaei
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | | | - Abdolrazagh Marzban
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran.
| | - Sarah Alsallameh
- Department of Medical Laboratories Techniques, College of Health and Medical Techniques, Gilgamesh Ahliya University Gau, Baghdad, 10022, Iraq
| | - Hamed Esmaeil Lashgarian
- Department of Medical Biotechnology, Lorestan University of Medical Sciences, Khorramabad, Iran.
| |
Collapse
|
48
|
Fatima A, Zaheer T, Pal K, Abbas RZ, Akhtar T, Ali S, Mahmood MS. Zinc Oxide Nanoparticles Significant Role in Poultry and Novel Toxicological Mechanisms. Biol Trace Elem Res 2024; 202:268-290. [PMID: 37060542 DOI: 10.1007/s12011-023-03651-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 03/27/2023] [Indexed: 04/16/2023]
Abstract
Zinc oxide nanoparticles (ZnO NPs) have involved a lot of consideration owing to their distinctive features. The ZnO NPs can be described as particularly synthesized mineral salts via nanotechnology, varying in size from 1 to 100 nm, while zinc oxide (ZnO), it is an inorganic substrate of zinc (Zn). The Zn is a critical trace element necessary for various biological and physiological processes in the body. Studies have revealed ZnO NPs' efficient immuno-modulatory, growth-promoting, and antimicrobial properties in poultry birds. They offer increased bioavailability as compared to their traditional sources, producing better results in terms of productivity and welfare and consequently reducing ecological harm in the poultry sector. However, they have also been reported for their toxicological effects, which are size, shape, concentration, and exposure route dependent. The investigations done so far have yielded inconsistent results, therefore, a lot of additional studies and research are required to clarify the harmful consequences of ZnO NPs and to bring them to a logical end. This review explores an overview of efficient possible role of ZnO NPs, while comparing them with other nutritional Zn sources, in the poultry industry, primarily as dietary supplements that effect the growth, health, and performance of the birds. In addition to the anti-bacterial mechanisms of ZnO NPs and their promising role as antifungal, and anti-colloidal agent, this paper also covers the toxicological mechanisms of ZnO NPs and their consequent toxicological hazards to vital organs and the reproductive system of poultry birds.
Collapse
Affiliation(s)
- Arjmand Fatima
- Institute of Microbiology, University of Agriculture, Faisalabad, Pakistan
| | - Tean Zaheer
- Institute of Parasitology, University of Agriculture, Faisalabad, Pakistan
| | - Kaushik Pal
- University Center for Research and Development (UCRD), Department of Physics, Chandigarh University, Mohali, Gharuan, Punjab, 140413, India.
| | - Rao Zahid Abbas
- Institute of Parasitology, University of Agriculture, Faisalabad, Pakistan.
| | - Tayyaba Akhtar
- KBCMA College of Veterinary and Animal Sciences, Sub-Campus UVAS-Lahore, Narowal, Pakistan
| | - Sultan Ali
- Institute of Microbiology, University of Agriculture, Faisalabad, Pakistan
| | | |
Collapse
|
49
|
Saeed M, Marwani HM, Shahzad U, Asiri AM, Rahman MM. Recent Advances, Challenges, and Future Perspectives of ZnO Nanostructure Materials Towards Energy Applications. CHEM REC 2024; 24:e202300106. [PMID: 37249417 DOI: 10.1002/tcr.202300106] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/17/2023] [Indexed: 05/31/2023]
Abstract
In this approach, zinc oxide (ZnO) is a multipurpose substance with remarkable characteristics such as high sensitivity, a large specific area, non-toxicity, excellent compatibility, and a high isoelectric point, which make it attractive for discussion with some limitations. It is the most favorable possible option for the collection of nanostructures in terms of structure and their characteristics. The development of numerous ZnO nanostructure-based electrochemical sensors and biosensors used in health diagnosis, pharmaceutical evaluation, food hygiene, and contamination of the environment monitoring is described, as well as the production of ZnO nanostructures. Nanostructured ZnO has good chemical and temperature durability as an n-type semiconducting material, making it useful in a wide range of uses, from luminous materials to supercapacitors, batteries, solar cells, photocatalysis, biosensors, medicinal devices, and more. When compared to the bulk materials, the nanosized materials have both a higher rate of disintegration and a higher solubility. Furthermore, ZnO nanoparticles are regarded as top contenders for electrochemical sensors due to their strong electrochemical behaviors and electron transmission characteristics. The impact of many factors, including selectivity, sensitivity, detection limit, strength, and structures, arrangements, and their respective functioning processes, has been investigated. This study concentrated a substantial amount of its attention on the recent advancements that have been made in ZnO-based nanoparticles, composites, and modified materials for use in the application areas of energy storage and conversion devices as well as biological applications. Supercapacitors, Li-ion batteries, dye-sensitized solar cells, photocatalysis, biosensors, medicinal, and biological systems have been studied. ZnO-based materials are constantly analyzed for their advantages in energy and life science applications.
Collapse
Affiliation(s)
- Mohsin Saeed
- Chemistry department, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Hadi M Marwani
- Chemistry department, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Umer Shahzad
- Chemistry department, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Abdullah M Asiri
- Chemistry department, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Mohammed M Rahman
- Chemistry department, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| |
Collapse
|
50
|
Kumar AA, Jain RK. Synthesis and Characterization of the Zinc-Oxide: Tin-Oxide Nanoparticle Composite and Assessment of Its Antibacterial Activity: An In Vitro Study. Cureus 2024; 16:e53016. [PMID: 38410330 PMCID: PMC10895155 DOI: 10.7759/cureus.53016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 01/24/2024] [Indexed: 02/28/2024] Open
Abstract
Introduction Nanoparticles (NPs) have been widely used for biomedical applications. Various methods of synthesis of NPs have been performed and the sol-gel technique is one of the most common and feasible methods. ZnO and SnO2 NPs are widely used due to their interesting properties and versatile medical applications. The present study aimed to synthesize a composite of ZnO- SnO2 NPs and evaluate its structural, morphological, and antibacterial properties. Materials and methods ZnO-SnO2 NPs were prepared via the sol-gel technique. The morphological study was performed by scanning electron microscopy (SEM) imaging, the structural study was performed by X-ray diffraction (XRD) analysis, and chemical studies were performed by Fourier transform infrared spectroscopy (FT-IR) and energy-dispersive X-ray spectroscopy (EDAX). Antibacterial properties of the NPs were assessed by the agar diffusion test and the area of bacterial growth that was inhibited was measured under high and low concentrations of the NPs. Results The SEM analysis confirmed the irregular shape and elemental composition of the synthesized NPs. The purity of the NPs was confirmed by the EDAX spectrum, which indicates the weight percentages of the elements in the NPs as follows: Sn-53.8%, Zn-12.5%, O-29.1%, and C-4.7%. The chemical bonds between the NPs were confirmed by Fourier transform infrared spectroscopy. XRD analysis confirmed the high degree of crystallinity of the NPs and orthorhombic structure of SnO2 and the hexagonal structure of ZnO. The zone of inhibition against S. aureus, S. mutans, and E. coli for low concentrations of the NPs was 24 mm, 26 mm, and 30 mm and for high concentrations of the NPs it was 26 mm, 28 mm, and 31mm and these values were similar to the control antibiotics. Conclusion ZnO- SnO2 NPs were successfully prepared by the sol-gel method. The presence of NPs was confirmed and successfully characterized. The prepared NPs had a good antimicrobial effect against the tested pathogens.
Collapse
Affiliation(s)
- Arshya A Kumar
- Department of Orthodontics and Orthopedics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Ravindra Kumar Jain
- Department of Dentistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| |
Collapse
|