1
|
Ali AH, Hachem M, Ahmmed MK. Compound-Specific Isotope Analysis as a Potential Approach for Investigation of Cerebral Accumulation of Docosahexaenoic Acid: Previous Milestones and Recent Trends. Mol Neurobiol 2025; 62:5816-5837. [PMID: 39633088 PMCID: PMC11953176 DOI: 10.1007/s12035-024-04643-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 11/25/2024] [Indexed: 12/07/2024]
Abstract
Docosahexaenoic acid (DHA, C22:6 n-3), a predominant omega-3 polyunsaturated fatty acid in brain, plays a vital role in cerebral development and exhibits functions with potential therapeutic effects (synaptic function, neurogenesis, brain inflammation regulation) in neurodegenerative diseases. The most common approaches of studying the cerebral accretion and metabolism of DHA involve the use of stable or radiolabeled tracers. Although these methods approved kinetic modeling of ratios and turnovers for fatty acids, they are associated with excessive costs, restrictive studies, and singular dosing effects. Compound-specific isotope analysis (CSIA) is recognized as a cost-effective alternative approach for investigating DHA metabolism in vitro and in vivo. This method involves determining variations in 13C content to identify the sources of specific compounds. This review comprehensively discusses a summary of different methods and recent advancements in CSIA application in studying DHA turnover in brain. Following, the ability and applications of CSIA by using gas-chromatography combined with isotope ratio mass-spectrometry to differentiate between natural endogenous DHA in brain and exogenous DHA are also highlighted. In general, the efficiency of CSIA has been demonstrated in utilizing natural 13C enrichment to distinguish between the incorporation of newly synthesized or pre-existing DHA into the brain and other body tissues, eliminating the need of tracers. This review provides comprehensive knowledge, which will have potential applications in both academia and industry for advancing the understanding in neurobiology and enhancing the development of nutritional strategies and pharmaceutical interventions targeting brain health.
Collapse
Affiliation(s)
- Abdelmoneim H Ali
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University (UAEU), P.O. Box 15551, Al Ain, United Arab Emirates
| | - Mayssa Hachem
- Department of Chemistry, College of Engineering and Physical Sciences, Khalifa University of Science and Technology, 127788, Abu Dhabi, United Arab Emirates.
- Healthcare Engineering Innovation Group, Khalifa University of Sciences and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates.
| | - Mirja Kaizer Ahmmed
- Department of Fishing and Post-Harvest Technology, Faculty of Fisheries, Chattogram Veterinary and Animal Sciences University, Khulshi, Chattogram, 4225, Bangladesh
- Department of Wine, Food and Molecular Biosciences, Lincoln University, Lincoln, 7647, New Zealand
| |
Collapse
|
2
|
Barbuti PA, Guardia-Laguarta C, Yun T, Chatila ZK, Flowers X, Wong C, Santos BFR, Larsen SB, Lotti JS, Hattori N, Bradshaw E, Dettmer U, Fanning S, Menon V, Reddy H, Teich AF, Krüger R, Area-Gomez E, Przedborski S. The role of alpha-synuclein in synucleinopathy: Impact on lipid regulation at mitochondria-ER membranes. NPJ Parkinsons Dis 2025; 11:103. [PMID: 40307230 PMCID: PMC12043847 DOI: 10.1038/s41531-025-00960-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 04/11/2025] [Indexed: 05/02/2025] Open
Abstract
The protein alpha-synuclein (αSyn) plays a pivotal role in the pathogenesis of synucleinopathies, including Parkinson's disease and multiple system atrophy, with growing evidence indicating that lipid dyshomeostasis is a key phenotype in these neurodegenerative disorders. Previously, we identified that αSyn localizes, at least in part, to mitochondria-associated endoplasmic reticulum membranes (MAMs), which are transient functional domains containing proteins that regulate lipid metabolism, including the de novo synthesis of phosphatidylserine. In the present study, we analyzed the lipid composition of postmortem human samples, focusing on the substantia nigra pars compacta of Parkinson's disease and controls, as well as three less affected brain regions of Parkinson's donors. To further assess synucleinopathy-related lipidome alterations, similar analyses were performed on the striatum of multiple system atrophy cases. Our data reveal region- and disease-specific changes in the levels of lipid species. Specifically, our data revealed alterations in the levels of specific phosphatidylserine species in brain areas most affected in Parkinson's disease. Some of these alterations, albeit to a lesser degree, are also observed in multiple system atrophy. Using induced pluripotent stem cell-derived neurons, we show that αSyn regulates phosphatidylserine metabolism at MAM domains, and that αSyn dosage parallels the perturbation in phosphatidylserine levels. These findings support the notion that αSyn pathophysiology is linked to the dysregulation of lipid homeostasis, which may contribute to the vulnerability of specific brain regions in synucleinopathy. These findings have significant therapeutic implications.
Collapse
Affiliation(s)
- Peter A Barbuti
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
- Center for Motor Neuron Biology and Diseases, Columbia University Irving Medical Center, New York, NY, USA
- Translational Neuroscience, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belval, Luxembourg
- Transversal Translational Medicine, Luxembourg Institute of Health, Luxembourg City, Luxembourg
| | - Cristina Guardia-Laguarta
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
- Center for Motor Neuron Biology and Diseases, Columbia University Irving Medical Center, New York, NY, USA
| | - Taekyung Yun
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
- Center for Biological Research (CIB), - Margarita Salas, CSIC, Madrid, Spain
| | - Zena K Chatila
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Xena Flowers
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA
- The Carol and Gene Ludwig Center for Research on Neurodegeneration, Columbia University, New York, NY, USA
| | - Chantel Wong
- Department of Neuroscience, Barnard College of Columbia University, New York, NY, USA
| | - Bruno F R Santos
- Translational Neuroscience, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belval, Luxembourg
- Transversal Translational Medicine, Luxembourg Institute of Health, Luxembourg City, Luxembourg
- Disease Modelling and Screening Platform, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belval, Luxembourg
| | - Simone B Larsen
- Translational Neuroscience, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belval, Luxembourg
| | - James S Lotti
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Elizabeth Bradshaw
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA
- The Carol and Gene Ludwig Center for Research on Neurodegeneration, Columbia University, New York, NY, USA
| | - Ulf Dettmer
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Saranna Fanning
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Vilas Menon
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA
- Center for Translational and Computational Neuroimmunology, Columbia University, New York, NY, USA
| | - Hasini Reddy
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Andrew F Teich
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Rejko Krüger
- Translational Neuroscience, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belval, Luxembourg
- Transversal Translational Medicine, Luxembourg Institute of Health, Luxembourg City, Luxembourg
| | - Estela Area-Gomez
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
- Center for Motor Neuron Biology and Diseases, Columbia University Irving Medical Center, New York, NY, USA
- Center for Biological Research (CIB), - Margarita Salas, CSIC, Madrid, Spain
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA
| | - Serge Przedborski
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA.
- Center for Motor Neuron Biology and Diseases, Columbia University Irving Medical Center, New York, NY, USA.
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, NY, USA.
- Department of Neuroscience, Columbia University, New York, NY, USA.
| |
Collapse
|
3
|
Karmaker S, Rosales PD, Tirumuruhan B, Viravalli A, Boehnke N. More than a delivery system: the evolving role of lipid-based nanoparticles. NANOSCALE 2025. [PMID: 40293317 DOI: 10.1039/d4nr04508d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Lipid-based nanoparticles, including liposomes and lipid nanoparticles (LNPs), make up an important class of drug delivery systems. Their modularity enables encapsulation of a wide range of therapeutic cargoes, their ease of functionalization allows for incorporation of targeting motifs and anti-fouling coatings, and their scalability facilitates rapid translation to the clinic. While the discovery and early understanding of lipid-based nanoparticles is heavily rooted in biology, formulation development has largely focused on materials properties, such as how liposome and lipid nanoparticle composition can be altered to maximize drug loading, stability and circulation. To achieve targeted delivery and enable improved accumulation of therapeutics at target tissues or disease sites, emphasis is typically placed on the use of external modifications, such as peptide, protein, and polymer motifs. However, these approaches can increase the complexity of the nanocarrier and complicate scale up. In this review, we focus on how our understanding of lipid structure and function in biological contexts can be used to design intrinsically functional and targeted nanocarriers. We highlight formulation-based strategies, such as the incorporation of bioactive lipids, that have been used to modulate liposome and lipid nanoparticle properties and improve their functionality while retaining simple nanocarrier designs. We also highlight classes of naturally occurring lipids, their functions, and how they have been incorporated into lipid-based nanoparticles. We will additionally position these approaches into the historical context of both liposome and LNP development.
Collapse
Affiliation(s)
- Senjuti Karmaker
- Department of Chemical Engineering and Materials Science, University of Minnesota, Twin Cities Minneapolis, MN 55455, USA.
| | - Plinio D Rosales
- Department of Chemical Engineering and Materials Science, University of Minnesota, Twin Cities Minneapolis, MN 55455, USA.
| | - Barath Tirumuruhan
- Department of Chemical Engineering and Materials Science, University of Minnesota, Twin Cities Minneapolis, MN 55455, USA.
| | - Amartya Viravalli
- Department of Chemical Engineering and Materials Science, University of Minnesota, Twin Cities Minneapolis, MN 55455, USA.
| | - Natalie Boehnke
- Department of Chemical Engineering and Materials Science, University of Minnesota, Twin Cities Minneapolis, MN 55455, USA.
| |
Collapse
|
4
|
Zhang H, Cao F, Yu J, Liang Y, Wu Y. Investigating plasma lipid profiles in association with Parkinson's disease risk. NPJ Parkinsons Dis 2025; 11:99. [PMID: 40295545 PMCID: PMC12038023 DOI: 10.1038/s41531-025-00955-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 04/08/2025] [Indexed: 04/30/2025] Open
Abstract
Parkinson's Disease (PD) is associated with lipid metabolic disturbances, but the specific roles of lipids in its pathogenesis are unclear. This Mendelian Randomization (MR) study utilized GWAS data and IVW methods to investigate plasma lipids and PD risk. The genetic predispositions to altered levels of triacylglycerols (TAGs), diacylglycerols (DAGs), phosphatidylcholines (PCs), and phosphatidylethanolamines (PEs) are associated with an increased risk of PD, while the genetic predispositions to sphingomyelin (SM) and lysophosphatidylcholines (LPCs) are associated with a reduced risk of PD. Further research is needed to establish the biological mechanisms underlying these relationships.
Collapse
Affiliation(s)
- Houwen Zhang
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, Xinhua Hospital of Zhejiang Province, Hangzhou, China
| | - Fangzheng Cao
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, Xinhua Hospital of Zhejiang Province, Hangzhou, China
| | - Jialin Yu
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, Xinhua Hospital of Zhejiang Province, Hangzhou, China
| | - Yu Liang
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, Xinhua Hospital of Zhejiang Province, Hangzhou, China
| | - You Wu
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, Xinhua Hospital of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
5
|
Sugata M, Kataoka H, Sugie K. Association between adiponectin and lipids in Parkinson's disease. Clin Neurol Neurosurg 2025; 254:108919. [PMID: 40294457 DOI: 10.1016/j.clineuro.2025.108919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/17/2025] [Accepted: 04/21/2025] [Indexed: 04/30/2025]
Abstract
OBJECTIVES There is increasing evidence linking Parkinson's disease (PD) to lipids, such as the presence of lipids in the core of Lewy bodies in PD brains or high-molecular-weight adiponectin (APN) in phosphorylated α-synuclein-positive Lewy bodies. This study aimed to verify whether APN levels are associated with neurodegenerative diseases. The association between APN and body weight was also investigated. MATERIALS AND METHODS The following parameters were measured using venous blood sampling: HDL-C, LDL-C, glucose, and lipids, including APN. RESULTS PD patients receiving dopaminergic treatments had significant higher APN than that of de-novo PD, progressive supranuclear palsy (PSP) or multiple system atrophy- parkinsonian type (MSA-P). Multivariate analysis using ANCOVA revealed a significant difference in APN levels between treated PD patients and de-novo PD patients (adjusted mean difference of -4.273 μg/ml, p = 0.037]), or PSP patients (adjusted mean difference of -4.756 μg/ml, p = 0.034]). BMIs were mildly higher in de-novo PD patients compared to treated PD patients (adjusted mean difference of 1.686, p = 0.074]). After adjustment, APN levels were positively correlated with HDL-cholesterol (HDL-C) in patients with PD (regression coefficient=0.479, P < 0.001), but not total cholesterol, or LDL-C. This correlation was not evident in patients with MSA-P, or PSP. CONCLUSIONS APN likely plays a role in the composition of lipid rafts, particularly in patients with treated PD. The correlation between APN and HDL-C may be a marker that differentiates PD from MSA-P, or PSP.
Collapse
Affiliation(s)
- Mayu Sugata
- Department of Neurology, Nara Medical University, Nara, Japan
| | - Hiroshi Kataoka
- Department of Neurology, Nara Medical University, Nara, Japan.
| | - Kazuma Sugie
- Department of Neurology, Nara Medical University, Nara, Japan
| |
Collapse
|
6
|
Warda M, Tekin S, Gamal M, Khafaga N, Çelebi F, Tarantino G. Lipid rafts: novel therapeutic targets for metabolic, neurodegenerative, oncological, and cardiovascular diseases. Lipids Health Dis 2025; 24:147. [PMID: 40247292 PMCID: PMC12004566 DOI: 10.1186/s12944-025-02563-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 04/08/2025] [Indexed: 04/19/2025] Open
Abstract
Lipid rafts are specialized microdomains within cellular membranes enriched with cholesterol and sphingolipids that play key roles in cellular organization, signaling, and homeostasis. This review highlights their involvement in protein clustering, energy metabolism, oxidative stress responses, inflammation, autophagy, and apoptosis. These findings clarify their influence on signaling, trafficking, and adhesion while interacting with the extracellular matrix, cytoskeleton, and ion channels, making them pivotal in the progression of various diseases. This review further addresses their contributions to immune responses, including autoimmune diseases, chronic inflammation, and cytokine storms. Additionally, their role as entry points for pathogens has been demonstrated, with raft-associated receptors being exploited by viruses and bacteria to increase infectivity and evade immune defenses. Disruptions in lipid raft dynamics are linked to oxidative stress and cellular signaling defects, which contribute to metabolic, neurodegenerative, and cardiovascular diseases. This review underscores their potential as therapeutic targets, discussing innovations such as engineered lipid raft transplantation. Advances in analytical techniques such as mass spectrometry have expanded our understanding of lipid raft composition and dynamics, opening new directions for research. By consolidating the current insights, we highlight the therapeutic potential of lipid rafts and highlight the need for further exploration of their molecular mechanisms.
Collapse
Affiliation(s)
- Mohamad Warda
- Department of Physiology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey.
- Department of Biochemistry, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.
| | - Samet Tekin
- Department of Physiology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Mahmoud Gamal
- Department of Biochemistry, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Nagwa Khafaga
- Food Hygiene Department, Animal Health Research Institute (AHRI), Agricultural Research Center (ARC), Dokki, Egypt
| | - Fikret Çelebi
- Department of Physiology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Giovanni Tarantino
- Department of Clinical Medicine and Surgery, Federico II University Medical School of Naples, Naples, Italy.
| |
Collapse
|
7
|
Cordeiro GA, Faria JA, Pavan L, Garcia IJP, Neves EPFI, Lima GFDF, Campos HM, Ferreira PY, Ghedini PC, Kawamoto EM, Lima MC, Villar JAFP, Orellana AMM, Barbosa LA, Scavone C, Leite JA, Santos HL. Evaluation of the neuroprotective potential of benzylidene digoxin 15 against oxidative stress in a neuroinflammation models induced by lipopolysaccharide and on neuronal differentiation of hippocampal neural precursor cells. Front Pharmacol 2025; 16:1537720. [PMID: 40160463 PMCID: PMC11949953 DOI: 10.3389/fphar.2025.1537720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 02/12/2025] [Indexed: 04/02/2025] Open
Abstract
Neuroinflammation, often driven by the overproduction of reactive oxygen species (ROS), plays a crucial role in the pathogenesis of neurodegenerative diseases such as Alzheimer's and Parkinson's diseases. The susceptibility of the brain to oxidative stress is attributed to its high metabolic activity and limited antioxidant defense. This study aimed to evaluate the neuroprotective potential of Benzylidene Digoxin 15 (BD-15) following treatment and pretreatment in a lipopolysaccharide (LPS)-induced neuroinflammation model. Additionally, we examined whether BD-15 enhances the generation of neurons from neural progenitor cells (NPCs).Male Wistar rats were used for acute treatment studies and divided into four groups: control (saline), BD-15 (100 μg/kg), LPS (250 μg/kg), and LPS + BD-15 (250 μg/kg + 100 μg/kg). Swiss albino mice were used for chronic pretreatment studies and divided into the following groups: control (saline), BD-15 (0.56 mg/kg), LPS (1 mg/kg), and LPS + BD-15 (1 mg/kg + 0.56 mg/kg). Behavioral changes were assessed using the open field test, and brain tissues were analyzed for oxidative stress markers, including malondialdehyde (MDA), reduced glutathione (GSH), protein carbonylation, catalase (CAT), superoxide dismutase (SOD), and glutathione S-transferase (GST). To assess neurogenesis, primary NPC cultures derived from the hippocampus of newborn Wistar rats were used, which led to reduced locomotor activity and increased oxidative stress, particularly in the cortex, as indicated by elevated MDA levels and reduced GSH levels. BD-15 treatment reversed these effects, notably by restoring GSH levels and reducing protein carbonylation in the cerebellum. Chronic BD-15 treatment in Swiss mice improved oxidative stress markers including MDA, SOD, CAT, and GST. Furthermore, BD-15 exhibits neuroprotective properties by alleviating oxidative stress and motor dysfunction, suggesting its potential as a therapeutic agent for neuroinflammatory disorders. However, BD-15 did not affect NPC cell proliferation, indicating that this cardiotonic steroid did not alter the cell cycle of these progenitor cells.
Collapse
Affiliation(s)
- Gilvânia A. Cordeiro
- Laboratório de Bioquímica Celular, UFSJ, Universidade Federal de São João del-Rei, Divinópolis, Minas Gerais, Brazil
| | - Jessica A. Faria
- Laboratório de Bioquímica Celular, UFSJ, Universidade Federal de São João del-Rei, Divinópolis, Minas Gerais, Brazil
| | | | - Israel J. P. Garcia
- Laboratório de Bioquímica Celular, UFSJ, Universidade Federal de São João del-Rei, Divinópolis, Minas Gerais, Brazil
| | - Eduarda P. F. I. Neves
- Instituto de Ciências Biológicas, UFG, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | | | - Hericles M. Campos
- Instituto de Ciências Biológicas, UFG, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Pâmela Y. Ferreira
- Instituto de Ciências Biológicas, UFG, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Paulo C. Ghedini
- Instituto de Ciências Biológicas, UFG, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | | | - Maira C. Lima
- Laboratório de Bioquímica Celular, UFSJ, Universidade Federal de São João del-Rei, Divinópolis, Minas Gerais, Brazil
| | - José A. F. P. Villar
- Laboratório de Bioquímica Celular, UFSJ, Universidade Federal de São João del-Rei, Divinópolis, Minas Gerais, Brazil
- Laboratório de Síntese Orgânica e Nanoestruturas, UFSJ, Universidade Federal de São João del-Rei, Divinópolis, Minas Gerais, Brazil
| | | | - Leandro A. Barbosa
- Laboratório de Bioquímica Celular, UFSJ, Universidade Federal de São João del-Rei, Divinópolis, Minas Gerais, Brazil
| | | | - Jacqueline A. Leite
- Instituto de Ciências Biológicas, UFG, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Hérica L. Santos
- Laboratório de Bioquímica Celular, UFSJ, Universidade Federal de São João del-Rei, Divinópolis, Minas Gerais, Brazil
| |
Collapse
|
8
|
Chen Y, Nie Q, Song T, Zou X, Li Q, Zhang P. Integrated Proteomics and Lipidomics Analysis of Hippocampus to Reveal the Metabolic Landscape of Epilepsy. ACS OMEGA 2025; 10:9351-9367. [PMID: 40092809 PMCID: PMC11904687 DOI: 10.1021/acsomega.4c10085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 02/07/2025] [Accepted: 02/12/2025] [Indexed: 03/19/2025]
Abstract
Epilepsy encompasses a spectrum of chronic brain disorders characterized by transient central nervous system dysfunctions induced by recurrent, aberrant, synchronized neuronal discharges. Hippocampal sclerosis (HS) is identified as the predominant pathological alteration in epilepsy, particularly in temporal lobe epilepsy. This study investigates the metabolic profiles of epileptic hippocampal tissues using proteomics and lipidomics techniques. An epilepsy model was established in Sprague-Dawley (SD) rats via intraperitoneal injection of pentylenetetrazole (PTZ), with hippocampal tissue samples subsequently extracted for histopathological examination. Proteomics analysis was conducted using isobaric tags for relative and absolute quantitation (iTRAQ) combined with liquid chromatography-tandem mass spectrometry (LC-MS/MS), while lipidomics analysis employed ultrahigh-performance liquid chromatography quadrupole time-of-flight mass spectrometry (UHPLC Q-TOF/MS). Proteomic analysis identified 144 proteins with significant differential expression in acute epileptic hippocampal tissue and 83 proteins in chronic epileptic hippocampal tissue. Key proteins, including neurofilament heavy (Nefh), vimentin (Vim), gelsolin (Gsn), NAD-dependent protein deacetylase (Sirt2), 2',3'-cyclic-nucleotide 3'-phosphodiesterase (Cnp), myocyte enhancer factor 2D (Mef2d), and Cathepsin D (Ctsd), were pivotal in epileptic hippocampal tissue injury and validated through parallel reaction monitoring (PRM). Concurrently, lipid metabolomics analysis identified 32 metabolites with significant differential expression in acute epileptic hippocampal tissue and 61 metabolites in chronic epileptic hippocampal tissue. Bioinformatics analysis indicated that glycerophospholipid (GP) metabolism, glycosylphosphatidylinositol (GPI)-anchor biosynthesis, and glycerolipid (GL) metabolism were crucial in epileptic hippocampal tissue injury. Integrated proteomics and lipidomics analysis revealed key protein-lipid interactions in acute and chronic epilepsy and identified critical pathways such as sphingolipid signaling, autophagy, and calcium signaling. These findings provide deeper insights into the pathophysiological mechanisms of epileptic hippocampal tissue damage, potentially unveiling novel therapeutic avenues for clinicians.
Collapse
Affiliation(s)
- Yinyu Chen
- Key
Laboratory of Tropical Translational Medicine of Ministry of Education
& the First Affiliated Hospital, Hainan
Medical University, Xueyuan Road 3#, Longhuaqu, Haikou 571199, Hainan, China
| | - Qianyun Nie
- Key
Laboratory of Tropical Translational Medicine of Ministry of Education
& the First Affiliated Hospital, Hainan
Medical University, Xueyuan Road 3#, Longhuaqu, Haikou 571199, Hainan, China
- Department
of Pathology, School of Basic Medicine and Life Sciences, Hainan Medical University, Xueyuan Road 3#, Longhuaqu, Haikou 571199 Hainan, China
| | - Tao Song
- Key
Laboratory of Tropical Translational Medicine of Ministry of Education
& the First Affiliated Hospital, Hainan
Medical University, Xueyuan Road 3#, Longhuaqu, Haikou 571199, Hainan, China
| | - Xing Zou
- Key
Laboratory of Tropical Translational Medicine of Ministry of Education
& the First Affiliated Hospital, Hainan
Medical University, Xueyuan Road 3#, Longhuaqu, Haikou 571199, Hainan, China
| | - Qifu Li
- Key
Laboratory of Tropical Translational Medicine of Ministry of Education
& the First Affiliated Hospital, Hainan
Medical University, Xueyuan Road 3#, Longhuaqu, Haikou 571199, Hainan, China
| | - Peng Zhang
- Key
Laboratory of Tropical Translational Medicine of Ministry of Education
& the First Affiliated Hospital, Hainan
Medical University, Xueyuan Road 3#, Longhuaqu, Haikou 571199, Hainan, China
| |
Collapse
|
9
|
Bonney JR, Stratton AE, Guo Y, Eades CB, Prentice BM. Imaging Mass Spectrometry of Sulfatide Isomers from Rat Brain Tissue Using Gas-Phase Charge Inversion Ion/Ion Reactions. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2025; 36:119-126. [PMID: 39587395 DOI: 10.1021/jasms.4c00368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Sulfatides are abundant components of the brain, and dysregulation of these molecules has been linked to several diseases. In sulfatide structures, a sugar is linked to a sphingoid backbone via an α-glycosidic or β-glycosidic linkage. While sulfatides are readily generated in negative ion mode imaging mass spectrometry experiments, resolving sulfatide diastereomers is challenging; therefore, identifications are usually reported as a single sulfatide. Herein, a gas-phase charge inversion ion/ion reaction between sulfatides and a strontium tris-phenanthroline [Sr(Phen)3]2+ reagent is performed to separate the diastereomers, as they form complexes containing different numbers of phenanthroline ligands. The ability to separate these diastereomers using the reaction alone, without the need for any further dissociation, allows for the workflow to be readily implemented in an imaging mass spectrometry experiment. Imaging mass spectrometry was performed on sulfatides generated directly from rat brain tissue, and both the α- and β-linked sulfatide images were obtained.
Collapse
Affiliation(s)
- Julia R Bonney
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Ariana E Stratton
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Yingchan Guo
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Cabell B Eades
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Boone M Prentice
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
10
|
Simard M, Mélançon K, Berthiaume L, Tremblay C, Pshevorskiy L, Julien P, Rajput AH, Rajput A, Calon F. Postmortem Fatty Acid Abnormalities in the Cerebellum of Patients with Essential Tremor. CEREBELLUM (LONDON, ENGLAND) 2024; 23:2341-2359. [PMID: 39215908 PMCID: PMC11585516 DOI: 10.1007/s12311-024-01736-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Fatty acids play many critical roles in brain function but have not been investigated in essential tremor (ET), a frequent movement disorder suspected to involve cerebellar dysfunction. Here, we report a postmortem comparative analysis of fatty acid profiles by gas chromatography in the cerebellar cortex from ET patients (n = 15), Parkinson's disease (PD) patients (n = 15) and Controls (n = 17). Phosphatidylcholine (PC), phosphatidylethanolamine (PE) and phosphatidylinositol (PI)/ phosphatidylserine (PS) were separated by thin-layer chromatography and analyzed separately. First, the total amounts of fatty acids retrieved from the cerebellar cortex were lower in ET patients compared with PD patients, including monounsaturated (MUFA) and polyunsaturated fatty acids (PUFA). The diagnosis of ET was associated with lower cerebellar levels of saturated fatty acids (SFA) and PUFA (DHA and ARA) in the PE fraction specifically, but with a higher relative content of dihomo-γ-linolenic acid (DGLA; 20:3 ω-6) in the PC fraction. In contrast, a diagnosis of PD was associated with higher absolute concentrations of SFA, MUFA and ω-6 PUFA in the PI + PS fractions. However, relative PI + PS contents of ω-6 PUFA were lower in both PD and ET patients. Finally, linear regression analyses showed that the ω-3:ω-6 PUFA ratio was positively associated with age of death, but inversely associated with insoluble α-synuclein. Although it remains unclear how these FA changes in the cerebellum are implicated in ET or PD pathophysiology, they may be related to an ongoing neurodegenerative process or to dietary intake differences. The present findings provide a window of opportunity for lipid-based therapeutic nutritional intervention.
Collapse
Affiliation(s)
- Mélissa Simard
- Faculté de Pharmacie, Université Laval, Québec, QC, Canada
| | - Koralie Mélançon
- Faculté de Pharmacie, Université Laval, Québec, QC, Canada
- Axe Neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Room T-2-67 (CHUL) 2705 boul. Laurier, Québec, QC, G1V 4G2, Canada
| | - Line Berthiaume
- Faculté de Médecine, Université Laval, Québec, QC, Canada
- Axe Endocrinologie et Néphrologie, Centre de Recherche du CHU de Québec, Université Laval, Québec, QC, Canada
| | - Cyntia Tremblay
- Faculté de Pharmacie, Université Laval, Québec, QC, Canada
- Axe Neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Room T-2-67 (CHUL) 2705 boul. Laurier, Québec, QC, G1V 4G2, Canada
| | - Laura Pshevorskiy
- Faculté de Pharmacie, Université Laval, Québec, QC, Canada
- Axe Neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Room T-2-67 (CHUL) 2705 boul. Laurier, Québec, QC, G1V 4G2, Canada
| | - Pierre Julien
- Faculté de Médecine, Université Laval, Québec, QC, Canada
- Axe Endocrinologie et Néphrologie, Centre de Recherche du CHU de Québec, Université Laval, Québec, QC, Canada
| | - Ali H Rajput
- Division of Neurology, Royal University Hospital, University of Saskatchewan, Saskatoon, SK, Canada
| | - Alex Rajput
- Division of Neurology, Royal University Hospital, University of Saskatchewan, Saskatoon, SK, Canada
| | - Frédéric Calon
- Faculté de Pharmacie, Université Laval, Québec, QC, Canada.
- Axe Neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Room T-2-67 (CHUL) 2705 boul. Laurier, Québec, QC, G1V 4G2, Canada.
| |
Collapse
|
11
|
Smith T, Knudsen KJ, Ritchie SA. A novel inducible animal model for studying chronic plasmalogen deficiency associated with Alzheimer's disease. Brain Res 2024; 1843:149132. [PMID: 39053687 DOI: 10.1016/j.brainres.2024.149132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/15/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
Plasmalogens are vinyl-ether glycerophospholipids critical for the structure and function of neuronal membranes. Deficient plasmalogen levels are associated with neurodegenerative diseases, particularly Alzheimer's disease (AD), which has led to the hypothesis that plasmalogen deficiency might drive disease onset and progression. However, the lack of a suitable animal model with late-onset plasmalogen deficiency has prevented testing of this hypothesis. The goal of this project was therefore to develop and characterize a mouse model capable of undergoing a plasmalogen deficiency only in adulthood, mirroring the chronic decline thought to occur in AD. We report here the creation of a novel animal model containing a tamoxifen-inducible knockout of the Gnpat gene encoding the first step in the plasmalogen biosynthetic pathway. Tamoxifen treatment in adult animals resulted in a significant reduction of plasmalogens in both the circulation and tissues as early as four weeks. By four months, changes in behavior and nerve function were observed, with strong correlations between residual brain plasmalogen levels, hyperactivity, and latency. The model will be useful for further elucidating the role of plasmalogens in AD and evaluating plasmalogen therapies.
Collapse
Affiliation(s)
- Tara Smith
- Med-Life Discoveries LP, Saskatoon, SK, Canada.
| | | | | |
Collapse
|
12
|
Böing C, Di Fabrizio M, Burger D, Bol JGJM, Huisman E, Rozemuller AJM, van de Berg WDJ, Stahlberg H, Lewis AJ. Distinct ultrastructural phenotypes of glial and neuronal alpha-synuclein inclusions in multiple system atrophy. Brain 2024; 147:3727-3741. [PMID: 38696728 PMCID: PMC11531854 DOI: 10.1093/brain/awae137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 03/17/2024] [Accepted: 04/09/2024] [Indexed: 05/04/2024] Open
Abstract
Multiple system atrophy is characterized pathologically by the accumulation of alpha-synuclein (aSyn) into glial cytoplasmic inclusions (GCIs). The mechanism underlying the formation of GCIs is not well understood. In this study, correlative light and electron microscopy was employed to investigate aSyn pathology in the substantia nigra and putamen of post-mortem multiple system atrophy brain donors. Three distinct types of aSyn immuno-positive inclusions were identified in oligodendrocytes, neurons and dark cells presumed to be dark microglia. Oligodendrocytes contained fibrillar GCIs that were consistently enriched with lysosomes and peroxisomes, supporting the involvement of the autophagy pathway in aSyn aggregation in multiple system atrophy. Neuronal cytoplasmic inclusions exhibited ultrastructural heterogeneity resembling both fibrillar and membranous inclusions, linking multiple systems atrophy and Parkinson's disease. The novel aSyn pathology identified in the dark cells, displayed GCI-like fibrils or non-GCI-like ultrastructures suggesting various stages of aSyn accumulation in these cells. The observation of GCI-like fibrils within dark cells suggests these cells may be an important contributor to the origin or spread of pathological aSyn in multiple system atrophy. Our results suggest a complex interplay between multiple cell types that may underlie the formation of aSyn pathology in multiple system atrophy brain and highlight the need for further investigation into cell-specific disease pathologies in multiple system atrophy.
Collapse
Affiliation(s)
- Carolin Böing
- C-CINA, Biozentrum, University of Basel, Basel 4058, Switzerland
| | - Marta Di Fabrizio
- Laboratory of Biological Electron Microscopy, Institute of Physics, School of Basic Sciences, Ecole Polytechnique Federale Lausanne, Lausanne, Vaud 1015, Switzerland
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Vaud 1015, Switzerland
| | - Domenic Burger
- Laboratory of Biological Electron Microscopy, Institute of Physics, School of Basic Sciences, Ecole Polytechnique Federale Lausanne, Lausanne, Vaud 1015, Switzerland
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Vaud 1015, Switzerland
| | - John G J M Bol
- Department of Anatomy and Neurosciences, section Clinical Neuroanatomy and Biobanking, Amsterdam Neuroscience, Amsterdam University Medical Centre, Vrije University Amsterdam, Amsterdam 1081 HZ, The Netherlands
| | - Evelien Huisman
- Department of Anatomy and Neurosciences, section Clinical Neuroanatomy and Biobanking, Amsterdam Neuroscience, Amsterdam University Medical Centre, Vrije University Amsterdam, Amsterdam 1081 HZ, The Netherlands
| | - Annemieke J M Rozemuller
- Department of Pathology, Amsterdam Neuroscience, Amsterdam University Medical Centre, Vrije University Amsterdam, Amsterdam 1081 HZ, The Netherlands
- Amsterdam Neuroscience program Neurodegeneration, Amsterdam University Medical Centre, Vrije University Amsterdam, Amsterdam 1081 HZ, The Netherlands
| | - Wilma D J van de Berg
- Department of Anatomy and Neurosciences, section Clinical Neuroanatomy and Biobanking, Amsterdam Neuroscience, Amsterdam University Medical Centre, Vrije University Amsterdam, Amsterdam 1081 HZ, The Netherlands
- Amsterdam Neuroscience program Neurodegeneration, Amsterdam University Medical Centre, Vrije University Amsterdam, Amsterdam 1081 HZ, The Netherlands
| | - Henning Stahlberg
- Laboratory of Biological Electron Microscopy, Institute of Physics, School of Basic Sciences, Ecole Polytechnique Federale Lausanne, Lausanne, Vaud 1015, Switzerland
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Vaud 1015, Switzerland
| | - Amanda J Lewis
- Laboratory of Biological Electron Microscopy, Institute of Physics, School of Basic Sciences, Ecole Polytechnique Federale Lausanne, Lausanne, Vaud 1015, Switzerland
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Vaud 1015, Switzerland
| |
Collapse
|
13
|
Nasrin MSTZ, Kikuchi S, Uchimura Y, Yoshioka M, Morita SY, Kobayashi T, Kinoshita Y, Furusho Y, Tamiaki H, Yanagisawa D, Udagawa J. Ethanolamine and Vinyl-Ether Moieties in Brain Phospholipids Modulate Behavior in Rats. NEUROSCI 2024; 5:509-522. [PMID: 39585105 PMCID: PMC11587438 DOI: 10.3390/neurosci5040037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/25/2024] [Accepted: 10/29/2024] [Indexed: 11/26/2024] Open
Abstract
Plasmalogens are brain-enriched phospholipids with a vinyl-ether bond at the sn-1 position between the glycerol backbone and the alkyl chain. Previous studies have suggested that plasmalogens modulate locomotor activity, anxiety-like behavior, and cognitive functions in rodents; however, the specific moieties contributing to behavioral regulation are unknown. In this study, we examined the behavioral modulation induced by specific phospholipid moieties. To confirm the permeability of phospholipids in injected liposomes, we measured the fluorescence intensity following intravenous injection of liposomes containing ATTO 740-labeled dioleoylphosphatidylethanolamine. Then, we compared the behavioral effects following injection of liposomes composed of egg phosphatidylcholine (PC) and 1-stearoyl-2-docosahexaenoyl-sn-glycero-3-phosphoethanolamine (PE 18:0/22:6), PC 18:0/22:6, 1-(1Z-octadecenyl)-2-docosahexaenoyl-sn-glycero-3-phosphoethanolamine (PE P-18:0/22:6), or PC P-18:0/22:6, into the tail vein of male rats. The time spent in the central region of the open field was significantly reduced after injection of PE 18:0/22:6, harboring an ester bond at sn-1 compared to controls. Furthermore, the discrimination ratio in the novel object recognition test was significantly higher in PC 18:0/22:6 compared to PE 18:0/22:6, suggesting that the substitution of ethanolamine with choline can enhance recognition memory. We demonstrate that the structures of the sn-1 bond and the hydrophilic moiety in the phospholipids can modulate exploratory behaviors and recognition memory in rodents.
Collapse
Affiliation(s)
- MST Zenika Nasrin
- Division of Anatomy and Cell Biology, Department of Anatomy, Shiga University of Medical Science, Otsu 520-2192, Shiga, Japan; (M.Z.N.); (S.K.); (Y.U.)
| | - Shuhei Kikuchi
- Division of Anatomy and Cell Biology, Department of Anatomy, Shiga University of Medical Science, Otsu 520-2192, Shiga, Japan; (M.Z.N.); (S.K.); (Y.U.)
| | - Yasuhiro Uchimura
- Division of Anatomy and Cell Biology, Department of Anatomy, Shiga University of Medical Science, Otsu 520-2192, Shiga, Japan; (M.Z.N.); (S.K.); (Y.U.)
| | - Mina Yoshioka
- Division of Anatomy and Cell Biology, Department of Anatomy, Shiga University of Medical Science, Otsu 520-2192, Shiga, Japan; (M.Z.N.); (S.K.); (Y.U.)
| | - Shin-ya Morita
- Department of Pharmacotherapeutics, Shiga University of Medical Science, Otsu 520-2192, Shiga, Japan
| | - Tomoya Kobayashi
- Division of Anatomy and Cell Biology, Department of Anatomy, Shiga University of Medical Science, Otsu 520-2192, Shiga, Japan; (M.Z.N.); (S.K.); (Y.U.)
| | - Yusuke Kinoshita
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu 525-8577, Shiga, Japan
| | - Yoshio Furusho
- Department of Chemistry, Shiga University of Medical Science, Otsu 520-2192, Shiga, Japan
| | - Hitoshi Tamiaki
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu 525-8577, Shiga, Japan
| | - Daijiro Yanagisawa
- Molecular Neuroscience Research Center, Shiga University of Medical Science, Otsu 520-2192, Shiga, Japan
| | - Jun Udagawa
- Division of Anatomy and Cell Biology, Department of Anatomy, Shiga University of Medical Science, Otsu 520-2192, Shiga, Japan; (M.Z.N.); (S.K.); (Y.U.)
| |
Collapse
|
14
|
Smith ME, Bazinet RP. Unraveling brain palmitic acid: Origin, levels and metabolic fate. Prog Lipid Res 2024; 96:101300. [PMID: 39222711 DOI: 10.1016/j.plipres.2024.101300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
In the human brain, palmitic acid (16:0; PAM) comprises nearly half of total brain saturates and has been identified as the third most abundant fatty acid overall. Brain PAM supports the structure of membrane phospholipids, provides energy, and regulates protein stability. Sources underlying the origin of brain PAM are both diet and endogenous synthesis via de novo lipogenesis (DNL), primarily from glucose. However, studies investigating the origin of brain PAM are limited to tracer studies utilizing labelled (14C/11C/3H/2H) PAM, and results vary based on the model and tracer used. Nevertheless, there is evidence PAM is synthesized locally in the brain, in addition to obtained directly from the diet. Herein, we provide an overview of brain PAM origin, entry to the brain, metabolic fate, and factors influencing brain PAM kinetics and levels, the latter in the context of age, as well as neurological diseases and psychiatric disorders. Additionally, we briefly summarize the role of PAM in signaling at the level of the brain. We add to the literature a rudimentary summary on brain PAM metabolism.
Collapse
Affiliation(s)
- Mackenzie E Smith
- Department of Nutritional Sciences, University of Toronto, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| | - Richard P Bazinet
- Department of Nutritional Sciences, University of Toronto, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada.
| |
Collapse
|
15
|
Xu W, Yan J, Shao A, Lenahan C, Gao L, Wu H, Zheng J, Zhang J, Zhang JH. Peroxisome and pexophagy in neurological diseases. FUNDAMENTAL RESEARCH 2024; 4:1389-1397. [PMID: 39734532 PMCID: PMC11670711 DOI: 10.1016/j.fmre.2023.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 02/15/2023] [Accepted: 04/19/2023] [Indexed: 12/31/2024] Open
Abstract
Peroxisomes and pexophagy have gained increasing attention in their role within the central nervous system (CNS) in recent years. In this review, we comprehensively discussed the physiological and pathological mechanisms of peroxisomes and pexophagy in neurological diseases. Peroxisomes communicate with mitochondria, endoplasmic reticulum, and lipid bodies. Their types, sizes, and shapes vary in different regions of the brain. Moreover, peroxisomes play an important role in oxidative homeostasis, lipid synthesis, and degradation in the CNS, whereas its dysfunction causes various neurological diseases. Therefore, selective removal of dysfunctional or superfluous peroxisomes (pexophagy) provides neuroprotective effects, which indicate a promising therapeutic target. However, pexophagy largely remains unexplored in neurological disorders. More studies are needed to explore the pexophagy's crosstalk mechanisms in neurological pathology.
Collapse
Affiliation(s)
- Weilin Xu
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou 310009, China
| | - Jun Yan
- Department of Neurosurgery, Affiliated Tumor Hospital of Guangxi Medical University, Guangxi 537406, China
| | - Anwen Shao
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou 310009, China
| | - Cameron Lenahan
- Burrell College of Osteopathic Medicine, New Mexico State University, Las Cruces, NM 88001, USA
| | - Liansheng Gao
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou 310009, China
| | - Haijian Wu
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou 310009, China
| | - Jingwei Zheng
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou 310009, China
| | - Jianmin Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou 310009, China
| | - John H. Zhang
- Department of Physiology & Pharmacology Loma Linda University, Loma Linda, CA 92350, USA
- Department of Neurosurgery Loma Linda University, Loma Linda, CA 92350, USA
| |
Collapse
|
16
|
Kim J, Huang K, Vo PTT, Miao T, Correia J, Kumar A, Simons MJP, Bai H. Peroxisomal import stress activates integrated stress response and inhibits ribosome biogenesis. PNAS NEXUS 2024; 3:pgae429. [PMID: 39398621 PMCID: PMC11470064 DOI: 10.1093/pnasnexus/pgae429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 09/18/2024] [Indexed: 10/15/2024]
Abstract
Impaired organelle-specific protein import triggers a variety of cellular stress responses, including adaptive pathways to balance protein homeostasis. Most of the previous studies focus on the cellular stress response triggered by misfolded proteins or defective protein import in the endoplasmic reticulum or mitochondria. However, little is known about the cellular stress response to impaired protein import in the peroxisome, an understudied organelle that has recently emerged as a key signaling hub for cellular and metabolic homeostasis. To uncover evolutionarily conserved cellular responses upon defective peroxisomal import, we carried out a comparative transcriptomic analysis on fruit flies with tissue-specific peroxin knockdown and human HEK293 cells expressing dominant-negative PEX5C11A. Our RNA-seq results reveal that defective peroxisomal import upregulates integrated stress response (ISR) and downregulates ribosome biogenesis in both flies and human cells. Functional analyses confirm that impaired peroxisomal import induces eIF2α phosphorylation and ATF4 expression. Loss of ATF4 exaggerates cellular damage upon peroxisomal import defects, suggesting that ATF4 activation serves as a cellular cytoprotective mechanism upon peroxisomal import stress. Intriguingly, we show that peroxisomal import stress decreases the expression of rRNA processing genes and inhibits early pre-rRNA processing, which leads to the accumulation of 47S precursor rRNA and reduction of downstream rRNA intermediates. Taken together, we identify ISR activation and ribosome biogenesis inhibition as conserved adaptive stress responses to defective peroxisomal import and uncover a novel link between peroxisomal dysfunction and rRNA processing.
Collapse
Affiliation(s)
- Jinoh Kim
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Kerui Huang
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Pham Thuy Tien Vo
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Ting Miao
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Jacinta Correia
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Ankur Kumar
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Mirre J P Simons
- Department of Animal and Plant Sciences and Bateson Centre, The University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Hua Bai
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
17
|
Hussain M, Khan I, Chaudhary MN, Ali K, Mushtaq A, Jiang B, Zheng L, Pan Y, Hu J, Zou X. Phosphatidylserine: A comprehensive overview of synthesis, metabolism, and nutrition. Chem Phys Lipids 2024; 264:105422. [PMID: 39097133 DOI: 10.1016/j.chemphyslip.2024.105422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/21/2024] [Accepted: 07/29/2024] [Indexed: 08/05/2024]
Abstract
Phosphatidylserine (PtdS) is classified as a glycerophospholipid and a primary anionic phospholipid and is particularly abundant in the inner leaflet of the plasma membrane in neural tissues. It is synthesized from phosphatidylcholine or phosphatidylethanolamine by exchanging the base head group with serine, and this reaction is catalyzed by PtdS synthase-1 and PtdS synthase-2 located in the endoplasmic reticulum. PtdS exposure on the outside surface of the cell is essential for eliminating apoptotic cells and initiating the blood clotting cascade. It is also a precursor of phosphatidylethanolamine, produced by PtdS decarboxylase in bacteria, yeast, and mammalian cells. Furthermore, PtdS acts as a cofactor for several necessary enzymes that participate in signaling pathways. Beyond these functions, several studies indicate that PtdS plays a role in various cerebral functions, including activating membrane signaling pathways, neuroinflammation, neurotransmission, and synaptic refinement associated with the central nervous system (CNS). This review discusses the occurrence of PtdS in nature and biosynthesis via enzymes and genes in plants, yeast, prokaryotes, mammalian cells, and the brain, and enzymatic synthesis through phospholipase D (PLD). Furthermore, we discuss metabolism, its role in the CNS, the fortification of foods, and supplementation for improving some memory functions, the results of which remain unclear. PtdS can be a potentially beneficial addition to foods for kids, seniors, athletes, and others, especially with the rising consumer trend favoring functional foods over conventional pills and capsules. Clinical studies have shown that PtdS is safe and well tolerated by patients.
Collapse
Affiliation(s)
- Mudassar Hussain
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Imad Khan
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Muneeba Naseer Chaudhary
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City/College of Food Science, Southwest University, Chongqing, 400715, China
| | - Khubaib Ali
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Anam Mushtaq
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Bangzhi Jiang
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Lei Zheng
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Yuechao Pan
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jijie Hu
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Xiaoqiang Zou
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
18
|
Maffioli E, Nonnis S, Negri A, Fontana M, Frabetti F, Rossi AR, Tedeschi G, Toni M. Environmental Temperature Variation Affects Brain Lipid Composition in Adult Zebrafish ( Danio rerio). Int J Mol Sci 2024; 25:9629. [PMID: 39273578 PMCID: PMC11394874 DOI: 10.3390/ijms25179629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/15/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024] Open
Abstract
This study delves deeper into the impact of environmental temperature variations on the nervous system in teleost fish. Previous research has demonstrated that exposing adult zebrafish (Danio rerio) to 18 °C and 34 °C for 4 or 21 days induces behavioural changes compared to fish kept at a control temperature of 26 °C, suggesting alterations in the nervous system. Subsequent studies revealed that these temperature conditions also modify brain protein expression, indicating potential neurotoxic effects. The primary aim of this work was to investigate the effects of prolonged exposure (21 days) to 18 °C or 34 °C on the brain lipidomes of adult zebrafish compared to a control temperature. Analysis of the brain lipidome highlighted significant alteration in the relative abundances of specific lipid molecules at 18 °C and 34 °C, confirming distinct effects induced by both tested temperatures. Exposure to 18 °C resulted in an increase in levels of phospholipids, such as phosphatidylethanolamine, alongside a general reduction in levels of sphingolipids, including sphingomyelin. Conversely, exposure to 34 °C produced more pronounced effects, with increases in levels of phosphatidylethanolamine and those of various sphingolipids such as ceramide, gangliosides, and sphingomyelin, alongside a reduction in levels of ether phospholipids, including lysophosphatidylethanolamine ether, phosphatidylethanolamine ether, and phosphatidylglycerol ether, as well as levels of glycolipids like monogalactosyldiacylglycerol. These results, when integrated with existing proteomic and behavioural data, offer new insights into the effects of thermal variations on the nervous system in teleost fish. Specifically, our proteomic and lipidomic findings suggest that elevated temperatures may disrupt mitochondrial function, increase neuronal susceptibility to oxidative stress and cytotoxicity, alter axonal myelination, impair nerve impulse transmission, hinder synapse function and neurotransmitter release, and potentially lead to increased neuronal death. These findings are particularly relevant in the fields of cell biology, neurobiology, and ecotoxicology, especially in the context of global warming.
Collapse
Affiliation(s)
- Elisa Maffioli
- Department of Veterinary Medicine and Animal Science (DIVAS), Università degli Studi di Milano, Via dell'Università 6, 26900 Lodi, Italy
| | - Simona Nonnis
- Department of Veterinary Medicine and Animal Science (DIVAS), Università degli Studi di Milano, Via dell'Università 6, 26900 Lodi, Italy
- CRC "Innovation for Well-Being and Environment" (I-WE), Università degli Studi di Milano, 20126 Milano, Italy
| | - Armando Negri
- Department of Veterinary Medicine and Animal Science (DIVAS), Università degli Studi di Milano, Via dell'Università 6, 26900 Lodi, Italy
| | - Manuela Fontana
- Unitech OMICs, Università degli Studi di Milano, 20139 Milan, Italy
| | - Flavia Frabetti
- Department of Medical and Surgical Sciences-DIMEC, University of Bologna, 40126 Bologna, Italy
| | - Anna Rita Rossi
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University, 00185 Rome, Italy
| | - Gabriella Tedeschi
- Department of Veterinary Medicine and Animal Science (DIVAS), Università degli Studi di Milano, Via dell'Università 6, 26900 Lodi, Italy
- CRC "Innovation for Well-Being and Environment" (I-WE), Università degli Studi di Milano, 20126 Milano, Italy
| | - Mattia Toni
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University, 00185 Rome, Italy
| |
Collapse
|
19
|
Atella TC, Medina JM, Atella GC, Allodi S, Kluck GEG. Neuroprotective Effects of Metformin Through AMPK Activation in a Neurotoxin-Based Model of Cerebellar Ataxia. Mol Neurobiol 2024; 61:5102-5116. [PMID: 38165584 DOI: 10.1007/s12035-023-03892-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 12/19/2023] [Indexed: 01/04/2024]
Abstract
Cerebellar ataxia is a heterogeneous group of neural disorders clinically characterized by cerebellar dysfunction. The diagnosis of patients with progressive cerebellar ataxia is complex due to the direct correlation with other neuron diseases. Although there is still no cure for this pathological condition, some metabolic, hereditary, inflammatory, and immunological factors affecting cerebellar ataxia are being studied and may become therapeutic targets. Advances in studying the neuroanatomy, pathophysiology, and molecular biology of the cerebellum (CE) contribute to a better understanding of the mechanisms behind the development of this disorder. In this study, Wistar rats aged 30 to 35 days were injected intraperitoneally with 3-acetylpyridine (3-AP) and/or metformin (for AMP-activated protein kinase (AMPK) enzyme activation) and euthanized in 24 hours and 4 days after injection. We analyzed the neuromodulatory role of the AMPK on cerebellar ataxia induced by the neurotoxin 3-AP in the brain stem (BS) and CE, after pre-treatment for 7 and 15 days with metformin, a pharmacological indirect activator of AMPK. The results shown here suggest that AMPK activation in the BS and CE leads to a significant reduction in neuroinflammation in these regions. AMPK was able to restore the changes in fatty acid composition and pro-inflammatory cytokines caused by 3-AP, suggesting that the action of AMPK seems to result in a possible neuroprotection on the cerebellar ataxia model.
Collapse
Affiliation(s)
- Tainá C Atella
- Laboratório de Neurobiologia Comparativa e do Desenvolvimento, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jorge M Medina
- Laboratório de Bioquímica de Lipídios e Lipoproteínas, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Georgia C Atella
- Laboratório de Bioquímica de Lipídios e Lipoproteínas, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Silvana Allodi
- Laboratório de Neurobiologia Comparativa e do Desenvolvimento, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - George E G Kluck
- Laboratório de Bioquímica de Lipídios e Lipoproteínas, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
- Department of Biochemistry and Biomedical Sciences, Thrombosis and Atherosclerosis Research Institute, McMaster University and Hamilton Health Sciences, Hamilton General Hospital Campus, 237 Barton St E, Hamilton, Ontario, L8L 2X2, Canada.
| |
Collapse
|
20
|
Ruiz M, Devkota R, Bergh PO, Nik AM, Blid Sköldheden S, Mondejar-Duran J, Tufvesson-Alm M, Bohlooly-Y M, Sanchez D, Carlsson P, Henricsson M, Jerlhag E, Borén J, Pilon M. Aging AdipoR2-deficient mice are hyperactive with enlarged brains excessively rich in saturated fatty acids. FASEB J 2024; 38:e23815. [PMID: 38989587 DOI: 10.1096/fj.202400293rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 06/04/2024] [Accepted: 06/28/2024] [Indexed: 07/12/2024]
Abstract
To investigate how the fatty acid composition of brain phospholipids influences brain-specific processes, we leveraged the AdipoR2 (adiponectin receptor 2) knockout mouse model in which the brain is enlarged, and cellular membranes are excessively rich in saturated fatty acids. Lipidomics analysis of brains at 2, 7, and 18 months of age showed that phosphatidylcholines, which make up about two-thirds of all cerebrum membrane lipids, contain a gross excess of saturated fatty acids in AdipoR2 knockout mice, and that this is mostly attributed to an excess palmitic acid (C16:0) at the expense of oleic acid (C18:1), consistent with a defect in fatty acid desaturation and elongation in the mutant. Specifically, there was a ~12% increase in the overall saturated fatty acid content within phosphatidylcholines and a ~30% increase in phosphatidylcholines containing two palmitic acids. Phosphatidylethanolamines, sphingomyelins, ceramides, lactosylceramides, and dihydroceramides also showed an excess of saturated fatty acids in the AdipoR2 knockout mice while nervonic acid (C24:1) was enriched at the expense of shorter saturated fatty acids in glyceroceramides. Similar defects were found in the cerebellum and myelin sheaths. Histology showed that cell density is lower in the cerebrum of AdipoR2 knockout mice, but electron microscopy did not detect reproducible defects in the ultrastructure of cerebrum neurons, though proteomics analysis showed an enrichment of electron transport chain proteins in the cerebellum. Behavioral tests showed that older (33 weeks old) AdipoR2 knockout mice are hyperactive and anxious compared to control mice of a similar age. Also, in contrast to control mice, the AdipoR2 knockout mice do not gain weight in old age but do have normal lifespans. We conclude that an excess fatty acid saturation in brain phospholipids is accompanied by hyperactivity but seems otherwise well tolerated.
Collapse
Affiliation(s)
- Mario Ruiz
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Ranjan Devkota
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Per-Olof Bergh
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Ali Moussavi Nik
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Sebastian Blid Sköldheden
- Department of Pharmacology, Institute of Neuroscience and physiology, University of Gothenburg, Gothenburg, Sweden
| | - Jorge Mondejar-Duran
- Instituto de Biomedicina y Genética Molecular, Excellence Unit, University of Valladolid-CSIC, Valladolid, Spain
| | - Maximilian Tufvesson-Alm
- Department of Pharmacology, Institute of Neuroscience and physiology, University of Gothenburg, Gothenburg, Sweden
| | | | - Diego Sanchez
- Instituto de Biomedicina y Genética Molecular, Excellence Unit, University of Valladolid-CSIC, Valladolid, Spain
| | - Peter Carlsson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Marcus Henricsson
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Elisabet Jerlhag
- Department of Pharmacology, Institute of Neuroscience and physiology, University of Gothenburg, Gothenburg, Sweden
| | - Jan Borén
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Marc Pilon
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
21
|
Barbuti PA, Guardia-Laguarta C, Yun T, Chatila ZK, Flowers X, Santos BFR, Larsen SB, Hattori N, Bradshaw E, Dettmer U, Fanning S, Vilas M, Reddy H, Teich AF, Krüger R, Area-Gomez E, Przedborski S. The Role of Alpha-Synuclein in Synucleinopathy: Impact on Lipid Regulation at Mitochondria-ER Membranes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.17.599406. [PMID: 38948777 PMCID: PMC11212931 DOI: 10.1101/2024.06.17.599406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
The protein alpha-synuclein (αSyn) plays a critical role in the pathogenesis of synucleinopathy, which includes Parkinson's disease and multiple system atrophy, and mounting evidence suggests that lipid dyshomeostasis is a critical phenotype in these neurodegenerative conditions. Previously, we identified that αSyn localizes to mitochondria-associated endoplasmic reticulum membranes (MAMs), temporary functional domains containing proteins that regulate lipid metabolism, including the de novo synthesis of phosphatidylserine. In the present study, we have analyzed the lipid composition of postmortem human samples, focusing on the substantia nigra pars compacta of Parkinson's disease and controls, as well as three less affected brain regions of Parkinson's donors. To further assess synucleinopathy-related lipidome alterations, similar analyses were performed on the striatum of multiple system atrophy cases. Our data show region-and disease-specific changes in the levels of lipid species. Specifically, our data revealed alterations in the levels of specific phosphatidylserine species in brain areas most affected in Parkinson's disease. Some of these alterations, albeit to a lesser degree, are also observed multiples system atrophy. Using induced pluripotent stem cell-derived neurons, we show that αSyn contributes to regulating phosphatidylserine metabolism at MAM domains, and that αSyn dosage parallels the perturbation in phosphatidylserine levels. Our results support the notion that αSyn pathophysiology is linked to the dysregulation of lipid homeostasis, which may contribute to the vulnerability of specific brain regions in synucleinopathy. These findings have significant therapeutic implications.
Collapse
Affiliation(s)
- Peter A. Barbuti
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA
- Center for Motor Neuron Biology and Diseases, Columbia University Irving Medical Center, New York, NY 10032, USA
- Translational Neuroscience, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4362, Luxembourg
- Transversal Translational Medicine, Luxembourg Institute of Health, L-1445, Luxembourg
| | - Cristina Guardia-Laguarta
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA
- Center for Motor Neuron Biology and Diseases, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Taekyung Yun
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA
- Center for Biological Research (CIB), - Margarita Salas, CSIC, Madrid, 28040, Spain
| | - Zena K. Chatila
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Xena Flowers
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York, NY 10032, USA
- The Carol and Gene Ludwig Center for Research on Neurodegeneration, Columbia University, New York, NY 10032, USA
| | - Bruno FR. Santos
- Translational Neuroscience, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4362, Luxembourg
- Transversal Translational Medicine, Luxembourg Institute of Health, L-1445, Luxembourg
- Disease Modelling and Screening Platform, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4362, Luxembourg RRID:SCR_025237
| | - Simone B. Larsen
- Translational Neuroscience, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4362, Luxembourg
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University School of Medicine, Bunkyo-ku, Tokyo, 113-8421 Japan
| | - Elizabeth Bradshaw
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York, NY 10032, USA
- The Carol and Gene Ludwig Center for Research on Neurodegeneration, Columbia University, New York, NY 10032, USA
| | - Ulf Dettmer
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Saranna Fanning
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Manon Vilas
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York, NY 10032, USA
- Center for Translational and Computational Neuroimmunology, Columbia University, New York, NY 10032, USA
| | - Hasini Reddy
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York, NY 10032, USA
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Andrew F. Teich
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York, NY 10032, USA
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Rejko Krüger
- Translational Neuroscience, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4362, Luxembourg
- Transversal Translational Medicine, Luxembourg Institute of Health, L-1445, Luxembourg
| | - Estela Area-Gomez
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA
- Center for Motor Neuron Biology and Diseases, Columbia University Irving Medical Center, New York, NY 10032, USA
- Center for Biological Research (CIB), - Margarita Salas, CSIC, Madrid, 28040, Spain
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York, NY 10032, USA
| | - Serge Przedborski
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA
- Center for Motor Neuron Biology and Diseases, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Neuroscience, Columbia University, New York, NY 10032, USA
| |
Collapse
|
22
|
Wu Y, Wang J, Deng Y, Angelov B, Fujino T, Hossain MS, Angelova A. Lipid and Transcriptional Regulation in a Parkinson's Disease Mouse Model by Intranasal Vesicular and Hexosomal Plasmalogen-Based Nanomedicines. Adv Healthc Mater 2024; 13:e2304588. [PMID: 38386974 PMCID: PMC11468381 DOI: 10.1002/adhm.202304588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/05/2024] [Indexed: 02/24/2024]
Abstract
Plasmalogens (vinyl-ether phospholipids) are an emergent class of lipid drugs against various diseases involving neuro-inflammation, oxidative stress, mitochondrial dysfunction, and altered lipid metabolism. They can activate neurotrophic and neuroprotective signaling pathways but low bioavailabilities limit their efficiency in curing neurodegeneration. Here, liquid crystalline lipid nanoparticles (LNPs) are created for the protection and non-invasive intranasal delivery of purified scallop-derived plasmalogens. The in vivo results with a transgenic mouse Parkinson's disease (PD) model (characterized by motor impairments and α-synuclein deposition) demonstrate the crucial importance of LNP composition, which determines the self-assembled nanostructure type. Vesicle and hexosome nanostructures (characterized by small-angle X-ray scattering) display different efficacy of the nanomedicine-mediated recovery of motor function, lipid balance, and transcriptional regulation (e.g., reduced neuro-inflammation and PD pathogenic gene expression). Intranasal vesicular and hexosomal plasmalogen-based LNP treatment leads to improvement of the behavioral PD symptoms and downregulation of the Il6, Il33, and Tnfa genes. Moreover, RNA-sequencing and lipidomic analyses establish a dramatic effect of hexosomal nanomedicines on PD amelioration, lipid metabolism, and the type and number of responsive transcripts that may be implicated in neuroregeneration.
Collapse
Affiliation(s)
- Yu Wu
- Université Paris‐SaclayInstitut Galien Paris‐SaclayCNRS17 Av. des SciencesOrsay91190France
| | - Jieli Wang
- Wenzhou InstituteUniversity of Chinese Academy of SciencesNo.1, Jinlian Road, Longwan DistrictWenzhouZhejiang325001China
| | - Yuru Deng
- Wenzhou InstituteUniversity of Chinese Academy of SciencesNo.1, Jinlian Road, Longwan DistrictWenzhouZhejiang325001China
| | - Borislav Angelov
- Department of Structural DynamicsExtreme Light Infrastructure ERICDolni BrezanyCZ‐25241Czech Republic
| | - Takehiko Fujino
- Institute of Rheological Functions of Food2241‐1 Kubara, Hisayama‐choKasuya‐gunFukuoka811‐2501Japan
| | - Md. Shamim Hossain
- Institute of Rheological Functions of Food2241‐1 Kubara, Hisayama‐choKasuya‐gunFukuoka811‐2501Japan
| | - Angelina Angelova
- Université Paris‐SaclayInstitut Galien Paris‐SaclayCNRS17 Av. des SciencesOrsay91190France
| |
Collapse
|
23
|
Sedlák F, Kvasnička A, Marešová B, Brumarová R, Dobešová D, Dostálová K, Šrámková K, Pehr M, Šácha P, Friedecký D, Konvalinka J. Parallel Metabolomics and Lipidomics of a PSMA/GCPII Deficient Mouse Model Reveal Alteration of NAAG Levels and Brain Lipid Composition. ACS Chem Neurosci 2024; 15:1342-1355. [PMID: 38377674 PMCID: PMC10995945 DOI: 10.1021/acschemneuro.3c00494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 01/10/2024] [Accepted: 02/05/2024] [Indexed: 02/22/2024] Open
Abstract
Glutamate carboxypeptidase II (GCPII, also known as PSMA or FOLH1) is responsible for the cleavage of N-acetyl-aspartyl-glutamate (NAAG) to N-acetyl-aspartate and glutamate in the central nervous system and facilitates the intestinal absorption of folate by processing dietary folyl-poly-γ-glutamate in the small intestine. The physiological function of GCPII in other organs like kidneys is still not known. GCPII inhibitors are neuroprotective in various conditions (e.g., ischemic brain injury) in vivo; however, their utilization as potential drug candidates has not been investigated in regard to not yet known GCPII activities. To explore the GCPII role and possible side effects of GCPII inhibitors, we performed parallel metabolomic and lipidomic analysis of the cerebrospinal fluid (CSF), urine, plasma, and brain tissue of mice with varying degrees of GCPII deficiency (fully deficient in Folh1, -/-; one allele deficient in Folh1, +/-; and wild type, +/+). Multivariate analysis of metabolites showed no significant differences between wild-type and GCPII-deficient mice (except for NAAG), although changes were observed between the sex and age. NAAG levels were statistically significantly increased in the CSF, urine, and plasma of GCPII-deficient mice. However, no difference in NAAG concentrations was found in the whole brain lysate likely because GCPII, as an extracellular enzyme, can affect only extracellular and not intracellular NAAG concentrations. Regarding the lipidome, the most pronounced genotype-linked changes were found in the brain tissue. In brains of GCPII-deficient mice, we observed statistically significant enrichment in phosphatidylcholine-based lipids and reduction of sphingolipids and phosphatidylethanolamine plasmalogens. We hypothesize that the alteration of the NAA-NAAG axis by absent GCPII activity affected myelin composition. In summary, the absence of GCPII and thus similarly its inhibition do not have detrimental effects on metabolism, with just minor changes in the brain lipidome.
Collapse
Affiliation(s)
- František Sedlák
- Institute
of Organic Chemistry and Biochemistry, Czech
Academy of Sciences, Prague 6 166 10, Czechia
- Institute
of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, Prague 2 110 01, Czechia
- First
Department of Internal Medicine - Hematology, Charles University General Hospital in Prague, Prague 110 01, Czechia
| | - Aleš Kvasnička
- Laboratory
for Inherited Metabolic Disorders, Department of Clinical Biochemistry, University Hospital Olomouc, and Faculty of Medicine
and Dentistry, Palacký University Olomouc, Zdravotníku° 248/7, Olomouc 779 00, Czechia
| | - Barbora Marešová
- Institute
of Organic Chemistry and Biochemistry, Czech
Academy of Sciences, Prague 6 166 10, Czechia
- Institute
of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, Prague 2 110 01, Czechia
| | - Radana Brumarová
- Laboratory
for Inherited Metabolic Disorders, Department of Clinical Biochemistry, University Hospital Olomouc, and Faculty of Medicine
and Dentistry, Palacký University Olomouc, Zdravotníku° 248/7, Olomouc 779 00, Czechia
| | - Dana Dobešová
- Laboratory
for Inherited Metabolic Disorders, Department of Clinical Biochemistry, University Hospital Olomouc, and Faculty of Medicine
and Dentistry, Palacký University Olomouc, Zdravotníku° 248/7, Olomouc 779 00, Czechia
| | - Kateřina Dostálová
- Laboratory
for Inherited Metabolic Disorders, Department of Clinical Biochemistry, University Hospital Olomouc, and Faculty of Medicine
and Dentistry, Palacký University Olomouc, Zdravotníku° 248/7, Olomouc 779 00, Czechia
| | - Karolína Šrámková
- Institute
of Organic Chemistry and Biochemistry, Czech
Academy of Sciences, Prague 6 166 10, Czechia
| | - Martin Pehr
- Institute
of Organic Chemistry and Biochemistry, Czech
Academy of Sciences, Prague 6 166 10, Czechia
- Third
Department of Medicine − Department of Endocrinology and Metabolism
of the first Faculty of Medicine and General University Hospital in
Prague, Charles University, Prague 110 01, Czechia
| | - Pavel Šácha
- Institute
of Organic Chemistry and Biochemistry, Czech
Academy of Sciences, Prague 6 166 10, Czechia
| | - David Friedecký
- Laboratory
for Inherited Metabolic Disorders, Department of Clinical Biochemistry, University Hospital Olomouc, and Faculty of Medicine
and Dentistry, Palacký University Olomouc, Zdravotníku° 248/7, Olomouc 779 00, Czechia
| | - Jan Konvalinka
- Institute
of Organic Chemistry and Biochemistry, Czech
Academy of Sciences, Prague 6 166 10, Czechia
- Department
of Biochemistry, Faculty of Science, Charles
University, Hlavova 8, Prague 128 00, Czechia
| |
Collapse
|
24
|
Al-Kuraishy HM, Fahad EH, Al-Windy S, El-Sherbeni SA, Negm WA, Batiha GES. The effects of cholesterol and statins on Parkinson's neuropathology: a narrative review. Inflammopharmacology 2024; 32:917-925. [PMID: 38499742 DOI: 10.1007/s10787-023-01400-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 11/14/2023] [Indexed: 03/20/2024]
Abstract
Parkinson disease (PD) is chronic and progressive neurodegenerative disease of the brain characterized by motor symptoms including tremors, rigidity, postural instability, and bradykinesia. PD neuropathology is due to the progressive degeneration of dopaminergic neurons in the substantia nigra and accumulation of Lewy bodies in the survival neurons. The brain contains a largest amount of cholesterol which is mainly synthesized from astrocytes and glial cells. Cholesterol is intricate in the pathogenesis of PD and may be beneficial or deleterious. Therefore, there are controversial points concerning the role of cholesterol in PD neuropathology. In addition, cholesterol-lowering agents' statins can affect brain cholesterol. Different studies highlighted that statins, via inhibition of brain HMG-CoA, can affect neuronal integrity through suppression of neuronal cholesterol, which regulates synaptic plasticity and neurotransmitter release. Furthermore, statins affect the development and progression of different neurodegenerative diseases in bidirectional ways that could be beneficial or detrimental. Therefore, the objective of the present review was to clarify the double-sward effects of cholesterol and statins on PD neuropathology.
Collapse
Affiliation(s)
- Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, 14132, Iraq
| | - Esraa H Fahad
- Department of Pharmacology and Toxicology, College of Pharmacy, Mustansiriyah University, Baghdad, 14132, Iraq
| | - Salah Al-Windy
- Department of Biology, College of Science, Baghdad University, Baghdad, Iraq
| | - Suzy A El-Sherbeni
- Department of Pharmacognosy, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt
| | - Walaa A Negm
- Department of Pharmacognosy, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, AlBeheira, Egypt.
| |
Collapse
|
25
|
Mondal S, Nandy A, Dande G, Prabhu K, Valmiki RR, Koner D, Banerjee S. Mass Spectrometric Imaging of Anionic Phospholipids Desorbed from Human Hippocampal Sections: Discrimination between Temporal and Nontemporal Lobe Epilepsies. ACS Chem Neurosci 2024; 15:983-993. [PMID: 38355427 DOI: 10.1021/acschemneuro.3c00693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024] Open
Abstract
Temporal lobe epilepsy (TLE) is one of the most common neurological disorders, often accompanied by hippocampal sclerosis. The molecular processes underlying this epileptogenesis are poorly understood. To examine the lipid profile, 39 fresh frozen sections of the human hippocampus obtained from epilepsy surgery for TLE (n = 14) and non-TLE (control group; n = 25) patients were subjected to desorption electrospray ionization mass spectrometry imaging in the negative ion mode. In contrast to our earlier report that showed striking downregulation of positively charged phospholipids (e.g., phosphatidylcholine and phosphatidylethanolamine, etc.) in the TLE hippocampus, this study finds complementary upregulation of negatively charged phospholipids, notably, phosphatidylserine and phosphatidylglycerol. This result may point to an active metabolic pool in the TLE hippocampus that produces these anionic phospholipids at the expense of the cationic phospholipids. This metabolic shift could be due to the dysregulation of the Kennedy and CDP-DG pathways responsible for biosynthesizing these lipids. Thus, this study further opens up opportunities to investigate the molecular hallmarks and potential therapeutic targets for TLE.
Collapse
Affiliation(s)
- Supratim Mondal
- Department of Chemistry, Indian Institute of Science Education and Research Tirupati, Tirupati 517507, India
| | - Abhijit Nandy
- Department of Chemistry, Indian Institute of Science Education and Research Tirupati, Tirupati 517507, India
| | - Geetha Dande
- Department of Chemistry, Indian Institute of Science Education and Research Tirupati, Tirupati 517507, India
| | - Krishna Prabhu
- Department of Neurological Sciences, Christian Medical College, Vellore 632004, India
| | | | - Debasish Koner
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi 502284, India
| | - Shibdas Banerjee
- Department of Chemistry, Indian Institute of Science Education and Research Tirupati, Tirupati 517507, India
| |
Collapse
|
26
|
Díaz M, Fabelo N, Martín MV, Santos G, Ferrer I. Evidence for alterations in lipid profiles and biophysical properties of lipid rafts from spinal cord in sporadic amyotrophic lateral sclerosis. J Mol Med (Berl) 2024; 102:391-402. [PMID: 38285093 PMCID: PMC10879240 DOI: 10.1007/s00109-024-02419-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 01/04/2024] [Accepted: 01/11/2024] [Indexed: 01/30/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is an age-dependent neurodegenerative disease affecting motor neurons in the spinal cord and brainstem whose etiopathogenesis remains unclear. Recent studies have linked major neurodegenerative diseases with altered function of multimolecular lipid-protein complexes named lipid rafts. In the present study, we have isolated lipid rafts from the anterior horn of the spinal cords of controls and ALS individuals and analysed their lipid composition. We found that ALS affects levels of different fatty acids, lipid classes and related ratios and indexes. The most significant changes affected the contents of n-9/n-7 monounsaturated fatty acids and arachidonic acid, the main n-6 long-chain polyunsaturated fatty acid (LCPUFA), which were higher in ALS lipid rafts. Paralleling these findings, ALS lipid rafts lower saturates-to-unsaturates ratio compared to controls. Further, levels of cholesteryl ester (SE) and anionic-to-zwitterionic phospholipids ratio were augmented in ALS lipid rafts, while sulfatide contents were reduced. Further, regression analyses revealed augmented SE esterification to (mono)unsaturated fatty acids in ALS, but to saturates in controls. Overall, these changes indicate that lipid rafts from ALS spinal cord undergo destabilization of the lipid structure, which might impact their biophysical properties, likely leading to more fluid membranes. Indeed, estimations of membrane microviscosity confirmed less viscous membranes in ALS, as well as more mobile yet smaller lipid rafts compared to surrounding membranes. Overall, these results demonstrate that the changes in ALS lipid rafts are unrelated to oxidative stress, but to anomalies in lipid metabolism and/or lipid raft membrane biogenesis in motor neurons. KEY MESSAGES: The lipid matrix of multimolecular membrane complexes named lipid rafts are altered in human spinal cord in sporadic amyotrophic lateral sclerosis (ALS). Lipid rafts from ALS spinal cord contain higher levels of n-6 LCPUFA (but not n-3 LCPUFA), n-7/n-9 monounsaturates and lower saturates-to-unsaturates ratio. ALS lipid rafts display increased contents of cholesteryl esters, anomalous anionic-to-zwitterionic phospholipids and phospholipid remodelling and reduced sulphated and total sphingolipid levels, compared to control lipid rafts. Destabilization of the lipid structure of lipid raft affects their biophysical properties and leads to more fluid, less viscous membrane microdomains. The changes in ALS lipid rafts are unlikely related to increased oxidative stress, but to anomalies in lipid metabolism and/or raft membrane biogenesis in motor neurons.
Collapse
Affiliation(s)
- Mario Díaz
- Department of Physics, Faculty of Sciences, University of La Laguna, Tenerife, Spain.
- Instituto Universitario de Neurociencias (IUNE), University of La Laguna, Tenerife, Spain.
| | - Noemí Fabelo
- Laboratory of Membrane Physiology and Biophysics, School of Sciences, University of La Laguna, Tenerife, Spain
| | - M Virginia Martín
- Centro Oceanográfico de Canarias (COC-IEO), Consejo Superior de Investigaciones Científicas, 38180, Santa Cruz de Tenerife, Spain
| | - Guido Santos
- Department of Biochemistry, Microbiology, Cellular Biology and Genetics. School of Sciences, University of La Laguna, Tenerife, Spain
| | - Isidre Ferrer
- University of Barcelona, 08907, Hospitalet de LLobregatBarcelona, Spain
| |
Collapse
|
27
|
Soni R, Mathur K, Shah J. An update on new-age potential biomarkers for Parkinson's disease. Ageing Res Rev 2024; 94:102208. [PMID: 38296162 DOI: 10.1016/j.arr.2024.102208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/24/2024] [Accepted: 01/24/2024] [Indexed: 02/05/2024]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder that deals with dopaminergic deficiency in Substantia nigra pars compact (SNpc) region of the brain. Dopaminergic deficiency manifests into motor dysfunction. Alpha-synuclein protein aggregation is the source for inception of the pathology. Motor symptoms include rigidity, akinesia, tremor and gait dysfunction. Pre-motor symptoms are also seen in early stage of the disease; however, they are not distinguishable. Lack of early diagnosis in PD pathology poses a major challenge for development of disease modifying therapeutics. Substantial neuronal loss has already been occurred before the clinical manifestations appear and hence, it becomes impossible to halt the disease progression. Current diagnostics are majorly based on the clinical symptoms and thus fail to detect early progression of the disease. Thus, there is need for early diagnosis of PD, for detection of the disease at its inception. This will facilitate the effective use of therapies that halt the progression and will make remission possible. Many novel biomarkers are being developed that include blood-based biomarker, CSF biomarker. Other than that, there are non-invasive techniques that can detect biomarkers. We aim to discuss potential role of these new age biomarkers and their association with PD pathogenesis in this review.
Collapse
Affiliation(s)
- Ritu Soni
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat 382481, India
| | - Kirti Mathur
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat 382481, India
| | - Jigna Shah
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat 382481, India.
| |
Collapse
|
28
|
Fernández-Pérez L, Guerra B, Recio C, Cabrera-Galván JJ, García I, De La Rosa JV, Castrillo A, Iglesias-Gato D, Díaz M. Transcriptomic and lipid profiling analysis reveals a functional interplay between testosterone and growth hormone in hypothyroid liver. Front Endocrinol (Lausanne) 2023; 14:1266150. [PMID: 38144555 PMCID: PMC10748415 DOI: 10.3389/fendo.2023.1266150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 11/20/2023] [Indexed: 12/26/2023] Open
Abstract
Preclinical and clinical studies suggest that hypothyroidism might cause hepatic endocrine and metabolic disturbances with features that mimic deficiencies of testosterone and/or GH. The absence of physiological interactions between testosterone and GH can be linked to male differentiated liver diseases. Testosterone plays relevant physiological effects on somatotropic-liver axis and liver composition and the liver is a primary organ of interactions between testosterone and GH. However, testosterone exerts many effects on liver through complex and poorly understood mechanisms. Testosterone impacts liver functions by binding to the Androgen Receptor, and, indirectly, through its conversion to estradiol, and cooperation with GH. However, the role of testosterone, and its interaction with GH, in the hypothyroid liver, remains unclear. In the present work, the effects of testosterone, and how they impact on GH-regulated whole transcriptome and lipid composition in the liver, were studied in the context of adult hypothyroid-orchiectomized rats. Testosterone replacement positively modulated somatotropic-liver axis and impacted liver transcriptome involved in lipid and glucose metabolism. In addition, testosterone enhanced the effects of GH on the transcriptome linked to lipid biosynthesis, oxidation-reduction, and metabolism of unsaturated and long-chain fatty acids (FA). However, testosterone decreased the hepatic content of cholesterol esters and triacylglycerols and increased fatty acids whereas GH increased neutral lipids and decreased polar lipids. Biological network analysis of the effects of testosterone on GH-regulated transcriptome confirmed a close connection with crucial proteins involved in steroid and fatty acid metabolism. Taken together, this comprehensive analysis of gene expression and lipid profiling in hypothyroid male liver reveals a functional interplay between testosterone and pulsed GH administration.
Collapse
Affiliation(s)
- Leandro Fernández-Pérez
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Farmacología Molecular y Traslacional, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
- Unidad de Biomedicina del Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS) Asociada al Instituto de Investigaciones Biomédicas “Alberto Sols”, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid, Las Palmas de Gran Canaria, Spain
| | - Borja Guerra
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Farmacología Molecular y Traslacional, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
- Unidad de Biomedicina del Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS) Asociada al Instituto de Investigaciones Biomédicas “Alberto Sols”, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid, Las Palmas de Gran Canaria, Spain
| | - Carlota Recio
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Farmacología Molecular y Traslacional, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Juan José Cabrera-Galván
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Farmacología Molecular y Traslacional, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Irma García
- Departmento de Física Básica, Grupo de Fisiología y Biofísica de Membranas, Universidad de La Laguna, La Laguna, Spain
| | - Juan Vladimir De La Rosa
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Farmacología Molecular y Traslacional, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Antonio Castrillo
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Farmacología Molecular y Traslacional, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
- Unidad de Biomedicina del Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS) Asociada al Instituto de Investigaciones Biomédicas “Alberto Sols”, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid, Las Palmas de Gran Canaria, Spain
- Instituto de Investigaciones Biomédicas “Alberto Sols”, Consejo Superior de Investigaciones Científicas (CSIC), Centro Mixto CSIC-Universidad Autónoma de Madrid, Madrid, Spain
| | - Diego Iglesias-Gato
- Novo Nordisk Foundation Center for Protein Research (CPR), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mario Díaz
- Departmento de Física Básica, Grupo de Fisiología y Biofísica de Membranas, Universidad de La Laguna, La Laguna, Spain
| |
Collapse
|
29
|
Meza U, Romero-Méndez C, Sánchez-Armáss S, Rodríguez-Menchaca AA. Role of rafts in neurological disorders. Neurologia 2023; 38:671-680. [PMID: 37858892 DOI: 10.1016/j.nrleng.2023.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 01/01/2021] [Indexed: 10/21/2023] Open
Abstract
INTRODUCTION Rafts are protein-lipid structural nanodomains involved in efficient signal transduction and the modulation of physiological processes of the cell plasma membrane. Raft disruption in the nervous system has been associated with a wide range of disorders. DEVELOPMENT We review the concept of rafts, the nervous system processes in which they are involved, and their role in diseases such as Parkinson's disease, Alzheimer disease, and Huntington disease. CONCLUSIONS Based on the available evidence, preservation and/or reconstitution of rafts is a promising treatment strategy for a wide range of neurological disorders.
Collapse
Affiliation(s)
- U Meza
- Departamento de Fisiología y Biofísica, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México.
| | - C Romero-Méndez
- Departamento de Fisiología y Biofísica, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México.
| | - S Sánchez-Armáss
- Departamento de Fisiología y Biofísica, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México.
| | - A A Rodríguez-Menchaca
- Departamento de Fisiología y Biofísica, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México.
| |
Collapse
|
30
|
Girych M, Kulig W, Enkavi G, Vattulainen I. How Neuromembrane Lipids Modulate Membrane Proteins: Insights from G-Protein-Coupled Receptors (GPCRs) and Receptor Tyrosine Kinases (RTKs). Cold Spring Harb Perspect Biol 2023; 15:a041419. [PMID: 37487628 PMCID: PMC10547395 DOI: 10.1101/cshperspect.a041419] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
Lipids play a diverse and critical role in cellular processes in all tissues. The unique lipid composition of nerve membranes is particularly interesting because it contains, among other things, polyunsaturated lipids, such as docosahexaenoic acid, which the body only gets through the diet. The crucial role of lipids in neurological processes, especially in receptor-mediated cell signaling, is emphasized by the fact that in many neuropathological diseases there are significant deviations in the lipid composition of nerve membranes compared to healthy individuals. The lipid composition of neuromembranes can significantly affect the function of receptors by regulating the physical properties of the membrane or by affecting specific interactions between receptors and lipids. In addition, it is worth noting that the ligand-binding pocket of many receptors is located inside the cell membrane, due to which lipids can even modulate the binding of ligands to their receptors. These mechanisms highlight the importance of lipids in the regulation of membrane receptor activation and function. In this article, we focus on two major protein families: G-protein-coupled receptors (GPCRs) and receptor tyrosine kinases (RTKs) and discuss how lipids affect their function in neuronal membranes, elucidating the basic mechanisms underlying neuronal function and dysfunction.
Collapse
Affiliation(s)
- Mykhailo Girych
- Department of Physics, University of Helsinki, FI-00014 Helsinki, Finland
| | - Waldemar Kulig
- Department of Physics, University of Helsinki, FI-00014 Helsinki, Finland
| | - Giray Enkavi
- Department of Physics, University of Helsinki, FI-00014 Helsinki, Finland
| | - Ilpo Vattulainen
- Department of Physics, University of Helsinki, FI-00014 Helsinki, Finland
| |
Collapse
|
31
|
Senkevich K, Beletskaia M, Dworkind A, Yu E, Ahmad J, Ruskey JA, Asayesh F, Spiegelman D, Fahn S, Waters C, Monchi O, Dauvilliers Y, Dupré N, Greenbaum L, Hassin-Baer S, Nagornov I, Tyurin A, Miliukhina I, Timofeeva A, Emelyanov A, Trempe JF, Zakharova E, Alcalay RN, Pchelina S, Gan-Or Z. Association of Rare Variants in ARSA with Parkinson's Disease. Mov Disord 2023; 38:1806-1812. [PMID: 37381728 PMCID: PMC10615669 DOI: 10.1002/mds.29521] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/25/2023] [Accepted: 06/12/2023] [Indexed: 06/30/2023] Open
Abstract
BACKGROUND Several lysosomal genes are associated with Parkinson's disease (PD), yet the association between PD and ARSA remains unclear. OBJECTIVES To study rare ARSA variants in PD. METHODS To study rare ARSA variants (minor allele frequency < 0.01) in PD, we performed burden analyses in six independent cohorts with 5801 PD patients and 20,475 controls, followed by a meta-analysis. RESULTS We found evidence for associations between functional ARSA variants and PD in four cohorts (P ≤ 0.05 in each) and in the meta-analysis (P = 0.042). We also found an association between loss-of-function variants and PD in the United Kingdom Biobank cohort (P = 0.005) and in the meta-analysis (P = 0.049). These results should be interpreted with caution as no association survived multiple comparisons correction. Additionally, we describe two families with potential co-segregation of ARSA p.E382K and PD. CONCLUSIONS Rare functional and loss-of-function ARSA variants may be associated with PD. Further replications in large case-control/familial cohorts are required. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Konstantin Senkevich
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montreal, Quebec, Canada
- Department of Neurology and neurosurgery, McGill University, Montréal, QC, Canada, Canada
| | - Mariia Beletskaia
- First Pavlov State Medical University of St. Petersburg, Saint-Petersburg, Russia
| | - Aliza Dworkind
- Department of Physiology, McGill University, Montréal, QC, Canada
| | - Eric Yu
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montreal, Quebec, Canada
- Department of Human Genetics, McGill University, Montréal, QC, Canada
| | - Jamil Ahmad
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montreal, Quebec, Canada
- Department of Neurology and neurosurgery, McGill University, Montréal, QC, Canada, Canada
| | - Jennifer A. Ruskey
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montreal, Quebec, Canada
- Department of Neurology and neurosurgery, McGill University, Montréal, QC, Canada, Canada
| | - Farnaz Asayesh
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montreal, Quebec, Canada
- Department of Human Genetics, McGill University, Montréal, QC, Canada
| | - Dan Spiegelman
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montreal, Quebec, Canada
| | - Stanley Fahn
- Department of Neurology, College of Physicians and Surgeons, Columbia University Medical Center, NY, USA
| | - Cheryl Waters
- Department of Neurology, College of Physicians and Surgeons, Columbia University Medical Center, NY, USA
| | - Oury Monchi
- Department of Neurology and neurosurgery, McGill University, Montréal, QC, Canada, Canada
- Department of Clinical Neurosciences and Department of Radiology, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, Calgary, Alberta, T2N 4N1 Canada
| | - Yves Dauvilliers
- National Reference Center for Narcolepsy, Sleep Unit, Department of Neurology, Gui-de-Chauliac Hospital, CHU Montpellier, University of Montpellier, Montpellier, France
| | - Nicolas Dupré
- Division of Neurosciences, CHU de Québec, Université Laval, Quebec City, Quebec, Canada
- Department of Medicine, Faculty of Medicine, Université Laval, Québec, Canada
| | - Lior Greenbaum
- The Danek Gertner Institute of Human Genetics, Sheba Medical Center, Tel Hashomer, Israel
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel Hashomer, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Sharon Hassin-Baer
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- The Movement Disorders Institute, Department of Neurology, Sheba Medical Center, Tel Hashomer, Israel
| | - Ilya Nagornov
- Research Centre for Medical Genetics, Moscow, Russia
| | - Alexandr Tyurin
- First Pavlov State Medical University of St. Petersburg, Saint-Petersburg, Russia
| | | | - Alla Timofeeva
- First Pavlov State Medical University of St. Petersburg, Saint-Petersburg, Russia
| | - Anton Emelyanov
- First Pavlov State Medical University of St. Petersburg, Saint-Petersburg, Russia
| | - Jean-François Trempe
- Department of Pharmacology and Therapeutics and Centre de Recherche en Biologie Structurale, McGill University, Montreal H3A 1A3, Canada
| | | | - Roy N. Alcalay
- Department of Neurology, College of Physicians and Surgeons, Columbia University Medical Center, NY, USA
- Division of Movement Disorders, Tel Aviv Sourasky Medical Center; Tel Aviv, Israel
| | - Sofya Pchelina
- First Pavlov State Medical University of St. Petersburg, Saint-Petersburg, Russia
| | - Ziv Gan-Or
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montreal, Quebec, Canada
- Department of Neurology and neurosurgery, McGill University, Montréal, QC, Canada, Canada
- Department of Human Genetics, McGill University, Montréal, QC, Canada
| |
Collapse
|
32
|
Obis E, Sol J, Andres-Benito P, Martín-Gari M, Mota-Martorell N, Galo-Licona JD, Piñol-Ripoll G, Portero-Otin M, Ferrer I, Jové M, Pamplona R. Lipidomic Alterations in the Cerebral Cortex and White Matter in Sporadic Alzheimer's Disease. Aging Dis 2023; 14:1887-1916. [PMID: 37196109 PMCID: PMC10529741 DOI: 10.14336/ad.2023.0217] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 02/17/2023] [Indexed: 05/19/2023] Open
Abstract
Non-targeted LC-MS/MS-based lipidomic analysis was conducted in post-mortem human grey matter frontal cortex area 8 (GM) and white matter of the frontal lobe centrum semi-ovale (WM) to identify lipidome fingerprints in middle-aged individuals with no neurofibrillary tangles and senile plaques, and cases at progressive stages of sporadic Alzheimer's disease (sAD). Complementary data were obtained using RT-qPCR and immunohistochemistry. The results showed that WM presents an adaptive lipid phenotype resistant to lipid peroxidation, characterized by a lower fatty acid unsaturation, peroxidizability index, and higher ether lipid content than the GM. Changes in the lipidomic profile are more marked in the WM than in GM in AD with disease progression. Four functional categories are associated with the different lipid classes affected in sAD: membrane structural composition, bioenergetics, antioxidant protection, and bioactive lipids, with deleterious consequences affecting both neurons and glial cells favoring disease progression.
Collapse
Affiliation(s)
- Elia Obis
- Department of Experimental Medicine, Lleida University (UdL), Lleida Biomedical Research Institute (IRBLleida), Lleida, Spain.
| | - Joaquim Sol
- Department of Experimental Medicine, Lleida University (UdL), Lleida Biomedical Research Institute (IRBLleida), Lleida, Spain.
- Catalan Institute of Health (ICS), Lleida, Spain, Research Support Unit (USR), Fundació Institut Universitari per a la Recerca en Atenció Primària de Salut Jordi Gol i Gurina (IDIAP JGol), Lleida, Spain.
| | - Pol Andres-Benito
- CIBERNED (Network Centre of Biomedical Research of Neurodegenerative Diseases), Institute of Health Carlos III, Ministry of Economy and Competitiveness, Madrid, Spain.
- Bellvitge University Hospital-Bellvitge Biomedical Research Institute (IDIBELL), E-08907 Hospitalet de Llobregat, Barcelona, Spain.
| | - Meritxell Martín-Gari
- Department of Experimental Medicine, Lleida University (UdL), Lleida Biomedical Research Institute (IRBLleida), Lleida, Spain.
| | - Natàlia Mota-Martorell
- Department of Experimental Medicine, Lleida University (UdL), Lleida Biomedical Research Institute (IRBLleida), Lleida, Spain.
| | - José Daniel Galo-Licona
- Department of Experimental Medicine, Lleida University (UdL), Lleida Biomedical Research Institute (IRBLleida), Lleida, Spain.
| | - Gerard Piñol-Ripoll
- Unitat Trastorns Cognitius, Clinical Neuroscience Research, Santa Maria University Hospital, IRBLleida, Lleida, Spain.
| | - Manuel Portero-Otin
- Department of Experimental Medicine, Lleida University (UdL), Lleida Biomedical Research Institute (IRBLleida), Lleida, Spain.
| | - Isidro Ferrer
- CIBERNED (Network Centre of Biomedical Research of Neurodegenerative Diseases), Institute of Health Carlos III, Ministry of Economy and Competitiveness, Madrid, Spain.
- Bellvitge University Hospital-Bellvitge Biomedical Research Institute (IDIBELL), E-08907 Hospitalet de Llobregat, Barcelona, Spain.
- Department of Pathology and Experimental Therapeutics, University of Barcelona, L’Hospitalet de Llobregat, Barcelona, Spain.
| | - Mariona Jové
- Department of Experimental Medicine, Lleida University (UdL), Lleida Biomedical Research Institute (IRBLleida), Lleida, Spain.
| | - Reinald Pamplona
- Department of Experimental Medicine, Lleida University (UdL), Lleida Biomedical Research Institute (IRBLleida), Lleida, Spain.
| |
Collapse
|
33
|
Singh BP, Morris RJ, Kunath T, MacPhee CE, Horrocks MH. Lipid-induced polymorphic amyloid fibril formation by α-synuclein. Protein Sci 2023; 32:e4736. [PMID: 37515406 PMCID: PMC10521247 DOI: 10.1002/pro.4736] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 06/27/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023]
Abstract
Many proteins that self-assemble into amyloid and amyloid-like fibers can adopt diverse polymorphic forms. These forms have been observed both in vitro and in vivo and can arise through variations in the steric-zipper interactions between β-sheets, variations in the arrangements between protofilaments, and differences in the number of protofilaments that make up a given fiber class. Different polymorphs arising from the same precursor molecule not only exhibit different levels of toxicity, but importantly can contribute to different disease conditions. However, the factors which contribute to formation of polymorphic forms of amyloid fibrils are not known. In this work, we show that in the presence of 1,2-dimyristoyl-sn-glycero-3-phospho-L-serine, a highly abundant lipid in the plasma membrane of neurons, the aggregation of α-synuclein is markedly accelerated and yields a diversity of polymorphic forms under identical experimental conditions. This morphological diversity includes thin and curly fibrils, helical ribbons, twisted ribbons, nanotubes, and flat sheets. Furthermore, the amyloid fibrils formed incorporate lipids into their structures, which corroborates the previous report of the presence of α-synuclein fibrils with high lipid content in Lewy bodies. Thus, the present study demonstrates that an interface, such as that provided by a lipid membrane, can not only modulate the kinetics of α-synuclein amyloid aggregation but also plays an important role in the formation of morphological variants by incorporating lipid molecules in the process of amyloid fibril formation.
Collapse
Affiliation(s)
- Bhanu P. Singh
- School of Physics and Astronomy, The University of EdinburghEdinburghUK
- EaStCHEM School of Chemistry, The University of EdinburghEdinburghUK
| | - Ryan J. Morris
- School of Physics and Astronomy, The University of EdinburghEdinburghUK
| | - Tilo Kunath
- Centre for Regenerative Medicine, School of Biological Sciences, The University of EdinburghEdinburghUK
| | - Cait E. MacPhee
- School of Physics and Astronomy, The University of EdinburghEdinburghUK
| | - Mathew H. Horrocks
- EaStCHEM School of Chemistry, The University of EdinburghEdinburghUK
- IRR Chemistry Hub, Institute for Regeneration and Repair, The University of EdinburghEdinburghUK
| |
Collapse
|
34
|
Rafiei S, Khodagholi F, Gholami Pourbadie H, Dargahi L, Motamedi F. Hepatic Acyl CoA Oxidase1 Inhibition Modifies Brain Lipids and Electrical Properties of Dentate Gyrus. Basic Clin Neurosci 2023; 14:663-674. [PMID: 38628834 PMCID: PMC11016873 DOI: 10.32598/bcn.2021.3500.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/03/2021] [Accepted: 06/27/2023] [Indexed: 04/19/2024] Open
Abstract
Introduction Peroxisomes are essential organelles in lipid metabolism. They contain enzymes for β-oxidation of very long-chain fatty acids (VLCFA) that cannot be broken down in mitochondria. Reduced expression in hepatic acyl-CoA oxidase 1 (ACOX1), a peroxisome β-oxidation enzyme, followed by modification of the brain fatty acid profile has been observed in aged rodents. These studies have suggested a potential role for peroxisome β-oxidation in brain aging. This study was designed to examine the effect of hepatic ACOX1 inhibition on brain fatty acid composition and neuronal cell activities of young rats (200-250 g). Methods A specific ACOX1 inhibitor, 10, 12- tricosadiynoic acid (TDYA), 100 μg/kg (in olive oil) was administered by daily gavage for 25 days in male Wistar rats. The brain fatty acid composition and electrophysiological properties of dentate gyrus granule cells were determined using gas chromatography and whole-cell patch-clamp, respectively. Results A significant increase in C20, C22, C18:1, C20:1, and a decrease of C18, C24, C20:3n6, and C22:6n3 were found in 10, 12- tricosadiynoic acid (TDYA) treated rats compared to the control group. The results showed that ACOX1 inhibition changes fatty acid composition similar to old rats. ACOX1 inhibition caused hyperpolarization of resting membrane potential, and also reduction of input resistance, action potential duration, and spike firing. Moreover, ACOX1 inhibition increased rheobase current and afterhyperpolarization amplitude in granule cells. Conclusion The results indicated that systemic inhibition of ACOX1 causes hypo-excitability of neuronal cells. These results provide new evidence on the involvement of peroxisome function and hepatic ACOX1 activity in brain fatty acid profile and the electrophysiological properties of dentate gyrus cells.
Collapse
Affiliation(s)
- Shahrbanoo Rafiei
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fariba Khodagholi
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Leila Dargahi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fereshteh Motamedi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
35
|
Chaves-Filho AM, Braniff O, Angelova A, Deng Y, Tremblay MÈ. Chronic inflammation, neuroglial dysfunction, and plasmalogen deficiency as a new pathobiological hypothesis addressing the overlap between post-COVID-19 symptoms and myalgic encephalomyelitis/chronic fatigue syndrome. Brain Res Bull 2023; 201:110702. [PMID: 37423295 DOI: 10.1016/j.brainresbull.2023.110702] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/13/2023] [Accepted: 07/06/2023] [Indexed: 07/11/2023]
Abstract
After five waves of coronavirus disease 2019 (COVID-19) outbreaks, it has been recognized that a significant portion of the affected individuals developed long-term debilitating symptoms marked by chronic fatigue, cognitive difficulties ("brain fog"), post-exertional malaise, and autonomic dysfunction. The onset, progression, and clinical presentation of this condition, generically named post-COVID-19 syndrome, overlap significantly with another enigmatic condition, referred to as myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). Several pathobiological mechanisms have been proposed for ME/CFS, including redox imbalance, systemic and central nervous system inflammation, and mitochondrial dysfunction. Chronic inflammation and glial pathological reactivity are common hallmarks of several neurodegenerative and neuropsychiatric disorders and have been consistently associated with reduced central and peripheral levels of plasmalogens, one of the major phospholipid components of cell membranes with several homeostatic functions. Of great interest, recent evidence revealed a significant reduction of plasmalogen contents, biosynthesis, and metabolism in ME/CFS and acute COVID-19, with a strong association to symptom severity and other relevant clinical outcomes. These bioactive lipids have increasingly attracted attention due to their reduced levels representing a common pathophysiological manifestation between several disorders associated with aging and chronic inflammation. However, alterations in plasmalogen levels or their lipidic metabolism have not yet been examined in individuals suffering from post-COVID-19 symptoms. Here, we proposed a pathobiological model for post-COVID-19 and ME/CFS based on their common inflammation and dysfunctional glial reactivity, and highlighted the emerging implications of plasmalogen deficiency in the underlying mechanisms. Along with the promising outcomes of plasmalogen replacement therapy (PRT) for various neurodegenerative/neuropsychiatric disorders, we sought to propose PRT as a simple, effective, and safe strategy for the potential relief of the debilitating symptoms associated with ME/CFS and post-COVID-19 syndrome.
Collapse
Affiliation(s)
| | - Olivia Braniff
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Angelina Angelova
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, F-91400 Orsay, France
| | - Yuru Deng
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China.
| | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada; Department of Molecular Medicine, Université Laval, Québec City, Québec, Canada; Neurology and Neurosurgery Department, McGill University, Montréal, Québec, Canada; Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada; Centre for Advanced Materials and Related Technology (CAMTEC) and Institute on Aging and Lifelong Health (IALH), University of Victoria, Victoria, British Columbia, Canada.
| |
Collapse
|
36
|
Mackei M, Sebők C, Vöröházi J, Tráj P, Mackei F, Oláh B, Fébel H, Neogrády Z, Mátis G. Detrimental consequences of tebuconazole on redox homeostasis and fatty acid profile of honeybee brain. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2023; 159:103990. [PMID: 37488035 DOI: 10.1016/j.ibmb.2023.103990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/17/2023] [Accepted: 07/17/2023] [Indexed: 07/26/2023]
Abstract
Excessive use of azole fungicides in agriculture poses a potential threat to honeybees and other pollinator insects; however, the detailed effects of these molecules remain largely unclear. Hence, in the present study it was aimed to investigate the acute sublethal effects of tebuconazole on the redox homeostasis and fatty acid composition in the brain of honeybees. Our findings demonstrate that tebuconazole decreased total antioxidant capacity, the ratio of reduced to oxidized glutathione and disturbed the function of key antioxidant defense enzymes along with the induction of lipid peroxidation indicated by increased malondialdehyde levels, while it also altered the fatty acid profile of the brain. The present study highlights the negative impact of tebuconazole on honeybees and contributes to the understanding of potential consequences related to azole exposure on pollinator insects' health, such as the occurrence of colony collapse disorder.
Collapse
Affiliation(s)
- Máté Mackei
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine Budapest, István Street 2, H-1078 Budapest, Hungary; National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine Budapest, István Street 2, H-1078, Hungary.
| | - Csilla Sebők
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine Budapest, István Street 2, H-1078 Budapest, Hungary
| | - Júlia Vöröházi
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine Budapest, István Street 2, H-1078 Budapest, Hungary
| | - Patrik Tráj
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine Budapest, István Street 2, H-1078 Budapest, Hungary
| | - Fruzsina Mackei
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine Budapest, István Street 2, H-1078 Budapest, Hungary
| | - Barnabás Oláh
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine Budapest, István Street 2, H-1078 Budapest, Hungary
| | - Hedvig Fébel
- Nutrition Physiology Research Group, Institute of Physiology and Nutrition, Kaposvár Campus, Hungarian University of Agriculture and Life Sciences, Gesztenyés Street 1, H-2053 Herceghalom, Hungary
| | - Zsuzsanna Neogrády
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine Budapest, István Street 2, H-1078 Budapest, Hungary
| | - Gábor Mátis
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine Budapest, István Street 2, H-1078 Budapest, Hungary; National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine Budapest, István Street 2, H-1078, Hungary
| |
Collapse
|
37
|
Kaya I, Nilsson A, Luptáková D, He Y, Vallianatou T, Bjärterot P, Svenningsson P, Bezard E, Andrén PE. Spatial lipidomics reveals brain region-specific changes of sulfatides in an experimental MPTP Parkinson's disease primate model. NPJ Parkinsons Dis 2023; 9:118. [PMID: 37495571 PMCID: PMC10372136 DOI: 10.1038/s41531-023-00558-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 07/11/2023] [Indexed: 07/28/2023] Open
Abstract
Metabolism of MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) to the neurotoxin MPP+ in the brain causes permanent Parkinson's disease-like symptoms by destroying dopaminergic neurons in the pars compacta of the substantia nigra in humans and non-human primates. However, the complete molecular pathology underlying MPTP-induced parkinsonism remains poorly understood. We used dual polarity matrix-assisted laser desorption/ionization mass spectrometry imaging to thoroughly image numerous glycerophospholipids and sphingolipids in coronal brain tissue sections of MPTP-lesioned and control non-human primate brains (Macaca mulatta). The results revealed specific distributions of several sulfatide lipid molecules based on chain-length, number of double bonds, and importantly, hydroxylation stage. More specifically, certain long-chain hydroxylated sulfatides with polyunsaturated chains in the molecular structure were depleted within motor-related brain regions in the MPTP-lesioned animals, e.g., external and internal segments of globus pallidus and substantia nigra pars reticulata. In contrast, certain long-chain non-hydroxylated sulfatides were found to be elevated within the same brain regions. These findings demonstrate region-specific dysregulation of sulfatide metabolism within the MPTP-lesioned macaque brain. The depletion of long-chain hydroxylated sulfatides in the MPTP-induced pathology indicates oxidative stress and oligodendrocyte/myelin damage within the pathologically relevant brain regions. Hence, the presented findings improve our current understanding of the molecular pathology of MPTP-induced parkinsonism within primate brains, and provide a basis for further research regarding the role of dysregulated sulfatide metabolism in PD.
Collapse
Affiliation(s)
- Ibrahim Kaya
- Department of Pharmaceutical Biosciences, Spatial Mass Spectrometry, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Anna Nilsson
- Department of Pharmaceutical Biosciences, Spatial Mass Spectrometry, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Dominika Luptáková
- Department of Pharmaceutical Biosciences, Spatial Mass Spectrometry, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Yachao He
- Section of Neurology, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Theodosia Vallianatou
- Department of Pharmaceutical Biosciences, Spatial Mass Spectrometry, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Patrik Bjärterot
- Department of Pharmaceutical Biosciences, Spatial Mass Spectrometry, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Per Svenningsson
- Section of Neurology, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Erwan Bezard
- University of Bordeaux, CNRS, IMN, UMR 5293, F-33000, Bordeaux, France
| | - Per E Andrén
- Department of Pharmaceutical Biosciences, Spatial Mass Spectrometry, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
38
|
Vuu YM, Kadar Shahib A, Rastegar M. The Potential Therapeutic Application of Simvastatin for Brain Complications and Mechanisms of Action. Pharmaceuticals (Basel) 2023; 16:914. [PMID: 37513826 PMCID: PMC10385015 DOI: 10.3390/ph16070914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 07/30/2023] Open
Abstract
Statins are common drugs that are clinically used to reduce elevated plasma cholesterol levels. Based on their solubility, statins are considered to be either hydrophilic or lipophilic. Amongst them, simvastatin has the highest lipophilicity to facilitate its ability to cross the blood-brain barrier. Recent studies have suggested that simvastatin could be a promising therapeutic option for different brain complications and diseases ranging from brain tumors (i.e., medulloblastoma and glioblastoma) to neurological disorders (i.e., Alzheimer's disease, Parkinson's disease, and Huntington's disease). Specific mechanisms of disease amelioration, however, are still unclear. Independent studies suggest that simvastatin may reduce the risk of developing certain neurodegenerative disorders. Meanwhile, other studies point towards inducing cell death in brain tumor cell lines. In this review, we outline the potential therapeutic effects of simvastatin on brain complications and review the clinically relevant molecular mechanisms in different cases.
Collapse
Affiliation(s)
| | | | - Mojgan Rastegar
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| |
Collapse
|
39
|
Ortega Moreno L, Bagues A, Martínez V, Abalo R. New Pieces for an Old Puzzle: Approaching Parkinson's Disease from Translatable Animal Models, Gut Microbiota Modulation, and Lipidomics. Nutrients 2023; 15:2775. [PMID: 37375679 DOI: 10.3390/nu15122775] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 05/15/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
Parkinson's disease (PD) is a severe neurodegenerative disease characterized by disabling motor alterations that are diagnosed at a relatively late stage in its development, and non-motor symptoms, including those affecting the gastrointestinal tract (mainly constipation), which start much earlier than the motor symptoms. Remarkably, current treatments only reduce motor symptoms, not without important drawbacks (relatively low efficiency and impactful side effects). Thus, new approaches are needed to halt PD progression and, possibly, to prevent its development, including new therapeutic strategies that target PD etiopathogeny and new biomarkers. Our aim was to review some of these new approaches. Although PD is complex and heterogeneous, compelling evidence suggests it might have a gastrointestinal origin, at least in a significant number of patients, and findings in recently developed animal models strongly support this hypothesis. Furthermore, the modulation of the gut microbiome, mainly through probiotics, is being tested to improve motor and non-motor symptoms and even to prevent PD. Finally, lipidomics has emerged as a useful tool to identify lipid biomarkers that may help analyze PD progression and treatment efficacy in a personalized manner, although, as of today, it has only scarcely been applied to monitor gut motility, dysbiosis, and probiotic effects in PD. Altogether, these new pieces should be helpful in solving the old puzzle of PD.
Collapse
Affiliation(s)
- Lorena Ortega Moreno
- Department of Basic Health Sciences, Faculty of Health Sciences, University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain
- High Performance Research Group in Physiopathology and Pharmacology of the Digestive System (NeuGut-URJC), University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain
| | - Ana Bagues
- Department of Basic Health Sciences, Faculty of Health Sciences, University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain
- High Performance Research Group in Physiopathology and Pharmacology of the Digestive System (NeuGut-URJC), University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain
- Associated I+D+i Unit to the Institute of Medicinal Chemistry (IQM), Scientific Research Superior Council (CSIC), 28006 Madrid, Spain
- High Performance Research Group in Experimental Pharmacology (PHARMAKOM-URJC), University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain
| | - Vicente Martínez
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
- Neuroscience Institute, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28049 Madrid, Spain
| | - Raquel Abalo
- Department of Basic Health Sciences, Faculty of Health Sciences, University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain
- High Performance Research Group in Physiopathology and Pharmacology of the Digestive System (NeuGut-URJC), University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain
- Associated I+D+i Unit to the Institute of Medicinal Chemistry (IQM), Scientific Research Superior Council (CSIC), 28006 Madrid, Spain
- Working Group of Basic Sciences on Pain and Analgesia of the Spanish Pain Society, 28046 Madrid, Spain
- Working Group of Basic Sciences on Cannabinoids of the Spanish Pain Society, 28046 Madrid, Spain
| |
Collapse
|
40
|
Rudge JD. The Lipid Invasion Model: Growing Evidence for This New Explanation of Alzheimer's Disease. J Alzheimers Dis 2023:JAD221175. [PMID: 37302030 PMCID: PMC10357195 DOI: 10.3233/jad-221175] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The Lipid Invasion Model (LIM) is a new hypothesis for Alzheimer's disease (AD) which argues that AD is a result of external lipid invasion to the brain, following damage to the blood-brain barrier (BBB). The LIM provides a comprehensive explanation of the observed neuropathologies associated with the disease, including the lipid irregularities first described by Alois Alzheimer himself, and accounts for the wide range of risk factors now identified with AD, all of which are also associated with damage to the BBB. This article summarizes the main arguments of the LIM, and new evidence and arguments in support of it. The LIM incorporates and extends the amyloid hypothesis, the current main explanation of the disease, but argues that the greatest cause of late-onset AD is not amyloid-β (Aβ) but bad cholesterol and free fatty acids, let into the brain by a damaged BBB. It suggests that the focus on Aβ is the reason why we have made so little progress in treating the disease in the last 30 years. As well as offering new perspectives for further research into the diagnosis, prevention, and treatment of AD, based on protecting and repairing the BBB, the LIM provides potential new insights into other neurodegenerative diseases such as Parkinson's disease and amyotrophic lateral sclerosis/motor neuron disease.
Collapse
|
41
|
Wang X, Wang L, Luo M, Bu Q, Liu C, Jiang L, Xu R, Wang S, Zhang H, Zhang J, Wan X, Li H, Wang Y, Liu B, Zhao Y, Chen Y, Dai Y, Li M, Wang H, Tian J, Zhao Y, Cen X. Integrated lipidomic and transcriptomic analysis reveals clarithromycin-induced alteration of glycerophospholipid metabolism in the cerebral cortex of mice. Cell Biol Toxicol 2023; 39:771-793. [PMID: 34458952 DOI: 10.1007/s10565-021-09646-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 08/16/2021] [Indexed: 02/05/2023]
Abstract
Clarithromycin (CLA) has been widely used in the treatment of bacterial infection. Research reveals the adverse effects on the central nervous system among patients receiving CLA treatment; whereas, a relevant underlying mechanism remains considerably unclear. According to our research, an integrated lipidomic and transcriptomic analysis was applied to explore the effect of CLA on neurobehavior. CLA treatment caused anxiety-like behaviors dose-dependently during open field as well as elevated plus maze trials on mice. Transcriptomes and LC/MS-MS-based metabolomes were adopted for investigating how CLA affected lipidomic profiling as well as metabolic pathway of the cerebral cortex. CLA exposure greatly disturbed glycerophospholipid metabolism and the carbon chain length of fatty acids. By using whole transcriptome sequencing, we found that CLA significantly downregulated the mRNA expression of CEPT1 and CHPT1, two key enzymes involved in the synthesis of glycerophospholipids, supporting the findings from the lipidomic profiling. Also, CLA causes changes in neuronal morphology and function in vitro, which support the existing findings concerning neurobehavior in vivo. We speculate that altered glycerophospholipid metabolism may be involved in the neurobehavioral effect of CLA. Our findings contribute to understanding the mechanisms of CLA-induced adverse effects on the central nervous system. 1. Clarithromycin treatment caused anxiety-like behavior with dose-dependent response both in the open field and elevated plus maze test in mice; 2. Clarithromycin exposing predominately disturbed the metabolism of glycerophospholipids in the cerebral cortex of mice; 3. Clarithromycin application remarkably attenuated CEPT1 and CHPT1 gene expression, which participate in the last step in the synthesis of glycerophospholipids; 4. The altered glycerophospholipid metabolomics may be involved in the abnormal neurobehavior caused by clarithromycin.
Collapse
Affiliation(s)
- Xiaojie Wang
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Medical School, West China Hospital, Sichuan University, #1 Keyuan Road, Gaopeng Street, High-tech Development Zone, Chengdu, 610041, People's Republic of China
| | - Liang Wang
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Medical School, West China Hospital, Sichuan University, #1 Keyuan Road, Gaopeng Street, High-tech Development Zone, Chengdu, 610041, People's Republic of China
| | - Mingyi Luo
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Medical School, West China Hospital, Sichuan University, #1 Keyuan Road, Gaopeng Street, High-tech Development Zone, Chengdu, 610041, People's Republic of China
| | - Qian Bu
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Medical School, West China Hospital, Sichuan University, #1 Keyuan Road, Gaopeng Street, High-tech Development Zone, Chengdu, 610041, People's Republic of China
| | - Chunqi Liu
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Medical School, West China Hospital, Sichuan University, #1 Keyuan Road, Gaopeng Street, High-tech Development Zone, Chengdu, 610041, People's Republic of China
| | - Linhong Jiang
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Medical School, West China Hospital, Sichuan University, #1 Keyuan Road, Gaopeng Street, High-tech Development Zone, Chengdu, 610041, People's Republic of China
| | - Rui Xu
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Medical School, West China Hospital, Sichuan University, #1 Keyuan Road, Gaopeng Street, High-tech Development Zone, Chengdu, 610041, People's Republic of China
| | - Shaomin Wang
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Medical School, West China Hospital, Sichuan University, #1 Keyuan Road, Gaopeng Street, High-tech Development Zone, Chengdu, 610041, People's Republic of China
| | - Haoluo Zhang
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Medical School, West China Hospital, Sichuan University, #1 Keyuan Road, Gaopeng Street, High-tech Development Zone, Chengdu, 610041, People's Republic of China
| | - Jiamei Zhang
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Medical School, West China Hospital, Sichuan University, #1 Keyuan Road, Gaopeng Street, High-tech Development Zone, Chengdu, 610041, People's Republic of China
| | - Xuemei Wan
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Medical School, West China Hospital, Sichuan University, #1 Keyuan Road, Gaopeng Street, High-tech Development Zone, Chengdu, 610041, People's Republic of China
| | - Hongchun Li
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Medical School, West China Hospital, Sichuan University, #1 Keyuan Road, Gaopeng Street, High-tech Development Zone, Chengdu, 610041, People's Republic of China
| | - Yonghai Wang
- Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, People's Republic of China
| | - Bin Liu
- Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, People's Republic of China
| | - Ying Zhao
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Medical School, West China Hospital, Sichuan University, #1 Keyuan Road, Gaopeng Street, High-tech Development Zone, Chengdu, 610041, People's Republic of China
| | - Yuanyuan Chen
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Medical School, West China Hospital, Sichuan University, #1 Keyuan Road, Gaopeng Street, High-tech Development Zone, Chengdu, 610041, People's Republic of China
| | - Yanping Dai
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Medical School, West China Hospital, Sichuan University, #1 Keyuan Road, Gaopeng Street, High-tech Development Zone, Chengdu, 610041, People's Republic of China
| | - Min Li
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Medical School, West China Hospital, Sichuan University, #1 Keyuan Road, Gaopeng Street, High-tech Development Zone, Chengdu, 610041, People's Republic of China
| | - Hongbo Wang
- Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, People's Republic of China
| | - Jingwei Tian
- Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, People's Republic of China
| | - Yinglan Zhao
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Medical School, West China Hospital, Sichuan University, #1 Keyuan Road, Gaopeng Street, High-tech Development Zone, Chengdu, 610041, People's Republic of China
| | - Xiaobo Cen
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Medical School, West China Hospital, Sichuan University, #1 Keyuan Road, Gaopeng Street, High-tech Development Zone, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
42
|
Ferecskó AS, Smallwood MJ, Moore A, Liddle C, Newcombe J, Holley J, Whatmore J, Gutowski NJ, Eggleton P. STING-Triggered CNS Inflammation in Human Neurodegenerative Diseases. Biomedicines 2023; 11:biomedicines11051375. [PMID: 37239045 DOI: 10.3390/biomedicines11051375] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/28/2023] [Accepted: 04/30/2023] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND Some neurodegenerative diseases have an element of neuroinflammation that is triggered by viral nucleic acids, resulting in the generation of type I interferons. In the cGAS-STING pathway, microbial and host-derived DNA bind and activate the DNA sensor cGAS, and the resulting cyclic dinucleotide, 2'3-cGAMP, binds to a critical adaptor protein, stimulator of interferon genes (STING), which leads to activation of downstream pathway components. However, there is limited work demonstrating the activation of the cGAS-STING pathway in human neurodegenerative diseases. METHODS Post-mortem CNS tissue from donors with multiple sclerosis (n = 4), Alzheimer's disease (n = 6), Parkinson's disease (n = 3), amyotrophic lateral sclerosis (n = 3) and non-neurodegenerative controls (n = 11) were screened by immunohistochemistry for STING and relevant protein aggregates (e.g., amyloid-β, α-synuclein, TDP-43). Human brain endothelial cells were cultured and stimulated with the STING agonist palmitic acid (1-400 μM) and assessed for mitochondrial stress (release of mitochondrial DNA into cytosol, increased oxygen consumption), downstream regulator factors, TBK-1/pIRF3 and inflammatory biomarker interferon-β release and changes in ICAM-1 integrin expression. RESULTS In neurodegenerative brain diseases, elevated STING protein was observed mainly in brain endothelial cells and neurons, compared to non-neurodegenerative control tissues where STING protein staining was weaker. Interestingly, a higher STING presence was associated with toxic protein aggregates (e.g., in neurons). Similarly high STING protein levels were observed within acute demyelinating lesions in multiple sclerosis subjects. To understand non-microbial/metabolic stress activation of the cGAS-STING pathway, brain endothelial cells were treated with palmitic acid. This evoked mitochondrial respiratory stress up to a ~2.5-fold increase in cellular oxygen consumption. Palmitic acid induced a statistically significant increase in cytosolic DNA leakage from endothelial cell mitochondria (Mander's coefficient; p < 0.05) and a significant increase in TBK-1, phosphorylated transcription factor IFN regulatory factor 3, cGAS and cell surface ICAM. In addition, a dose response in the secretion of interferon-β was observed, but it failed to reach statistical significance. CONCLUSIONS The histological evidence shows that the common cGAS-STING pathway appears to be activated in endothelial and neural cells in all four neurodegenerative diseases examined. Together with the in vitro data, this suggests that the STING pathway might be activated via perturbation of mitochondrial stress and DNA leakage, resulting in downstream neuroinflammation; hence, this pathway may be a target for future STING therapeutics.
Collapse
Affiliation(s)
- Alex S Ferecskó
- UCB Pharma, Slough SL1 3WE, UK
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter EX1 2LU, UK
| | - Miranda J Smallwood
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter EX1 2LU, UK
| | | | - Corin Liddle
- Bioimaging Unit, University of Exeter, Geoffrey Pope Building, Exeter EX4 4QD, UK
| | - Jia Newcombe
- NeuroResource, UCL Queen Square Institute of Neurology, London WC1N 1PJ, UK
| | - Janet Holley
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter EX1 2LU, UK
| | - Jacqueline Whatmore
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter EX1 2LU, UK
| | - Nicholas J Gutowski
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter EX1 2LU, UK
| | - Paul Eggleton
- UCB Pharma, Slough SL1 3WE, UK
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter EX1 2LU, UK
- Revolo Biotherapeutics, New Orleans, LA 70130, USA
| |
Collapse
|
43
|
Al‐kuraishy HM, Al‐Gareeb AI, Alexiou A, Papadakis M, Alsayegh AA, Almohmadi NH, Saad HM, Batiha GE. Pros and cons for statins use and risk of Parkinson's disease: An updated perspective. Pharmacol Res Perspect 2023; 11:e01063. [PMID: 36811160 PMCID: PMC9944858 DOI: 10.1002/prp2.1063] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/24/2023] Open
Abstract
Parkinson's disease (PD) is the second most frequent neurodegenerative brain disease (NBD) after Alzheimer's disease (AD). Statins are the most common lipid-lowering agents used in the management of dyslipidemia and the prevention of primary and secondary cardiovascular diseases (CVD) events. In addition, there is a controversial point regarding the role of serum lipids in the pathogenesis of PD. In this bargain, as statins reduce serum cholesterol so they affect the PD neuropathology in bidirectional ways either protective or harmful. Statins are not used in the management of PD, but they are frequently used in the cardiovascular disorders commonly associated with PD in the elderly population. Therefore, the use of statins in that population may affect PD outcomes. Concerning the potential role of statins on PD neuropathology, there are conflicts and controversies either protective against the development of PD or harmful by increasing the risk for the development of PD. Therefore, this review aimed to clarify the precise role of statins in PD regarding the pros and cons from published studies. Many studies suggest a protective role of statins against PD risk through the modulation of inflammatory and lysosomal signaling pathways. Nevertheless, other observations suggest that statin therapy may increase PD risk by diverse mechanisms including reduction of CoQ10. In conclusion, there are strong controversies regarding the protective role of statins in PD neuropathology. Therefore, retrospective and prospective studies are necessary in this regard.
Collapse
Affiliation(s)
- Hayder M. Al‐kuraishy
- Department of Clinical Pharmacology and MedicineCollege of Medicine, ALmustansiriyia UniversityBaghdadIraq
| | - Ali I. Al‐Gareeb
- Department of Clinical Pharmacology and MedicineCollege of Medicine, ALmustansiriyia UniversityBaghdadIraq
| | - Athanasios Alexiou
- Department of Science and EngineeringNovel Global Community Educational FoundationHebershamNew South WalesAustralia
- AFNP MedWienAustria
| | - Marios Papadakis
- Department of Surgery IIUniversity Hospital Witten‐HerdeckeUniversity of Witten‐HerdeckeWuppertalGermany
| | - Abdulrahman A. Alsayegh
- Clinical Nutrition DepartmentApplied Medical Sciences College, Jazan UniversityJazanSaudi Arabia
| | - Najlaa Hamed Almohmadi
- Clinical Nutrition DepartmentCollege of Applied Medical SciencesUmm Al‐Qura UniversityMakkahSaudi Arabia
| | - Hebatallah M. Saad
- Department of Pathology, Faculty of Veterinary MedicineMatrouh UniversityMatrouhEgypt
| | - Gaber El‐Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary MedicineDamanhour UniversityDamanhourEgypt
| |
Collapse
|
44
|
Senkevich K, Beletskaia M, Dworkind A, Yu E, Ahmad J, Ruskey JA, Asayesh F, Spiegelman D, Fahn S, Waters C, Monchi O, Dauvilliers Y, Dupré N, Greenbaum L, Hassin-Baer S, Nagornov I, Tyurin A, Miliukhina I, Timofeeva A, Emelyanov A, Zakharova E, Alcalay RN, Pchelina S, Gan-Or Z. Association of rare variants in ARSA with Parkinson's disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.03.08.23286773. [PMID: 36993451 PMCID: PMC10055435 DOI: 10.1101/2023.03.08.23286773] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Background Several lysosomal genes are associated with Parkinson's disease (PD), yet the association between PD and ARSA , which encodes for the enzyme arylsulfatase A, remains controversial. Objectives To evaluate the association between rare ARSA variants and PD. Methods To study possible association of rare variants (minor allele frequency<0.01) in ARSA with PD, we performed burden analyses in six independent cohorts with a total of 5,801 PD patients and 20,475 controls, using optimized sequence Kernel association test (SKAT-O), followed by a meta-analysis. Results We found evidence for an association between functional ARSA variants and PD in four independent cohorts (P≤0.05 in each) and in the meta-analysis (P=0.042). We also found an association between loss-of-function variants and PD in the UKBB cohort (P=0.005) and in the meta-analysis (P=0.049). However, despite replicating in four independent cohorts, these results should be interpreted with caution as no association survived correction for multiple comparisons. Additionally, we describe two families with potential co-segregation of the ARSA variant p.E384K and PD. Conclusions Rare functional and loss-of-function ARSA variants may be associated with PD. Further replication in large case-control cohorts and in familial studies is required to confirm these associations.
Collapse
Affiliation(s)
- Konstantin Senkevich
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montreal, Quebec, Canada
- Department of Neurology and neurosurgery, McGill University, Montréal, QC, Canada, Canada
| | - Mariia Beletskaia
- First Pavlov State Medical University of St. Petersburg, Saint-Petersburg, Russia
| | - Aliza Dworkind
- Department of Physiology, McGill University, Montréal, QC, Canada
| | - Eric Yu
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montreal, Quebec, Canada
- Department of Human Genetics, McGill University, Montréal, QC, Canada
| | - Jamil Ahmad
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montreal, Quebec, Canada
- Department of Neurology and neurosurgery, McGill University, Montréal, QC, Canada, Canada
| | - Jennifer A. Ruskey
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montreal, Quebec, Canada
- Department of Neurology and neurosurgery, McGill University, Montréal, QC, Canada, Canada
| | - Farnaz Asayesh
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montreal, Quebec, Canada
- Department of Human Genetics, McGill University, Montréal, QC, Canada
| | - Dan Spiegelman
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montreal, Quebec, Canada
| | - Stanley Fahn
- Department of Neurology, College of Physicians and Surgeons, Columbia University Medical Center, NY, USA
| | - Cheryl Waters
- Department of Neurology, College of Physicians and Surgeons, Columbia University Medical Center, NY, USA
| | - Oury Monchi
- Department of Neurology and neurosurgery, McGill University, Montréal, QC, Canada, Canada
- Department of Clinical Neurosciences and Department of Radiology, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, Calgary, Alberta, T2N 4N1 Canada
| | - Yves Dauvilliers
- National Reference Center for Narcolepsy, Sleep Unit, Department of Neurology, Guide-Chauliac Hospital, CHU Montpellier, University of Montpellier, Montpellier, France
| | - Nicolas Dupré
- Division of Neurosciences, CHU de Québec, Université Laval, Quebec City, Quebec, Canada
- Department of Medicine, Faculty of Medicine, Université Laval, Québec, Canada
| | - Lior Greenbaum
- The Danek Gertner Institute of Human Genetics, Sheba Medical Center, Tel Hashomer, Israel
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel Hashomer, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Sharon Hassin-Baer
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- The Movement Disorders Institute, Department of Neurology, Sheba Medical Center, Tel Hashomer, Israel
| | - Ilya Nagornov
- Research Centre for Medical Genetics, Moscow, Russia
| | - Alexandr Tyurin
- First Pavlov State Medical University of St. Petersburg, Saint-Petersburg, Russia
| | | | - Alla Timofeeva
- First Pavlov State Medical University of St. Petersburg, Saint-Petersburg, Russia
| | - Anton Emelyanov
- First Pavlov State Medical University of St. Petersburg, Saint-Petersburg, Russia
| | | | - Roy N. Alcalay
- Department of Neurology, College of Physicians and Surgeons, Columbia University Medical Center, NY, USA
- Division of Movement Disorders, Tel Aviv Sourasky Medical Center; Tel Aviv, Israel
| | - Sofya Pchelina
- First Pavlov State Medical University of St. Petersburg, Saint-Petersburg, Russia
| | - Ziv Gan-Or
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montreal, Quebec, Canada
- Department of Neurology and neurosurgery, McGill University, Montréal, QC, Canada, Canada
- Department of Human Genetics, McGill University, Montréal, QC, Canada
| |
Collapse
|
45
|
Microarrays, Enzymatic Assays, and MALDI-MS for Determining Specific Alterations to Mitochondrial Electron Transport Chain Activity, ROS Formation, and Lipid Composition in a Monkey Model of Parkinson’s Disease. Int J Mol Sci 2023; 24:ijms24065470. [PMID: 36982541 PMCID: PMC10049643 DOI: 10.3390/ijms24065470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 03/18/2023] Open
Abstract
Multiple evidences suggest that mitochondrial dysfunction is implicated in the pathogenesis of Parkinson’s disease via the selective cell death of dopaminergic neurons, such as that which occurs after prolonged exposure to the mitochondrial electron transport chain (ETC) complex I inhibitor, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyrine (MPTP). However, the effects of chronic MPTP on the ETC complexes and on enzymes of lipid metabolism have not yet been thoroughly determined. To face these questions, the enzymatic activities of ETC complexes and the lipidomic profile of MPTP-treated non-human primate samples were determined using cell membrane microarrays from different brain areas and tissues. MPTP treatment induced an increase in complex II activity in the olfactory bulb, putamen, caudate, and substantia nigra, where a decrease in complex IV activity was observed. The lipidomic profile was also altered in these areas, with a reduction in the phosphatidylserine (38:1) content being especially relevant. Thus, MPTP treatment not only modulates ETC enzymes, but also seems to alter other mitochondrial enzymes that regulate the lipid metabolism. Moreover, these results show that a combination of cell membrane microarrays, enzymatic assays, and MALDI-MS provides a powerful tool for identifying and validating new therapeutic targets that might accelerate the drug discovery process.
Collapse
|
46
|
Qi Z, Wan M, Zhang J, Li Z. Influence of Cholesterol on the Membrane Binding and Conformation of α-Synuclein. J Phys Chem B 2023; 127:1956-1964. [PMID: 36812386 DOI: 10.1021/acs.jpcb.2c08077] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
The α-Synuclein (α-Syn) plays an important role in the pathology of Parkinson's disease (PD), and its oligomers and fibrils are toxic to the nervous system. As organisms age, the cholesterol content in biological membranes increases, which is a potential cause of PD. Cholesterol may affect the membrane binding of α-Syn and its abnormal aggregation, but the mechanism remains unclear. Here, we present our molecular dynamics simulation studies on the interaction between α-Syn and lipid membranes, with or without cholesterol. It is demonstrated that cholesterol provides additional hydrogen bond interaction with α-Syn; however, the coulomb interaction and hydrophobic interaction between α-Syn and lipid membranes could be weakened by cholesterol. In addition, cholesterol leads to the shrinking of lipid packing defects and the decrease of lipid fluidity, thereby shortening the membrane binding region of α-Syn. Under these multifaceted effects of cholesterol, membrane-bound α-Syn shows signs of forming a β-sheet structure, which may further induce the formation of abnormal α-Syn fibrils. These results provide important information for the understanding of membrane binding of α-Syn, and they are expected to promote the bridging between cholesterol and the pathological aggregation of α-Syn.
Collapse
Affiliation(s)
- Ziqiang Qi
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Menglin Wan
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Jun Zhang
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Zhen Li
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
| |
Collapse
|
47
|
Honsho M, Fujiki Y. Regulation of plasmalogen biosynthesis in mammalian cells and tissues. Brain Res Bull 2023; 194:118-123. [PMID: 36720320 DOI: 10.1016/j.brainresbull.2023.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 01/08/2023] [Accepted: 01/27/2023] [Indexed: 01/29/2023]
Abstract
Plasmalogens are a unique family of cellular glycerophospholipids that contain a vinyl-ether bond. Synthesis of plasmalogens is initiated in peroxisomes and completed in the endoplasmic reticulum. The absence of plasmalogens in several organs of patients with deficiency in peroxisome biogenesis suggests that de novo synthesis of plasmalogens contributes significantly to plasmalogen homeostasis in humans. Plasmalogen biosynthesis is spatiotemporally regulated by a feedback mechanism that senses the amount of plasmalogens in the inner leaflet of the plasma membrane and regulates the stability of fatty acyl-CoA reductase 1 (FAR1), the rate-limiting enzyme for plasmalogen biosynthesis. Dysregulation of plasmalogen synthesis impairs cholesterol synthesis in cells and brain, resulting in the reduced expression of genes such as mRNA encoding myelin basic protein, a phenotype found in the cerebellum of plasmalogen-deficient mice. In this review, we summarize the current knowledge of molecular mechanisms underlying the regulation of plasmalogen biosynthesis and the link between plasmalogen homeostasis and cholesterol biosynthesis, and address the pathogenesis of impaired plasmalogen homeostasis in rodent and humans.
Collapse
Affiliation(s)
- Masanori Honsho
- Department of Neuroinflammation and Brain Fatigue Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Yukio Fujiki
- Institute of Rheological Functions of Food-Kyushu University Collaboration Program, Kyushu University, Fukuoka, Japan; Graduate School of Science, University of Hyogo, Hyogo, Japan.
| |
Collapse
|
48
|
McDonald TS, Lerskiatiphanich T, Woodruff TM, McCombe PA, Lee JD. Potential mechanisms to modify impaired glucose metabolism in neurodegenerative disorders. J Cereb Blood Flow Metab 2023; 43:26-43. [PMID: 36281012 PMCID: PMC9875350 DOI: 10.1177/0271678x221135061] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 09/01/2022] [Accepted: 09/21/2022] [Indexed: 01/28/2023]
Abstract
Neurodegeneration refers to the selective and progressive loss-of-function and atrophy of neurons, and is present in disorders such as Alzheimer's, Huntington's, and Parkinson's disease. Although each disease presents with a unique pattern of neurodegeneration, and subsequent disease phenotype, increasing evidence implicates alterations in energy usage as a shared and core feature in the onset and progression of these disorders. Indeed, disturbances in energy metabolism may contribute to the vulnerability of neurons to apoptosis. In this review we will outline these disturbances in glucose metabolism, and how fatty acids are able to compensate for this impairment in energy production in neurodegenerative disorders. We will also highlight underlying mechanisms that could contribute to these alterations in energy metabolism. A greater understanding of these metabolism-neurodegeneration processes could lead to improved treatment options for neurodegenerative disease patients.
Collapse
Affiliation(s)
- Tanya S McDonald
- School of Biomedical Sciences, Faculty of Medicine, The
University of Queensland, St. Lucia, Australia
| | - Titaya Lerskiatiphanich
- School of Biomedical Sciences, Faculty of Medicine, The
University of Queensland, St. Lucia, Australia
| | - Trent M Woodruff
- School of Biomedical Sciences, Faculty of Medicine, The
University of Queensland, St. Lucia, Australia
- Queensland Brain Institute, The University of Queensland, St.
Lucia, Australia
| | - Pamela A McCombe
- Centre for Clinical Research, Faculty of Medicine, The
University of Queensland, St. Lucia, Australia
- Department of Neurology, Royal Brisbane & Women’s Hospital,
Herston, Australia
| | - John D Lee
- School of Biomedical Sciences, Faculty of Medicine, The
University of Queensland, St. Lucia, Australia
| |
Collapse
|
49
|
Dickson EJ. Role of Lysosomal Cholesterol in Regulating PI(4,5)P 2-Dependent Ion Channel Function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1422:193-215. [PMID: 36988882 DOI: 10.1007/978-3-031-21547-6_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Lysosomes are central regulators of cellular growth and signaling. Once considered the acidic garbage can of the cell, their ever-expanding repertoire of functions include the regulation of cell growth, gene regulation, metabolic signaling, cell migration, and cell death. In this chapter, we detail how another of the lysosome's crucial roles, cholesterol transport, plays a vital role in the control of ion channel function and neuronal excitability through its ability to influence the abundance of the plasma membrane signaling lipid phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2). This chapter will introduce the biosynthetic pathways of cholesterol and PI(4,5)P2, discuss the molecular mechanisms through which each lipid distinctly regulates ion channels, and consider the interdependence of these lipids in the control of ion channel function.
Collapse
Affiliation(s)
- Eamonn J Dickson
- Department of Physiology and Membrane Biology, University of California, Davis, CA, USA.
| |
Collapse
|
50
|
Wanders RJA, Baes M, Ribeiro D, Ferdinandusse S, Waterham HR. The physiological functions of human peroxisomes. Physiol Rev 2023; 103:957-1024. [PMID: 35951481 DOI: 10.1152/physrev.00051.2021] [Citation(s) in RCA: 73] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Peroxisomes are subcellular organelles that play a central role in human physiology by catalyzing a range of unique metabolic functions. The importance of peroxisomes for human health is exemplified by the existence of a group of usually severe diseases caused by an impairment in one or more peroxisomal functions. Among others these include the Zellweger spectrum disorders, X-linked adrenoleukodystrophy, and Refsum disease. To fulfill their role in metabolism, peroxisomes require continued interaction with other subcellular organelles including lipid droplets, lysosomes, the endoplasmic reticulum, and mitochondria. In recent years it has become clear that the metabolic alliance between peroxisomes and other organelles requires the active participation of tethering proteins to bring the organelles physically closer together, thereby achieving efficient transfer of metabolites. This review intends to describe the current state of knowledge about the metabolic role of peroxisomes in humans, with particular emphasis on the metabolic partnership between peroxisomes and other organelles and the consequences of genetic defects in these processes. We also describe the biogenesis of peroxisomes and the consequences of the multiple genetic defects therein. In addition, we discuss the functional role of peroxisomes in different organs and tissues and include relevant information derived from model systems, notably peroxisomal mouse models. Finally, we pay particular attention to a hitherto underrated role of peroxisomes in viral infections.
Collapse
Affiliation(s)
- Ronald J A Wanders
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,Department of Pediatrics, Emma Children's Hospital, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,United for Metabolic Diseases, Amsterdam, The Netherlands
| | - Myriam Baes
- Laboratory of Cell Metabolism, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Daniela Ribeiro
- Institute of Biomedicine (iBiMED) and Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Sacha Ferdinandusse
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,United for Metabolic Diseases, Amsterdam, The Netherlands
| | - Hans R Waterham
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,Department of Pediatrics, Emma Children's Hospital, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,United for Metabolic Diseases, Amsterdam, The Netherlands
| |
Collapse
|