451
|
Laboissonniere LA, Martin GM, Goetz JJ, Bi R, Pope B, Weinand K, Ellson L, Fru D, Lee M, Wester AK, Liu P, Trimarchi JM. Single cell transcriptome profiling of developing chick retinal cells. J Comp Neurol 2017; 525:2735-2781. [PMID: 28510275 DOI: 10.1002/cne.24241] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 04/07/2017] [Accepted: 05/08/2017] [Indexed: 02/06/2023]
Abstract
The vertebrate retina is a specialized photosensitive tissue comprised of six neuronal and one glial cell types, each of which develops in prescribed proportions at overlapping timepoints from a common progenitor pool. While each of these cells has a specific function contributing to proper vision in the mature animal, their differential representation in the retina as well as the presence of distinctive cellular subtypes makes identifying the transcriptomic signatures that lead to each retinal cell's fate determination and development challenging. We have analyzed transcriptomes from individual cells isolated from the chick retina throughout retinogenesis. While we focused our efforts on the retinal ganglion cells, our transcriptomes of developing chick cells also contained representation from multiple retinal cell types, including photoreceptors and interneurons at different stages of development. Most interesting was the identification of transcriptomes from individual mixed lineage progenitor cells in the chick as these cells offer a window into the cell fate decision-making process. Taken together, these data sets will enable us to uncover the most critical genes acting in the steps of cell fate determination and early differentiation of various retinal cell types.
Collapse
Affiliation(s)
- Lauren A Laboissonniere
- Department of Genetics, Development and Cell Biology, 2114 Molecular Biology, Iowa State University, Ames, Iowa, 50011
| | - Gregory M Martin
- Department of Genetics, Development and Cell Biology, 2114 Molecular Biology, Iowa State University, Ames, Iowa, 50011
| | - Jillian J Goetz
- Department of Genetics, Development and Cell Biology, 2114 Molecular Biology, Iowa State University, Ames, Iowa, 50011
| | - Ran Bi
- Department of Statistics, 2117 Snedecor Hall, Iowa State University, Ames, Iowa, 50011
| | - Brock Pope
- Department of Genetics, Development and Cell Biology, 2114 Molecular Biology, Iowa State University, Ames, Iowa, 50011
| | - Kallie Weinand
- Department of Genetics, Development and Cell Biology, 2114 Molecular Biology, Iowa State University, Ames, Iowa, 50011
| | - Laura Ellson
- Department of Genetics, Development and Cell Biology, 2114 Molecular Biology, Iowa State University, Ames, Iowa, 50011
| | - Diane Fru
- Department of Genetics, Development and Cell Biology, 2114 Molecular Biology, Iowa State University, Ames, Iowa, 50011
| | - Miranda Lee
- Department of Genetics, Development and Cell Biology, 2114 Molecular Biology, Iowa State University, Ames, Iowa, 50011
| | - Andrea K Wester
- Department of Genetics, Development and Cell Biology, 2114 Molecular Biology, Iowa State University, Ames, Iowa, 50011
| | - Peng Liu
- Department of Statistics, 2117 Snedecor Hall, Iowa State University, Ames, Iowa, 50011
| | - Jeffrey M Trimarchi
- Department of Genetics, Development and Cell Biology, 2114 Molecular Biology, Iowa State University, Ames, Iowa, 50011
| |
Collapse
|
452
|
Mendoza-Santiesteban CE, Gabilondo I, Palma JA, Norcliffe-Kaufmann L, Kaufmann H. The Retina in Multiple System Atrophy: Systematic Review and Meta-Analysis. Front Neurol 2017; 8:206. [PMID: 28596752 PMCID: PMC5443142 DOI: 10.3389/fneur.2017.00206] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 04/27/2017] [Indexed: 01/16/2023] Open
Abstract
Background Multiple system atrophy (MSA) is a rare, adult-onset, rapidly progressive fatal synucleinopathy that primarily affects oligodendroglial cells in the brain. Patients with MSA only rarely have visual complaints, but recent studies of the retina using optical coherence tomography (OCT) showed atrophy of the peripapillary retinal nerve fiber layer (RNFL) and to a lesser extent the macular ganglion cell layer (GCL) complex. Methods We performed a literature review and meta-analysis according to the preferred reporting items for systematic reviews and meta-analyses guidelines for studies published before January 2017, identified through PubMed and Google Scholar databases, which reported OCT-related outcomes in patients with MSA and controls. A random-effects model was constructed. Results The meta-analysis search strategy yielded 15 articles of which 7 met the inclusion criteria. The pooled difference in the average thickness of the RNFL was −5.48 μm (95% CI, −6.23 to −4.73; p < 0.0001), indicating significant thinning in patients with MSA. The pooled results showed significant thinning in all the specific RNFL quadrants, except in the temporal RNFL quadrant, where the thickness in MSA and controls was similar [pooled difference of 1.11 µm (95% CI, −4.03 to 6.26; p = 0.67)]. This pattern of retinal damage suggests that MSA patients have preferential loss of retinal ganglion cells projecting to the magnocellular pathway (M-cells), which are mainly located in the peripheral retina and are not essential for visual acuity. Visual acuity, on the other hand, relies mostly on macular ganglion cells projecting to the parvocellular pathway (P-cells) through the temporal portion of the RNFL, which are relatively spared in MSA patients. Conclusion The retinal damage in patients with MSA differs from that observed in patients with Parkinson disease (PD). Patients with MSA have more relative preservation of temporal sector of the RNFL and less severe atrophy of the macular GCL complex. We hypothesize that in patients with MSA there is predominant damage of large myelinated optic nerve axons like those originating from the M-cells. These large axons may require higher support from oligodendrocytes. Conversely, in patients with PD, P-cells might be more affected.
Collapse
Affiliation(s)
| | - Iñigo Gabilondo
- Biocruces Health Research Institute, Neurodegenerative Diseases Group, Barakaldo, Spain
| | - Jose Alberto Palma
- Department of Neurology, Dysautonomia Center, New York University School of Medicine, New York, NY, United States
| | - Lucy Norcliffe-Kaufmann
- Department of Neurology, Dysautonomia Center, New York University School of Medicine, New York, NY, United States
| | - Horacio Kaufmann
- Department of Neurology, Dysautonomia Center, New York University School of Medicine, New York, NY, United States
| |
Collapse
|
453
|
Laboissonniere LA, Sonoda T, Lee SK, Trimarchi JM, Schmidt TM. Single-cell RNA-Seq of Defined Subsets of Retinal Ganglion Cells. J Vis Exp 2017. [PMID: 28570514 DOI: 10.3791/55229] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The discovery of cell type-specific markers can provide insight into cellular function and the origins of cellular heterogeneity. With a recent push for the improved understanding of neuronal diversity, it is important to identify genes whose expression defines various subpopulations of cells. The retina serves as an excellent model for the study of central nervous system diversity, as it is composed of multiple major cell types. The study of each major class of cells has yielded genetic markers that facilitate the identification of these populations. However, multiple subtypes of cells exist within each of these major retinal cell classes, and few of these subtypes have known genetic markers, although many have been characterized by morphology or function. A knowledge of genetic markers for individual retinal subtypes would allow for the study and mapping of brain targets related to specific visual functions and may also lend insight into the gene networks that maintain cellular diversity. Current avenues used to identify the genetic markers of subtypes possess drawbacks, such as the classification of cell types following sequencing. This presents a challenge for data analysis and requires rigorous validation methods to ensure that clusters contain cells of the same function. We propose a technique for identifying the morphology and functionality of a cell prior to isolation and sequencing, which will allow for the easier identification of subtype-specific markers. This technique may be extended to non-neuronal cell types, as well as to rare populations of cells with minor variations. This protocol yields excellent-quality data, as many of the libraries have provided read depths greater than 20 million reads for single cells. This methodology overcomes many of the hurdles presented by Single-cell RNA-Seq and may be suitable for researchers aiming to profile cell types in a straightforward and highly efficient manner.
Collapse
Affiliation(s)
| | | | - Seul Ki Lee
- Department of Neurobiology, Northwestern University
| | - Jeffrey M Trimarchi
- Department of Genetics, Development, and Cell Biology, Iowa State University;
| | | |
Collapse
|
454
|
Coimbra JP, Bertelsen MF, Manger PR. Retinal ganglion cell topography and spatial resolving power in the river hippopotamus (Hippopotamus amphibius
). J Comp Neurol 2017; 525:2499-2513. [DOI: 10.1002/cne.24179] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 01/20/2017] [Accepted: 01/23/2017] [Indexed: 11/10/2022]
Affiliation(s)
- João Paulo Coimbra
- School of Anatomical Sciences; University of the Witwatersrand; Johannesburg South Africa
| | - Mads F. Bertelsen
- Center for Zoo and Wild Animal Health, Copenhagen Zoo; Fredericksberg Denmark
| | - Paul R. Manger
- School of Anatomical Sciences; University of the Witwatersrand; Johannesburg South Africa
| |
Collapse
|
455
|
Zhang C, Kolodkin AL, Wong RO, James RE. Establishing Wiring Specificity in Visual System Circuits: From the Retina to the Brain. Annu Rev Neurosci 2017; 40:395-424. [PMID: 28460185 DOI: 10.1146/annurev-neuro-072116-031607] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The retina is a tremendously complex image processor, containing numerous cell types that form microcircuits encoding different aspects of the visual scene. Each microcircuit exhibits a distinct pattern of synaptic connectivity. The developmental mechanisms responsible for this patterning are just beginning to be revealed. Furthermore, signals processed by different retinal circuits are relayed to specific, often distinct, brain regions. Thus, much work has focused on understanding the mechanisms that wire retinal axonal projections to their appropriate central targets. Here, we highlight recently discovered cellular and molecular mechanisms that together shape stereotypic wiring patterns along the visual pathway, from within the retina to the brain. Although some mechanisms are common across circuits, others play unconventional and circuit-specific roles. Indeed, the highly organized connectivity of the visual system has greatly facilitated the discovery of novel mechanisms that establish precise synaptic connections within the nervous system.
Collapse
Affiliation(s)
- Chi Zhang
- Department of Biological Structure, University of Washington, Seattle, Washington 98195; ,
| | - Alex L Kolodkin
- Solomon H. Snyder Department of Neuroscience, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205; ,
| | - Rachel O Wong
- Department of Biological Structure, University of Washington, Seattle, Washington 98195; ,
| | - Rebecca E James
- Solomon H. Snyder Department of Neuroscience, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205; ,
| |
Collapse
|
456
|
Vidal-Sanz M, Galindo-Romero C, Valiente-Soriano FJ, Nadal-Nicolás FM, Ortin-Martinez A, Rovere G, Salinas-Navarro M, Lucas-Ruiz F, Sanchez-Migallon MC, Sobrado-Calvo P, Aviles-Trigueros M, Villegas-Pérez MP, Agudo-Barriuso M. Shared and Differential Retinal Responses against Optic Nerve Injury and Ocular Hypertension. Front Neurosci 2017; 11:235. [PMID: 28491019 PMCID: PMC5405145 DOI: 10.3389/fnins.2017.00235] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 04/07/2017] [Indexed: 12/05/2022] Open
Abstract
Glaucoma, one of the leading causes of blindness worldwide, affects primarily retinal ganglion cells (RGCs) and their axons. The pathophysiology of glaucoma is not fully understood, but it is currently believed that damage to RGC axons at the optic nerve head plays a major role. Rodent models to study glaucoma include those that mimic either ocular hypertension or optic nerve injury. Here we review the anatomical loss of the general population of RGCs (that express Brn3a; Brn3a+RGCs) and of the intrinsically photosensitive RGCs (that express melanopsin; m+RGCs) after chronic (LP-OHT) or acute (A-OHT) ocular hypertension and after complete intraorbital optic nerve transection (ONT) or crush (ONC). Our studies show that all of these insults trigger RGC death. Compared to Brn3a+RGCs, m+RGCs are more resilient to ONT, ONC, and A-OHT but not to LP-OHT. There are differences in the course of RGC loss both between these RGC types and among injuries. An important difference between the damage caused by ocular hypertension or optic nerve injury appears in the outer retina. Both axotomy and LP-OHT induce selective loss of RGCs but LP-OHT also induces a protracted loss of cone photoreceptors. This review outlines our current understanding of the anatomical changes occurring in rodent models of glaucoma and discusses the advantages of each one and their translational value.
Collapse
Affiliation(s)
- Manuel Vidal-Sanz
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia and Instituto Murciano de Investigación Biosanitaria Virgen de la ArrixacaMurcia, Spain
| | - Caridad Galindo-Romero
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia and Instituto Murciano de Investigación Biosanitaria Virgen de la ArrixacaMurcia, Spain
| | - Francisco J Valiente-Soriano
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia and Instituto Murciano de Investigación Biosanitaria Virgen de la ArrixacaMurcia, Spain
| | - Francisco M Nadal-Nicolás
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia and Instituto Murciano de Investigación Biosanitaria Virgen de la ArrixacaMurcia, Spain
| | - Arturo Ortin-Martinez
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia and Instituto Murciano de Investigación Biosanitaria Virgen de la ArrixacaMurcia, Spain
| | - Giuseppe Rovere
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia and Instituto Murciano de Investigación Biosanitaria Virgen de la ArrixacaMurcia, Spain
| | - Manuel Salinas-Navarro
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia and Instituto Murciano de Investigación Biosanitaria Virgen de la ArrixacaMurcia, Spain
| | - Fernando Lucas-Ruiz
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia and Instituto Murciano de Investigación Biosanitaria Virgen de la ArrixacaMurcia, Spain
| | - Maria C Sanchez-Migallon
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia and Instituto Murciano de Investigación Biosanitaria Virgen de la ArrixacaMurcia, Spain
| | - Paloma Sobrado-Calvo
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia and Instituto Murciano de Investigación Biosanitaria Virgen de la ArrixacaMurcia, Spain
| | - Marcelino Aviles-Trigueros
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia and Instituto Murciano de Investigación Biosanitaria Virgen de la ArrixacaMurcia, Spain
| | - María P Villegas-Pérez
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia and Instituto Murciano de Investigación Biosanitaria Virgen de la ArrixacaMurcia, Spain
| | - Marta Agudo-Barriuso
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia and Instituto Murciano de Investigación Biosanitaria Virgen de la ArrixacaMurcia, Spain
| |
Collapse
|
457
|
Scaling single-cell genomics from phenomenology to mechanism. Nature 2017; 541:331-338. [PMID: 28102262 DOI: 10.1038/nature21350] [Citation(s) in RCA: 521] [Impact Index Per Article: 65.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 11/14/2016] [Indexed: 02/08/2023]
Abstract
Three of the most fundamental questions in biology are how individual cells differentiate to form tissues, how tissues function in a coordinated and flexible fashion and which gene regulatory mechanisms support these processes. Single-cell genomics is opening up new ways to tackle these questions by combining the comprehensive nature of genomics with the microscopic resolution that is required to describe complex multicellular systems. Initial single-cell genomic studies provided a remarkably rich phenomenology of heterogeneous cellular states, but transforming observational studies into models of dynamics and causal mechanisms in tissues poses fresh challenges and requires stronger integration of theoretical, computational and experimental frameworks.
Collapse
|
458
|
Yu WQ, Grzywacz NM, Lee EJ, Field GD. Cell type-specific changes in retinal ganglion cell function induced by rod death and cone reorganization in rats. J Neurophysiol 2017; 118:434-454. [PMID: 28424296 PMCID: PMC5506261 DOI: 10.1152/jn.00826.2016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 04/17/2017] [Accepted: 04/17/2017] [Indexed: 02/02/2023] Open
Abstract
We have determined the impact of rod death and cone reorganization on the spatiotemporal receptive fields (RFs) and spontaneous activity of distinct retinal ganglion cell (RGC) types. We compared RGC function between healthy and retinitis pigmentosa (RP) model rats (S334ter-3) at a time when nearly all rods were lost but cones remained. This allowed us to determine the impact of rod death on cone-mediated visual signaling, a relevant time point because the diagnosis of RP frequently occurs when patients are nightblind but daytime vision persists. Following rod death, functionally distinct RGC types persisted; this indicates that parallel processing of visual input remained largely intact. However, some properties of cone-mediated responses were altered ubiquitously across RGC types, such as prolonged temporal integration and reduced spatial RF area. Other properties changed in a cell type-specific manner, such as temporal RF shape (dynamics), spontaneous activity, and direction selectivity. These observations identify the extent of functional remodeling in the retina following rod death but before cone loss. They also indicate new potential challenges to restoring normal vision by replacing lost rod photoreceptors.NEW & NOTEWORTHY This study provides novel and therapeutically relevant insights to retinal function following rod death but before cone death. To determine changes in retinal output, we used a large-scale multielectrode array to simultaneously record from hundreds of retinal ganglion cells (RGCs). These recordings of large-scale neural activity revealed that following the death of all rods, functionally distinct RGCs remain. However, the receptive field properties and spontaneous activity of these RGCs are altered in a cell type-specific manner.
Collapse
Affiliation(s)
- Wan-Qing Yu
- Neuroscience Graduate Program, University of Southern California, Los Angeles, California
| | - Norberto M Grzywacz
- Neuroscience Graduate Program, University of Southern California, Los Angeles, California.,Department of Biomedical Engineering, University of Southern California, Los Angeles, California.,Department of Electrical Engineering, University of Southern California, Los Angeles, California.,Department of Neuroscience, Department of Physics, and Graduate School of Arts and Sciences, Georgetown University, Washington, District of Columbia
| | - Eun-Jin Lee
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California.,Mary D. Allen Laboratory for Vision Research, USC Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, California; and
| | - Greg D Field
- Department of Neurobiology, Duke University School of Medicine, Durham, North Carolina
| |
Collapse
|
459
|
Vetter ML, Hitchcock PF. Report on the National Eye Institute Audacious Goals Initiative: Replacement of Retinal Ganglion Cells from Endogenous Cell Sources. Transl Vis Sci Technol 2017; 6:5. [PMID: 28316878 PMCID: PMC5354473 DOI: 10.1167/tvst.6.2.5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 12/30/2016] [Indexed: 12/22/2022] Open
Abstract
This report emerges from a workshop convened by the National Eye Institute (NEI) as part of the "Audacious Goals Initiative" (AGI). The workshop addressed the replacement of retinal ganglion cells (RGCs) from exogenous and endogenous sources, and sought to identify the gaps in our knowledge and barriers to progress in devising cellular replacement therapies for diseases where RGCs die. Here, we briefly review relevant literature regarding common diseases associated with RGC death, the genesis of RGCs in vivo, strategies for generating transplantable RGCs in vitro, and potential endogenous cellular sources to regenerate these cells. These topics provided the clinical and scientific context for the discussion among the workshop participants and are relevant to efforts that may lead to therapeutic approaches for replacing RGCs. This report also summarizes the content of the workshop discussion, which focused on: (1) cell sources for RGC replacement and regeneration, (2) optimizing integration, survival, and synaptogenesis of new RGCs, and (3) approaches for assessing the outcomes of RGC replacement therapies. We conclude this report with a summary of recommendations, based on the workshop discussions, which may guide vision scientists seeking to develop therapies for replacing RGCs in humans.
Collapse
Affiliation(s)
- Monica L Vetter
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT, USA
| | - Peter F Hitchcock
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT, USA ; Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, USA
| | | |
Collapse
|
460
|
Scholl B, Pattadkal JJ, Rowe A, Priebe NJ. Functional characterization and spatial clustering of visual cortical neurons in the predatory grasshopper mouse Onychomys arenicola. J Neurophysiol 2017; 117:910-918. [PMID: 27927787 PMCID: PMC5338624 DOI: 10.1152/jn.00779.2016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 12/05/2016] [Indexed: 11/22/2022] Open
Abstract
Mammalian neocortical circuits are functionally organized such that the selectivity of individual neurons systematically shifts across the cortical surface, forming a continuous map. Maps of the sensory space exist in cortex, such as retinotopic maps in the visual system or tonotopic maps in the auditory system, but other functional response properties also may be similarly organized. For example, many carnivores and primates possess a map for orientation selectivity in primary visual cortex (V1), whereas mice, rabbits, and the gray squirrel lack orientation maps. In this report we show that a carnivorous rodent with predatory behaviors, the grasshopper mouse (Onychomys arenicola), lacks a canonical columnar organization of orientation preference in V1; however, neighboring neurons within 50 μm exhibit related tuning preference. Using a combination of two-photon microscopy and extracellular electrophysiology, we demonstrate that the functional organization of visual cortical neurons in the grasshopper mouse is largely the same as in the C57/BL6 laboratory mouse. We also find similarity in the selectivity for stimulus orientation, direction, and spatial frequency. Our results suggest that the properties of V1 neurons across rodent species are largely conserved.NEW & NOTEWORTHY Carnivores and primates possess a map for orientation selectivity in primary visual cortex (V1), whereas rodents and lagomorphs lack this organization. We examine, for the first time, V1 of a wild carnivorous rodent with predatory behaviors, the grasshopper mouse (Onychomys arenicola). We demonstrate the cellular organization of V1 in the grasshopper mouse is largely the same as the C57/BL6 laboratory mouse, suggesting that V1 neuron properties across rodent species are largely conserved.
Collapse
Affiliation(s)
- Benjamin Scholl
- Functional Architecture and Development of Cerebral Cortex, Max Planck Florida Institute, Jupiter, Florida
| | - Jagruti J Pattadkal
- Department of Neuroscience, The University of Texas at Austin, Austin, Texas; and
| | - Ashlee Rowe
- Department of Integrative Biology and Neuroscience Program, Michigan State University, East Lansing, Michigan
| | - Nicholas J Priebe
- Department of Neuroscience, The University of Texas at Austin, Austin, Texas; and
| |
Collapse
|
461
|
Scholl B, Rylee J, Luci JJ, Priebe NJ, Padberg J. Orientation selectivity in the visual cortex of the nine-banded armadillo. J Neurophysiol 2017; 117:1395-1406. [PMID: 28053246 DOI: 10.1152/jn.00851.2016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 01/03/2017] [Accepted: 01/03/2017] [Indexed: 12/28/2022] Open
Abstract
Orientation selectivity in primary visual cortex (V1) has been proposed to reflect a canonical computation performed by the neocortical circuitry. Although orientation selectivity has been reported in all mammals examined to date, the degree of selectivity and the functional organization of selectivity vary across mammalian clades. The differences in degree of orientation selectivity are large, from reports in marsupials that only a small subset of neurons are selective to studies in carnivores, in which it is rare to find a neuron lacking selectivity. Furthermore, the functional organization in cortex varies in that the primate and carnivore V1 is characterized by an organization in which nearby neurons share orientation preference while other mammals such as rodents and lagomorphs either lack or have only extremely weak clustering. To gain insight into the evolutionary emergence of orientation selectivity, we examined the nine-banded armadillo, a species within the early placental clade Xenarthra. Here we use a combination of neuroimaging, histological, and electrophysiological methods to identify the retinofugal pathways, locate V1, and for the first time examine the functional properties of V1 neurons in the armadillo (Dasypus novemcinctus) V1. Individual neurons were strongly sensitive to the orientation and often the direction of drifting gratings. We uncovered a wide range of orientation preferences but found a bias for horizontal gratings. The presence of strong orientation selectivity in armadillos suggests that the circuitry responsible for this computation is common to all placental mammals.NEW & NOTEWORTHY The current study shows that armadillo primary visual cortex (V1) neurons share the signature properties of V1 neurons of primates, carnivorans, and rodents. Furthermore, these neurons exhibit a degree of selectivity for stimulus orientation and motion direction similar to that found in primate V1. Our findings in armadillo visual cortex suggest that the functional properties of V1 neurons emerged early in the mammalian lineage, near the time of the divergence of marsupials.
Collapse
Affiliation(s)
| | - Johnathan Rylee
- Department of Biology, University of Central Arkansas, Conway, Arkansas
| | - Jeffrey J Luci
- Department of Neuroscience, The University of Texas at Austin, Austin, Texas; and
| | - Nicholas J Priebe
- Department of Neuroscience, The University of Texas at Austin, Austin, Texas; and.,Center for Learning and Memory, Center for Perceptual Systems, The University of Texas at Austin, Austin, Texas
| | - Jeffrey Padberg
- Department of Biology, University of Central Arkansas, Conway, Arkansas;
| |
Collapse
|
462
|
Martersteck EM, Hirokawa KE, Evarts M, Bernard A, Duan X, Li Y, Ng L, Oh SW, Ouellette B, Royall JJ, Stoecklin M, Wang Q, Zeng H, Sanes JR, Harris JA. Diverse Central Projection Patterns of Retinal Ganglion Cells. Cell Rep 2017; 18:2058-2072. [PMID: 28228269 PMCID: PMC5357325 DOI: 10.1016/j.celrep.2017.01.075] [Citation(s) in RCA: 167] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 12/09/2016] [Accepted: 01/27/2017] [Indexed: 11/27/2022] Open
Abstract
Understanding how >30 types of retinal ganglion cells (RGCs) in the mouse retina each contribute to visual processing in the brain will require more tools that label and manipulate specific RGCs. We screened and analyzed retinal expression of Cre recombinase using 88 transgenic driver lines. In many lines, Cre was expressed in multiple RGC types and retinal cell classes, but several exhibited more selective expression. We comprehensively mapped central projections from RGCs labeled in 26 Cre lines using viral tracers, high-throughput imaging, and a data processing pipeline. We identified over 50 retinorecipient regions and present a quantitative retina-to-brain connectivity map, enabling comparisons of target-specificity across lines. Projections to two major central targets were notably correlated: RGCs projecting to the outer shell or core regions of the lateral geniculate projected to superficial or deep layers within the superior colliculus, respectively. Retinal images and projection data are available online at http://connectivity.brain-map.org.
Collapse
Affiliation(s)
- Emily M Martersteck
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | | | - Mariah Evarts
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Amy Bernard
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Xin Duan
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Yang Li
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Lydia Ng
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Seung W Oh
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | | | | | | | - Quanxin Wang
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Hongkui Zeng
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Joshua R Sanes
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA.
| | - Julie A Harris
- Allen Institute for Brain Science, Seattle, WA 98109, USA.
| |
Collapse
|
463
|
Masri RA, Percival KA, Koizumi A, Martin PR, Grünert U. Survey of retinal ganglion cell morphology in marmoset. J Comp Neurol 2017; 527:236-258. [PMID: 27997691 DOI: 10.1002/cne.24157] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 11/09/2016] [Accepted: 11/09/2016] [Indexed: 01/05/2023]
Abstract
In primate retina, the midget, parasol, and small bistratified cell populations form the large majority of ganglion cells. In addition, there is a variety of low-density wide-field ganglion cell types that are less well characterized. Here we studied retinal ganglion cells in the common marmoset, Callithrix jacchus, using particle-mediated gene transfer. Ganglion cells were transfected with an expression plasmid for the postsynaptic density 95-green fluorescent protein. The retinas were processed with established immunohistochemical markers for bipolar and/or amacrine cells to determine ganglion cell dendritic stratification. In total over 500 ganglion cells were classified based on their dendritic field size, morphology, and stratification in the inner plexiform layer. Over 17 types were distinguished, including midget, parasol, broad thorny, small bistratified, large bistratified, recursive bistratified, recursive monostratified, narrow thorny, smooth monostratified, large sparse, giant sparse (melanopsin) ganglion cells, and a group that may contain several as yet uncharacterized types. Assuming each characterized type forms a hexagonal mosaic, the midget and parasol cells account for over 80% of all ganglion cells in the central retina but only ∼50% of cells in the peripheral (>2 mm) retina. We conclude that the fovea is dominated by midget and parasol cells, but outside the fovea the ganglion cell diversity in marmoset is likely as great as that reported for nonprimate retinas. Taken together, the ganglion cell types in marmoset retina resemble those described previously in macaque retina with respect to morphology, stratification, and change in proportion across the retina.
Collapse
Affiliation(s)
- Rania A Masri
- Save Sight Institute and Department of Clinical Ophthalmology, The University of Sydney, Sydney, New South Wales, Australia
| | - Kumiko A Percival
- Save Sight Institute and Department of Clinical Ophthalmology, The University of Sydney, Sydney, New South Wales, Australia
| | - Amane Koizumi
- National Institutes of Natural Sciences, Tokyo, Japan
| | - Paul R Martin
- Save Sight Institute and Department of Clinical Ophthalmology, The University of Sydney, Sydney, New South Wales, Australia.,Australian Research Council Centre of Excellence for Integrative Brain Function, The University of Sydney, Sydney, New South Wales, Australia.,School of Medical Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Ulrike Grünert
- Save Sight Institute and Department of Clinical Ophthalmology, The University of Sydney, Sydney, New South Wales, Australia.,Australian Research Council Centre of Excellence for Integrative Brain Function, The University of Sydney, Sydney, New South Wales, Australia.,School of Medical Sciences, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
464
|
Shi X, Barchini J, Ledesma HA, Koren D, Jin Y, Liu X, Wei W, Cang J. Retinal origin of direction selectivity in the superior colliculus. Nat Neurosci 2017; 20:550-558. [PMID: 28192394 PMCID: PMC5374021 DOI: 10.1038/nn.4498] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 01/11/2017] [Indexed: 12/12/2022]
Abstract
Detecting visual features in the environment such as motion direction is crucial for survival. The circuit mechanisms that give rise to direction selectivity in a major visual center, the superior colliculus (SC), are entirely unknown. Here, we optogenetically isolate the retinal inputs that individual direction-selective SC neurons receive and find that they are already selective as a result of precisely converging inputs from similarly-tuned retinal ganglion cells. The direction selective retinal input is linearly amplified by the intracollicular circuits without changing its preferred direction or level of selectivity. Finally, using 2-photon calcium imaging, we show that SC direction selectivity is dramatically reduced in transgenic mice that have decreased retinal selectivity. Together, our studies demonstrate a retinal origin of direction selectivity in the SC, and reveal a central visual deficit as a consequence of altered feature selectivity in the retina.
Collapse
Affiliation(s)
- Xuefeng Shi
- Department of Neurobiology, Northwestern University, Evanston, Illinois, USA.,Tianjin Eye Hospital, Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Institute, Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China
| | - Jad Barchini
- Department of Neurobiology, Northwestern University, Evanston, Illinois, USA.,Interdepartmental Neuroscience Program, Northwestern University, Evanston, Illinois, USA
| | | | - David Koren
- Department of Neurobiology, The University of Chicago, Chicago, Illinois, USA
| | - Yanjiao Jin
- Department of Neurobiology, Northwestern University, Evanston, Illinois, USA.,General Hospital, Tianjin Medical University, Tianjin, China
| | - Xiaorong Liu
- Department of Neurobiology, Northwestern University, Evanston, Illinois, USA.,Department of Ophthalmology, Northwestern University, Chicago, Illinois, USA
| | - Wei Wei
- Department of Neurobiology, The University of Chicago, Chicago, Illinois, USA
| | - Jianhua Cang
- Department of Neurobiology, Northwestern University, Evanston, Illinois, USA
| |
Collapse
|
465
|
Prieur DS, Rebsam A. Retinal axon guidance at the midline: Chiasmatic misrouting and consequences. Dev Neurobiol 2017; 77:844-860. [PMID: 27907266 DOI: 10.1002/dneu.22473] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 10/18/2016] [Accepted: 11/09/2016] [Indexed: 12/17/2022]
Abstract
The visual representation of the outside world relies on the appropriate connectivity between the eyes and the brain. Retinal ganglion cells are the sole neurons that send an axon from the retina to the brain, and thus the guidance decisions of retinal axons en route to their targets in the brain shape the neural circuitry that forms the basis of vision. Here, we focus on the choice made by retinal axons to cross or avoid the midline at the optic chiasm. This decision allows each brain hemisphere to receive inputs from both eyes corresponding to the same visual hemifield, and is thus crucial for binocular vision. In achiasmatic conditions, all retinal axons from one eye project to the ipsilateral brain hemisphere. In albinism, abnormal guidance of retinal axons at the optic chiasm leads to a change in the ratio of contralateral and ipsilateral projections with the consequence that each brain hemisphere receives inputs primarily from the contralateral eye instead of an almost equal distribution from both eyes in humans. In both cases, this misrouting of retinal axons leads to reduced visual acuity and poor depth perception. While this defect has been known for decades, mouse genetics have led to a better understanding of the molecular mechanisms at play in retinal axon guidance and at the origin of the guidance defect in albinism. In addition, fMRI studies on humans have now confirmed the anatomical and functional consequences of axonal misrouting at the chiasm that were previously only assumed from animal models. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 844-860, 2017.
Collapse
Affiliation(s)
- Delphine S Prieur
- Institut National de la Santé et de la Recherche Médicale, UMR-S 839, Paris, 75005, France.,Université Pierre et Marie Curie, Paris, 75005, France.,Institut du Fer à Moulin, Paris, 75005, France
| | - Alexandra Rebsam
- Institut National de la Santé et de la Recherche Médicale, UMR-S 839, Paris, 75005, France.,Université Pierre et Marie Curie, Paris, 75005, France.,Institut du Fer à Moulin, Paris, 75005, France
| |
Collapse
|
466
|
Franke K, Berens P, Schubert T, Bethge M, Euler T, Baden T. Inhibition decorrelates visual feature representations in the inner retina. Nature 2017; 542:439-444. [PMID: 28178238 PMCID: PMC5325673 DOI: 10.1038/nature21394] [Citation(s) in RCA: 155] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 01/18/2017] [Indexed: 01/25/2023]
Abstract
The retina extracts visual features for transmission to the brain. Different types of bipolar cell split the photoreceptor input into parallel channels and provide the excitatory drive for downstream visual circuits. Anatomically and genetically, mouse bipolar cell types have been described at great detail, but a similarly deep understanding of their functional diversity is lacking. By imaging light-driven glutamate release from more than 13,000 bipolar cell axon terminals in the intact retina, we here show that bipolar cell functional diversity is generated by the interplay of dendritic excitatory inputs and axonal inhibitory inputs. The resultant centre and surround components of bipolar cell receptive fields interact to decorrelate bipolar cell output in the spatial and temporal domain. Our findings highlight the importance of inhibitory circuits in generating functionally diverse excitatory pathways and suggest that decorrelation of parallel visual pathways begins already at the second synapse of the mouse visual system.
Collapse
Affiliation(s)
- Katrin Franke
- Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany.,Bernstein Centre for Computational Neuroscience, University of Tübingen, Tübingen, Germany.,Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany.,Graduate School of Neural &Behavioural Sciences, International Max Planck Research School, University of Tübingen, Tübingen, Germany
| | - Philipp Berens
- Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany.,Bernstein Centre for Computational Neuroscience, University of Tübingen, Tübingen, Germany.,Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
| | - Timm Schubert
- Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany.,Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
| | - Matthias Bethge
- Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany.,Bernstein Centre for Computational Neuroscience, University of Tübingen, Tübingen, Germany.,Institute for Theoretical Physics, University of Tübingen, Tübingen, Germany.,Max Planck Institute of Biological Cybernetics, Tübingen, Germany
| | - Thomas Euler
- Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany.,Bernstein Centre for Computational Neuroscience, University of Tübingen, Tübingen, Germany.,Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
| | - Tom Baden
- Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany.,Bernstein Centre for Computational Neuroscience, University of Tübingen, Tübingen, Germany.,Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany.,School of Life Sciences, University of Sussex, Brighton, UK
| |
Collapse
|
467
|
Coimbra JP, Manger PR. Retinal ganglion cell topography and spatial resolving power in the white rhinoceros (Ceratotherium simum). J Comp Neurol 2017; 525:2484-2498. [DOI: 10.1002/cne.24136] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 10/13/2016] [Accepted: 10/25/2016] [Indexed: 01/14/2023]
Affiliation(s)
- João Paulo Coimbra
- School of Anatomical Sciences; University of the Witwatersrand; Parktown 2193 Johannesburg South Africa
| | - Paul R. Manger
- School of Anatomical Sciences; University of the Witwatersrand; Parktown 2193 Johannesburg South Africa
| |
Collapse
|
468
|
Mani A, Schwartz GW. Circuit Mechanisms of a Retinal Ganglion Cell with Stimulus-Dependent Response Latency and Activation Beyond Its Dendrites. Curr Biol 2017; 27:471-482. [PMID: 28132812 DOI: 10.1016/j.cub.2016.12.033] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 11/10/2016] [Accepted: 12/14/2016] [Indexed: 11/18/2022]
Abstract
Center-surround antagonism has been used as the canonical model to describe receptive fields of retinal ganglion cells (RGCs) for decades. We describe a newly identified RGC type in the mouse, called the ON delayed (OND) RGC, with receptive field properties that deviate from center-surround organization. Responding with an unusually long latency to light stimulation, OND RGCs respond earlier as the visual stimulus increases in size. Furthermore, OND RGCs are excited by light falling far beyond their dendrites. We unravel details of the circuit mechanisms behind these phenomena, revealing new roles for inhibition in controlling both temporal and spatial receptive field properties. The non-canonical receptive field properties of the OND RGC-integration of long temporal and large spatial scales-suggest that unlike typical RGCs, it may encode a slowly varying, global property of the visual scene.
Collapse
Affiliation(s)
- Adam Mani
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Gregory W Schwartz
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Neurobiology, Weinberg College of Arts and Sciences, Northwestern University, Evanston, IL 60208, USA.
| |
Collapse
|
469
|
Overexpression of Brain-Derived Neurotrophic Factor Protects Large Retinal Ganglion Cells After Optic Nerve Crush in Mice. eNeuro 2017; 4:eN-NWR-0331-16. [PMID: 28101532 PMCID: PMC5240030 DOI: 10.1523/eneuro.0331-16.2016] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 12/21/2016] [Accepted: 12/28/2016] [Indexed: 12/18/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF), a neurotrophin essential for neuron survival and function, plays an important role in neuroprotection during neurodegenerative diseases. In this study, we examined whether a modest increase of retinal BDNF promotes retinal ganglion cell (RGC) survival after acute injury of the optic nerve in mice. We adopted an inducible Cre-recombinase transgenic system to up-regulate BDNF in the mouse retina and then examined RGC survival after optic nerve crush by in vivo imaging. We focused on one subtype of RGC with large soma expressing yellow fluorescent protein transgene that accounts for ∼11% of the total SMI-32-positive RGCs. The median survival time of this subgroup of SMI-32 cells was 1 week after nerve injury in control mice but 2 weeks when BDNF was up-regulated. Interestingly, we found that the survival time for RGCs taken as a whole was 2 weeks, suggesting that these large-soma RGCs are especially vulnerable to optic nerve crush injury. We also studied changes in axon number using confocal imaging, confirming first the progressive loss reported previously for wild-type mice and demonstrating that BDNF up-regulation extended axon survival. Together, our results demonstrate that the time course of RGC loss induced by optic nerve injury is type specific and that overexpression of BDNF prolongs the survival of one subgroup of SMI-32-positive RGCs.
Collapse
|
470
|
Thompson A, Gribizis A, Chen C, Crair MC. Activity-dependent development of visual receptive fields. Curr Opin Neurobiol 2017; 42:136-143. [PMID: 28088066 DOI: 10.1016/j.conb.2016.12.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 12/16/2016] [Accepted: 12/19/2016] [Indexed: 11/17/2022]
Abstract
It is widely appreciated that neuronal activity contributes to the development of brain representations of the external world. In the visual system, in particular, it is well known that activity cooperates with molecular cues to establish the topographic organization of visual maps on a macroscopic scale [1,2] (Huberman et al., 2008; Cang and Feldheim, 2013), mapping axons in a retinotopic and eye-specific manner. In recent years, significant progress has been made in elucidating the role of activity in driving the finer-scale circuit refinement that shapes the receptive fields of individual cells. In this review, we focus on these recent breakthroughs-primarily in mice, but also in other mammals where noted.
Collapse
Affiliation(s)
- Andrew Thompson
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Alexandra Gribizis
- Department of Neuroscience, Kavli Institute for Neuroscience, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Chinfei Chen
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA.
| | - Michael C Crair
- Department of Neuroscience, Kavli Institute for Neuroscience, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA.
| |
Collapse
|
471
|
Qin W, Hadjinicolaou A, Grayden DB, Meffin H, Burkitt AN, Ibbotson MR, Kameneva T. Single-compartment models of retinal ganglion cells with different electrophysiologies. NETWORK (BRISTOL, ENGLAND) 2017; 28:74-93. [PMID: 29649919 DOI: 10.1080/0954898x.2018.1455993] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
There are more than 15 different types of retinal ganglion cells (RGCs) in the mammalian retina. To model responses of RGCs to electrical stimulation, we use single-compartment Hodgkin-Huxley-type models and run simulations in the Neuron environment. We use our recently published in vitro data of different morphological cell types to constrain the model, and study the effects of electrophysiology on the cell responses separately from the effects of morphology. We find simple models that can match the spike patterns of different types of RGCs. These models, with different input-output properties, may be used in a network to study retinal network dynamics and interactions.
Collapse
Affiliation(s)
- Wei Qin
- a Department of Biomedical Engineering , The University of Melbourne , Melbourne , Australia
| | - Alex Hadjinicolaou
- b Department of Neurology, Massachusetts General Hospital , Harvard Medical School , Boston , USA
| | - David B Grayden
- a Department of Biomedical Engineering , The University of Melbourne , Melbourne , Australia
| | - Hamish Meffin
- c National Vision Research Institute , Australian College of Optometry , Melbourne , Australia
- d Department of Optometry and Vision Sciences , University of Melbourne , Melbourne , Australia
| | - Anthony N Burkitt
- a Department of Biomedical Engineering , The University of Melbourne , Melbourne , Australia
| | - Michael R Ibbotson
- c National Vision Research Institute , Australian College of Optometry , Melbourne , Australia
- d Department of Optometry and Vision Sciences , University of Melbourne , Melbourne , Australia
| | - Tatiana Kameneva
- a Department of Biomedical Engineering , The University of Melbourne , Melbourne , Australia
- e Engineering and Technology , Swinburne University of Technology , Melbourne , Australia
| |
Collapse
|
472
|
Abstract
The dorsal lateral geniculate nucleus (dLGN) of the thalamus is the principal conduit for visual information from retina to visual cortex. Viewed initially as a simple relay, recent studies in the mouse reveal far greater complexity in the way input from the retina is combined, transmitted, and processed in dLGN. Here we consider the structural and functional organization of the mouse retinogeniculate pathway by examining the patterns of retinal projections to dLGN and how they converge onto thalamocortical neurons to shape the flow of visual information to visual cortex.
Collapse
Affiliation(s)
- Daniel Kerschensteiner
- Department of Ophthalmology and Visual Sciences,Washington University School of Medicine,Saint Louis,Missouri 63110
| | - William Guido
- Department of Anatomical Sciences and Neurobiology,University of Louisville School of Medicine,Louisville,Kentucky 40292
| |
Collapse
|
473
|
Abstract
This chapter considers some of the challenges in obtaining accurate and consistent estimates of neuronal population size in the mouse retina, in order to identify the genetic control of cell number through QTL mapping and candidate gene analysis. We first discuss a variety of best practices for analyzing large numbers of recombinant inbred strains of mice over the course of a year in order to amass a satisfactory dataset for QTL mapping. We then consider the relative merits of using average cell density versus estimated total cell number as the target trait to be assessed, and why estimates of heritability may differ for these two traits when studying the retina in whole-mount preparations. Using our dataset on cell number for 12 different retinal cell types across the AXB/BXA recombinant inbred strain set as an example, we briefly review the QTL identified and their relationship to one another. Finally, we discuss our strategies for parsing QTL in order to identify prospective candidate genes, and how those candidates may in turn be dissected to identify causal regulatory or coding variants. By identifying the genetic determinants of nerve cell number in this fashion, we can then explore their roles in modulating developmental processes that underlie the formation of the retinal architecture.
Collapse
|
474
|
Aparicio JG, Hopp H, Choi A, Mandayam Comar J, Liao VC, Harutyunyan N, Lee TC. Temporal expression of CD184(CXCR4) and CD171(L1CAM) identifies distinct early developmental stages of human retinal ganglion cells in embryonic stem cell derived retina. Exp Eye Res 2017; 154:177-189. [PMID: 27867005 PMCID: PMC5359064 DOI: 10.1016/j.exer.2016.11.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 08/29/2016] [Accepted: 11/14/2016] [Indexed: 12/29/2022]
Abstract
Human retinal ganglion cells (RGCs) derived from pluripotent stem cells (PSCs) have anticipated value for human disease study, drug screening, and therapeutic applications; however, their full potential remains underdeveloped. To characterize RGCs in human embryonic stem cell (hESC) derived retinal organoids we examined RGC markers and surface antigen expression and made comparisons to human fetal retina. RGCs in both tissues exhibited CD184 and CD171 expression and distinct expression patterns of the RGC markers BRN3 and RBPMS. The retinal progenitor cells (RPCs) of retinal organoids expressed CD184, consistent with its expression in the neuroblastic layer in fetal retina. In retinal organoids CD184 expression was enhanced in RGC competent RPCs and high CD184 expression was retained on post-mitotic RGC precursors; CD171 was detected on maturing RGCs. The differential expression timing of CD184 and CD171 permits identification and enrichment of RGCs from retinal organoids at differing maturation states from committed progenitors to differentiating neurons. These observations will facilitate molecular characterization of PSC-derived RGCs during differentiation, critical knowledge for establishing the veracity of these in vitro produced cells. Furthermore, observations made in the retinal organoid model closely parallel those in human fetal retina further validating use of retinal organoid to model early retinal development.
Collapse
Affiliation(s)
- J G Aparicio
- The Vision Center, Division of Ophthalmology, and Department of Surgery, Children's Hospital Los Angeles, Los Angeles, CA, USA.
| | - H Hopp
- The Vision Center, Division of Ophthalmology, and Department of Surgery, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - A Choi
- The Vision Center, Division of Ophthalmology, and Department of Surgery, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | | | - V C Liao
- The Vision Center, Division of Ophthalmology, and Department of Surgery, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - N Harutyunyan
- The Vision Center, Division of Ophthalmology, and Department of Surgery, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - T C Lee
- The Vision Center, Division of Ophthalmology, and Department of Surgery, Children's Hospital Los Angeles, Los Angeles, CA, USA; Department of Ophthalmology and USC Eye Institute, University of Southern California, USA
| |
Collapse
|
475
|
Monavarfeshani A, Sabbagh U, Fox MA. Not a one-trick pony: Diverse connectivity and functions of the rodent lateral geniculate complex. Vis Neurosci 2017; 34:E012. [PMID: 28965517 PMCID: PMC5755970 DOI: 10.1017/s0952523817000098] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Often mislabeled as a simple relay of sensory information, the thalamus is a complicated structure with diverse functions. This diversity is exemplified by roles visual thalamus plays in processing and transmitting light-derived stimuli. Such light-derived signals are transmitted to the thalamus by retinal ganglion cells (RGCs), the sole projection neurons of the retina. Axons from RGCs innervate more than ten distinct nuclei within thalamus, including those of the lateral geniculate complex. Nuclei within the lateral geniculate complex of nocturnal rodents, which include the dorsal lateral geniculate nucleus (dLGN), ventral lateral geniculate nucleus (vLGN), and intergeniculate leaflet (IGL), are each densely innervated by retinal projections, yet, exhibit distinct cytoarchitecture and connectivity. These features suggest that each nucleus within this complex plays a unique role in processing and transmitting light-derived signals. Here, we review the diverse cytoarchitecture and connectivity of these nuclei in nocturnal rodents, in an effort to highlight roles for dLGN in vision and for vLGN and IGL in visuomotor, vestibular, ocular, and circadian function.
Collapse
Affiliation(s)
- Aboozar Monavarfeshani
- Developmental and Translational Neurobiology Center,Virginia Tech Carilion Research Institute,Roanoke,Virginia
| | - Ubadah Sabbagh
- Developmental and Translational Neurobiology Center,Virginia Tech Carilion Research Institute,Roanoke,Virginia
| | - Michael A Fox
- Developmental and Translational Neurobiology Center,Virginia Tech Carilion Research Institute,Roanoke,Virginia
| |
Collapse
|
476
|
Shekhar K, Lapan SW, Whitney IE, Tran NM, Macosko EZ, Kowalczyk M, Adiconis X, Levin JZ, Nemesh J, Goldman M, McCarroll SA, Cepko CL, Regev A, Sanes JR. Comprehensive Classification of Retinal Bipolar Neurons by Single-Cell Transcriptomics. Cell 2016; 166:1308-1323.e30. [PMID: 27565351 DOI: 10.1016/j.cell.2016.07.054] [Citation(s) in RCA: 771] [Impact Index Per Article: 85.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 06/10/2016] [Accepted: 07/28/2016] [Indexed: 12/15/2022]
Abstract
Patterns of gene expression can be used to characterize and classify neuronal types. It is challenging, however, to generate taxonomies that fulfill the essential criteria of being comprehensive, harmonizing with conventional classification schemes, and lacking superfluous subdivisions of genuine types. To address these challenges, we used massively parallel single-cell RNA profiling and optimized computational methods on a heterogeneous class of neurons, mouse retinal bipolar cells (BCs). From a population of ∼25,000 BCs, we derived a molecular classification that identified 15 types, including all types observed previously and two novel types, one of which has a non-canonical morphology and position. We validated the classification scheme and identified dozens of novel markers using methods that match molecular expression to cell morphology. This work provides a systematic methodology for achieving comprehensive molecular classification of neurons, identifies novel neuronal types, and uncovers transcriptional differences that distinguish types within a class.
Collapse
Affiliation(s)
- Karthik Shekhar
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Sylvain W Lapan
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Irene E Whitney
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02130, USA
| | - Nicholas M Tran
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02130, USA
| | - Evan Z Macosko
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | | | - Xian Adiconis
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Joshua Z Levin
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - James Nemesh
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Melissa Goldman
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Steven A McCarroll
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Constance L Cepko
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Department of Ophthalmology, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.
| | - Aviv Regev
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA; Department of Biology and Koch Institute, MIT, Cambridge, MA 02139, USA.
| | - Joshua R Sanes
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02130, USA.
| |
Collapse
|
477
|
Patel VC, Jurgens CWD, Krahe TE, Povlishock JT. Adaptive reorganization of retinogeniculate axon terminals in dorsal lateral geniculate nucleus following experimental mild traumatic brain injury. Exp Neurol 2016; 289:85-95. [PMID: 28038987 DOI: 10.1016/j.expneurol.2016.12.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 12/08/2016] [Accepted: 12/23/2016] [Indexed: 11/17/2022]
Abstract
The pathologic process in traumatic brain injury marked by delayed axonal loss, known as diffuse axonal injury (DAI), leads to partial deafferentation of neurons downstream of injured axons. This process is linked to persistent visual dysfunction following mild traumatic brain injury (mTBI), however, examination of deafferentation in humans is impossible with current technology. To investigate potential reorganization in the visual system following mTBI, we utilized the central fluid percussion injury (cFPI) mouse model of mTBI. We report that in the optic nerve of adult male C57BL/6J mice, axonal projections of retinal ganglion cells (RGCs) to their downstream thalamic target, dorsal lateral geniculate nucleus (dLGN), undergo DAI followed by scattered, widespread axon terminals loss within the dLGN at 4days post-injury. However, at 10days post-injury, significant reorganization of RGC axon terminals was found, suggestive of an adaptive neuroplastic response. While these changes persisted at 20days post-injury, the RGC axon terminal distribution did not recovery fully to sham-injury levels. Our studies also revealed that following DAI, the segregation of axon terminals from ipsilateral and contralateral eye projections remained consistent with normal adult mouse distribution. Lastly, our examination of the shell and core of dLGN suggested that different RGC subpopulations may vary in their susceptibility to injury or in their contribution to reorganization following injury. Collectively, these findings support the premise that subcortical axon terminal reorganization may contribute to recovery following mTBI, and that different neural phenotypes may vary in their contribution to this reorganization despite exposure to the same injury.
Collapse
Affiliation(s)
- Vishal C Patel
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA, USA.
| | - Christopher W D Jurgens
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA, USA.
| | - Thomas E Krahe
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA, USA.
| | - John T Povlishock
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
478
|
Cartoni R, Norsworthy MW, Bei F, Wang C, Li S, Zhang Y, Gabel CV, Schwarz TL, He Z. The Mammalian-Specific Protein Armcx1 Regulates Mitochondrial Transport during Axon Regeneration. Neuron 2016; 92:1294-1307. [PMID: 28009275 PMCID: PMC5189716 DOI: 10.1016/j.neuron.2016.10.060] [Citation(s) in RCA: 134] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 08/14/2016] [Accepted: 10/20/2016] [Indexed: 11/29/2022]
Abstract
Mitochondrial transport is crucial for neuronal and axonal physiology. However, whether and how it impacts neuronal injury responses, such as neuronal survival and axon regeneration, remain largely unknown. In an established mouse model with robust axon regeneration, we show that Armcx1, a mammalian-specific gene encoding a mitochondria-localized protein, is upregulated after axotomy in this high regeneration condition. Armcx1 overexpression enhances mitochondrial transport in adult retinal ganglion cells (RGCs). Importantly, Armcx1 also promotes both neuronal survival and axon regeneration after injury, and these effects depend on its mitochondrial localization. Furthermore, Armcx1 knockdown undermines both neuronal survival and axon regeneration in the high regenerative capacity model, further supporting a key role of Armcx1 in regulating neuronal injury responses in the adult central nervous system (CNS). Our findings suggest that Armcx1 controls mitochondrial transport during neuronal repair.
Collapse
Affiliation(s)
- Romain Cartoni
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA; Department of Neurology, Harvard Medical School, Boston, MA 02115, USA.
| | - Michael W Norsworthy
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA; Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Fengfeng Bei
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA; Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Chen Wang
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA; Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Siwei Li
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA; Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Yiling Zhang
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA; Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Christopher V Gabel
- Department of Physiology and Biophysics, Photonics Center, Boston University School of Medicine, Boston, MA 02118, USA
| | - Thomas L Schwarz
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA; Department of Neurology, Harvard Medical School, Boston, MA 02115, USA; Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA.
| | - Zhigang He
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA; Department of Neurology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
479
|
Rountree CM, Inayat S, Troy JB, Saggere L. Differential stimulation of the retina with subretinally injected exogenous neurotransmitter: A biomimetic alternative to electrical stimulation. Sci Rep 2016; 6:38505. [PMID: 27929043 PMCID: PMC5144088 DOI: 10.1038/srep38505] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 11/09/2016] [Indexed: 12/19/2022] Open
Abstract
Subretinal stimulation of the retina with neurotransmitters, the normal means of conveying visual information, is a potentially better alternative to electrical stimulation widely used in current retinal prostheses for treating blindness from photoreceptor degenerative diseases. Yet, no subretinal electrical or chemical stimulation study has stimulated the OFF and ON pathways differentially through inner retinal activation. Here, we demonstrate the feasibility of differentially stimulating retinal ganglion cells (RGCs) through the inner nuclear layer of the retina with glutamate, a primary neurotransmitter chemical, in a biomimetic way. We show that controlled pulsatile delivery of glutamate into the subsurface of explanted wild-type rat retinas elicits highly localized simultaneous inhibitory and excitatory spike rate responses in OFF and ON RGCs. We also present the spatiotemporal characteristics of RGC responses to subretinally injected glutamate and the therapeutic stimulation parameters. Our findings could pave the way for future development of a neurotransmitter-based subretinal prosthesis offering more naturalistic vision and better visual acuity than electrical prostheses.
Collapse
Affiliation(s)
- Corey M Rountree
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, USA
| | - Samsoon Inayat
- Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, Illinois 60607, USA
| | - John B Troy
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, USA
| | - Laxman Saggere
- Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, Illinois 60607, USA
| |
Collapse
|
480
|
Ipsilateral and Contralateral Retinal Ganglion Cells Express Distinct Genes during Decussation at the Optic Chiasm. eNeuro 2016; 3:eN-NWR-0169-16. [PMID: 27957530 PMCID: PMC5136615 DOI: 10.1523/eneuro.0169-16.2016] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Revised: 10/18/2016] [Accepted: 11/08/2016] [Indexed: 12/20/2022] Open
Abstract
The increasing availability of transcriptomic technologies within the last decade has facilitated high-throughput identification of gene expression differences that define distinct cell types as well as the molecular pathways that drive their specification. The retinal projection neurons, retinal ganglion cells (RGCs), can be categorized into distinct morphological and functional subtypes and by the laterality of their projections. Here, we present a method for purifying the sparse population of ipsilaterally projecting RGCs in mouse retina from their contralaterally projecting counterparts during embryonic development through rapid retrograde labeling followed by fluorescence-activated cell sorting. Through microarray analysis, we uncovered the distinct molecular signatures that define and distinguish ipsilateral and contralateral RGCs during the critical period of axonal outgrowth and decussation, with more than 300 genes differentially expressed within these two cell populations. Among the differentially expressed genes confirmed through in vivo expression validation, several genes that mark “immaturity” are expressed within postmitotic ipsilateral RGCs. Moreover, at least one complementary pair, Igf1 and Igfbp5, is upregulated in contralateral or ipsilateral RGCs, respectively, and may represent signaling pathways that determine ipsilateral versus contralateral RGC identity. Importantly, the cell cycle regulator cyclin D2 is highly expressed in peripheral ventral retina with a dynamic expression pattern that peaks during the period of ipsilateral RGC production. Thus, the molecular signatures of ipsilateral and contralateral RGCs and the mechanisms that regulate their differentiation are more diverse than previously expected.
Collapse
|
481
|
Discussion: Total Human Eye Allotransplantation: Developing Surgical Protocols for Donor and Recipient Procedures. Plast Reconstr Surg 2016; 138:1309-1310. [PMID: 27879600 DOI: 10.1097/prs.0000000000002822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
482
|
Cell type-specific expression of FoxP2 in the ferret and mouse retina. Neurosci Res 2016; 117:1-13. [PMID: 27888071 DOI: 10.1016/j.neures.2016.11.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Revised: 11/16/2016] [Accepted: 11/18/2016] [Indexed: 12/25/2022]
Abstract
Although the anatomical and physiological properties of subtypes of retinal ganglion cells (RGCs) have been extensively investigated, their molecular properties are still unclear. Here, we examined the expression patterns of FoxP2 in the retina of ferrets and mice. We found that FoxP2 was expressed in small subsets of neurons in the adult ferret retina. FoxP2-positive neurons in the ganglion cell layer were divided into two groups. Large FoxP2-positive neurons expressed Brn3a and were retrogradely labeled with cholera toxin subunit B injected into the optic nerve, indicating that they are RGCs. The soma size and the projection pattern of FoxP2-positive RGCs were consistent with those of X cells. Because we previously reported that FoxP2 was selectively expressed in X cells in the ferret lateral geniculate nucleus (LGN), our findings indicate that FoxP2 is specifically expressed in the parvocellular pathway from the retina to the LGN. Small FoxP2-positive neurons were positive for GAD65/67, suggesting that they are GABAergic amacrine cells. Most Foxp2-positive cells were RGCs in the adult mouse retina. Dendritic morphological analyses suggested that Foxp2-positive RGCs included direction-selective RGCs in mice. Thus, our findings suggest that FoxP2 is expressed in specific subtypes of RGCs in the retina of ferrets and mice.
Collapse
|
483
|
Cui Y, Wang YV, Park SJH, Demb JB, Butts DA. Divisive suppression explains high-precision firing and contrast adaptation in retinal ganglion cells. eLife 2016; 5:e19460. [PMID: 27841746 PMCID: PMC5108594 DOI: 10.7554/elife.19460] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 10/19/2016] [Indexed: 11/13/2022] Open
Abstract
Visual processing depends on specific computations implemented by complex neural circuits. Here, we present a circuit-inspired model of retinal ganglion cell computation, targeted to explain their temporal dynamics and adaptation to contrast. To localize the sources of such processing, we used recordings at the levels of synaptic input and spiking output in the in vitro mouse retina. We found that an ON-Alpha ganglion cell's excitatory synaptic inputs were described by a divisive interaction between excitation and delayed suppression, which explained nonlinear processing that was already present in ganglion cell inputs. Ganglion cell output was further shaped by spike generation mechanisms. The full model accurately predicted spike responses with unprecedented millisecond precision, and accurately described contrast adaptation of the spike train. These results demonstrate how circuit and cell-intrinsic mechanisms interact for ganglion cell function and, more generally, illustrate the power of circuit-inspired modeling of sensory processing.
Collapse
Affiliation(s)
- Yuwei Cui
- Department of Biology, University of Maryland, College Park, United States
- Program in Neuroscience and Cognitive Science, University of Maryland, College Park, United States
| | - Yanbin V Wang
- Department of Ophthalmology and Visual Science, Yale University, New Haven, United States
- Department of Cellular and Molecular Physiology, Yale University, New Haven, United States
| | - Silvia J H Park
- Department of Ophthalmology and Visual Science, Yale University, New Haven, United States
| | - Jonathan B Demb
- Department of Ophthalmology and Visual Science, Yale University, New Haven, United States
- Department of Cellular and Molecular Physiology, Yale University, New Haven, United States
| | - Daniel A Butts
- Department of Biology, University of Maryland, College Park, United States
- Program in Neuroscience and Cognitive Science, University of Maryland, College Park, United States
| |
Collapse
|
484
|
Affiliation(s)
- Arjun Krishnaswamy
- Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, Massachusetts 02138, USA.
| |
Collapse
|
485
|
Fu P, Wu Q, Hu J, Li T, Gao F. Baclofen Protects Primary Rat Retinal Ganglion Cells from Chemical Hypoxia-Induced Apoptosis Through the Akt and PERK Pathways. Front Cell Neurosci 2016; 10:255. [PMID: 27867349 PMCID: PMC5095369 DOI: 10.3389/fncel.2016.00255] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 10/18/2016] [Indexed: 12/26/2022] Open
Abstract
Retinal ganglion cells (RGCs) consume large quantities of energy to convert light information into a neuronal signal, which makes them highly susceptible to hypoxic injury. This study aimed to investigate the potential protection by baclofen, a GABAB receptor agonist of RGCs against hypoxia-induced apoptosis. Cobalt chloride (CoCl2) was applied to mimic hypoxia. Primary rat RGCs were subjected to CoCl2 with or without baclofen treatment, and RNA interference techniques were used to knock down the GABAB2 gene in the primary RGCs. The viability and apoptosis of RGCs were assessed using cell viability and terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) assays, Hoechst staining, and flow cytometry. The expression of cleaved caspase-3, bcl-2, bax, Akt, phospho-Akt, protein kinase RNA (PKR)-like ER kinase (PERK), phospho-PERK, eIF2α, phospho-eIF2α, ATF-4 and CCAAT/enhancer-binding protein homologous protein (CHOP) were measured using western blotting. GABAB2 mRNA expression was determined using quantitative real-time polymerase chain reaction (qRT-PCR) analysis. Our study revealed that CoCl2 significantly induced RGC apoptosis and that baclofen reversed these effects. CoCl2-induced reduction of Akt activity was also reversed by baclofen. Baclofen prevented the activation of the PERK pathway and the increase in CHOP expression induced by CoCl2. Knockdown of GABAB2 and the inactivation of the Akt pathway by inhibitors reduced the protective effect of baclofen on CoCl2-treated RGCs. Taken together, these results demonstrate that baclofen protects RGCs from CoCl2-induced apoptosis by increasing Akt activity and by suppressing the PERK pathway and CHOP activation.
Collapse
Affiliation(s)
- Pingping Fu
- Department of Ophthalmology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital Shanghai, China
| | - Qiang Wu
- Department of Ophthalmology, Shanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai, China; Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai, China
| | - Jianyan Hu
- Department of Ophthalmology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital Shanghai, China
| | - Tingting Li
- Department of Ophthalmology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital Shanghai, China
| | - Fengjuan Gao
- Department of Ophthalmology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital Shanghai, China
| |
Collapse
|
486
|
Pushchin I. Structure and diversity of retinal ganglion cells in steller's sculpinMyoxocephalus stelleritilesius, 1811. J Comp Neurol 2016; 525:1122-1138. [DOI: 10.1002/cne.24121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 09/10/2016] [Accepted: 09/12/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Igor Pushchin
- Laboratory of Physiology, A.V. Zhirmunsky Institute of Marine Biology, National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences; Vladivostok Russia
| |
Collapse
|
487
|
Long Y, Bordt AS, Liu WS, Davis EP, Lee SJ, Tseng L, Chuang AZ, Whitaker CM, Massey SC, Sherman MB, Marshak DW. Wide-field diffuse amacrine cells in the monkey retina contain immunoreactive Cocaine- and Amphetamine-Regulated Transcript (CART). Peptides 2016; 84:22-35. [PMID: 27568514 PMCID: PMC5037056 DOI: 10.1016/j.peptides.2016.08.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 07/19/2016] [Accepted: 08/22/2016] [Indexed: 10/21/2022]
Abstract
The goals of this study were to localize the neuropeptide Cocaine- and Amphetamine-Regulated Transcript (CART) in primate retinas and to describe the morphology, neurotransmitter content and synaptic connections of the neurons that contain it. Using in situ hybridization, light and electron microscopic immunolabeling, CART was localized to GABAergic amacrine cells in baboon retinas. The CART-positive cells had thin, varicose dendrites that gradually descended through the inner plexiform layer and ramified extensively in the innermost stratum. They resembled two types of wide-field diffuse amacrine cells that had been described previously in macaque retinas using the Golgi method and also A17, serotonin-accumulating and waterfall cells of other mammals. The CART-positive cells received synapses from rod bipolar cell axons and made synapses onto the axons in a reciprocal configuration. The CART-positive cells also received synapses from other amacrine cells. Some of these were located on their primary dendrites, and the presynaptic cells there included dopaminergic amacrine cells. Although some CART-positive somas were localized in the ganglion cell layer, they did not contain the ganglion cell marker RNA binding protein with multiple splicing (RBPMS). Based on these results and electrophysiological studies in other mammals, the CART-positive amacrine cells would be expected to play a major role in the primary rod pathway of primates, providing feedback inhibition to rod bipolar cells.
Collapse
Affiliation(s)
- Ye Long
- Department of Neurobiology and Anatomy, McGovern Medical School, Houston, TX
| | - Andrea S. Bordt
- Department of Neurobiology and Anatomy, McGovern Medical School, Houston, TX
| | - Weiley S. Liu
- Department of Neurobiology and Anatomy, McGovern Medical School, Houston, TX
| | - Elizabeth P. Davis
- Department of Neurobiology and Anatomy, McGovern Medical School, Houston, TX
| | - Stephen J. Lee
- Department of Neurobiology and Anatomy, McGovern Medical School, Houston, TX
| | - Luke Tseng
- Department of Neurobiology and Anatomy, McGovern Medical School, Houston, TX
| | - Alice Z. Chuang
- Department of Ophthalmology and Visual Science, McGovern Medical School, Houston, TX
| | | | - Stephen C. Massey
- Department of Ophthalmology and Visual Science, McGovern Medical School, Houston, TX
| | - Michael B. Sherman
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX
| | - David W. Marshak
- Department of Neurobiology and Anatomy, McGovern Medical School, Houston, TX
- Department of Ophthalmology and Visual Science, McGovern Medical School, Houston, TX
| |
Collapse
|
488
|
Struebing FL, Lee RK, Williams RW, Geisert EE. Genetic Networks in Mouse Retinal Ganglion Cells. Front Genet 2016; 7:169. [PMID: 27733864 PMCID: PMC5039302 DOI: 10.3389/fgene.2016.00169] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 09/06/2016] [Indexed: 01/17/2023] Open
Abstract
Retinal ganglion cells (RGCs) are the output neuron of the eye, transmitting visual information from the retina through the optic nerve to the brain. The importance of RGCs for vision is demonstrated in blinding diseases where RGCs are lost, such as in glaucoma or after optic nerve injury. In the present study, we hypothesize that normal RGC function is transcriptionally regulated. To test our hypothesis, we examine large retinal expression microarray datasets from recombinant inbred mouse strains in GeneNetwork and define transcriptional networks of RGCs and their subtypes. Two major and functionally distinct transcriptional networks centering around Thy1 and Tubb3 (Class III beta-tubulin) were identified. Each network is independently regulated and modulated by unique genomic loci. Meta-analysis of publically available data confirms that RGC subtypes are differentially susceptible to death, with alpha-RGCs and intrinsically photosensitive RGCs (ipRGCs) being less sensitive to cell death than other RGC subtypes in a mouse model of glaucoma.
Collapse
Affiliation(s)
- Felix L Struebing
- Department of Ophthalmology, Emory University School of Medicine Atlanta, GA, USA
| | - Richard K Lee
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine Miami, FL, USA
| | - Robert W Williams
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center Memphis, TN, USA
| | - Eldon E Geisert
- Department of Ophthalmology, Emory University School of Medicine Atlanta, GA, USA
| |
Collapse
|
489
|
He M, Tucciarone J, Lee S, Nigro MJ, Kim Y, Levine JM, Kelly SM, Krugikov I, Wu P, Chen Y, Gong L, Hou Y, Osten P, Rudy B, Huang ZJ. Strategies and Tools for Combinatorial Targeting of GABAergic Neurons in Mouse Cerebral Cortex. Neuron 2016; 91:1228-1243. [PMID: 27618674 PMCID: PMC5223593 DOI: 10.1016/j.neuron.2016.08.021] [Citation(s) in RCA: 215] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 06/30/2016] [Accepted: 08/06/2016] [Indexed: 11/23/2022]
Abstract
Systematic genetic access to GABAergic cell types will facilitate studying the function and development of inhibitory circuitry. However, single gene-driven recombinase lines mark relatively broad and heterogeneous cell populations. Although intersectional approaches improve precision, it remains unclear whether they can capture cell types defined by multiple features. Here we demonstrate that combinatorial genetic and viral approaches target restricted GABAergic subpopulations and cell types characterized by distinct laminar location, morphology, axonal projection, and electrophysiological properties. Intersectional embryonic transcription factor drivers allow finer fate mapping of progenitor pools that give rise to distinct GABAergic populations, including laminar cohorts. Conversion of progenitor fate restriction signals to constitutive recombinase expression enables viral targeting of cell types based on their lineage and birth time. Properly designed intersection, subtraction, conversion, and multi-color reporters enhance the precision and versatility of drivers and viral vectors. These strategies and tools will facilitate studying GABAergic neurons throughout the mouse brain.
Collapse
Affiliation(s)
- Miao He
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Jason Tucciarone
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Program in Neuroscience and Medical Scientist Training Program, Stony Brook University, Stony Brook, NY 11790, USA
| | - SooHyun Lee
- New York University Neuroscience Institute, NYU School of Medicine, New York, NY 10016, USA
| | - Maximiliano José Nigro
- New York University Neuroscience Institute, NYU School of Medicine, New York, NY 10016, USA
| | - Yongsoo Kim
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Jesse Maurica Levine
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Program in Neuroscience and Medical Scientist Training Program, Stony Brook University, Stony Brook, NY 11790, USA
| | - Sean Michael Kelly
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Program in Neuroscience and Medical Scientist Training Program, Stony Brook University, Stony Brook, NY 11790, USA
| | - Illya Krugikov
- New York University Neuroscience Institute, NYU School of Medicine, New York, NY 10016, USA
| | - Priscilla Wu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Yang Chen
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Ling Gong
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Yongjie Hou
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Pavel Osten
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Bernardo Rudy
- New York University Neuroscience Institute, NYU School of Medicine, New York, NY 10016, USA
| | - Z Josh Huang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
490
|
Goodman KM, Yamagata M, Jin X, Mannepalli S, Katsamba PS, Ahlsén G, Sergeeva AP, Honig B, Sanes JR, Shapiro L. Molecular basis of sidekick-mediated cell-cell adhesion and specificity. eLife 2016; 5. [PMID: 27644106 PMCID: PMC5045292 DOI: 10.7554/elife.19058] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 09/17/2016] [Indexed: 01/06/2023] Open
Abstract
Sidekick (Sdk) 1 and 2 are related immunoglobulin superfamily cell adhesion proteins required for appropriate synaptic connections between specific subtypes of retinal neurons. Sdks mediate cell-cell adhesion with homophilic specificity that underlies their neuronal targeting function. Here we report crystal structures of Sdk1 and Sdk2 ectodomain regions, revealing similar homodimers mediated by the four N-terminal immunoglobulin domains (Ig1-4), arranged in a horseshoe conformation. These Ig1-4 horseshoes interact in a novel back-to-back orientation in both homodimers through Ig1:Ig2, Ig1:Ig1 and Ig3:Ig4 interactions. Structure-guided mutagenesis results show that this canonical dimer is required for both Sdk-mediated cell aggregation (via trans interactions) and Sdk clustering in isolated cells (via cis interactions). Sdk1/Sdk2 recognition specificity is encoded across Ig1-4, with Ig1-2 conferring the majority of binding affinity and differential specificity. We suggest that competition between cis and trans interactions provides a novel mechanism to sharpen the specificity of cell-cell interactions.
Collapse
Affiliation(s)
- Kerry M Goodman
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, United States
| | - Masahito Yamagata
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States.,Center for Brain Science, Harvard University, Cambridge, United States
| | - Xiangshu Jin
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, United States.,Howard Hughes Medical Institute, Columbia University, New York, United States
| | - Seetha Mannepalli
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, United States
| | - Phinikoula S Katsamba
- Howard Hughes Medical Institute, Columbia University, New York, United States.,Department of Systems Biology, Columbia University, New York, United States
| | - Göran Ahlsén
- Howard Hughes Medical Institute, Columbia University, New York, United States.,Department of Systems Biology, Columbia University, New York, United States
| | - Alina P Sergeeva
- Howard Hughes Medical Institute, Columbia University, New York, United States.,Department of Systems Biology, Columbia University, New York, United States
| | - Barry Honig
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, United States.,Howard Hughes Medical Institute, Columbia University, New York, United States.,Department of Systems Biology, Columbia University, New York, United States.,Department of Medicine, Columbia University, New York, United States.,Zuckerman Mind Brain and Behavior Institute, Columbia University, New York, United States
| | - Joshua R Sanes
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States.,Center for Brain Science, Harvard University, Cambridge, United States
| | - Lawrence Shapiro
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, United States.,Department of Systems Biology, Columbia University, New York, United States.,Zuckerman Mind Brain and Behavior Institute, Columbia University, New York, United States
| |
Collapse
|
491
|
Kelber A. Colour in the eye of the beholder: receptor sensitivities and neural circuits underlying colour opponency and colour perception. Curr Opin Neurobiol 2016; 41:106-112. [PMID: 27649467 DOI: 10.1016/j.conb.2016.09.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 08/16/2016] [Accepted: 09/05/2016] [Indexed: 12/11/2022]
Abstract
Colour vision-the ability to discriminate spectral differences irrespective of variations in intensity-has two basic requirements: (1) photoreceptors with different spectral sensitivities, and (2) neural comparison of signals from these photoreceptors. Major progress has been made understanding the evolution of the basic stages of colour vision-opsin pigments, screening pigments, and the first neurons coding chromatic opponency, and similarities between mammals and insects point to general mechanisms. However, much work is still needed to unravel full colour pathways in various animals. While primates may have brain regions entirely dedicated to colour coding, animals with small brains, such as insects, likely combine colour information directly in parallel multisensory pathways controlling various behaviours.
Collapse
Affiliation(s)
- Almut Kelber
- Lund Vision Group, Department of Biology, Lund University, Sweden.
| |
Collapse
|
492
|
Ascoli GA, Wheeler DW. In search of a periodic table of the neurons: Axonal-dendritic circuitry as the organizing principle: Patterns of axons and dendrites within distinct anatomical parcels provide the blueprint for circuit-based neuronal classification. Bioessays 2016; 38:969-76. [PMID: 27516119 DOI: 10.1002/bies.201600067] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
No one knows yet how to organize, in a simple yet predictive form, the knowledge concerning the anatomical, biophysical, and molecular properties of neurons that are accumulating in thousands of publications every year. The situation is not dissimilar to the state of Chemistry prior to Mendeleev's tabulation of the elements. We propose that the patterns of presence or absence of axons and dendrites within known anatomical parcels may serve as the key principle to define neuron types. Just as the positions of the elements in the periodic table indicate their potential to combine into molecules, axonal and dendritic distributions provide the blueprint for network connectivity. Furthermore, among the features commonly employed to describe neurons, morphology is considerably robust to experimental conditions. At the same time, this core classification scheme is suitable for aggregating biochemical, physiological, and synaptic information.
Collapse
Affiliation(s)
- Giorgio A Ascoli
- Krasnow Institute for Advanced Study, George Mason University, Fairfax, VA, USA.
| | - Diek W Wheeler
- Krasnow Institute for Advanced Study, George Mason University, Fairfax, VA, USA
| |
Collapse
|
493
|
Mead B, Tomarev S. Evaluating retinal ganglion cell loss and dysfunction. Exp Eye Res 2016; 151:96-106. [PMID: 27523467 DOI: 10.1016/j.exer.2016.08.006] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 08/09/2016] [Accepted: 08/10/2016] [Indexed: 12/16/2022]
Abstract
Retinal ganglion cells (RGC) bear the sole responsibility of propagating visual stimuli to the brain. Their axons, which make up the optic nerve, project from the retina to the brain through the lamina cribrosa and in rodents, decussate almost entirely at the optic chiasm before synapsing at the superior colliculus. For many traumatic and degenerative ocular conditions, the dysfunction and/or loss of RGC is the primary determinant of visual loss and are the measurable endpoints in current research into experimental therapies. To actually measure these endpoints in rodent models, techniques must ascertain both the quantity of surviving RGC and their functional capacity. Quantification techniques include phenotypic markers of RGC, retrogradely transported fluorophores and morphological measurements of retinal thickness whereas functional assessments include electroretinography (flash and pattern) and visual evoked potential. The importance of the accuracy and reliability of these techniques cannot be understated, nor can the relationship between RGC death and dysfunction. The existence of up to 30 types of RGC complicates the measuring process, particularly as these may respond differently to disease and treatment. Since the above techniques may selectively identify and ignore particular subpopulations, their appropriateness as measures of RGC survival and function may be further limited. This review discusses the above techniques in the context of their subtype specificity.
Collapse
Affiliation(s)
- Ben Mead
- Section of Retinal Ganglion Cell Biology, Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Stanislav Tomarev
- Section of Retinal Ganglion Cell Biology, Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
494
|
Foldvari M, Chen DW. The intricacies of neurotrophic factor therapy for retinal ganglion cell rescue in glaucoma: a case for gene therapy. Neural Regen Res 2016; 11:875-7. [PMID: 27482199 PMCID: PMC4962568 DOI: 10.4103/1673-5374.184448] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Regeneration of damaged retinal ganglion cells (RGC) and their axons is an important aspect of reversing vision loss in glaucoma patients. While current therapies can effectively lower intraocular pressure, they do not provide extrinsic support to RGCs to actively aid in their protection and regeneration. The unmet need could be addressed by neurotrophic factor gene therapy, where plasmid DNA, encoding neurotrophic factors, is delivered to retinal cells to maintain sufficient levels of neurotrophins in the retina. In this review, we aim to describe the intricacies in the design of the therapy including: the choice of neurotrophic factor, the site and route of administration and target cell populations for gene delivery. Furthermore, we also discuss the challenges currently being faced in RGC-related therapy development with special considerations to the existence of multiple RGC subtypes and the lack of efficient and representative in vitro models for rapid and reliable screening in the drug development process.
Collapse
Affiliation(s)
- Marianna Foldvari
- School of Pharmacy, Waterloo Institute of Nanotechnology and Center for Bioengineering and Biotechnology, University of Waterloo, Waterloo, ON, Canada
| | - Ding Wen Chen
- School of Pharmacy, Waterloo Institute of Nanotechnology and Center for Bioengineering and Biotechnology, University of Waterloo, Waterloo, ON, Canada
| |
Collapse
|
495
|
Reese BE, Keeley PW. Genomic control of neuronal demographics in the retina. Prog Retin Eye Res 2016; 55:246-259. [PMID: 27492954 DOI: 10.1016/j.preteyeres.2016.07.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 07/21/2016] [Accepted: 07/28/2016] [Indexed: 12/22/2022]
Abstract
The mature retinal architecture is composed of various types of neuron, each population differing in size and constrained to particular layers, wherein the cells achieve a characteristic patterning in their local organization. These demographic features of retinal nerve cell populations are each complex traits controlled by multiple genes affecting different processes during development, and their genetic determinants can be dissected by correlating variation in these traits with their genomic architecture across recombinant-inbred mouse strains. Using such a resource, we consider how the variation in the numbers of twelve different types of retinal neuron are independent of one another, including those sharing transcriptional regulation as well as those that are synaptically-connected, each mapping to distinct genomic loci. Using the populations of two retinal interneurons, the horizontal cells and the cholinergic amacrine cells, we present in further detail examples where the variation in neuronal number, as well as the variation in mosaic patterning or in laminar positioning, each maps to discrete genomic loci where allelic variants modulating these features must be present. At those loci, we identify candidate genes which, when rendered non-functional, alter those very demographic properties, and in turn, we identify candidate coding or regulatory variants that alter protein structure or gene expression, respectively, being prospective contributors to the variation in phenotype. This forward-genetic approach provides an alternative means for dissecting the molecular genetic control of neuronal population dynamics, with each genomic locus serving as a causal anchor from which we may ultimately understand the developmental principles responsible for the control of those traits.
Collapse
Affiliation(s)
- Benjamin E Reese
- Neuroscience Research Institute, University of California, Santa Barbara, CA 93106-5060, USA; Departments of Psychological & Brain Sciences, University of California, Santa Barbara, CA 93106-9660, USA.
| | - Patrick W Keeley
- Neuroscience Research Institute, University of California, Santa Barbara, CA 93106-5060, USA; Departments of Molecular, Cellular & Developmental Biology, University of California, Santa Barbara, CA 93106-9625, USA
| |
Collapse
|
496
|
Goldberg JL, Guido W. Report on the National Eye Institute Audacious Goals Initiative: Regenerating the Optic Nerve. Invest Ophthalmol Vis Sci 2016; 57:1271-5. [PMID: 26990163 PMCID: PMC5110235 DOI: 10.1167/iovs.15-18500] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The National Eye Institute (NEI) hosted a workshop on November 19, 2014, as part of the Audacious Goals Initiative (AGI), an NEI-led effort to rapidly expand therapies for eye diseases through coordinated research funding. The central audacious goal aims to demonstrate by 2025 the restoration of usable vision in humans through the regeneration of neurons and neural connections in the eye and visual system. This workshop focused on identifying promising strategies for optic nerve regeneration. Its principal objective was to solicit input on future AGI-related funding announcements, and specifically to ask, where are we now in our scientific progress, and what progress should we reach for in the coming years? A full report was generated as a white paper posted on the NEI Web site; this report summarizes the discussion and outcomes from the meeting and serves as guidance for future funding of research that focuses on optic nerve regeneration.
Collapse
Affiliation(s)
- Jeffrey L Goldberg
- Byers Eye Institute Stanford University, Palo Alto, California, United States
| | - William Guido
- Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, Kentucky, United States
| | | |
Collapse
|
497
|
Who's lost first? Susceptibility of retinal ganglion cell types in experimental glaucoma. Exp Eye Res 2016; 158:43-50. [PMID: 27319294 DOI: 10.1016/j.exer.2016.06.006] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 06/06/2016] [Accepted: 06/09/2016] [Indexed: 01/24/2023]
Abstract
The purpose of this article is to summarize our current knowledge about the susceptibility of specific retinal ganglion cell (RGC) types in experimental glaucoma, and to delineate the initial morphological and functional alterations that occur in response to intraocular pressure (IOP) elevation. There has been debate in the field as to whether RGCs with large somata and axons are more vulnerable, with definitive conclusions still in progress because of the wide diversity of RGC types. Indeed, it is now estimated that there are greater than 30 different RGC types, and while we do not yet understand the complete details, we discuss a growing body of work that supports the selective vulnerability hypothesis of specific RGC types in experimental glaucoma. Specifically, structural and functional degeneration of various RGC types have been examined across different rodent models of experimental glaucoma (acute vs. chronic) and different strains, and an emerging consensus is that OFF RGCs appear to be more vulnerable to IOP elevation compared to ON RGCs. Understanding the mechanisms by which this selective vulnerability manifests across different RGC types should lead to novel and improved strategies for neuroprotection and neuroregeneration in glaucoma.
Collapse
|
498
|
Gramlich OW, Burand AJ, Brown AJ, Deutsch RJ, Kuehn MH, Ankrum JA. Cryopreserved Mesenchymal Stromal Cells Maintain Potency in a Retinal Ischemia/Reperfusion Injury Model: Toward an off-the-shelf Therapy. Sci Rep 2016; 6:26463. [PMID: 27212469 PMCID: PMC4876464 DOI: 10.1038/srep26463] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 05/04/2016] [Indexed: 01/01/2023] Open
Abstract
The ability to use mesenchymal stromal cells (MSC) directly out of cryostorage would significantly reduce the logistics of MSC therapy by allowing on-site cryostorage of therapeutic doses of MSC at hospitals and clinics. Such a paradigm would be especially advantageous for the treatment of acute conditions such as stroke and myocardial infarction, which are likely to require treatment within hours after ischemic onset. Recently, several reports have emerged that suggest MSC viability and potency are damaged by cryopreservation. Herein we examine the effect of cryopreservation on human MSC viability, immunomodulatory potency, growth factor secretion, and performance in an ischemia/reperfusion injury model. Using modifications of established cryopreservation methods we developed MSC that retain >95% viability upon thawing, remain responsive to inflammatory signals, and are able to suppress activated human peripheral blood mononuclear cells. Most importantly, when injected into the eyes of mice 3 hours after the onset of ischemia and 2 hours after the onset of reperfusion, cryopreserved performed as well as fresh MSC to rescue retinal ganglion cells. Thus, our data suggests when viability is maintained throughout the cryopreservation process, MSC retain their therapeutic potency in both in vitro potency assays and an in vivo ischemia/reperfusion model.
Collapse
Affiliation(s)
- Oliver W Gramlich
- Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, USA.,Center for the Prevention and Treatment of Visual Loss, Iowa City VA Health Care, Iowa City, IA, USA
| | - Anthony J Burand
- Department of Biomedical Engineering, University of Iowa, Iowa City, IA, USA.,Fraternal Order of Eagles Diabetes Research Center, Pappajohn Biomedical Institute, University of Iowa, Iowa City, IA, USA
| | - Alex J Brown
- Department of Biomedical Engineering, University of Iowa, Iowa City, IA, USA.,Fraternal Order of Eagles Diabetes Research Center, Pappajohn Biomedical Institute, University of Iowa, Iowa City, IA, USA
| | - Riley J Deutsch
- Department of Biomedical Engineering, University of Iowa, Iowa City, IA, USA.,Fraternal Order of Eagles Diabetes Research Center, Pappajohn Biomedical Institute, University of Iowa, Iowa City, IA, USA
| | - Markus H Kuehn
- Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, USA.,Center for the Prevention and Treatment of Visual Loss, Iowa City VA Health Care, Iowa City, IA, USA
| | - James A Ankrum
- Department of Biomedical Engineering, University of Iowa, Iowa City, IA, USA.,Fraternal Order of Eagles Diabetes Research Center, Pappajohn Biomedical Institute, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
499
|
Rousso DL, Qiao M, Kagan RD, Yamagata M, Palmiter RD, Sanes JR. Two Pairs of ON and OFF Retinal Ganglion Cells Are Defined by Intersectional Patterns of Transcription Factor Expression. Cell Rep 2016; 15:1930-44. [PMID: 27210758 DOI: 10.1016/j.celrep.2016.04.069] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 03/15/2016] [Accepted: 04/20/2016] [Indexed: 11/26/2022] Open
Abstract
Visual information is conveyed to the brain by axons of >30 retinal ganglion cell (RGC) types. Characterization of these types is a prerequisite to understanding visual perception. Here, we identify a family of RGCs that we call F-RGCs on the basis of expression of the transcription factor Foxp2. Intersectional expression of Foxp1 and Brn3 transcription factors divides F-RGCs into four types, comprising two pairs, each composed of closely related cells. One pair, F-mini(ON) and F-mini(OFF), shows robust direction selectivity. They are among the smallest RGCs in the mouse retina. The other pair, F-midi(ON) and F-midi(OFF), is larger and not direction selective. Together, F-RGCs comprise >20% of RGCs in the mouse retina, halving the number that remain to be classified and doubling the number of known direction-selective cells. Co-expression of Foxp and Brn3 genes also marks subsets of RGCs in macaques that could be primate homologs of F-RGCs.
Collapse
Affiliation(s)
- David L Rousso
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA
| | - Mu Qiao
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA
| | - Ruth D Kagan
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA
| | - Masahito Yamagata
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA
| | - Richard D Palmiter
- HHMI and Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Joshua R Sanes
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA.
| |
Collapse
|
500
|
Ellis EM, Gauvain G, Sivyer B, Murphy GJ. Shared and distinct retinal input to the mouse superior colliculus and dorsal lateral geniculate nucleus. J Neurophysiol 2016; 116:602-10. [PMID: 27169509 PMCID: PMC4982907 DOI: 10.1152/jn.00227.2016] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 05/10/2016] [Indexed: 11/23/2022] Open
Abstract
Our results suggest that the mouse superior colliculus (SC) has access to input from most of the retinal ganglion cells (RGCs) that innervate the dorsal lateral geniculate nucleus (dLGN). By comparison, a number of RGC types appear to innervate the SC but not the dLGN; these RGCs generally exhibit more transient responses and respond best to small stimuli. The mammalian retina conveys the vast majority of information about visual stimuli to two brain regions: the dorsal lateral geniculate nucleus (dLGN) and the superior colliculus (SC). The degree to which retinal ganglion cells (RGCs) send similar or distinct information to the two areas remains unclear despite the important constraints that different patterns of RGC input place on downstream visual processing. To resolve this ambiguity, we injected a glycoprotein-deficient rabies virus coding for the expression of a fluorescent protein into the dLGN or SC; rabies virus labeled a smaller fraction of RGCs than lipophilic dyes such as DiI but, crucially, did not label RGC axons of passage. Approximately 80% of the RGCs infected by rabies virus injected into the dLGN were colabeled with DiI injected into the SC, suggesting that many dLGN-projecting RGCs also project to the SC. However, functional characterization of RGCs revealed that the SC receives input from several classes of RGCs that largely avoid the dLGN, in particular RGCs in which 1) sustained changes in light intensity elicit transient changes in firing rate and/or 2) a small range of stimulus sizes or temporal fluctuations in light intensity elicit robust activity. Taken together, our results illustrate several unexpected asymmetries in the information that the mouse retina conveys to two major downstream targets and suggest that differences in the output of dLGN and SC neurons reflect, at least in part, differences in the functional properties of RGCs that innervate the SC but not the dLGN.
Collapse
Affiliation(s)
- Erika M Ellis
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia; and
| | - Gregory Gauvain
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia; and
| | - Benjamin Sivyer
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia; and Queensland Brain Institute, The University of Queensland, St Lucia, Queensland, Australia
| | - Gabe J Murphy
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia; and
| |
Collapse
|