451
|
Borges LP, Brandão R, Godoi B, Nogueira CW, Zeni G. Oral administration of diphenyl diselenide protects against cadmium-induced liver damage in rats. Chem Biol Interact 2008; 171:15-25. [DOI: 10.1016/j.cbi.2007.09.005] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2007] [Revised: 09/06/2007] [Accepted: 09/07/2007] [Indexed: 10/22/2022]
|
452
|
Nemmiche S, Chabane-Sari D, Guiraud P. Role of α-tocopherol in cadmium-induced oxidative stress in Wistar rat's blood, liver and brain. Chem Biol Interact 2007; 170:221-30. [PMID: 17897638 DOI: 10.1016/j.cbi.2007.08.004] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2007] [Revised: 07/27/2007] [Accepted: 08/07/2007] [Indexed: 12/13/2022]
Abstract
Cadmium (Cd) a highly toxic metal is considered to be a multitarget toxicant, and it accumulates principally in the liver and kidney after absorption. In vivo studies of mouse and rat liver have shown that apoptosis plays a primary role in Cd-induced hepatotoxicity. However, the detailed mechanisms by which toxic metals such as Cd produce their effects are still largely unknown. The present study aimed at investigating the consequences of exposure to Cd, alpha-tocopherol and their combination on stress biochemical parameters (lipoperoxidation and protein carbonyls levels). Male albino Wistar rats (1 month old) were treated intravenously with cadmium (2 mg CdCl(2)/kg body weight/day), and alpha-tocopherol (100 mg/kg body weight/day), or with alpha-tocopherol+Cd (100 mg Vit E/kg body weight, 2 mg CdCl(2)/kg). The lipoperoxidation was measured by the thiobarbituric acid reactive substances (TBARS) method and oxidatively generated damage to proteins by determining carbonyl (DNPH) levels. Among the hematological parameters measured the haematocrit value and haemoglobin concentration were significantly decreased in the blood of Cd-treated rats. A significant increase was observed in the level of malondialdehyde (MDA) and protein carbonyls in the cadmium exposed group compared to control group (p<0.001), and these values were decreased after administration of alpha-tocopherol (group 4). The activity of lactate dehydrogenase in rat liver and brain showed a significant increase as compared to that found in the control group and significant decrease of catalase and superoxide dismutase activities. In the liver of the Cd-treated group the contents of reduced glutathione were decreased. Our results suggest that cadmium induces an oxidation of cellular lipids and proteins and that administration of alpha-tocopherol can reduce Cd-induced oxidative stress and improve the glutathione level together with other biochemical parameters.
Collapse
Affiliation(s)
- Saïd Nemmiche
- Laboratoire de Physio Pharmacologie, Département de Biologie, Faculté des Sciences, Université de Tlemcen, BP 119, Tlemcen Cedex 13000, Algeria.
| | | | | |
Collapse
|
453
|
Liu HH, Wu YC, Chen HL. Production of ozone and reactive oxygen species after welding. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2007; 53:513-8. [PMID: 17612781 DOI: 10.1007/s00244-007-0030-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2007] [Accepted: 05/06/2007] [Indexed: 05/16/2023]
Abstract
Many toxic substances including heavy metals, ozone, carbon monoxide, carbon dioxide, and nitrogen oxides are generated during welding. Ozone (O(3)) is a strong oxidant that generates reactive oxygen species (ROS) in tissue, and ambient ROS exposure associated with particles has been determined to cause DNA damage. Ozone is produced within 30 seconds during welding. However, the length of time that O(3) remains in the air after welding is completed (post-welding) is unknown. The current study aimed to assess the distributions of ambient ROS and O(3) before the start of welding (pre-welding), during welding, and after welding. The highest O(3) levels, equal to 195 parts per billion (ppb), appeared during welding. Ozone levels gradually decreased to 60 ppb 10 minutes after the welding was completed. The highest ROS level was found in samples taken during welding, followed by samples taken after the welding was completed. The lowest ROS level was found in samples taken before the welding had started. Ozone and ROS levels were poorly correlated, but a similar trend was found for O(3) and ROS levels in particles (microM/mg). Although particles were not generated after welding, ROS and O(3) still persisted for more than 10 minutes. Meanwhile, because O(3) continues after welding, how long the occupational protective system should be used depends on the welding materials and the methods used. In addition, the relationship between metal fumes and ROS generation during the welding process should be further investigated.
Collapse
Affiliation(s)
- H H Liu
- Department of Occupational Safety and Health, Chung Shan Medical University, Taichung, Taiwan
| | | | | |
Collapse
|
454
|
Kinoshita S, Inoue Y, Nakama S, Ichiba T, Aniya Y. Antioxidant and hepatoprotective actions of medicinal herb, Terminalia catappa L. from Okinawa Island and its tannin corilagin. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2007; 14:755-62. [PMID: 17293097 DOI: 10.1016/j.phymed.2006.12.012] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The antioxidant and hepatoprotective actions of Terminalia catappa L. collected from Okinawa Island were evaluated in vitro and in vivo using leaves extract and isolated antioxidants. A water extract of the leaves of T. catappa showed a strong radical scavenging action for 1,1-diphenyl-2-picrylhydrazyl and superoxide (O(2)(.-)) anion. Chebulagic acid and corilagin were isolated as the active components from T. catappa. Both antioxidants showed a strong scavenging action for O(2)(.-) and peroxyl radicals and also inhibited reactive oxygen species production from leukocytes stimulated by phorbol-12-myristate acetate. Galactosamine (GalN, 600 mg/kg, s.c.,) and lipopolysaccharide (LPS, 0.5 microg/kg, i.p.)-induced hepatotoxicity of rats as seen by an elevation of serum alanine aminotransferase, aspartate aminotransferase and glutathione S-transferase (GST) activities was significantly reduced when the herb extract or corilagin was given intraperitoneally to rats prior to GalN/LPS treatment. Increase of free radical formation and lipid peroxidation in mitochondria caused by GalN/LPS treatment were also decreased by pretreatment with the herb/corilagin. In addition, apoptotic events such as DNA fragmentation and the increase in caspase-3 activity in the liver observed with GalN/LPS treatment were prevented by the pretreatment with the herb/corilagin. These results show that the extract of T. catappa and its antioxidant, corilagin are protective against GalN/LPS-induced liver injury through suppression of oxidative stress and apoptosis.
Collapse
Affiliation(s)
- S Kinoshita
- Laboratory of Functional and Molecular Pharmacology, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Okinawa 903-0215, Japan
| | | | | | | | | |
Collapse
|
455
|
Pacheco CC, Passos JF, Castro AR, Moradas-Ferreira P, De Marco P. Role of respiration and glutathione in cadmium-induced oxidative stress in Escherichia coli K-12. Arch Microbiol 2007; 189:271-8. [PMID: 17968530 DOI: 10.1007/s00203-007-0316-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2007] [Revised: 10/09/2007] [Accepted: 10/15/2007] [Indexed: 11/26/2022]
Abstract
Cadmium is a widespread pollutant that has been associated with oxidative stress, but the mechanism behind this effect in prokaryotes is still unclear. In this work, we exposed two glutathione deficient mutants (DeltagshA and DeltagshB) and one respiration deficient mutant (DeltaubiE) to a sublethal concentration of cadmium. The glutathione mutants show a similar increase in reactive oxygen species as the wild type. Experiments performed using the DeltaubiE strain showed that this mutant is more resistant to cadmium ions and that Cd-induced reactive oxygen species levels were not altered. In the light of these facts, we conclude that the interference of cadmium with the respiratory chain is the cause of the oxidative stress induced by this metal and that, contrary to previously proposed models, the reactive oxygen species increase is not due to glutathione depletion, although this peptide is crucial for cadmium detoxification.
Collapse
Affiliation(s)
- Catarina C Pacheco
- Grupo de Microbiologia Celular e Aplicada (MCA), IBMC, R. Campo Alegre, 823, 4150-180 Porto, Portugal
| | | | | | | | | |
Collapse
|
456
|
Castro-Guerrero NA, Rodríguez-Zavala JS, Marín-Hernández A, Rodríguez-Enríquez S, Moreno-Sánchez R. Enhanced alternative oxidase and antioxidant enzymes under Cd2+ stress in Euglena. J Bioenerg Biomembr 2007; 40:227-35. [PMID: 17899336 DOI: 10.1007/s10863-007-9098-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2007] [Accepted: 08/22/2007] [Indexed: 11/26/2022]
Abstract
To identify some of the mechanisms involved in the high resistance to Cd(2+) in the protist Euglena gracilis, we studied the effect of Cd(2+) exposure on its energy and oxidative stress metabolism as well as on essential heavy metals homeostasis. In E. gracilis heterotrophic cells, as in other organisms, CdCl(2) (50 microM) induced diminution in cell growth, severe oxidative stress accompanied by increased antioxidant enzyme activity and strong perturbation of the heavy metal homeostasis. However, Cd(2+) exposure did not substantially modify the cellular respiratory rate or ATP intracellular level, although the activities of respiratory complexes III and IV were strongly decreased. In contrast, an enhanced capacity of the alternative oxidase (AOX) in both intact cells and isolated mitochondria was determined under Cd(2+) stress; in fact, AOX activity accounted for 69-91% of total respiration. Western blotting also revealed an increased AOX content in mitochondria from Cd(2+)-exposed cells. Moreover, AOX was more resistant to Cd(2+) inhibition than cytochrome c oxidase in mitochondria from control and Cd(2+)-exposed cells. Therefore, an enhanced AOX seems to be a relevant component of the resistance mechanism developed by E. gracilis against Cd(2+)-stress, in addition to the usual increased antioxidant enzyme activity, that enabled cells to maintain a relatively unaltered the energy status.
Collapse
|
457
|
Moriwaki H, Osborne MR, Phillips DH. Effects of mixing metal ions on oxidative DNA damage mediated by a Fenton-type reduction. Toxicol In Vitro 2007; 22:36-44. [PMID: 17869055 DOI: 10.1016/j.tiv.2007.07.011] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2006] [Revised: 06/14/2007] [Accepted: 07/30/2007] [Indexed: 01/07/2023]
Abstract
The formation of 8-hydroxy-deoxyguanosine (8-OHdG) and strand breaks in DNA by Fenton-type reactions by mixtures of two of five metal ions, iron (II), cadmium (II), nickel (II), chromium (III) or copper (II), has been investigated and compared to their formation by each single metal ion. Salmon sperm DNA and pBluescript K+ plasmid were each incubated with hydrogen peroxide and metal ions. The formation of 8-OHdG declined in the Fe (II) or Cu (II) Fenton reaction upon addition of Cd (II) or Ni (II) ion. In contrast, the Fe (II) reaction upon addition of Cr (III) ion showed an additive influence on the formation of 8-OHdG. Furthermore, the Cu (II) plus Cr (III) reaction showed a synergistic effect. These influences relate to the interaction of metal ions with DNA, the potentials of the metal ions to generate activated oxygen and electron transfer between metal ions. The formation of DNA strand breaks was investigated in plasmid DNA by agarose gel electrophoresis and subsequent densitometry. The formation of DNA strand breaks in the Fe (II) or Cu (II) Fenton reaction decreased upon the addition of Ni (II) ion, as with the formation of 8-OHdG mediated by these metal ions. On the other hand, the formation of DNA strand breaks in the Fe (II) reaction decreased upon addition of Cr (III) ion, and the Cu (II) plus Cr (III) reaction did not show the synergistic influence on DNA strand breaks. These results suggest that interactions between two metal ions can influence the generation of 8-OHdG and the formation of DNA strand breaks and demonstrate that these lesions can arise by different mechanisms.
Collapse
Affiliation(s)
- Hiroshi Moriwaki
- Osaka City Institute of Public Health & Environmental Sciences, 8-34, Tojo-cho, Tennoji-ku, Osaka 543-0026, Japan.
| | | | | |
Collapse
|
458
|
Park JN, Sohn MJ, Oh DB, Kwon O, Rhee SK, Hur CG, Lee SY, Gellissen G, Kang HA. Identification of the cadmium-inducible Hansenula polymorpha SEO1 gene promoter by transcriptome analysis and its application to whole-cell heavy-metal detection systems. Appl Environ Microbiol 2007; 73:5990-6000. [PMID: 17660305 PMCID: PMC2075023 DOI: 10.1128/aem.00863-07] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genomewide gene expression profiling of the methylotrophic yeast Hansenula polymorpha exposed to cadmium (Cd) allowed us to identify novel genes responsive to Cd treatment. To select genes whose promoters can be useful for construction of a cellular Cd biosensor, we further analyzed a set of H. polymorpha genes that exhibited >6-fold induction upon treatment with 300 muM Cd for 2 h. The putative promoters, about 1,000-bp upstream fragments, of these genes were fused with the yeast-enhanced green fluorescence protein (GFP) gene. The resultant reporter cassettes were introduced into H. polymorpha to evaluate promoter strength and specificity. The promoter derived from the H. polymorpha SEO1 gene (HpSEO1) was shown to drive most strongly the expression of GFP upon Cd treatment among the tested promoters. The Cd-inducible activity was retained in the 500-bp deletion fragment of the HpSEO1 promoter but was abolished in the further truncated 250-bp fragment. The 500-bp HpSEO1 promoter directed specific expression of GFP upon exposure to Cd in a dose-dependent manner, with Cd detection ranging from 1 to 900 muM. Comparative analysis of the Saccharomyces cerevisiae SEO1 (ScSEO1) promoter revealed that the ScSEO1 promoter has a broader specificity for heavy metals and is responsive to arsenic and mercury in addition to Cd. Our data demonstrate the potential use of the HpSEO1 promoter as a bioelement in whole-cell biosensors to monitor heavy metal contamination, particularly Cd.
Collapse
Affiliation(s)
- Jeong-Nam Park
- Omics and Integration Research Center, Korea Research Institute of Bioscience and Biotechnology, 52 Eoeun-dong, Yuseong-gu, Daejeon 305-806, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
459
|
|
460
|
Han SG, Castranova V, Vallyathan V. Comparative cytotoxicity of cadmium and mercury in a human bronchial epithelial cell line (BEAS-2B) and its role in oxidative stress and induction of heat shock protein 70. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2007; 70:852-60. [PMID: 17454561 DOI: 10.1080/15287390701212695] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
A number of toxic heavy metals, such as cadmium (Cd) and mercury (Hg), are widely used in occupational settings, and exposure to these metals is associated with the development of pulmonary diseases. Cytotoxicity, apoptosis, and reactive oxygen species (ROS) generation were tested to compare the biological reactivity of these two heavy metals using a human bronchial epithelial cell line, BEAS-2B. Further, heat-shock protein 70 (Hsp70) expression was observed as a sensitive indicator of cellular stress. Exposure to metals (0-50 microM) for 72 h showed more significant cytotoxicity in Cd-treated than Hg-treated cells. Apoptosis was significantly increased in the cells exposed to 50 microM of Cd (3.5-fold) and Hg (3.6-fold). Cd and Hg produced an induction of Hsp70 protein as assayed by Western blotting and enzyme-linked immunosorbent assay (ELISA). Induction of Hsp70 protein by these metals was inhibited by addition of N-acetylcysteine. However, addition of catalase blocked the synthesis of Hsp70 only in Hg-treated cells. Hsp70B and Hsp70C mRNA expression was induced by both metals, while Hsp70A mRNA expression showed no change. Electron spin resonance (ESR) tests showed that hydroxyl radical generation was greater in the reaction of cells with Hg compared to Cd. Intracellular generation of ROS was detected in the cells exposed to both Cd and Hg. These results suggest that both cytotoxicity and apoptosis were significantly elevated with all metals tested; however, Cd was relatively more toxic. Hsp70 protein and mRNA were sensitive to exposure to these metals. Depletion of sulfhydryl groups of cellular proteins and generation of ROS may be involved in metal-induced lung cell damage.
Collapse
Affiliation(s)
- Sung Gu Han
- Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
| | | | | |
Collapse
|
461
|
Yang Z, Yang S, Qian SY, Hong JS, Kadiiska MB, Tennant RW, Waalkes MP, Liu J. Cadmium-induced toxicity in rat primary mid-brain neuroglia cultures: role of oxidative stress from microglia. Toxicol Sci 2007; 98:488-94. [PMID: 17483498 PMCID: PMC2507885 DOI: 10.1093/toxsci/kfm106] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
This study examined the role of oxidative stress in neurotoxic effects of cadmium chloride (Cd) in rat primary mid-brain neuron-glia cultures. Cd accumulated in neuron-glia cultures and produced cytotoxicity in a dose-dependent manner, with IC(50) of 2.5microM 24 h after exposure. (3)H-dopamine uptake into neuron-glia cultures was decreased 7 days after Cd exposure, with IC(50) of 0.9microM, indicative of the sensitivity of dopaminergic neurons to Cd toxicity. To investigate the role of microglia in Cd-induced toxicity to neurons, microglia-enriched cultures were prepared. Cd significantly increased intracellular reactive oxygen species production in microglia-enriched cultures, as evidenced by threefold increases in 2',7'-dichlorofluorescein signals. Using 5,5-dimethyl-1-pyrroline N-oxide as a spin-trapping agent, Cd increased electron spin resonance signals by 3.5-fold in microglia-enriched cultures. Cd-induced oxidative stress to microglia-enriched cultures was further evidenced by activation of redox-sensitive transcription factor nuclear factor kappa B and activator protein-1 (AP-1), and the increased expression of oxidative stress-related genes, such as metallothionein, heme oxygenase-1, glutathione S-transferase pi, and metal transport protein-1, as determined by gel-shift assays and real-time reverse transcription-PCR, respectively, in microglia-enriched cultures. In conclusion, Cd is toxic to neuron-glia cultures, and the oxidative stress from microglia may play important roles in Cd-induced damage to dopaminergic neurons.
Collapse
Affiliation(s)
- Zhengqin Yang
- Laboratory of Molecular Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709
- Pharmacy College of Zhengzhou University, Zhengzhou 450001, China
| | - Sufen Yang
- Laboratory of Pharmacology and Chemistry, National Institute of Environmental Health Sciences, Research Triangle Park, North Carloina 27709
| | - Steven Y. Qian
- Laboratory of Pharmacology and Chemistry, National Institute of Environmental Health Sciences, Research Triangle Park, North Carloina 27709
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, North Dakota 58105
| | - Jau-Shyong Hong
- Laboratory of Pharmacology and Chemistry, National Institute of Environmental Health Sciences, Research Triangle Park, North Carloina 27709
| | - Maria B. Kadiiska
- Laboratory of Pharmacology and Chemistry, National Institute of Environmental Health Sciences, Research Triangle Park, North Carloina 27709
| | - Raymond W. Tennant
- Laboratory of Molecular Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709
| | - Michael P. Waalkes
- Inorganic Carcinogenesis, Laboratory of Comparative Carcinogenesis, NCI at NIEHS, Research Triangle Park, North Carolina 27709
| | - Jie Liu
- Inorganic Carcinogenesis, Laboratory of Comparative Carcinogenesis, NCI at NIEHS, Research Triangle Park, North Carolina 27709
- To whom correspondence should be addressed at Inorganic Carcinogenesis Section, LCC, NCI at NIEHS, Research Triangle Park, NC 27709. E-mail:
| |
Collapse
|
462
|
Hansen BH, Rømma S, Garmo ØA, Pedersen SA, Olsvik PA, Andersen RA. Induction and activity of oxidative stress-related proteins during waterborne Cd/Zn-exposure in brown trout (Salmo trutta). CHEMOSPHERE 2007; 67:2241-9. [PMID: 17276485 DOI: 10.1016/j.chemosphere.2006.12.048] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2006] [Revised: 12/06/2006] [Accepted: 12/07/2006] [Indexed: 05/08/2023]
Abstract
We studied how transcript levels of metallothionein (MT), Cu/Zn-superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX) and glutathione reductase (GR) as well as functional protein levels of MT, SOD and CAT in brown trout tissues changed during a 15-days waterborne exposure to Cd and Zn. Trout from a river with low levels of metals (the Stribekken River) was transferred to a river with high levels of Cd and Zn (the Naustebekken River) and exposed up to 15 days. The aim of this transfer experiment was to investigate how exposure to Cd and Zn induced transcription and activities of central antioxidant enzymes and proteins in an environmental setting. Significant uptake of both Cd and Zn was observed in gills during the 15 days exposure, and Cd levels was found to correlate significantly with transcript levels of MT-A, SOD, GPx and GR. Gill concentrations of Zn did not correlate significantly with the transcript levels of the stress genes studied, but Zn might have triggered transcription of proteins which dealt with subsequent accumulation of Cd. SOD and CAT activities increased in gills after transfer, but MT protein levels decreased. In liver, SOD activity and MT protein levels increased, while in kidney only MT protein concentrations were elevated after transfer. There was a general lack of consistency between mRNA transcription and enzyme activities, indicating that these proteins and enzymes are not solely under transcriptional control.
Collapse
Affiliation(s)
- Bjørn Henrik Hansen
- Norwegian University of Science and Technology (NTNU), Department of Biology, Høgskoleringen 5, N-7491 Trondheim, Norway.
| | | | | | | | | | | |
Collapse
|
463
|
Kusakabe T, Nakajima K, Suzuki K, Nakazato K, Takada H, Satoh T, Oikawa M, Kobayashi K, Koyama H, Arakawa K, Nagamine T. The changes of heavy metal and metallothionein distribution in testis induced by cadmium exposure. Biometals 2007; 21:71-81. [PMID: 17443291 DOI: 10.1007/s10534-007-9094-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2006] [Accepted: 02/22/2007] [Indexed: 10/23/2022]
Abstract
Cadmium (Cd) is known to cause various disorders in the testis, and metallothionein (MT) is known as a protein, which has a detoxification function for heavy metals. However, the changes of Fe, Cu, and Zn distribution in the testis induced by Cd exposure have not been well examined. Moreover, only a few studies have been reported on the localization of MT after Cd exposure. In this study, we have investigated the changes of Fe, Cu, and Zn distribution in Cd-exposed testis by a newly developed in air micro-Particle Induced X-ray Emission (PIXE) method. Also, we examined the distribution of MT expression in testis. In the testis of Cd-treated rats with significant increases of lipid peroxidation, the sertoli cell tight junction was damaged by Cd exposure, resulting from disintegration of the blood testis barrier (BTB). Evaluation by in air micro-PIXE method revealed that Cd and Fe distribution were increased in the interstitial tissues and seminiferous tubules. The histological findings indicated that the testicular tissue damage was advanced, which may have been caused by Fe flowing into seminiferous tubules followed by disintegration of the BTB. As a result, Fe was considered to enhance the tissue damage caused by Cd exposure. MT was detected in spermatogonia, spermatocytes, and Sertoli's cells in the testis of Cd-treated rats, but was not detected in interstitial tissues. These results suggested that MT was induced by Cd in spermatogonia, spermatocytes, and Sertoli's cells, and was involved in the resistance to tissue damage induced by Cd.
Collapse
Affiliation(s)
- Takahiko Kusakabe
- School of Health Sciences, Faculty of Medicine, Gunma University, 3-39-15 Shouwa-machi, Maebashi, Gunma 371-8514, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
464
|
Pierron F, Baudrimont M, Gonzalez P, Bourdineaud JP, Elie P, Massabuau JC. Common pattern of gene expression in response to hypoxia or cadmium in the gills of the European glass eel (Anguilla anguilla). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2007; 41:3005-11. [PMID: 17533871 DOI: 10.1021/es062415b] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
European eel (Anguilla anguilla) populations are in decline. Glass eel recruitment has fallen 10-fold since the early 1980s. Estuaries play a fundamental role in the life history of eels because glass eels must pass through them to reach freshwater ecosystems. Unfortunately, because of their geographical position at the upstream basin slopes, estuaries accumulate metals like cadmium and are important sites of hypoxia events. In this context, we studied the effect of the oxygen level on the ventilation of the glass eel. In parallel, glass eels were submitted to different dissolved cadmium concentrations (0, 2, and 10 microg L(-1)) under two oxygen levels (normoxia PO2 = 21 kPa and Hypoxia PO2 = 6 kPa). The expression level of various genes involved in the mitochondrial respiratory chain, in the cellular response to metal and oxidative stresses, was investigated. Our results showed that hypoxia enhances (1) ventilation of the postlarval stage and (2) Cd accumulation in gills only at the lowest metal water concentration tested (2 microg Cd L(-1)). At the gene level, Cd exposure mimics the effect of hypoxia since we observed a decrease in expression of genes involved in the respiratory chain and in the defense against oxidative stress.
Collapse
Affiliation(s)
- Fabien Pierron
- UMR CNRS 5805 EPOC, team GEMA, Université Bordeaux 1 and CNRS, Place du Dr Peyneau, 33120, Arcachon, France
| | | | | | | | | | | |
Collapse
|
465
|
Cherkasov AA, Overton RA, Sokolov EP, Sokolova IM. Temperature-dependent effects of cadmium and purine nucleotides on mitochondrial aconitase from a marine ectotherm, Crassostrea virginica: a role of temperature in oxidative stress and allosteric enzyme regulation. ACTA ACUST UNITED AC 2007; 210:46-55. [PMID: 17170147 DOI: 10.1242/jeb.02589] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Temperature and heavy metals such as cadmium (Cd) are important environmental stressors that can strongly affect mitochondrial function of marine poikilotherms. In this study, we investigated the combined effects of temperature (20 degrees C and 30 degrees C) and Cd stress on production of reactive oxygen species (ROS) and oxidative stress in a marine poikilotherm Crassostrea virginica (the eastern oyster) using mitochondrial aconitase as a sensitive biomarker of oxidative damage. We also assessed potential involvement of mitochondrial uncoupling proteins (UCPs) in antioxidant protection in oyster mitochondria using purine nucleotides (GDP, ATP and ADP) as specific inhibitors, and free fatty acids as stimulators, of UCPs. Our results show that exposure to Cd results in elevated ROS production and oxidative damage as indicated by aconitase inactivation which is particularly pronounced at elevated temperature. Unexpectedly, oyster mitochondrial aconitase was inhibited by physiologically relevant levels of ATP (IC(50)=1.93 and 3.04 mmol l(-1) at 20 degrees C and 30 degrees C, respectively), suggesting that allosteric regulation of aconitase by this nucleotide may be involved in regulation of the tricarboxylic acid flux in oysters. Aconitase was less sensitive to ATP inhibition at 30 degrees C than at 20 degrees C, consistent with the elevated metabolic flux at higher temperatures. ADP and GDP also inhibited mitochondrial aconitase but at the levels well above the physiological concentrations of these nucleotides (6-11 mmol l(-1)). Our study shows expression of at least three UCP isoforms in C. virginica gill tissues but provides no indication that UCPs protect mitochondrial aconitase from oxidative inactivation in oysters. Overall, the results of this study indicate that temperature stress exaggerates toxicity of Cd leading to elevated oxidative stress in mitochondria, which may have important implications for survival of poikilotherms in polluted environments during seasonal warming and/or global climate change, and suggest a novel temperature-dependent mechanism of allosteric regulation of TCA flux in oyster mitochondria.
Collapse
Affiliation(s)
- Anton A Cherkasov
- Biology Department, University of North Carolina at Charlotte, 9201 University City Boulevard, Charlotte, NC 28223, USA
| | | | | | | |
Collapse
|
466
|
Bobrowski M, Liwo A, Hirao K. Theoretical study of the energetics of the reactions of triplet dioxygen with hydroquinone, semiquinone, and their protonated forms: relation to the mechanism of superoxide generation in the respiratory chain. J Phys Chem B 2007; 111:3543-9. [PMID: 17388501 DOI: 10.1021/jp065603x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
One-electron reduction of the dioxygen molecule by the reduced form of mitochondrial ubiquinones (Q) of the NADH dehydrogenase (complex I) and mitochondrial cytochrome bc1 (complex III) is believed to be the main source of the superoxide anion radical O2*- and the hydroperoxide radical OOH*. In this work, we modeled the energetics of four possible reactions of the triplet ((3)Sigma(g)) dioxygen-molecule reduction by fully reduced and protonated ubiquinone (QH2; reaction 1), its deprotonated form (QH-; reaction 2), the semiquinone radical (QH*; reaction 3), and the semiquinone anion radical (Q*-; reaction 4), by means of ab initio calculations with the 6-31G(d) and 6-31+G(d) basis set in the restricted open-shell Hartree-Fock (ROHF), unrestricted Hartree-Fock (UHF), and complete active space self-consistent field (CASSCF) with dynamic correlation [at the second-order Møller-Plesset (MP2) or multiple reference Møller-Plesset (MRMP), respectively] schemes and the basis set superposition error (BSSE) correction included, as well as semiempirical AM1 and PM3 calculations in the UHF and ROHF schemes. 2-Butene-1,4-dione and p-benzoquinone were selected as model compounds. For the reduced forms of both compounds, reaction 1 turned out to be energetically unfavorable at all levels of theory, this agreeing with the experimentally observed diminished reductive properties of hydroquinone derivatives at low pH. For 2-butene-1,4-dione treated at the most advanced MRMP/CASSCF/6-31+G(d) level, the energies of reactions 1-4 are 4.7, -34.3, -15.0, and -4.1 kcal/mol, respectively. This finding suggests that reactions 2 and 3 are the most likely mechanisms of electron transfer to molecular oxygen in aprotic environments and that proton transfer is involved in this process. Nearly the same energies of reactions 2 and 3 were calculated at the MRMP/CASSCF/6-31+G(d) level for reduced forms of p-benzoquinone. Inclusion of diffuse functions in the basis set and dynamic correlation at the CASSCF level appears essential. Because deprotonated ubiquinol is unlikely to exist in physiological environments, reaction 3 appears to be the most likely mechanism of one-electron reduction of oxygen; however, if oxygen can penetrate cytochrome bc1 as far as the Q(o) center where ubiquinol can be deprotonated, reaction 2 can also come into play. The energies of reactions 2 and 3 calculated at the MRMP/CASSCF/6-31+G(d) level are most closely reproduced in the ab initio and semiempirical UHF PM3 calculations. Additional semiempirical calculations on more realistic models of ubiquinone, 2,3-dimethoxy-6-methyl-p-benzoquinone and 2,3-dimethoxy-5-isoprenyl-6-methyl-p-benzoquinone, gave qualitatively the same relations between the energies of reactions 2 and 3 as those carried out for p-benzoquinone species, thereby suggesting that this method could be used in studying electron-transfer reactions from reduced quinone derivatives to molecular oxygen in more complex systems, such as a model of the Q(o) site of cytochrome bc1, where applying ab initio methods is unfeasible.
Collapse
Affiliation(s)
- Maciej Bobrowski
- Faculty of Technical Physics and Applied Mathematics, Gdańsk University of Technology, Narutowicza 11/12, 80-952 Gdańsk, Poland
| | | | | |
Collapse
|
467
|
Liberge M, Barthélémy RM. Localization of metallothionein, heat shock protein (Hsp70), and superoxide dismutase expression in Hemidiaptomus roubaui (Copepoda, Crustacea) exposed to cadmium and heat stress. CAN J ZOOL 2007. [DOI: 10.1139/z07-009] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Immunohistochemical methods were applied in the present study to investigate the expression of stress proteins such as metallothioneins (MT), which are metal-binding proteins, and heat shock proteins (Hsp70), as well as an antioxidant enzyme (superoxide dismutase, SOD), in the freshwater crustacean copepod Hemidiaptomus roubaui (Richard, 1888) exposed to cadmium or heat stress. The results show a tissue-specific distribution of MT-like protein after cadmium exposure in the brain and in the nerve cord. Cadmium stress did not provoke inducible Hsp70 or SOD expression. Unlike cadmium, heat stress induced the expression of Hsp70 and SOD in the shell glands, a structure involved in the reproductive function, and more particularly in the formation of the diapause egg envelope. MT expression is not induced in animals exposed to heat stress.
Collapse
Affiliation(s)
- Martine Liberge
- Equipe Biodiversité et Environnement – Case 18, Université de Provence, 3 Place Victor Hugo, 13331 Marseille CEDEX 3, France
| | - Roxane-M. Barthélémy
- Equipe Biodiversité et Environnement – Case 18, Université de Provence, 3 Place Victor Hugo, 13331 Marseille CEDEX 3, France
| |
Collapse
|
468
|
Yaman M, Kaya G, Yekeler H. Distribution of trace metal concentrations in paired cancerous and non-cancerous human stomach tissues. World J Gastroenterol 2007; 13:612-8. [PMID: 17278230 PMCID: PMC4065986 DOI: 10.3748/wjg.v13.i4.612] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2006] [Revised: 09/23/2006] [Accepted: 10/23/2006] [Indexed: 02/06/2023] Open
Abstract
AIM To assess whether trace metal concentrations (which influence metabolism as both essential and non-essential elements) are increased or decreased in cancerous tissues and to understand the precise role of these metals in carcinogenesis. METHODS Concentrations of trace metals including Cd, Ni, Cu, Zn, Fe, Mg and Ca in both cancerous and non-cancerous stomach tissue samples were determined by atomic absorption spectrometry (AAS). Tissue samples were digested using microwave energy. Slotted tube atom trap was used to improve the sensitivity of copper and cadmium in flame AAS determinations. RESULTS From the obtained data in this study, the concentrations of nickel, copper and iron in the cancerous human stomach were found to be significantly higher than those in the non-cancerous tissues, by using t-test for the paired samples. Furthermore, the average calcium concentrations in the cancerous stomach tissue samples were found to be significantly lower than those in the non-cancerous stomach tissue samples by using t-test. Exceedingly high Zn concentrations (207-826 mg/kg) were found in two paired stomach tissue samples from both cancerous and non-cancerous parts. CONCLUSION In contrast to the literature data for Cu and Fe, the concentrations of copper, iron and nickel in cancerous tissue samples are higher than those in the non-cancerous samples. Furthermore, the Ca levels are lower in cancerous tissue samples than in non-cancerous tissue samples.
Collapse
Affiliation(s)
- Mehmet Yaman
- Chemistry Department, Firat University, Sciences and Arts Faculty, Elazig 23119, Turkey.
| | | | | |
Collapse
|
469
|
Zhang ZC, Qiu BS. Reactive oxygen species metabolism during the cadmium hyperaccumulation of a new hyperaccumulator Sedum alfredii (Crassulaceae). J Environ Sci (China) 2007; 19:1311-7. [PMID: 18232224 DOI: 10.1016/s1001-0742(07)60214-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Sedum alfredii Hance, a newly discovered hyperaccumulator, could serve as a good material for phytoremediation of Cd polluted sites. Malondialdehyde (MDA), reactive oxygen species (ROS) and antioxidases (catalase (CAT); superoxide dismutase (SOD); peroxidase (POD)) in the leaf were determined when S. alfredii was treated for 15 d with various CdCl2 concentrations ranging from 0 to 800 micromol/L. The results showed that the production rate of 2',7'-dichlorofluorescein (DCF), which is an indicator of ROS level, reached up to the maximum at 400 micromol/L CdCl2 and then declined with the increase of CdCl2 concentration, while MDA accumulation tended to increase. CAT activity was significantly inhibited at all tested CdCl2 concentrations and SOD activity was sharply suppressed at 800 micromol/L CdCl2. However, the enhancement of POD activity was observed when CdCl2 concentration was higher than 400 micromol/L. In addition, its activity increased when treated with 600 micromol/L CdCl2 for more than 5 d. When sodium benzoate, a free radical scavenger, was added, S. alfredii was a little more sensitive to Cd toxicity than that exposed to Cd alone, and the Cd accumulation tended to decline with the increase of sodium benzoate concentration. It came to the conclusions that POD played an important role during Cd hyperaccumulation, and the accumulation of ROS induced by Cd treatment might be involved in Cd hyperaccumulation.
Collapse
Affiliation(s)
- Zhong-chun Zhang
- College of Life Sciences, Huazhong Normal University, Wuhan 430079, China.
| | | |
Collapse
|
470
|
Pari L, Murugavel P, Sitasawad SL, Kumar KS. Cytoprotective and antioxidant role of diallyl tetrasulfide on cadmium induced renal injury: An in vivo and in vitro study. Life Sci 2007; 80:650-8. [PMID: 17125799 DOI: 10.1016/j.lfs.2006.10.013] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2006] [Revised: 10/06/2006] [Accepted: 10/18/2006] [Indexed: 11/29/2022]
Abstract
Cadmium (Cd) is an environmental and industrial pollutant that affects various organs in humans and animals. A body of evidence has accumulated implicating the free radical generation with subsequent oxidative stress in the biochemical and molecular mechanisms of Cd toxicity. Since kidney is the critical target of Cd toxicity, we carried out this study to investigate the effects of diallyl tetrasulfide (DTS), an organosulfur compound derived from garlic on Cd induced toxicity in the kidney of rats and also in the kidney cell line (vero cells). In experimental rats, subcutaneous administration of Cd (3 mg/kg bw/day) for 3 weeks induced renal damage, which was evident from significantly increased levels of serum urea and creatinine with significant decrease in creatinine clearance. A markedly increased levels of lipid peroxidation markers (thiobarbituric acid reactive substances and lipid hydroperoxides) and protein carbonyl contents with significant decrease in nonenzymic antioxidants (total sulphydryl groups, reduced glutathione, vitamin C and vitamin E) and enzymic antioxidants (superoxide dismutase, catalase, glutathione peroxidase and glutathione-S-transferase) as well as glutathione metabolizing enzymes (glutathione reductase, and glucose-6-phosphate dehydrogenase) were also observed in Cd intoxicated rats. Coadministration of DTS (40 mg/kg bw/day) and Cd resulted in the reversal of the kidney function accompanied by a significant decrease in lipid peroxidation and increase in the antioxidant defense system. In vitro studies with vero cells showed that incubation of DTS (5-50 microg/ml) with Cd (10 microM) significantly reduced the cell death induced by Cd. DTS at 40 microg/ml effectively blocked the cell death and lipid peroxidation induced by Cd (10 microM) indicating its cytoprotective property. Further, the flow cytometric assessment on the level of intracellular reactive oxygen species using a fluorescent probe 2', 7'-dichlorofluorescein diacetate (DCF-DA) confirmed the Cd induced intracellular oxidative stress in vero cells, which was significantly suppressed by DTS (40 microg/ml). The histopathological studies in the kidney of rats also showed that DTS (40 mg/kg bw/day) markedly reduced the toxicity of Cd and preserved the architecture of renal tissue. The present study suggests that the cytoprotective potential of DTS in Cd toxicity might be due to its antioxidant and metal chelating properties, which could be useful for achieving optimum effects in Cd induced renal damage.
Collapse
Affiliation(s)
- L Pari
- Department of Biochemistry, Faculty of Science, Annamalai University, Annamalainagar -- 608002, Tamilnadu, India.
| | | | | | | |
Collapse
|
471
|
Alimonti A, Bocca B, Pino A, Ruggieri F, Forte G, Sancesario G. Elemental profile of cerebrospinal fluid in patients with Parkinson's disease. J Trace Elem Med Biol 2007; 21:234-41. [PMID: 17980814 DOI: 10.1016/j.jtemb.2007.05.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2006] [Accepted: 05/05/2007] [Indexed: 11/27/2022]
Abstract
To ascertain the potential role of chemical elements (namely, Al, Ba, Be, Bi, Ca, Cd, Co, Cr, Cu, Fe, Hg, Li, Mg, Mn, Mo, Ni, Pb, Sb, Si, Sn, Sr, Tl, V, W, Zn and Zr) as markers in the Parkinson's disease (PD), the elemental concentration of cerebrospinal fluid (CSF) of 42 patients with PD and 20 age-matched controls was assessed. Analyses were performed by Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES) and Sector Field Inductively Coupled Plasma Mass Spectrometry (SF-ICP-MS). Significantly lower levels of Co, Cr, Fe, Pb, Si and Sn were observed in the CSF of PD patients compared with those in controls, with a percentage of depletion up to 50% for Cr and Pb. No such variations were detected for all the other elements. Results suggested that Pb, Cr, Fe were the most suitable elements to distinguish between normality and PD. Different cut-off concentrations for these elements could be tentatively proposed as a predictive tool for the PD condition.
Collapse
Affiliation(s)
- Alessandro Alimonti
- Department of Environment and Primary Prevention, Istituto Superiore di Sanità, Viale Regina Elena 299, Rome, Italy.
| | | | | | | | | | | |
Collapse
|
472
|
Rubino FM, Pitton M, Brambilla G, Colombi A. A study of the glutathione metaboloma peptides by energy-resolved mass spectrometry as a tool to investigate into the interference of toxic heavy metals with their metabolic processes. JOURNAL OF MASS SPECTROMETRY : JMS 2006; 41:1578-93. [PMID: 17136764 DOI: 10.1002/jms.1143] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
To better understand the fragmentation processes of the metal-biothiol conjugates and their possible significance in biological terms, an energy-resolved mass spectrometric study of the glutathione conjugates of heavy metals, of several thiols and disulfides of the glutathione metaboloma has been carried out. The main fragmentation process of gamma-glutamyl compounds, whether in the thiol, disulfide, thioether or metal-bis-thiolate form, is the loss of the gamma-glutamyl residue, a process which ERMS data showed to be hardly influenced by the sulfur substitution. However, loss of the gamma-glutamyl residue from the mono-S-glutathionyl-mercury (II) cation is a much more energetic process, possibly pointing at a strong coordination of the carboxylic group to the metal. Moreover, loss of neutral mercury from ions containing the gamma-glutamyl residue to yield a sulfenium cation was a much more energetic process than those not containing them, suggesting that the redox potential of the thiol/disulfide system plays a role in the formal reduction of the mercury dication in the gas phase. Occurrence of complementary sulfenium and protonated thiol fragments in the spectra of protonated disulfides of the glutathione metaboloma mirrors the thiol/disulfide redox process of biological importance. The intensity ratio of the fragments is proportional to the reduction potential in solution of the corresponding redox pairs. This finding has allowed the calculation of the previously unreported reduction potentials for the disulfide/thiol pair of cysteinylglycine, thereby confirming the decomposition scheme of bis- and mono-S-glutathionyl-mercury (II) ions. Finally, on the sole basis of the mass spectrometric fragmentation of the glutathione-mercury conjugates, and supported by independent literature evidence, an unprecedented mechanism for mercury ion-induced cellular oxidative stress could be proposed, based on the depletion of the glutathione pool by a catalytic mechanism acting on the metal (II)-thiol conjugates and involving as a necessary step the enzymatic removal of the glutamic acid residue to yield a mercury (II)-cysteinyl-glycine conjugate capable of regenerating neutral mercury through the oxidation of glutathione thiols to the corresponding disulfides.
Collapse
Affiliation(s)
- Federico Maria Rubino
- Laboratory for Analytical Toxicology and Metabolomics, Departments of Medicine, Surgery and Odontology, Università degli Studi di Milano at Ospedale San Paolo, v. A. di Rudiní 8 I-20142 Milano, Italy.
| | | | | | | |
Collapse
|
473
|
Belyaeva EA, Dymkowska D, Wieckowski MR, Wojtczak L. Reactive oxygen species produced by the mitochondrial respiratory chain are involved in Cd2+-induced injury of rat ascites hepatoma AS-30D cells. BIOCHIMICA ET BIOPHYSICA ACTA 2006; 1757:1568-1574. [PMID: 17069748 DOI: 10.1016/j.bbabio.2006.09.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2006] [Revised: 08/18/2006] [Accepted: 09/15/2006] [Indexed: 02/05/2023]
Abstract
Using AS-30D rat ascites hepatoma cells, we studied the modulating action of various antioxidants, inhibitors of mitochondrial permeability transition pore and inhibitors of the respiratory chain on Cd(2+)-produced cytotoxicity. It was found that Cd(2+) induced both necrosis and apoptosis in a time- and dose-dependent way. This cell injury involved dissipation of the mitochondrial transmembrane potential, respiratory dysfunction and initial increase of the generation of reactive oxygen species (ROS), followed by its decrease after prolonged incubation. Inhibitors of the mitochondrial permeability transition pore, cyclosporin A and bongkrekic acid, and inhibitors of respiratory complex III, stigmatellin and antimycin A, but not inhibitor of complex I, rotenone, partly prevented necrosis evoked by exposure of the cells to Cd(2+). Apoptosis of the cells was partly prevented by free radical scavengers and by preincubation with N-acetylcysteine. Stigmatellin, antimycin A and cyclosporin A also abolished Cd(2+)-induced increase in ROS generation. It is concluded that Cd(2+) toxicity in AS-30D rat ascites hepatoma, manifested by cell necrosis and/or apoptosis, involves ROS generation, most likely at the level of respiratory complex III, and is related to opening of the mitochondrial permeability transition pore.
Collapse
Affiliation(s)
- Elena A Belyaeva
- Nencki Institute of Experimental Biology, Pasteura 3, 02-093 Warsaw, Poland.
| | | | | | | |
Collapse
|
474
|
Pham TND, Marion M, Denizeau F, Jumarie C. Cadmium-induced apoptosis in rat hepatocytes does not necessarily involve caspase-dependent pathways. Toxicol In Vitro 2006; 20:1331-42. [PMID: 16809017 DOI: 10.1016/j.tiv.2006.05.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2006] [Revised: 04/19/2006] [Accepted: 05/12/2006] [Indexed: 01/25/2023]
Abstract
Cadmium (Cd) is a well-known hepatotoxic environmental pollutant. Depending on the exposure conditions, Cd may cause necrosis or apoptosis. Oxidative stress is believed to participate in Cd toxicity but the molecular signaling responsible for Cd-induced apoptosis in non-malignant liver cells still needs to be clarified. Therefore we have studied apoptosis in primary cultures of rat hepatocytes incubated with low levels of Cd for short exposure times. Studies of nuclear morphology, chromatin condensation, and oligonucleosomal DNA fragmentation demonstrate that 1-5 microM Cd induces apoptosis as early as 6-12 h with minor effects on MTT activity. A concomitant time- and concentration-dependent increase in caspase-9 and -3 activities was observed, whereas Cd did not affect caspase-8 activity as much, suggesting a minor role of the death-receptor pathway. Significant release of cytochrome c into the cytosol demonstrated the involvement of a mitochondrial-dependent apoptotic pathway. However, cell pre-treatment with caspase inhibitors (Z-VAD-fmk or Ac-DEVD-CHO) did not prevent apoptosis. Increases in the cytosolic levels of the mitochondrial apoptosis-inducing factor (AIF) were also observed: kinetics of cytochrome c and AIF release were similar. These results show that Cd-induced apoptosis in rat hepatocytes is time- and concentration-dependent. The early apoptotic events involved mitochondrial-dependent pathways but not necessarily caspase-dependent signaling.
Collapse
Affiliation(s)
- T N D Pham
- Département de Chimie, Centre TOXEN, Université du Québec à Montréal, C.P. 8888, Succ. Centre-Ville, Montréal, Québec, Canada H3C 3P8
| | | | | | | |
Collapse
|
475
|
Cox LAT. Quantifying potential health impacts of cadmium in cigarettes on smoker risk of lung cancer: a portfolio-of-mechanisms approach. RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2006; 26:1581-99. [PMID: 17184399 DOI: 10.1111/j.1539-6924.2006.00848.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
This article introduces an approach to estimating the uncertain potential effects on lung cancer risk of removing a particular constituent, cadmium (Cd), from cigarette smoke, given the useful but incomplete scientific information available about its modes of action. The approach considers normal cell proliferation; DNA repair inhibition in normal cells affected by initiating events; proliferation, promotion, and progression of initiated cells; and death or sparing of initiated and malignant cells as they are further transformed to become fully tumorigenic. Rather than estimating unmeasured model parameters by curve fitting to epidemiological or animal experimental tumor data, we attempt rough estimates of parameters based on their biological interpretations and comparison to corresponding genetic polymorphism data. The resulting parameter estimates are admittedly uncertain and approximate, but they suggest a portfolio approach to estimating impacts of removing Cd that gives usefully robust conclusions. This approach views Cd as creating a portfolio of uncertain health impacts that can be expressed as biologically independent relative risk factors having clear mechanistic interpretations. Because Cd can act through many distinct biological mechanisms, it appears likely (subjective probability greater than 40%) that removing Cd from cigarette smoke would reduce smoker risks of lung cancer by at least 10%, although it is possible (consistent with what is known) that the true effect could be much larger or smaller. Conservative estimates and assumptions made in this calculation suggest that the true impact could be greater for some smokers. This conclusion appears to be robust to many scientific uncertainties about Cd and smoking effects.
Collapse
|
476
|
Abstract
Environmental factors are considered key determinants of cardiovascular disease. Although lifestyle choices such as smoking, diet, and exercise are viewed as major environmental influences, the contribution of pollutants and environmental chemicals is less clear. Accumulating evidence suggests that exposure to pollutants and chemicals could elevate the risk of cardiovascular disease. Many epidemiological studies report that exposure to fine particles present in ambient air is associated with an increase in cardiovascular mortality. Statistically significant relationships between particulate air pollution and ischemic heart disease, arrhythmias, and heart failure have been reported. Animal studies show that exposure to ambient air particles increases peripheral thrombosis and atherosclerotic lesion formation. Exposures to arsenic, lead, cadmium, pollutant gases, solvents, and pesticides have also been linked to increased incidence of cardiovascular disease. Mechanistically, these effects have been attributed to changes in the synthesis or reactivity of nitric oxide that may be caused by environmental oxidants or increased endogenous production of reactive oxygen species. Additional studies are urgently needed to: identify the contribution of individual pollutants to specific aspects of cardiovascular disease; establish causality; elucidate the underlying physiological and molecular mechanisms; estimate the relative susceptibility of diseased and healthy individuals and that of specific population groups; and determine whether pollutant exposure are risk correlates, that is, whether they influence major risk factors, such as hypertension, cholesterol, or diabetes, or whether they contribute to the absolute risk of heart disease. Collectively, these investigations could contribute to the emergent field of environmental cardiology.
Collapse
Affiliation(s)
- Aruni Bhatnagar
- Institute of Molecular Cardiology, Division of Cardiology, Department of Medicine, University of Louisville, Louisville, KY 40202, USA.
| |
Collapse
|
477
|
Bertin G, Averbeck D. Cadmium: cellular effects, modifications of biomolecules, modulation of DNA repair and genotoxic consequences (a review). Biochimie 2006; 88:1549-59. [PMID: 17070979 DOI: 10.1016/j.biochi.2006.10.001] [Citation(s) in RCA: 628] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2006] [Accepted: 10/02/2006] [Indexed: 02/02/2023]
Abstract
Cadmium is an important toxic environmental heavy metal. Occupational and environmental pollution with cadmium results mainly from mining, metallurgy industry and manufactures of nickel-cadmium batteries, pigments and plastic stabilizers. Important sources of human intoxication are cigarette smoke as well as food, water and air contaminations. In humans, cadmium exposures have been associated with cancers of the prostate, lungs and testes. Acute exposures are responsible for damage to these organs. Chronic intoxication is associated with obstructive airway disease, emphysema, irreversible renal failure, bone disorders and immuno-suppression. At the cellular level, cadmium affects proliferation, differentiation and causes apoptosis. It has been classified as a carcinogen by the International Agency for Research on Cancer (IARC). However, it is weakly genotoxic. Indirect effects of cadmium provoke generation of reactive oxygen species (ROS) and DNA damage. Cadmium modulates also gene expression and signal transduction, reduces activities of proteins involved in antioxidant defenses. Several studies have shown that it interferes with DNA repair. The present review focuses on the effects of cadmium in mammalian cells with special emphasis on the induction of damage to DNA, membranes and proteins, the inhibition of different types of DNA repair and the induction of apoptosis. Current data and hypotheses on the mechanisms involved in cadmium genotoxicity and carcinogenesis are outlined.
Collapse
Affiliation(s)
- G Bertin
- Institut Curie-UMR 2027 CNRS Génotoxicologie et cycle cellulaire, LCR V28 du CEA, centre universitaire, 91405 Orsay cedex, France
| | | |
Collapse
|
478
|
Garnier L, Simon-Plas F, Thuleau P, Agnel JP, Blein JP, Ranjeva R, Montillet JL. Cadmium affects tobacco cells by a series of three waves of reactive oxygen species that contribute to cytotoxicity. PLANT, CELL & ENVIRONMENT 2006; 29:1956-69. [PMID: 16930321 DOI: 10.1111/j.1365-3040.2006.01571.x] [Citation(s) in RCA: 163] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Cadmium is suspected to exert its toxic action on cells through oxidative damage. However, the transition metal is unable to directly generate reactive oxygen species (ROS) via redox reactions with molecular oxygen in a biological environment. Here, we show that bright yellow-2 (BY-2) tobacco cells exposed to millimolar concentrations of CdCl(2) developed cell death within 2-3 h. The death process was preceded by two successive waves of ROS differing in their nature and subcellular localization. Firstly, these consisted in the transient NADPH oxidase-dependent accumulation of H(2)O(2) followed by the accumulation of O(2) (-*) in mitochondria. A third wave of ROS consisting in fatty acid hydroperoxide accumulation was concomitant with cell death. Accumulation of H(2)O(2) was preceded by an increase in cytosolic free calcium concentration originating from internal pools that was essential to activate the NADPH oxidase. The cell line gp3, impaired in NADPH oxidase activity, and that was unable to accumulate H(2)O(2) in response to Cd(2+), was nevertheless poisoned by the metal. Therefore, this first wave of ROS was not sufficient to trigger all the cadmium-dependent deleterious effects. However, we show that the accumulation of O(2) (-*) of mitochondrial origin and membrane peroxidation are key players in Cd(2+)-induced cell death.
Collapse
Affiliation(s)
- Lionel Garnier
- Commissariat à l'Energie Atomique, Centre de Cadarache, DSV-DEVM, Laboratoire de Radiobiologie Végétale, 13108 Saint-Paul lez Durance Cedex, France
| | | | | | | | | | | | | |
Collapse
|
479
|
Rubino FM, Pitton M, Brambilla G, Colombi A. Electrospray ionization and triple quadrupole tandem mass spectrometry study of some biologically relevant homo- and heterodimeric cadmium thiolate conjugates. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2006; 17:1443-1455. [PMID: 16872835 DOI: 10.1016/j.jasms.2006.06.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2005] [Revised: 06/21/2006] [Accepted: 06/21/2006] [Indexed: 05/11/2023]
Abstract
A series of 19 compounds of general formula R1S-Cd-SR2, R1, and R2, being some biologically relevant thiol amino acids and peptides, were prepared by direct reaction of cadmium(II) ions and thiols in water at millimolar concentration. The obtained products were characterized by electrospray ionization and triple quadrupole tandem mass spectrometry. The source spectra of stoichiometric 1:2 Cd-thiol systems containing either an individual thiol or equimolar mixtures of two different thiols featured several Cd-containing signals, although at much lesser intensity than in the previously reported experiments with mercury(II) (J. Am. Soc. Mass Spectrom. 2004, 15, 288-300). Also, the relative intensity of the homo- and heterodimeric thiolates were significantly different from the theoretically expected 1:2:1 ratio, thus pointing at some degree of discrimination between the different thiols. In particular, homo-cysteine showed much less reactivity than cysteine, and penicillamine and cysteine methyl ester much less than the free amino acid. The fragment spectra show structure-specific ions for the different ligands bound to the metal ion and allow a stand-alone determination of the connectivity also of isomeric pairs. The fragmentation pathways are similar to those observed for the corresponding mercury(II) analogues, with the addition of further intense and specific fragments, one formally carrying a Cd-bound OH ligand and one connected as a five-membered oxazolone carrying a cadmium-bis-thiolate side chain, both formed with a high intensity. Energy-resolved fragmentation data show that metal-free ions can be generated from cysteine but not from glutathione conjugates and point to the possibility of unveiling differences in the biochemical behavior of the conjugates of different heavy metals through the detailed study of their mass spectrometric fragmentation.
Collapse
Affiliation(s)
- Federico Maria Rubino
- Laboratory for Analytical Toxicology and Metabolomics, Department of Occupational Medicine, Università degli Studi di Milano at Ospedale San Paolo, v. A di Rudinì 8, I-20142, Milano, Italy.
| | - Marco Pitton
- Laboratory for Analytical Toxicology and Metabolomics, Department of Occupational Medicine, Università degli Studi di Milano at Ospedale San Paolo, v. A di Rudinì 8, I-20142, Milano, Italy
| | - Gabri Brambilla
- Laboratory for Analytical Toxicology and Metabolomics, Department of Occupational Medicine, Università degli Studi di Milano at Ospedale San Paolo, v. A di Rudinì 8, I-20142, Milano, Italy
| | - Antonio Colombi
- Laboratory for Analytical Toxicology and Metabolomics, Department of Occupational Medicine, Università degli Studi di Milano at Ospedale San Paolo, v. A di Rudinì 8, I-20142, Milano, Italy
| |
Collapse
|
480
|
Sabolić I. Common mechanisms in nephropathy induced by toxic metals. Nephron Clin Pract 2006; 104:p107-14. [PMID: 16940748 DOI: 10.1159/000095539] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Various metals of unknown function in the body (Cd, Cr, Hg, Pb, U), trace elements in excessive concentrations (Co, Cu, Fe, Zn), or metals used in cancer therapy (Pt, V), accumulate in the mammalian kidney, largely in the proximal tubule (PT) cells, and cause functional and structural damage that results in reabsorptive and secretory defects. The intracellular mechanisms of their toxicity in the PT cells are not well known. Recent studies have indicated an oxidative stress with associated lipid peroxidation, apoptosis, and necrosis as common phenomena in the course of nephrotoxicity of these metals. However, a number of other phenomena, such as the selective inhibition and/or loss of various membrane transporters, enhancement of ion conductances, increased cytoplasmic concentration of calcium, deranged cytoskeleton and cell polarity, impaired endocytosis, swelling and fragmentation of mitochondria, increased expression of metallothionein, heat-shock and multidrug resistance proteins, loss of cell membrane integrity, as well as the damage of mitochondrial and genomic DNAs have been fragmentarily demonstrated for the action of some toxic metals, but their importance for the course of nephrotoxicity and the sequence of events in relation to oxidative stress, apoptosis, and necrosis have not been clearly established. Recent studies of metal toxicity in various tissues and cells of non-renal and renal origin enable us to estimate 'causes and consequences' of various phenomena in the metal-induced nephrotoxicity, and to assemble them in a possible common, time-related sequence.
Collapse
Affiliation(s)
- Ivan Sabolić
- Unit of Molecular Toxicology, Institute for Medical Research and Occupational Health, Zagreb, Croatia.
| |
Collapse
|
481
|
Malea P, Rijstenbil JW, Haritonidis S. Effects of cadmium, zinc and nitrogen status on non-protein thiols in the macroalgae Enteromorpha spp. from the Scheldt Estuary (SW Netherlands, Belgium) and Thermaikos Gulf (N Aegean Sea, Greece). MARINE ENVIRONMENTAL RESEARCH 2006; 62:45-60. [PMID: 16713622 DOI: 10.1016/j.marenvres.2006.03.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2005] [Revised: 02/15/2006] [Accepted: 03/02/2006] [Indexed: 05/09/2023]
Abstract
Enteromorpha prolifera (Scheldt Estuary) and E. linza (Thermaikos Gulf) were incubated at three salinities with 100 and 200microgL(-1)Cd and Zn. The objective was to measure effects of Cd, Zn and nitrogen (N) status on the pools of metal-binding non-protein thiols: glutathione and phytochelatins, (gamma-glutamyl-cysteinyl)(n)-glycine (PC). In E. linza, ammonium pools were higher, but amino acid pools, total N and protein contents were lower than in E. prolifera. Reduced glutathione (GSH) pools were positively correlated with free glutamate and protein contents. In E. linza GSH pools increased and the ratio of reduced to oxidized glutathione (GSH:(GSH+0.5GSSG)), an indicator of oxidative stress, decreased with Cd contents, indicating Cd-induced glutathione oxidation. Total glutathione pools (reduced plus oxidized) ranged from 16nmolSgdwt(-1) in controls (at 0.5micromolCdgdwt(-1)) to 179nmolSgdwt(-1) (at 1.9micromolCdgdwt(-1)) at the highest cadmium dosage. Cadmium stimulated PC synthesis in E. prolifera which suggests that in N-rich algae, glutathione pools were high enough for PC synthesis. In both species GSH and protein increased with Zn contents, whereas GSH:(GSH+0.5GSSG) decreased, which would indicate Zn-induced oxidative stress; in E. linza, at the highest salinity the glutathione redox ratio decreased from 0.61 (at 2.9micromolZngdwt(-1)) to 0.26 (at 4.9nmolSgdwt(-1)) (at 0.5molCdgdwt(-1)). PCs were not synthesized in response to Zn, which may have resulted in Zn-induced GSH oxidation. The presence of both oxidative effects (Cd, Zn) and detoxification (Cd) could be identified by observing the responses of glutathione and PC pools to metal stress.
Collapse
Affiliation(s)
- Paraskevi Malea
- Aristotle University of Thessaloniki, School of Biology, Institute of Botany, P.O. Box 109, GR-54124 Thessaloniki, Greece.
| | | | | |
Collapse
|
482
|
Hansen BH, Rømma S, Garmo ØA, Olsvik PA, Andersen RA. Antioxidative stress proteins and their gene expression in brown trout (Salmo trutta) from three rivers with different heavy metal levels. Comp Biochem Physiol C Toxicol Pharmacol 2006; 143:263-74. [PMID: 16616685 DOI: 10.1016/j.cbpc.2006.02.010] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2005] [Revised: 02/21/2006] [Accepted: 02/22/2006] [Indexed: 10/25/2022]
Abstract
Three populations of brown trout (Salmo trutta) exposed to different metal levels in their natural environments, were studied with respect to antioxidants metallothionein (MT), superoxide dismutase (SOD) and catalase (CAT) as well as for corresponding mRNA levels. In addition, mRNA levels were studied for glutathione peroxidase (GPx) and glutathione reductase (GR). The Cd/Zn-exposed trout (Naustebekken River) had higher accumulated levels of Cd, Cu and Zn in gills, and higher levels of MT (both protein and mRNA) in liver and kidney as well as in gills compared to the Cu-exposed trout (Rugla River) and trout from an uncontaminated reference river (Stribekken River). Less MT found in the Cu-exposed trout may increase susceptibility to oxidative stress, but no higher levels of antioxidant mRNAs were found in gills of these trouts. The data indicated that chronic exposures of brown trout to Cd, Zn and/or Cu did not involve maintenance of high activities of SOD and CAT enzymes in gills, although SOD mRNA levels were higher in the Cd/Zn-exposed trout. In livers, mRNA levels of SOD, CAT and GPx were higher in the metal-exposed trout, but in the case of GR this was only seen in kidneys of Cd/Zn-exposed trout. However, both metal-exposed groups had higher activities of SOD enzyme in liver compared to the unexposed reference trout, and CAT activity was found to be higher in kidneys of Cu-exposed trout. The Cu-exposed trout did not seem to rely on MT production to avoid Cu toxicity in gills, but rather by keeping the Cu uptake at a low level. A coordinated expression of different stress genes may also be important in chronic metal exposure. It may be concluded that the observed metal effects relies on acclimation rather than on genetic adaptation in the metal exposed populations.
Collapse
Affiliation(s)
- B H Hansen
- Norwegian University of Science and Technology (NTNU), Department of Biology, Høgskoleringen 5, N-7491 Trondheim, Norway.
| | | | | | | | | |
Collapse
|
483
|
Boujelben M, Ghorbel F, Vincent C, Makni-Ayadi F, Guermazi F, Croute F, El-Feki A. Lipid peroxidation and HSP72/73 expression in rat following cadmium chloride administration: Interactions of magnesium supplementation. ACTA ACUST UNITED AC 2006; 57:437-43. [PMID: 16616466 DOI: 10.1016/j.etp.2006.02.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2006] [Accepted: 02/23/2006] [Indexed: 11/25/2022]
Abstract
OBJECTIVE to determine whether magnesium (Mg) supplementation could have a protective effect against the cadmium (Cd)-induced oxidative stress in liver, kidneys and testes of adult male rats. Stress was evaluated by measuring lipid peroxidation by thiobarbituric acid reactive substances (TBARS) and the heat shock protein (HSP) 72/73 expression. CdCl2 injections (2.5mg/day/kg body weight) for 10 days resulted in a time dependent increase of Cd accumulation in liver, kidney and testes, the highest levels being found in liver (400 microg/g dried tissue). At the same time, an increase of lipid peroxidation was observed. The effect was maximal at day 1 of Cd treatment in liver and testes, and later (day 5) in kidney. Then, Cd-induced lipid peroxidation decreased, suggesting the activation of antioxidant defense mechanisms. Injections of Mg SO4 (300-600 mg/day/kg body weight) reduced in a dose-dependent manner Cd-induced lipid peroxidation in liver and kidney as well as the accumulation of Cd in liver, kidney and testes. In testes, a protective effect of Mg was found only during the early phase of Cd-poisoning. On days 5 and 10, lipid peroxidation was even increased as compared to controls. In liver and testes only the constitutive HSP73 was detected whereas in kidney both HSP73 and the inducible HSP72 were expressed. HSP72/73 expression was not significantly increased by Cd and HSP73 was even lowered in kidney, probably due to the strong dose used. These results were not modified by Mg injections. CONCLUSION Mg supplementation can reduce Cd accumulation in organs and lipid peroxidation related to Cd administration.
Collapse
Affiliation(s)
- Manel Boujelben
- Laboratoire d'Ecophysiologie Animale de la Faculté des Sciences de Sfax, BP. 802-3018 Sfax, Tunisie
| | | | | | | | | | | | | |
Collapse
|
484
|
Gonzalez P, Baudrimont M, Boudou A, Bourdineaud JP. Comparative Effects of Direct Cadmium Contamination on Gene Expression in Gills, Liver, Skeletal Muscles and Brain of the Zebrafish (Danio rerio). Biometals 2006; 19:225-35. [PMID: 16799861 DOI: 10.1007/s10534-005-5670-x] [Citation(s) in RCA: 162] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2004] [Accepted: 04/18/2005] [Indexed: 11/29/2022]
Abstract
The effects of cadmium (Cd) on gene expression were examined in four organs (gills, liver, skeletal muscles and brain) of the zebrafish. Adult male fish were subjected to three different water contamination pressures over periods of 7 and 21 days: control medium (C(0): no Cd added) and two contaminated media (C(1): 1.9 +/- 0.6 microg Cd l(-1), and C(2): 9.6 +/- 2.9 microg Cd l(-1)). Fourteen genes involved in antioxidant defences, metal chelation, active efflux of organic compounds, mitochondrial metabolism, DNA repair and apoptosis were selected and their expression levels investigated by quantitative real-time PCR. Cadmium concentrations were determined in the four organs and metallothionein (MT) protein levels investigated in brain, liver and gills. Although skeletal muscle was a poor Cd-accumulating tissue, many genes were up-regulated at day 7: mt1, cyt, bax, gadd and rad51 genes. Three additional genes, c-jun, pyc and tap, were up-regulated in muscles at day 21 whereas bax, gadd and rad51 had returned to basal levels. Surprisingly, mt1 and c-jun were the only genes displaying a differential induction after 21 days in liver, although this organ accumulated the highest cadmium concentration. In brain, only mt1, mt2 and c-jun genes were up-regulated after 21 days. In gills, the highest response was observed after 7 days, featuring the differential expression of oxidative stress-response hsp70 and mitochondrial sod genes, along with genes involved in mitochondrial metabolism and metal detoxification. Then, after 21 days, the expression of almost every genes returned to basal levels while both mt1 and mt2 genes were up-regulated.
Collapse
Affiliation(s)
- Patrice Gonzalez
- Laboratoire d'Ecophysiologie et Ecotoxicologie des Systèmes Aquatiques (LEESA), Université Bordeaux, 1/UMR CNRS 5805, Place du Dr Peyneau, Arcachon 33120, France
| | | | | | | |
Collapse
|
485
|
Achard-Joris M, Gonzalez P, Marie V, Baudrimont M, Bourdineaud JP. Cytochrome c Oxydase Subunit I Gene is Up-regulated by Cadmium in Freshwater and Marine Bivalves. Biometals 2006; 19:237-44. [PMID: 16799862 DOI: 10.1007/s10534-005-5671-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2005] [Accepted: 04/18/2005] [Indexed: 10/24/2022]
Abstract
Inhibition of the mitochondrial electron transfer chain and induction of reactive oxygen species (ROS) production are one of the roots of cadmium (Cd) toxicity. To appreciate the impact of Cd on mitochondria, we focused on the expression of CoxI gene which encodes the subunit I of the Cytochrome c oxidase (complex IV of the respiratory chain). CoxI gene expression was studied by real-time quantitative PCR in three species: two freshwater bivalves (Corbicula fluminea and Dreissena polymorpha) and one marine bivalve (diploid or triploid Crassostrea gigas). Bivalves were exposed for 10 or 14 days to 0.13 microM Cd(2+) and 15.3 microM Zn(2+) in controlled laboratory conditions. We demonstrate that in the three mollusk species CoxI gene was up-regulated by Cd. Zinc (Zn), which is known to have antioxidant properties, had no effect on CoxI gene expression. In the presence of Cd and Zn, CoxI gene inducibility was lower than after a single Cd exposure, in each species; result that could not be fully explained by a decreased Cd accumulation. CoxI gene induction by Cd was 4.8-fold higher in triploid oysters than in diploid ones, indicating a possible influence of triploidy on animal responses to Cd contamination.
Collapse
Affiliation(s)
- Maud Achard-Joris
- Laboratoire d'Ecophysiologie et d'Ecotoxicologie des Systèmes Aquatiques (LEESA), Université Bordeaux1/UMR CNRS 5805, Place du Dr. Peyneau, 33120 Arcachon, France
| | | | | | | | | |
Collapse
|
486
|
López E, Arce C, Oset-Gasque MJ, Cañadas S, González MP. Cadmium induces reactive oxygen species generation and lipid peroxidation in cortical neurons in culture. Free Radic Biol Med 2006; 40:940-51. [PMID: 16540389 DOI: 10.1016/j.freeradbiomed.2005.10.062] [Citation(s) in RCA: 291] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2004] [Revised: 10/20/2005] [Accepted: 10/28/2005] [Indexed: 11/24/2022]
Abstract
Cadmium is a toxic agent that it is also an environmental contaminant. Cadmium exposure may be implicated in some humans disorders related to hyperactivity and increased aggressiveness. This study presents data indicating that cadmium induces cellular death in cortical neurons in culture. This death could be mediated by an apoptotic and a necrotic mechanism. The apoptotic death may be mediated by oxidative stress with reactive oxygen species (ROS) formation which could be induced by mitochondrial membrane dysfunction since this cation produces: (a) depletion of mitochondrial membrane potential and (b) diminution of ATP levels with ATP release. Necrotic death could be mediated by lipid peroxidation induced by cadmium through an indirect mechanism (ROS formation). On the other hand, 40% of the cells survive cadmium action. This survival seems to be mediated by the ability of these cells to activate antioxidant defense systems, since cadmium reduced the intracellular glutathione levels and induced catalase and SOD activation in these cells.
Collapse
Affiliation(s)
- E López
- Instituto de Bioquímica (Centro Mixto CSIC-UCM), Facultad de Farmacia, 28040-Madrid, Spain
| | | | | | | | | |
Collapse
|
487
|
Poliandri AHB, Machiavelli LI, Quinteros AF, Cabilla JP, Duvilanski BH. Nitric oxide protects the mitochondria of anterior pituitary cells and prevents cadmium-induced cell death by reducing oxidative stress. Free Radic Biol Med 2006; 40:679-88. [PMID: 16458199 DOI: 10.1016/j.freeradbiomed.2005.09.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2005] [Revised: 09/12/2005] [Accepted: 09/20/2005] [Indexed: 12/31/2022]
Abstract
Cadmium (Cd2+) is a highly toxic metal that affects the endocrine system. We have previously shown that Cd2+ induces caspase-3 activation and apoptosis of anterior pituitary cells and that endogenous nitric oxide (NO) protects these cells from Cd2+. Here we investigate the mechanisms by which NO exerts this protective role. Cd2+ (25 microM) reduced the mitochondrial membrane potential (MMP) as measured by flow cytometry. Cd2+-induced apoptosis was mitochondrial dependent since cyclosporin A protected the cells from this metal. Inhibition of NO synthesis with 0.5 mM L-NAME increased the effect of Cd2+ on MMP, whereas the NO donor DETANONOate (0.1 mM) reduced it. Cd2+ increased the production of reactive oxygen species (ROS) as measured by flow cytometry. This effect was electron-transfer-chain-dependent since it was inhibited by rotenone. In fact, rotenone reduced the cytotoxic effect of the metal. The action of Cd2+ on mitochondrial integrity was ROS dependent. Trolox, an antioxidant, inhibited the effect of the metal on the MMP. Cd2+-induced increase in ROS generation was reduced by DETANONOate. There are discrepancies concerning the role of NO in Cd2+ toxicity. Here we show that NO reduces Cd2+ toxicity by protecting the mitochondria from oxidative stress in a system where NO plays a regulatory role.
Collapse
Affiliation(s)
- Ariel H B Poliandri
- Department of Biological Chemistry, IQUIFIB, School of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
488
|
Im JY, Paik SG, Han PL. Cadmium-induced astroglial death proceeds via glutathione depletion. J Neurosci Res 2006; 83:301-8. [PMID: 16385582 DOI: 10.1002/jnr.20722] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cadmium is a heavy metal that accumulates in the body, and its accumulation in the brain damages both neurons and glial cells. In the current study, we explored the mechanism underlying cadmium toxicity in primary cortical astroglia cultures. Chronic treatment with 10 microM cadmium was sufficient to cause 90% cell death in 18 hr. However, unlike that observed in neurons, cadmium-induced astroglial toxicity was not attenuated by the antioxidants trolox (100 microM), caffeic acid (1 mM), and vitamin C (1 mM). In contrast, extracellular 100 microM glutathione (GSH; gamma-Glu-Cys-Gly) or 100 microM cysteine almost completely blocked cadmium-induced astroglial death, whereas 300 microM oxidized GSH (GSSG) or 300 microM cystine, which do not have the free thiol group, were ineffective. In addition, cadmium toxicity was noticeably inhibited or enhanced when intracellular GSH was, respectively, increased by using the cell-permeable glutathione ethyl ester (GSH-EE) or depleted by using buthionine sulfoximine (BSO), an inhibitor of gamma-glutamylcysteine synthetase. In agreement with these data, intracellular GSH levels were found to be depressed in cadmium-treated astrocytes. These results suggest that the toxic effect of cadmium on primary astroglial cells involves GSH depletion and, furthermore, that GSH administration can potentially be used to counteract cadmium-induced astroglial cell death therapeutically.
Collapse
Affiliation(s)
- Joo-Young Im
- Department of Neuroscience, Neuroscience Research Center and Medical Research Institute, Ewha Womans University School of Medicine, Seoul, Korea
| | | | | |
Collapse
|
489
|
Silvestre F, Dierick JF, Dumont V, Dieu M, Raes M, Devos P. Differential protein expression profiles in anterior gills of Eriocheir sinensis during acclimation to cadmium. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2006; 76:46-58. [PMID: 16249038 DOI: 10.1016/j.aquatox.2005.09.006] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2005] [Revised: 09/22/2005] [Accepted: 09/24/2005] [Indexed: 05/05/2023]
Abstract
Using a proteomic approach, we characterized different protein expression profiles in anterior gills of the Chinese mitten crab, Eriocheir sinensis, after cadmium (Cd) exposure. Two experimental conditions were tested: (i) an acute exposure (i.e. 500 microg Cd l(-1) for 3 days) for which physiological, biochemical and ultrastructural damage have been observed previously; (ii) a chronic exposure (i.e. 50 microg Cd l(-1) for 30 days) resulting in physiological acclimation, i.e. increased resistance to a subsequent acute exposure. Two-dimensional gel electrophoresis (2-DE) revealed six protein spots differentially expressed after acute, and 31 after chronic Cd exposure. From these spots, 15 protein species were identified using MS/MS micro-sequencing and MS BLAST database searches. Alpha tubulin, glutathione S-transferase and crustacean calcium-binding protein 23 were down-regulated after an acute exposure, whereas another glutathione S-transferase isoform was up-regulated. Furthermore, analyses revealed the over-expression of protein disulfide isomerase, thioredoxin peroxidase, glutathione S-transferase, a proteasome subunit and cathepsin D after chronic exposure. Under the same condition, ATP synthase beta, alpha tubulin, arginine kinase, glyceraldehyde-3-phosphate dehydrogenase and malate dehydrogenase were down-regulated. These results demonstrate that acute and chronic exposure to waterborne Cd induced different responses at the protein expression level. Protein identification supports the idea that Cd mainly exerts its toxicity through oxidative stress induction and sulfhydryl-group binding. As a result, analyses showed the up-regulation of several antioxidant enzymes and chaperonins during acclimation process. The gill proteolytic capacity seems also to be increased. On the other hand, the clearly decreased abundance of several enzymes involved in energy transfer suggests that chronic metal exposure induced an important metabolic reshuffling.
Collapse
Affiliation(s)
- Frédéric Silvestre
- Unité de Recherche en Biologie des Organismes, Facultés Universitaires Notre-Dame de la Paix, rue de Bruxelles 61, B-5000 Namur, Belgium.
| | | | | | | | | | | |
Collapse
|
490
|
Sura P, Ristic N, Bronowicka P, Wróbel M. Cadmium toxicity related to cysteine metabolism and glutathione levels in frog Rana ridibunda tissues. Comp Biochem Physiol C Toxicol Pharmacol 2006; 142:128-35. [PMID: 16377255 DOI: 10.1016/j.cbpc.2005.11.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2005] [Revised: 11/16/2005] [Accepted: 11/17/2005] [Indexed: 11/23/2022]
Abstract
The level of glutathione and sulfane sulfur and sulfurtransferases activity in adult frogs Rana ridibunda were investigated after the exposure to 40 mg or 80 mg CdCl(2) L(-1) for 96 h or 240 h. Cd accumulation in the liver, kidneys and testes was confirmed, and the highest Cd level was found in the testes. In the liver, the exposure to Cd resulted in an increase of GSH level and the activity of rhodanese, while the activity of 3-mercaptopyruvate sulfurtransferase and cystathionase decreased. The kidneys and brain showed the elevated level of GSH and the activity of all investigated sulfurtransferases, as well as sulfane sulfur especially in brain. In such tissues as the testes, muscles and heart, the level of GSH and the activity of 3-mercaptopyruvate sulfurtransferase were significantly diminished. The increased level of sulfane sulfur was determined in the testes and muscles and the increased activity of rhodanese in the testes and the heart. These findings suggest the possible role of sulfane sulfur and/or sulfurtransferases in the antioxidation processes, which can be generated in cells by cadmium.
Collapse
Affiliation(s)
- Piotr Sura
- Department of Human Developmental Biology, Collegium Medicum, Jagiellonian University, Kraków, Poland
| | | | | | | |
Collapse
|
491
|
Bower JJ, Leonard SS, Shi X. Conference overview: Molecular mechanisms of metal toxicity and carcinogenesis. Mol Cell Biochem 2005; 279:3-15. [PMID: 16283510 DOI: 10.1007/s11010-005-8210-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Chronic exposure to many heavy metals and metal-derivatives is associated with an increased risk of cancer, although the mechanisms of tumorigenesis are largely unknown. Approximately 125 scientists attended the 3rd Conference on Molecular Mechanisms of Metal Toxicity and Carcinogenesis and presented the latest research concerning these mechanisms. Major areas of focus included exposure assessment and biomarker identification, roles of ROS and antioxidants in carcinogenesis, mechanisms of metal-induced DNA damage, metal signalling, and the development of animal models for use in metal toxicology studies. Here we highlight some of the research presented, and summarize the conference proceedings.
Collapse
Affiliation(s)
- Jacquelyn J Bower
- Pathology and Physiology Research Branch, National Institute for Occupational Safety and Health, Morgantown, West Virginia 26505-2888, USA
| | | | | |
Collapse
|
492
|
Deckert J. Cadmium Toxicity in Plants: Is There any Analogy to its Carcinogenic Effect in Mammalian Cells? Biometals 2005; 18:475-81. [PMID: 16333748 DOI: 10.1007/s10534-005-1245-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2005] [Accepted: 07/20/2005] [Indexed: 11/25/2022]
Abstract
Cadmium is a heavy metal, which is classified as a human carcinogen and is known to be toxic to plants. However, plants do not respond to this metal by massive cell proliferation. In this review the various aspects of cadmium toxicity in plants are compared to related processes in mammalian cells. The following issues are discussed: cellular uptake of Cd ions, their intracellular transport, the effects on cellular signaling, nucleic acids and proteins, modification of gene expression, cell cycle control and apoptosis. Reviewed data suggest that such features as: ability to remove the oxidized proteins, slightly different regulation of cell cycle genes, specific pattern of apoptosis, makes plants resistant to Cd(2+)-induced uncontrolled cell proliferation.
Collapse
Affiliation(s)
- Joanna Deckert
- Laboratory of Plant Ecophysiology, Department of Biology, A.Mickiewicz University, Al. Niepodległości 14, 61-713 Poznań, Poland.
| |
Collapse
|
493
|
Sokolova IM, Ringwood AH, Johnson C. Tissue-specific accumulation of cadmium in subcellular compartments of eastern oysters Crassostrea virginica Gmelin (Bivalvia: Ostreidae). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2005; 74:218-28. [PMID: 15993495 DOI: 10.1016/j.aquatox.2005.05.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2005] [Revised: 05/19/2005] [Accepted: 05/24/2005] [Indexed: 05/03/2023]
Abstract
Cadmium distribution was studied in different subcellular fractions of gill and hepatopancreas tissues of eastern oysters Crassostrea virginica. Oysters were exposed for up to 21 days to low sublethal Cd concentrations (25 microg L(-1)). Gill and hepatopancreas tissues were sampled and divided into organelle fractions and cytosol by differential centrifugation. Organelle content of different fractions was verified by activities of marker enzymes, citrate synthase and acid phosphatase for mitochondria and lysosomes, respectively. In both tissue types, there was a significant accumulation of cadmium in cytosol reaching 230-350 ng mg(-1) protein. Among organelles, mitochondria were the main target for Cd bioaccumulation in gills (250-300 ng mg(-1) protein), whereas in hepatopancreas tissues, the highest cadmium accumulation occurred in lysosomes (90-94 ng mg(-1) protein). Although 75-83% of total cadmium burden was associated with the cytosol reflecting high volume fraction of this compartment, Cd concentrations in organelle fractions reached levels that could cause dysfunction of mitochondria and lysosomes. Organ- and organelle-specific patterns of cadmium bioaccumulation support our previous in vivo studies, which showed adverse effects of cadmium exposures on mitochondrial oxidation in gills and on the lysosomal system of hepatopancreas. This may have important implications for the development of biomarkers of effect for heavy metals and for understanding the mechanisms of toxic effects of metals.
Collapse
Affiliation(s)
- I M Sokolova
- Biology Department, University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte, NC 28223, USA.
| | | | | |
Collapse
|
494
|
Lee WK, Spielmann M, Bork U, Thévenod F. Cd2+-induced swelling-contraction dynamics in isolated kidney cortex mitochondria: role of Ca2+ uniporter, K+ cycling, and protonmotive force. Am J Physiol Cell Physiol 2005; 289:C656-64. [PMID: 15843441 DOI: 10.1152/ajpcell.00049.2005] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The nephrotoxic metal Cd(2+) causes mitochondrial damage and apoptosis of kidney proximal tubule cells. A K(+) cycle involving a K(+) uniporter and a K(+)/H(+) exchanger in the inner mitochondrial membrane (IMM) is thought to contribute to the maintenance of the structural and functional integrity of mitochondria. In the present study, we have investigated the effect of Cd(2+) on K(+) cycling in rat kidney cortex mitochondria. Cd(2+) (EC(50) approximately 19 microM) induced swelling of nonenergized mitochondria suspended in isotonic salt solutions according to the sequence KCl = NaCl > LiCl >> choline chloride. Cd(2+)-induced swelling of energized mitochondria had a similar EC(50) value and showed the same cation dependence but was followed by a spontaneous contraction. Mitochondrial Ca(2+) uniporter (MCU) blockers, but not permeability transition pore inhibitors, abolished swelling, suggesting the need for Cd(2+) influx through the MCU for swelling to occur. Complete loss of mitochondrial membrane potential (DeltaPsi(m)) induced by K(+) influx did not prevent contraction, but addition of the K(+)/H(+) exchanger blocker, quinine (1 mM), or the electroneutral protonophore nigericin (0.4 microM), abolished contraction, suggesting the mitochondrial pH gradient (DeltapH(m)) driving contraction. Accordingly, a quinine-sensitive partial dissipation of DeltapH(m) was coincident with the swelling-contraction phase. The data indicate that Cd(2+) enters the matrix through the MCU to activate a K(+) cycle. Initial K(+) load via a Cd(2+)-activated K(+) uniporter in the IMM causes osmotic swelling and breakdown of DeltaPsi(m) and triggers quinine-sensitive K(+)/H(+) exchange and contraction. Thus Cd(2+)-induced activation of a K(+) cycle contributes to the dissipation of the mitochondrial protonmotive force.
Collapse
Affiliation(s)
- Wing-Kee Lee
- Dept. of Physiology and Pathophysiology, Faculty of Medicine, University of Witten/Herdecke, D-58448 Witten, Germany
| | | | | | | |
Collapse
|
495
|
Barbier O, Dauby A, Jacquillet G, Tauc M, Poujeol P, Cougnon M. Zinc and Cadmium Interactions in a Renal Cell Line Derived from Rabbit Proximal Tubule. ACTA ACUST UNITED AC 2005; 99:p74-84. [PMID: 15665557 DOI: 10.1159/000083413] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2004] [Accepted: 10/17/2004] [Indexed: 11/19/2022]
Abstract
BACKGROUND The aim of this work was to characterize the relationship between zinc (Zn(2+)) and cadmium (Cd(2+)) and the toxic effects of Cd(2+) in immortalized renal proximal tubule cells RP1. METHODS An RP1 cell line was developed from primary cultures of microdissected S1 and S2. Uptakes of (65)Zn and (109)Cd and competitive experiments with Cd(2+) and Zn(2+) were performed and kinetic parameters were determined. Oxygen consumption, metallothionein synthesis, and necrotic and apoptotic phenomena were studied. RESULTS Kinetic parameters indicate that (65)Zn (Km = 71.8 +/- 10.6 microM) and (109)Cd (Km = 23.3 +/- 2.0 microM) were both transported by a saturable carrier-mediated process. Competition between Cd(2+) and Zn(2+) uptake was reciprocal. Cd(2+) induced an increase in necrosis and apoptosis, and a decrease in oxygen consumption, depending on Cd(2+) concentrations. Concomitant addition of Zn(2+) (10 microM) reduced the number of necrotic and apoptotic cells and maintained oxygen consumption at control levels. Cd(2+) alone, or in the presence of Zn(2+), increased metallothionein levels, whereas Zn(2+) alone did not. CONCLUSION Zn(2+) and Cd(2+) probably share the same transporter in the proximal tubule. Cd(2+) caused necrotic and apoptotic cell death. Cd(2+) toxicity may occur through an effect on the mitochondrial electron transport chain and not on metallothionein synthesis. Zn(2+) protects against the renal cell toxicity of Cd(2+).
Collapse
Affiliation(s)
- Olivier Barbier
- Unité Mixte de Recherche, Centre National de la Recherche Scientifique 6548, Université de Nice-Sophia Antipolis, Nice, France
| | | | | | | | | | | |
Collapse
|
496
|
Shi H, Sui Y, Wang X, Luo Y, Ji L. Hydroxyl radical production and oxidative damage induced by cadmium and naphthalene in liver of Carassius auratus. Comp Biochem Physiol C Toxicol Pharmacol 2005; 140:115-21. [PMID: 15792630 DOI: 10.1016/j.cca.2005.01.009] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2004] [Revised: 01/13/2005] [Accepted: 01/17/2005] [Indexed: 11/30/2022]
Abstract
Freshwater goldfish (Carassius auratus) were exposed to cadmium (Cd) from 0 to 5 mg/L, and naphthalene (NAP) from 0 to 50 mg/L. Twenty-four hours after the exposure, reactive oxygen species (ROS) was trapped by phenyl-tert-butyl nitrone and detected by electron paramagnetic resonance (EPR). Protein carbonyl (PCO) and lipid peroxidation (LPO) content were determined. The activities of superoxide dismutase (SOD) and catalase (CAT) were also measured. The EPR spectra signals were characterized by prominent six-line spectra, which were defined as hydroxyl radical ((.)OH). As compared to the control group, Cd and NAP significantly induced (.)OH production marked by the intensity of the prominent spectra at higher concentrations. Both xenobiotics also increased LPO content and PCO content, depending on the concentrations. Either LPO or PCO content showed significant relation with (.)OH production. Cd increased the activity of SOD and decreased that of CAT at 5 mg/L, and NAP increased the activities of SOD and CAT at 5 mg/L. The results clearly indicated that these two structurally different non-redox cycling xenobiotics could induce (.)OH generation and result in oxidative damage in liver of C. auratus, and these effects were concentration-dependent.
Collapse
Affiliation(s)
- Huahong Shi
- State Key Laboratory of Pollution Control and Resource Reuse, Nanjing University, China
| | | | | | | | | |
Collapse
|
497
|
Le HD, Omelchenko A, Hryshko LV, Uliyanova A, Condrescu M, Reeves JP. Allosteric activation of sodium-calcium exchange by picomolar concentrations of cadmium. J Physiol 2004; 563:105-17. [PMID: 15611030 PMCID: PMC1665565 DOI: 10.1113/jphysiol.2004.077743] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Chinese hamster ovary cells expressing the bovine cardiac Na+-Ca2+ exchanger (NCX1.1) accumulated Cd2+ after a lag period of several tens of seconds. The lag period reflects the progressive allosteric activation of exchange activity by Cd2+ as it accumulates within the cytosol. The lag period was greatly reduced in cells expressing a mutant exchanger, Delta(241-680), that does not require allosteric activation by Ca2+ for activity. Non-transfected cells did not show Cd2+ uptake under the same conditions. In cells expressing NCX1.1, the lag period was nearly abolished following an elevation of the cytosolic Ca2+ concentration. Cytosolic Cd2+ concentrations estimated at 0.5-2 pm markedly stimulated the subsequent uptake of Ca2+ by Na+-Ca2+ exchange. Outward exchange currents in membrane patches from Xenopus oocytes expressing the canine NCX1.1 were rapidly and reversibly stimulated by 3 pm Cd2+ applied at the cytosolic membrane surface. Exchange currents activated by 3 pm Cd2+ were 40% smaller than currents activated by 1 mum cytosolic Ca2+. Current amplitudes declined by 30% and the rate of current development fell sharply upon repetitive applications of Na+ in the presence of 3 pm Cd2+. Cd2+ mimicked the anomalous inhibitory effects of Ca2+ on outward exchange currents generated by the Drosophila exchanger CALX1.1. We conclude that the regulatory sites responsible for allosteric Ca2+ activation bind Cd2+ with high affinity and that Cd2+ mimics the regulatory effects of Ca2+ at concentrations 5 orders of magnitude lower than Ca2+.
Collapse
Affiliation(s)
- Hoa Dinh Le
- Institute of Cardiovascular Sciences, University of Manitoba, St Boniface General Hospital Research Centre, Winnipeg, Manitoba, Canada, R2H 2A6
| | | | | | | | | | | |
Collapse
|