451
|
Radisky D, Muschler J, Bissell MJ. Order and disorder: the role of extracellular matrix in epithelial cancer. Cancer Invest 2002; 20:139-53. [PMID: 11852996 PMCID: PMC2933209 DOI: 10.1081/cnv-120000374] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Derek Radisky
- Life Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS 83-101, Berkeley, CA 94720
| | - John Muschler
- Life Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS 83-101, Berkeley, CA 94720
| | - Mina J. Bissell
- Life Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS 83-101, Berkeley, CA 94720
| |
Collapse
|
452
|
Bonner J, O'Connor TP. The permissive cue laminin is essential for growth cone turning in vivo. J Neurosci 2001; 21:9782-91. [PMID: 11739586 PMCID: PMC6763034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023] Open
Abstract
The proper guidance of migrating growth cones relies on the balance of multiple guidance cues in the embryonic environment. In addition to guidance cues, growth cones are in contact with other substrates that may contribute to the pathfinding of neurons. For example, in the developing insect peripheral nervous system, pioneer neurons migrate on and between layers of the basal lamina. Previous studies have demonstrated that one basal lamina molecule, laminin, promotes outgrowth of many classes of neurons in vitro. In this study, the simple grasshopper nervous system was used to investigate the role of laminin in neuronal pathfinding. Laminin expression precedes axonogenesis of the Tibial (Ti1) pioneer neurons in the developing limb bud, and expression continues during outgrowth and guidance of the pioneer neurons. The role of a nidogen-binding motif on laminin was investigated using subunit-specific antibodies and peptides as blocking reagents in vivo. Antibodies and peptides that block the nidogen-binding site on laminin resulted in stalled Ti1 axon migration, predominantly at the precise location where they normally turn ventrally. After prolonged culturing, Ti1 axons remained stalled at the same location. Therefore, although Ti1 axons were capable of outgrowth in the presence of blocking reagents, they were not able to navigate an essential turn. This study indicates that the interaction of the Ti1 growth cone with the nidogen-binding site on laminin is vital for neuronal pathfinding in vivo and suggests that permissive cues may be essential for growth cone steering.
Collapse
Affiliation(s)
- J Bonner
- Department of Anatomy, Program in Neuroscience, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
| | | |
Collapse
|
453
|
Conde-Knape K. Heparan sulfate proteoglycans in experimental models of diabetes: a role for perlecan in diabetes complications. Diabetes Metab Res Rev 2001; 17:412-21. [PMID: 11757076 DOI: 10.1002/dmrr.236] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Proteoglycans are ubiquitous extracellular proteins that serve a variety of functions throughout the organism. Unlike other glycoproteins, proteoglycans are classified based on the structure of the glycosaminoglycan carbohydrate chains, not the core proteins. Perlecan, a member of the heparan sulfate proteoglycan (HSPG) family, has been implicated in many complications of diabetes. Decreased levels of perlecan have been observed in the kidney and in other organs, both in patients with diabetes and in animal models. Perlecan has an important role in the maintenance of the glomerular filtration barrier. Decreased perlecan in the glomerular basement membrane has a central role in the development of diabetic albuminuria. The involvement of this proteoglycan in diabetic complications and the possible mechanisms underlying such a role have been addressed using a variety of models. Due to the importance of nephropathy among diabetic patients most of the studies conducted so far relate to diabetes effects on perlecan in different types of kidney cells. The various diabetic models used have provided information on some of the mechanisms underlying perlecan's role in diabetes as well as on possible factors affecting its regulation. However, many other aspects of perlecan metabolism still await full elucidation. The present review provides a description of the models that have been used to study HSPG and in particular perlecan metabolism in diabetes and some of the factors that have been found to be important in the regulation of perlecan.
Collapse
Affiliation(s)
- K Conde-Knape
- Department of Medicine, Division of Preventive Medicine, Columbia University, 630 W 168th St, New York, NY 10032, USA.
| |
Collapse
|
454
|
Kvansakul M, Hopf M, Ries A, Timpl R, Hohenester E. Structural basis for the high-affinity interaction of nidogen-1 with immunoglobulin-like domain 3 of perlecan. EMBO J 2001; 20:5342-6. [PMID: 11574465 PMCID: PMC125277 DOI: 10.1093/emboj/20.19.5342] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2001] [Revised: 08/14/2001] [Accepted: 08/15/2001] [Indexed: 11/14/2022] Open
Abstract
Nidogen and perlecan are large multifunctional basement membrane (BM) proteins conserved in all metazoa. Their high-affinity interaction, which is likely to contribute to BM assembly and function, is mediated by the central G2 domain in nidogen and the third immunoglobulin (IG)-like domain in perlecan, IG3. We have solved the crystal structure at 2.0 A resolution of the mouse nidogen-1 G2-perlecan IG3 complex. Perlecan IG3 belongs to the I-set of the IG superfamily and binds to the wall of the nidogen-1 G2 beta-barrel using beta-strands C, D and F. Nidogen-1 residues participating in the extensive interface are highly conserved, whereas the corresponding binding site on perlecan is more variable. We hypothesize that a second, as yet unidentified, activity of nidogen overlaps with perlecan binding and accounts for the unusually high degree of surface conservation in the G2 domain.
Collapse
Affiliation(s)
| | - Michael Hopf
- Biophysics Section, Blackett Laboratory, Imperial College, Prince Consort Road, London SW7 2BW, UK and
Abteilung Proteinchemie, Max-Planck-Institut für Biochemie, Am Klopferspitz 18a, D-82152 Martinsried, Germany Corresponding author e-mail:
M.Kvansakul and M.Hopf contributed equally to this work
| | - Albert Ries
- Biophysics Section, Blackett Laboratory, Imperial College, Prince Consort Road, London SW7 2BW, UK and
Abteilung Proteinchemie, Max-Planck-Institut für Biochemie, Am Klopferspitz 18a, D-82152 Martinsried, Germany Corresponding author e-mail:
M.Kvansakul and M.Hopf contributed equally to this work
| | - Rupert Timpl
- Biophysics Section, Blackett Laboratory, Imperial College, Prince Consort Road, London SW7 2BW, UK and
Abteilung Proteinchemie, Max-Planck-Institut für Biochemie, Am Klopferspitz 18a, D-82152 Martinsried, Germany Corresponding author e-mail:
M.Kvansakul and M.Hopf contributed equally to this work
| | - Erhard Hohenester
- Biophysics Section, Blackett Laboratory, Imperial College, Prince Consort Road, London SW7 2BW, UK and
Abteilung Proteinchemie, Max-Planck-Institut für Biochemie, Am Klopferspitz 18a, D-82152 Martinsried, Germany Corresponding author e-mail:
M.Kvansakul and M.Hopf contributed equally to this work
| |
Collapse
|
455
|
Abstract
Studies of a number of mouse mutations with skeletal defects have contributed significantly to the understanding of bone development and homeostasis. In many cases, such mutants are also genetic models of disorders in humans, characterized by reduced bone mass (osteoporosis), increased bone mass (osteopetrosis), or abnormalities in endochondral ossification (chondrodysplasias).
Collapse
Affiliation(s)
- W McLean
- Dept of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | | |
Collapse
|
456
|
Poole AR, Kojima T, Yasuda T, Mwale F, Kobayashi M, Laverty S. Composition and structure of articular cartilage: a template for tissue repair. Clin Orthop Relat Res 2001:S26-33. [PMID: 11603710 DOI: 10.1097/00003086-200110001-00004] [Citation(s) in RCA: 371] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The authors review the structure and composition of articular cartilage. This tissue is composed of an extensive extracellular matrix synthesized by chondrocytes. It contains different zones with respect to depth from the articular surface and has a regional organization around the chondrocytes. Its composition varies regionally and zonally in its collagen and proteoglycan contents and those of other matrix molecules. There is a macrofibrillar collagen network and a microfilamentous network about which other noncollagenous molecules are organized. Its structure and composition are reflective of its special mechanical properties that primarily reflect its tensile strength (collagens) and compressive stiffness (proteoglycan aggrecan) and cell-matrix interactions (noncollagenous proteins).
Collapse
Affiliation(s)
- A R Poole
- Shriners Hospitals for Children, Department of Surgery McGill University, Montreal, Quebec, Canada
| | | | | | | | | | | |
Collapse
|
457
|
Halfter W, Dong S, Balasubramani M, Bier ME. Temporary disruption of the retinal basal lamina and its effect on retinal histogenesis. Dev Biol 2001; 238:79-96. [PMID: 11783995 DOI: 10.1006/dbio.2001.0396] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
An experimental paradigm was devised to remove the retinal basal lamina for defined periods of development: the basal lamina was dissolved by injecting collagenase into the vitreous of embryonic chick eyes, and its regeneration was induced by a chase with mouse laminin-1 and alpha2-macroglobulin. The laminin-1 was essential in reconstituting a new basal lamina and could not be replaced by laminin-2 or collagen IV, whereas the macroglobulin served as a collagenase inhibitor that did not directly contribute to basal lamina regeneration. The regeneration occurred within 6 h after the laminin-1 chase by forming a morphologically complete basal lamina that included all known basal lamina proteins from chick embryos, such as laminin-1, nidogen-1, collagens IV and XVIII, perlecan, and agrin. The temporary absence of the basal lamina had dramatic effects on retinal histogenesis, such as an irreversible retraction of the endfeet of the neuroepithelial cells from the vitreal surface of the retina, the formation of a disorganized ganglion cell layer with an increase in ganglion cells by 30%, and the appearance of multiple retinal ectopias. Finally, basal lamina regeneration was associated with aberrant axons failing to correctly enter the optic nerve. The present data demonstrate that a transient disruption of the basal lamina leads to dramatic and probably irreversible aberrations in the histogenesis in the developing central nervous system.
Collapse
Affiliation(s)
- W Halfter
- Department of Neurobiology, University of Pittsburgh, 1402 E Biological Science Tower, Pittsburgh, Pennsylvania 15261, USA.
| | | | | | | |
Collapse
|
458
|
Ghiselli G, Eichstetter I, Iozzo RV. A role for the perlecan protein core in the activation of the keratinocyte growth factor receptor. Biochem J 2001; 359:153-63. [PMID: 11563979 PMCID: PMC1222131 DOI: 10.1042/0264-6021:3590153] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Perlecan, a widespread heparan sulphate (HS) proteoglycan, is directly involved in the storing of angiogenic growth factors, mostly members of the fibroblast growth factor (FGF) gene family. We have previously shown that antisense targeting of the perlecan gene causes a reduced growth and responsiveness to FGF7 [also known as keratinocyte growth factor (KGF)] in human cancer cells, and that the perlecan protein core interacts specifically with FGF7. In the present paper, we have investigated human colon carcinoma cells in which the perlecan gene was disrupted by targeted homologous recombination. After screening over 1000 clones, we obtained two clones heterozygous for the null mutation with no detectable perlecan, indicating that the other allele was non-functioning. The perlecan-deficient cells grew more slowly, did not respond to FGF7 with or without the addition of heparin, and were less tumorigenic than control cells. Paradoxically, the perlecan-deficient cells displayed increased FGF7 surface binding. However, the perlecan protein core was required for functional activation of the KGF receptor and downstream signalling. Because heparin could not substitute for perlecan, the HS chains are not critical for FGF7-mediated signalling in this cell system. These results provide the first genetic evidence that the perlecan protein core is a molecular entity implicated in FGF7 binding and activation of its receptor.
Collapse
MESH Headings
- Animals
- Blotting, Northern
- Blotting, Western
- Cell Division/drug effects
- Colonic Neoplasms/metabolism
- DNA, Antisense/pharmacology
- Fibrinolytic Agents/pharmacology
- Fibroblast Growth Factor 1/metabolism
- Fibroblast Growth Factor 7
- Fibroblast Growth Factors/metabolism
- Gene Targeting
- Heparan Sulfate Proteoglycans/physiology
- Heparin/pharmacology
- Humans
- Mice
- Mice, Nude
- Neoplasms, Experimental/metabolism
- Neoplasms, Experimental/pathology
- Protein Binding
- Receptor, Fibroblast Growth Factor, Type 2
- Receptors, Fibroblast Growth Factor/metabolism
- Recombinant Proteins/metabolism
- Signal Transduction
- Transplantation, Heterologous
- Tumor Cells, Cultured/drug effects
- Tumor Cells, Cultured/metabolism
- Tumor Cells, Cultured/transplantation
Collapse
Affiliation(s)
- G Ghiselli
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA
| | | | | |
Collapse
|
459
|
Hopf M, Göhring W, Mann K, Timpl R. Mapping of binding sites for nidogens, fibulin-2, fibronectin and heparin to different IG modules of perlecan. J Mol Biol 2001; 311:529-41. [PMID: 11493006 DOI: 10.1006/jmbi.2001.4878] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Perlecan, a major basement membrane proteoglycan, has a complex modular structure designed for the binding of many cellular and extracellular ligands. Its domain IV, which consists of a tandem of immunoglobulin-like modules (IG2-IG15), is rich in such binding sites, which have been mapped to different modules obtained by recombinant production. Heparin/sulfatide binding was restricted to IG5 and shown to depend on four arginine residues that are close in space in beta strands B and E of the C-type IG fold. The nidogen-1 and nidogen-2 isoforms bind to IG3 with high affinity (K(d) approximately 10 nM). This interaction depends on the globular nidogen domain G2 and is crucial for the formation of ternary complexes with laminins. Two loops of IG3 located between beta strands B/C and F/G, which are spatially close, make a major contribution to binding. Fibronectin binding was localized to IG4-5 and fibulin-2 binds to IG2 and IG13-15 with different affinities. This implicates a complex cluster of heterotypic interaction sites apparently important for the supramolecular organization of perlecan in tissues.
Collapse
Affiliation(s)
- M Hopf
- Max-Planck-Institut für Biochemie, Martinsried, D-82152, Germany
| | | | | | | |
Collapse
|
460
|
Graus-Porta D, Blaess S, Senften M, Littlewood-Evans A, Damsky C, Huang Z, Orban P, Klein R, Schittny JC, Müller U. Beta1-class integrins regulate the development of laminae and folia in the cerebral and cerebellar cortex. Neuron 2001; 31:367-79. [PMID: 11516395 DOI: 10.1016/s0896-6273(01)00374-9] [Citation(s) in RCA: 453] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Mice that lack all beta1-class integrins in neurons and glia die prematurely after birth with severe brain malformations. Cortical hemispheres and cerebellar folia fuse, and cortical laminae are perturbed. These defects result from disorganization of the cortical marginal zone, where beta1-class integrins regulate glial endfeet anchorage, meningeal basement membrane remodeling, and formation of the Cajal-Retzius cell layer. Surprisingly, beta1-class integrins are not essential for neuron-glia interactions and neuronal migration during corticogenesis. The phenotype of the beta1-deficient mice resembles pathological changes observed in human cortical dysplasias, suggesting that defective integrin-mediated signal transduction contributes to the development of some of these diseases.
Collapse
Affiliation(s)
- D Graus-Porta
- Friedrich Miescher Institute, Maulbeerstr 66, 4058, Basel, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
461
|
Bouvard D, Brakebusch C, Gustafsson E, Aszódi A, Bengtsson T, Berna A, Fässler R. Functional consequences of integrin gene mutations in mice. Circ Res 2001; 89:211-23. [PMID: 11485971 DOI: 10.1161/hh1501.094874] [Citation(s) in RCA: 152] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Integrins are cell-surface receptors responsible for cell attachment to extracellular matrices and to other cells. The application of mouse genetics has significantly increased our understanding of integrin function in vivo. In this review, we summarize the phenotypes of mice carrying mutant integrin genes and compare them with phenotypes of mice lacking the integrin ligands.
Collapse
Affiliation(s)
- D Bouvard
- Department of Experimental Pathology, Lund University, Lund, Sweden.
| | | | | | | | | | | | | |
Collapse
|
462
|
|
463
|
Forsberg E, Kjellén L. Heparan sulfate: lessons from knockout mice. J Clin Invest 2001; 108:175-80. [PMID: 11457868 PMCID: PMC203035 DOI: 10.1172/jci13561] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Affiliation(s)
- E Forsberg
- Department of Medical Biochemistry and Microbiology, University of Uppsala, The Biomedical Center, Uppsala, Sweden.
| | | |
Collapse
|
464
|
Lundmark K, Tran PK, Kinsella MG, Clowes AW, Wight TN, Hedin U. Perlecan inhibits smooth muscle cell adhesion to fibronectin: role of heparan sulfate. J Cell Physiol 2001; 188:67-74. [PMID: 11382923 DOI: 10.1002/jcp.1094] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Smooth muscle cell migration, proliferation, and deposition of extracellular matrix are key events in atherogenesis and restenosis development. To explore the mechanisms that regulate smooth muscle cell function, we have investigated whether perlecan, a basement membrane heparan sulfate proteoglycan, modulates interaction between smooth muscle cells and other matrix components. A combined substrate of fibronectin and perlecan showed a reduced adhesion of rat aortic smooth muscle cells by 70-90% in comparison to fibronectin alone. In contrast, perlecan did not interfere with cell adhesion to laminin. Heparinase treated perlecan lost 60% of its anti-adhesive effect. Furthermore, heparan sulfate as well as heparin reduced smooth muscle cell adhesion when combined with fibronectin whereas neither hyaluronan nor chondroitin sulfate had any anti-adhesive effects. Addition of heparin as a second coating to a preformed fibronectin matrix did not affect cell adhesion. Cell adhesion to the 105- and 120 kDa cell-binding fragments of fibronectin, lacking the main heparin-binding domains, was also inhibited by heparin. In addition, co-coating of fibronectin and (3)H-heparin showed that heparin was not even incorporated in the substrate. Morphologically, smooth muscle cells adhering to a substrate prepared by co-coating of fibronectin and perlecan or heparin were small, rounded, lacked focal contacts, and showed poorly developed stress fibers of actin. The results show that the heparan sulfate chains of perlecan lead to altered interactions between smooth muscle cells and fibronectin, possibly due to conformational changes in the fibronectin molecule. Such interactions may influence smooth muscle cell function in atherogenesis and vascular repair processes.
Collapse
Affiliation(s)
- K Lundmark
- Department of Surgical Sciences, Division of Vascular Surgery, Karolinska Hospital, SE-171, 76 Stockholm, Sweden.
| | | | | | | | | | | |
Collapse
|
465
|
Li X, Chen Y, Schéele S, Arman E, Haffner-Krausz R, Ekblom P, Lonai P. Fibroblast growth factor signaling and basement membrane assembly are connected during epithelial morphogenesis of the embryoid body. J Cell Biol 2001; 153:811-22. [PMID: 11352941 PMCID: PMC2192393 DOI: 10.1083/jcb.153.4.811] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Fibroblast growth factors and receptors are intimately connected to the extracellular matrix by their affinity to heparan sulfate proteoglycans. They mediate multiple processes during embryonic development and adult life. In this study, embryonic stem cell-derived embryoid bodies were used to model fibroblast growth factor signaling during early epithelial morphogenesis. To avoid redundancy caused by multiple receptors, we employed a dominant negative mutation of Fgfr2. Mutant-derived embryoid bodies failed to form endoderm, ectoderm, and basement membrane and did not cavitate. However, in mixed cultures they displayed complete differentiation induced by extracellular products of the normal cell. Evidence will be presented here that at least one of these products is the basement membrane or factors connected to it. It will be shown that in the mutant, collagen IV and laminin-1 synthesis is coordinately suppressed. We will demonstrate that the basement membrane is required for embryoid body differentiation by rescuing columnar ectoderm differentiation and cavitation in the mutant by externally added basement membrane proteins. This treatment induced transcription of Eomesodermin, an early developmental gene, suggesting that purified basement membrane proteins can activate inherent developmental programs. Our results provide a new paradigm for the role of fibroblast growth factor signaling in basement membrane formation and epithelial differentiation.
Collapse
MESH Headings
- Animals
- Basement Membrane/embryology
- Basement Membrane/metabolism
- Biocompatible Materials
- Cell Differentiation/physiology
- Collagen/genetics
- DNA, Complementary
- Drug Combinations
- Ectoderm/cytology
- Ectoderm/physiology
- Embryonic and Fetal Development/drug effects
- Embryonic and Fetal Development/physiology
- Epithelial Cells/cytology
- Epithelial Cells/physiology
- Fibroblast Growth Factor 2/pharmacology
- Fibroblast Growth Factor 2/physiology
- Gene Expression Regulation, Developmental
- Genes, Dominant
- Laminin/genetics
- Mice
- Mice, Inbred Strains
- Mice, Mutant Strains
- Mutation/physiology
- Proteoglycans
- RNA, Messenger/analysis
- Receptor Protein-Tyrosine Kinases/genetics
- Receptor, Fibroblast Growth Factor, Type 2
- Receptors, Fibroblast Growth Factor/genetics
- Signal Transduction/drug effects
- Signal Transduction/physiology
- T-Box Domain Proteins/genetics
- Teratoma
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Xiaofeng Li
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Yali Chen
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Susanne Schéele
- Department of Cell Biology, Lund University, Lund SE-22100 Sweden
- Department of Molecular Biology, Lund and Uppsala University, Uppsala SE-75124, Sweden
| | - Esther Arman
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Rebecca Haffner-Krausz
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Peter Ekblom
- Department of Cell Biology, Lund University, Lund SE-22100 Sweden
- Department of Molecular Biology, Lund and Uppsala University, Uppsala SE-75124, Sweden
| | - Peter Lonai
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
466
|
Tapanadechopone P, Tumova S, Jiang X, Couchman JR. Epidermal transformation leads to increased perlecan synthesis with heparin-binding-growth-factor affinity. Biochem J 2001; 355:517-27. [PMID: 11284741 PMCID: PMC1221765 DOI: 10.1042/0264-6021:3550517] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Perlecan, a proteoglycan of basement membrane and extracellular matrices, has important roles in both normal biological and pathological processes. As a result of its ability to store and protect growth factors, perlecan may have crucial roles in tumour-cell growth and invasion. Since the biological functions of different types of glycosaminoglycan vary with cellular origin and structural modifications, we analysed the expression and biological functions of perlecan produced by a normal epidermal cell line (JB6) and its transformed counterpart (RT101). Expression of perlecan in tumorigenic cells was significantly increased in both mRNA and protein levels. JB6 perlecan was exclusively substituted with heparan sulphate, whereas that of RT101 contained some additional chondroitin sulphate. Detailed structural analysis of the heparan sulphate (HS) chains from perlecan of both cell types revealed that their overall sulphation and chain length were similar (approximately 60 kDa), but the HS chains of tumour-cell-derived perlecan were less sulphated. This resulted from reduced 2-O- and 6-O-sulphation, but not N-sulphation, and an increase in the proportion of unsulphated disaccharides. Despite this, the heparan sulphate of RT101- and JB6-derived perlecan bound fibroblast growth factor-1, -2, -4 and -7 and heparin-binding epidermal growth factor with similar affinity. Therefore abundant tumour-derived perlecan may support the angiogenic responses seen in vivo and be a key player in tumorigenesis.
Collapse
Affiliation(s)
- P Tapanadechopone
- Department of Cell Biology, Cell Adhesion and Matrix Research Center, University of Alabama at Birmingham, 201C Volker Hall, 1670 University Blvd., Birmingham, Alabama 35294-0019, USA
| | | | | | | |
Collapse
|
467
|
Julian J, Das SK, Dey SK, Baraniak D, Ta VT, Carson DD. Expression of heparin/heparan sulfate interacting protein/ribosomal protein l29 during the estrous cycle and early pregnancy in the mouse. Biol Reprod 2001; 64:1165-75. [PMID: 11259264 DOI: 10.1095/biolreprod64.4.1165] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Using a variety of approaches, we have examined the expression of the heparin/heparan sulfate (Hp/HS) interacting protein/ribosomal protein L29 (HIP/RPL29) in mouse uteri during the estrous cycle and early pregnancy. HIP/RPL29 selectively binds heparin and HS and may promote HS-dependent embryo adhesion. HIP/RPL29 was prominently expressed in both luminal and glandular epithelia under almost all conditions, including the phase of embryo attachment. In contrast, differences were noted in HIP/RPL29 expression in the stromal compartment both during the estrous cycle and during early pregnancy. Most notably, HIP/RPL29 accumulated in decidua, where it displayed a pattern complementary to that of pericellular deposition of the HS proteoglycan, perlecan. HIP/RPL29 protein was detected in implanted embryos at both initial and later stages of implantation; however, embryonic HIP/RPL29 mRNA accumulation was more pronounced at later stages (Day 7.5 postcoitum). In situ hybridization revealed similar spatial changes for HIP/RPL29 mRNA during these different physiological states. Whereas differences in the spatial pattern of HIP/RPL29 protein and mRNA expression were demonstrable, little change was detected in the level of HIP/RPL29 mRNA or protein in total endometrial extracts. Mouse blastocysts attached, but did not outgrow, on surfaces coated with recombinant murine HIP/RPL29. Surprisingly, soluble glycosaminoglycans including heparin, low molecular weight heparin, or chondroitin sulfate were not able to inhibit embryo attachment to HIP/RPL29-coated surfaces. These latter observations indicate that embryonic cell surface components other than HS proteoglycans can promote binding to HIP/RPL29 expressed by uterine cells.
Collapse
Affiliation(s)
- J Julian
- Department of Biological Sciences, University of Delaware, Newark 19707, USA
| | | | | | | | | | | |
Collapse
|
468
|
Arikawa-Hirasawa E, Wilcox WR, Le AH, Silverman N, Govindraj P, Hassell JR, Yamada Y. Dyssegmental dysplasia, Silverman-Handmaker type, is caused by functional null mutations of the perlecan gene. Nat Genet 2001; 27:431-4. [PMID: 11279527 DOI: 10.1038/86941] [Citation(s) in RCA: 166] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Perlecan is a large heparan sulfate (HS) proteoglycan present in all basement membranes and in some other tissues such as cartilage, and is implicated in cell growth and differentiation. Mice lacking the perlecan gene (Hspg2) have a severe chondrodysplasia with dyssegmental ossification of the spine and show radiographic, clinical and chondro-osseous morphology similar to a lethal autosomal recessive disorder in humans termed dyssegmental dysplasia, Silverman-Handmaker type (DDSH; MIM 224410). Here we report a homozygous, 89-bp duplication in exon 34 of HSPG2 in a pair of siblings with DDSH born to consanguineous parents, and heterozygous point mutations in the 5' donor site of intron 52 and in the middle of exon 73 in a third, unrelated patient, causing skipping of the entire exons 52 and 73 of the HSPG2 transcript, respectively. These mutations are predicted to cause a frameshift, resulting in a truncated protein core. The cartilage matrix from these patients stained poorly with antibody specific for perlecan, but there was staining of intracellular inclusion bodies. Biochemically, truncated perlecan was not secreted by the patient fibroblasts, but was degraded to smaller fragments within the cells. Thus, DDSH is caused by a functional null mutation of HSPG2. Our findings demonstrate the critical role of perlecan in cartilage development.
Collapse
Affiliation(s)
- E Arikawa-Hirasawa
- Craniofacial Developmental Biology and Regeneration Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | | | | | | | | |
Collapse
|
469
|
Abstract
The predominant proteoglycan present in cartilage is the large chondroitin sulfate proteoglycan 'aggrecan'. Following its secretion, aggrecan self-assembles into a supramolecular structure with as many as 50 monomers bound to a filament of hyaluronan. Aggrecan serves a direct, primary role providing the osmotic resistance necessary for cartilage to resist compressive loads. Other proteoglycans expressed during chondrogenesis and in cartilage include the cell surface syndecans and glypican, the small leucine-rich proteoglycans decorin, biglycan, fibromodulin, lumican and epiphycan and the basement membrane proteoglycan, perlecan. The emerging functions of these proteoglycans in cartilage will enhance our understanding of chondrogenesis and cartilage degeneration.
Collapse
Affiliation(s)
- C B Knudson
- Department of Biochemistry, Rush Medical College, Rush-Presbyterian-St. Luke's Medical Center, 1653 West Congress Parkway, Chicago, IL 60612, USA.
| | | |
Collapse
|
470
|
Mongiat M, Otto J, Oldershaw R, Ferrer F, Sato JD, Iozzo RV. Fibroblast growth factor-binding protein is a novel partner for perlecan protein core. J Biol Chem 2001; 276:10263-71. [PMID: 11148217 DOI: 10.1074/jbc.m011493200] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Perlecan, a widespread heparan sulfate proteoglycan, functions as a bioactive reservoir for growth factors by stabilizing them against misfolding or proteolysis. These factors, chiefly members of the fibroblast growth factor (FGF) gene family, are coupled to the N-terminal heparan sulfate chains, which augment high affinity binding and receptor activation. However, rather little is known about biological partners of the protein core. The major goal of this study was to identify novel proteins that interact with the protein core of perlecan. Using the yeast two-hybrid system and domain III of perlecan as bait, we screened approximately 0.5 10(6) cDNA clones from a keratinocyte library and identified a strongly interactive clone. This cDNA corresponded to FGF-binding protein (FGF-BP), a secreted protein previously shown to bind acidic and basic FGF and to modulate their activities. Using a panel of deletion mutants, FGF-BP binding was localized to the second EGF repeat of domain III, a region very close to the binding site for FGF7. FGF-BP could be coimmunoprecipitated with an antibody against perlecan and bound in solution to recombinant domain III-alkaline phosphatase fusion protein. Immunohistochemical analyses revealed colocalization of FGF-BP and perlecan in the pericellular stroma of various squamous cell carcinomas suggesting a potential in vivo interaction. Thus, FGF-BP should be considered a novel biological ligand for perlecan, an interaction that could influence cancer growth and tissue remodeling.
Collapse
Affiliation(s)
- M Mongiat
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | | | |
Collapse
|
471
|
Henry MD, Satz JS, Brakebusch C, Costell M, Gustafsson E, Fässler R, Campbell KP. Distinct roles for dystroglycan, (β)1 integrin and perlecan in cell surface laminin organization. J Cell Sci 2001; 114:1137-44. [PMID: 11228157 DOI: 10.1242/jcs.114.6.1137] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Dystroglycan (DG) is a cell surface receptor for several extracellular matrix (ECM) molecules including laminins, agrin and perlecan. Recent data indicate that DG function is required for the formation of basement membranes in early development and the organization of laminin on the cell surface. Here we show that DG-mediated laminin clustering on mouse embryonic stem (ES) cells is a dynamic process in which clusters are consolidated over time into increasingly more complex structures. Utilizing various null-mutant ES cell lines, we define roles for other molecules in this process. In (β)1 integrin-deficient ES cells, laminin-1 binds to the cell surface, but fails to organize into more morphologically complex structures. This result indicates that (β)1 integrin function is required after DG function in the cell surface-mediated laminin assembly process. In perlecan-deficient ES cells, the formation of complex laminin-1 structures is defective, implicating perlecan in the laminin matrix assembly process. Moreover, laminin and perlecan reciprocally modulate the organization of the other on the cell surface. Taken together, the data support a model whereby DG serves as a receptor essential for the initial binding of laminin on the cell surface, whereas (β)1 integrins and perlecan are required for laminin matrix assembly processes after it binds to the cell.
Collapse
Affiliation(s)
- M D Henry
- Howard Hughes Medical Institute, University of Iowa College of Medicine, Department of Physiology and Biophysics and Department of Neurology, Iowa City, IA 52242, USA
| | | | | | | | | | | | | |
Collapse
|
472
|
Abstract
Early development of the vertebrate skeleton depends on genes that pattern the distribution and proliferation of cells from cranial neural crest, sclerotomes, and lateral plate mesoderm into mesenchymal condensations at sites of future skeletal elements. Within these condensations, cells differentiate to chondrocytes or osteoblasts and form cartilages and bones under the control of various transcription factors. In most of the skeleton, organogenesis results in cartilage models of future bones; in these models cartilage is replaced by bone by the process of endochondral ossification. Lastly, through a controlled process of bone growth and remodeling the final skeleton is shaped and molded. Significant and exciting insights into all aspects of vertebrate skeletal development have been obtained through molecular and genetic studies of animal models and humans with inherited disorders of skeletal morphogenesis, organogenesis, and growth.
Collapse
Affiliation(s)
- B R Olsen
- Harvard Medical School, Department of Cell Biology, 240 Longwood Avenue, Boston, Massachusetts 02115, USA.
| | | | | |
Collapse
|
473
|
Abstract
Large numbers of different proteoglycans are expressed in tightly regulated spatio-temporal patterns by both the nerve cells (neurons) and the supporting glial cells of the nervous system. Several of these proteoglycans have been shown by studies in vitro to affect the migration of neural precursor cells, the elongation and pathfinding of neurites and the formation and stabilization of synapses. Such processes are important for the accurate wiring of the nervous system, and so it has been postulated that proteoglycans play an essential role during neural development. However, with few exceptions, the phenotypes of null mutations in mice and some human genetic diseases have provided little support for this view. Here we will review recent data from both in vitro and in vivo studies analyzing the function of proteoglycans in the nervous system in order to provide possible explanations for their apparent lack of function.
Collapse
Affiliation(s)
- U Hartmann
- Institute for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany.
| | | |
Collapse
|
474
|
Erickson AC, Couchman JR. Basement membrane and interstitial proteoglycans produced by MDCK cells correspond to those expressed in the kidney cortex. Matrix Biol 2001; 19:769-78. [PMID: 11223336 DOI: 10.1016/s0945-053x(00)00126-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Multiple proteoglycans (PGs) are present in all basement membranes (BM) and may contribute to their structure and function, but their effects on cell behavior are not well understood. Their postulated functions include: a structural role in maintaining tissue histoarchitecture, or aid in selective filtration processes; sequestration of growth factors; and regulation of cellular differentiation. Furthermore, expression PGs has been found to vary in several disease states. In order to elucidate the role of PGs in the BM, a well-characterized model of polarized epithelium, Madin-Darby canine kidney (MDCK) cells has been utilized. Proteoglycans were prepared from conditioned medium by DEAE anion exchange chromatography. The eluted PGs were treated with heparitinase or chondroitinase ABC (cABC), separately or combined, followed by SDS-PAGE. Western blot analysis, using antibodies specific for various PG core proteins or CS stubs generated by cABC treatment, revealed that both basement membrane and interstitial PGs are secreted by MDCK cells. HSPGs expressed by MDCK cells are perlecan, agrin, and collagen XVIII. Various CSPG core proteins are made by MDCK cells and have been identified as biglycan, bamacan, and versican (PG-M). These PGs are also associated with mammalian kidney tubules in vivo.
Collapse
Affiliation(s)
- A C Erickson
- Department of Cell Biology and Cell Adhesion and Matrix Biology Research Center, University of Alabama at Birmingham, 1670 University Blvd, VH 201C, Birmingham, AL 35294-0019, USA
| | | |
Collapse
|
475
|
Roughley PJ. Articular cartilage and changes in arthritis: noncollagenous proteins and proteoglycans in the extracellular matrix of cartilage. ARTHRITIS RESEARCH 2001; 3:342-7. [PMID: 11714388 PMCID: PMC128909 DOI: 10.1186/ar326] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/27/2001] [Revised: 06/21/2001] [Accepted: 08/14/2001] [Indexed: 11/10/2022]
Abstract
Cartilage contains numerous noncollagenous proteins in its extracellular matrix, including proteoglycans. At least 40 such molecules have been identified, differing greatly in structure, distribution, and function. Some are present in only selected cartilages or cartilage zones, some vary in their presence with a person's development and age, and others are more universal in their expression. Some may not even be made by the chondrocytes, but may arise by absorption from the synovial fluid. In many cases, the molecules' function is unclear, but the importance of others is illustrated by their involvement in genetic disorders. This review provides a selective survey of these molecules and discusses their structure, function, and involvement in inherited and arthritic disorders.
Collapse
Affiliation(s)
- P J Roughley
- Genetics Unit, Shriners Hospital for Children, Montreal, Quebec, Canada.
| |
Collapse
|
476
|
Monkley SJ, Zhou XH, Kinston SJ, Giblett SM, Hemmings L, Priddle H, Brown JE, Pritchard CA, Critchley DR, Fässler R. Disruption of the talin gene arrests mouse development at the gastrulation stage. Dev Dyn 2000; 219:560-74. [PMID: 11084655 DOI: 10.1002/1097-0177(2000)9999:9999<::aid-dvdy1079>3.0.co;2-y] [Citation(s) in RCA: 168] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Studies on cultured cells show that the cytoskeletal protein talin plays a key role in cell spreading and the assembly of cell-extracellular matrix junctions. To examine the role of talin in vivo, we have generated mice with a targeted disruption of the talin gene. Heterozygotes are normal, but no surviving homozygous mutant animals were obtained, proving that talin is required for embryogenesis. Mutant embryos develop normally to the blastocyst stage and implant, but there is a gross disorganization of the embryos at gastrulation (6.5-7.5 days post coitum), and they die around 8.5-9.5 days post coitum. The embryonic ectoderm is reduced in size, with fewer cells, and is incompletely organised compared with wild-type embryos. The mutant embryos show disorganised extraembryonic tissues, and the ectoplacental and excocoelomic cavities are not formed. This seems to be because embryonic mesoderm accumulates as a mass on the posterior side of the embryos and fails to migrate to extraembryonic regions, although mesodermal cells are evident in the embryo proper. Spreading of trophoblast cells derived from cultured mutant blastocysts on fibronectin and laminin is also considerably reduced. Therefore, the fundamental deficit in these embryos seems to be a failure of cell migration at gastrulation.
Collapse
Affiliation(s)
- S J Monkley
- Department of Biochemistry, University of Leicester, University Road, Leicester, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
477
|
Nicole S, Davoine CS, Topaloglu H, Cattolico L, Barral D, Beighton P, Hamida CB, Hammouda H, Cruaud C, White PS, Samson D, Urtizberea JA, Lehmann-Horn F, Weissenbach J, Hentati F, Fontaine B. Perlecan, the major proteoglycan of basement membranes, is altered in patients with Schwartz-Jampel syndrome (chondrodystrophic myotonia). Nat Genet 2000; 26:480-3. [PMID: 11101850 DOI: 10.1038/82638] [Citation(s) in RCA: 177] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Schwartz-Jampel syndrome (SJS1) is a rare autosomal recessive disorder characterized by permanent myotonia (prolonged failure of muscle relaxation) and skeletal dysplasia, resulting in reduced stature, kyphoscoliosis, bowing of the diaphyses and irregular epiphyses. Electromyographic investigations reveal repetitive muscle discharges, which may originate from both neurogenic and myogenic alterations. We previously localized the SJS1 locus to chromosome 1p34-p36.1 and found no evidence of genetic heterogeneity. Here we describe mutations, including missense and splicing mutations, of the gene encoding perlecan (HSPG2) in three SJS1 families. In so doing, we have identified the first human mutations in HSPG2, which underscore the importance of perlecan not only in maintaining cartilage integrity but also in regulating muscle excitability.
Collapse
Affiliation(s)
- S Nicole
- INSERM CJF9711, Faculté de Médecine Pitié-Salpêtrière, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
478
|
Gustafsson E, Fässler R. Insights into extracellular matrix functions from mutant mouse models. Exp Cell Res 2000; 261:52-68. [PMID: 11082275 DOI: 10.1006/excr.2000.5042] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- E Gustafsson
- Department of Experimental Pathology, Lund University, Lund, SE-221 85, Sweden.
| | | |
Collapse
|
479
|
Norman KR, Moerman DG. The let-268 locus of Caenorhabditis elegans encodes a procollagen lysyl hydroxylase that is essential for type IV collagen secretion. Dev Biol 2000; 227:690-705. [PMID: 11071784 DOI: 10.1006/dbio.2000.9897] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Basement membranes are thin sheets of specialized extracellular matrix molecules that are important for supplying mechanical support and for providing an interactive surface for cell morphology. Prior to secretion and assembly, basement membrane molecules undergo intracellular processing, which is essential for their function. We have identified several mutations in a procollagen processing enzyme, lysyl hydroxylase (let-268). The Caenorhabditis elegans lysyl hydroxylase is highly similar to the vertebrate lysyl hydroxylase, containing all essential motifs required for enzymatic activity, and is the only lysyl hydroxylase found in the C. elegans sequenced genome. In the absence of C. elegans lysyl hydroxylase, type IV collagen is expressed; however, it is retained within the type IV collagen-producing cells. This observation indicates that in let-268 mutants the processing and secretion of type IV collagen is disrupted. Our examination of the body wall muscle in these mutant animals reveals normal myofilament assembly prior to contraction. However, once body wall muscle contraction commences the muscle cells separate from the underlying epidermal layer (the hypodermis) and the myofilaments become disorganized. These observations indicate that type IV collagen is required in the basement membrane for mechanical support and not for organogenesis of the body wall muscle.
Collapse
Affiliation(s)
- K R Norman
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| | | |
Collapse
|
480
|
Abstract
At the epithelial/mesenchymal interface of most tissues lies the basement membrane (BM). These thin sheets of highly specialized extracellular matrix vary in composition in a tissue-specific manner, and during development and repair. For about two decades it has been apparent that all BMs contain laminins, entactin-1/nidogen-1, Type IV collagen, and proteoglycans. However, within the past few years this complexity has increased as new components are described. The entactin/nidogen (E/N) family has expanded with the recent description of a new isoform, E/N-2/osteonidogen. Agrin and Type XVIII collagen have been reclassified as heparan sulfate proteoglycans (HSPGs), expanding the repertoire of HSPGs in the BM. The laminin family has become more diverse as new alpha-chains have been characterized, increasing the number of laminin isoforms. Interactions between BM components are now appreciated to be regulated through multiple, mostly domain-specific mechanisms. Understanding the functions of individual BM components and their assembly into macromolecular complexes is a considerable challenge that may increase as further BM and cell surface ligands are discovered for these proteins.
Collapse
Affiliation(s)
- A C Erickson
- Department of Cell Biology and Cell Adhesion and Matrix Research Center, University of Alabama at Birmingham, Birmingham, Alabama 35294-0019, USA
| | | |
Collapse
|
481
|
Kirn-Safran CB, Dayal S, Martin-DeLeon PA, Carson DD. Cloning, expression, and chromosome mapping of the murine Hip/Rpl29 gene. Genomics 2000; 68:210-9. [PMID: 10964519 DOI: 10.1006/geno.2000.6283] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We previously have identified murine heparin/heparan sulfate-interacting protein (HIP) identical to mouse ribosomal protein L29 that is, like its human orthologue, distinctively expressed both on the cell surface and intracellularly in different adult tissues and cell types. In the present study, we show that mouse HIP/RPL29 is encoded by a single mRNA and that it is expressed to different extents in most of the tissues of the developing embryo without restriction to a specific cell type. We isolated the single-copy gene coding for murine Hip/Rpl29 among a large number of pseudogenes, established its structure, and assigned its location to distal chromosome 9. Similar to other ribosomal protein promoters, the promoter of Hip/Rpl29 is rich in polypyrimidine tracts, contains binding motifs for ubiquitously expressed transcription factors, and lacks a TATA box. Progressive 5' deletion analyses identified a strong enhancer region that includes CT-rich sequences and a potential consensus binding site for NF-kappaB. These data will provide valuable tools to progress the understanding of HIP/RPL29 function as a ribosomal protein and/or as a regulator of growth and cell adhesion through interaction with heparan sulfate proteoglycans.
Collapse
Affiliation(s)
- C B Kirn-Safran
- Department of Biological Sciences, University of Delaware, Newark, Delaware 19716, USA
| | | | | | | |
Collapse
|
482
|
Murshed M, Smyth N, Miosge N, Karolat J, Krieg T, Paulsson M, Nischt R. The absence of nidogen 1 does not affect murine basement membrane formation. Mol Cell Biol 2000; 20:7007-12. [PMID: 10958695 PMCID: PMC88775 DOI: 10.1128/mcb.20.18.7007-7012.2000] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Nidogen 1 is a highly conserved protein in mammals, Drosophila melanogaster, Caenorhabditis elegans, and ascidians and is found in all basement membranes. It has been proposed that nidogen 1 connects the laminin and collagen IV networks, so stabilizing the basement membrane, and integrates other proteins, including perlecan, into the basement membrane. To define the role of nidogen 1 in basement membranes in vivo, we produced a null mutation of the NID-1 gene in embryonic stem cells and used these to derive mouse lines. Homozygous animals produce neither nidogen 1 mRNA nor protein. Surprisingly, they show no overt abnormalities and are fertile, their basement membrane structures appearing normal. Nidogen 2 staining is increased in certain basement membranes, where it is normally only found in scant amounts. This occurs by either redistribution from other extracellular matrices or unmasking of nidogen 2 epitopes, as its production does not appear to be upregulated. The results show that nidogen 1 is not required for basement membrane formation or maintenance.
Collapse
Affiliation(s)
- M Murshed
- Department of Dermatology, Medical Faculty, University of Cologne, Germany
| | | | | | | | | | | | | |
Collapse
|
483
|
Ringvall M, Ledin J, Holmborn K, van Kuppevelt T, Ellin F, Eriksson I, Olofsson AM, Kjellen L, Forsberg E. Defective heparan sulfate biosynthesis and neonatal lethality in mice lacking N-deacetylase/N-sulfotransferase-1. J Biol Chem 2000; 275:25926-30. [PMID: 10852901 DOI: 10.1074/jbc.c000359200] [Citation(s) in RCA: 189] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Heparan sulfate is a sulfated polysaccharide present on most cell surfaces and in the extracellular matrix. In vivo functions of heparan sulfate can be studied in mouse strains lacking enzymes involved in the biosynthesis of heparan sulfate. Glucosaminyl N-deacetylase/N-sulfotransferase (NDST) catalyzes the first modifying step in the biosynthesis of the polysaccharide. This bifunctional enzyme occurs in several isoforms. We here report that targeted gene disruption of NDST-1 in the mouse results in a structural alteration of heparan sulfate in most basement membranes as revealed by immunohistochemical staining of fetal tissue sections using antibodies raised against heparan sulfate. Biochemical analysis of heparan sulfate purified from fibroblast cultures, lung, and liver of NDST-1-deficient embryos demonstrated a dramatic reduction in N-sulfate content. Most NDST-1-deficient embryos survive until birth; however, they turn out to be cyanotic and die neonatally in a condition resembling respiratory distress syndrome. In addition, a minor proportion of NDST-1-deficient embryos die during the embryonic period. The cause of the embryonic lethality is still obscure, but incompletely penetrant defects of the skull and the eyes have been observed.
Collapse
Affiliation(s)
- M Ringvall
- Departments of Cell and Molecular Biology and Medical Biochemistry and Microbiology, Uppsala University, S-751 23 Uppsala, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
484
|
Carson DD, Bagchi I, Dey SK, Enders AC, Fazleabas AT, Lessey BA, Yoshinaga K. Embryo implantation. Dev Biol 2000; 223:217-37. [PMID: 10882512 DOI: 10.1006/dbio.2000.9767] [Citation(s) in RCA: 564] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- D D Carson
- Department of Biological Sciences, University of Delaware, Newark, Delaware, 19716, USA.
| | | | | | | | | | | | | |
Collapse
|
485
|
Rogalski TM, Mullen GP, Gilbert MM, Williams BD, Moerman DG. The UNC-112 gene in Caenorhabditis elegans encodes a novel component of cell-matrix adhesion structures required for integrin localization in the muscle cell membrane. J Cell Biol 2000; 150:253-64. [PMID: 10893272 PMCID: PMC2185566 DOI: 10.1083/jcb.150.1.253] [Citation(s) in RCA: 163] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Embryos homozygous for mutations in the unc-52, pat-2, pat-3, and unc-112 genes of C. elegans exhibit a similar Pat phenotype. Myosin and actin are not organized into sarcomeres in the body wall muscle cells of these mutants, and dense body and M-line components fail to assemble. The unc-52 (perlecan), pat-2 (alpha-integrin), and pat-3 (beta-integrin) genes encode ECM or transmembrane proteins found at the cell-matrix adhesion sites of both dense bodies and M-lines. This study describes the identification of the unc-112 gene product, a novel, membrane-associated, intracellular protein that colocalizes with integrin at cell-matrix adhesion complexes. The 720-amino acid UNC-112 protein is homologous to Mig-2, a human protein of unknown function. These two proteins share a region of homology with talin and members of the FERM superfamily of proteins. We have determined that a functional UNC-112::GFP fusion protein colocalizes with PAT-3/beta-integrin in both adult and embryonic body wall muscle. We also have determined that UNC-112 is required to organize PAT-3/beta-integrin after it is integrated into the basal cell membrane, but is not required to organize UNC-52/perlecan in the basement membrane, nor for DEB-1/vinculin to localize with PAT-3/beta-integrin. Furthermore, UNC-112 requires the presence of UNC-52/perlecan and PAT-3/beta-integrin, but not DEB-1/vinculin to become localized to the muscle cell membrane.
Collapse
Affiliation(s)
- Teresa M. Rogalski
- Department of Zoology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Gregory P. Mullen
- Department of Zoology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Mary M. Gilbert
- Department of Zoology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Benjamin D. Williams
- Department of Cell and Structural Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Donald G. Moerman
- Department of Zoology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| |
Collapse
|
486
|
Friedrich MV, Schneider M, Timpl R, Baumgartner S. Perlecan domain V of Drosophila melanogaster. Sequence, recombinant analysis and tissue expression. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:3149-59. [PMID: 10824099 DOI: 10.1046/j.1432-1327.2000.01337.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The C-terminal domain V of the basement membrane proteoglycan perlecan was previously shown to play a major role in extracellular matrix and cell interactions. A homologous sequence of 708 amino-acid residues from Drosophila has now been shown to be 33% identical to mouse perlecan domain V. It consists of three laminin G-type (LG) and epidermal growth factor-like (EG) modules but lacks the EG3 module and a link region found in mammalian perlecans. Recombinant production of Drosophila perlecan domain V in mammalian cells yielded a 100-kDa protein which was folded into a linear array of three globular LG domains. Unlike the mouse counterpart, domain V from Drosophila was not modified by glycosaminoglycans and endogenous proteolysis, due to the absence of the link region. It showed moderate affinities for heparin and sulfatides but did not bind to chick alpha-dystroglycan or to various mammalian basement membrane proteins. A single RGD sequence in LG3 of Drosophila domain V was also incapable of mediating cell adhesion. Production of a proteoglycan form of perlecan (approximately 450 kDa) in one Drosophila cell line could be demonstrated by immunoblotting with antibodies against Drosophila domain V. A strong expression was also found by in situ hybridization and immunohistology at various stages of embryonic development and expression was localized to several basement membrane zones. This indicates, as for mammalian species, a distinct role of perlecan during Drosophila development.
Collapse
|
487
|
Aszódi A, Bateman JF, Gustafsson E, Boot-Handford R, Fässler R. Mammalian skeletogenesis and extracellular matrix: what can we learn from knockout mice? Cell Struct Funct 2000; 25:73-84. [PMID: 10885577 DOI: 10.1247/csf.25.73] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Formation of the vertebrate skeleton and the proper functions of bony and cartilaginous elements are determined by extracellular, cell surface and intracellular molecules. Genetic and biochemical analyses of human heritable skeletal disorders as well as the generation of knockout mice provide useful tools to identify the key players of mammalian skeletogenesis. This review summarises our recent work with transgenic animals carrying ablated genes for cartilage extracellular matrix proteins. Some of these mice exhibit a lethal phenotype associated with severe skeletal defects (type II collagen-null, perlecan-null), whereas others show mild (type IX collagen-null) or no skeletal abnormalities (matrilin-1-null, fibromodulin-null, tenascin-C-null). The appropriate human genetic disorders are discussed and contrasted with the knockout mice phenotypes.
Collapse
Affiliation(s)
- A Aszódi
- Department of Experimental Pathology, Lund University, Sweden.
| | | | | | | | | |
Collapse
|
488
|
Affiliation(s)
- A D Lander
- Department of Developmental Biology, University of California, Irvine, California 92697, USA.
| | | |
Collapse
|
489
|
Marchisone C, Del Grosso F, Masiello L, Prat M, Santi L, Noonan DM. Phenotypic alterations in Kaposi's sarcoma cells by antisense reduction of perlecan. Pathol Oncol Res 2000; 6:10-7. [PMID: 10749582 DOI: 10.1007/bf03032652] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Metastasis is a sequence of events including proliferation, migration, adhesion, invasion and subsequent metastatic growth of tumour cells in distant organs. We previously showed that highly metastatic variants of murine melanoma cells express higher levels of the basement membrane proteoglycan perlecan than low or non metastatic variants and expression of an antisense perlecan can reduce metastatic potential. In contrast, antisense expression of perlecan in fibrosarcoma cells was reported to enhance tumorigenesis. To better understand the role of perlecan in angiogenesis we have transfected KS-IMM, an immortalized cell line derived from a human Kaposi s sarcoma, with an antisense perlecan construct and investigated the positive/negative role of perlecan in KS. KS-IMM cells were transfected with either empty vector (neo) or the antisense perlecan construct and clones were isolated. Immuno-blot analysis showed a reduction of perlecan levels in two (AP3 and AP4) isolated clones, in Northern blot analysis endogenous perlecan was undetectable in the AP3 and AP4 clones, while it was present in the neo control clones. AP clones had a reduced migration to HGF in Boyden chambers as compared to neo clones. Proliferation in low serum or serum-free conditions was strongly reduced in the AP clones as compared to the neo control cells. The neotransfected cells showed rapid proliferation in low serum supplemented with HGF and VEGF, while antisense transfected clones showed little response. Finally, AP-trasfected KS-IMM cells had significantly reduced migration to VEGF and HGF with respect to controls. In contrast, when the AP transfected cells were injected in nude mice they paradoxically showed enhanced tumor growth as compared to controls. Our preliminary data indicate that perlecan reduction plays a crucial role on Kaposi s sarcoma cell migration and proliferation in vitro. However, in vivo KS-IMM depleted of perlecan had a growth advantage. A possible hypothesis is that perlecan is necessary for growth of KS-IMM cells in vitro, however its down-regulation might promote angiogenesis through increased angiogenic growth factor diffusion, resulting in enhanced tumor growth in vivo.
Collapse
MESH Headings
- Animals
- Cell Division/drug effects
- Cell Movement/drug effects
- Chemotaxis/drug effects
- Culture Media, Serum-Free
- DNA, Complementary/genetics
- Endothelial Growth Factors/pharmacology
- Heparan Sulfate Proteoglycans
- Heparitin Sulfate/antagonists & inhibitors
- Heparitin Sulfate/genetics
- Heparitin Sulfate/physiology
- Hepatocyte Growth Factor/pharmacology
- Humans
- Lymphokines/pharmacology
- Mice
- Mice, Nude
- Models, Biological
- Neoplasm Proteins/antagonists & inhibitors
- Neoplasm Proteins/genetics
- Neoplasm Proteins/physiology
- Neoplasm Transplantation
- Neovascularization, Pathologic/prevention & control
- Oligodeoxyribonucleotides, Antisense/pharmacology
- Proteoglycans/antagonists & inhibitors
- Proteoglycans/genetics
- Proteoglycans/physiology
- Receptors, Growth Factor/physiology
- Sarcoma, Kaposi/metabolism
- Sarcoma, Kaposi/pathology
- Signal Transduction
- Soft Tissue Neoplasms/metabolism
- Soft Tissue Neoplasms/pathology
- Transfection
- Tumor Cells, Cultured
- Vascular Endothelial Growth Factor A
- Vascular Endothelial Growth Factors
Collapse
Affiliation(s)
- C Marchisone
- Istituto Nazionale per la Ricerca sul Cancro, Modulo di Progressione Neoplastica, Genova, 16132, Italy
| | | | | | | | | | | |
Collapse
|
490
|
Affiliation(s)
- B R Olsen
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA.
| |
Collapse
|