501
|
Wisser KC, Schauerte JA, Burke DT, Galecki A, Chen S, Miller RA, Gafni A. Mapping tissue-specific genes correlated with age-dependent changes in protein stability and function. Arch Biochem Biophys 2004; 432:58-70. [PMID: 15519297 DOI: 10.1016/j.abb.2004.09.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2004] [Revised: 09/02/2004] [Indexed: 11/21/2022]
Abstract
Biophysical measurements indicative of protein stability and function were performed on crude extracts from liver, muscle, and lens of a genetically heterogeneous mouse population. Genetic information was used to search for quantitative trait loci (QTL) that influenced the biophysical traits, with emphasis on phenotypes that previously have been shown to be altered in aged animals. Spectroscopic and enzymatic assays of crude liver and muscle tissue extracts from approximately 600 18-month-old mice, the progeny of (BALB/cJxC57BL/6J)F1 females and (C3H/HeJxDBA/2J)F1 males, were used to measure the susceptibility of a ubiquitous glycolytic enzyme, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), to thermal denaturation. The rate constant for thermal inactivation of GAPDH correlated with markers on chromosome 5 (D5Mit79 and D5Mit251) for muscle lysates and chromosome 15 (D15Mit63 and D15Mit100) for liver tissue. The degree of variability of inactivation rate constants, a measure of the heterogeneity of muscle GAPDH in tissue extracts, was also associated with markers on chromosome 5 (D5Mit79 and D5Mit205). In addition, spectroscopic characteristics of extracted eye lens proteins were evaluated for their susceptibility to photooxidative stress. Absorbance and fluorescence emission characteristics of the lens proteins were mapped to QTL on chromosomes 5 and 15 (D5Mit25 and D15Mit171) while the degree of heterogeneity in photochemical oxidation kinetics was associated with a marker on the chromosome 8 (D8Mit42). Recent work has shown that GAPDH possesses a number of non-glycolytic functions including DNA/RNA binding and regulation of protein expression. Tissue specific differences in GAPDH stability may have significant consequences to these alternate functions during aging.
Collapse
Affiliation(s)
- Kathleen C Wisser
- Biophysics Research Division, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | | | | | | | | | | | | |
Collapse
|
502
|
Tisdale EJ, Kelly C, Artalejo CR. Glyceraldehyde-3-phosphate Dehydrogenase Interacts with Rab2 and Plays an Essential Role in Endoplasmic Reticulum to Golgi Transport Exclusive of Its Glycolytic Activity. J Biol Chem 2004; 279:54046-52. [PMID: 15485821 DOI: 10.1074/jbc.m409472200] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Rab2 requires atypical protein kinase C iota/lambda (aPKC iota/lambda) to promote vesicle formation from vesicular tubular clusters (VTCs). The Rab2-generated vesicles are enriched in recycling proteins suggesting that the carriers are retrograde-directed and retrieve transport machinery back to the endoplasmic reticulum. These vesicles also contained the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH). We have previously established that GAPDH is required for membrane transport between the endoplasmic reticulum and the Golgi complex. Moreover, GAPDH is phosphorylated by aPKC iota/lambda and binds to the aPKC iota/lambda regulatory domain. In this study, we employed a combination of in vivo and in vitro assays and determined that GAPDH also interacts with Rab2. The site of GAPDH interaction was mapped to Rab2 residues 20-50. In addition to its glycolytic function, GAPDH has multiple intracellular roles. However, the function of GAPDH in the early secretory pathway is unknown. One possibility is that GAPDH ultimately provides energy in the form of ATP. To determine whether GAPDH catalytic activity was critical for transport in the early secretory pathway, a conservative substitution was made at Cys-149 located at the active site, and the mutant was biochemically characterized in a battery of assays. Although GAPDH (C149G) has no catalytic activity, Rab2 recruited the mutant protein to membranes in a quantitative binding assay. GAPDH (C149G) is phosphorylated by aPKC iota/lambda and binds directly to Rab2 when evaluated in an overlay binding assay. Importantly, VSV-G transport between the ER and Golgi complex is restored when an in vitro trafficking assay is performed with GAPDH-depleted cytosol and GAPDH (C149G). These data suggest that GAPDH imparts a unique function necessary for membrane trafficking from VTCs that does not require GAPDH glycolytic activity.
Collapse
Affiliation(s)
- Ellen J Tisdale
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA.
| | | | | |
Collapse
|
503
|
Mitsuzawa H, Kimura M, Kanda E, Ishihama A. Glyceraldehyde-3-phosphate dehydrogenase and actin associate with RNA polymerase II and interact with its Rpb7 subunit. FEBS Lett 2004; 579:48-52. [PMID: 15620689 DOI: 10.1016/j.febslet.2004.11.045] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2004] [Accepted: 11/05/2004] [Indexed: 11/26/2022]
Abstract
RNA polymerase II (pol II) purified from the fission yeast Schizosaccharomyces pombe was previously reported to be associated with the general transcription factor TFIIF and the C-terminal domain phosphatase Fcp1, as well as glyceraldehyde-3-phosphate dehydrogenase (GAPDH), which has recently been implicated in transcriptional activation in human cells. Here, we provide evidence that the Rpb7 subunit of pol II interacts with GAPDH. Two-hybrid screen identified GAPDH as an Rpb7-binding protein. In addition, GAPDH was affinity-purified from S. pombe extract by using an Rpb4/Rpb7-coupled column. We also identified actin as a pol II-associated protein and revealed the interaction between actin and Rpb7.
Collapse
Affiliation(s)
- Hiroshi Mitsuzawa
- Department of Molecular Genetics, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan.
| | | | | | | |
Collapse
|
504
|
Abstract
Aging is characterized by changes in a variety of cellular phenotypes, which in turn are caused by alterations in the concentrations, compositions, and interactions of cellular proteins. The characterization of these age-associated protein alterations and of their effect on the ability of the organism to maintain homeostasis is thus of critical importance. Proteomics is an emerging scientific discipline that focuses on the determination and analysis of the entire protein complement of a cell (termed the proteome) and of its distribution within the cell. Proteomic analysis provides information about the levels of protein expression under a variety of conditions and about the nature of posttranscriptional modifications, and reveals specific protein complexes. By comparing the proteomes of young and old cells under a variety of conditions, detailed information on the molecular basis of their different phenotypes can be obtained. Although still under development, this scientific discipline holds great promise for aging-related research.
Collapse
Affiliation(s)
- Ari Gafni
- Institute of Gerontology, Department of Biological Chemistry, Biophysics Research Division, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
505
|
Barbosa MS, Cunha Passos DA, Felipe MSS, Jesuíno RSA, Pereira M, de Almeida Soares CM. The glyceraldehyde-3-phosphate dehydrogenase homologue is differentially regulated in phases of Paracoccidioides brasiliensis: molecular and phylogenetic analysis. Fungal Genet Biol 2004; 41:667-75. [PMID: 15275662 DOI: 10.1016/j.fgb.2004.02.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2003] [Accepted: 02/09/2004] [Indexed: 11/22/2022]
Abstract
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) plays important roles in various cellular processes. Here we report the sequence and analysis of a novel developmentally regulated gene and cDNA (Pbgadph), encoding a GAPDH homologue (PbGAPDH), of the pathogenic dimorphic fungus Paracoccidioides brasiliensis. We have analyzed the protein, the cDNA and genomic sequences to provide insights into the structure, function, and potential regulation of PbGAPDH. That Pbgapdh encodes PbGAPDH was demonstrated by micro-sequencing of the native protein homologue isolated from the fungus proteome. The deduced amino acid sequence of Pbgapdh showed identity to those of from other species (88-76%). Phylogenetic analysis indicated that GAPDH could be useful for the determination of evolutionary relationships. Expression of the Pbgapdh gene and the cognate protein were developmentally regulated in phases of P. brasiliensis, with a higher expression in the yeast parasitic phase and was induced during the transition from mycelium to yeast and decreased during the reverse process, transition from yeast to mycelium.
Collapse
MESH Headings
- Amino Acid Sequence
- Base Sequence
- Binding Sites
- Catalytic Domain
- Cloning, Molecular
- DNA, Complementary
- DNA, Fungal/chemistry
- DNA, Fungal/isolation & purification
- Fungal Proteins/genetics
- Fungal Proteins/physiology
- Gene Expression Regulation, Fungal
- Glyceraldehyde-3-Phosphate Dehydrogenases/chemistry
- Glyceraldehyde-3-Phosphate Dehydrogenases/genetics
- Glyceraldehyde-3-Phosphate Dehydrogenases/metabolism
- Humans
- Introns/genetics
- Molecular Sequence Data
- Mycelium/genetics
- Paracoccidioides/enzymology
- Paracoccidioides/genetics
- Paracoccidioides/growth & development
- Phylogeny
- RNA, Fungal/analysis
- RNA, Fungal/isolation & purification
- RNA, Messenger/analysis
- RNA, Messenger/isolation & purification
- Sequence Analysis, DNA
- Sequence Analysis, Protein
- Sequence Homology
- Transcription, Genetic
- Yeasts/genetics
Collapse
Affiliation(s)
- Mônica S Barbosa
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia 74001-970, Brazil
| | | | | | | | | | | |
Collapse
|
506
|
Jang GM, Leong LEC, Hoang LT, Wang PH, Gutman GA, Semler BL. Structurally distinct elements mediate internal ribosome entry within the 5'-noncoding region of a voltage-gated potassium channel mRNA. J Biol Chem 2004; 279:47419-30. [PMID: 15339906 DOI: 10.1074/jbc.m405885200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The approximately 1.2-kb 5'-noncoding region (5'-NCR) of mRNA species encoding mouse Kv1.4, a member of the Shaker-related subfamily of voltage-gated potassium channels, was shown to mediate internal ribosome entry in cells derived from brain, heart, and skeletal muscle, tissues known to express Kv1.4 mRNA species. We also show that the upstream approximately 1.0 kb and the downstream approximately 0.2 kb of the Kv1.4 5'-NCR independently mediated internal ribosome entry; however, separately, these sequences were less efficient in mediating internal ribosome entry than when together in the complete (and contiguous) 5'-NCR. Using enzymatic structure probing, the 3'-most approximately 0.2 kb was predicted to form three distinct stem-loop structures (stem-loops X, Y, and Z) and two defined single-stranded regions (loops Psi and Omega) in the presence and absence of the upstream approximately 1.0 kb. Although the systematic deletion of sequences within the 3'-most approximately 0.2 kb resulted in distinct changes in expression, enzymatic structure probing indicated that local RNA folding was not completely altered. Structure probing analysis strongly suggested an interaction between stem-loop X and a downstream polypyrimidine tract; however, opposing changes in activity were observed when sequences within these two regions were independently deleted. Moreover, deletions correlating with positive as well as negative changes in expression altered RNase cleavage within stem-loop X, indicating that this structure may be an integral element. Therefore, these findings indicate that Kv1.4 expression is mediated through a complex interplay between many distinct RNA regions.
Collapse
Affiliation(s)
- Gwendolyn M Jang
- Department of Microbiology and Molecular Genetics, College of Medicine, University of California, Irvine, California 92697, USA
| | | | | | | | | | | |
Collapse
|
507
|
Grossmann ME, Madden BJ, Gao F, Pang YP, Carpenter JE, McCormick D, Young CYF. Proteomics shows Hsp70 does not bind peptide sequences indiscriminately in vivo. Exp Cell Res 2004; 297:108-17. [PMID: 15194429 DOI: 10.1016/j.yexcr.2004.02.030] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2003] [Revised: 02/23/2004] [Indexed: 11/24/2022]
Abstract
Heat shock protein 70 (Hsp70) binds peptide and has several functions that include protein folding, protein trafficking, and involvement with immune function. However, endogenous Hsp70-binding peptides had not previously been identified. Therefore, we eluted and identified several hundred endogenously bound peptides from Hsp70 using liquid chromatography ion trap mass spectrophotometry (LC-ITMS). Our work shows that the peptides are capable of binding Hsp70 as previously described. They are generally 8-26 amino acids in length and correspond to specific regions of many proteins. Through computationally assisted analysis of peptides eluted from Hsp70 we determined variable amino acid sequences, including a 5 amino acid core sequence that Hsp70 favorably binds. We also developed a computer algorithm that predicts Hsp70 binding within proteins. This work helps to define what peptides are bound by Hsp70 in vivo and suggests that Hsp70 facilitates peptide selection by aiding a funneling mechanism that is flexible but allows only a limited number of peptides to be processed.
Collapse
Affiliation(s)
- Michael E Grossmann
- Department of Biochemistry/Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | | | | | | | |
Collapse
|
508
|
Seddas P, Boissinot S, Strub JM, Van Dorsselaer A, Van Regenmortel MHV, Pattus F. Rack-1, GAPDH3, and actin: proteins of Myzus persicae potentially involved in the transcytosis of beet western yellows virus particles in the aphid. Virology 2004; 325:399-412. [PMID: 15246278 DOI: 10.1016/j.virol.2004.05.014] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2004] [Revised: 04/09/2004] [Accepted: 05/11/2004] [Indexed: 10/26/2022]
Abstract
Beet western yellows virus (BWYV) is a Polerovirus that relies on the aphid Myzus persicae for its transmission, in a persistent-circulative mode. To be transmitted, the virus must cross the midgut and the accessory salivary glands (ASG) epithelial barriers in a transcytosis mechanism where vector receptors interact with virions. In this paper, we report in vitro interaction experiments between BWYV and aphid components. Using the M. persicae clone from Colmar, we showed that a set of aphid polypeptides, separated by SDS-PAGE or 2D electrophoresis (2DE), can bind in vitro to purified wild type or mutant particles. Using subcellular fractionation, we showed that the 65-kDa polypeptide identified as symbionin is a soluble protein whereas the other polypeptides seem to be associated more or less strongly to the membrane. We hypothesize that three polypeptides, identified by mass spectrometry as Rack-1, GAPDH3, and actin, may be involved in the epithelial transcytosis of virus particles in the aphid vector.
Collapse
Affiliation(s)
- Pascale Seddas
- Unité de Recherche Biologie des Interactions Virus/vecteurs, Institut National de la Recherche Agronomique, 68021 Colmar cedex, France.
| | | | | | | | | | | |
Collapse
|
509
|
Chuong SDX, Good AG, Taylor GJ, Freeman MC, Moorhead GBG, Muench DG. Large-scale identification of tubulin-binding proteins provides insight on subcellular trafficking, metabolic channeling, and signaling in plant cells. Mol Cell Proteomics 2004; 3:970-83. [PMID: 15249590 DOI: 10.1074/mcp.m400053-mcp200] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Microtubules play an essential role in the growth and development of plants and are known to be involved in regulating many cellular processes ranging from translation to signaling. In this article, we describe the proteomic characterization of Arabidopsis tubulin-binding proteins that were purified using tubulin affinity chromatography. Microtubule co-sedimentation assays indicated that most, if not all, of the proteins in the tubulin-binding protein fraction possessed microtubule-binding activity. Two-dimensional gel electrophoresis of the tubulin-binding protein fraction was performed, and 86 protein spots were excised and analyzed for protein identification. A total of 122 proteins were identified with high confidence using LC-MS/MS. These proteins were grouped into six categories based on their predicted functions: microtubule-associated proteins, translation factors, RNA-binding proteins, signaling proteins, metabolic enzymes, and proteins with other functions. Almost one-half of the proteins identified in this fraction were related to proteins that have previously been reported to interact with microtubules. This study represents the first large-scale proteomic identification of eukaryotic cytoskeleton-binding proteins, and provides insight on subcellular trafficking, metabolic channeling, and signaling in plant cells.
Collapse
Affiliation(s)
- Simon D X Chuong
- Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | | | | | | | | | | |
Collapse
|
510
|
Arutyunova EI, Arutyunov DY, Pleten' AP, Nagradova NK, Muronetz VI. Antibodies specific to modified glyceraldehyde-3-phosphate dehydrogenase induce inactivation of the native enzyme and change its conformation. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2004; 1700:35-41. [PMID: 15210123 DOI: 10.1016/j.bbapap.2004.03.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2003] [Revised: 03/08/2004] [Accepted: 03/11/2004] [Indexed: 11/17/2022]
Abstract
The antibodies specific to an inactive glyceraldehyde-3-phosphate dehydrogenase (GAPDH) from Bacillus stearothermophilus prepared by the treatment of the tetrameric holoenzyme with glutaraldehyde were obtained. They were purified from the pool of polyclonal rabbit antibodies to GAPDH with the use of immobilized GAPDH cross-linked by glutaraldehyde as an affinity sorbent. Such antibodies were capable of interacting with the native enzyme, inducing its time-dependent inactivation; the effect was different with the apo- and holoenzyme forms. Differential scanning calorimetry of the purified [GAPDH].[antibody] complex revealed a large shift of the temperature corresponding to the maximal heat capacity of the holoenzyme towards the lower temperature. Again, the effect appeared to be different with the apoenzyme. Together, the results are consistent with the hypothesis that a specific antibody is able to exercise a certain strain on the target protein, altering its conformation toward the structure of the species which served to select the antibody. The possibility of preparing selective enzyme inhibitors based on the antibodies specific to inactive enzyme conformations is considered.
Collapse
Affiliation(s)
- Elena I Arutyunova
- A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Lenin's Hills, Moscow 19992, Russia
| | | | | | | | | |
Collapse
|
511
|
Laktionov P, Rykova E, Toni M, Spisni E, Griffoni C, Bryksin A, Volodko N, Vlassov V, Tomasi V. Knock down of cytosolic phospholipase A2: an antisense oligonucleotide having a nuclear localization binds a C-terminal motif of glyceraldehyde-3-phosphate dehydrogenase. Biochim Biophys Acta Mol Cell Biol Lipids 2004; 1636:129-35. [PMID: 15164760 DOI: 10.1016/j.bbalip.2003.10.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2003] [Revised: 07/16/2003] [Accepted: 10/21/2003] [Indexed: 11/28/2022]
Abstract
We have previously shown that an antisense, effective in the knock down of cytosolic phospholipase A2 (cPLA2), localizes mainly in the nucleus of human endothelial cells and monocytes and that glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is involved in its nuclear localization. In this study, we clarify how GAPDH participates in the nuclear localization of this antisense oligodeoxynucleotide (ODN) directed against cPLA2 mRNA. A central TAAAT motif providing specificity and high affinity binding was assumed to interact with the enzyme Rossmann fold region on the basis of competition to this site by NAD+. To asses whether the TAAAT motif interacts directly with the enzyme Rossmann fold region, we evaluated the binding to GAPDH of different oligonucleotides and the effect of competitors such as NAD+, NADH, mononucleotides, DNA, polyribonucleic acids and polyanions. We found that the dissociation constant for TAAAT containing oligonucleotides was three--to fivefold higher with respect to oligo not containing this motif. By covalently linking 32P-labeled cPLA2p(N)16 to GAPDH and after executing hydrolysis with hydroxylamine, the labeling was exclusively found in the C-terminal domain (aa 286-334). These results indicate that the antisense oligonucleotide interacts with a site not having a defined function but which can be negatively allosterically regulated when NAD+ or polynucleotides are bound to Rossmann fold.
Collapse
Affiliation(s)
- Pavel Laktionov
- Institute of Bioorganic Chemistry, Academy of Sciences Siberian Division, Novosibirsk, Russia
| | | | | | | | | | | | | | | | | |
Collapse
|
512
|
Tsuchiya K, Tajima H, Yamada M, Takahashi H, Kuwae T, Sunaga K, Katsube N, Ishitani R. Disclosure of a pro-apoptotic glyceraldehyde-3-phosphate dehydrogenase promoter: anti-dementia drugs depress its activation in apoptosis. Life Sci 2004; 74:3245-58. [PMID: 15094325 DOI: 10.1016/j.lfs.2003.11.029] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2003] [Accepted: 11/10/2003] [Indexed: 10/26/2022]
Abstract
Overexpression and subsequent nuclear accumulation of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is involved in neuronal apoptosis induced by several stimuli in which GAPDH antisense oligonucleotides specifically block the increment (2 approximately 3 fold) of GAPDH mRNA contents occurring prior to neuronal death. However, these agents do not affect the basal, constitutive mRNA contents. This suggests that there may be distinct gene regulations for GAPDH mRNA expression. Herein, we cloned two types of promoter regions upstream of this gene; viz., #104 (1.02-kb) and #302 (2.46-kb). These fragments were inserted into the pGL3 luciferase reporter system and transiently transfected into cultured cerebellar neurons undergoing cytosine arabinonucleoside-induced apoptosis. The functional analysis of these constructs revealed that #104, but not #302, increased luciferase activity in response to the apoptotic stimulus. Deletion and replacement mutation analysis of the #104 fragment disclosed the promoter core harbored between the 154-bp and 84-bp domains (3.5-fold activity of the control). Furthermore, anti-dementia drugs (such as Cognex and Aricept) markedly depress the expression of this pro-apoptotic GAPDH promoter activity. Interestingly, immunocytochemical examination of human post-mortem materials from patients with Alzheimer's disease revealed nuclear aggregated GAPDH in neurons of the affected brain regions, implying an association with apoptotic cell death. The current findings indicate that induction of the pro-apoptotic protein GAPDH is genetically regulated at the level of promoter activation, and this protein may be an important molecular target for developing anti-apoptotic therapeutic agents in certain neurological illnesses.
Collapse
Affiliation(s)
- Katsumi Tsuchiya
- Group on Cellular Neurobiology, Josai University, Sakado, Saitama 350-0248, Japan
| | | | | | | | | | | | | | | |
Collapse
|
513
|
Delgado ML, Gil ML, Gozalbo D. Starvation and temperature upshift cause an increase in the enzymatically active cell wall-associated glyceraldehyde-3-phosphate dehydrogenase protein in yeast. FEMS Yeast Res 2004; 4:297-303. [PMID: 14654434 DOI: 10.1016/s1567-1356(03)00159-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
The cell wall-associated glyceraldehyde-3-phosphate dehydrogenase (cwGAPDH) activity in Saccharomyces cerevisiae increases (two- to 10-fold, depending on the strain) in response to starvation and temperature upshift. Assays using transformants carrying pTDH, a yeast centromer derivative plasmid containing the Candida albicans TDH3 gene (encoding GAPDH) fused in frame with the yeast SUC2-coding region for internal invertase, showed that starvation and/or temperature upshift result in a similar increase in both cwGAPDH and cell wall-associated invertase activities. In addition, this incorporation of GAPDH protein into the cell wall in response to stress does not require (i) de novo protein synthesis, indicating that preexisting cytosolic enzyme is incorporated into the cell wall, (ii) nor the participation of the ubiquitin yeast stress response system, as no differences were observed between wild-type and polyubiquitin-depleted (Deltaubi4) strains.
Collapse
Affiliation(s)
- María Luisa Delgado
- Departament de Microbiologia i Ecologia, Universitat de València, Avgda. Vicent Andrés Estellés s/n, 46100, Burjassot, Spain
| | | | | |
Collapse
|
514
|
Ueta H, Nagasawa H, Oyabu-Manabe Y, Toida K, Ishimura K, Hori H. Localization of enolase in synaptic plasma membrane as an alphagamma heterodimer in rat brain. Neurosci Res 2004; 48:379-86. [PMID: 15041191 DOI: 10.1016/j.neures.2003.12.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2003] [Accepted: 12/10/2003] [Indexed: 10/26/2022]
Abstract
Enolase, a glycolytic enzyme, is a multifunctional protein with location diversity. We revealed the intracellular distribution of enolase isozymes, such as alphaalpha-, alphagamma- and gammagamma-enolases, in rat brain synaptic terminals by biochemical and immunoelectron microscopic analyses. Specific activity of enolase of synaptic plasma membrane fraction (SPM2) obtained from synaptosomes was 23.2 +/- 4.4 x 10(-2) micromol/mg protein/min in the presence of 0.25% Triton X-100 and that of synaptosomal cytoplasm (LS) was 67.4 +/- 12.1 x 10(-2) micromol/mg protein/min. About half of enolase activity in synaptosomes was distributed to soluble fraction while the remaining stayed in particulate membrane fractions by ultracentrifugation. Immunoblot analysis of the fractions demonstrated both alpha and gamma subunits were distributed in SPM. In addition, immunoelectron microscopic analysis also revealed that both subunits were immunoreactive on the SPM. Using coimmunoprecipitation assay, we confirmed that the enolase was present not only as a homodimer form but also as an alphagamma hybrid form associated with membrane, where both subunits were coimmunoprecipitated from lysate of SPM2 in the presence of Mg(2+). These findings indicate that all forms (alphaalpha, alphagamma, and gammagamma) of enolase translocate to the plasma membrane and associate with some components in the SPM.
Collapse
Affiliation(s)
- Hisashi Ueta
- Department of Biological Science and Technology, Faculty of Engineering, The University of Tokushima, 2-1 Minamijosanjima-cho, Tokushima 770-8506, Japan
| | | | | | | | | | | |
Collapse
|
515
|
Ropenga A, Chapel A, Vandamme M, Griffiths NM. Use of Reference Gene Expression in Rat Distal Colon after Radiation Exposure: A Caveat. Radiat Res 2004; 161:597-602. [PMID: 15161363 DOI: 10.1667/rr3173] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Research on the effects of ionizing radiation exposure includes transcriptome studies using real-time reverse transcription polymerase chain reaction (RT-PCR). These studies require the use of a reference gene that normalizes for cDNA quantity and corrects for transcription between different samples. In this study, several criteria are reviewed that allow the choice of a reference gene. With the example of five genes selected from the widely used standard housekeeping genes, Gapd (glyceraldehyde-3-phosphate dehydrogenase), Hprt (hypoxanthine-guanine phosphoribosyl transferase), cyclophilin A, AcRP0 (acidic ribosomal protein P0) and 18S, we show that the use of a reference gene without a preliminary study is hazardous. We have shown in rat colon after a hemi-body irradiation that expression of a gene of interest, the serotonin receptor type 1F (5-HT(1F)), was either increased or unchanged, with the result depending on the reference gene used. This work has led us to propose the use of two reference genes, a ribosomal gene, 18S, and another gene with a level of expression closer to that of the gene of interest. The methodology reported here may be applied to other studies of gene expression levels to evaluate the effects of experimental treatment on the expression of potential reference genes.
Collapse
Affiliation(s)
- Anna Ropenga
- Institut de Radioprotection et de Sûreté Nucléaire, Direction de Radioprotection de l'Homme, Service de Radiobiologie et d'Epidemiologie, IRSN, F-92262 Fontenay-aux-Roses Cedex, France
| | | | | | | |
Collapse
|
516
|
Moore BD. Bifunctional and moonlighting enzymes: lighting the way to regulatory control. TRENDS IN PLANT SCIENCE 2004; 9:221-8. [PMID: 15130547 DOI: 10.1016/j.tplants.2004.03.005] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Affiliation(s)
- Brandon d Moore
- Department of Genetics, Biochemistry, and Life Science Studies, Clemson University, Clemson, SC 29634, USA.
| |
Collapse
|
517
|
Xing C, LaPorte JR, Barbay JK, Myers AG. Identification of GAPDH as a protein target of the saframycin antiproliferative agents. Proc Natl Acad Sci U S A 2004; 101:5862-6. [PMID: 15079082 PMCID: PMC395888 DOI: 10.1073/pnas.0307476101] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2003] [Indexed: 01/06/2023] Open
Abstract
Saframycin A (SafA) is a member of a class of natural products with potent antiproliferative effects in leukemia- and tumor-derived cells. This activity is frequently conjectured to derive from the ability of saframycins to covalently modify duplex DNA. We used a DNA-linked affinity purification technique to identify GAPDH as a protein target of DNA-small molecule adducts of several members of the saframycin class. Nuclear translocation of GAPDH occurs upon treatment of cancer cells with saframycins, and depletion of cellular GAPDH levels by small interfering RNA transfection confers drug resistance. Roeder and coworkers have recently suggested that GAPDH is a key transcriptional coactivator necessary for entry into S phase. Our data suggest that GAPDH is also capable of forming a ternary complex with saframycin-related compounds and DNA that induces a toxic response in cells. These studies implicate a previously unknown molecular mechanism of antiproliferative activity and, given that one member of the saframycin class has shown efficacy in cancer treatment, suggest that GAPDH may be a potential target for chemotherapeutic intervention.
Collapse
Affiliation(s)
- Chengguo Xing
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02128, USA
| | | | | | | |
Collapse
|
518
|
Nitin N, Santangelo PJ, Kim G, Nie S, Bao G. Peptide-linked molecular beacons for efficient delivery and rapid mRNA detection in living cells. Nucleic Acids Res 2004; 32:e58. [PMID: 15084673 PMCID: PMC390380 DOI: 10.1093/nar/gnh063] [Citation(s) in RCA: 177] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Real-time visualization of specific endogenous mRNA expression in vivo has the potential to revolutionize medical diagnosis, drug discovery, developmental and molecular biology. However, conventional liposome- or dendrimer-based cellular delivery of molecular probes is inefficient, slow, and often detrimental to the probes. Here we demonstrate the rapid and sensitive detection of RNA in living cells using peptide-linked molecular beacons that possess self-delivery, targeting and reporting functions. We conjugated the TAT peptide to molecular beacons using three different linkages and demonstrated that, at relatively low concentrations, these molecular beacon constructs were internalized into living cells within 30 min with nearly 100% efficiency. Further, peptide-based delivery did not interfere with either specific targeting by or hybridization-induced fluorescence of the probes. We could therefore detect human GAPDH and survivin mRNAs in living cells fluorescently, revealing intriguing intracellular localization patterns of mRNA. We clearly demonstrated that cellular delivery of molecular beacons using the peptide-based approach has far better performance compared with conventional transfection methods. The peptide-linked molecular beacons approach promises to open new and exciting opportunities in sensitive gene detection and quantification in vivo.
Collapse
Affiliation(s)
- Nitin Nitin
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | | | | | | | | |
Collapse
|
519
|
Reddy VM, Suleman FG. Mycobacterium avium-superoxide dismutase binds to epithelial cell aldolase, glyceraldehyde-3-phosphate dehydrogenase and cyclophilin A. Microb Pathog 2004; 36:67-74. [PMID: 14687559 DOI: 10.1016/j.micpath.2003.09.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Mycobacterium avium complex (MAC) adheres, invades and multiplies inside epithelial cells. Earlier, we demonstrated two MAC protein adhesins, 25 and 31 kDa, binding with HEp-2 cells. The 25 kDa MAC adhesin was found to be superoxide dismutase (SOD). In this study, epithelial cell (HEp-2 and A549) ligands for MAC-SOD were identified by probing two-dimensional western blots of epithelial extracts with MAC proteins followed by monoclonal anti-MAC-SOD antibodies. Three epithelial cell proteins with molecular masses 43, 40 and 18 kDa, present in both membrane and cytosolic fractions, were found to bind with MAC-SOD. Based on the N-terminal amino acid sequences, the 43, 40 and 18 kDa epithelial proteins were identified as aldolase, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and cyclophilin A (CypA), respectively. Furthermore, MAC-SOD was found to bind to purified rabbit muscle aldolase, GAPDH and recombinant CypA in western blotting.
Collapse
Affiliation(s)
- Venkata M Reddy
- Department of Biomedical Sciences, University of Illinois College of Medicine, Rockford, IL 61107, USA.
| | | |
Collapse
|
520
|
Goji N, Potter AA, Perez-Casal J. Characterization of two proteins of Staphylococcus aureus isolated from bovine clinical mastitis with homology to glyceraldehyde-3-phosphate dehydrogenase. Vet Microbiol 2004; 99:269-79. [PMID: 15066729 DOI: 10.1016/j.vetmic.2003.12.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2003] [Revised: 12/12/2003] [Accepted: 12/19/2003] [Indexed: 10/26/2022]
Abstract
Staphylococcus aureus is the most common causative agent of bovine mastitis and vaccines developed to control this disease showed limited protection due in part to the lack of common antigens among the mastitis isolates. We isolated and identified two genes encoding proteins with glyceraldehyde-3-phosphate dehydrogenase (GAPDH) activity from a S. aureus strain isolated from bovine clinical mastitis. The GapB and GapC proteins share considerable homology to the GapB and GapC products of human strains of S. aureus. These two proteins could be distinguished by their different GAPDH activities and binding to bovine transferrin properties. Both gapB and gapC genes were conserved in 11 strains tested, and the GapC protein was present on the surface of all S. aureus strains.
Collapse
Affiliation(s)
- Noriko Goji
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5E3
| | | | | |
Collapse
|
521
|
Kumar GK, Klein JB. Analysis of expression and posttranslational modification of proteins during hypoxia. J Appl Physiol (1985) 2004; 96:1178-86; discussion 1170-2. [PMID: 14766768 DOI: 10.1152/japplphysiol.00818.2003] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The cellular responses to hypoxia are complex and characterized by alterations in the expression of a number of genes, including stress-related genes and corresponding proteins that are necessary to maintain homeostasis. The purpose of this article is to review previous and recent studies that have examined the changes in the expression and posttranslational modification of proteins in response to chronic sustained and intermittent forms of hypoxia. A large number of studies focused on the analysis of either the single protein or a subset of related proteins using one-dimensional gel electrophoresis to separate a complex set of proteins from solubilized tissues or cell extracts, followed by immunostaining of proteins using antibodies that are specific to either native or posttranslationally modified forms. On the other hand, only a limited number of studies have examined the global perturbations on protein expression by hypoxia using proteomics approach involving two-dimensional electrophoresis coupled with mass spectrometry. Results derived from specific protein analysis of a variety of tissues and cells showed that hypoxia, depending on the duration and severity of the stimulus, affects the level and the state of posttranslational modification of a subset of proteins that are associated with energy metabolism, stress response, cell injury, development, and apoptosis. Some of these earlier findings are further corroborated by recent studies that utilize a global proteomics approach, and, more importantly, results from these proteomics investigations on the effects of hypoxia provide new protein targets for further functional analysis. The anticipated new information stems from the analysis of expression, and posttranslational modification of these novel protein targets, along with gene expression profiles, offers exciting new opportunities to further define the mechanisms of cellular responses to hypoxia and to control more effectively the clinical consequences of prolonged or periodic lack of oxygen.
Collapse
Affiliation(s)
- Ganesh K Kumar
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, OH 44106-4935, USA.
| | | |
Collapse
|
522
|
Brown VM, Krynetski EY, Krynetskaia NF, Grieger D, Mukatira ST, Murti KG, Slaughter CA, Park HW, Evans WE. A novel CRM1-mediated nuclear export signal governs nuclear accumulation of glyceraldehyde-3-phosphate dehydrogenase following genotoxic stress. J Biol Chem 2004; 279:5984-92. [PMID: 14617633 DOI: 10.1074/jbc.m307071200] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a multifunctional protein with glycolytic and non-glycolytic functions, including pro-apoptotic activity. GAPDH accumulates in the nucleus after cells are treated with genotoxic drugs, and it is present in a protein complex that binds DNA modified by thioguanine incorporation. We identified a novel CRM1-dependent nuclear export signal (NES) comprising 13 amino acids (KKVVKQASEGPLK) in the C-terminal domain of GAPDH, truncation or mutation of which abrogated CRM1 binding and caused nuclear accumulation of GAPDH. Alanine scanning of the sequence encompassing the putative NES demonstrated at least two regions important for nuclear export. Site mutagenesis of Lys259 did not affect oligomerization but impaired nuclear efflux of GAPDH, indicating that this amino acid residue is essential for proper functioning of this NES. This novel NES does not contain multiple leucine residues unlike other CRM1-interacting NES, is conserved in GAPDH from multiple species, and has sequence similarities to the export signal found in feline immunodeficiency virus Rev protein. Similar sequences (KKVV*7-13PLK) were found in two other human proteins, U5 small nuclear ribonucleoprotein, and transcription factor BT3.
Collapse
MESH Headings
- Active Transport, Cell Nucleus
- Alanine/chemistry
- Amino Acid Sequence
- Amino Acids/chemistry
- Antibodies, Monoclonal
- Apoptosis
- Cell Line, Tumor
- Cell Nucleus/metabolism
- Chromatography
- Cytosol/metabolism
- DNA/metabolism
- Epitopes/chemistry
- Glyceraldehyde-3-Phosphate Dehydrogenases/metabolism
- Green Fluorescent Proteins
- Humans
- Karyopherins/metabolism
- Luminescent Proteins/metabolism
- Lysine/chemistry
- Microscopy, Confocal
- Microscopy, Fluorescence
- Models, Molecular
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- Mutation
- Nuclear Localization Signals
- Peptides/chemistry
- Precipitin Tests
- Protein Binding
- Protein Structure, Tertiary
- Receptors, Cytoplasmic and Nuclear
- Recombinant Fusion Proteins/metabolism
- Ribonucleoprotein, U5 Small Nuclear/chemistry
- Trans-Activators/chemistry
- Transfection
- Exportin 1 Protein
Collapse
Affiliation(s)
- Victor M Brown
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
523
|
Sundararaj KP, Wood RE, Ponnusamy S, Salas AM, Szulc Z, Bielawska A, Obeid LM, Hannun YA, Ogretmen B. Rapid Shortening of Telomere Length in Response to Ceramide Involves the Inhibition of Telomere Binding Activity of Nuclear Glyceraldehyde-3-phosphate Dehydrogenase. J Biol Chem 2004; 279:6152-62. [PMID: 14630908 DOI: 10.1074/jbc.m310549200] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Ceramide has been demonstrated as one of the upstream regulators of telomerase activity. However, the role for ceramide in the control of telomere length remains unknown. It is shown here that treatment of the A549 human lung adenocarcinoma cells with C(6)-ceramide results in rapid shortening of telomere length. During the examination of ceramide-regulated telomere-binding proteins, nuclear glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was identified to associate with both single- and double-stranded telomeric DNA with high specificity in vitro. The association of nuclear GAPDH with telomeres in interphase nuclei was also demonstrated by co-fluorescence in situ hybridization and chromatin immunoprecipitation analysis. Further data demonstrated that the nuclear localization of GAPDH is regulated by ceramide in a cell cycle-dependent manner parallel with the inhibition of its telomere binding activity in response to ceramide. In addition, the results revealed that nuclear GAPDH is distinct from its cytoplasmic isoform and that telomere binding function of nuclear GAPDH is strikingly higher than the cytoplasmic isoform. More importantly, the functional role for nuclear GAPDH in the maintenance and/or protection of telomeric DNA was identified by partial inhibition of the expression of GAPDH using small interfering RNA, which resulted in rapid shortening of telomeres. In contrast, overexpression of nuclear GAPDH resulted in the protection of telomeric DNA in response to exogenous ceramide as well as in response to anticancer drugs, which have been shown to induce endogenous ceramide levels. Therefore, these results demonstrate a novel function for nuclear GAPDH in the maintenance and/or protection of telomeres and also show that mechanisms of the rapid degradation of telomeres in response to ceramide involve the inhibition of the telomere binding activity of nuclear GAPDH.
Collapse
Affiliation(s)
- Kamala P Sundararaj
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
524
|
Lemaire F, Millon R, Young J, Cromer A, Wasylyk C, Schultz I, Muller D, Marchal P, Zhao C, Melle D, Bracco L, Abecassis J, Wasylyk B. Differential expression profiling of head and neck squamous cell carcinoma (HNSCC). Br J Cancer 2004; 89:1940-9. [PMID: 14612907 PMCID: PMC2394447 DOI: 10.1038/sj.bjc.6601373] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the fifth most common cancer in men with an incidence of about 780 000 new cases per year worldwide and a poor rate of survival. There is a need for a better understanding of HNSCC, for the development of rational targeted interventions and to define new prognostic or diagnostic markers. To address these needs, we performed a large-scale differential display comparison of hypopharyngeal HNSCCs against histologically normal tissue from the same patients. We have identified 70 genes that exhibit a striking difference in expression between tumours and normal tissues. There is only a limited overlap with other HNSCC gene expression studies that have used other techniques and more heterogeneous tumour samples. Our results provide new insights into the understanding of HNSCC. At the genome level, a series of differentially expressed genes cluster at 12p12–13 and 1q21, two hotspots of genome disruption. The known genes share functional relationships in keratinocyte differentiation, angiogenesis, immunology, detoxification, and cell surface receptors. Of particular interest are the 13 ‘unknown’ genes that exist only in EST, theoretical cDNA and protein databases, or as chromosomal locations. The differentially expressed genes that we have identified are potential new markers and therapeutic targets.
Collapse
Affiliation(s)
- F Lemaire
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, 1 Rue Laurent Fries, BP 10142, 67404 Illkirch cedex, France
| | - R Millon
- UPRES EA 34-30, Centre Paul Strauss, 3 rue de la Porte de l'Hôpital, 67085 Strasbourg, France
| | - J Young
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, 1 Rue Laurent Fries, BP 10142, 67404 Illkirch cedex, France
| | - A Cromer
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, 1 Rue Laurent Fries, BP 10142, 67404 Illkirch cedex, France
| | - C Wasylyk
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, 1 Rue Laurent Fries, BP 10142, 67404 Illkirch cedex, France
| | - I Schultz
- UPRES EA 34-30, Centre Paul Strauss, 3 rue de la Porte de l'Hôpital, 67085 Strasbourg, France
| | - D Muller
- UPRES EA 34-30, Centre Paul Strauss, 3 rue de la Porte de l'Hôpital, 67085 Strasbourg, France
| | - P Marchal
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, 1 Rue Laurent Fries, BP 10142, 67404 Illkirch cedex, France
| | - C Zhao
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, 1 Rue Laurent Fries, BP 10142, 67404 Illkirch cedex, France
| | - D Melle
- Exonhit Therapeutics, 65 Boulevard Masséna, Paris F-75013, France
| | - L Bracco
- Exonhit Therapeutics, 65 Boulevard Masséna, Paris F-75013, France
| | - J Abecassis
- UPRES EA 34-30, Centre Paul Strauss, 3 rue de la Porte de l'Hôpital, 67085 Strasbourg, France
| | - B Wasylyk
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, 1 Rue Laurent Fries, BP 10142, 67404 Illkirch cedex, France
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, 1 Rue Laurent Fries, BP 10142, 67404 Illkirch cedex, France. E-mail: .
| |
Collapse
|
525
|
Abstract
The relationship between the brain and the endocrine system is now seen to extend far beyond the regulation of somatic hormone production by the hypothalamus and pituitary: the brain itself can be considered both as an endocrine organ, producing hormones that act both within and outside the central nervous system, and as a target for hormones. The current extent of this concept with respect to the gonadal hormones was explored at a recent meeting ('Hormones and the Brain', Third Endocrinology Colloquium of the Fondation Ipsen, Paris, December 8, 2003). The discussion, reviewed in this article, ranged from intracellular signalling pathways and intercellular networks regulating hormone production and action in the central nervous system to hormone involvement in the generation of sexual behaviour and in development, plasticity, neuroprotection and repair. The hormonal contribution to psychiatric and neurodegenerative illnesses was also examined. The picture presented is complex, with layers of controls and with hormones that have diverse actions at different sites in the central nervous system. This richness of actions and functions is providing some interesting leads for developing new therapeutics.
Collapse
|
526
|
Nomura Y. Neuronal Apoptosis and Protection: Effects of Nitric Oxide and Endoplasmic Reticulum-Related Proteins. Biol Pharm Bull 2004; 27:961-3. [PMID: 15256722 DOI: 10.1248/bpb.27.961] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This review presents recent findings with regard to the cellular and molecular mechanisms of neuronal apoptosis induced by cerebral ischemia/hypoxia. The protection of neuronal death by hypoxia-induced proteins in the endoplasmic reticulum (ER) is also reviewed. The excess amount of nitric oxide (NO) generated by inducible NO synthase (iNOS) up-regulated in response to ischemic stress causes neuronal apoptosis through following processes; 1) reduction in mitochondrial membrane potential, 2) release of cytochrome c from mitochondria, and 3) activation of caspase-9 and -3, although low concentrations of NO protect against neuronal death. In contrast, hypoxia induces expression of several proteins such as protein disulfide isomerase (PDI), ubiquilin and HRD1 in the endoplasmic reticulum (ER). PDI and ubiquilin are involved in the protection against neuronal apoptosis probably by interacting with each other and enhancing the effects of PDI as a molecular chaperon. HRD1 is also up-regulated by hypoxia in the ER and induces protection against hypoxia-induced neuronal apoptosis by activating the protein degradation system. The present review hopefully gives pertinent suggestions for further studies on the development of novel prophylactic/therapeutics for neuronal apoptosis-related diseases.
Collapse
Affiliation(s)
- Yasuyuki Nomura
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan.
| |
Collapse
|
527
|
Valadi H, Valadi A, Ansell R, Gustafsson L, Adler L, Norbeck J, Blomberg A. NADH-reductive stress in Saccharomyces cerevisiae induces the expression of the minor isoform of glyceraldehyde-3-phosphate dehydrogenase (TDH1). Curr Genet 2003; 45:90-5. [PMID: 14652693 DOI: 10.1007/s00294-003-0469-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2003] [Revised: 10/23/2003] [Accepted: 10/29/2003] [Indexed: 10/26/2022]
Abstract
A strain of Saccharomyces cerevisiae lacking the GPD2 gene, encoding one of the glycerol-3-phosphate dehydrogenases, grows slowly under anaerobic conditions, due to reductive stress caused by the accumulation of cytoplasmic NADH. We used 2D-PAGE to study the effect on global protein expression of reductive stress in the anaerobically grown gpd2Delta strain. The most striking response was a strongly elevated expression of Tdh1p, the minor isoform of glyceraldehyde-3-phosphate dehydrogenase. This increased expression could be reversed by the addition of acetoin, a NADH-specific redox sink, which furthermore largely restored anaerobic growth of the gpd2Delta strain. Additional deletion of the TDH1 gene (but not of TDH2 or TDH3) improved anaerobic growth of the gpd2Delta strain. We therefore propose that TDH1 has properties not displayed by the other TDH isogenes and that its expression is regulated by reductive stress caused by an excess of cytoplasmic NADH.
Collapse
Affiliation(s)
- Hadi Valadi
- Department of Chemistry and Bioscience/Molecular Biotechnology, Chalmers University of Technology, 405-30 Göteborg, Sweden
| | | | | | | | | | | | | |
Collapse
|
528
|
Zwerschke W, Mazurek S, Stöckl P, Hütter E, Eigenbrodt E, Jansen-Dürr P. Metabolic analysis of senescent human fibroblasts reveals a role for AMP in cellular senescence. Biochem J 2003; 376:403-11. [PMID: 12943534 PMCID: PMC1223775 DOI: 10.1042/bj20030816] [Citation(s) in RCA: 185] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2003] [Revised: 08/01/2003] [Accepted: 08/28/2003] [Indexed: 11/17/2022]
Abstract
Cellular senescence is considered a major tumour-suppressor mechanism in mammals, and many oncogenic insults, such as the activation of the ras proto-oncogene, trigger initiation of the senescence programme. Although it was shown that activation of the senescence programme involves the up-regulation of cell-cycle regulators such as the inhibitors of cyclin-dependent kinases p16INK4A and p21CIP-1, the mechanisms underlying the senescence response remain to be resolved. In the case of stress-induced premature senescence, reactive oxygen species are considered important intermediates contributing to the phenotype. Moreover, distinct alterations of the cellular carbohydrate metabolism are known to contribute to oncogenic transformation, as is best documented for the phenomenon of aerobic glycolysis. These findings suggest that metabolic alterations are involved in tumourigenesis and tumour suppression; however, little is known about the metabolic pathways that contribute to these processes. Using the human fibroblast model of in vitro senescence, we analysed age-dependent changes in the cellular carbohydrate metabolism. Here we show that senescent fibroblasts enter into a metabolic imbalance, associated with a strong reduction in the levels of ribonucleotide triphosphates, including ATP, which are required for nucleotide biosynthesis and hence proliferation. ATP depletion in senescent fibroblasts is due to dysregulation of glycolytic enzymes, and finally leads to a drastic increase in cellular AMP, which is shown here to induce premature senescence. These results suggest that metabolic regulation plays an important role during cellular senescence and hence tumour suppression.
Collapse
Affiliation(s)
- Werner Zwerschke
- Institute for Biomedical Aging Research, Austrian Academy of Sciences, Rennweg 10, A-6020 Innsbruck, Austria
| | | | | | | | | | | |
Collapse
|
529
|
Claeyssens S, Gangneux C, Brasse-Lagnel C, Ruminy P, Aki T, Lavoinne A, Salier JP. Amino acid control of the human glyceraldehyde 3-phosphate dehydrogenase gene transcription in hepatocyte. Am J Physiol Gastrointest Liver Physiol 2003; 285:G840-9. [PMID: 12842822 DOI: 10.1152/ajpgi.00060.2003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Glutamine (Gln) is the most potent of the amino acids (AAs) that regulate liver anabolism, and its effect is similar to that of insulin in peripheral tissues. However, the influence of AAs on regulation of metabolic enzyme-encoding genes is not known at the molecular level in liver. We now report that Gln and some essential AAs activate the human GAPDH gene that codes for GAPDH, a central enzyme of glycolysis and a target for insulin regulation. In HepG2 cells, Gln upregulated the GAPDH mRNA level, and this effect was additive to that of insulin. Transient transfection of GAPDH promoter/cat constructs demonstrated that a gene-specific and insulin-independent transcriptional step is involved in the Gln responsiveness of GAPDH. Transfected HepG2 cells challenged with various AAs, Gln metabolites or inhibitors of Gln metabolism showed that the Gln-induced effect is similar to that of some essential AAs and that Gln metabolism is a necessary step for GAPDH activation. Deletion mutants and site-directed mutagenesis of the GAPDH promoter indicated that the Gln responsiveness is mediated by a sequence that is distinct from insulin-responsive elements and from positively acting elements previously described in this promoter. This motif located at -126/-118 clearly differs from AA-responsive elements recently identified in other genes. Electromobility shift assay and supershifts showed that the transcription factors bound to the Gln-responsive element in the GAPDH promoter are C/EBPalpha and -delta. This finding is consistent with the role of C/EBP family members in controlling the hepatic expression of genes involved in nutrient metabolism.
Collapse
Affiliation(s)
- Sophie Claeyssens
- Faculté de Médecine-Pharmacie, 22 Bvd Gambetta, 76183 Rouen cedex, France.
| | | | | | | | | | | | | |
Collapse
|
530
|
Maradonna F, Bavestrello G, Cardinali M, Olivotto I, Cerrano C, Giovine M, Carnevali O. Role of substrate on larval development of the freshwater teleostPelvicachromis pulcher. Mol Reprod Dev 2003; 66:256-63. [PMID: 14502604 DOI: 10.1002/mrd.10351] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
It is known that, in an aquatic environment, the mineralogical composition of the substrate can affect the structure of settled communities. In marine environments, the presence of quartz negatively influences the formation of biofilm, as well as the selection and the colonization of the substrate by benthic organisms. Direct laboratory observation revealed that the freshwater teleost Pelivicachromis pulcher selects, when available, nonquartzitic brooding substrate. To monitor the effects of substrate on larvae development, ten lots of embryos were distributed in grid nurseries; carbonatic gravel was laid in five of the nurseries, while freshly fractured quartz gravel was used in the remaining ones. All the embryos laid in the two nurseries hatched, and 90% of the carbonate developing larvae reached adulthood, while 100% of those reared on quartz grain died 120 hr post hatching. Examination was made, both in larvae developed on carbonatic substrates and in those developed on quartz substrates, of the expression of the fetal growth factor, the insulin growth factor-II (IGF-II), of the molecular chaperone, the heat shock protein 70 (HSP70), which is involved in the folding of the nascent polypeptide chain, of the key enzyme of the glycolytic pathway, the glyceraldehyde-3-phosphate dehydrogenase (GADPH), and of the housekeeping gene, the beta-actin. All the data were normalized against 18S RNA expression. In larvae reared on quartz substrate, the genes IGF-II and the beta-actin showed a lower expression, while the GADPH was totally suppressed and the expression of HSP70 increased. In conclusion, the data presented in this article demonstrated, for the first time, that the presence of quarzitic substrates is sufficient to stop larvae development through the inhibition of gene transcription in this African cichlid, leading to its death.
Collapse
Affiliation(s)
- Francesca Maradonna
- Dipartimento di Scienze del Mare, Università Politecnica delle Marche, Via Brecce Bianche, I-60131 Ancona, Italy
| | | | | | | | | | | | | |
Collapse
|
531
|
Daubenberger CA, Tisdale EJ, Curcic M, Diaz D, Silvie O, Mazier D, Eling W, Bohrmann B, Matile H, Pluschke G. The N'-terminal domain of glyceraldehyde-3-phosphate dehydrogenase of the apicomplexan Plasmodium falciparum mediates GTPase Rab2-dependent recruitment to membranes. Biol Chem 2003; 384:1227-37. [PMID: 12974391 DOI: 10.1515/bc.2003.135] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Spatial and temporal distribution of the glycolytic enzymes glyceraldehyde-3-phosphate dehydrogenase (pfGAPDH) and aldolase (pfAldolase) of Plasmodium falciparum were investigated using specific mAbs and indirect immunofluorescence analysis (IFA). Both glycolytic enzymes were co-localized during ring and trophozoite stages of both liver and asexual blood stage parasites. During schizogony, pfGAPDH became associated with the periphery of the parasites and eventually accumulated in the apical region of merozoites, while pfAldolase showed no segregation. Subcellular fractionation experiments demonstrated that pfGAPDH was found in both the membrane-containing pellet and the supernatant fraction of parasite lysates. In contrast, pfAldolase was only found in the supernatant fraction. A quantitative binding assay showed that pfGAPDH could be recruited to HeLa cell microsomal membranes in response to mammalian GTPase Rab2, indicating that Rab2-dependent recruitment of cytosolic components to membranes is conserved in evolution. Two overlapping fragments of pfGAPDH (residues 1-192 and 133-337) were evaluated in the microsomal binding assay. We found that the N'-terminal fragment competitively inhibited Rab2-stimulated pfGAPDH recruitment. Thus, the domain mediating the evolutionarily conserved Rab2-dependent membrane recruitment is located in the N'-terminus of GAPDH. Together, these results suggest that pfGAPDH exerts non-glycolytic function(s) in P. falciparum, possibly including a role in vesicular transport and biogenesis of apical organelles.
Collapse
Affiliation(s)
- Claudia A Daubenberger
- Molecular Immunology, Swiss Tropical Institute, Socinstr. 57, CH-4002 Basel, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
532
|
Arutyunova EI, Danshina PV, Domnina LV, Pleten AP, Muronetz VI. Oxidation of glyceraldehyde-3-phosphate dehydrogenase enhances its binding to nucleic acids. Biochem Biophys Res Commun 2003; 307:547-52. [PMID: 12893257 DOI: 10.1016/s0006-291x(03)01222-1] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a protein with various activities far from its enzymatic function. Here, we showed that the oxidation of SH-groups of the active site of GAPDH enhanced its binding with total transfer RNA or with total DNA. Both NAD and NADH-the cofactors of GAPDH-inhibited the GAPDH-RNA (DNA) interaction, though NAD was much less effective than NADH in the case of oxidized GAPDH. Oxidation of GAPDH strongly decreased its affinity to NAD but not to NADH. Immobilized tetramers of GAPDH dissociated into dimers during the incubation with total RNA but not DNA. The staining of HeLa cells with monoclonal antibodies specific to dimers, monomers or the denatured form of GAPDH revealed the condensation of non-native forms of GAPDH in the nucleus. The role of oxidation of GAPDH in the regulation of the quaternary structure of the enzyme and in its interaction with nucleic acids is discussed.
Collapse
Affiliation(s)
- Elena I Arutyunova
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 19992, Russia
| | | | | | | | | |
Collapse
|
533
|
Müller CSG, Huff T, Hannappel E. Reduction of thymosin beta4 and actin in HL60 cells during apoptosis is preceded by a decrease of their mRNAs. Mol Cell Biochem 2003; 250:179-88. [PMID: 12962156 DOI: 10.1023/a:1024938325032] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Thymosin beta4 (Tbeta4) is the most prominent representative of the beta-thymosins, a family of highly conserved polar 5 kDa peptides. This peptide is now regarded to be the main G-actin sequestering peptide in mammals and therefore plays an important role in organization of the microfilamental system. During apoptosis of cells this microfilamental system is disrupted. Therefore we studied changes in thymosin beta4 and actin content of HL60 cells after induction of apoptosis using cytosine arabinoside (araC). Thymosin beta4 content decreased to about 30% of the control value after incubation for 48 h in the presence of araC. Also the amount of total actin decreased to about half of the control, while total cellular protein remained constant. To further elucidate if the changes of thymosin beta4 and actin content correlate with the gene expression the relative mRNA content of thymosin beta4 and beta-actin was determined using the ribonuclease protection assay (RPA). Already after 24 h the relative amount of mRNA of thymosin beta4 and beta-actin was greatly reduced to 71 and 58%, respectively. Upon a 48 h araC treatment, the mRNA of these two proteins decreased to 15 and 10% compared to the control, whereas the content of total RNA and protein per cell was nearly unchanged. According to our data araC has a significant influence on the transcriptional level of thymosin beta4 and actin.
Collapse
Affiliation(s)
- Christian S G Müller
- Institute of Biochemistry, Faculty of Medicine, University of Erlangen-Nuremberg, Erlangen, Germany
| | | | | |
Collapse
|
534
|
Campanale N, Nickel C, Daubenberger CA, Wehlan DA, Gorman JJ, Klonis N, Becker K, Tilley L. Identification and characterization of heme-interacting proteins in the malaria parasite, Plasmodium falciparum. J Biol Chem 2003; 278:27354-61. [PMID: 12748176 DOI: 10.1074/jbc.m303634200] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The degradation of hemoglobin by the malaria parasite, Plasmodium falciparum, produces free ferriprotoporphyrin IX (FP) as a toxic by-product. In the presence of FP-binding drugs such as chloroquine, FP detoxification is inhibited, and the build-up of free FP is thought to be a key mechanism in parasite killing. In an effort to identify parasite proteins that might interact preferentially with FP, we have used a mass spectrometry approach. Proteins that bind to FP immobilized on agarose include P. falciparum glyceraldehyde-3-phosphate dehydrogenase (PfGAPDH), P. falciparum glutathione reductase (PfGR), and P. falciparum protein disulfide isomerase. To examine the potential consequences of FP binding, we have examined the ability of FP to inhibit the activities of GAPDH and GR from P. falciparum and other sources. FP inhibits the enzymic activity of PfGAPDH with a Ki value of 0.2 microm, whereas red blood cell GAPDH is much less sensitive. By contrast, PfGR is more resistant to FP inhibition (Ki > 25 microm) than its human counterpart. We also examined the ability of FP to inhibit the activities of the additional antioxidant enzymes, P. falciparum thioredoxin reductase, which exhibits a Ki value of 1 microm, and P. falciparum glutaredoxin, which shows more moderate sensitivity to FP. The exquisite sensitivity of PfGAPDH to FP may indicate that the glycolytic pathway of the parasite is particularly susceptible to modulation by FP stress. Inhibition of this pathway may drive flux through the pentose phosphate pathway ensuring sufficient production of reducing equivalents to counteract the oxidative stress induced by FP build-up.
Collapse
Affiliation(s)
- Naomi Campanale
- Department of Biochemistry and Co-operative Research Centre for Diagnostics, La Trobe University, Melbourne 3086, Victoria, Australia
| | | | | | | | | | | | | | | |
Collapse
|
535
|
Zheng L, Roeder RG, Luo Y. S phase activation of the histone H2B promoter by OCA-S, a coactivator complex that contains GAPDH as a key component. Cell 2003; 114:255-66. [PMID: 12887926 DOI: 10.1016/s0092-8674(03)00552-x] [Citation(s) in RCA: 420] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
We have isolated and functionally characterized a multicomponent Oct-1 coactivator, OCA-S which is essential for S phase-dependent histone H2B transcription. The p38 component of OCA-S binds directly to Oct-1, exhibits potent transactivation potential, is selectively recruited to the H2B promoter in S phase, and is essential for S phase-specific H2B transcription in vivo and in vitro. Surprisingly, p38 represents a nuclear form of glyceraldehyde-3-phosphate dehydrogenase, and binding to Oct-1, as well as OCA-S function, is stimulated by NAD(+) but inhibited by NADH. OCA-S also interacts with NPAT, a cyclin E/cdk2 substrate that is broadly involved in histone gene transcription. These studies thus link the H2B transcriptional machinery to cell cycle regulators, and possibly to cellular metabolic state (redox status), and set the stage for studies of the underlying mechanisms and the basis for coordinated histone gene expression and coupling to DNA replication.
Collapse
Affiliation(s)
- Lei Zheng
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA
| | | | | |
Collapse
|
536
|
Schulz LC, Bahr JM. Glucose-6-phosphate isomerase is necessary for embryo implantation in the domestic ferret. Proc Natl Acad Sci U S A 2003; 100:8561-6. [PMID: 12826606 PMCID: PMC166268 DOI: 10.1073/pnas.1531024100] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The mechanism of implantation in carnivores is poorly understood. However, a previously unidentified 60-kDa protein has been shown to be necessary for embryo implantation in ferrets. Here we identify this protein as glucose-6-phosphate isomerase (GPI). GPI is expressed by the corpus luteum on days 6-9 of pregnancy, the time at which implantation-promoting activity has been found in corpora lutea. Passive immunization against GPI reduced the number of implantation sites in pregnant ferrets in a dose-dependent manner. GPI is a multifunctional protein. Although first identified for its role in glycolysis, GPI has since been implicated in neural growth, lymphocyte maturation, and metastasis. This study demonstrates a previously uncharacterized function of this protein that may represent the natural motility-stimulating activity that has been co-opted by tumor cells.
Collapse
Affiliation(s)
- Laura Clamon Schulz
- Department of Molecular and Integrative Physiology, University of Illinois, 1207 West Gregory Drive, Urbana, IL 61801, USA.
| | | |
Collapse
|
537
|
Mazzola JL, Sirover MA. Subcellular localization of human glyceraldehyde-3-phosphate dehydrogenase is independent of its glycolytic function. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1622:50-6. [PMID: 12829261 DOI: 10.1016/s0304-4165(03)00117-x] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was considered a classical glycolytic protein involved exclusively in cytosolic energy production. However, recent evidence suggests that it is a multifunctional protein displaying diverse activities distinct from its conventional metabolic role. These new roles for GAPDH may be dependent on its subcellular localization, oligomeric state or on the proliferative state of the cell. GAPDH is encoded by a single gene without alternate splicing. The regulatory mechanisms are unknown through which an individual GAPDH molecule fulfills its non-glycolytic functions or is targeted to a specific intracellular localization. Accordingly, as a first step to elucidate these subcellular regulatory mechanisms, we examined the interrelationship between the intracellular expression of the GAPDH protein and its glycolytic function in normal human fetal and senior cells. GAPDH localization was determined by immunoblot analysis. Enzyme activity was quantitated by in vitro biochemical assay. We now report that the subcellular expression of GAPDH was independent of its classical glycolytic function. In particular, in both fetal and senior cells, considerable GADPH protein was present in intracellular domains characterized by significantly reduced catalysis. Gradient analysis indicated that this lower activity was not due to the dissociation of tetrameric GAPDH. These results suggest that human cells contain significant intracellular levels of enzymatically inactive GAPDH which is age-independent. The possibility is considered that the functional diversity of GAPDH may be mediated either by posttranslational alteration or by subcellular protein:protein and/or protein:nucleic acid interactions.
Collapse
Affiliation(s)
- Jennifer L Mazzola
- Department of Pharmacology, Temple University School of Medicine, 3420 N. Broad Street, Philadelphia, PA 19140, USA
| | | |
Collapse
|
538
|
Karlin S, Barnett MJ, Campbell AM, Fisher RF, Mrazek J. Predicting gene expression levels from codon biases in alpha-proteobacterial genomes. Proc Natl Acad Sci U S A 2003; 100:7313-8. [PMID: 12775761 PMCID: PMC165872 DOI: 10.1073/pnas.1232298100] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Predicted highly expressed (PHX) genes in five currently available high G+C complete alpha-proteobacterial genomes are analyzed. These include: the nitrogen-fixing plant symbionts Sinorhizobium meliloti (SINME) and Mesorhizobium loti (MESLO), the nonpathogenic aquatic bacterium Caulobacter crescentus (CAUCR), the plant pathogen Agrobacterium tumefaciens (AGRTU), and the mammalian pathogen Brucella melitensis (BRUME). Three of these genomes, SINME, AGRTU, and BRUME, contain multiple chromosomes or megaplasmids (>1 Mb length). PHX genes in these genomes are concentrated mainly in the major (largest) chromosome with few PHX genes found in the secondary chromosomes and megaplasmids. Tricarboxylic acid cycle and aerobic respiration genes are strongly PHX in all five genomes, whereas anaerobic pathways of glycolysis and fermentation are mostly not PHX. Only in MESLO (but not SINME) and BRUME are most glycolysis genes PHX. Many flagellar genes are PHX in MESLO and CAUCR, but mostly are not PHX in SINME and AGRTU. The nonmotile BRUME also carries many flagellar genes but these are generally not PHX and all but one are located in the second chromosome. CAUCR stands out among available prokaryotic genomes with 25 PHX TonB-dependent receptors. These are putatively involved in uptake of iron ions and other nonsoluble compounds.
Collapse
Affiliation(s)
- Samuel Karlin
- Department of Mathematics, Stanford University, Stanford, CA 94305, USA.
| | | | | | | | | |
Collapse
|
539
|
Kim JH, Lee S, Park JB, Lee SD, Kim JH, Ha SH, Hasumi K, Endo A, Suh PG, Ryu SH. Hydrogen peroxide induces association between glyceraldehyde 3-phosphate dehydrogenase and phospholipase D2 to facilitate phospholipase D2 activation in PC12 cells. J Neurochem 2003; 85:1228-36. [PMID: 12753082 DOI: 10.1046/j.1471-4159.2003.01755.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Oxidative stress or signaling is widely implicated in apoptosis, ischemia and mitogenesis. Previously, our group reported that the hydrogen peroxide (H2O2)-dependent activation of phospholipase D2 (PLD2) in PC12 cells is involved in anti-apoptotic effect. However, the precise mechanism of PLD2 activation by H2O2 was not revealed. To find H2O2-dependent PLD2-regulating proteins, we immunoprecipitated PLD2 from PC12 cells and found that glyceraldehyde 3-phosphate dehydrogenase (GAPDH) coimmunoprecipitated with PLD2 upon H2O2 treatment. This interaction was found to be direct by in vitro reconstitution of purified GAPDH and PLD2. In vitro studies also indicated that PLD2-associated GAPDH was modified on its reactive cysteine residues. Koningic acid, an alkylator of GAPDH on catalytic cysteine residue, also increased interaction between the two proteins in vitro and enhanced PLD2 activity in PC12 cells. Blocking H2O2-dependent modification of GAPDH with 3-aminobenzamide resulted in the inhibition of the GAPDH/PLD2 interaction and attenuated H2O2-induced PLD2 activation in PC12 cells. From the results, we suggest that H2O2 modifies GAPDH on its catalytic cysteine residue not only to inactivate the dehydrogenase activity of GAPDH but also to endow GAPDH with the ability to bind PLD2 and the resulting association is involved in the regulation of PLD2 activity by H2O2.
Collapse
Affiliation(s)
- Jung Hwan Kim
- Division of Molecular and Life Sciences, Pohang University of Science and Technology, Pohang, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
540
|
Mounaji K, Vlassi M, Erraiss NE, Wegnez M, Serrano A, Soukri A. In vitro effect of metal ions on the activity of two amphibian glyceraldehyde-3-phosphate dehydrogenases: potential metal binding sites. Comp Biochem Physiol B Biochem Mol Biol 2003; 135:241-54. [PMID: 12798935 DOI: 10.1016/s1096-4959(03)00051-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH, EC 1.2.1.12) was purified from two amphibian species, Xenopus laevis and Pleurodeles waltl. Comparative studies revealed that the two proteins differ by their subunit molecular masses, pI values and V8 digested peptide maps. The effect of zinc, cadmium and copper ions on GAPDH enzymatic activity has been examined in vitro. A time, metal concentration and metal type dependent inhibition was observed for both enzymes. X. laevis and P. waltl GAPDHs exhibit a much greater sensitivity to copper than to cadmium or zinc ions. Different half-lives and differential sensitivity to various metals was observed between the two enzymes with P. waltl GAPDH being remarkably tolerant to cadmium ions compared to the X. laevis enzyme. In order to understand the differential sensitivity of the two enzymes to metals, we produced 3D models of both X. laevis and P. waltl GAPDH structures based upon known 3D structures of GAPDHs from other species. This necessitated, in a first step, to clone a 900 bp cDNA fragment encoding the nearly full-length P. waltl GAPDH. Spatial motif searches on the homology models indicated potential metal binding sites involving cysteine and histidine residues outside the catalytic sites, existing only in either the X. laevis or the P. waltl GAPDH sequences.
Collapse
Affiliation(s)
- Khadija Mounaji
- Laboratoire de Biologie et Physiologie de la Reproduction et du Développement, Faculté des Sciences I, BP. 5366, Maarif, Casablanca, Morocco
| | | | | | | | | | | |
Collapse
|
541
|
Delgado ML, Gil ML, Gozalbo D. Candida albicans TDH3 gene promotes secretion of internal invertase when expressed in Saccharomyces cerevisiae as a glyceraldehyde-3-phosphate dehydrogenase-invertase fusion protein. Yeast 2003; 20:713-22. [PMID: 12794932 DOI: 10.1002/yea.993] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
We have checked the ability of the Candida albicans GAPDH polypeptide, which lacks a conventional N-terminal signal peptide, to reach the cell wall in Saccharomyces cerevisiae by using an intracellular form of the yeast invertase as a reporter protein. A hybrid TDH3-SUC2 gene containing the C. albicans TDH3 promoter sequences and a coding region encoding a fusion protein formed by the C. albicans GAPDH polypeptide, fused at its C-terminus with the yeast internal invertase, was constructed in a centromer derivative plasmid and transformed into a Suc(-) S. cerevisiae strain. Transformants displayed invertase activity measured in intact whole cells, and were able to grow on sucrose as the sole fermentable carbon source. Northern blot analysis with both TDH3 and SUC2 probes detected a single mRNA species of the expected size (about 2.7 kb), and Western immunoblot analysis of cell-free extracts, using a monoclonal antibody (mAb49) against a C. albicans GAPDH epitope, showed the presence of a 90 kDa polypeptide corresponding to the GAPDH-invertase fusion protein. This indicates that the TDH3 gene is able to direct part of the encoded gene product to the cell wall, and that any putative motifs for this targeting should be within the GAPDH amino acid sequence. Further analysis, using the same approach, of a panel of seven N- and C-terminal GAPDH truncates revealed that the region required for the cell wall targeting is located within the N-terminal half of the protein.
Collapse
Affiliation(s)
- M Luisa Delgado
- Departament de Microbiologia i Ecologia, Facultat de Farmàcia, Universitat de València, Avgda Vicent Andrés Estellés s/n, 46100 Burjassot, València, Spain
| | | | | |
Collapse
|
542
|
Nakagawa T, Hirano Y, Inomata A, Yokota S, Miyachi K, Kaneda M, Umeda M, Furukawa K, Omata S, Horigome T. Participation of a fusogenic protein, glyceraldehyde-3-phosphate dehydrogenase, in nuclear membrane assembly. J Biol Chem 2003; 278:20395-404. [PMID: 12651855 DOI: 10.1074/jbc.m210824200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We found an autoimmune serum, K199, that strongly suppresses nuclear membrane assembly in a cell-free system involving a Xenopus egg extract. Four different antibodies that suppress nuclear assembly were affinity-purified from the serum using Xenopus egg cytosol proteins. Three proteins recognized by these antibodies were identified by partial amino acid sequencing to be glyceraldehyde-3-phosphate dehydrogenase (GAPDH), fructose-1,6-bisphosphate aldolase, and the regulator of chromatin condensation 1. GAPDH is known to be a fusogenic protein. To verify the participation of GAPDH in nuclear membrane fusion, authentic antibodies against human and rat GAPDH were applied, and strong suppression of nuclear assembly at the nuclear membrane fusion step was observed. The nuclear assembly activity suppressed by antibodies was recovered on the addition of purified chicken GAPDH. A peptide with the sequence of amino acid residues 70-94 of GAPDH, which inhibits GAPDH-induced phospholipid vesicle fusion, inhibited nuclear assembly at the nuclear membrane fusion step. We propose that GAPDH plays a crucial role in the membrane fusion step in nuclear assembly in a Xenopus egg extract cell-free system.
Collapse
Affiliation(s)
- Tomoaki Nakagawa
- Course of Functional Biology, Graduate School of Science and Technology, Niigata University, Igarashi-2, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
543
|
Wentzel P, Ejdesjö A, Eriksson UJ. Maternal diabetes in vivo and high glucose in vitro diminish GAPDH activity in rat embryos. Diabetes 2003; 52:1222-8. [PMID: 12716756 DOI: 10.2337/diabetes.52.5.1222] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The aim of the present study was to investigate whether diabetic embryopathy may be associated with the inhibition of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) resulting from an excess of reactive oxygen species (ROS) in the embryo. Recent demonstrations of enhanced ROS production in mitochondria of bovine aortic endothelial cells exposed to high glucose have supported the idea that the pathogenesis of diabetic complications may involve ROS-induced GAPDH inhibition. We investigated whether a teratogenic diabetic environment also inhibits embryonic GAPDH activity and alters GAPDH gene expression and whether antioxidants diminish such GAPDH inhibition. In addition, we determined whether the inhibition of GAPDH with iodoacetate induces dysmorphogenesis, analogous to that caused by high glucose concentration, and whether antioxidants modulated the putative teratogenic effect of such direct GAPDH inhibition. We found that embryos from diabetic rats and embryos cultured in high glucose concentrations showed decreased activity of GAPDH (by 40-60%) and severe dysmorphogenesis on gestational days 10.5 and 11.5. GAPDH mRNA was decreased in embryos of diabetic rats compared to control embryos. Supplementing the high-glucose culture with the antioxidant N-acetylcysteine (NAC) increased GAPDH activity and diminished embryonic dysmorphogenesis. Embryos cultured with iodoacetate showed both decreased GAPDH activity and dysmorphogenesis; supplementing the culture with NAC increased both parameters toward normal values. In conclusion, dysmorphogenesis caused by maternal diabetes is correlated with ROS-induced inhibition of GAPDH in embryos, which could indicate that inhibition of GAPDH plays a causal role in diabetic embryopathy.
Collapse
Affiliation(s)
- Parri Wentzel
- Department of Medical Cell Biology, Biomedical Center, Uppsala University, PO Box 571, SE-751 23 Uppsala, Sweden.
| | | | | |
Collapse
|
544
|
Tatton WG, Chalmers-Redman R, Brown D, Tatton N. Apoptosis in Parkinson's disease: signals for neuronal degradation. Ann Neurol 2003; 53 Suppl 3:S61-70; discussion S70-2. [PMID: 12666099 DOI: 10.1002/ana.10489] [Citation(s) in RCA: 260] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Controversy has surrounded a role for apoptosis in the loss of neurons in Parkinson's disease (PD). Although a variety of evidence has supported an apoptotic contribution to PD neuronal loss particularly in the nigra, two factors have weighed against general acceptance: (1) limitations in the use of in situ 3' end labeling techniques to demonstrate nuclear DNA cleavage; and (2) the insistence that a specific set of nuclear morphological features be present before apoptotic death could be declared. We first review the molecular events that underlie apoptotic nuclear degradation and the literature regarding the unreliability of 3' DNA end labeling as a marker of apoptotic nuclear degradation. Recent findings regarding the multiple caspase-dependent or caspase-independent signaling pathways that mediate apoptotic nuclear degradation and determine the morphological features of apoptotic nuclear degradation are presented. The evidence shows that a single nuclear morphology is not sufficient to identify apoptosis and that a cytochrome c, pro-caspase 9, and caspase 3 pathways is operative in PD nigral apoptosis. BAX-dependent increases in mitochondrial membrane permeability are responsible for the release of mitochondrial factors that signal for apoptotic degradation, and increased BAX levels have been found in a subset of PD nigral neurons. Studies using immunocytochemistry in PD postmortem nigra have begun to define the premitochondrial apoptosis signaling pathways in the disease. Two, possibly interdependent, pathways have been uncovered: (1) a p53-glyceraldehyde-3-phosphate dehydrogenase (GAPDH)-BAX pathway; and (2) FAS receptor-FADD-caspase 8-BAX pathway. Based on the above, it seems unlikely that apoptosis does not contribute to PD neuronal loss, and the definition of the premitochondrial signaling pathways may allow for the development and testing of an apoptosis-based PD therapy.
Collapse
Affiliation(s)
- William G Tatton
- Department of Neurology, Mount Sinai School of Medicine, New York, NY 10029, USA.
| | | | | | | |
Collapse
|
545
|
Tatton W, Chen D, Chalmers-Redman R, Wheeler L, Nixon R, Tatton N. Hypothesis for a common basis for neuroprotection in glaucoma and Alzheimer's disease: anti-apoptosis by alpha-2-adrenergic receptor activation. Surv Ophthalmol 2003; 48 Suppl 1:S25-37. [PMID: 12852432 DOI: 10.1016/s0039-6257(03)00005-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Recent studies have suggested glaucomatous loss of retinal ganglion cells and their axons in Alzheimer's disease. Amyloid beta peptides and phosphorylated tau protein have been implicated in the selective regional neuronal loss and protein accumulations characteristic of Alzheimer's disease. Similar protein accumulations are not present on glaucomatous retinal ganglion cells. Neurons die in both Alzheimer's disease and glaucoma by apoptosis, although the signaling pathways for neuronal degradation appear to differ in the two diseases. Alzheimer's disease features a loss of locus ceruleus noradrenergic neurons, which send axon terminals to the brain regions suffering neuronal apoptosis and results in reductions in noradrenaline in those regions. Activation of alpha-2 adrenergic receptors reduces neuronal apoptosis, in part through a protein kinase B (Akt)-dependent signaling pathway. Loss of noradrenaline innervation facilitates neuronal apoptosis in Alzheimer's disease models and may act similarly in glaucoma. Alpha-2 adrenergic receptor agonists offer the potential to slow the neuronal loss in both diseases by compensating for lost noradrenaline innervation.
Collapse
Affiliation(s)
- William Tatton
- Department of Neurology, Mount Sinai School of Medicine, New York, New York, USA
| | | | | | | | | | | |
Collapse
|
546
|
Ishitani R, Tajima H, Takata H, Tsuchiya K, Kuwae T, Yamada M, Takahashi H, Tatton NA, Katsube N. Proapoptotic protein glyceraldehyde-3-phosphate dehydrogenase: a possible site of action of antiapoptotic drugs. Prog Neuropsychopharmacol Biol Psychiatry 2003; 27:291-301. [PMID: 12657368 DOI: 10.1016/s0278-5846(03)00024-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) has long been recognized as a classical glycolytic protein and has been used as a "housekeeping" gene in studies of genetic expression and regulation. However, recent advances reveal that GAPDH displays diverse nonglycolytic functions depending on its subcellular localization. Among those functions, one of the most intriguing is likely to be the induction of apoptosis. Previous works by our group and others have demonstrated that the overexpression of GAPDH and its subsequent nuclear translocation appear to be implicated in the initiation of one or more apoptotic cascades and also in the etiology of some neurological diseases. This review addresses new data demonstrating that a protein, referred to as proapoptotic protein GAPDH, with a quite mundane function in healthy cells behaves very differently during cell suicide, and summarizes emphatically the importance of this protein as a putative molecular target in developing antiapoptotic therapeutic agents for the treatment of certain neurodegenerative disorders.
Collapse
Affiliation(s)
- Ryoichi Ishitani
- Group on Cellular Neurobiology, Josai University, Saitama 350-0248, Sakado, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
547
|
Sha J, Galindo CL, Pancholi V, Popov VL, Zhao Y, Houston CW, Chopra AK. Differential expression of the enolase gene under in vivo versus in vitro growth conditions of Aeromonas hydrophila. Microb Pathog 2003; 34:195-204. [PMID: 12668143 DOI: 10.1016/s0882-4010(03)00028-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Aeromonas hydrophila is an emerging human pathogen that leads to gastroenteritis and other invasive diseases. By using a murine peritoneal culture (MPC) model, we identified via restriction fragment differential display PCR (RFDDPCR) five genes of A. hydrophila that were differentially expressed under in vivo versus in vitro growth conditions. The gene encoding enolase was among those five genes that were differentially up regulated. Enolase is a glycolytic enzyme and its surface expression was recently shown to be important in the pathogenesis of a gram-positive bacterium Streptococcus pyogenes. By Western blot analysis and Immunogold staining, we demonstrated secretion and surface expression of enolase in A. hydrophila. We also showed that the whole cells of A. hydrophila had strong enolase activity. Using an enzyme-linked immunosorbant assay and sandwich Western blot analysis, we demonstrated binding of enolase to human plasminogen, which is involved in the fibrinolytic system of the host. We cloned the A. hydrophila enolase gene, which exhibited 62% homology at the DNA level and 57% homology at the amino acid level when compared to S. pyogenes enolase. This is a first report describing the increased expression of enolase gene in vivo that could potentially contribute to the pathogenesis of A. hydrophila infections.
Collapse
Affiliation(s)
- Jian Sha
- Department of Microbiology and Immunology, 301 University Blvd, Medical Research Building, The University of Texas Medical Branch, Galveston, TX 77555-1070, USA
| | | | | | | | | | | | | |
Collapse
|
548
|
Senatorov VV, Charles V, Reddy PH, Tagle DA, Chuang DM. Overexpression and nuclear accumulation of glyceraldehyde-3-phosphate dehydrogenase in a transgenic mouse model of Huntington's disease. Mol Cell Neurosci 2003; 22:285-97. [PMID: 12691731 DOI: 10.1016/s1044-7431(02)00013-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Huntington's disease is due to an expansion of CAG repeats in the huntingtin gene. Huntingtin interacts with several proteins including glyceraldehyde-3-phosphate dehydrogenase (GAPDH). We performed immunohistochemical analysis of GAPDH expression in the brains of transgenic mice carrying the huntingtin gene with 89 CAG repeats. In all wild-type animals examined, GAPDH was evenly distributed among the different cell types throughout the brain. In contrast, the majority of transgenic mice showed GAPDH overexpression, with the most prominent GAPDH changes observed in the caudate putamen, globus pallidus, neocortex, and hippocampal formation. Double staining for NeuN and GFAP revealed that GAPDH overexpression occurred exclusively in neurons. Nissl staining analysis of the neocortex and caudate putamen indicated 24 and 27% of cell loss in transgenic mice, respectively. Subcellular fluorescence analysis revealed a predominant increase in GAPDH immunostaining in the nucleus. Thus, we conclude that mutation of huntingtin is associated with GAPDH overexpression and nuclear translocation in discrete populations of brain neurons.
Collapse
Affiliation(s)
- Vladimir V Senatorov
- Molecular Neurobiology Section, Mood and Anxiety Disorders Program, National Institute of Mental Health, National Institutes of Health, MD 20892-1363, Bethesda, USA
| | | | | | | | | |
Collapse
|
549
|
Yamaji R, Fujita K, Takahashi S, Yoneda H, Nagao K, Masuda W, Naito M, Tsuruo T, Miyatake K, Inui H, Nakano Y. Hypoxia up-regulates glyceraldehyde-3-phosphate dehydrogenase in mouse brain capillary endothelial cells: involvement of Na+/Ca2+ exchanger. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1593:269-76. [PMID: 12581871 DOI: 10.1016/s0167-4889(02)00397-x] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The molecular regulatory mechanisms and the characterization of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) in hypoxia were studied in a mouse brain capillary endothelial cell line, MBEC4. Activation of GAPDH gene expression by hypoxia was suppressed by an intracellular Ca(2+) chelator and inhibited by a non-selective cation channel blocker or a Na(+)/Ca(2+) exchanger (NCX) blocker. Sequencing of reverse transcription-PCR products demonstrated that MBEC4 expressed an mRNA encoding NCX3, which functions even under cellular ATP-depleted conditions, in addition to mRNAs encoding NCX1 and NCX2. The inhibition of Ca(2+)/calmodulin-dependent protein kinases or c-Jun/AP-1 activation caused a significant decrease in the activation of GAPDH mRNA by hypoxia. These results suggest that hypoxia stimulates Ca(2+) influx through non-selective cation channels and causes the reverse operation of the three NCX isoforms, and consequently, increased intracellular Ca(2+) up-regulates GAPDH gene expression through an AP-1-dependent pathway. Furthermore, subcellular fractionation experiments showed that hypoxia increased GAPDH proteins not only in the cytosolic fraction, but also in the nuclear and particulate fractions, in which GAPDH should play no roles in glycolysis. However, the GAPDH activity did not rise in proportion to the increase of GAPDH protein by hypoxia even in the cytosolic fraction. These results suggest that not all hypoxia-induced GAPDH molecules contribute to glycolysis.
Collapse
Affiliation(s)
- Ryoichi Yamaji
- Division of Applied Biological Chemistry, Graduate School of Agriculture and Biological Sciences, Osaka Prefecture University, Sakai, 5998531, Osaka, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
550
|
Beisswenger PJ, Howell SK, Smith K, Szwergold BS. Glyceraldehyde-3-phosphate dehydrogenase activity as an independent modifier of methylglyoxal levels in diabetes. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1637:98-106. [PMID: 12527413 DOI: 10.1016/s09254439(02)00219-3] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Methylglyoxal (MG) may be an important cause of diabetic complications. Its primary source is dihydroxyacetone phosphate (DHAP) whose levels are partially controlled by glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Using a human red blood cell (RBC) culture, we examined the effect of modifying GAPDH activity on MG production. With the inhibitor koningic acid (KA), we showed a linear, concentration-dependent GAPDH inhibition, with 5 microM KA leading to a 79% reduction of GAPDH activity and a sixfold increase in MG. Changes in redox state produced by elevated pH also resulted in a 2.4-fold increase in MG production at pH 7.5 and a 13.4-fold increase at pH 7.8. We found substantial inter-individual variation in DHAP and MG levels and an inverse relationship between GAPDH activity and MG production (R=0.57, P=0.005) in type 2 diabetes. A similar relationship between GAPDH activity and MG was observed in vivo in type 1 diabetes (R=0.29, P=0.0018). Widely varying rates of progression of diabetic complications are seen among individuals. We postulate that modification of GAPDH by environmental factors or genetic dysregulation and the resultant differences in MG production could at least partially account for this observation.
Collapse
Affiliation(s)
- Paul J Beisswenger
- Department of Medicine, Endocrine-Metabolism Division, Dartmouth Medical School, Hanover, NH 03755, USA.
| | | | | | | |
Collapse
|