451
|
Chang DW, Xing Z, Capacio VL, Peter ME, Yang X. Interdimer processing mechanism of procaspase-8 activation. EMBO J 2003; 22:4132-42. [PMID: 12912912 PMCID: PMC175803 DOI: 10.1093/emboj/cdg414] [Citation(s) in RCA: 193] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The execution of apoptosis depends on the hierarchical activation of caspases. The initiator procaspases become autoproteolytically activated through a less understood process that is triggered by oligomerization. Procaspase-8, an initiator caspase recruited to death receptors, is activated through two cleavage events that proceed in a defined order to generate the large and small subunits of the mature protease. Here we show that dimerization of procaspase-8 produces enzymatically competent precursors through the stable homophilic interaction of the procaspase-8 protease domain. These dimers are also more susceptible to processing than individual procaspase-8 molecules, which leads to their cross-cleavage. The order of the two interdimer cleavage events is maintained by a sequential accessibility mechanism: the separation of the large and small subunits renders the region between the large subunit and prodomain susceptible to further cleavage. In addition, the activation process involves an alteration in the enzymatic properties of caspase-8; while procaspase-8 molecules specifically process one another, mature caspases only cleave effector caspases. These results reveal the key steps leading to the activation of procaspase-8 by oligomerization.
Collapse
Affiliation(s)
- David W Chang
- Abramson Family Cancer Research Institute, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|
452
|
Ilangovan R, Marshall WL, Hua Y, Zhou J. Inhibition of apoptosis by Z-VAD-fmk in SMN-depleted S2 cells. J Biol Chem 2003; 278:30993-9. [PMID: 12783893 DOI: 10.1074/jbc.m303763200] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Spinal muscular atrophy is an autosomal recessive motor neuron degenerative disorder, caused by the loss of telomeric copy of the survival motor neuron gene (SMN1). To better understand how motor neurons are targeted in Spinal muscular atrophy patients, it is important to study the role of SMN protein in cell death. In this report, we employed RNA interference (RNAi) to study the loss-of-function of SMN in Drosophila S2 cells. A 601-base pair double-stranded RNA (dsRNA) of Drosophila SMN (dSMN) was used for silencing the dSMN. Our data indicate that dSMN RNAi resulted in more than 90% reduction of both RNA and protein. Further analysis of S2 cells by cell death ELISA and flow cytometry assays revealed that reduction of dSMN expression significantly increased apoptosis. The cell death mediated by SMN depletion is caspase-dependent and specifically due to the activation of the endogenous caspases, DRONC and DRICE. Significantly, the effect of dSMN RNAi was reversed by a peptide caspase inhibitor, Z-VAD-fmk. These results suggest that dSMN is involved in signal pathways of apoptotic cell death in Drosophila. Hence, the model system of reduced SMN expression by RNAi in Drosophila could be exploited for identification of therapeutic targets.
Collapse
Affiliation(s)
- Raju Ilangovan
- Department of Medicine and Program in Neuroscience, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | | | | | | |
Collapse
|
453
|
Kalai M, Lamkanfi M, Denecker G, Boogmans M, Lippens S, Meeus A, Declercq W, Vandenabeele P. Regulation of the expression and processing of caspase-12. J Cell Biol 2003; 162:457-67. [PMID: 12885762 PMCID: PMC2172698 DOI: 10.1083/jcb.200303157] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Phylogenetic analysis clusters caspase-12 with the inflammatory caspases 1 and 11. We analyzed the expression of caspase-12 in mouse embryos, adult organs, and different cell types and tested the effect of interferons (IFNs) and other proinflammatory stimuli. Constitutive expression of the caspase-12 protein was restricted to certain cell types, such as epithelial cells, primary fibroblasts, and L929 fibrosarcoma cells. In fibroblasts and B16/B16 melanoma cells, caspase-12 expression is stimulated by IFN-gamma but not by IFN-alpha or -beta. The effect is increased further when IFN-gamma is combined with TNF, lipopolysaccharide (LPS), or dsRNA. These stimuli also induce caspase-1 and -11 but inhibit the expression of caspase-3 and -9. In contrast to caspase-1 and -11, no caspase-12 protein was detected in macrophages in any of these treatments. Transient overexpression of full-length caspase-12 leads to proteolytic processing of the enzyme and apoptosis. Similar processing occurs in TNF-, LPS-, Fas ligand-, and thapsigargin (Tg)-induced apoptosis. However, B16/B16 melanoma cells die when treated with the ER stress-inducing agent Tg whether they express caspase-12 or not.
Collapse
Affiliation(s)
- Michael Kalai
- Department of Molecular Biomedical Research, Unit of Molecular Signalling and Cell Death, Ghent University, Ledeganckstraat 35, B-9000 Ghent, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
454
|
Mariante RM, Guimarães CA, Linden R, Benchimol M. Hydrogen peroxide induces caspase activation and programmed cell death in the amitochondrial Tritrichomonas foetus. Histochem Cell Biol 2003; 120:129-41. [PMID: 12844218 DOI: 10.1007/s00418-003-0548-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2003] [Indexed: 10/26/2022]
Abstract
Tritrichomonas foetus is an amitochondrial parasite protist which lacks typical eukaryote organelles such as mitochondria and peroxisomes, but possesses the hydrogenosome, a double-membrane-bound organelle that produces ATP. The cell death of amitochondrial organisms is poorly studied. In the present work, the cytotoxic effects of hydrogen peroxide on T. foetus and its participation on cell death were analyzed. We took advantage of several microscopy techniques, including videomicroscopy, light microscopy immunocytochemistry for detection of caspase activation, and scanning and transmission electron microscopy. We report here that in T. foetus: (1) H(2)O(2) leads to loss of motility and induces cell death, (2) the dying cells exhibit some characteristics similar to those found during the death of other organisms, and (3) a caspase-like protein seems to be activated during the death process. Thus, we propose that, although T. foetus does not present mitochondria nor any known pathways of cell death, it is likely that it bears mechanisms of cell demise. T. foetus exhibits morphological and physiological alterations in response to H(2)O(2) treatment. The hydrogenosome, a unique organelle which is supposed to share a common ancestral origin with mitochondria and has an important role in oxidative responses in trichomonads, is a candidate for participating in this event.
Collapse
Affiliation(s)
- Rafael M Mariante
- Programa de Ciências Morfológicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | |
Collapse
|
455
|
Piana S, Sulpizi M, Rothlisberger U. Structure-based thermodynamic analysis of caspases reveals key residues for dimerization and activity. Biochemistry 2003; 42:8720-8. [PMID: 12873132 DOI: 10.1021/bi034032l] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cysteine-dependent aspartic proteases (caspases) are a family of enzymes which play a crucial role in apoptosis. Caspases accumulate in eukaryotic cells in the form of low-activity proenzyme precursors. Proteolytic cleavage of specific sites triggers conformational changes that lead to full activation and thus to the initiation of the apoptotic cascade. Several experimental observations suggest that dimerization is crucial for activity and regulation, but the underlying molecular mechanisms have not yet been completely resolved. In this work, we have used a structure-based thermodynamic analysis method [Edgcomb, S. P., and Murphy, K. P. (2000) Curr. Opin. Biotechnol. 11, 62-66] to calculate the free energy of association and folding for all the caspases and procaspases whose structures are known at present. In all cases, analysis of the single-residue contributions to the dimerization energy shows that 30-50% of the dimer stability originates from the highly specific interaction of 12-14 residues located at the N- and C-termini of the large and small subunits, respectively. Moreover, our calculations indicate that these residues are also critical for stabilizing the conformation of the active site loops, which in turn is crucial for the binding of substrates and inhibitors. Thus, our results help to rationalize the relation between dimerization and activity in this important class of enzymes and can be used as a starting point for an active manipulation of the monomer-dimer equilibrium for preparatory and regulatory purposes.
Collapse
Affiliation(s)
- Stefano Piana
- Institute of Molecular and Biological Chemistry, Federal Institute of Technology (EPFL), 1015 Lausanne, Switzerland
| | | | | |
Collapse
|
456
|
Zheng HC, Sun JM, Wei ZL, Yang XF, Zhang YC, Xin Y. Expression of Fas ligand and Caspase-3 contributes to formation of immune escape in gastric cancer. World J Gastroenterol 2003; 9:1415-20. [PMID: 12854132 PMCID: PMC4615474 DOI: 10.3748/wjg.v9.i7.1415] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To study the role of Fas ligand (FasL) and Caspase-3 expression in carcinogenesis and progression of gastric cancer and molecular mechanisms of relevant immune escape.
METHODS: FasL and Caspase-3 expression was studied in adjacent epithelial cells, cancer cells and lymphocytes of primary foci, and cancer cells of metastatic foci from 113 cases of gastric cancer by streptavidin-biotin-peroxidase (S-P) immunohistochemistry. Expression of both proteins in cancer cells of primary foci was compared with clinicopathological features of gastric cancer. The relationship between FasL expression in cancer cells and Caspase-3 expression in cancer cells or infiltrating lymphocytes of primary foci was investigated.
RESULTS: Cancer cells of primary foci expressed FasL in 53.98% (61/113) of gastric cancers, more than their adjacent epithelial cells (34.51%, 39/113) (P = 0.003, χ2 = 8.681), while the expression of Caspase-3 in cancer cells of primary foci was detected in 32.74% (37/113) of gastric cancers, less than in the adjacent epithelial cells (50.44%, 57/113) (P = 0.007, χ2 = 7.286). Infiltrating lymphocytes of the primary foci showed positive immunoreactivity to Caspase-3 in 70.80% (80/113) of gastric cancers, more than their corresponding adjacent epithelial cells (P = 0.001, χ2 = 10.635) or cancer cells of primary foci (P = 0.000, χ2 = 32.767). FasL was less expressed in cancer cells of metastases (51.16%, 22/43) than in those of the corresponding primary foci (81.58%, 31/38) (P = 0.003, χ2 = 9.907). Conversely, Caspase-3 was more expressed in cancer cells of metastases (58.14%, 25/43) than in those of the corresponding primary foci (34.21%, 13/38) (P = 0.031, χ2 = 4.638). FasL expression was significantly correlated with tumor size (P = 0.035, rs = 0.276), invasive depth (P = 0.039, rs = 0.195), metastasis (P = 0.039, rs = 0.195), differentiation (P = 0.015, rs = 0.228) and Lauren’s classification (P = 0.038, rs = 0.196), but not with age or gender of patients, growth pattern or TNM staging of gastric cancer (P > 0.05). In contrast, Caspase-3 expression showed no correlation with any clinicopathological parameters described above in cancer cells of the primary foci (P > 0.05). Interestingly, FasL expression in primary gastric cancer cells paralleled to Caspase-3 expression in infiltrating lymphocytes of the primary foci (P = 0.016, χ2 = 5.825).
CONCLUSION: Up-regulated expression of FasL and down-regulated expression of Caspase-3 in cancer cells of primary foci play an important role in gastric carcinogenesis. As an effective marker to reveal the biological behaviors, FasL is implicated in differentiation, growth, invasion and metastasis of gastric cancer by inducing apoptosis of infiltrating lymphocytes. Chemical substances derived from the primary foci and metastatic microenvironment can inhibit the growth of metastatic cells by enhancing Caspase-3 expression and diminishing FasL expression.
Collapse
Affiliation(s)
- Hua-Chuan Zheng
- The Fourth Lab. Cancer Institute, The First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning Province, China.
| | | | | | | | | | | |
Collapse
|
457
|
Zhang J, Takayama H, Matsuba T, Jiang R, Tanaka Y. Induction of apoptosis in macrophage cell line, J774, by the cell-free supernatant from Pseudomonas aeruginosa. Microbiol Immunol 2003; 47:199-206. [PMID: 12725289 DOI: 10.1111/j.1348-0421.2003.tb03387.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Pseudomonas aeruginosa is able to secrete many virulence factors that are cytotoxic towards eukaryotic cells. To investigate the effect of the bacterium on macrophages, we obtained cell-free supernatants from P. aeruginosa (Pa) IID1117 (elastase-positive and protease-positive) and Pa IID1130 (elastase-positive and protease-negative). After 6 hr of incubation with the cell-free supernatant from the Pa IID1117 strain, the viability of J774 macrophages was shown to be significantly reduced (47.5+/-11%), but not Pa IID1130 (96.4+/-1.6%) at a concentration of 10% (v/v) compared to control J774 macrophages without any supernatant (97.2+/-1.7%) by the detection of trypan blue dye exclusion. The death of cells was further demonstrated to be due to apoptosis characterized by chromatin condensation and apoptotic bodies by Hoechst 33258 staining, DNA fragmentation by agarose gel electrophoresis and terminal deoxynucleotidyl transferase-mediated d-UTP nick end labeling (TUNEL). An activated subunit was found to be released from procaspase-3 in cell lysate. But in the presence of protease inhibitor, the apoptosis was completely blocked. The findings indicate that the Pa IID1117 strain is capable of inducing apoptosis in J774 macrophages. The apoptosis induced by the cell-free supernatant from Pa IID1117 strain is suggested to be dependent on protease, but not elastase.
Collapse
Affiliation(s)
- Jianling Zhang
- Department of Microbiology and Pathology, School of Life Science, Faculty of Medicine, Tottori University, Yonago, Tottori 683-8503, Japan
| | | | | | | | | |
Collapse
|
458
|
Abstract
The central hypothesis of our laboratory research program in large granular lymphocyte (LGL) leukemia is that leukemic LGL represent antigen-driven cytotoxic T lymphocytes (CTL) with characteristics of dysregulated apoptosis. The clinical features of LGL leukemia highlight the association of autoimmune diseases such as rheumatoid arthritis with the T-cell form of LGL leukemia. We therefore used LGL leukemia as a model disease of dysregulated apoptosis leading to both malignant and autoimmune diseases. Here, we review our understanding of survival signals activated in leukemic LGL in the context of knowledge concerning apoptotic pathways in activated normal lymphocytes.
Collapse
Affiliation(s)
- P K Epling-Burnette
- Hematology Malignancy Program, H Lee Moffitt Cancer Center and Research Institute, University of South Florida, Tampa, USA
| | | |
Collapse
|
459
|
Yuan J, Murrell GAC, Trickett A, Wang MX. Involvement of cytochrome c release and caspase-3 activation in the oxidative stress-induced apoptosis in human tendon fibroblasts. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1641:35-41. [PMID: 12788227 DOI: 10.1016/s0167-4889(03)00047-8] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Our previous studies have demonstrated that oxidative stress and apoptosis are involved in human tendon degeneration. The objectives of our current study were to investigate the effect of oxidative stress on human tendon cell apoptosis, and to explore pathways by which tendon cell apoptosis was induced. In vitro oxidative stress was created by exposure of cultured human rotator cuff tendon cells to H(2)O(2). Apoptotic cells were assessed by Annexin V-FITC staining and necrotic cells by propidium iodide (PI) staining using flow cytometry. Cytochrome c and caspase-3 protein expression were detected by Western blotting. A mini-dialysis unit was employed to increase the protein concentration of the cytosolic fraction. Caspase-3 activity was determined by a colorimetric assay. Tendon cell apoptosis induced by H(2)O(2) was both dose and time dependent. Addition of H(2)O(2) resulted in the release of cytochrome c to the cytosol, and an increase of caspase-3 activity and the expression of caspase-3 subunit. The data suggest that oxidative stress-induced apoptosis in human tendon fibroblasts is mediated via pathway(s) that includes release of cytochrome c from mitochondria to the cytosol and activation of caspase-3.
Collapse
Affiliation(s)
- Jun Yuan
- Orthopaedic Research Institute, St. George Hospital Campus, University of New South Wales, 4-10 South Street, Sydney, NSW 2217, Australia
| | | | | | | |
Collapse
|
460
|
Chang DW, Ditsworth D, Liu H, Srinivasula SM, Alnemri ES, Yang X. Oligomerization is a general mechanism for the activation of apoptosis initiator and inflammatory procaspases. J Biol Chem 2003; 278:16466-9. [PMID: 12637514 DOI: 10.1074/jbc.c300089200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Proteolytic activation of initiator procaspases is a crucial step in the cellular commitment to apoptosis. Alternative models have been postulated for the activation mechanism, namely the oligomerization or induced proximity model and the allosteric regulation model. While the former holds that procaspases become activated upon proper oligomerization by an adaptor protein, the latter states that the adaptor is an allosteric regulator for procaspases. The allosteric regulation model has been applied for the activation of procaspase-9 by apoptotic protease-activating factor (Apaf-1) in an oligomeric complex known as the apoptosome. Using approaches that allow for controlled oligomerization, we show here that aggregation of multiple procaspase-9 molecules can induce their activation independent of the apoptosome. Oligomerization-induced procaspase-9 activation, both within the apoptosome and in artificial systems, requires stable homophilic association of the protease domains, raising the possibility that the function of Apaf-1 is not only to oligomerize procaspase-9 but also to maintain the interaction of the caspase-9 protease domain after processing. In addition, we provide biochemical evidence that other apoptosis initiator caspases (caspase-2 and -10) as well as a procaspase involved in inflammation (murine caspase-11) are also activated by oligomerization. Thus, oligomerization of precursor molecules appears to be a general mechanism for the activation of both apoptosis initiator and inflammatory procaspases.
Collapse
Affiliation(s)
- David W Chang
- Abramson Family Cancer Research Institute, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | |
Collapse
|
461
|
Zhou A, Scoggin S, Gaynor RB, Williams NS. Identification of NF-kappa B-regulated genes induced by TNFalpha utilizing expression profiling and RNA interference. Oncogene 2003; 22:2054-64. [PMID: 12673210 DOI: 10.1038/sj.onc.1206262] [Citation(s) in RCA: 145] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Tumor necrosis factor alpha (TNF alpha) is a proinflammatory cytokine with important roles in regulating inflammatory responses as well as cell cycle proliferation and apoptosis. Although TNFalpha stimulates apoptosis, it also activates the transcription factor NF-kappa B, and studies have shown that inhibition of NF-kappa B potentiates the cytotoxicity of TNFalpha. Since several chemotherapy agents act like TNFalpha to both promote apoptosis and activate NF-kappa B, understanding the role of NF-kappa B in suppressing apoptosis may have significant clinical applications. To understand the effects of stimulation with TNFalpha and the role of NF-kappa B in regulating this response, a 23k human cDNA microarray was used to screen TNFalpha-inducible genes in HeLa cells. Real-time PCR verified expression changes in 16 of these genes and revealed three distinct temporal patterns of expression after TNFalpha stimulation. Using RNA interference to disrupt expression of the p65 subunit of NF-kappa B, all but two of the genes were shown to depend on this transcription factor for their expression, which correlated well with the existence of NF-kappa B binding sites in most of their promoters. Inflammatory, proapoptotic, and antiapoptotic genes were all shown to be regulated by NF-kappa B, demonstrating the wide variety of targets activated by NF-kappa B signaling and the necessity of differentiating among these genes for therapeutic purposes.
Collapse
Affiliation(s)
- Anwu Zhou
- Department of Medicine, Harold Simmons Cancer Center, University of Texas Southwestern Medical Center, Dallas 75390-8594, USA
| | | | | | | |
Collapse
|
462
|
Lovato L, Inman M, Henderson G, Doster A, Jones C. Infection of cattle with a bovine herpesvirus 1 strain that contains a mutation in the latency-related gene leads to increased apoptosis in trigeminal ganglia during the transition from acute infection to latency. J Virol 2003; 77:4848-57. [PMID: 12663791 PMCID: PMC152160 DOI: 10.1128/jvi.77.8.4848-4857.2003] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2002] [Accepted: 01/14/2003] [Indexed: 11/20/2022] Open
Abstract
Bovine herpesvirus 1 (BHV-1) is an important pathogen of cattle and infection is usually initiated via the ocular or nasal cavity. After acute infection, the primary site for BHV-1 latency is sensory neurons in the trigeminal ganglia (TG). Reactivation from latency occurs sporadically, resulting in virus shedding and transmission to uninfected cattle. The only abundant viral transcript expressed during latency is the latency-related (LR) RNA. An LR mutant was constructed by inserting three stop codons near the beginning of the LR RNA. This mutant grows to wild-type (wt) efficiency in bovine kidney cells and in the nasal cavity of acutely infected calves. However, shedding of infectious virus from the eye and TG was dramatically reduced in calves infected with the LR mutant. Calves latently infected with the LR mutant do not reactivate after dexamethasone treatment. In contrast, all calves latently infected with wt BHV-1 or the LR rescued mutant reactivate from latency after dexamethasone treatment. In the present study, we compared the frequency of apoptosis in calves infected with the LR mutant to calves infected with wt BHV-1 because LR gene products inhibit apoptosis in transiently transfected cells. A sensitive TUNEL (terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling) assay and an antibody that detects cleaved caspase-3 were used to identify apoptotic cells in TG. Both assays demonstrated that calves infected with the LR mutant for 14 days had higher levels of apoptosis in TG compared to calves infected with wt BHV-1 or to mock-infected calves. Viral gene expression, except for the LR gene, is extinguished by 14 days after infection, and thus this time frame is operationally defined as the establishment of latency. Real-time PCR analysis indicated that lower levels of viral DNA were present in the TG of calves infected with the LR mutant throughout acute infection. Taken together, these results suggest that the antiapoptotic properties of the LR gene play an important role during the establishment of latency.
Collapse
Affiliation(s)
- Luciane Lovato
- Department of Veterinary and Biomedical Sciences, Nebraska Center for Virology, University of Nebraska at Lincoln, Lincoln, Nebraska 68583-0905,USA
| | | | | | | | | |
Collapse
|
463
|
Abstract
Salmonella is an interesting example of how the selective pressure of host environments has led to the evolution of sophisticated bacterial virulence mechanisms. This microbe exploits the first-line of defence, the macrophage, as a crucial tool in the initiation of disease. After invasion of intestinal macrophages, a virulence protein secreted by Salmonella specifically induces apoptotic cell death by activating the cysteine protease caspase-1. The pro-apoptotic capability is necessary for successful pathogenesis. The study of mechanisms by which Salmonella induces programmed cell death offers new insights into how pathogens cause disease and into general mechanisms of activation of the innate immune system.
Collapse
Affiliation(s)
- Harri A Järveläinen
- Max Planck Institute for Infection Biology, Department of Cellular Microbiology, Campus Charité Mitte, Schumannstrasse 21/22, Berlin 10117, Germany
| | | | | |
Collapse
|
464
|
Abstract
Apoptosis is a form of programmed cell death that results in the orderly and efficient removal of damaged or unnecessary cells, such as those resulting from DNA damage or during development. There are many factors that contribute to this process, each demonstrating specificity of function, regulation, and pathway involvement. The aim of this brief overview is to provide an introduction to a number of these factors as well as the various apoptotic pathways that have been identified.
Collapse
Affiliation(s)
- Paula C Ashe
- ALviva Biopharmaceuticals Inc., 218-111 Research Drive, S7N 3R2, Saskatoon, Saskatchewan, Canada.
| | | |
Collapse
|
465
|
Hasnain SE, Begum R, Ramaiah KVA, Sahdev S, Shajil EM, Taneja TK, Mohan M, Athar M, Sah NK, Krishnaveni M. Host-pathogen interactions during apoptosis. J Biosci 2003; 28:349-58. [PMID: 12734412 DOI: 10.1007/bf02970153] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Host pathogen interaction results in a variety of responses, which include phagocytosis of the pathogen, release of cytokines, secretion of toxins, as well as production of reactive oxygen species (ROS). Recent studies have shown that many pathogens exert control on the processes that regulate apoptosis in the host. The induction of apoptosis upon infection results from a complex interaction of parasite proteins with cellular host proteins. Abrogation of host cell apoptosis is often beneficial for the pathogen and results in a successful host invasion. However, in some cases, it has been shown that induction of apoptosis in the infected cells significantly imparts protection to the host from the pathogen. There is a strong correlation between apoptosis and the host protein translation machinery: the pathogen makes all possible efforts to modify this process so as to inhibit cell suicide and ensure that it can survive and, in some cases, establish latent infection. This review discusses the significance of various pathways/steps during virus-mediated modulation of host cell apoptosis.
Collapse
Affiliation(s)
- Seyed E Hasnain
- Laboratory of Molecular and Cellular Biology, Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500 076, India.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
466
|
Hu S, Yang X. Cellular inhibitor of apoptosis 1 and 2 are ubiquitin ligases for the apoptosis inducer Smac/DIABLO. J Biol Chem 2003; 278:10055-60. [PMID: 12525502 DOI: 10.1074/jbc.m207197200] [Citation(s) in RCA: 176] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Inhibitors of apoptosis (IAPs) are crucial regulators of programmed cell death. The mechanism by which IAPs prevent apoptosis has previously been attributed to the direct inhibition of caspases. The function of mammalian IAPs is counteracted by cell death inducer second mitochondria-derived activator of caspases (Smac)/DIABLO during apoptosis. Here we show that cIAP1 and cIAP2 are E3 ubiquitin-protein isopeptide ligases (ubiquitin ligases) for Smac. cIAPs stimulate Smac ubiquitination both in vivo and in vitro, leading to Smac degradation. cIAP1 and cIAP2 associate with overlapping but distinct subsets of E2 (ubiquitin carrier protein) ubiquitin-conjugating enzymes. The substrate-dependent E3 activity of cIAPs is mediated by their RING domains and is dependent on the specific interactions between cIAPs and Smac. Similarly, Drosophila IAP1 also possesses ubiquitin ligase activity that mediates the degradation of the Drosophila apoptosis inducers Grim and HID. These results suggest a novel and conserved mechanism by which IAPs block apoptosis through the degradation of death inducers.
Collapse
Affiliation(s)
- Shimin Hu
- Abramson Family Cancer Research Institute and Department of Cancer Biology, University of Pennsylvania School of Medicine, Philadelphia 19104, USA
| | | |
Collapse
|
467
|
Gu L, Zheng H, Murray SA, Ying H, Jim Xiao ZX. Deregulation of Cdc2 kinase induces caspase-3 activation and apoptosis. Biochem Biophys Res Commun 2003; 302:384-91. [PMID: 12604359 DOI: 10.1016/s0006-291x(03)00189-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Progression of the cell cycle and control of apoptosis are tightly linked processes. It has been reported that manifestation of apoptosis requires cdc2 kinase activity yet the mechanism(s) of which is largely unclear. In an attempt to study the role of human MDM2 (HDM2) in interphase and mitosis, we employed the Xenopus cell-free system to study HDM2 protein stability. Interestingly, HDM2 is specifically cleaved in Xenopus mitotic extracts but not in the interphase extracts. We demonstrate that HDM2 cleavage is dependent on caspase-3 and that activation of cdc2 kinase results in caspase-3 activation in the Xenopus cell-free system. Furthermore, expression of cdc2 kinase in mammalian cells leads to activation of caspase-3 and apoptosis. Taken together, these data indicate that deregulation of cdc2 kinase activity can trigger apoptotic machinery that leads to caspase-3 activation and apoptosis.
Collapse
Affiliation(s)
- Ling Gu
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | | | | | | | | |
Collapse
|
468
|
Abstract
Apoptosis is a key event in biologic homeostasis with particular importance to the immune system. It is an active energy-dependent process that is tightly regulated and controlled by a variety of signal transduction pathways. Apoptosis modulation plays a part in the pathogenesis of many human diseases, including HIV infection. Although multiple mechanisms may contribute to the decline in CD4 T-lymphocyte numbers observed, apoptosis is a significant factor. Alterations in levels of apoptosis are observed in both directly infected and uninfected bystander cells and a variety of pathways of apoptosis induction have been implicated. Apoptosis induction is related to death receptor and mitochondrial-induced pathways in specific circumstances. These events have been linked to individual HIV proteins and have been demonstrated to be altered by antiretroviral therapy.
Collapse
Affiliation(s)
- D J Bell
- Communicable Diseases Directorate, E Floor, Royal Hallamshire Hospital, Glossop Road, Sheffield, UK
| | | |
Collapse
|
469
|
Sun Q, Matta H, Chaudhary PM. The human herpes virus 8-encoded viral FLICE inhibitory protein protects against growth factor withdrawal-induced apoptosis via NF-kappa B activation. Blood 2003; 101:1956-61. [PMID: 12406869 DOI: 10.1182/blood-2002-07-2072] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human herpes virus 8 (HHV8)-encoded viral FLICE (Fas-associating protein with death domain-like interleukin-1-converting enzyme) inhibitory protein (vFLIP) is believed to protect cells against death receptor-mediated apoptosis. In the present study we demonstrate that expression of HHV8 vFLIP in a growth factor-dependent TF-1 leukemia cell line protects against growth factor withdrawal-induced apoptosis. Unlike vector-expressing cells, those expressing HHV8 vFLIP maintain their mitochondrial membrane potential upon withdrawal from growth factor and also exhibit a block in the activation of caspases. The protective effect of HHV8 vFLIP is associated with its ability to activate the nuclear factor-kappa B (NF-kappaB) pathway and is missing in the vFLIP encoded by equine herpes virus 2 that lacks this activity. Inhibition of the NF-kappaB pathway by IkappaB superrepressor, lactacystin, MG132, arsenic trioxide, and phenylarsine oxide reverse the protection against growth factor withdrawal-induced apoptosis conferred by HHV8 vFLIP. HHV8 vFLIP up-regulates the expression of Bcl-x(L), an antiapoptotic member of the Bcl2 family, which is a known target of the NF-kappaB pathway. Collectively, the above results suggest that HHV8 vFLIP-induced NF-kappaB activation may contribute to cellular transformation seen in association with HHV8 infection by preventing the apoptosis of cells destined to die because of growth factor deprivation.
Collapse
Affiliation(s)
- Qinmiao Sun
- Hamon Center for Therapeutic Oncology Research and Division of Hematology-Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390-8593, USA
| | | | | |
Collapse
|
470
|
Shi Y, Devadas S, Greeneltch KM, Yin D, Allan Mufson R, Zhou JN. Stressed to death: implication of lymphocyte apoptosis for psychoneuroimmunology. Brain Behav Immun 2003; 17 Suppl 1:S18-26. [PMID: 12615182 DOI: 10.1016/s0889-1591(02)00062-4] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Psychological and physical stressors best exemplify the intercommunication of the immune and the nervous systems. It has been shown that stress significantly impacts leukocyte cellularity and immune responses and alters susceptibility to various diseases. While acute stress has been shown to enhance immune responses, chronic stress often leads to immunosuppression. Among many criteria examined upon exposure to chronic stress, the reduction in lymphocyte mitogenic response and lymphocyte cellularity are commonly assessed. We have reported that chronic restraint stress could induce lymphocyte reduction, an effect dependent on endogenous opioids. Interestingly, the effect of endogenous opioids was found to be exerted through increasing the expression of a cell death receptor, Fas, and an increased sensitivity of lymphocytes to apoptosis. Stress-induced lymphocyte reduction was not affected by adrenalectomy. In this review, based on available literature and our recent data, we will discuss the role of the hypothalamic-pituitary-adrenal axis and endogenous opioids and examine the mechanisms by which chronic stress modulates lymphocyte apoptosis.
Collapse
Affiliation(s)
- Yufang Shi
- Department of Molecular Genetics, Microbiology and Immunology, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, 661 Hoes Lane, Piscataway 08854, USA.
| | | | | | | | | | | |
Collapse
|
471
|
Soleman D, Cornel L, Little SA, Mirkes PE. Teratogen-induced activation of the mitochondrial apoptotic pathway in the yolk sac of day 9 mouse embryos. BIRTH DEFECTS RESEARCH. PART A, CLINICAL AND MOLECULAR TERATOLOGY 2003; 67:98-107. [PMID: 12769505 DOI: 10.1002/bdra.10005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Using vital dyes, we have previously shown that while hyperthermia (HS), 4-hydroperoxycyclophosphamide (4CP), and staurosporine (ST) induce cell death within specific tissues (e.g., neuroepithelium) of day 9 mouse embryos, cells of the heart are resistant to the cell death-inducing potential of these teratogens. Subsequent work has shown that teratogen-induced cell death is associated with activation of the mitochondrial apoptotic pathway, i.e., release of cytochrome c from mitochondria, activation/cleavage of procaspase-9, -3, and -2, inactivation of poly(ADP-ribose) polymerase, and internucleosomal fragmentation of DNA, whereas resistance to teratogen-induced cell death in the heart is associated with a failure to activate this pathway. Teratogen-induced activation of the mitochondrial apoptotic pathway is initiated between 2.5 and 5 hr after teratogens are added to the culture medium. Because both the heart and the surrounding yolk sac are essential to successful development of mouse embryos during early postimplantation mouse development, we hypothesized that cells of the yolk sac are also resistant to teratogen-induced cell death. METHODS To test our hypothesis, we cultured day 8.5 mouse conceptuses (embryo plus yolk sac) in whole embryo culture. On the morning of day 9, conceptuses were exposed to HS (43 degrees C for 15 min and then returned to 37 degrees C), 4CP (40 microM, 5-10 hr), or ST (0.5 microM 5-10 hr). At 5 and 10 hr after addition of teratogen, conceptuses were removed from culture and dissected into embryo and yolk sac. Activation of the mitochondrial apoptotic pathway was then assessed separately in embryos and yolk sacs using Western blot analysis to detect activation of procaspase-9, -3, and -2, enzyme assays to measure caspase-3-like activity, and immunohistochemistry to detect caspase-3 activation/cleavage in yolk sac cells. RESULTS Although Western blot analysis revealed that procaspase-9, -3, and -2 were activated/cleaved in the embryo as early as the 5-hr time point, activation/cleavage of these caspases could not be detected in the yolk sac at either the 5- or 10-hr time point. Using an enzyme assay, we determined that caspase-3-like activity in the yolk sac was induced 1.7-fold by HS, 4.4-fold by 4CP, and 3.3-fold by ST. This compares to the embryo in which caspase-3-like activity was induced 45-fold by HS, 26-fold by 4CP, and 45-fold by ST. Using an antibody specific for the active p17 subunit of caspase-3 and immunohistochemistry, we were able to detect a small number of yolk sac cells showing caspase-3 activation. Thus, the low-level induction of caspase-3-like activity in the yolk sac is in part related to activation/cleavage of procaspase-3. CONCLUSIONS Results presented indicate that cells of the extraembryonic yolk sac, like cells of the embryonic heart, are substantially more resistant to teratogen-induced activation of the mitochondrial apoptotic pathway and subsequent apoptosis compared to other embryonic tissues, particularly cells of the neuroepithelium.
Collapse
Affiliation(s)
- Donna Soleman
- Birth Defects Research Laboratory, Division of Genetics and Development, Department of Pediatrics, University of Washington, Seattle, Washington 98195, USA
| | | | | | | |
Collapse
|
472
|
Toder V, Fein A, Carp H, Torchinsky A. TNF-alpha in pregnancy loss and embryo maldevelopment: a mediator of detrimental stimuli or a protector of the fetoplacental unit? J Assist Reprod Genet 2003; 20:73-81. [PMID: 12688591 PMCID: PMC3455795 DOI: 10.1023/a:1021740108284] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
PURPOSE Tumor necrosis factor alpha (TNF-alpha), a multifunctional cytokine, has been identified in the ovary, oviduct, uterus, and placenta, and is expressed in embryonic tissues. For many years TNF-alpha was mainly considered to be a cytokine involved in triggering immunological pregnancy loss and as a mediator of various embryopathic stresses. However, data collected during the last decade has characterized TNF-alpha not only as a powerful activator of apoptotic, but also antiapoptotic signaling cascades, as well as revealed its regulatory role in cell proliferation. This review summarizes and conceptualizes the studies addressing TNF-alpha-activated intracellular signaling and the possible functional role of TNF-alpha in embryonic development. METHODS Studies addressing the role of TNF-alpha in intercellular signaling, in vivo studies addressing the functional role TNF-alpha in spontaneous and induced pregnancy loss, and studies addressing the role of TNF-alpha in fetal malformations were reviewed. Comparative studies in TNF-alpha knockout and TNF-alpha positive mice were performed to evaluate embryonic death, structural anomalies in fetuses, the degree of apoptosis and cell proliferation, and the activity of molecules such as caspases 3 and 8, the NF-kappaB, (RelA), IkappaBalpha in some target embryonic organs shortly after exposure to embryopathic stresses. RESULTS It is proposed that the possible essential function of TNF-alpha may be to prevent the birth of offspring with structural anomalies. CONCLUSIONS TNF-alpha will boost death signaling to kill the embryo if initial events (damages) triggered by detrimental stimuli may culminate in structural anomalies, and stimulate protective mechanisms if the repair of these damages may prevent maldevelopment.
Collapse
Affiliation(s)
- V Toder
- Department of Embryology & Teratology, Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel.
| | | | | | | |
Collapse
|
473
|
Chang DW, Yang X. Activation of procaspases by FK506 binding protein-mediated oligomerization. SCIENCE'S STKE : SIGNAL TRANSDUCTION KNOWLEDGE ENVIRONMENT 2003; 2003:PL1. [PMID: 12554853 DOI: 10.1126/stke.2003.167.pl1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Oligomerization is an important biological mechanism for regulating signal transduction. Activation of caspases during apoptosis is triggered by adaptor protein-mediated oligomerization of initiator procaspases. To facilitate the study of initiator caspase activation, a system that allows inducible activation of various caspases both in vitro and in vivo is highly desired. Here we describe such a caspase activation system that is based on FK506 binding protein (FKBP)-mediated oligomerization. The NH(2)-terminal prodomains of initiator procaspases that facilitate the interaction between procaspases and their adaptor proteins are replaced by a derivative of FKBP called Fv. The Fv-caspase fusions can then be dimerized by a synthetic divalent Fv ligand, AP20187, which binds strongly to Fv but weakly to the endogenous FKBPs. This FKBP-based system may be widely applicable to the study of the regulation and functions of caspases.
Collapse
Affiliation(s)
- David W Chang
- Abramson Family Cancer Research Institute and Department of Cancer Biology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | |
Collapse
|
474
|
Abstract
An apoptotic signal triggered by cell surface death receptors is disseminated to intracellular compartments through protein-protein interactions mediated by conserved domains such as the death effector domain (DED). A unique family of single DED-containing proteins, including DEDD and DEDD2, is targeted to the nucleolus. However, the role of DEDD/DEDD2 in apoptosis remains less understood. Here we show that DEDD and DEDD2 are highly conserved in diverse species, and that they are potent inducers of apoptosis in various cell types. Deletion analysis indicates that both the N-terminal DED domain and the C-terminal region of DEDD2 can induce apoptosis. The cell death activity of this family appears to be related to their nuclear localization. DEDD and DEDD2 bind to two tandem DED-containing caspases, caspase -8 and -10, that are engaged by death receptors. Consistent with the nuclear localization of this family, caspase-8 translocates to the nucleus during CD95-induced apoptosis. DEDD and DEDD2 also readily associate with themselves and with each other. These results suggest that DEDD and DEDD2 may be important mediators for death receptors and that they may target caspases to the nucleus.
Collapse
Affiliation(s)
- Allison Alcivar
- Abramson Family Cancer Research Institute, University of Pennsylvania School of Medicine, Philadelphia 19104, USA
| | | | | | | |
Collapse
|
475
|
Belov GA, Romanova LI, Tolskaya EA, Kolesnikova MS, Lazebnik YA, Agol VI. The major apoptotic pathway activated and suppressed by poliovirus. J Virol 2003; 77:45-56. [PMID: 12477809 PMCID: PMC140567 DOI: 10.1128/jvi.77.1.45-56.2003] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Cells respond to poliovirus infection by switching on the apoptotic program, implementation of which is usually suppressed by viral antiapoptotic functions. We show here that poliovirus infection of HeLa cells or derivatives of MCF-7 cells was accompanied by the efflux of cytochrome c from mitochondria. This efflux occurred during both abortive infection (e.g., interrupted by guanidine-HCl and ending with apoptosis) and productive infection (leading to cytopathic effect). The former type of infection, but not the latter, was accompanied by truncation of the proapoptotic protein Bid. The virus-triggered cytochrome c efflux was suppressed by overexpression of Bcl-2. Both abortive and productive infections also resulted in a decreased level of procaspase-9, as revealed by Western blotting. In the former case, this decrease was accompanied by the accumulation of a protein with the electrophoretic mobility of active caspase-9. In contrast, in the productively infected cells, the latter protein was absent but caspase-9-related polypeptides with altered mobility could be detected. Both caspase-9 and caspase-3 were shown to be essential for the development of such hallmarks of virus-induced apoptosis as chromatin condensation, DNA degradation, and nuclear fragmentation. These and some other results suggest the following scenario. Poliovirus infection activates the apoptotic pathway, involving mitochondrial damage, cytochrome c efflux, and consecutive activation of caspase-9 and caspase-3. The apoptotic signal appears to be amplified by a loop which includes secondary processing of Bid. The implementation of the apoptotic program in productively infected cells may be suppressed, however, by the viral antiapoptotic functions, which act at a step(s) downstream of the cytochrome c efflux. The suppression appears to be caused, at least in part, by aberrant processing and degradation of procaspase-9.
Collapse
Affiliation(s)
- George A Belov
- M. P. Chumakov Institute of Poliomyelitis and Viral Encephalitides, Russian Academy of Medical Sciences, Moscow Region 142782, Russia
| | | | | | | | | | | |
Collapse
|
476
|
Pei Z, Reske G, Huang Q, Hammock BD, Qi Y, Chejanovsky N. Characterization of the apoptosis suppressor protein P49 from the Spodoptera littoralis nucleopolyhedrovirus. J Biol Chem 2002; 277:48677-84. [PMID: 12324475 DOI: 10.1074/jbc.m208810200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Two antiapoptotic types of genes, iap and p35, were found in baculoviruses. P35 is a 35-kDa protein that can suppress apoptosis induced by virus infection or by diverse stimuli in vertebrates or invertebrates. iap homologues were identified in insects and mammals. Recently, we have identified sl-p49, a novel apoptosis suppressor gene and the first homologue of p35, in the genome of the Spodoptera littoralis nucleopolyhedrovirus. Here we show that sl-p49 encodes a 49-kDa protein, confirmed its primary structure that displays 48.8% identity to P35, and performed computer-assisted modeling of P49 based on the structure of P35. We demonstrated that P49 is able to inhibit insect and human effector caspases, which requires P49 cleavage at Asp(94). Finally we identified domains important for P49's antiapoptotic function that include a reactive site loop (RSL) protruding from a beta-barrel domain. RSL begins at an amphipathic alpha1 helix, traverses the beta-sheet central region, exposing Asp(94) at the apex, and rejoins the beta-barrel. Our model predicted seven alpha-helical motifs, three of them unique to P49. alpha-Helical motifs alpha(1), alpha(2), and alpha(4') were required for P49 function. The high structural homology between P49 and P35 suggests that these molecules bear a scaffold common to baculovirus "apoptotic suppressor" proteins. P49 may serve as a novel tool to analyze the contribution of different components of the caspase chain in the apoptotic response in organisms not related phylogenetically.
Collapse
Affiliation(s)
- Zifei Pei
- Entomology Department, Institute of Plant Protection, Agricultural Research Organization, the Volcani Center, POB 6, Bet Dagan, 50250 Israel
| | | | | | | | | | | |
Collapse
|
477
|
Potthoff A, Ledig S, Martin J, Jandl O, Cornberg M, Obst B, Beil W, Manns MP, Wagner S. Significance of the caspase family in Helicobacter pylori induced gastric epithelial apoptosis. Helicobacter 2002; 7:367-77. [PMID: 12485124 DOI: 10.1046/j.1523-5378.2002.00112.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND AIMS H. pylori infection results in an increased epithelial apoptosis in gastritis and duodenal ulcer patients. We investigated the role and type of activation of caspases in H. pylori-induced apoptosis in gastric epithelial cells. METHODS Differentiated human gastric cancer cells (AGS) and human gastric mucous cell primary cultures were incubated with H. pylori for 0.5-24 hours in RPMI 1640 medium, and the effects on cell viability, epithelial apoptosis, and activity of caspases were monitored. Apoptosis was analyzed by detection of DNA-fragments by Hoechst stain(R), DNA-laddering, and Histone-ELISA. Activities of caspases were determined in fluorogenic assays and by Western blotting. Cleavage of BID and release of cytochrome c were analyzed by Western blot. Significance of caspase activation was investigated by preincubation of gastric epithelial cells with cell permeable specific caspase inhibitors. RESULTS Incubation of gastric epithelial cells with H. pylori caused a time and concentration dependent induction of DNA fragmentation (3-fold increase), cleavage of BID, release of cytochrome c and a concomittant sequential activation of caspase-9 (4-fold), caspase-8 (2-fold), caspase-6 (2-fold), and caspase-3 (6-fold). No effects on caspase-1 and -7 were observed. Activation of caspases preceded the induction of DNA fragmentation. Apoptosis could be inhibited by prior incubation with the inhibitors of caspase-3, -8, and -9, but not with that of caspase-1. CONCLUSIONS Activation of certain caspases and activation of the mitochondrial apoptotic pathway are essential for H. pylori induced apoptosis in gastric epithelial cells.
Collapse
Affiliation(s)
- A Potthoff
- Department of Gastroenterology, Hepatology and Endocrinology, Medizinische Hochschule Hannover, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
478
|
Rendl M, Ban J, Mrass P, Mayer C, Lengauer B, Eckhart L, Declerq W, Tschachler E. Caspase-14 expression by epidermal keratinocytes is regulated by retinoids in a differentiation-associated manner. J Invest Dermatol 2002; 119:1150-5. [PMID: 12445205 DOI: 10.1046/j.1523-1747.2002.19532.x] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Caspase-14 is the only member of the caspase family that shows a restricted tissue expression. It is mainly confined to epidermal keratinocytes and in contrast to other caspases, is not activated during apoptosis induced by ultraviolet irradiation or cytotoxic substances. As it is cleaved under conditions leading to terminal differentiation of keratinocytes we suggested that caspase-14 plays a part in the physiologic cell death of keratinocytes leading to skin barrier formation. Here we show that retinoic acid, at concentrations inhibiting terminal differentiation of keratinocytes, strongly suppressed caspase-14 mRNA and protein expression by keratinocytes in monolayer culture and in a three-dimensional in vitro model of differentiating human epidermis (skin equivalent). By contrast, the expression of the caspases 3 and 8, which are both activated during conventional apoptosis, was increased and unchanged, respectively, after retinoic acid treatment. In addition to inhibition of differentiation in skin equivalents, retinoic acid treatment led to keratinocyte apoptosis and activation of caspase-3, both of which were undetectable in differentiated control skin equivalents. As this occurred in the absence of detectable caspase-14, our data demonstrate that caspase-14 is dispensable for keratinocyte apoptosis. The fact that in contrast to caspase-3 and caspase-8, caspase-14, similarly to other keratinocyte differentiation-associated proteins, is downregulated by retinoids, strongly suggests that this caspase, but not caspase-3 and -8, plays a part in terminal keratinocyte differentiation and skin barrier formation.
Collapse
Affiliation(s)
- Michael Rendl
- Division of Immunology, Allergy, and Infectious Diseases, Department of Dermatology, University of Vienna Medical School, Austria
| | | | | | | | | | | | | | | |
Collapse
|
479
|
Tsuchiya M, Asada A, Arita K, Utsumi T, Yoshida T, Sato EF, Utsumi K, Inoue M. Induction and mechanism of apoptotic cell death by propofol in HL-60 cells. Acta Anaesthesiol Scand 2002; 46:1068-74. [PMID: 12366500 DOI: 10.1034/j.1399-6576.2002.460903.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND Apoptosis (programmed cell death) occurs in various physiological and pathological conditions, exhibits a characteristic mechanism of intracellular sequential reaction and may be involved in determining clinical outcome. The antioxidant activity of propofol (2,6-diisopropylphenol) together with the stimulating effect of protein kinase C suggests that propofol might have the potential to modulate apoptosis. Thus, it is of both clinical interest and biomedical importance to investigate and clarify the effect and mechanism of propofol upon the intracellular reactions underlying apoptotic cell death. METHODS The effect of propofol on apoptosis was investigated using cultured human promyelocytic leukemia HL-60 cells. This well-characterized cell line is useful for the study of apoptosis because the various biochemical steps occurring during apoptosis have been well documented. RESULTS Treatment of HL-60 cells with propofol resulted in growth inhibition with the formation of apoptotic bodies in a concentration-dependent manner. DNA fragmentation and ladder formation was also observed in a concentration-dependent manner. Propofol treatment resulted in activation of caspase-3, -6, -8 and -9, thereby suggesting that cell surface death receptor activation of the caspase cascade mediates propofol-induced apoptosis with consequent formation of the cleaved product of Bid (a pro-apoptotic Bcl-2 family member protein) and activation of the mitochondrial pathway with cytosolic release of cytochrome c. CONCLUSION Propofol may induce apoptosis, which is dependent on the mechanism that activates both the cell surface death receptor pathway and the mitochondrial pathway.
Collapse
Affiliation(s)
- M Tsuchiya
- Department of Anesthesiology and Intensive Care Medicine and Department of Biochemistry and Molecular Pathology, Osaka City University Medical School, Abeno, Osaka, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
480
|
Zoog SJ, Schiller JJ, Wetter JA, Chejanovsky N, Friesen PD. Baculovirus apoptotic suppressor P49 is a substrate inhibitor of initiator caspases resistant to P35 in vivo. EMBO J 2002; 21:5130-40. [PMID: 12356729 PMCID: PMC129042 DOI: 10.1038/sj.emboj.7594736] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Caspases play a critical role in the execution of metazoan apoptosis and are thus attractive therapeutic targets for apoptosis-associated diseases. Here we report that baculovirus P49, a homolog of pancaspase inhibitor P35, prevents apoptosis in invertebrates by inhibiting an initiator caspase that is P35 insensitive. Consequently P49 blocked proteolytic activation of effector caspases at a unique step upstream from that affected by P35 but downstream from inhibitor of apoptosis Op-IAP. Like P35, P49 was cleaved by and stably associated with its caspase target. Ectopically expressed P49 blocked apoptosis in cultured cells from a phylogenetically distinct organism, Drosophila melanogaster. Furthermore, P49 inhibited human caspase-9, demonstrating its capacity to affect a vertebrate initiator caspase. Thus, P49 is a substrate inhibitor with a novel in vivo specificity for a P35-insensitive initiator caspase that functions at an evolutionarily conserved step in the caspase cascade. These data indicate that activated initiator caspases provide another effective target for apoptotic intervention by substrate inhibitors.
Collapse
Affiliation(s)
- Stephen J. Zoog
- Institute for Molecular Virology, and Department of Biochemistry, Graduate School and College of Agricultural and Life Sciences, University of Wisconsin-Madison, Madison, WI 53706 and
Entomology Department, Institute of Plant Protection, Agricultural Research Organization, Bet Dagan, Israel 50250 Present address: Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT 06877, USA Present address: Department of Pediatrics, Medical School of Wisconsin, Milwaukee, WI 53226, USA Corresponding author at: Institute for Molecular Virology, R.M.Bock Laboratories, University of Wisconsin-Madison, 1525 Linden Drive, Madison, WI 53706-1596, USA e-mail:
| | - Jennifer J. Schiller
- Institute for Molecular Virology, and Department of Biochemistry, Graduate School and College of Agricultural and Life Sciences, University of Wisconsin-Madison, Madison, WI 53706 and
Entomology Department, Institute of Plant Protection, Agricultural Research Organization, Bet Dagan, Israel 50250 Present address: Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT 06877, USA Present address: Department of Pediatrics, Medical School of Wisconsin, Milwaukee, WI 53226, USA Corresponding author at: Institute for Molecular Virology, R.M.Bock Laboratories, University of Wisconsin-Madison, 1525 Linden Drive, Madison, WI 53706-1596, USA e-mail:
| | | | - Nor Chejanovsky
- Institute for Molecular Virology, and Department of Biochemistry, Graduate School and College of Agricultural and Life Sciences, University of Wisconsin-Madison, Madison, WI 53706 and
Entomology Department, Institute of Plant Protection, Agricultural Research Organization, Bet Dagan, Israel 50250 Present address: Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT 06877, USA Present address: Department of Pediatrics, Medical School of Wisconsin, Milwaukee, WI 53226, USA Corresponding author at: Institute for Molecular Virology, R.M.Bock Laboratories, University of Wisconsin-Madison, 1525 Linden Drive, Madison, WI 53706-1596, USA e-mail:
| | - Paul D. Friesen
- Institute for Molecular Virology, and Department of Biochemistry, Graduate School and College of Agricultural and Life Sciences, University of Wisconsin-Madison, Madison, WI 53706 and
Entomology Department, Institute of Plant Protection, Agricultural Research Organization, Bet Dagan, Israel 50250 Present address: Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT 06877, USA Present address: Department of Pediatrics, Medical School of Wisconsin, Milwaukee, WI 53226, USA Corresponding author at: Institute for Molecular Virology, R.M.Bock Laboratories, University of Wisconsin-Madison, 1525 Linden Drive, Madison, WI 53706-1596, USA e-mail:
| |
Collapse
|
481
|
Salgado J, García-Sáez AJ, Malet G, Mingarro I, Pérez-Payá E. Peptides in apoptosis research. J Pept Sci 2002; 8:543-60. [PMID: 12450324 DOI: 10.1002/psc.414] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Apoptosis is a complex process that plays a central role in physiological and pathological cell death. This fast evolving research area has experienced incredible development in the past few years. Progress in the knowledge of the structure of many of the main molecular actors of the apoptotic signal transduction pathways has driven the design of synthetic peptides that in some cases can function as simplified versions of their parent proteins. These molecules are contributing to a better understanding of the activity and regulation of apoptotic proteins and also are setting the basis for the discovery of effective drugs to combat important diseases related to apoptosis. Most applications of peptides in apoptosis research are so far related to caspases, caspase regulatory proteins, such as LAPs and Smac, and proteins of the Bcl-2 family. Additionally, important perspectives are open to other systems, such as the macromolecular assemblies that are responsible for the activation of initiator caspases.
Collapse
Affiliation(s)
- Jesús Salgado
- Departament de Bíoquimica i Biologia Molecular, Universitat de València, E-461 00 Burjassot, Valencia, Spain
| | | | | | | | | |
Collapse
|
482
|
Zoog SJ, Schiller JJ, Wetter JA, Chejanovsky N, Friesen PD. Baculovirus apoptotic suppressor P49 is a substrate inhibitor of initiator caspases resistant to P35 in vivo. EMBO J 2002; 21:5130-5140. [PMID: 12356729 PMCID: PMC129042 DOI: 10.1093/emboj/cdf520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2002] [Revised: 08/07/2002] [Accepted: 08/14/2002] [Indexed: 06/01/2023] Open
Abstract
Caspases play a critical role in the execution of metazoan apoptosis and are thus attractive therapeutic targets for apoptosis-associated diseases. Here we report that baculovirus P49, a homolog of pancaspase inhibitor P35, prevents apoptosis in invertebrates by inhibiting an initiator caspase that is P35 insensitive. Consequently P49 blocked proteolytic activation of effector caspases at a unique step upstream from that affected by P35 but downstream from inhibitor of apoptosis Op-IAP. Like P35, P49 was cleaved by and stably associated with its caspase target. Ectopically expressed P49 blocked apoptosis in cultured cells from a phylogenetically distinct organism, Drosophila melanogaster. Furthermore, P49 inhibited human caspase-9, demonstrating its capacity to affect a vertebrate initiator caspase. Thus, P49 is a substrate inhibitor with a novel in vivo specificity for a P35-insensitive initiator caspase that functions at an evolutionarily conserved step in the caspase cascade. These data indicate that activated initiator caspases provide another effective target for apoptotic intervention by substrate inhibitors.
Collapse
Affiliation(s)
- Stephen J. Zoog
- Institute for Molecular Virology, and Department of Biochemistry, Graduate School and College of Agricultural and Life Sciences, University of Wisconsin-Madison, Madison, WI 53706 and
Entomology Department, Institute of Plant Protection, Agricultural Research Organization, Bet Dagan, Israel 50250 Present address: Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT 06877, USA Present address: Department of Pediatrics, Medical School of Wisconsin, Milwaukee, WI 53226, USA Corresponding author at: Institute for Molecular Virology, R.M.Bock Laboratories, University of Wisconsin-Madison, 1525 Linden Drive, Madison, WI 53706-1596, USA e-mail:
| | - Jennifer J. Schiller
- Institute for Molecular Virology, and Department of Biochemistry, Graduate School and College of Agricultural and Life Sciences, University of Wisconsin-Madison, Madison, WI 53706 and
Entomology Department, Institute of Plant Protection, Agricultural Research Organization, Bet Dagan, Israel 50250 Present address: Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT 06877, USA Present address: Department of Pediatrics, Medical School of Wisconsin, Milwaukee, WI 53226, USA Corresponding author at: Institute for Molecular Virology, R.M.Bock Laboratories, University of Wisconsin-Madison, 1525 Linden Drive, Madison, WI 53706-1596, USA e-mail:
| | | | - Nor Chejanovsky
- Institute for Molecular Virology, and Department of Biochemistry, Graduate School and College of Agricultural and Life Sciences, University of Wisconsin-Madison, Madison, WI 53706 and
Entomology Department, Institute of Plant Protection, Agricultural Research Organization, Bet Dagan, Israel 50250 Present address: Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT 06877, USA Present address: Department of Pediatrics, Medical School of Wisconsin, Milwaukee, WI 53226, USA Corresponding author at: Institute for Molecular Virology, R.M.Bock Laboratories, University of Wisconsin-Madison, 1525 Linden Drive, Madison, WI 53706-1596, USA e-mail:
| | - Paul D. Friesen
- Institute for Molecular Virology, and Department of Biochemistry, Graduate School and College of Agricultural and Life Sciences, University of Wisconsin-Madison, Madison, WI 53706 and
Entomology Department, Institute of Plant Protection, Agricultural Research Organization, Bet Dagan, Israel 50250 Present address: Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT 06877, USA Present address: Department of Pediatrics, Medical School of Wisconsin, Milwaukee, WI 53226, USA Corresponding author at: Institute for Molecular Virology, R.M.Bock Laboratories, University of Wisconsin-Madison, 1525 Linden Drive, Madison, WI 53706-1596, USA e-mail:
| |
Collapse
|
483
|
Diehn M, Alizadeh AA, Rando OJ, Liu CL, Stankunas K, Botstein D, Crabtree GR, Brown PO. Genomic expression programs and the integration of the CD28 costimulatory signal in T cell activation. Proc Natl Acad Sci U S A 2002; 99:11796-801. [PMID: 12195013 PMCID: PMC129348 DOI: 10.1073/pnas.092284399] [Citation(s) in RCA: 258] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Optimal activation of T cells requires effective occupancy of both the antigen-specific T cell receptor and a second coreceptor such as CD28. We used cDNA microarrays to characterize the genomic expression program in human peripheral T cells responding to stimulation of these receptors. We found that CD28 agonists alone elicited few, but reproducible, changes in gene expression, whereas CD3 agonists elicited a multifaceted temporally choreographed gene expression program. The principal effect of simultaneous engagement of CD28 was to increase the amplitude of the CD3 transcriptional response. The induced genes whose expression was most enhanced by costimulation were significantly enriched for known targets of nuclear factor of activated T cells (NFAT) transcription factors. This enhancement was nearly abolished by blocking the nuclear translocation of NFATc by using the calcineurin inhibitor FK506. CD28 signaling promoted phosphorylation, and thus inactivation, of the NFAT nuclear export kinase glycogen synthase kinase-3 (GSK3), coincident with enhanced dephosphorylation of NFATc proteins. These results provide a detailed picture of the transcriptional program of T cell activation and suggest that enhancement of transcriptional activation by NFAT, through inhibition of its nuclear export, plays a key role in mediating the CD28 costimulatory signal.
Collapse
Affiliation(s)
- Maximilian Diehn
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | | | | | | | | | | |
Collapse
|
484
|
Wu X, Daniels T, Molinaro C, Lilly MB, Casiano CA. Caspase cleavage of the nuclear autoantigen LEDGF/p75 abrogates its pro-survival function: implications for autoimmunity in atopic disorders. Cell Death Differ 2002; 9:915-25. [PMID: 12181742 DOI: 10.1038/sj.cdd.4401063] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2001] [Revised: 02/28/2002] [Accepted: 03/27/2002] [Indexed: 11/08/2022] Open
Abstract
Lens epithelium-derived growth factor p75 (LEDGF/p75) is a nuclear autoantigen in atopic disorders implicated in cellular protection against stress-induced apoptosis. We observed that LEDGF/p75 was cleaved during apoptosis into fragments of 65 and 58 kD generated by caspases-3 and -7 cleaving at three sites: DEVPD30/G, DAQD486/G and WEID85/N. Sequence analysis revealed that the DEVPD30/G and WEID85/N sites lie within the highly conserved HATH (homologous to amino terminus of hepatoma-derived growth factor) region, also known as PWWP domain. Alignment of proteins containing this domain failed to reveal conservation of the DEVPD30/G and WEID85/N sites, suggesting that the HATH/PWWP domain of LEDGF/p75 may be specifically targeted by caspases. Overexpression of LEDGF/p75 protected HepG2 cells from serum starvation-induced cell death, whereas expression of the 65 kD fragment failed to protect. The apoptotic cleavage of LEDGF/p75 may contribute to the pathogenesis of atopic disorders by abrogating its pro-survival function and enhancing its immunogenicity.
Collapse
Affiliation(s)
- X Wu
- Department of Biochemistry and Microbiology, Center for Molecular Biology and Gene Therapy, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA
| | | | | | | | | |
Collapse
|
485
|
Lu Y, Luo Z, Bregman DB. RNA polymerase II large subunit is cleaved by caspases during DNA damage-induced apoptosis. Biochem Biophys Res Commun 2002; 296:954-61. [PMID: 12200141 DOI: 10.1016/s0006-291x(02)02028-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
UV radiation induces DNA lesions that are repaired by the nucleotide excision repair (NER) pathway. Cells that are NER deficient such as those derived from xeroderma pigmentosum (XP) patients are susceptible to apoptosis after 10J/m(2) UV radiation, a dose largely survivable by repair proficient cells. Herein, we report that RNA polymerase II large subunit (RNAP II-LS) undergoes caspase-mediated cleavage, yielding a 140kDa C-terminal fragment in XP lymphoblasts but not NER proficient lymphoblasts after 10J/m(2) UV irradiation. Cleavage could also be induced by cisplatin or oxaliplatin, but not transplatin, an isomer of cisplatin that does not induce DNA adducts. The cleavage of RNAP II-LS was blocked by a panel of caspase inhibitors but not by proteasomal inhibitors or inhibitors of other proteases. In vitro cleavage with caspase 8 yielded the same 140kDa RNAP II-LS fragment observed in vivo. Using site-directed mutagenesis, the RNAP II-LS cleavage site was localized to an LETD sequence ending at residue 1339, which is near its C-terminal domain.
Collapse
Affiliation(s)
- Yi Lu
- Department of Pathology, Albert Einstein College of Medicine, F512, 1300 Morris Park Ave., Bronx, NY 10461, USA
| | | | | |
Collapse
|
486
|
Mouawad R, Antoine EC, Gil-Delgado M, Khayat D, Soubrane C. Serum caspase-1 levels in metastatic melanoma patients: relationship with tumour burden and non-response to biochemotherapy. Melanoma Res 2002; 12:343-8. [PMID: 12170183 DOI: 10.1097/00008390-200208000-00006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Interleukin-1beta converting enzymes (ICEs/caspases) are involved in programmed cell death (apoptosis). This study sought to quantify the caspase-1 level in metastatic malignant melanoma patients and to try to establish a correlation between the level of caspase-1 and different parameters related to this pathology. In addition, we evaluated the possible relationship between the clinical response to biochemotherapy and the caspase-1 level. The serum caspase-1 level was determined in 81 metastatic malignant melanoma patients and 50 normal volunteers using enzyme-linked immunosorbent assay (ELISA). Patients received cisplatin, recombinant interleukin-2 (Proleukin) and alpha-interferon (Roferon A) in two induction cycles, and assessment of clinical response was performed according to World Health Organization (WHO) criteria. The median caspase-1 level in melanoma patients was significantly higher (P = 0.0035) than in control samples. Interestingly, a positive correlation between caspase-1 level and the tumour burden was shown (rs = 0.629, P = 0.009). When the clinical response was taken into consideration, the level of caspase-1 was significantly higher in biochemorefractory patients compared with responding ones (P = 0.04). After treatment, the caspase-1 level remained very high in biochemorefractory patients, while in responding ones no change was observed. Furthermore, a positive correlation between the clinical response and the caspase-1 level was established (rs = 0.404, P = 0.024). In conclusion, we observed an elevated caspase-1 level in metastatic malignant melanoma patients. In addition, the correlations obtained between the caspase-1 level and both the tumour burden and the clinical response to the treatment support the concept that disrupted apoptosis pathways might be involved in the progressive disease of advanced melanoma and/or may confer resistance to treatment.
Collapse
Affiliation(s)
- R Mouawad
- Medical Oncology Department, Salpêtrière Hospital, AP-HP, 47 Boulevard de l'Hopital, 75013 Paris, France
| | | | | | | | | |
Collapse
|
487
|
Kim B, Feldman EL. Insulin-like growth factor I prevents mannitol-induced degradation of focal adhesion kinase and Akt. J Biol Chem 2002; 277:27393-400. [PMID: 12011046 DOI: 10.1074/jbc.m201963200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In our laboratory, we are interested in hyperosmolarity-induced apoptosis in neuronal cells. We have shown that high concentrations of glucose or mannitol induce apoptotic cell death in dorsal root ganglia in culture and in SH-SY5Y and SH-EP human neuroblastoma cells. Focal adhesion kinase (FAK) is a cytoplasmic tyrosine kinase that has a critical role for transmitting integrin-mediated-signals. In this study, we report that hyperosmolar treatment mediates FAK dephosphorylation and cleavage, which is prevented by insulin-like growth factor I (IGF-I) treatment. Mannitol treatment of SH-EP cells transfected with vector (SH-EP/pSFFV) results in concentration- and time-dependent dephosphorylation and degradation of FAK. Dephosphorylation and degradation of FAK are tightly correlated with apoptotic morphological changes, including the disruption of actin stress fibers, the loss of focal adhesion sites, membrane blebbing, and cell detachment. Treatment of SH-EP/pSFFV cells with IGF-I or transfection of IGF-I receptor prevents these changes. Treatment of cells with pharmacologic inhibitors of the mitogen-activated protein kinase or phosphatidylinositol 3-kinase pathways does not affect mannitol-induced FAK dephosphorylation and degradation. However, phosphatidylinositol 3-kinase is necessary for IGF-I-mediated protection against FAK alteration. Mannitol treatment also results in the degradation of Akt. Mannitol induces the activation of caspases-3 and -9 in a time course similar to the dephosphorylation and degradation of FAK. Treatment of the cells with ZVAD, a general caspase inhibitor, blocks the mannitol-induced FAK and Akt degradation as well as cell detachment and apoptosis. These results suggest that one of the pathways of mannitol-mediated apoptosis is through the degradation of FAK and Akt and that IGF-I protects the cells from apoptosis by blocking the activation of caspases, which may be responsible for the loss of FAK and Akt.
Collapse
Affiliation(s)
- Bhumsoo Kim
- Department of Neurology, University of Michigan, 200 Zina Pitcher Place, Ann Arbor, MI 48109, USA
| | | |
Collapse
|
488
|
Chang DW, Xing Z, Pan Y, Algeciras-Schimnich A, Barnhart BC, Yaish-Ohad S, Peter ME, Yang X. c-FLIP(L) is a dual function regulator for caspase-8 activation and CD95-mediated apoptosis. EMBO J 2002; 21:3704-14. [PMID: 12110583 PMCID: PMC125398 DOI: 10.1093/emboj/cdf356] [Citation(s) in RCA: 419] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Activation of the caspase cascade is a pivotal step in apoptosis and can occur via death adaptor-mediated homo-oligomerization of initiator procaspases. Here we show that c-FLIP(L), a protease-deficient caspase homolog widely regarded as an apoptosis inhibitor, is enriched in the CD95 death-inducing signaling complex (DISC) and potently promotes procaspase-8 activation through hetero-dimerization. c-FLIP(L) exerts its effect through its protease-like domain, which associates efficiently with the procaspase-8 protease domain and induces the enzymatic activity of the zymogen. Ectopic expression of c-FLIP(L) at physiologically relevant levels enhances procaspase-8 processing in the CD95 DISC and promotes apoptosis, while a decrease of c-FLIP(L) expression results in inhibition of apoptosis. c-FLIP(L) acts as an apoptosis inhibitor only at high ectopic expression levels. Thus, c-FLIP(L) defines a novel type of caspase regulator, distinct from the death adaptors, that can either promote or inhibit apoptosis.
Collapse
Affiliation(s)
- David W. Chang
- Abramson Family Cancer Research Institute and Department of Cancer Biology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104 and The Ben May Institute for Cancer Research, University of Chicago, Chicago, IL 60637, USA Present address: Department of Molecular and Cell Biology, University of California at Berkley, Berkley, CA 94720, USA Corresponding author e-mail: D.W.Chang, Z.Xing and Y.Pan contributed equally to this work
| | - Zheng Xing
- Abramson Family Cancer Research Institute and Department of Cancer Biology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104 and The Ben May Institute for Cancer Research, University of Chicago, Chicago, IL 60637, USA Present address: Department of Molecular and Cell Biology, University of California at Berkley, Berkley, CA 94720, USA Corresponding author e-mail: D.W.Chang, Z.Xing and Y.Pan contributed equally to this work
| | - Yi Pan
- Abramson Family Cancer Research Institute and Department of Cancer Biology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104 and The Ben May Institute for Cancer Research, University of Chicago, Chicago, IL 60637, USA Present address: Department of Molecular and Cell Biology, University of California at Berkley, Berkley, CA 94720, USA Corresponding author e-mail: D.W.Chang, Z.Xing and Y.Pan contributed equally to this work
| | - Alicia Algeciras-Schimnich
- Abramson Family Cancer Research Institute and Department of Cancer Biology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104 and The Ben May Institute for Cancer Research, University of Chicago, Chicago, IL 60637, USA Present address: Department of Molecular and Cell Biology, University of California at Berkley, Berkley, CA 94720, USA Corresponding author e-mail: D.W.Chang, Z.Xing and Y.Pan contributed equally to this work
| | - Bryan C. Barnhart
- Abramson Family Cancer Research Institute and Department of Cancer Biology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104 and The Ben May Institute for Cancer Research, University of Chicago, Chicago, IL 60637, USA Present address: Department of Molecular and Cell Biology, University of California at Berkley, Berkley, CA 94720, USA Corresponding author e-mail: D.W.Chang, Z.Xing and Y.Pan contributed equally to this work
| | - Shoshanit Yaish-Ohad
- Abramson Family Cancer Research Institute and Department of Cancer Biology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104 and The Ben May Institute for Cancer Research, University of Chicago, Chicago, IL 60637, USA Present address: Department of Molecular and Cell Biology, University of California at Berkley, Berkley, CA 94720, USA Corresponding author e-mail: D.W.Chang, Z.Xing and Y.Pan contributed equally to this work
| | - Marcus E. Peter
- Abramson Family Cancer Research Institute and Department of Cancer Biology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104 and The Ben May Institute for Cancer Research, University of Chicago, Chicago, IL 60637, USA Present address: Department of Molecular and Cell Biology, University of California at Berkley, Berkley, CA 94720, USA Corresponding author e-mail: D.W.Chang, Z.Xing and Y.Pan contributed equally to this work
| | - Xiaolu Yang
- Abramson Family Cancer Research Institute and Department of Cancer Biology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104 and The Ben May Institute for Cancer Research, University of Chicago, Chicago, IL 60637, USA Present address: Department of Molecular and Cell Biology, University of California at Berkley, Berkley, CA 94720, USA Corresponding author e-mail: D.W.Chang, Z.Xing and Y.Pan contributed equally to this work
| |
Collapse
|
489
|
Crane JK, Olson RA, Jones HM, Duffey ME. Release of ATP during host cell killing by enteropathogenic E. coli and its role as a secretory mediator. Am J Physiol Gastrointest Liver Physiol 2002; 283:G74-86. [PMID: 12065294 DOI: 10.1152/ajpgi.00484.2001] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Enteropathogenic Escherichia coli (EPEC) causes severe, watery diarrhea in children. We investigated ATP release during EPEC-mediated killing of human cell lines and whether released adenine nucleotides function as secretory mediators. EPEC triggered a release of ATP from all human cell lines tested: HeLa, COS-7, and T84 (colon cells) as measured using a luciferase kit. Accumulation of ATP in the supernatant medium was enhanced if an inhibitor of 5'-ectonucleotidase was included and was further enhanced if an ATP-regenerating system was added. In the presence of the inhibitor/regenerator, ATP concentrations in the supernatant medium reached 1.5-2 microM 4 h after infection with wild-type EPEC strains. In the absence of the inhibitor/regenerator system, extracellular ATP was rapidly broken down to ADP, AMP, and adenosine. Conditioned medium from EPEC-infected cells triggered a brisk chloride secretory response in intestinal tissues studied in the Ussing chamber (rabbit distal colon and T84 cell monolayers), whereas conditioned medium from uninfected cells and sterile filtrates of EPEC bacteria did not. The short-circuit current response to EPEC-conditioned medium was completely reversed by adenosine receptor blockers, such as 8-(p-sulfophenyl)-theophylline and MRS1754. EPEC killing of host cells releases ATP, which is broken down to adenosine, which in turn stimulates secretion via apical adenosine A2b receptors. These findings provide new insight into how EPEC causes watery diarrhea.
Collapse
Affiliation(s)
- John K Crane
- Department of Medicine, University at Buffalo, State University of New York, Buffalo, New York 14214, USA.
| | | | | | | |
Collapse
|
490
|
Cole KK, Perez-Polo JR. Poly(ADP-ribose) polymerase inhibition prevents both apoptotic-like delayed neuronal death and necrosis after H(2)O(2) injury. J Neurochem 2002; 82:19-29. [PMID: 12091461 DOI: 10.1046/j.1471-4159.2002.00935.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Toxic reactive oxygen species (ROS) such as hydrogen peroxide, nitric oxide, superoxide, and the hydroxyl radical are generated in a variety of neuropathological conditions and cause significant DNA damage. We determined the effects of 3-aminobenzamide (AB), an inhibitor of the DNA repair enzyme poly(ADP-ribose) polymerase (PARP), on cell death in differentiated PC12 cells, a model of sympathetic neurons, after H(2) O(2) injury. Exposure to 0.5 mm H(2) O(2) resulted in a significant decrease in intracellular NAD(H), NADP(H), and ATP levels. This injury resulted in the death of 90% of the cells with significant necrosis early (2 h) after injury and increased apoptosis (12-24 h after injury), as measured by PS exposure and the presence of cytoplasmic oligonucleosomal fragments. Treatment with 2.5 mm AB restored pyridine nucleotide and ATP levels and ameliorated cell death (65% versus 90%) by decreasing the extent of both necrosis and apoptosis. Interestingly, we observed that H(2) O(2) -induced injury caused a delayed cell death exhibiting features of apoptosis but in which caspase-3 like activity was absent. Moreover, pretreatment with AB restored caspase-3-like activity. Our results suggest that apoptosis and necrosis are both triggered by PARP overactivation, and that maintenance of cellular energy levels after injury by inhibiting PARP shifts cell death from necrosis to apoptosis.
Collapse
Affiliation(s)
- Kasie K Cole
- Department of Anatomy and Neurosciences, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-0652, USA
| | | |
Collapse
|
491
|
Abstract
A family of cysteine proteases, the caspases, plays a central role in the initiation and execution phases of apoptosis. Upon activation, these enzymes cleave specific substrates and thereby mediate many of the typical biochemical and morphological changes in apoptotic cells, such as cell shrinkage, chromatin condensation, DNA fragmentation and plasma membrane blebbing. Hence, the detection of activated caspases can be used as a biochemical marker for apoptosis. Here we review a set of methods available for characterizing and quantifying the activation of caspases, including immunoblotting, cleavage of synthetic substrates, affinity labeling and confocal microscopy. Each method is described in general terms and the advantages and disadvantages of each technique are discussed.
Collapse
Affiliation(s)
- Camilla Köhler
- Division of Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Box 210, SE-171 77 Stockholm, Sweden
| | | | | |
Collapse
|
492
|
Wu RC, Qin J, Hashimoto Y, Wong J, Xu J, Tsai SY, Tsai MJ, O'Malley BW. Regulation of SRC-3 (pCIP/ACTR/AIB-1/RAC-3/TRAM-1) Coactivator activity by I kappa B kinase. Mol Cell Biol 2002; 22:3549-61. [PMID: 11971985 PMCID: PMC133790 DOI: 10.1128/mcb.22.10.3549-3561.2002] [Citation(s) in RCA: 210] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2001] [Revised: 12/17/2001] [Accepted: 02/15/2002] [Indexed: 01/04/2023] Open
Abstract
In the past few years, many nuclear receptor coactivators have been identified and shown to be an integral part of receptor action. The most frequently studied of these coactivators are members of the steroid receptor coactivator (SRC) family, SRC-1, TIF2/GRIP1/SRC-2, and pCIP/ACTR/AIB-1/RAC-3/TRAM-1/SRC-3. In this report, we describe the biochemical purification of SRC-1 and SRC-3 protein complexes and the subsequent identification of their associated proteins by mass spectrometry. Surprisingly, we found association of SRC-3, but not SRC-1, with the I kappa B kinase (IKK). IKK is known to be responsible for the degradation of I kappa B and the subsequent activation of NF-kappa B. Since NF-kappa B plays a key role in host immunity and inflammatory responses, we therefore investigated the significance of the SRC-3-IKK complex. We demonstrated that SRC-3 was able to enhance NF-kappa B-mediated gene expression in concert with IKK. In addition, we showed that SRC-3 was phosphorylated by the IKK complex in vitro. Furthermore, elevated SRC-3 phosphorylation in vivo and translocation of SRC-3 from cytoplasm to nucleus in response to tumor necrosis factor alpha occurred in cells, suggesting control of subcellular localization of SRC-3 by phosphorylation. Finally, the hypothesis that SRC-3 is involved in NF-kappa B-mediated gene expression is further supported by the reduced expression of interferon regulatory factor 1, a well-known NF-kappa B target gene, in the spleens of SRC-3 null mutant mice. Taken together, our results not only reveal the IKK-mediated phosphorylation of SRC-3 to be a regulated event that plays an important role but also substantiate the role of SRC-3 in multiple signaling pathways.
Collapse
Affiliation(s)
- Ray-Chang Wu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
493
|
Ruckdeschel K, Mannel O, Schröttner P. Divergence of apoptosis-inducing and preventing signals in bacteria-faced macrophages through myeloid differentiation factor 88 and IL-1 receptor-associated kinase members. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 168:4601-11. [PMID: 11971008 DOI: 10.4049/jimmunol.168.9.4601] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The induction of apoptosis in host cells is a common strategy by which pathogenic bacteria interfere with the host immune response. The Yersinia enterocolitica outer protein P (YopP) inhibits activation of transcription factor NF-kappa B in macrophages, which suppresses NF-kappa B-dependent antiapoptotic activities. The simultaneous initiation of proapoptotic signaling by yersiniae infection or LPS treatment results in macrophage apoptosis. In this study, we used YopP as a tool to dissect survival- and death-inducing pathways in bacteria-faced macrophages. We cotransfected J774A.1 macrophages with expression plasmids for YopP and dominant-negative mutants of signal transmitters of the NF-kappa B cascade downstream from the LPS receptor complex. Dominant-negative myeloid differentiation factor 88 (MyD88) or IL-1R-associated kinase (IRAK) 2 diminished LPS-induced apoptosis in YopP-transfected macrophages, suggesting implication of MyD88 and IRAK2 in signaling cell death. In contrast, dominant-negative IRAK1 and TNFR-associated factor 6 (TRAF6) did not provide protection, but augmented LPS-mediated apoptosis in the absence of YopP, which indicates roles of IRAK1 and TRAF6 in the antiapoptotic signal relay of the NF-kappa B cascade. The distinct functions of IRAK members in macrophage survival were reflected by opposing effects of dominant-negative IRAK1 and IRAK2 on Y. enterocolitica-mediated apoptosis. Yersiniae- and LPS-dependent cell death were substantially attenuated by a specific caspase-8 inhibitory peptide or by dominant negative Fas-associated death domain protein (FADD). This suggests, that Yersinia-induced apoptosis involves a proapoptotic signal relay through MyD88 and IRAK2, which potentially targets the Fas-associated death domain protein/caspase-8 apoptotic pathway, whereas IRAK1 and TRAF6 counteract the bacteria-induced cytotoxic response by signaling macrophage survival.
Collapse
Affiliation(s)
- Klaus Ruckdeschel
- Max von Pettenkofer Institute for Hygiene and Medical Microbiology, Munich, Germany.
| | | | | |
Collapse
|
494
|
Mirkes PE. 2001 Warkany lecture: to die or not to die, the role of apoptosis in normal and abnormal mammalian development. TERATOLOGY 2002; 65:228-39. [PMID: 11967922 DOI: 10.1002/tera.10049] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cell death is a common and reproducible feature of the development of many mammalian tissues/organs. Two well-known examples of programmed cell death (PCD) are the cell deaths associated with fusion of the neural folds and removal of interdigital mesenchymal cells during digit formation. Like normal development, abnormal development is also associated with increased cell death in tissues/organs that develop abnormally after exposure to a wide variety of teratogens. At least in some instances, teratogens induce cell death in areas of normal PCD, suggesting that there is a link between programmed and teratogen-induced cell death. Although researchers recognized early on that cell death is an integral part of both normal and abnormal development, little was known about the mechanisms of cell death. In 1972, Kerr et al. ('72) showed conclusively that cell deaths, induced in a variety of contexts, followed a reproducible pattern, which they termed apoptosis. The next breakthrough came in the 1980s when Horvitz and his colleagues identified specific cell death genes (ced) that controlled PCD in the roundworm, Caenorhabditis elegans (C. elegans). Identification of ced genes in the roundworm quickly led to the isolation of their mammalian homologues. Subsequent research in the 1990s led to the identification of a cadre of proteins controlling cell death in mammals, i.e., receptors/ligands, caspases, cytochrome c, Apaf-1, Bcl-2 family proteins, and IAPs. Two major pathways of apoptosis have now been elucidated, the receptor-mediated and the mitochondrial apoptotic pathways. The latter pathway, induced by a wide variety of toxic agents, is activated by the release of cytochrome c from mitochondria. Cytochrome c then facilitates the activation of a caspase cascade involving caspase-9 and -3. Activation of these caspases results in the cleavage of a variety of cellular proteins leading to the orderly demise of the cell. Work from my laboratory in the last 5 years has shown that teratogens, such as hyperthermia, 4-hydroperoxycyclophosphamide, and staurosporine, induce cell death in day 9 mouse embryos by activating the mitochondrial apoptotic pathway, i.e., mitochondrial release of cytochrome c, activation of caspase-9 and -3, inactivation of poly (ADP-ribose) polymerase (PARP), and systematic degradation of DNA. Our work, as well as the work of others, has also shown that different tissues within the early post implantation mammalian embryo are differentially sensitive to the cell death inducing potential of teratogens, from exquisite sensitivity of cells in the developing central nervous system to complete resistance of cells in the developing heart. More importantly, we have shown that the resistance of heart cells is directly related to the failure to activate the mitochondrial apoptotic pathway in these cells. Thus, whether a cell dies in response to a teratogen and therefore contributes to the pathogenesis culminating in birth defects, depends, at least in part, by the cell's ability to regulate the mitochondrial apoptotic pathway. Future research aimed at understanding this regulation should provide insight not only into the mechanism of teratogen-induced cell death but also the role of cell death in the genesis of birth defects.
Collapse
Affiliation(s)
- Philip E Mirkes
- Birth Defects Research Laboratory, Division of Genetics and Development, Department of Pediatrics, University of Washington, Seattle 98195, USA.
| |
Collapse
|
495
|
Bond M, Murphy G, Bennett MR, Newby AC, Baker AH. Tissue inhibitor of metalloproteinase-3 induces a Fas-associated death domain-dependent type II apoptotic pathway. J Biol Chem 2002; 277:13787-95. [PMID: 11827969 DOI: 10.1074/jbc.m111507200] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tissue inhibitors of metalloproteinases (TIMPs) are important regulators of matrix metalloproteinase (MMP) and adamalysin metalloproteinase activity. We previously reported that overexpression of TIMP-3 inhibits MMPs and induces apoptotic cell death in a variety of cell types and demonstrated that apoptosis is mediated through the N terminus of TIMP-3, which harbors the MMP inhibitory domain. However, little is known about the mechanisms underlying TIMP-3-induced apoptosis. Here we demonstrate that overexpression of TIMP-3 induced activation of initiator caspase-8 and -9 and promoted caspase-mediated cleavage of the death substrates poly(ADP-ribose) polymerase and focal adhesion kinase. Furthermore, TIMP-3 induced mitochondrial activation as demonstrated by loss of mitochondrial membrane potential and release of cytochrome c. Intervention studies demonstrated that overexpression of Bcl-2, the anti-apoptotic mitochondrial membrane protein, or CrmA, a viral serpin inhibitor of caspase-8, completely inhibited TIMP-3-induced apoptosis. Furthermore, a dominant-negative Fas-associated death domain mutant inhibited TIMP-3-induced death substrate cleavage and apoptotic death. Taken together, these results indicate that TIMP-3 overexpression induces a type II apoptotic pathway initiated via a Fas-associated death domain-dependent mechanism.
Collapse
Affiliation(s)
- Mark Bond
- Bristol Heart Institute, Level 7, Bristol Royal Infirmary, University of Bristol, Bristol BS2 8HW, United Kingdom.
| | | | | | | | | |
Collapse
|
496
|
Feril LB, Kondo T, Zhao QL, Ogawa R. Enhancement of hyperthermia-induced apoptosis by non-thermal effects of ultrasound. Cancer Lett 2002; 178:63-70. [PMID: 11849742 DOI: 10.1016/s0304-3835(01)00826-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
To determine the effect of ultrasound on hyperthermia-induced apoptosis, we exposed U937 cells (in air-saturated suspension) to continuous 1 MHz ultrasound at intensities 0.5 or 1.0 W/cm(2), considered non-thermal and sub-threshold for inertial cavitation, while at 44.0 degrees C for 10 min. We found that 0.5 W/cm(2), in combination with hyperthermia, synergistically induced apoptosis. On the other hand, 1.0 W/cm(2) in combination with hyperthermia showed an augmented instant cell lysis but no significant change in the ratio of apoptosis. This result might be useful when apoptosis induction is desired over instant cell killing in cancer therapy.
Collapse
Affiliation(s)
- Loreto B Feril
- Department of Radiological Sciences, Faculty of Medicine, Toyama Medical and Pharmaceutical University, 2630 Sugitani, Toyama 930-0194, Japan
| | | | | | | |
Collapse
|
497
|
Mandal D, Moitra PK, Saha S, Basu J. Caspase 3 regulates phosphatidylserine externalization and phagocytosis of oxidatively stressed erythrocytes. FEBS Lett 2002; 513:184-8. [PMID: 11904147 DOI: 10.1016/s0014-5793(02)02294-9] [Citation(s) in RCA: 144] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The appearance of phosphatidylserine (PS) on the outer surface of red cells is an important signal for their uptake by macrophages. We report for the first time that procaspase 3 present in the anucleated mature human erythrocyte is activated under oxidative stress induced by t-butylhydroperoxide leading to impairment of the aminophospholipid translocase, PS externalization and increased erythrophagocytosis. This is the first report linking caspase 3 activation to inhibition of flippase activity and uptake of red cells by macrophages.
Collapse
Affiliation(s)
- Debabrata Mandal
- Department of Chemistry, Bose Institute, 93/1 Acharya Prafulla Chandra Road, 700009, Kolkata, India
| | | | | | | |
Collapse
|
498
|
Choi C, Kutsch O, Park J, Zhou T, Seol DW, Benveniste EN. Tumor necrosis factor-related apoptosis-inducing ligand induces caspase-dependent interleukin-8 expression and apoptosis in human astroglioma cells. Mol Cell Biol 2002; 22:724-36. [PMID: 11784850 PMCID: PMC133544 DOI: 10.1128/mcb.22.3.724-736.2002] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Among the tumor necrosis factor (TNF) family of cytokines, FasL and TNF-related apoptosis-inducing ligand (TRAIL) are known to induce cell death via caspase activation. Recently, other biological functions of these death ligands have been postulated in vitro and in vivo. It was previously shown that Fas ligation induces chemokine expression in human glioma cells. In this study, we investigated whether the TRAIL-DR5 system transduces signals similar to those induced by other TNF family ligands and receptors. To address this issue, two human glioma cell lines, CRT-MG and U87-MG, were used, and an agonistic antibody against DR5 (TRA-8) and human recombinant TRAIL were used to ligate DR5. We demonstrate that DR5 ligation by either TRAIL or TRA-8 induces two functional outcomes, apoptosis and expression of the chemokine interleukin-8 (IL-8); the nonspecific caspase inhibitor Boc-D-Fmk blocks both TRAIL-mediated cell death and IL-8 production; the caspase 3-specific inhibitor z-DEVD-Fmk suppresses TRAIL-mediated apoptosis but not IL-8 induction; caspase 1- and 8-specific inhibitors block both TRAIL-mediated cell death and IL-8 production; and DR5 ligation by TRAIL mediates AP-1 and NF-kappaB activation, which can be inhibited by caspase 1- and 8-specific inhibitors. These findings collectively indicate that DR5 ligation on human glioma cells leads to apoptosis and that the activation of AP-1 and NF-kappaB leads to the induction of IL-8 expression; these responses are dependent on caspase activation. Therefore, the TRAIL-DR5 system has a role not only as an inducer of apoptotic cell death but also as a transducer for proinflammatory and angiogenic signals in human brain tumors.
Collapse
MESH Headings
- Antibodies, Monoclonal/pharmacology
- Apoptosis
- Apoptosis Regulatory Proteins
- Astrocytoma/genetics
- Astrocytoma/pathology
- Astrocytoma/physiopathology
- Brain Neoplasms/genetics
- Brain Neoplasms/pathology
- Brain Neoplasms/physiopathology
- Caspase 3
- Caspases/metabolism
- Enzyme Activation
- Humans
- Interleukin-8/biosynthesis
- Interleukin-8/genetics
- Membrane Glycoproteins/antagonists & inhibitors
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/physiology
- Models, Biological
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Neoplasm/genetics
- RNA, Neoplasm/metabolism
- Receptors, TNF-Related Apoptosis-Inducing Ligand
- Receptors, Tumor Necrosis Factor/antagonists & inhibitors
- Receptors, Tumor Necrosis Factor/genetics
- Receptors, Tumor Necrosis Factor/physiology
- Signal Transduction
- TNF-Related Apoptosis-Inducing Ligand
- Transfection
- Tumor Cells, Cultured
- Tumor Necrosis Factor-alpha/antagonists & inhibitors
- Tumor Necrosis Factor-alpha/genetics
- Tumor Necrosis Factor-alpha/physiology
Collapse
Affiliation(s)
- Chulhee Choi
- Department of Cell Biology, University of Alabama at Birmingham, 35294, USA.
| | | | | | | | | | | |
Collapse
|
499
|
Anselmi C, Ettorre A, Andreassi M, Centini M, Neri P, Di Stefano A. In vitro induction of apoptosis vs. necrosis by widely used preservatives: 2-phenoxyethanol, a mixture of isothiazolinones, imidazolidinyl urea and 1,2-pentanediol. Biochem Pharmacol 2002; 63:437-53. [PMID: 11853695 DOI: 10.1016/s0006-2952(01)00910-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Preservatives are added to many final products, such as detergents, cosmetics, pharmaceuticals and vaccines. We conducted an in vitro investigation of the apoptosis- and necrosis-inducing potential of brief applications (10 min) of four common preservatives: ethylene glycol monophenyl ether, 2-phenoxyethanol (EGPE), imidazolidinyl urea (IMU), a mixture of 5-chloro-2-methyl-4-isothiazolin-3-one and 2-methyl-4-isothiazolin-3-one (CMI/MI), and 1,2-pentanediol, a "preservative-non-preservative" best known as pentylene glycol. Using HL60 cells, we monitored the kinetics of cell toxicity with the MTT test and analysed extranuclear end points of apoptosis, i.e. phosphatidylserine exposure and nuclear fragmentation. Preservative treatment resulted in a dose-dependent decrease of cell viability. The mode of cell death was dose-dependent: necrosis occurred at high concentrations while apoptosis, shown by DNA laddering, DNA sub-diploid peak and caspase-3 activation, occurred at lower concentrations 0-24hr after exposure to a single dose: CMI/MI induced apoptosis at low concentrations (0.001-0.01%) and necrosis at high concentrations (0.5-0.1%); IMU and EGPE required higher concentrations to induce apoptosis (IMU 0.01-0.1% and EGPE 0.01-0.5%) or necrosis (IMU 0.5-1% and EGPE only at 1%). PG induced apoptosis only at 5%. Externalization of PS, a hallmark of apoptosis, occurred early in HL60 treated with low concentrations of CMI/MI and EGPE and was concomitant with the subdiploid peak in HL60 treated with PG. However, it did not occur in HL60 treated with IMU. In conclusion, at appropriate concentrations, each of the four preservatives modulates the apoptotic machinery by a caspase-dependent mechanism. Thus, apoptosis could be a good parameter to evaluate the cytoxicity of these chemical compounds.
Collapse
Affiliation(s)
- Cecilia Anselmi
- Department of Pharmaceutical and Technological Science, University of Siena, Italy
| | | | | | | | | | | |
Collapse
|
500
|
Mahieux R, Pise-Masison C, Gessain A, Brady JN, Olivier R, Perret E, Misteli T, Nicot C. Arsenic trioxide induces apoptosis in human T-cell leukemia virus type 1- and type 2-infected cells by a caspase-3-dependent mechanism involving Bcl-2 cleavage. Blood 2001; 98:3762-9. [PMID: 11739184 DOI: 10.1182/blood.v98.13.3762] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Treatment of patients with adult T-cell leukemia-lymphoma (ATLL) using conventional chemotherapy has limited benefit because human T-cell leukemia virus type 1 (HTLV-1) cells are resistant to most apoptosis-inducing agents. The recent report that arsenic trioxide induces apoptosis in HTLV-1-transformed cells prompted investigation of the mechanism of action of this drug in HTLV-1 and HTLV-2 interleukin-2-independent T cells and in HTLV-1-immortalized cells or in ex vivo ATLL samples. Fluorescence-activated cell sorter analysis, fluorescence microscopy, and measures of mitochondrial membrane potential (Delta Psi m) demonstrated that arsenic trioxide alone was sufficient to induce programmed cell death in all HTLV-1 and -2 cells tested and in ATLL patient samples. I kappa B-alpha phosphorylation strongly decreased, and NF-kappa B translocation to the nucleus was abrogated. Expression of the antiapoptotic protein Bcl-X(L), whose promoter is NF-kappa B dependent, was down-regulated. The collapse of Delta Psi m and the release of cytochrome c to the cytosol resulted in the activation of caspase-3, as demonstrated by the cleavage of PARP. A specific caspase-3 inhibitor (Ac-DEVD-CHO) could reverse this phenotype. The antiapoptotic factor Bcl-2 was then cleaved, converting it to a Bax-like death effector. These results demonstrated that arsenic trioxide induces apoptosis in HTLV-1- and -2-infected cells through activation of the caspase pathway.
Collapse
Affiliation(s)
- R Mahieux
- Unité d'Epidémiologie et Physiopathologie des Virus Oncogènes, Institut Pasteur, Paris, France.
| | | | | | | | | | | | | | | |
Collapse
|