1
|
Yuasa-Kawada J, Kinoshita-Kawada M, Hiramoto M, Yamagishi S, Mishima T, Yasunaga S, Tsuboi Y, Hattori N, Wu JY. Neuronal guidance signaling in neurodegenerative diseases: Key regulators that function at neuron-glia and neuroimmune interfaces. Neural Regen Res 2026; 21:612-635. [PMID: 39995079 DOI: 10.4103/nrr.nrr-d-24-01330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 01/27/2025] [Indexed: 02/26/2025] Open
Abstract
The nervous system processes a vast amount of information, performing computations that underlie perception, cognition, and behavior. During development, neuronal guidance genes, which encode extracellular cues, their receptors, and downstream signal transducers, organize neural wiring to generate the complex architecture of the nervous system. It is now evident that many of these neuroguidance cues and their receptors are active during development and are also expressed in the adult nervous system. This suggests that neuronal guidance pathways are critical not only for neural wiring but also for ongoing function and maintenance of the mature nervous system. Supporting this view, these pathways continue to regulate synaptic connectivity, plasticity, and remodeling, and overall brain homeostasis throughout adulthood. Genetic and transcriptomic analyses have further revealed many neuronal guidance genes to be associated with a wide range of neurodegenerative and neuropsychiatric disorders. Although the precise mechanisms by which aberrant neuronal guidance signaling drives the pathogenesis of these diseases remain to be clarified, emerging evidence points to several common themes, including dysfunction in neurons, microglia, astrocytes, and endothelial cells, along with dysregulation of neuron-microglia-astrocyte, neuroimmune, and neurovascular interactions. In this review, we explore recent advances in understanding the molecular and cellular mechanisms by which aberrant neuronal guidance signaling contributes to disease pathogenesis through altered cell-cell interactions. For instance, recent studies have unveiled two distinct semaphorin-plexin signaling pathways that affect microglial activation and neuroinflammation. We discuss the challenges ahead, along with the therapeutic potentials of targeting neuronal guidance pathways for treating neurodegenerative diseases. Particular focus is placed on how neuronal guidance mechanisms control neuron-glia and neuroimmune interactions and modulate microglial function under physiological and pathological conditions. Specifically, we examine the crosstalk between neuronal guidance signaling and TREM2, a master regulator of microglial function, in the context of pathogenic protein aggregates. It is well-established that age is a major risk factor for neurodegeneration. Future research should address how aging and neuronal guidance signaling interact to influence an individual's susceptibility to various late-onset neurological diseases and how the progression of these diseases could be therapeutically blocked by targeting neuronal guidance pathways.
Collapse
Affiliation(s)
| | | | | | - Satoru Yamagishi
- Department of Optical Neuroanatomy, Institute of Photonics Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Takayasu Mishima
- Division of Neurology, Department of Internal Medicine, Sakura Medical Center, Toho University, Sakura, Japan
| | - Shin'ichiro Yasunaga
- Department of Biochemistry, Fukuoka University Faculty of Medicine, Fukuoka, Japan
| | - Yoshio Tsuboi
- Department of Neurology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Jane Y Wu
- Department of Neurology, Center for Genetic Medicine, Lurie Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
2
|
Cui Z, He J, Li A, Wang J, Yang Y, Wang K, Liu Z, Ouyang Q, Su Z, Hu P, Xiao G. Novel insights into non-coding RNAs and their role in hydrocephalus. Neural Regen Res 2026; 21:636-647. [PMID: 39688559 DOI: 10.4103/nrr.nrr-d-24-00963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 11/16/2024] [Indexed: 12/18/2024] Open
Abstract
A large body of evidence has highlighted the role of non-coding RNAs in neurodevelopment and neuroinflammation. This evidence has led to increasing speculation that non-coding RNAs may be involved in the pathophysiological mechanisms underlying hydrocephalus, one of the most common neurological conditions worldwide. In this review, we first outline the basic concepts and incidence of hydrocephalus along with the limitations of existing treatments for this condition. Then, we outline the definition, classification, and biological role of non-coding RNAs. Subsequently, we analyze the roles of non-coding RNAs in the formation of hydrocephalus in detail. Specifically, we have focused on the potential significance of non-coding RNAs in the pathophysiology of hydrocephalus, including glymphatic pathways, neuroinflammatory processes, and neurological dysplasia, on the basis of the existing evidence. Lastly, we review the potential of non-coding RNAs as biomarkers of hydrocephalus and for the creation of innovative treatments.
Collapse
Affiliation(s)
- Zhiyue Cui
- Department of Diagnostic Radiology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan Province, China
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Jian He
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - An Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Junqiang Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Yijian Yang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Kaiyue Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Zhikun Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Qian Ouyang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- Department of Neurosurgery, Zhuzhou Hospital, Central South University Xiangya School of Medicine, Zhuzhou, Hunan Province, China
| | - Zhangjie Su
- Department of Neurosurgery, Addenbrooke 's Hospital, Cambridge University Hospitals NHS Foundation Trust, Hills Road, Cambridge, UK
| | - Pingsheng Hu
- Department of Diagnostic Radiology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan Province, China
| | - Gelei Xiao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| |
Collapse
|
3
|
Mastrorilli V, Farioli-Vecchioli S. p21 as an essential regulator of neurogenic homeostasis in neuropathological conditions. Neural Regen Res 2026; 21:675-676. [PMID: 39820329 DOI: 10.4103/nrr.nrr-d-24-01255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 12/02/2024] [Indexed: 01/19/2025] Open
|
4
|
Yao L, Cai X, Yang S, Song Y, Xing L, Li G, Cui Z, Chen J. A single-cell landscape of the regenerating spinal cord of zebrafish. Neural Regen Res 2026; 21:780-789. [PMID: 40326988 DOI: 10.4103/nrr.nrr-d-24-01163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 03/03/2025] [Indexed: 05/07/2025] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202602000-00046/figure1/v/2025-05-05T160104Z/r/image-tiff Unlike mammals, zebrafish possess a remarkable ability to regenerate their spinal cord after injury, making them an ideal vertebrate model for studying regeneration. While previous research has identified key cell types involved in this process, the underlying molecular and cellular mechanisms remain largely unexplored. In this study, we used single-cell RNA sequencing to profile distinct cell populations at different stages of spinal cord injury in zebrafish. Our analysis revealed that multiple subpopulations of neurons showed persistent activation of genes associated with axonal regeneration post injury, while molecular signals promoting growth cone collapse were inhibited. Radial glial cells exhibited significant proliferation and differentiation potential post injury, indicating their intrinsic roles in promoting neurogenesis and axonal regeneration, respectively. Additionally, we found that inflammatory factors rapidly decreased in the early stages following spinal cord injury, creating a microenvironment permissive for tissue repair and regeneration. Furthermore, oligodendrocytes lost maturity markers while exhibiting increased proliferation following injury. These findings demonstrated that the rapid and orderly regulation of inflammation, as well as the efficient proliferation and redifferentiation of new neurons and glial cells, enabled zebrafish to reconstruct the spinal cord. This research provides new insights into the cellular transitions and molecular programs that drive spinal cord regeneration, offering promising avenues for future research and therapeutic strategies.
Collapse
Affiliation(s)
- Lei Yao
- Department of Anesthesiology, Affiliated Hospital 2 of Nantong University, Nantong, Jiangsu Province, China
| | - Xinyi Cai
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, Jiangsu Province, China
| | - Saishuai Yang
- Department of Anesthesiology, Affiliated Hospital 2 of Nantong University, Nantong, Jiangsu Province, China
| | - Yixing Song
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, Jiangsu Province, China
| | - Lingyan Xing
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, Jiangsu Province, China
| | - Guicai Li
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, Jiangsu Province, China
| | - Zhiming Cui
- Department of Spine Surgery, Affiliated Hospital 2 of Nantong University, Nantong, Jiangsu Province, China
- Research Institute for Spine and Spinal Cord Disease of Nantong University, Nantong, Jiangsu Province, China
| | - Jiajia Chen
- Department of Spine Surgery, Affiliated Hospital 2 of Nantong University, Nantong, Jiangsu Province, China
- Research Institute for Spine and Spinal Cord Disease of Nantong University, Nantong, Jiangsu Province, China
| |
Collapse
|
5
|
Bonato B, Bennett T, Guerra S, Avesani S, Castiello U. Do strigolactones play a role in the ascent and attachment behavior of Pisum sativum? PLANT SIGNALING & BEHAVIOR 2025; 20:2447455. [PMID: 39745925 DOI: 10.1080/15592324.2024.2447455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 12/19/2024] [Accepted: 12/22/2024] [Indexed: 01/04/2025]
Abstract
Strigolactones (SLs) are signaling compounds made by plants. They play a crucial role in acting as long-distance signals from root to shoot to coordinate shoot growth with root environmental conditions. Here, we test whether and how SLs play a role in the climbing behavior of pea plants by studying the circumnutation of the tendrils using three-dimensional (3D) kinematical analysis. To assess this, we compare the typical behavior of P. sativum, a wild-type plant that produces and perceives SLs, with mutants defective in SLs synthesis or signaling, known as ramosus(rms) mutants. The results indicate that mutant plants seem unable to locate and grasp a potential support. Their movement appears to be disoriented and much less energized. We contend that this research opens new avenues for exploring SLs' role in plant behavior, a novel lens through which the role of SLs in root-to-shoot communication can be observed and analyzed.
Collapse
Affiliation(s)
- Bianca Bonato
- Department of General Psychology, University of Padova, Padova, Italy
| | - Tom Bennett
- Faculty of Biological Science, University of Leeds, Leeds, UK
| | - Silvia Guerra
- Department of General Psychology, University of Padova, Padova, Italy
| | - Sara Avesani
- Department of General Psychology, University of Padova, Padova, Italy
| | - Umberto Castiello
- Department of General Psychology, University of Padova, Padova, Italy
| |
Collapse
|
6
|
Vidi PA, Liu J, Bonin K, Bloom K. Closing the loops: chromatin loop dynamics after DNA damage. Nucleus 2025; 16:2438633. [PMID: 39720924 DOI: 10.1080/19491034.2024.2438633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/29/2024] [Accepted: 11/30/2024] [Indexed: 12/26/2024] Open
Abstract
Chromatin is a dynamic polymer in constant motion. These motions are heterogeneous between cells and within individual cell nuclei and are profoundly altered in response to DNA damage. The shifts in chromatin motions following genomic insults depend on the temporal and physical scales considered. They are also distinct in damaged and undamaged regions. In this review, we emphasize the role of chromatin tethering and loop formation in chromatin dynamics, with the view that pulsing loops are key contributors to chromatin motions. Chromatin tethers likely mediate micron-scale chromatin coherence predicted by polymer models and measured experimentally, and we propose that remodeling of the tethers in response to DNA breaks enables uncoupling of damaged and undamaged chromatin regions.
Collapse
Affiliation(s)
| | - Jing Liu
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN, USA
| | - Keith Bonin
- Department of Physics, Wake Forest University, Winston-Salem, NC, USA
| | - Kerry Bloom
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
7
|
Wu S, Ma X, Zhang X, Du K, Shi C, Almaamari AA, Han B, Su S, Liu Y. Knockdown of NDUFAF6 inhibits breast cancer progression via promoting mitophagy and apoptosis. Cancer Biol Ther 2025; 26:2445220. [PMID: 39706687 DOI: 10.1080/15384047.2024.2445220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 12/04/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024] Open
Abstract
BACKGROUND While NDUFAF6 is implicated in breast cancer, its specific role remains unclear. METHODS The expression levels and prognostic significance of NDUFAF6 in breast cancer were assessed using The Cancer Genome Atlas, Gene Expression Omnibus, Kaplan-Meier plotter and cBio-Portal databases. We knocked down NDUFAF6 in breast cancer cells using small interfering RNA and investigated its effects on cell proliferation and migration ability. We performed gene expression analysis and validated key findings using protein analysis. We also assessed mitochondrial activity and cellular metabolism. RESULTS NDUFAF6 was highly expressed in breast cancer, which was associated with a poorer prognosis. Knockdown of NDUFAF6 reduced the proliferation and migration ability of breast cancer cells. Transcriptome analysis revealed 2,101 differentially expressed genes enriched in apoptosis and mitochondrial signaling pathways. Western blot results showed NDUFAF6 knockdown enhanced apoptosis. In addition, differential gene enrichment analysis was related to mitochondrial signaling pathways, and western blot results verified that mitophagy was enhanced in NDUFAF6 knockdown breast cancer cells. JC-1 assay also showed that mitochondrial dysfunction and reactive oxygen species content were increased after knocking down NDUFAF6. In addition, basal and maximal mitochondrial oxygen consumption decreased, and intracellular glycogen content increased. CONCLUSIONS Knockdown of NDUFAF6 resulted in apoptosis and mitophagy in breast cancer cells and NDUFAF6 may be a potential molecular target for breast cancer therapy.
Collapse
Affiliation(s)
- Shang Wu
- Department of Breast Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Provincial Key Laboratory of Tumor Microenvironment and Drug Resistance, Hebei Medical University, Shijiazhuang, China
| | - Xindi Ma
- Department of Breast Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Provincial Key Laboratory of Tumor Microenvironment and Drug Resistance, Hebei Medical University, Shijiazhuang, China
| | - Xiangmei Zhang
- Hebei Provincial Key Laboratory of Tumor Microenvironment and Drug Resistance, Hebei Medical University, Shijiazhuang, China
- Department of Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Kaiye Du
- Hebei Provincial Key Laboratory of Tumor Microenvironment and Drug Resistance, Hebei Medical University, Shijiazhuang, China
- Radiotherapy Department, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Chao Shi
- Department of Breast Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Provincial Key Laboratory of Tumor Microenvironment and Drug Resistance, Hebei Medical University, Shijiazhuang, China
| | - Ahmed Ali Almaamari
- The Key Laboratory of Neural and Vascular Biology, The Key Laboratory of New Drug Pharmacology and Toxicology, Department of Pharmacology, Ministry of Education, Hebei Medical University, Shijiazhuang, China
| | - Boye Han
- The Key Laboratory of Neural and Vascular Biology, The Key Laboratory of New Drug Pharmacology and Toxicology, Department of Pharmacology, Ministry of Education, Hebei Medical University, Shijiazhuang, China
| | - Suwen Su
- The Key Laboratory of Neural and Vascular Biology, The Key Laboratory of New Drug Pharmacology and Toxicology, Department of Pharmacology, Ministry of Education, Hebei Medical University, Shijiazhuang, China
| | - Yunjiang Liu
- Hebei Provincial Key Laboratory of Tumor Microenvironment and Drug Resistance, Hebei Medical University, Shijiazhuang, China
- The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
8
|
Choi JC. Perinuclear organelle trauma at the nexus of cardiomyopathy pathogenesis arising from loss of function LMNA mutation. Nucleus 2025; 16:2449500. [PMID: 39789731 PMCID: PMC11730615 DOI: 10.1080/19491034.2024.2449500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/22/2024] [Accepted: 12/30/2024] [Indexed: 01/12/2025] Open
Abstract
Over the past 25 years, nuclear envelope (NE) perturbations have been reported in various experimental models with mutations in the LMNA gene. Although the hypothesis that NE perturbations from LMNA mutations are a fundamental feature of striated muscle damage has garnered wide acceptance, the molecular sequalae provoked by the NE damage and how they underlie disease pathogenesis such as cardiomyopathy (LMNA cardiomyopathy) remain poorly understood. We recently shed light on one such consequence, by employing a cardiomyocyte-specific Lmna deletion in vivo in the adult heart. We observed extensive NE perturbations prior to cardiac function deterioration with collateral damage in the perinuclear space. The Golgi is particularly affected, leading to cytoprotective stress responses that are likely disrupted by the progressive deterioration of the Golgi itself. In this review, we discuss the etiology of LMNA cardiomyopathy with perinuclear 'organelle trauma' as the nexus between NE damage and disease pathogenesis.
Collapse
Affiliation(s)
- Jason C. Choi
- Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
9
|
Bassalo D, Matthews SG, Bloise E. The canine blood-brain barrier in health and disease: focus on brain protection. Vet Q 2025; 45:12-32. [PMID: 39791202 PMCID: PMC11727060 DOI: 10.1080/01652176.2025.2450041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/18/2024] [Accepted: 12/29/2024] [Indexed: 01/12/2025] Open
Abstract
This review examines the role of the canine blood-brain barrier (BBB) in health and disease, focusing on the impact of the multidrug resistance (MDR) transporter P-glycoprotein (P-gp) encoded by the ABCB1/MDR1 gene. The BBB is critical in maintaining central nervous system homeostasis and brain protection against xenobiotics and environmental drugs that may be circulating in the blood stream. We revise key anatomical, histological and functional aspects of the canine BBB and examine the role of the ABCB1/MDR1 gene mutation in specific dog breeds that exhibit reduced P-gp activity and disrupted drug brain pharmacokinetics. The review also covers factors that may disrupt the canine BBB, including the actions of aging, canine cognitive dysfunction, epilepsy, inflammation, infection, traumatic brain injury, among others. We highlight the critical importance of this barrier in maintaining central nervous system homeostasis and protecting against xenobiotics and conclude that a number of neurological-related diseases may increase vulnerability of the BBB in the canine species and discuss its profound impacts on canine health.
Collapse
Affiliation(s)
- Dimitri Bassalo
- Especialização em Farmacologia, Departamento de Farmacologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Stephen G. Matthews
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Canada
- Department of Obstetrics & Gynaecology, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
- Department of Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Enrrico Bloise
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
- Departamento de Morfologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
10
|
Liang H, Zhou B, Li P, Zhang X, Zhang S, Zhang Y, Yao S, Qu S, Chen J. Stemness regulation in prostate cancer: prostate cancer stem cells and targeted therapy. Ann Med 2025; 57:2442067. [PMID: 39711287 DOI: 10.1080/07853890.2024.2442067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 11/07/2024] [Accepted: 11/22/2024] [Indexed: 12/24/2024] Open
Abstract
BACKGROUND Increasing evidence indicates that cancer stem cells (CSCs) and cancer stem-like cells form a special subpopulation of cells that are ubiquitous in tumors. These cells exhibit similar characteristics to those of normal stem cells in tissues; moreover, they are capable of self-renewal and differentiation, as well as high tumorigenicity and drug resistance. In prostate cancer (PCa), it is difficult to kill these cells using androgen signaling inhibitors and chemotherapy drugs. Consequently, the residual prostate cancer stem cells (PCSCs) mediate tumor recurrence and progression. OBJECTIVE This review aims to provide a comprehensive and up-to-date overview of PCSCs, with a particular emphasis on potential therapeutic strategies targeting these cells. METHODS After searching in PubMed and Embase databases using 'prostate cancer' and 'cancer stem cells' as keywords, studies related were compiled and examined. RESULTS In this review, we detail the origin and characteristics of PCSCs, introduce the regulatory pathways closely related to CSC survival and stemness maintenance, and discuss the link between epithelial-mesenchymal transition, tumor microenvironment and tumor stemness. Furthermore, we introduce the currently available therapeutic strategies targeting CSCs, including signaling pathway inhibitors, anti-apoptotic protein inhibitors, microRNAs, nanomedicine, and immunotherapy. Lastly, we summarize the limitations of current CSC research and mention future research directions. CONCLUSION A deeper understanding of the regulatory network and molecular markers of PCSCs could facilitate the development of novel therapeutic strategies targeting these cells. Previous preclinical studies have demonstrated the potential of this treatment approach. In the future, this may offer alternative treatment options for PCa patients.
Collapse
Affiliation(s)
- Hao Liang
- Department of Urology, Qilu Hospital of Shandong University (Qingdao), Qingdao, China
| | - Bin Zhou
- Department of Urology, Qilu Hospital of Shandong University, Jinan, China
| | - Peixin Li
- Department of Urology, Qilu Hospital of Shandong University, Jinan, China
| | - Xiaoyi Zhang
- Department of Urology, Qilu Hospital of Shandong University, Jinan, China
| | - Shijie Zhang
- Department of Urology, Qilu Hospital of Shandong University, Jinan, China
| | - Yaozhong Zhang
- Department of Urology, Qilu Hospital of Shandong University, Jinan, China
| | - Shengwen Yao
- Department of Urology, Qilu Hospital of Shandong University, Jinan, China
| | - Sifeng Qu
- Department of Urology, Qilu Hospital of Shandong University (Qingdao), Qingdao, China
| | - Jun Chen
- Department of Urology, Qilu Hospital of Shandong University (Qingdao), Qingdao, China
| |
Collapse
|
11
|
Emami S, Westerlund E, Rojas Converso T, Johansson-Lindbom B, Persson JJ. Protection acquired upon intraperitoneal group a Streptococcus immunization is independent of concurrent adaptive immune responses but relies on macrophages and IFN-γ. Virulence 2025; 16:2457957. [PMID: 39921669 PMCID: PMC11810095 DOI: 10.1080/21505594.2025.2457957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/09/2024] [Accepted: 01/20/2025] [Indexed: 02/10/2025] Open
Abstract
Group A Streptococcus (GAS; Streptococcus pyogenes) is an important bacterial pathogen causing over 700 million superficial infections and around 500.000 deaths due to invasive disease or severe post-infection sequelae yearly. In spite of this major impact on society, there is currently no vaccine available against this bacterium. GAS strains can be separated into >250 distinct emm (M)-types, and protective immunity against GAS is believed to in part be dependent on type-specific antibodies. Here, we analyse the nature of protective immunity generated against GAS in a model of intraperitoneal immunization in mice. We demonstrate that multiple immunizations are required for the ability to survive a subsequent lethal challenge, and although significant levels of GAS-specific antibodies are produced, these are redundant for protection. Instead, our data show that the immunization-dependent protection in this model is induced in the absence of B and T cells and is accompanied by the induction of an altered acute cytokine profile upon subsequent infection, noticeable e.g. by the absence of classical pro-inflammatory cytokines and increased IFN-γ production. Further, the ability of immunized mice to survive a lethal infection is dependent on macrophages and the macrophage-activating cytokine IFN-γ. To our knowledge these findings are the first to suggest that GAS may have the ability to induce forms of trained innate immunity. Taken together, the current study proposes a novel role for the innate immune system in response to GAS infections that potentially could be leveraged for future development of effective vaccines.
Collapse
Affiliation(s)
- Shiva Emami
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Elsa Westerlund
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | | | | | - Jenny J Persson
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| |
Collapse
|
12
|
Nair A, Khanna J, Kler J, Ragesh R, Sengupta K. Nuclear envelope and chromatin choreography direct cellular differentiation. Nucleus 2025; 16:2449520. [PMID: 39943681 PMCID: PMC11834525 DOI: 10.1080/19491034.2024.2449520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/28/2024] [Accepted: 12/30/2024] [Indexed: 02/20/2025] Open
Abstract
The nuclear envelope plays an indispensable role in the spatiotemporal organization of chromatin and transcriptional regulation during the intricate process of cell differentiation. This review outlines the distinct regulatory networks between nuclear envelope proteins, transcription factors and epigenetic modifications in controlling the expression of cell lineage-specific genes during differentiation. Nuclear lamina with its associated nuclear envelope proteins organize heterochromatin via Lamina-Associated Domains (LADs), proximal to the nuclear periphery. Since nuclear lamina is mechanosensitive, we critically examine the impact of extracellular forces on differentiation outcomes. The nuclear envelope is spanned by nuclear pore complexes which, in addition to their central role in transport, are associated with chromatin organization. Furthermore, mutations in the nuclear envelope proteins disrupt differentiation, resulting in developmental disorders. Investigating the underlying nuclear envelope controlled regulatory mechanisms of chromatin remodelling during lineage commitment will accelerate our fundamental understanding of developmental biology and regenerative medicine.
Collapse
Affiliation(s)
- Anjitha Nair
- Chromosome Biology Lab (CBL), Indian Institute of Science Education and Research (IISER) Pune, Maharashtra, India
| | - Jayati Khanna
- Chromosome Biology Lab (CBL), Indian Institute of Science Education and Research (IISER) Pune, Maharashtra, India
| | - Jashan Kler
- Chromosome Biology Lab (CBL), Indian Institute of Science Education and Research (IISER) Pune, Maharashtra, India
| | - Rohith Ragesh
- Chromosome Biology Lab (CBL), Indian Institute of Science Education and Research (IISER) Pune, Maharashtra, India
| | - Kundan Sengupta
- Chromosome Biology Lab (CBL), Indian Institute of Science Education and Research (IISER) Pune, Maharashtra, India
| |
Collapse
|
13
|
Deshpande G, Das S, Roy AE, Ratnaparkhi GS. A face-off between Smaug and Caspar modulates primordial germ cell count and identity in Drosophila embryos. Fly (Austin) 2025; 19:2438473. [PMID: 39718186 DOI: 10.1080/19336934.2024.2438473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/26/2024] [Accepted: 12/01/2024] [Indexed: 12/25/2024] Open
Abstract
Proper formation and specification of Primordial Germ Cells (PGCs) is of special significance as they gradually transform into Germline Stem Cells (GSCs) that are ultimately responsible for generating the gametes. Intriguingly, not only the PGCs constitute the only immortal cell type but several specific determinants also underlying PGC specification such as Vasa, Nanos and Germ-cell-less are conserved through evolution. In Drosophila melanogaster, PGC formation and specification depends on two independent factors, the maternally deposited specialized cytoplasm (or germ plasm) enriched in germline determinants, and the mechanisms that execute the even partitioning of these determinants between the daughter cells. Prior work has shown that Oskar protein is necessary and sufficient to assemble the functional germ plasm, whereas centrosomes associated with the nuclei that invade the germ plasm are responsible for its equitable distribution. Our recent data suggests that Caspar, the Drosophila orthologue of human Fas-associated factor-1 (FAF1) is a novel regulator that modulates both mechanisms that underlie the determination of PGC fate. Consistently, early blastoderm embryos derived from females compromised for caspar display reduced levels of Oskar and defective centrosomes.
Collapse
Affiliation(s)
- Girish Deshpande
- Department of Biology, Indian Institute of Science Education & Research, Pune, India
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Subhradip Das
- Department of Biology, Indian Institute of Science Education & Research, Pune, India
| | - Adheena Elsa Roy
- Department of Biology, Indian Institute of Science Education & Research, Pune, India
| | - Girish S Ratnaparkhi
- Department of Biology, Indian Institute of Science Education & Research, Pune, India
| |
Collapse
|
14
|
Xu Z, Asakawa S. Release and degradation of dissolved environmental RNAs from zebrafish cells. RNA Biol 2025; 22:1-12. [PMID: 40167163 PMCID: PMC12026185 DOI: 10.1080/15476286.2025.2486281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 02/27/2025] [Accepted: 03/21/2025] [Indexed: 04/02/2025] Open
Abstract
The sources and degradation profiles of dissolved environmental RNAs from fish in water remain unknown. In this study, laboratory experiments and mathematical modelling were conducted to investigate the permeability of RNA extracted from zebrafish cells through filters, the release of dissolved environmental RNAs from live and dying zebrafish cells, and the degradation of RNA extracted from zebrafish cells in a non-sterile aqueous environment. This research aimed to provide biological and ecological insights into fish RNAs dissolved in water. The results showed that most of the RNA extracted from zebrafish cells was detected in the filtrates after passage through 0.45 µm filters. Over the course of the 6-day experiment, dynamic levels of the RNAs in the liquid environment containing live or dying zebrafish cells were determined. The release and degradation rates of dissolved environmental RNA from zebrafish cells were calculated using mathematical modelling. RNA extracted from zebrafish cells degraded in non-sterile water in the tubes, and after 2 months, more than 15% of the RNAs in the water remained detectable. The half-life of the RNA in the tubes was approximately 20 ~ 43 days. The modelling results suggest that the levels of the dissolved environmental fish RNAs in natural waters or aquariums could be so low that it would be difficult to detect them using current techniques. The results obtained in this study will help develop new methods for measuring the dynamics of dissolved environmental fish RNAs in water and determining their significance.
Collapse
Affiliation(s)
- Zhongneng Xu
- Department of Ecology, Jinan University, Guangzhou, China
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Science, The University of Tokyo, Tokyo, Japan
| | - Shuichi Asakawa
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
15
|
Ge W, Zheng C. Outcomes of peripherally inserted central catheter vs conventional central venous catheters in hematological cancer patients: a systematic review and meta-analysis. Hematology 2025; 30:2450572. [PMID: 39809588 DOI: 10.1080/16078454.2025.2450572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 01/03/2025] [Indexed: 01/16/2025] Open
Abstract
OBJECTIVE This review aimed to examine if there is any difference in the risk of thrombosis and central line-associated bloodstream infection (CLABSI) with the use of peripherally inserted central catheter (PICC) and conventional central venous catheters (CVC) in hematological cancer patients. METHODS We searched the online databases of PubMed, CENTRAL, Scopus, Web of Science, and Embase for all types of studies comparing the risk of thrombosis and CLABSI between PICC and CVC. The search ended on 23rd September 2024. RESULTS Eight studies were included. One was a randomized trial while others were observational studies. Meta-analysis showed no statistically significant difference in the risk of thrombosis between PICC and CVC (OR: 1.69 95% CI: 0.75, 3.82 I2 = 78%). However, these results were not stable on sensitivity analysis. The exclusion of two studies indicated a higher risk of thrombosis with PICC. Pooled analysis showed that the risk of CLABSI was significantly lower with PICC as compared to CVC (OR: 0.52 95% CI: 0.40, 0.66 I2 = 0%). Results of subgroup analysis based on study design and diagnosis showed conflicting results. CONCLUSIONS There is conflicting evidence on the risk of thrombosis between PICC and CVC when used for hematological cancer patients. There could be a tendency of higher risk of thrombosis with PICC which needs to be confirmed by further studies. However, the use of PICC may reduce the risk of CLABSI in such patients. The quality of evidence is low owing to the predominance of observational studies with high inter-study heterogeneity.
Collapse
Affiliation(s)
- Weilei Ge
- Memory impairment center, The Second People's Hospital of Lishui, Lishui City, People's Republic of China
| | - Chen Zheng
- Intensive medicine department, Lishui traditional Chinese medicine hospital, Lishui City, People's Republic of China
| |
Collapse
|
16
|
Zhang J, Aishan N, Zheng Z, Ju S, He Q, Meng Q, Lin X, Lang J, Zhou J, Chen Y, Xie B, Cai Y, Ji F, Wang L. TET-mediated 5hmC in breast cancer: mechanism and clinical potential. Epigenetics 2025; 20:2473250. [PMID: 40014756 PMCID: PMC11869774 DOI: 10.1080/15592294.2025.2473250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 02/13/2025] [Accepted: 02/24/2025] [Indexed: 03/01/2025] Open
Abstract
Breast cancer is the most common cancer among women, with differences in clinical features due to its distinct molecular subtypes. Current studies have demonstrated that epigenetic modifications play a crucial role in regulating the progression of breast cancer. Among these mechanisms, DNA demethylation and its reverse process have been studied extensively for their roles in activating or silencing cancer related gene expression. Specifically, Ten-Eleven Translocation (TET) enzymes are involved in the conversion process from 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC), which results in a significant difference in the global level of 5hmC in breast cancer compared with normal tissues. In this review, we summarize the functions of TET proteins and the regulated 5hmC levels in the pathogenesis of breast cancer. Discussions on the clinical values of 5hmC in early diagnosis and the prediction of prognosis are also mentioned.
Collapse
Affiliation(s)
- Jiahang Zhang
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Provincial Clinical Research Center for CANCER, Hangzhou, Zhejiang, China
| | - Nadire Aishan
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Provincial Clinical Research Center for CANCER, Hangzhou, Zhejiang, China
| | - Zhongqiu Zheng
- Department of Breast and Thyroid Surgery, Taizhou Hospital of Zhejiang Province, Taizhou, Zhejiang, China
| | - Siwei Ju
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Provincial Clinical Research Center for CANCER, Hangzhou, Zhejiang, China
| | - Qina He
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Provincial Clinical Research Center for CANCER, Hangzhou, Zhejiang, China
| | - Qingna Meng
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Provincial Clinical Research Center for CANCER, Hangzhou, Zhejiang, China
| | - Xixi Lin
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Provincial Clinical Research Center for CANCER, Hangzhou, Zhejiang, China
| | - Jiaheng Lang
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Provincial Clinical Research Center for CANCER, Hangzhou, Zhejiang, China
| | - Jichun Zhou
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Provincial Clinical Research Center for CANCER, Hangzhou, Zhejiang, China
| | - Yongxia Chen
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Provincial Clinical Research Center for CANCER, Hangzhou, Zhejiang, China
| | - Bojian Xie
- Department of Breast and Thyroid Surgery, Taizhou Hospital of Zhejiang Province, Taizhou, Zhejiang, China
| | - Yangjun Cai
- Department of Breast and Thyroid Surgery, Taizhou Hospital of Zhejiang Province, Taizhou, Zhejiang, China
| | - Feiyang Ji
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Provincial Clinical Research Center for CANCER, Hangzhou, Zhejiang, China
| | - Linbo Wang
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Provincial Clinical Research Center for CANCER, Hangzhou, Zhejiang, China
| |
Collapse
|
17
|
Nguyen TD, Winek MA, Rao MK, Dhyani SP, Lee MY. Nuclear envelope components in vascular mechanotransduction: emerging roles in vascular health and disease. Nucleus 2025; 16:2453752. [PMID: 39827403 DOI: 10.1080/19491034.2025.2453752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/08/2025] [Accepted: 01/09/2025] [Indexed: 01/22/2025] Open
Abstract
The vascular network, uniquely sensitive to mechanical changes, translates biophysical forces into biochemical signals for vessel function. This process relies on the cell's architectural integrity, enabling uniform responses to physical stimuli. Recently, the nuclear envelope (NE) has emerged as a key regulator of vascular cell function. Studies implicate nucleoskeletal elements (e.g. nuclear lamina) and the linker of nucleoskeleton and cytoskeleton (LINC) complex in force transmission, emphasizing nucleo-cytoskeletal communication in mechanotransduction. The nuclear pore complex (NPC) and its component proteins (i.e. nucleoporins) also play roles in cardiovascular disease (CVD) progression. We herein summarize evidence on the roles of nuclear lamina proteins, LINC complex members, and nucleoporins in endothelial and vascular cell mechanotransduction. Numerous studies attribute NE components in cytoskeletal-related cellular behaviors to insinuate dysregulation of nucleocytoskeletal feedback and nucleocytoplasmic transport as a mechanism of endothelial and vascular dysfunction, and hence implications for aging and vascular pathophysiology.
Collapse
Affiliation(s)
- Tung D Nguyen
- Department of Physiology and Biophysics, The University of Illinois at Chicago - College of Medicine, Chicago, IL, USA
- The Center for Cardiovascular Research, The University of Illinois at Chicago - College of Medicine, Chicago, IL, USA
| | - Michael A Winek
- Department of Physiology and Biophysics, The University of Illinois at Chicago - College of Medicine, Chicago, IL, USA
| | - Mihir K Rao
- Department of Physiology and Biophysics, The University of Illinois at Chicago - College of Medicine, Chicago, IL, USA
| | - Shaiva P Dhyani
- Department of Physiology and Biophysics, The University of Illinois at Chicago - College of Medicine, Chicago, IL, USA
| | - Monica Y Lee
- Department of Physiology and Biophysics, The University of Illinois at Chicago - College of Medicine, Chicago, IL, USA
- The Center for Cardiovascular Research, The University of Illinois at Chicago - College of Medicine, Chicago, IL, USA
| |
Collapse
|
18
|
Zheng X, Liu B, Ni P, Cai L, Shi X, Ke Z, Zhang S, Hu B, Yang B, Xu Y, Long W, Fang Z, Wang Y, Zhang W, Xu Y, Wang Z, Pan K, Zhou K, Wang H, Geng H, Hu H, Liu B. Development and application of an uncapped mRNA platform. Ann Med 2025; 57:2437046. [PMID: 39648715 PMCID: PMC11632943 DOI: 10.1080/07853890.2024.2437046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/28/2023] [Accepted: 06/01/2024] [Indexed: 12/10/2024] Open
Abstract
BACKGROUND A novel uncapped mRNA platform was developed. METHODS Five lipid nanoparticle (LNP)-encapsulated mRNA constructs were made to evaluate several aspects of our platform, including transfection efficiency and durability in vitro and in vivo and the activation of humoral and cellular immunity in several animal models. The constructs were eGFP-mRNA-LNP (for enhanced green fluorescence mRNA), Fluc-mRNA-LNP (for firefly luciferase mRNA), SδT-mRNA-LNP (for Delta strain SARS-CoV-2 spike protein trimer mRNA), gDED-mRNA-LNP (for truncated glycoprotein D mRNA coding ectodomain from herpes simplex virus type 2 (HSV2)) and gDFR-mRNA-LNP (for truncated HSV2 glycoprotein D mRNA coding amino acids 1-400). RESULTS Quantifiable target protein expression was achieved in vitro and in vivo with eGFP- and Fluc-mRNA-LNP. SδT-mRNA-LNP, gDED-mRNA-LNP and gDFR-mRNA-LNP induced both humoral and cellular immune responses comparable to those obtained by previously reported capped mRNA-LNP constructs. Notably, SδT-mRNA-LNP elicited neutralizing antibodies in hamsters against the Omicron and Delta strains. Additionally, gDED-mRNA-LNP and gDFR-mRNA-LNP induced potent neutralizing antibodies in rabbits and mice. The mRNA constructs with uridine triphosphate (UTP) outperformed those with N1-methylpseudouridine triphosphate (N1mψTP) in the induction of antibodies via SδT-mRNA-LNP. CONCLUSIONS Our uncapped, process-simplified and economical mRNA platform may have broad utility in vaccines and protein replacement drugs.KEY MESSAGESThe mRNA platform described in our paper uses internal ribosome entry site (IRES) (Rapid, Amplified, Capless and Economical, RACE; Register as BH-RACE platform) instead of caps and uridine triphosphate (UTP) instead of N1-methylpseudouridine triphosphate (N1mψTP) to synthesize mRNA.Through the self-developed packaging instrument and lipid nanoparticle (LNP) delivery system, mRNA can be expressed in cells more efficiently, quickly and economically.Particularly exciting is that potent neutralizing antibodies against Delta and Omicron real viruses were induced with the new coronavirus S protein mRNA vaccine from the BH-RACE platform.
Collapse
Affiliation(s)
- Xiaodi Zheng
- College of Bioengineering, National ‘‘111’’ Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei University of Technology, Wuhan, China
| | - Biao Liu
- College of Bioengineering, National ‘‘111’’ Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei University of Technology, Wuhan, China
| | - Peng Ni
- Wuhan Binhui Biopharmaceutical Co., Ltd., Wuhan, China
| | - Linkang Cai
- Wuhan Binhui Biopharmaceutical Co., Ltd., Wuhan, China
| | - Xiaotai Shi
- Wuhan Binhui Biopharmaceutical Co., Ltd., Wuhan, China
| | - Zonghuang Ke
- Wuhan Binhui Biopharmaceutical Co., Ltd., Wuhan, China
| | - Siqi Zhang
- Wuhan Binhui Biopharmaceutical Co., Ltd., Wuhan, China
| | - Bing Hu
- Hubei Provincial Centre for Disease Control and Prevention, Wuhan, China
| | - Binfeng Yang
- Wuhan Binhui Biopharmaceutical Co., Ltd., Wuhan, China
| | - Yiyan Xu
- College of Bioengineering, National ‘‘111’’ Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei University of Technology, Wuhan, China
| | - Wei Long
- Wuhan Binhui Biopharmaceutical Co., Ltd., Wuhan, China
| | - Zhizheng Fang
- Wuhan Binhui Biopharmaceutical Co., Ltd., Wuhan, China
| | - Yang Wang
- College of Bioengineering, National ‘‘111’’ Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei University of Technology, Wuhan, China
| | - Wen Zhang
- Department of Immunology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yan Xu
- Wuhan Binhui Biopharmaceutical Co., Ltd., Wuhan, China
| | - Zhong Wang
- Wuhan Binhui Biopharmaceutical Co., Ltd., Wuhan, China
| | - Kai Pan
- Hubei Provincial Centre for Disease Control and Prevention, Wuhan, China
| | - Kangping Zhou
- Hubei Provincial Centre for Disease Control and Prevention, Wuhan, China
| | - Hanming Wang
- Wuhan Binhui Biopharmaceutical Co., Ltd., Wuhan, China
| | - Hui Geng
- School of Life Science, Huazhong Normal University, Wuhan, China
| | - Han Hu
- College of Bioengineering, National ‘‘111’’ Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei University of Technology, Wuhan, China
| | - Binlei Liu
- College of Bioengineering, National ‘‘111’’ Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei University of Technology, Wuhan, China
- Wuhan Binhui Biopharmaceutical Co., Ltd., Wuhan, China
| |
Collapse
|
19
|
Arslan K, Daldaban F, Yalcintan H, Kecici PD, Ozturk B, Ekiz B, Akyuz B. Relationship between the expression levels of myogenic regulatory factor genes and carcass characteristics in Kivircik and Hungarian Merino lambs. Anim Biotechnol 2025; 36:2479690. [PMID: 40122069 DOI: 10.1080/10495398.2025.2479690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 03/10/2025] [Indexed: 03/25/2025]
Abstract
This study aimed to investigate the expression profiles of the myogenic regulatory genes MYOD1, MYOG, MYF5, MYF6, and MSTN in longissimus dorsi muscle, as well as the correlation of the expression levels of these genes with carcass characteristics and growth performance in the Kivircik and Hungarian Merino sheep breeds. The expression levels of the MYF5, MYF6, and MYOG genes were found to be significantly correlated with the rib proportion, the expression level of the MYOG gene was identified as being the main determinant of variations in the rib proportion in the Kivircik lambs. The regression analysis results revealed that the expression levels of the MYF5 and MSTN genes played an essential role in determining the cold carcass dressing percentage in Hungarian Merino lambs. Further, as a result of the regression analysis, the model including the expression level of the MYF6 gene demonstrated that this gene could be responsible for 36.4% of the differences observed in cold carcass weight. In conclusion, the findings of this study suggest that the expression levels of the MYF5, MYF6, and MYOG genes were associated with various carcass traits, particularly in the Kivircik breed, and these genes hold potential as markers for enhancing breed productivity.
Collapse
Affiliation(s)
- Korhan Arslan
- Department of Genetics, Erciyes University, Kayseri, Turkey
| | | | - Hulya Yalcintan
- Department of Animal Breeding and Husbandry, İstanbul University-Cerrahpaşa, Istanbul, Turkey
| | - Pembe Dilara Kecici
- Department of Animal Breeding and Husbandry, İstanbul University-Cerrahpaşa, Istanbul, Turkey
| | - Bekir Ozturk
- Pınarhisar District Directorate of Agriculture and Forestry, Kırklareli, Turkey
| | - Bulent Ekiz
- Department of Animal Breeding and Husbandry, İstanbul University-Cerrahpaşa, Istanbul, Turkey
| | - Bilal Akyuz
- Department of Genetics, Erciyes University, Kayseri, Turkey
| |
Collapse
|
20
|
Cao H, Tao Y, Jin R, Li P, Zhou H, Cheng J. Proteomics reveals the key transcription-related factors mediating obstructive nephropathy in pediatric patients and mice. Ren Fail 2025; 47:2443032. [PMID: 39743726 DOI: 10.1080/0886022x.2024.2443032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 12/05/2024] [Accepted: 12/11/2024] [Indexed: 01/04/2025] Open
Abstract
BACKGROUND Obstructive nephropathy is one of the leading causes of kidney injury in infants and children. Increasing evidence has shown that transcription-related factors (TRFs), including transcription factors and cofactors, are associated with kidney diseases. However, a global landscape of dysregulated TRFs in pediatric patients with obstructive nephropathy is lacking. METHODS We mined the data from our previous proteomic study for the TRF profile in pediatric patients with obstructive nephropathy and unilateral ureteral obstruction (UUO) mice. Gene ontology (GO) analysis was performed to determine pathways that were enriched in the dysregulated TRFs. We then took advantage of kidney samples from patients and UUO mice to verify the selected TRFs by immunoblots. RESULTS The proteomes identified a total of 140 human TRFs with 28 upregulated and 1 downregulated, and 160 murine TRFs with 88 upregulated and 1 downregulated (fold change >2 or <0.5). These dysregulated TRFs were enriched in the inflammatory signalings, such as janus kinase/signal transducer and activator of transcription (JAK-STAT) and tumor necrosis factor (TNF) pathways. Of note, the transforming growth factor (TGF)-β signaling pathway, which is the master regulator of organ fibrosis, was enriched in both patients and mice. Cross-species analysis showed 16 key TRFs that might mediate obstructive nephropathy in patients and UUO mice. Moreover, we verified a significant dysregulation of three previously unexplored TRFs; prohibitin (PHB), regulatory factor X 1 (RFX1), and activity-dependent neuroprotector homeobox protein (ADNP), in patients and mice. CONCLUSIONS Our study uncovered key TRFs in the obstructed kidneys and provided additional molecular insights into obstructive nephropathy.
Collapse
Affiliation(s)
- Hualin Cao
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yuandong Tao
- Department of Pediatric Urology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, China
- National Engineering Laboratory for Birth Defects Prevention and Control of Key Technology, Beijing, China
| | - Ruyue Jin
- Department of Pediatric Urology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, China
- National Engineering Laboratory for Birth Defects Prevention and Control of Key Technology, Beijing, China
| | - Pin Li
- Department of Pediatric Urology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, China
- National Engineering Laboratory for Birth Defects Prevention and Control of Key Technology, Beijing, China
| | - Huixia Zhou
- Department of Pediatric Urology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, China
- National Engineering Laboratory for Birth Defects Prevention and Control of Key Technology, Beijing, China
| | - Jiwen Cheng
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
21
|
Huang Y, Wang Z. Therapeutic potential of SOX family transcription factors in osteoarthritis. Ann Med 2025; 57:2457520. [PMID: 39887675 PMCID: PMC11789227 DOI: 10.1080/07853890.2025.2457520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 12/27/2024] [Accepted: 01/02/2025] [Indexed: 02/01/2025] Open
Abstract
BACKGROUND As the worldwide population ages, osteoarthritis has significantly increased. This musculoskeletal condition has become a pressing global health issue and thus, prevention and treatment of osteoarthritis have become the primary focus of domestic and international research. Scholarly investigations of the molecular mechanisms that are related to the occurrence and development of osteoarthritis have shed light on the pathological causes of this condition to a certain extent, providing a foundation for its prevention and treatment. However, further research is necessary to fully understand the critical role of the transcription factor SOX9 in chondrocyte differentiation and the development of osteoarthritis. As a result, there has been widespread interest in SOX transcription factors. While SOX9 has been utilized as a biomarker to indicate the occurrence and prognosis of osteoarthritis, investigations into other members of the SOX family and the development of targeted treatments around SOX9 are still required. PURPOSE This article considers the impact of the SOX protein on the development and inhibition of osteoarthritis and highlights the need for therapeutic approaches targeting SOX9, as supported by existing research. RESULTS SOX9 can contribute to the process of osteoarthritis through acetylation and ubiquitination modifications. The regulation of the WNT signalling pathway, Nrf2/ARE signalling pathway, NF-κB signalling pathway and SOX9 is implicated in the emergence of osteoarthritis. Non-coding RNA may play a role in the onset and progression of osteoarthritis by modulating various SOX family members, including SOX2, SOX4, SOX5, SOX6, SOX8, SOX9 and SOX11. CONCLUSION SOX9 has the capability of mitigating the onset and progression of osteoarthritis through means such as medication therapy, stem cell therapy, recombinant adeno-associated virus (rAAV) vector therapy, physical therapy and other approaches.
Collapse
Affiliation(s)
- Yue Huang
- College of Exercise and Health, Shenyang Sport University, Shenyang, China
| | - Zhuo Wang
- College of Exercise and Health, Shenyang Sport University, Shenyang, China
| |
Collapse
|
22
|
Chen XS, Chen F, He SJ, Chen YY, Chi BT, Huang WY, Wei Y, Zhao CY, Song C, He RQ, Chen G, Kong JL, Lu HP. Elevated expression of ANAPC1 in lung squamous cell carcinoma: clinical implications and mechanisms. Future Sci OA 2025; 11:2482487. [PMID: 40139913 PMCID: PMC11951694 DOI: 10.1080/20565623.2025.2482487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 03/05/2025] [Indexed: 03/29/2025] Open
Abstract
AIM To investigate the comprehensive expression levels and possible molecular mechanisms of Anaphase Promoting Complex Subunit 1 (ANAPC1) in lung squamous cell carcinoma (LUSC). METHODS Data from 2,031 samples were combined to evaluate ANAPC1 mRNA levels, and 118 samples were collected for immunohistochemical (IHC) analysis. High-expression co-expressed genes (HECEGs) associated with ANAPC1 were analyzed for signaling pathways. Clinical significance, immune computations, and Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) validation of ANAPC1's role in LUSC were assessed. Molecular docking evaluated binding affinity with potential therapeutics. RESULTS ANAPC1 mRNA was significantly upregulated in LUSC (SMD = 1.97, 95% CI [1.26-2.67]). Protein-level analysis confirmed this upregulation (p < 0.001). Most HECEGs associated with ANAPC1 were enriched in cell cycle pathways. Higher ANAPC1 expression correlated with poorer survival in LUSC patients (HR = 1.11, 95% CI: 1-1.49). ANAPC1 expression was higher in males and N1-stage vs. females and N0-stage; lower in grade I vs. II/III. Overexpression reduces immune cell infiltration and immunotherapy effectiveness, while knockdown inhibits cell proliferation. Drug sensitivity and docking analyses identified tenovin-1, carboxyatractyloside, and phycocyanobilin as potential antitumor agents targeting ANAPC1. CONCLUSION The elevated expression of ANAPC1 might play a role in LUSC advancement and progression through its participation in cell growth-related pathways.
Collapse
Affiliation(s)
- Xiao-Song Chen
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Feng Chen
- Department of Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Shu-Jia He
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China
| | - Yi-Yang Chen
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Bang-Teng Chi
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Wan-Ying Huang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Yue Wei
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Chun-Yan Zhao
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Chang Song
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Rong-Quan He
- Department of Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Gang Chen
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Jin-Liang Kong
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Hui-Ping Lu
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
23
|
Zhang M, Lu Z. tRNA modifications: greasing the wheels of translation and beyond. RNA Biol 2025; 22:1-25. [PMID: 39723662 DOI: 10.1080/15476286.2024.2442856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 11/29/2024] [Accepted: 12/11/2024] [Indexed: 12/28/2024] Open
Abstract
Transfer RNA (tRNA) is one of the most abundant RNA types in cells, acting as an adaptor to bridge the genetic information in mRNAs with the amino acid sequence in proteins. Both tRNAs and small fragments processed from them play many nonconventional roles in addition to translation. tRNA molecules undergo various types of chemical modifications to ensure the accuracy and efficiency of translation and regulate their diverse functions beyond translation. In this review, we discuss the biogenesis and molecular mechanisms of tRNA modifications, including major tRNA modifications, writer enzymes, and their dynamic regulation. We also summarize the state-of-the-art technologies for measuring tRNA modification, with a particular focus on 2'-O-methylation (Nm), and discuss their limitations and remaining challenges. Finally, we highlight recent discoveries linking dysregulation of tRNA modifications with genetic diseases.
Collapse
Affiliation(s)
- Minjie Zhang
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Medical Epigenetics, Department of Bioinformatics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Zhipeng Lu
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, USA
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
- Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
24
|
Wutikeli H, Xie T, Xiong W, Shen Y. ELAV/Hu RNA-binding protein family: key regulators in neurological disorders, cancer, and other diseases. RNA Biol 2025; 22:1-11. [PMID: 40000387 PMCID: PMC11926907 DOI: 10.1080/15476286.2025.2471133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 02/13/2025] [Accepted: 02/17/2025] [Indexed: 02/27/2025] Open
Abstract
The ELAV/Hu family represents a crucial group of RNA-binding proteins predominantly expressed in neurons, playing significant roles in mRNA transcription and translation. These proteins bind to AU-rich elements in transcripts to regulate the expression of cytokines, growth factors, and the development and maintenance of neurons. Elav-like RNA-binding proteins exhibit remarkable molecular weight conservation across different species, highlighting their evolutionary conservation. Although these proteins are widely expressed in the nervous system and other cell types, variations in the DNA sequences of the four Elav proteins contribute to their distinct roles in neurological disorders, cancer, and other Diseases . Elavl1, a ubiquitously expressed family member, is integral to processes such as cell growth, ageing, tumorigenesis, and inflammatory diseases. Elavl2, primarily expressed in the nervous and reproductive systems, is critical for central nervous system and retinal development; its dysregulation has been implicated in neurodevelopmental disorders such as autism. Both Elavl3 and Elavl4 are restricted to the nervous system and are involved in neuronal differentiation and excitability. Elavl3 is essential for cerebellar function and has been associated with epilepsy, while Elavl4 is linked to neurodegenerative diseases, including Parkinson's and Alzheimer's diseases. This paper provides a comprehensive review of the ELAV/Hu family's role in nervous system development, neurological disorders, cancer, and other diseases.
Collapse
Affiliation(s)
- Huxitaer Wutikeli
- Eye Center, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
| | - Ting Xie
- Division of Life Science, The Hong Kong University of Science and Technology, Special Administrative Region (SAR), Kowloon, Hong Kong, China
| | - Wenjun Xiong
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Yin Shen
- Eye Center, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
25
|
Zhao N, Liu Q, Zhu M, Zhu L, Yang J. The Hog1-Nmd5 signaling pathway regulates asexual development, lipid metabolism, stress response, trap morphogenesis, and secondary metabolism of Arthrobotrys oligospora. Virulence 2025; 16:2468294. [PMID: 39973133 PMCID: PMC11845025 DOI: 10.1080/21505594.2025.2468294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 01/05/2025] [Accepted: 02/09/2025] [Indexed: 02/21/2025] Open
Abstract
The high-osmolarity glycerol (HOG) signalling pathway, comprising Ste11/Ssk2/Ssk22 (MAPKKK), Pbs2 (MAPKK), and Hog1 (MAPK), is an important and conserved pathway in fungi. However, the functions and downstream regulatory factors of Hog1 in nematode-trapping (NT) fungi remain poorly understood. Here, three proteins (AoNmd5, AoPyp1, and AoPtp) interacting with Hog1 were screened in a representative NT fungus Arthrobotrys oligospora using yeast screening library and verified using yeast two-hybrid (Y2H) assay. The function of AoNmd5 was furtherly characterized by phenotypic comparison, staining technique, and multi-omics analyses. AoNmd5 was essential for vegetative growth, conidial development, trap morphogenesis, and nematode predation ability. In addition, AoNmd5 played crucial roles in endocytosis, lipid metabolism, reactive oxygen species, stress response, autophagy, and other metabolic processes. Furthermore, we constructed an AoNmd5 interaction network based on transcriptomic analysis and Y2H, revealing its significant role in the respiratory chain and redox processes as well as its interaction with the small GTPase Ran1, which mediates Hog1 nucleocytoplasmic shuttling. These findings suggest that the Hog1-Nmd5 signalling pathway has pleiotropic roles in A. oligospora. This study deepens our understanding of the HOG pathway and its interaction with importins in NT fungi.
Collapse
Affiliation(s)
- Na Zhao
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, P. R. China
| | - Qianqian Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, P. R. China
| | - Meichen Zhu
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, P. R. China
| | - Lirong Zhu
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, P. R. China
| | - Jinkui Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, P. R. China
| |
Collapse
|
26
|
Wu X, Xu H, Xia E, Gao L, Hou Y, Sun L, Zhang H, Cheng Y. Histone modifications in the regulation of erythropoiesis. Ann Med 2025; 57:2490824. [PMID: 40214280 PMCID: PMC11995772 DOI: 10.1080/07853890.2025.2490824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 03/13/2025] [Accepted: 04/01/2025] [Indexed: 04/16/2025] Open
Abstract
INTRODUCTION The pathogenesis of anemia and other erythroid dysphasia are mains poorly understood, primarily due to limited knowledge about the differentiation processes and regulatory mechanisms governing erythropoiesis. Erythropoiesis is a highly complex and precise biological process, that can be categorized into three distinct stages: early erythropoiesis, terminal erythroid differentiation, and reticulocyte maturation, and this complex process is tightly controlled by multiple regulatory factors. Emerging evidence highlights the crucial role of epigenetic modifications, particularly histone modifications, in regulating erythropoiesis. Methylation and acetylation are two common modification forms that affect genome accessibility by altering the state of chromatin, thereby regulating gene expression during erythropoiesis. DISCUSSION This review systematically examines the roles of histone methylation and acetylation, along with their respective regulatory enzymes, in regulating the development and differentiation of hematopoietic stem/progenitor cells (HSPCs) and erythroid progenitors. Furthermore, we discuss the involvement of these histone modifications in erythroid-specific developmental processes, including hemoglobin switching, chromatin condensation, and enucleation.Conclusions This review summarizes the current understanding of the role of histone modifications in erythropoiesis based on existing research, as a foundation for further research the mechanisms of epigenetic regulatory in erythropoiesis.
Collapse
Affiliation(s)
- Xiuyun Wu
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Hongdi Xu
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Erxi Xia
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Linru Gao
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Yan Hou
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Lei Sun
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Hengchao Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Ying Cheng
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
27
|
Pham-Bui HA, Lee M. Germ granule-mediated mRNA storage and translational control. RNA Biol 2025; 22:1-11. [PMID: 39895378 PMCID: PMC11810088 DOI: 10.1080/15476286.2025.2462276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 12/24/2024] [Accepted: 01/28/2025] [Indexed: 02/04/2025] Open
Abstract
Germ cells depend on specialized post-transcriptional regulation for proper development and function, much of which is mediated by dynamic RNA granules. These membrane-less organelles form through the condensation of RNA and proteins, governed by multivalent biomolecular interactions. RNA granules compartmentalize cellular components, selectively enriching specific factors and modulating biochemical reactions. Over recent decades, various types of RNA granules have been identified in germ cells across species, with extensive studies uncovering their molecular roles and developmental significance. This review explores the mRNA regulatory mechanisms mediated by RNA granules in germ cells. We discuss the distinct spatial organization of specific granule components and the variations in material states of germ granules, which contribute to the regulation of mRNA storage and translation. Additionally, we highlight emerging research on how changes in these material states, during developmental stages, reflect the dynamic nature of germ granules and their critical role in development.
Collapse
Affiliation(s)
- Hoang-Anh Pham-Bui
- Soonchunhyang Institute of Medi-Bio Science, Soonchunhyang University, Cheonan-si, Korea
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan-si, Korea
| | - Mihye Lee
- Soonchunhyang Institute of Medi-Bio Science, Soonchunhyang University, Cheonan-si, Korea
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan-si, Korea
| |
Collapse
|
28
|
Hu H, Wan S, Hu Y, Wang Q, Li H, Zhang N. Deciphering the role of APOE in cerebral amyloid angiopathy: from genetic insights to therapeutic horizons. Ann Med 2025; 57:2445194. [PMID: 39745195 DOI: 10.1080/07853890.2024.2445194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/26/2024] [Accepted: 11/29/2024] [Indexed: 01/04/2025] Open
Abstract
Cerebral amyloid angiopathy (CAA), characterized by the deposition of amyloid-β (Aβ) peptides in the walls of medium and small vessels of the brain and leptomeninges, is a major cause of lobar hemorrhage in elderly individuals. Among the genetic risk factors for CAA that continue to be recognized, the apolipoprotein E (APOE) gene is the most significant and prevalent, as its variants have been implicated in more than half of all patients with CAA. While the presence of the APOE ε4 allele markedly increases the risk of CAA, the ε2 allele confers a protective effect relative to the common ε3 allele. These allelic variants encode three APOE isoforms that differ at two amino acid positions. The primary physiological role of APOE is to mediate lipid transport in the brain and periphery; however, it has also been shown to be involved in a wide array of biological functions, particularly those involving Aβ, in which it plays a known role in processing, production, aggregation, and clearance. The challenges posed by the reliance on postmortem histological analyses and the current absence of an effective intervention underscore the urgency for innovative APOE-targeted strategies for diagnosing CAA. This review not only deepens our understanding of the impact of APOE on the pathogenesis of CAA but can also help guide the exploration of targeted therapies, inspiring further research into the therapeutic potential of APOE.
Collapse
Affiliation(s)
- Hantian Hu
- Tianjin Medical University, Tianjin, China
| | - Siqi Wan
- Tianjin Medical University, Tianjin, China
| | - Yuetao Hu
- Tianjin Medical University, Tianjin, China
| | - Qi Wang
- Tianjin Medical University, Tianjin, China
| | - Hanyu Li
- Tianjin Medical University, Tianjin, China
| | - Nan Zhang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
29
|
Sun J, Liu C, Yang G, Li Q, An Y, Zhu Y, Zhang P, Guan Y, Peng C, Du Z, Huang P, Chen Y. Targeting NEDD8 in pediatric acute myeloid leukemia: an integrated bioinformatics and experimental approach. Hematology 2025; 30:2478650. [PMID: 40103351 DOI: 10.1080/16078454.2025.2478650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 03/06/2025] [Indexed: 03/20/2025] Open
Abstract
SUMMARYThis study systematically explored the role of NEDD8 in pediatric acute myeloid leukemia (AML) through patient sample analysis, database mining, and in vitro experiments. Our results demonstrated that NEDD8 was significantly overexpressed in newly diagnosed pediatric AML patients and was associated with poor survival outcomes. Functional enrichment analysis of the TARGET database further revealed a strong correlation between NEDD8 and cancer-related pathways. In vitro experiments showed that NEDD8 knockdown significantly inhibited the proliferation of AML cells (THP-1 and MV4-11) and induced cell cycle arrest. Collectively, these findings highlight the critical role of NEDD8 in pediatric AML pathogenesis and suggest its potential as both a prognostic biomarker and a therapeutic target.
Collapse
MESH Headings
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/therapy
- Child
- NEDD8 Protein/metabolism
- NEDD8 Protein/genetics
- Computational Biology/methods
- Female
- Male
- Child, Preschool
- Cell Line, Tumor
- Adolescent
- Prognosis
- Infant
- Cell Proliferation
Collapse
Affiliation(s)
- Jian Sun
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi, People's Republic of China
- Department of Hematological Oncology and Immunology, Guizhou Children's Hospital, Zunyi, People's Republic of China
| | - Cui Liu
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi, People's Republic of China
- Department of Hematological Oncology and Immunology, Guizhou Children's Hospital, Zunyi, People's Republic of China
| | - Guangli Yang
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi, People's Republic of China
- Department of Hematological Oncology and Immunology, Guizhou Children's Hospital, Zunyi, People's Republic of China
| | - Qian Li
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi, People's Republic of China
- Department of Hematological Oncology and Immunology, Guizhou Children's Hospital, Zunyi, People's Republic of China
| | - Yang An
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi, People's Republic of China
- Department of Hematological Oncology and Immunology, Guizhou Children's Hospital, Zunyi, People's Republic of China
| | - Yin Zhu
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi, People's Republic of China
- Department of Hematological Oncology and Immunology, Guizhou Children's Hospital, Zunyi, People's Republic of China
| | - Pingping Zhang
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi, People's Republic of China
- Department of Hematological Oncology and Immunology, Guizhou Children's Hospital, Zunyi, People's Republic of China
| | - Yaning Guan
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi, People's Republic of China
- Department of Hematological Oncology and Immunology, Guizhou Children's Hospital, Zunyi, People's Republic of China
| | - Chang Peng
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi, People's Republic of China
- Department of Hematological Oncology and Immunology, Guizhou Children's Hospital, Zunyi, People's Republic of China
| | - Zuochen Du
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi, People's Republic of China
- Department of Hematological Oncology and Immunology, Guizhou Children's Hospital, Zunyi, People's Republic of China
| | - Pei Huang
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi, People's Republic of China
- Department of Hematological Oncology and Immunology, Guizhou Children's Hospital, Zunyi, People's Republic of China
| | - Yan Chen
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi, People's Republic of China
- Department of Hematological Oncology and Immunology, Guizhou Children's Hospital, Zunyi, People's Republic of China
| |
Collapse
|
30
|
Sewell A, Wyrick JJ. Interplay of replication timing, DNA repair, and translesion synthesis in UV mutagenesis in yeast. Nucleus 2025; 16:2476935. [PMID: 40079129 PMCID: PMC11913381 DOI: 10.1080/19491034.2025.2476935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 02/21/2025] [Accepted: 03/04/2025] [Indexed: 03/14/2025] Open
Abstract
Replication timing during S-phase impacts mutation rates in yeast and human cancers; however, the exact mechanism involved remains unclear. Here, we analyze the impact of replication timing on UV mutagenesis in Saccharomyces cerevisiae. Our analysis indicates that UV mutations are enriched in early-replicating regions of the genome in wild-type cells, but in cells deficient in global genomic-nucleotide excision repair (GG-NER), mutations are enriched in late-replicating regions. Analysis of UV damage maps revealed that cyclobutane pyrimidine dimers are enriched in late-replicating regions, but this enrichment is almost entirely due to repetitive ribosomal DNA. Complex mutations typically associated with TLS activity are also elevated in late-replicating regions in GG-NER deficient cells. We propose that UV mutagenesis is higher in early-replicating regions in repair-competent cells because there is less time to repair the lesion prior to undergoing replication. However, in the absence of GG-NER, increased TLS activity promotes UV mutagenesis in late-replicating regions.
Collapse
Affiliation(s)
- Allysa Sewell
- School of Molecular Biosciences, Biotechnology Life Sciences, Washington State University, Pullman, WA, USA
| | - John J. Wyrick
- School of Molecular Biosciences, Biotechnology Life Sciences, Washington State University, Pullman, WA, USA
| |
Collapse
|
31
|
De Benedittis G, Latini A, Morgante C, Bonini C, Cela E, Kroegler B, Luciano A, Chiocchi M, Cavalli F, Ora J, Rogliani P, Novelli G, Ciccacci C, Chimenti MS, Conigliaro P, Borgiani P. Alteration of telomere length and mtDNA copy number in interstitial lung disease associated with rheumatoid arthritis. Autoimmunity 2025; 58:2473741. [PMID: 40035723 DOI: 10.1080/08916934.2025.2473741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 02/04/2025] [Accepted: 02/14/2025] [Indexed: 03/06/2025]
Abstract
Interstitial lung disease (ILD) is a common extra-articular manifestation of rheumatoid arthritis (RA). The inflammatory response in lung disease is characterized by severe oxidative stress, which enhances cellular senescence. Telomeric shortening and mitochondria dysregulation represent two hallmarks of cellular senescence. The maintenance of telomere length (TL) and mitochondrial DNA (mtDNA) copy number is preserved by many proteins, such as TERF1 and TFAM, respectively. Our aim was to evaluate the TL, the mtDNA copy number and the expression of two regulator gene factors in RA patients with (RA-ILD) and without lung involvement (RA-NILD). Eighty-five RA patients and 21 healthy subjects were enrolled. Relative TL, mtDNA copy number, and expression analysis of TERF1 and TFAM genes were measured using qPCR assay. All RA patients present a statistically significant telomere shortening; in particular, RA-ILD patients show shorter TL compared to both controls and RA-NILD. Patients with Usual Interstitial Pneumonia pattern show a more evident shortening of TL. Lastly, both RA-ILD and RA-NILD patients present a significant decrease in mtDNA copy number compared to controls. The analysis of regulatory genes showed an increase in TERF1 expression in RA patients compared to controls, also after stratification in the two subgroups, and a decrease in TFAM expression in RA patients compared to controls. These results show that the alteration of TL and mtDNA copy number in RA patients is more evident in the presence of ILD. The hypothesis is that, in these patients, oxidative stress could accelerate the shortening of telomeres and the decrease of mtDNA copy number.
Collapse
Affiliation(s)
- Giada De Benedittis
- Department of Biomedicine and Prevention, Section of Genetics, University of Rome "Tor Vergata", Rome, Italy
| | - Andrea Latini
- UniCamillus-Saint Camillus International University of Health Sciences, Rome, Italy
| | - Chiara Morgante
- Department of Biomedicine and Prevention, Section of Genetics, University of Rome "Tor Vergata", Rome, Italy
| | - Chiara Bonini
- Rheumatology, Allergology and Clinical Immunology, Department of System Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Eneida Cela
- Rheumatology, Allergology and Clinical Immunology, Department of System Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Barbara Kroegler
- Rheumatology, Allergology and Clinical Immunology, Department of System Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Alessandra Luciano
- Department of Diagnostic Imaging and Interventional Radiology, University of Rome Tor Vergata, Rome, Italy
| | - Marcello Chiocchi
- Department of Diagnostic Imaging and Interventional Radiology, University of Rome Tor Vergata, Rome, Italy
| | - Francesco Cavalli
- Division of Respiratory Medicine, University Hospital Policlinico Tor Vergata, Rome, Italy
| | - Josuel Ora
- Division of Respiratory Medicine, University Hospital Policlinico Tor Vergata, Rome, Italy
| | - Paola Rogliani
- Division of Respiratory Medicine, University Hospital Policlinico Tor Vergata, Rome, Italy
| | - Giuseppe Novelli
- Department of Biomedicine and Prevention, Section of Genetics, University of Rome "Tor Vergata", Rome, Italy
- Giovanni Lorenzini Medical Foundation, Milan, Italy
| | - Cinzia Ciccacci
- UniCamillus-Saint Camillus International University of Health Sciences, Rome, Italy
| | - Maria Sole Chimenti
- Rheumatology, Allergology and Clinical Immunology, Department of System Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Paola Conigliaro
- Rheumatology, Allergology and Clinical Immunology, Department of System Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Paola Borgiani
- Department of Biomedicine and Prevention, Section of Genetics, University of Rome "Tor Vergata", Rome, Italy
| |
Collapse
|
32
|
Mikami K, Kozono Y, Masukawa M, Kobayashi S. A fast in situ hybridization chain reaction method in Drosophila embryos and ovaries. Fly (Austin) 2025; 19:2428499. [PMID: 39639000 PMCID: PMC11633216 DOI: 10.1080/19336934.2024.2428499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/06/2024] [Accepted: 11/07/2024] [Indexed: 12/07/2024] Open
Abstract
The in situ hybridization chain reaction (isHCR) is a powerful method for visualizing mRNA in many species. We present a rapid isHCR method for Drosophila embryos and ovaries. Ethylene carbonate was added to the hybridization buffer to facilitate the hybridization reaction, and a modified short hairpin DNA was used in the amplification reaction; these modifications decreased the RNA staining time from 3 days to 1 day. This method is compatible with immunohistochemistry and can detect multiple mRNAs. The proposed method could significantly reduce staining time for Drosophila researchers using isHCR.
Collapse
Affiliation(s)
- Kyohei Mikami
- Degree Programs in Life and Earth Sciences, Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yasuhiro Kozono
- Degree Programs in Life and Earth Sciences, Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Masaki Masukawa
- Degree Programs in Life and Earth Sciences, Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Satoru Kobayashi
- Degree Programs in Life and Earth Sciences, Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
33
|
Li M, Wu Y, Tian J, Yang Q, Gao M, Wang Y, Wang X, Zhang J, Pan Y, Shi H, Shi D, Zhang X, Chen J, Guo L, Feng L. Nuclear shuttling of CDC4 mediated broad-spectrum antiviral activity against diverse coronaviruses. Emerg Microbes Infect 2025; 14:2493922. [PMID: 40260685 DOI: 10.1080/22221751.2025.2493922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 03/20/2025] [Accepted: 04/11/2025] [Indexed: 04/24/2025]
Abstract
Pandemics of coronavirus (CoV)-related infection have been a major issue since the outbreaks of SARS, MERS and COVID-2019 in the past decades, leading a substantial threat to public health. Porcine deltacoronavirus (PDCoV), a new swine coronavirus, causes enteropathogenic disease characterized by acute diarrhoea, vomiting and dehydration in suckling piglets and poses potential risks of cross-species transmission. Here we reveal a novel function of CDC4 protein in restricting PDCoV infection. Ectopic expression of CDC4 suppresses PDCoV replication, whereas knockdown of CDC4 expression enhances PDCoV infection. Importantly, it was revealed that PDCoV encoded nucleocapsid (N) was involved in CDC4 nuclear-cytoplasmic shuttling, which was critical for CDC4 to exert the antiviral activity against PDCoV replication. Mechanistically, PDCoV N protein was detected to specifically interact with RIG-I to antagonize RIG-I-like receptor (RLR)-mediated IFN-β production, leading to disruptions of host innate immune defense. Meanwhile, CDC4 was proved to interact with PDCoV N protein and disrupted the interaction between PDCoV N and RIG-I, resulting in alleviated antagonism of IFN-β production mediated by PDCoV N. Similarly, a broad-spectrum inhibitory effects of CDC4 on N mediated antagonism were confirmed by the shared mechanisms among the different coronaviruses from Coronaviridae family, such as transmissible gastroenteritis virus (TGEV) from Alphacoronavirus (α-CoV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from Betacoronavirus (β-CoV). Therefore, a novel antiviral role of CDC4 was elucidated that CDC4 competes binding with CoVs N proteins to suppress CoVs N mediated antagonism of RLR associated signalling pathway in the context of diverse coronavirus infections.
Collapse
Affiliation(s)
- Mingwei Li
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Yang Wu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Jin Tian
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Qian Yang
- Laboratory of Medical Genetics, School of Basic Medical Sciences, Harbin Medical University, Harbin, People's Republic of China
| | - Mingze Gao
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Yongrui Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Xuepeng Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Ju Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Yudi Pan
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Hongyan Shi
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Da Shi
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Xin Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Jianfei Chen
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Longjun Guo
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Li Feng
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| |
Collapse
|
34
|
Yang Y, Zhong Y, Chen L. EIciRNAs in focus: current understanding and future perspectives. RNA Biol 2025; 22:1-12. [PMID: 39711231 DOI: 10.1080/15476286.2024.2443876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 11/14/2024] [Accepted: 12/09/2024] [Indexed: 12/24/2024] Open
Abstract
Circular RNAs (circRNAs) are a unique class of covalently closed single-stranded RNA molecules that play diverse roles in normal physiology and pathology. Among the major types of circRNA, exon-intron circRNA (EIciRNA) distinguishes itself by its sequence composition and nuclear localization. Recent RNA-seq technologies and computational methods have facilitated the detection and characterization of EIciRNAs, with features like circRNA intron retention (CIR) and tissue-specificity being characterized. EIciRNAs have been identified to exert their functions via mechanisms such as regulating gene transcription, and the physiological relevance of EIciRNAs has been reported. Within this review, we present a summary of the current understanding of EIciRNAs, delving into their identification and molecular functions. Additionally, we emphasize factors regulating EIciRNA biogenesis and the physiological roles of EIciRNAs based on recent research. We also discuss the future challenges in EIciRNA exploration, underscoring the potential for novel functions and functional mechanisms of EIciRNAs for further investigation.
Collapse
Affiliation(s)
- Yan Yang
- Department of Cardiology, The First Affiliated Hospital of USTC, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
- Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, China
| | - Yinchun Zhong
- Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, China
- Department of Clinical Laboratory, The First Affiliated Hospital of USTC, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Liang Chen
- Department of Cardiology, The First Affiliated Hospital of USTC, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
35
|
Luo Y, Zhong X, Sun X, Fan J. The RNA-binding protein ELAVL1 promotes Beclin1-mediated cellular autophagy and thus endometrial cancer development by affecting LncRNA-neat stability. Cancer Biol Ther 2025; 26:2469927. [PMID: 40018990 PMCID: PMC11875488 DOI: 10.1080/15384047.2025.2469927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 12/18/2024] [Accepted: 02/17/2025] [Indexed: 03/01/2025] Open
Abstract
Our study aims to investigate the roles of embryonic lethal abnormal vision-like 1 (ELAVL1) and long non-coding RNA (LncRNA) NEAT1 in endometrial cancer (EC), focusing on their underlying molecular mechanisms.We obtained EC cell lines (HEC-1A, Ishikawa, RL95-2, HEC-1B, and AN3CA) from ATCC. We used siRNAs (si-ELAVL1#1 and si-ELAVL1#2) and overexpression RNAs (OE ELAVL1 and OE-NEAT1) for knockdown or overexpression of ELAVL1 and LncRNA NEAT1. We also employed 3-MA (5mM) or rapamycin (100µM) to inhibit or promote autophagy. Moreover, we conducted RNA immunoprecipitation (RIP) assays to confirm the interaction between LncRNA NEAT1 and ELAVL1. Cell Counting Kit-8 (CCK-8) and transwell assays were utilized to assess cell proliferation and migration. Additionally, we measured the expression of ELAVL1 and Beclin1 through Western blotting and RT-qPCR.ELAVL1 was found to be highly expressed in EC. Furthermore, ELAVL1 promoted the proliferation, invasion, and migration of EC cells through the regulation of Beclin1-related pathways. RIP assays revealed a direct interaction between LncRNA NEAT1 and ELAVL1, with ELAVL1 stabilizing LncRNA NEAT1 mRNA in EC cells. Additionally, we observed that ELAVL1 influenced EC cell proliferation, invasion, and migration through the regulation of LncRNA NEAT1-mediated regulation of Beclin1 expression. Moreover, in an animal study, we determined that ELAVL1 influenced endometrial cancer tumor growth through its interaction with LncRNA NEAT1, which mediated Beclin1 expression in vivo.In summary, our study showed that ELAVL1 regulated the malignant behavior of endometrial cancer cells through the modulation of LncRNA NEAT1-mediated regulation of Beclin1 expression.
Collapse
Affiliation(s)
- Yanlu Luo
- Department of Gynecology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, P.R. China
| | - Xueyan Zhong
- Department of Gynecology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, P.R. China
| | - Xinzhao Sun
- Department of Gynecology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, P.R. China
| | - Jiangtao Fan
- Department of Gynecology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, P.R. China
| |
Collapse
|
36
|
Akinborewa O, Quattrocelli M. Glucocorticoid receptor epigenetic activity in the heart. Epigenetics 2025; 20:2468113. [PMID: 40007064 DOI: 10.1080/15592294.2025.2468113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/23/2025] [Accepted: 02/11/2025] [Indexed: 02/27/2025] Open
Abstract
The glucocorticoid receptor (GR) is a critical nuclear receptor that regulates gene expression in diverse tissues, including the heart, where it plays a key role in maintaining cardiovascular health. GR signaling influences essential processes within cardiomyocytes, including hypertrophy, calcium handling, and metabolic balance, all of which are vital for proper cardiac function. Dysregulation of GR activity has been implicated in various cardiovascular diseases (CVDs), highlighting the potential of GR as a therapeutic target. Remarkably, recent insights into GR's epigenetic regulation and its interaction with circadian rhythms reveal opportunities to optimize therapeutic strategies by aligning glucocorticoid administration with circadian timing. In this review, we provide an overview of the glucocorticoid receptor's role in cardiac physiology, detailing its genomic and non-genomic pathways, interactions with epigenetic and circadian regulatory mechanisms, and implications for cardiovascular disease. By dissecting these molecular interactions, this review outlines the potential of epigenetically informed and circadian-timed interventions that could change the current paradigms of CVD treatments in favor of precise and effective therapies.
Collapse
Affiliation(s)
- Olukunle Akinborewa
- Molecular Cardiovascular Biology, Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pharmacology, Physiology, and Neurobiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Mattia Quattrocelli
- Molecular Cardiovascular Biology, Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
37
|
Liu M, Yang L, Liu Y, Niu H, Zhang M, Shao Z, Xing L, Wang H. Accelerated senescence of bone marrow erythrocyte precursors in myelodysplastic syndrome. Ann Med 2025; 57:2494676. [PMID: 40277030 PMCID: PMC12035936 DOI: 10.1080/07853890.2025.2494676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 06/04/2024] [Accepted: 03/24/2025] [Indexed: 04/26/2025] Open
Abstract
BACKGROUND Myelodysplastic syndromes (MDS) represent a heterogeneous group of clonal hematopoietic disorders characterized by ineffective haematopoiesis, refractory cytopenia, and an increased risk of progression to acute myeloid leukaemia. This study investigates the presence of cellular senescence in bone marrow (BM) CD235a+ erythrocyte precursors of MDS patients and explores its correlation with anaemia. METHODS We assessed senescence-related markers and cell cycle distribution in BM CD235a+ erythrocyte precursors of MDS patients. Correlation analyses were conducted between the relative mRNA expression of p16INK4A, a key senescence regulator, and peripheral blood parameters. RESULTS MDS patients exhibited heightened cellular senescence characterized by increased SA-β-gal positivity, elevated p16INK4A and p21CIP1 expression, reduced CyclinD1 levels, and elevated IL-6. Cell cycle analysis revealed G0/G1 phase arrest. Correlation analysis established a negative association between p16INK4A expression and reticulocyte count, RBC count, haemoglobin concentration, indicating a direct link between BM erythrocyte precursors senescence and anaemia severity. CONCLUSION MDS patients have accelerated senescence of bone marrow erythrocyte precursors, which is related to their anaemia. The observed correlation underscores the potential significance of senescence-targeted interventions in managing anaemia in MDS.Key MessagesBone marrow CD235a⁺ erythroid precursors in MDS patients exhibit accelerated senescence, characterized by cell cycle arrest and increased inflammatory markers. p16INK4A expression negatively correlates with anaemia severity, suggesting senescence as a key contributor to MDS-related anaemia.
Collapse
Affiliation(s)
- Mengyuan Liu
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
| | - Liyan Yang
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
| | - Yumei Liu
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
| | - Haiyue Niu
- Department of Hematology, Capital Medical University Affiliated Beijing Friendship Hospital, Beijing, China
| | - Mengying Zhang
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
| | - Zonghong Shao
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
| | - Limin Xing
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
| | - Huaquan Wang
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
38
|
Xue N, Zhao J, Yin J, Liu L, Yang Z, Zhai S, Bian X, Gao X. The Role of SUMO1 Modification of SOX9 in Cartilage Development Stimulated by Zinc Ions in Mice. Organogenesis 2025; 21:2460269. [PMID: 39905673 PMCID: PMC11801356 DOI: 10.1080/15476278.2025.2460269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 12/09/2024] [Accepted: 01/25/2025] [Indexed: 02/06/2025] Open
Abstract
Zinc ions play a pivotal role in facilitating the development of cartilage in mice. Nevertheless, the precise underlying mechanism remains elusive. Our investigation was centered on elucidating the impact of zinc deficiency on cartilage maturation by modulating SUMO1 and UBC9 at both the protein and mRNA levels. We administered a regimen inducing zinc deficiency to gravid mice from E0.5 until euthanasia. Subsequently, we subjected the embryos to scrutiny employing HE, Safranin O staining and IHC. Primary chondrocytes were isolated from fetal mouse femoral condyles and utilized for Western blot analysis to discern the expression profiles of SUMO1, SUMO2/3, UBC9, SOX9, MMP13, Collagen II, RUNX2, and aggrecan. Furthermore, ATDC5 murine chondrocytes were subjected to treatment with ZnCl2, followed by RT-PCR assessment to scrutinize the expression levels of MMP13, Collagen II, RUNX2, and aggrecan. Additionally, we conducted Co-IP assays on ZnCl2-treated ATDC5 cells to explore the interaction between SOX9 and SUMO1. Our investigation unveiled that zinc deficiency led to a reduction in cartilage development, as evidenced by the HE results in fetal murine femur. Moreover, diminished expression levels of SUMO1 and UBC9 were observed in the IHC and Western blot results. Furthermore, Western blot and Co-IP assays revealed an augmented interaction between SOX9 and SUMO1, which was potentiated by ZnCl2 treatment. Significantly, mutations at the SUMOylation site of SOX9 resulted in alterations in the expression patterns of crucial chondrogenesis factors. This research underscores how zinc ions promote cartilage development through the modification of SOX9 by SUMO1.
Collapse
Affiliation(s)
- Na Xue
- Tianjin Key Laboratory of Epigenetics for Organ Development of Preterm Infants, Central Laboratory, Tianjin Fifth Central Hospital, Tianjin, China
- Emergency Medicine Department, Tianjin Fifth Central Hospital, Tianjin, China
| | - Jing Zhao
- Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin Central Hospital of Obstetrics and Gynecology, Tianjin, China
| | - Jing Yin
- Department of Pathology, Tianjin Fifth Central Hospital, Tianjin, China
| | - Liang Liu
- Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin Central Hospital of Obstetrics and Gynecology, Tianjin, China
| | - Zhong Yang
- Department of Orthopedics, Tianjin Fifth Central Hospital, Tianjin, China
| | - Shuchao Zhai
- Department of Orthopedics, Tianjin Fifth Central Hospital, Tianjin, China
| | - Xiyun Bian
- Tianjin Key Laboratory of Epigenetics for Organ Development of Preterm Infants, Central Laboratory, Tianjin Fifth Central Hospital, Tianjin, China
| | - Xiang Gao
- Department of Orthopedics, Tianjin Fifth Central Hospital, Tianjin, China
| |
Collapse
|
39
|
Ando Y, Horiuchi Y, Hatazawa S, Mataki M, Nakamura A, Murakami T. Hyperdifferentiated murine melanoma cells promote adaptive anti-tumor immunity but activate the immune checkpoint system. Oncoimmunology 2025; 14:2437211. [PMID: 39648330 PMCID: PMC11633153 DOI: 10.1080/2162402x.2024.2437211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 11/06/2024] [Accepted: 11/28/2024] [Indexed: 12/10/2024] Open
Abstract
Accumulating evidence suggests that phenotype switching of cancer cells is essential for therapeutic resistance. However, the immunological characteristics of drug-induced phenotype-switching melanoma cells (PSMCs) are unknown. We investigated PSMC elimination by host immunity using hyperdifferentiated melanoma model cells derived from murine B16F10 melanoma cells. Exposure of B16F10 cells to staurosporine induced a hyperdifferentiated phenotype associated with transient drug tolerance. Staurosporine-induced hyperdifferentiated B16F10 (sB16F10) cells expressed calreticulin on their surface and were phagocytosed efficiently. Furthermore, the inoculation of mice with sB16F10 cells induced immune responses against tumor-derived antigens. Despite the immunogenicity of sB16F10 cells, they activated the PD-1/PD-L1 immune checkpoint system and strongly resisted T cell-mediated tumor destruction. However, in vivo treatment with immune checkpoint inhibitors successfully eliminated the tumor. Thus, hyperdifferentiated melanoma cells have conflicting immunological properties - enhanced immunogenicity and immune evasion. Inhibiting the ability of PSMCs to evade T cell-mediated elimination might lead to complete melanoma eradication.
Collapse
Affiliation(s)
- Yukie Ando
- Department of Microbiology, Saitama Medical University, Moroyama-cho, Saitama,Japan
| | - Yutaka Horiuchi
- Department of Microbiology, Saitama Medical University, Moroyama-cho, Saitama,Japan
| | - Sara Hatazawa
- Department of Microbiology, Saitama Medical University, Moroyama-cho, Saitama,Japan
| | - Momo Mataki
- Department of Microbiology, Saitama Medical University, Moroyama-cho, Saitama,Japan
| | - Akihiro Nakamura
- Department of Microbiology, Saitama Medical University, Moroyama-cho, Saitama,Japan
| | - Takashi Murakami
- Department of Microbiology, Saitama Medical University, Moroyama-cho, Saitama,Japan
| |
Collapse
|
40
|
Rayêe D, Meier UT, Eliscovich C, Cvekl A. Nucleolar ribosomal RNA synthesis continues in differentiating lens fiber cells until abrupt nuclear degradation required for ocular lens transparency. RNA Biol 2025; 22:1-16. [PMID: 40126102 PMCID: PMC11959900 DOI: 10.1080/15476286.2025.2483118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 02/20/2025] [Accepted: 03/07/2025] [Indexed: 03/25/2025] Open
Abstract
Cellular differentiation requires highly coordinated action of all three transcriptional systems to produce rRNAs, mRNAs and various 'short' and 'long' non-coding RNAs by RNA Polymerase I, II and III systems, respectively. RNA Polymerase I catalyzes transcription of about 400 copies of mammalian rDNA genes, generating 18S, 5.8S and 28S rRNA molecules. Lens fiber cell differentiation is a unique process to study transcriptional mechanisms of individual crystallin genes as their very high transcriptional outputs are directly comparable only to globin genes in erythrocytes. Importantly, both terminally differentiated lens fiber cells and mammalian erythrocytes degrade their nuclei through different mechanisms. In lens, the generation of the organelle-free zone (OFZ) includes the degradation of mitochondria, endoplasmic reticulum, Golgi apparatus and nuclei. Here, using RNA fluorescence in situ hybridization (FISH), we evaluated nascent rRNA transcription, located in the nucleoli, during the process of mouse lens fiber cell differentiation. Lens fiber cell nuclei undergo morphological changes including chromatin condensation prior to their denucleation. Remarkably, nascent rRNA transcription persists in all nuclei that are in direct proximity of the OFZ. Additionally, changes in both nuclei and nucleoli shape were evaluated via immunofluorescence detection of fibrillarin, nucleolin, UBF and other proteins. These studies demonstrate for the first time that highly condensed lens fiber cell nuclei have the capacity to support nascent rRNA transcription. Thus, we propose that 'late' production of rRNA molecules and consequently of ribosomes increases crystallin protein synthesis machinery within the mature lens fibers.
Collapse
Affiliation(s)
- Danielle Rayêe
- Departments of Ophthalmology and Visual Sciences and Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - U. Thomas Meier
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Carolina Eliscovich
- Departments of Medicine (Hepatology) and Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Aleš Cvekl
- Departments of Ophthalmology and Visual Sciences and Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
41
|
Jungfleisch J, Gebauer F. RNA-binding proteins as therapeutic targets in cancer. RNA Biol 2025; 22:1-8. [PMID: 40016176 PMCID: PMC11869776 DOI: 10.1080/15476286.2025.2470511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 02/04/2025] [Accepted: 02/17/2025] [Indexed: 03/01/2025] Open
Abstract
RNA-binding proteins (RBPs) have emerged as critical regulators of cancer progression, influencing virtually all hallmarks of cancer. Their ability to modulate gene expression patterns that promote or inhibit tumorigenesis has positioned RBPs as promising targets for novel anti-cancer therapies. This mini-review summarizes the current state of RBP-targeted cancer treatments, focusing on five examples, eIF4F, FTO, SF3B1, RBM39 and nucleolin. We highlight the diversity of current targeting approaches and discuss ongoing challenges including the complexity of RBP regulatory networks, potential off-target effects and the need for more specific targeting methods. By assessing the future potential of novel therapeutic avenues, we provide insights into the evolving landscape of cancer treatment and the critical role RBPs may play in next-generation therapeutics.
Collapse
Affiliation(s)
- Jennifer Jungfleisch
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Fátima Gebauer
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| |
Collapse
|
42
|
Xiang Z, Ma B, Pei X, Wang W, Gong W. Mechanism of action of genistein on breast cancer and differential effects of different age stages. PHARMACEUTICAL BIOLOGY 2025; 63:141-155. [PMID: 39996512 PMCID: PMC11864014 DOI: 10.1080/13880209.2025.2469607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 02/12/2025] [Accepted: 02/14/2025] [Indexed: 02/26/2025]
Abstract
CONTEXT Genistein, a soy-derived isoflavone, exhibits structural similarities with 17β-estradiol and demonstrates antioxidant, anti-inflammatory, and estrogenic properties. Despite its low bioavailability limiting its clinical application, it shows potential for breast cancer prevention and treatment. OBJECTIVE This review aims to summarize the pharmacological effects and molecular mechanisms of genistein in breast cancer, focusing on its therapeutic potential, strategies to overcome bioavailability limitations, and its role in personalized medicine. Differential impacts among population subgroups are also discussed. METHODS A systematic review was conducted using PubMed, ScienceDirect, and Google Scholar databases. Studies were selected based on their focus on genistein's mechanisms of action, strategies to enhance its bioavailability, and interactions with other therapies. RESULTS Genistein exerted anticancer effects by modulating estrogen receptor β (ERβ), inhibiting angiogenesis, arresting the cell cycle, and inducing apoptosis. Its antioxidant properties help mitigate tumor-associated oxidative stress. Bioavailability enhancement strategies, such as nanoparticle and lipid-based formulations, show promise. Age-dependent effects were evident, with distinct responses observed in prepubertal, menopausal, and postmenopausal populations, underscoring its potential for personalized therapies. Furthermore, genistein influences epigenetic modifications, including DNA methylation and miRNA expression, bolstering its anticancer efficacy. CONCLUSION Genistein is a promising candidate for breast cancer therapy, particularly for personalized treatment. Strategies to enhance bioavailability and further clinical research are essential to optimize its therapeutic potential and evaluate its efficacy in combination therapies.
Collapse
Affiliation(s)
- Zhebin Xiang
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Bo Ma
- Zhejiang Hospital, Hangzhou, China
| | - Xiujun Pei
- Shandong Provincial Hospital, Shandong, China
| | - Wenjie Wang
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Weilun Gong
- Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
43
|
Zhou S, Hui X, Wang W, Zhao C, Jin M, Qin Y, Chen M. SARS-CoV-2 and HCoV-OC43 regulate host m6A modification via activation of the mTORC1 signalling pathway to facilitate viral replication. Emerg Microbes Infect 2025; 14:2447620. [PMID: 39745173 PMCID: PMC11852242 DOI: 10.1080/22221751.2024.2447620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/08/2024] [Accepted: 12/22/2024] [Indexed: 02/25/2025]
Abstract
N6-methyladenosine (m6A) is the most prevalent post-transcriptional modification in eukaryotic RNA and is also present in various viral RNAs, where it plays a crucial role in regulating the viral life cycle. However, the molecular mechanisms through which viruses regulate host RNA m6A methylation are not fully understood. In this study, we reveal that SARS-CoV-2 and HCoV-OC43 infection enhance host m6A modification by activating the mTORC1 signalling pathway. Specifically, the viral non-structural protein nsp14 upregulates the expression of S-adenosylmethionine synthase MAT2A in an mTORC1-dependent manner. This mTORC1-MAT2A axis subsequently stimulates the synthesis of S-adenosylmethionine (SAM). The increase of SAM then enhances the m6A methylation of host RNA and facilitates viral replication. Our findings uncover a molecular mechanism by which viruses regulate host m6A methylation and provide insights into how SARS-CoV-2 hijacks host cellular epitranscriptomic modifications to promote its replication.
Collapse
Affiliation(s)
- Shixiong Zhou
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, People’s Republic of China
| | - Xianfeng Hui
- National key laboratory of agricultural microbiology, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Weiwei Wang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, People’s Republic of China
| | - Chunbei Zhao
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, People’s Republic of China
| | - Meilin Jin
- National key laboratory of agricultural microbiology, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Yali Qin
- School of Life Sciences, Hubei University, Wuhan, People’s Republic of China
| | - Mingzhou Chen
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, People’s Republic of China
- School of Life Sciences, Hubei University, Wuhan, People’s Republic of China
| |
Collapse
|
44
|
Gentile GM, Blue RE, Goda GA, Guzman BB, Szymanski RA, Lee EY, Engels NM, Hinkle ER, Wiedner HJ, Bishop AN, Harrison JT, Zhang H, Wehrens XHT, Dominguez D, Giudice J. Alternative splicing of the Snap23 microexon is regulated by MBNL, QKI, and RBFOX2 in a tissue-specific manner and is altered in striated muscle diseases. RNA Biol 2025; 22:1-20. [PMID: 40207498 DOI: 10.1080/15476286.2025.2491160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 03/05/2025] [Accepted: 04/01/2025] [Indexed: 04/11/2025] Open
Abstract
The reprogramming of alternative splicing networks during development is a hallmark of tissue maturation and identity. Alternative splicing of microexons (small, genomic regions ≤ 51 nucleotides) functionally regulate protein-protein interactions in the brain and is altered in several neuronal diseases. However, little is known about the regulation and function of alternatively spliced microexons in striated muscle. Here, we investigated alternative splicing of a microexon in the synaptosome-associated protein 23 (Snap23) encoded gene. We found that inclusion of this microexon is developmentally regulated and tissue-specific, as it occurs exclusively in adult heart and skeletal muscle. The alternative region is highly conserved in mammalian species and encodes an in-frame sequence of 11 amino acids. Furthermore, we showed that alternative splicing of this microexon is mis-regulated in mouse models of heart and skeletal muscle diseases. We identified the RNA-binding proteins (RBPs) quaking (QKI) and RNA binding fox-1 homolog 2 (RBFOX2) as the primary splicing regulators of the Snap23 microexon. We found that QKI and RBFOX2 bind downstream of the Snap23 microexon to promote its inclusion, and this regulation can be escaped when the weak splice donor is mutated to the consensus 5' splice site. Finally, we uncovered the interplay between QKI and muscleblind-like splicing regulator (MBNL) as an additional, but minor layer of Snap23 microexon splicing control. Our results are one of the few reports detailing microexon alternative splicing regulation during mammalian striated muscle development.
Collapse
Affiliation(s)
- Gabrielle M Gentile
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - R Eric Blue
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Grant A Goda
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Bryan B Guzman
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Rachel A Szymanski
- Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Eunice Y Lee
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Nichlas M Engels
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Emma R Hinkle
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Hannah J Wiedner
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Aubriana N Bishop
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jonathan T Harrison
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Hua Zhang
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Xander H T Wehrens
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
| | - Daniel Dominguez
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- RNA Discovery Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jimena Giudice
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- RNA Discovery Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- McAllister Heart Institute, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
45
|
Merz LM, Winter K, Richter S, Kallendrusch S, Horn A, Grunewald S, Klöting N, Krause K, Kiess W, Le Duc D, Garten A. Effects of alpelisib treatment on murine Pten-deficient lipomas. Adipocyte 2025; 14:2468275. [PMID: 39962643 PMCID: PMC11844927 DOI: 10.1080/21623945.2025.2468275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 01/20/2025] [Accepted: 01/31/2025] [Indexed: 02/23/2025] Open
Abstract
Phosphatase and tensin homolog (PTEN) hamartoma tumour syndrome (PHTS) is a rare disorder caused by germline mutations in the tumour suppressor gene PTEN, a key negative regulator of phosphatidylinositol 3-kinase (PI3K)/AKT signalling. Children with PHTS often develop lipomas, for which only surgical resection is available as treatment. We investigated the effects of the selective PI3K-inhibitor alpelisib on Pten-deficient lipomas. After incubation with alpelisib or the non-selective PI3K inhibitor wortmannin, we analysed histology, gene expression, and Pi3k pathway in lipoma and control epididymal adipose tissue (epiWAT). Alpelisib increased adipocyte area in lipomas compared to epiWAT. Baseline gene expression showed higher levels of markers for proliferation (Pcna), fibrosis (Tgfb1), and adipogenesis (Pparg) in lipomas, while hormone-sensitive lipase expression was lower than in epiWAT. Following alpelisib incubation, target genes of Pi3k signalling and extracellular matrix factors were reduced. We confirmed Pi3k inhibition through detecting decreased Akt levels compared to control treatment. Human lipoma samples treated with alpelisib showed variable lipolysis responses, suggesting variability in therapeutic outcomes. We established an ex vivo model to study alpelisib effects on Pten-deficient lipomas. These results underscore the therapeutic potential of targeted PI3K inhibition in the treatment of PHTS-associated lipomas, particularly in cases that are inoperable.
Collapse
Affiliation(s)
- Lea M. Merz
- Center for Pediatric Research, University Hospital for Children & Adolescents, Leipzig University, Leipzig, Germany
| | - Karsten Winter
- Institute of Anatomy, Leipzig University, Leipzig, Germany
| | - Sandy Richter
- Center for Pediatric Research, University Hospital for Children & Adolescents, Leipzig University, Leipzig, Germany
| | - Sonja Kallendrusch
- Institute of Anatomy, Leipzig University, Leipzig, Germany
- Institute of Clinical Research and Systems Medicine, Health and Medical University Potsdam, Potsdam, Germany
| | - Andreas Horn
- Institute of Anatomy, Leipzig University, Leipzig, Germany
| | - Sonja Grunewald
- Department for Dermatology, Venereology and Allergology, University Hospital Leipzig, Leipzig, Germany
| | - Nora Klöting
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG), Helmholtz Center Munich at the University and University Hospital Leipzig, Leipzig, Germany
| | - Kerstin Krause
- Department of Endocrinology, Nephrology and Rheumatology, University Hospital Leipzig, Leipzig, Germany
| | - Wieland Kiess
- Center for Pediatric Research, University Hospital for Children & Adolescents, Leipzig University, Leipzig, Germany
| | - Diana Le Duc
- Institute of Human Genetics, University Hospital Leipzig, Leipzig, Germany
| | - Antje Garten
- Center for Pediatric Research, University Hospital for Children & Adolescents, Leipzig University, Leipzig, Germany
| |
Collapse
|
46
|
Li J, Liu D, Li X, Wei J, Du W, Zhao A, Xu M. RNA vaccines: The dawn of a new age for tuberculosis? Hum Vaccin Immunother 2025; 21:2469333. [PMID: 40013818 PMCID: PMC11869779 DOI: 10.1080/21645515.2025.2469333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 02/03/2025] [Accepted: 02/14/2025] [Indexed: 02/28/2025] Open
Abstract
Since 2019, there has been a growing focus on mRNA vaccines for infectious disease prevention, particularly following the emergence of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). mRNA vaccines offer advantages such as rapid production and the ability to induce robust cellular and antibody responses, which are essential for combating infections that require cell-mediated immunity, including Tuberculosis (TB). This review explores recent progress in TB mRNA vaccines and addresses several key areas: (1) the urgent need for new TB vaccines; (2) current advancements in TB vaccine development, and the advantages and challenges of mRNA technology; (3) the design and characteristics of TB mRNA vaccines; (4) the immunological mechanisms of TB mRNA vaccines; (5) manufacturing processes for TB mRNA vaccines; and (6) safety and regulatory considerations. This interdisciplinary review aims to provide insights for researchers working to address critical questions in TB mRNA vaccine development.
Collapse
Affiliation(s)
- Junli Li
- Division of Tuberculosis Vaccine and Allergen Products, Institute of Biological Product Control, National Institutes for Food and Drug Control, Beijing, China
- State Key Laboratory of Drug Regulatory Science, National Institutes for Food and Drug Control, Beijing, China
- Key Laboratory for Quality Research and Evaluation of Biological Products, National Medical Products Administration (NMPA), Beijing, China
- Key Laboratory of Research on Quality and Standardization of Biotech Products, National Health Commission (NHC), Beijing, China
| | - Dong Liu
- Graduate School of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
- Guangzhou Laboratory, Guangzhou, China
| | - Xiaochi Li
- Division of Tuberculosis Vaccine and Allergen Products, Institute of Biological Product Control, National Institutes for Food and Drug Control, Beijing, China
- State Key Laboratory of Drug Regulatory Science, National Institutes for Food and Drug Control, Beijing, China
- Key Laboratory for Quality Research and Evaluation of Biological Products, National Medical Products Administration (NMPA), Beijing, China
- Key Laboratory of Research on Quality and Standardization of Biotech Products, National Health Commission (NHC), Beijing, China
| | - Jiazheng Wei
- College of Life Sciences and Biopharmaceuticals, Shenyang Pharmaceutical University, Shenyang, China
| | - Weixin Du
- Division of Tuberculosis Vaccine and Allergen Products, Institute of Biological Product Control, National Institutes for Food and Drug Control, Beijing, China
- State Key Laboratory of Drug Regulatory Science, National Institutes for Food and Drug Control, Beijing, China
- Key Laboratory for Quality Research and Evaluation of Biological Products, National Medical Products Administration (NMPA), Beijing, China
- Key Laboratory of Research on Quality and Standardization of Biotech Products, National Health Commission (NHC), Beijing, China
| | - Aihua Zhao
- Division of Tuberculosis Vaccine and Allergen Products, Institute of Biological Product Control, National Institutes for Food and Drug Control, Beijing, China
- State Key Laboratory of Drug Regulatory Science, National Institutes for Food and Drug Control, Beijing, China
- Key Laboratory for Quality Research and Evaluation of Biological Products, National Medical Products Administration (NMPA), Beijing, China
- Key Laboratory of Research on Quality and Standardization of Biotech Products, National Health Commission (NHC), Beijing, China
| | - Miao Xu
- Division of Tuberculosis Vaccine and Allergen Products, Institute of Biological Product Control, National Institutes for Food and Drug Control, Beijing, China
- State Key Laboratory of Drug Regulatory Science, National Institutes for Food and Drug Control, Beijing, China
- Key Laboratory for Quality Research and Evaluation of Biological Products, National Medical Products Administration (NMPA), Beijing, China
- Key Laboratory of Research on Quality and Standardization of Biotech Products, National Health Commission (NHC), Beijing, China
| |
Collapse
|
47
|
Chowdhury SR, Shilpi A, Felsenfeld G. RNA Pol-II transcripts in nucleolar associated domains of cancer cell nucleoli. Nucleus 2025; 16:2468597. [PMID: 39987497 PMCID: PMC11849958 DOI: 10.1080/19491034.2025.2468597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 01/03/2025] [Accepted: 02/13/2025] [Indexed: 02/25/2025] Open
Abstract
We performed a comparative study of the non-ribosomal gene content of nucleoli from seven cancer cell lines, using identical methods of purification and analysis. We identified unique chromosomal domains associated with the nucleolus (NADs) and genes within these domains (NAGs). Four cell lines have relatively few NAGs, which appears mostly transcriptionally inactive, consistent with literature. The remaining three lines formed a separate group with nucleoli with unique features and NADS. They constitute larger number of common NAGs, marked by ATAC-seq and having accessible promoters, with histone markers for transcriptional activity and detectable RNA Pol II bound at their promoters. The transcripts of these genes are almost entirely exported from the nucleolus. These results indicate that RNA Pol II dependent transcription in NADs can vary widely in different cell types, presumably dependent on the cell's developmental stage. Nucleolus-associated genes are likely to be distinguished marks reflecting the cell's metabolism.
Collapse
Affiliation(s)
- Soumya Roy Chowdhury
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases
| | - Arunima Shilpi
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases
| | | |
Collapse
|
48
|
Sharma R, Mishra A, Bhardwaj M, Singh G, Indira Harahap LV, Vanjani S, Pan CH, Nepali K. Medicinal chemistry breakthroughs on ATM, ATR, and DNA-PK inhibitors as prospective cancer therapeutics. J Enzyme Inhib Med Chem 2025; 40:2489720. [PMID: 40256842 PMCID: PMC12013171 DOI: 10.1080/14756366.2025.2489720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 03/28/2025] [Accepted: 04/01/2025] [Indexed: 04/22/2025] Open
Abstract
This review discusses the critical roles of Ataxia Telangiectasia Mutated Kinase (ATM), ATM and Rad3-related Kinase (ATR), and DNA-dependent protein kinase (DNA-PK) in the DNA damage response (DDR) and their implications in cancer. Emphasis is placed on the intricate interplay between these kinases, highlighting their collaborative and distinct roles in maintaining genomic integrity and promoting tumour development under dysregulated conditions. Furthermore, the review covers ongoing clinical trials, patent literature, and medicinal chemistry campaigns on ATM/ATR/DNA-PK inhibitors as antitumor agents. Notably, the medicinal chemistry campaigns employed robust drug design strategies and aimed at assembling new structural templates with amplified DDR kinase inhibitory ability, as well as outwitting the pharmacokinetic liabilities of the existing DDR kinase inhibitors. Given the success attained through such endeavours, the clinical pipeline of DNA repair kinase inhibitors is anticipated to be supplemented by a reasonable number of tractable entries (DDR kinase inhibitors) soon.
Collapse
Affiliation(s)
- Ram Sharma
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Anshul Mishra
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Monika Bhardwaj
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Gurpreet Singh
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, India
| | | | - Sakshi Vanjani
- Molecular Medicine, University of South Florida, Tampa, FL, USA
| | - Chun Hsu Pan
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Kunal Nepali
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
49
|
Kosek DM, Leal JL, Kikovska-Stojanovska E, Mao G, Wu S, Flores SC, Kirsebom LA. RNase P cleavage of pseudoknot substrates reveals differences in active site architecture that depend on residue N-1 in the 5' leader. RNA Biol 2025; 22:1-19. [PMID: 39831626 DOI: 10.1080/15476286.2024.2427906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 10/31/2024] [Accepted: 11/04/2024] [Indexed: 01/22/2025] Open
Abstract
We show that a small biotin-binding RNA aptamer that folds into a pseudoknot structure acts as a substrate for bacterial RNase P RNA (RPR) with and without the RNase P C5 protein. Cleavage in the single-stranded region in loop 1 was shown to depend on the presence of a RCCA-motif at the 3' end of the substrate. The nucleobase and the 2'hydroxyl at the position immediately 5' of the cleavage site contribute to both cleavage efficiency and site selection, where C at this position induces significant cleavage at an alternative site, one base upstream of the main cleavage site. The frequencies of cleavage at these two sites and Mg2+ binding change upon altering the structural topology in the vicinity of the cleavage site as well as by replacing Mg2+ with other divalent metal ions. Modelling studies of RPR in complex with the pseudoknot substrates suggest alternative structural topologies for cleavage at the main and the alternative site and a shift in positioning of Mg2+ that activates the H2O nucleophile. Together, our data are consistent with a model where the organization of the active site structure and positioning of Mg2+ is influenced by the identities of residues at and in the vicinity of the site of cleavage.
Collapse
Affiliation(s)
- David M Kosek
- Department of Cell and Molecular Biology, Biomedical Centre, Uppsala University, Uppsala, Sweden
- Department of Medical Biochemistry and Microbiology, Biomedical Centre, Uppsala University, Uppsala, Sweden
| | - J Luis Leal
- Department of Cell and Molecular Biology, Biomedical Centre, Uppsala University, Uppsala, Sweden
- Department of Ecology and Genetics, Evolutionary Biology Center EBC, Uppsala University, Uppsala, Sweden
| | - Ema Kikovska-Stojanovska
- Department of Cell and Molecular Biology, Biomedical Centre, Uppsala University, Uppsala, Sweden
- Merck Healthcare KGaA, Global Regulatory CMC & Devices, Darmstadt, Germany
| | - Guanzhong Mao
- Department of Cell and Molecular Biology, Biomedical Centre, Uppsala University, Uppsala, Sweden
| | - Shiying Wu
- Department of Cell and Molecular Biology, Biomedical Centre, Uppsala University, Uppsala, Sweden
- Bio-Works AB, Uppsala, Sweden
| | - Samuel C Flores
- Department of Cell and Molecular Biology, Biomedical Centre, Uppsala University, Uppsala, Sweden
- Department of Animal Biosciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
- Department of Biochemistry and Biophysics, Stockholm University, Solna, Sweden
| | - Leif A Kirsebom
- Department of Cell and Molecular Biology, Biomedical Centre, Uppsala University, Uppsala, Sweden
| |
Collapse
|
50
|
Kaartinen L, Jääskeläinen T, Sliz E, Yazgeldi Gunaydin G, Wedenoja S, Katayama S, Kajantie E, Rinne V, Heinonen S, Kere J, Merikallio H, Sliz E, Laivuori H, Hukkanen J. Role of oxysterol 4β-hydroxycholesterol and liver X receptor alleles in pre-eclampsia. Ann Med 2025; 57:2495763. [PMID: 40298034 PMCID: PMC12042236 DOI: 10.1080/07853890.2025.2495763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 02/25/2025] [Accepted: 04/08/2025] [Indexed: 04/30/2025] Open
Abstract
BACKGROUND Liver X receptors (LXRs) are expressed in placenta and may be associated with pre-eclampsia (PE). Oxysterols act as agonists for LXRs. We recently proposed a new blood pressure-regulating circuit with oxysterol 4β-hydroxycholesterol (4βHC) acting as a hypotensive factor via LXRs. MATERIALS AND METHODS This study investigated the association between maternal plasma 4βHC, blood pressure (BP) indices, placental expression of LXR target genes, and patient characteristics using data from the Finnish Genetics of Pre-Eclampsia Consortium (FINNPEC) cohort. Plasma samples of 144 women with PE and 38 healthy pregnant controls as well as 44 PE and 40 control placental samples were available. In addition, genetic data from the FinnGen project was utilized to explore the associations of LXR alleles with PE and pregnancy hypertension. RESULTS There were no significant associations between 4βHC and BP or maternal and perinatal characteristics in FINNPEC cohort. However, plasma 4βHC was inversely correlated with the maternal body mass index. There were no associations with the genetic variants of LXRs with PE in FinnGen. LXR target genes APOD, SCARB1, TGM2, and LPCAT3 were expressed differently between PE and normal pregnancies in placental samples of FINNPEC. CONCLUSIONS Our results demonstrate that plasma 4βHC and genetic LXR variants do not play a major role in PE and BP regulation during pregnancy. However, key LXR target genes involved in lipid metabolism were expressed differently in normal and PE pregnancies. Further research is needed to understand the complexities of oxysterols, LXRs, and their potential contributions to placental function and pregnancy outcomes.
Collapse
Affiliation(s)
- Lassi Kaartinen
- Research Unit of Biomedicine and Internal Medicine, University of Oulu, Oulu, Finland
- Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Tiina Jääskeläinen
- Medical and Clinical Genetics, University of Helsinki and Helsinki University Hospital, University of Helsinki, Helsinki, Finland
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| | - Eeva Sliz
- Research Unit of Population Health, University of Oulu, Oulu, Finland
| | - Gamze Yazgeldi Gunaydin
- Stem Cells and Metabolism Research Program, University of Helsinki, Helsinki, Finland
- Folkhälsan Research Center, Helsinki, Finland
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Satu Wedenoja
- Stem Cells and Metabolism Research Program, University of Helsinki, Helsinki, Finland
- Folkhälsan Research Center, Helsinki, Finland
- Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Shintaro Katayama
- Stem Cells and Metabolism Research Program, University of Helsinki, Helsinki, Finland
- Folkhälsan Research Center, Helsinki, Finland
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Eero Kajantie
- Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
- Research unit of Clinical Medicine, University of Oulu, Oulu, Finland
- Population Health Unit, Finnish Institute for Health and Welfare, Helsinki and Oulu, Oulu, Finland
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | | | - Seppo Heinonen
- Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Juha Kere
- Stem Cells and Metabolism Research Program, University of Helsinki, Helsinki, Finland
- Folkhälsan Research Center, Helsinki, Finland
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Heta Merikallio
- Research Unit of Biomedicine and Internal Medicine, University of Oulu, Oulu, Finland
- Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Hannele Laivuori submitted on behalf of FINNPEC group
- Research Unit of Biomedicine and Internal Medicine, University of Oulu, Oulu, Finland
- Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
- Medical and Clinical Genetics, University of Helsinki and Helsinki University Hospital, University of Helsinki, Helsinki, Finland
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
- Research Unit of Population Health, University of Oulu, Oulu, Finland
- Stem Cells and Metabolism Research Program, University of Helsinki, Helsinki, Finland
- Folkhälsan Research Center, Helsinki, Finland
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
- Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research unit of Clinical Medicine, University of Oulu, Oulu, Finland
- Population Health Unit, Finnish Institute for Health and Welfare, Helsinki and Oulu, Oulu, Finland
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Admescope (Symeres Finland Ltd), Oulu, Finland
- Department of Obstetrics and Gynecology, Tampere University Hospital, The Wellbeing Services County of Pirkanmaa, Tampere, Finland
- Faculty of Medicine and Health Technology, Center for Child, Adolescent, and Maternal Health Research, Tampere University, Tampere, Finland
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Eeva Sliz
- Research Unit of Biomedicine and Internal Medicine, University of Oulu, Oulu, Finland
- Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
- Medical and Clinical Genetics, University of Helsinki and Helsinki University Hospital, University of Helsinki, Helsinki, Finland
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
- Research Unit of Population Health, University of Oulu, Oulu, Finland
- Stem Cells and Metabolism Research Program, University of Helsinki, Helsinki, Finland
- Folkhälsan Research Center, Helsinki, Finland
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
- Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research unit of Clinical Medicine, University of Oulu, Oulu, Finland
- Population Health Unit, Finnish Institute for Health and Welfare, Helsinki and Oulu, Oulu, Finland
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Admescope (Symeres Finland Ltd), Oulu, Finland
- Department of Obstetrics and Gynecology, Tampere University Hospital, The Wellbeing Services County of Pirkanmaa, Tampere, Finland
- Faculty of Medicine and Health Technology, Center for Child, Adolescent, and Maternal Health Research, Tampere University, Tampere, Finland
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - submitted on behalf of FinnGen group
- Research Unit of Biomedicine and Internal Medicine, University of Oulu, Oulu, Finland
- Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
- Medical and Clinical Genetics, University of Helsinki and Helsinki University Hospital, University of Helsinki, Helsinki, Finland
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
- Research Unit of Population Health, University of Oulu, Oulu, Finland
- Stem Cells and Metabolism Research Program, University of Helsinki, Helsinki, Finland
- Folkhälsan Research Center, Helsinki, Finland
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
- Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research unit of Clinical Medicine, University of Oulu, Oulu, Finland
- Population Health Unit, Finnish Institute for Health and Welfare, Helsinki and Oulu, Oulu, Finland
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Admescope (Symeres Finland Ltd), Oulu, Finland
- Department of Obstetrics and Gynecology, Tampere University Hospital, The Wellbeing Services County of Pirkanmaa, Tampere, Finland
- Faculty of Medicine and Health Technology, Center for Child, Adolescent, and Maternal Health Research, Tampere University, Tampere, Finland
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Hannele Laivuori
- Medical and Clinical Genetics, University of Helsinki and Helsinki University Hospital, University of Helsinki, Helsinki, Finland
- Department of Obstetrics and Gynecology, Tampere University Hospital, The Wellbeing Services County of Pirkanmaa, Tampere, Finland
- Faculty of Medicine and Health Technology, Center for Child, Adolescent, and Maternal Health Research, Tampere University, Tampere, Finland
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Janne Hukkanen
- Research Unit of Biomedicine and Internal Medicine, University of Oulu, Oulu, Finland
- Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| |
Collapse
|