501
|
Yamashita S, Sameshima Y, Konishi M, Kato J, Kishimoto M, Honda K, Omasa T, Ohtake H. Integrated biooxidation and acid dehydration process for monohydroxylation of aromatics. Process Biochem 2007. [DOI: 10.1016/j.procbio.2006.07.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
502
|
Vaze A, Rusling JF. Microemulsion-controlled reaction sites in biocatalytic films for electrochemical reduction of vicinal dibromides. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2006; 22:10788-95. [PMID: 17129061 DOI: 10.1021/la061138j] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
We report herein the electrochemical dehalogenation of vicinal dibromides in microemulsions using cross-linked films of the redox protein myoglobin (Mb) and poly-l-lysine (PLL) covalently bonded to carbon electrodes. Catalytic reduction of the dibromides to olefins was more efficient in an SDS microemulsion than in a CTAB microemulsion. SDS shifts the Mb redox potential more negative, but a comparison to Mb-SDS films suggests that the activation free energy of the reduction is controlled by an inner-sphere mechanism. SDS also enters the positively charged Mb-PLL films and preconcentrates the dibromide reactants, enhancing catalytic efficiency in SDS microemulsions. Shifts in formal potential and Soret absorbance bands for Mb-PLL films suggested binding of trans-1,2-dibromocyclohexane in the iron heme distal pocket with little catalysis. Results are consistent with active catalytic reduction sites for reactant bound on the protein surface and less-reactive sites in the distal heme pocket. Preconcentration into catalytic PLL films using SDS incorporated from microemulsions may be a general way to improve catalytic efficiency for nonpolar reactants in microemulsions.
Collapse
Affiliation(s)
- Abhay Vaze
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269-3060, USA
| | | |
Collapse
|
503
|
Singh R, Sharma R, Tewari N, Rawat DS. Nitrilase and its application as a 'green' catalyst. Chem Biodivers 2006; 3:1279-1287. [PMID: 17193242 DOI: 10.1002/cbdv.200690131] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Hydrolase-catalyzed reactions have been widely applied in organic synthesis. Nitrilases are an important class of hydrolase that converts naturally occurring, as well as xenobiotically derived, nitriles to the corresponding carboxylic acids and ammonia. Because of their inherent enantio- and regioselectivities and other benefits, nitrilases are attractive as 'green', mild, and selective catalysts for setting stereogenic centers in fine-chemical synthesis and enantiospecific synthesis of a variety of carboxylic acid derivatives. In this review, the literature has been surveyed to provide a comprehensive coverage of the application of nitrilases in organic synthesis. Literature has also been cited to describe the isolation and/or characterization of nitrilases and related enzymes.
Collapse
Affiliation(s)
- Ram Singh
- Department of Chemistry, University of Delhi, Delhi-110 007, India.
| | | | | | | |
Collapse
|
504
|
Kumar S, Liu H, Halpert JR. Engineering of cytochrome P450 3A4 for enhanced peroxide-mediated substrate oxidation using directed evolution and site-directed mutagenesis. Drug Metab Dispos 2006; 34:1958-65. [PMID: 16987939 DOI: 10.1124/dmd.106.012054] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
CYP3A4 has been subjected to random and site-directed mutagenesis to enhance peroxide-supported metabolism of several substrates. Initially, a high-throughput screening method using whole cell suspensions was developed for H2O2-supported oxidation of 7-benzyloxyquinoline. Random mutagenesis by error-prone polymerase chain reaction and activity screening yielded several CYP3A4 mutants with enhanced activity. L216W and F228I showed a 3-fold decrease in Km, HOOH and a 2.5-fold increase in kcat/Km, HOOH compared with CYP3A4. Subsequently, T309V and T309A were created based on the observation that T309V in CYP2D6 has enhanced cumene hydroperoxide (CuOOH)-supported activity. T309V and T309A showed a > 6- and 5-fold higher kcat/Km, CuOOH than CYP3A4, respectively. Interestingly, L216W and F228I also exhibited, respectively, a > 4- and a > 3-fold higher kcat/Km, CuOOH than CYP3A4. Therefore, several multiple mutants were constructed from rationally designed and randomly isolated mutants; among them, F228I/T309A showed an 11-fold higher kcat/Km, CuOOH than CYP3A4. Addition of cytochrome b5, which is known to stimulate peroxide-supported activity, enhanced the kcat/Km, CuOOH of CYP3A4 by 4- to 7-fold. When the mutants were tested with other substrates, T309V and T433S showed enhanced kcat/Km, CuOOH with 7-benzyloxy-4-(trifluoromethyl)coumarin and testosterone, respectively, compared with CYP3A4. In addition, in the presence of cytochrome b5, T433S has the potential to produce milligram quantities of 6beta-hydroxytestosterone through peroxide-supported oxidation. In conclusion, a combination of random and site-directed mutagenesis approaches yielded CYP3A4 enzymes with enhanced peroxide-supported metabolism of several substrates.
Collapse
Affiliation(s)
- Santosh Kumar
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555-1031, USA.
| | | | | |
Collapse
|
505
|
Wohlgemuth R. Tools for Selective Enzyme Reaction Steps in the Synthesis of Laboratory Chemicals. Eng Life Sci 2006. [DOI: 10.1002/elsc.200620155] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
506
|
Yamashita S, Satoi M, Iwasa Y, Honda K, Sameshima Y, Omasa T, Kato J, Ohtake H. Utilization of hydrophobic bacterium Rhodococcus opacus B-4 as whole-cell catalyst in anhydrous organic solvents. Appl Microbiol Biotechnol 2006; 74:761-7. [PMID: 17123076 DOI: 10.1007/s00253-006-0729-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2006] [Revised: 10/15/2006] [Accepted: 10/17/2006] [Indexed: 10/23/2022]
Abstract
Rhodococcus opacus strain B-4, which has recently been isolated as an organic solvent-tolerant bacterium, has a high hydrophobicity and exhibits a high affinity for hydrocarbons. This bacterium was able to survive for at least 5 days in organic solvents, including n-tetradecane, oleyl alcohol, and bis(2-ethylhexyl) phthalate (BEHP), which contained water less than 1% (w/v). The biocatalytic ability of R. opacus B-4 was demonstrated in the essentially nonaqueous BEHP using indigo production from indole as a model conversion. By the catabolism of oleic acid for NADH regeneration, indigo production increased up to 71.6 microg ml(-1) by 24 h.
Collapse
Affiliation(s)
- Shiho Yamashita
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, Japan
| | | | | | | | | | | | | | | |
Collapse
|
507
|
Brazeau BJ, Gort SJ, Jessen HJ, Andrew AJ, Liao HH. Enzymatic activation of lysine 2,3-aminomutase from Porphyromonas gingivalis. Appl Environ Microbiol 2006; 72:6402-4. [PMID: 16957271 PMCID: PMC1563663 DOI: 10.1128/aem.01143-06] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The development of lysine 2,3-aminomutase as a robust biocatalyst hinges on the development of an in vivo activation system to trigger catalysis. This is the first report to show that, in the absence of chemical reductants, lysine 2,3-aminomutase activity is dependent upon the presence of flavodoxin, ferredoxin, or flavodoxin-NADP(+) reductase.
Collapse
Affiliation(s)
- Brian J Brazeau
- Biotechnology Development Center-Eddyville, Cargill Incorporated, 1 Cargill Drive, Eddyville, IA 52553, USA.
| | | | | | | | | |
Collapse
|
508
|
Hailes HC. Reaction Solvent Selection: The Potential of Water as a Solvent for Organic Transformations. Org Process Res Dev 2006. [DOI: 10.1021/op060157x] [Citation(s) in RCA: 243] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Helen C. Hailes
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK
| |
Collapse
|
509
|
Stereoselectivity and Expanded Substrate Scope of an Engineered PLP-Dependent Aldolase. Angew Chem Int Ed Engl 2006. [DOI: 10.1002/ange.200602529] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
510
|
Seebeck FP, Guainazzi A, Amoreira C, Baldridge KK, Hilvert D. Stereoselectivity and Expanded Substrate Scope of an Engineered PLP-Dependent Aldolase. Angew Chem Int Ed Engl 2006; 45:6824-6. [PMID: 17001724 DOI: 10.1002/anie.200602529] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Florian P Seebeck
- Laboratorium für Organische Chemie, ETH Zürich, Hönggerberg HCI F339, 8093 Zürich, Switzerland
| | | | | | | | | |
Collapse
|
511
|
Miyazaki M, Maeda H. Microchannel enzyme reactors and their applications for processing. Trends Biotechnol 2006; 24:463-70. [PMID: 16934892 DOI: 10.1016/j.tibtech.2006.08.002] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2005] [Revised: 05/19/2006] [Accepted: 08/15/2006] [Indexed: 10/24/2022]
Abstract
Microreaction technology is an interdisciplinary field combining science and engineering. It has attracted the attention of researchers from different fields for the past few years, resulting in the development of several microreactors. Enzymes are one of the catalysts used in microreactors: they are useful for substance production in an environmentally friendly way and have high potential for analytical applications. However, few enzymatic processes have been commercialized because of problems with stability and the cost and efficiency of the reactions. Thus, there have been demands for innovation in process engineering, particularly for enzymatic reactions, and microreaction devices can serve as efficient tools for the development of enzyme processes. In this review, we summarize the recent advances of enzyme-immobilized microchannel reactors; fundamental techniques for micro enzyme-reactor design and important applications of this multidisciplinary technology in chemical processing are also included in our topics.
Collapse
Affiliation(s)
- Masaya Miyazaki
- Nanotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tosu, Saga 841-0052, Japan
| | | |
Collapse
|
512
|
Lee DH, Kim JM, Kang SW, Lee JW, Kim SW. Pretreatment of lipase with soybean oil before immobilization to prevent loss of activity. Biotechnol Lett 2006; 28:1965-9. [PMID: 17028778 DOI: 10.1007/s10529-006-9181-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2006] [Revised: 08/10/2006] [Accepted: 08/14/2006] [Indexed: 10/24/2022]
Abstract
Lipase was pretreated with soybean oil in order to allow fatty acids to bond to the active site before immobilization. This pretreated lipase exhibited steric hindrance around the active site such that during immobilization, covalent bonds were formed between the carrier and the lipase region far from the active site. The activity of the pretreated lipase immobilized covalently on a silica gel was 530 U/g-matrix, which is 16 times higher than that of the immobilized non-pretreated lipase. In addition, the immobilized lipase activity was maintained at levels exceeding 90% of its original activity after 10 reuses.
Collapse
Affiliation(s)
- Dong Hwan Lee
- Department of Chemical and Biological Engineering, Korea University, Anam-dong, Sungbuk-ku, Seoul, Korea
| | | | | | | | | |
Collapse
|
513
|
Breinig F, Diehl B, Rau S, Zimmer C, Schwab H, Schmitt MJ. Cell surface expression of bacterial esterase A by Saccharomyces cerevisiae and its enhancement by constitutive activation of the cellular unfolded protein response. Appl Environ Microbiol 2006; 72:7140-7. [PMID: 16980424 PMCID: PMC1636145 DOI: 10.1128/aem.00503-06] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Yeast cell surface display is a powerful tool for expression and immobilization of biocatalytically active proteins on a unicellular eukaryote. Here bacterial carboxylesterase EstA from Burkholderia gladioli was covalently anchored into the cell wall of Saccharomyces cerevisiae by in-frame fusion to the endogenous yeast proteins Kre1p, Cwp2p, and Flo1p. When p-nitrophenyl acetate was used as a substrate, the esterase specific activities of yeast expressing the protein fusions were 103 mU mg(-1) protein for Kre1/EstA/Cwp2p and 72 mU mg(-1) protein for Kre1/EstA/Flo1p. In vivo cell wall targeting was confirmed by esterase solubilization after laminarinase treatment and immunofluorescence microscopy. EstA expression resulted in cell wall-associated esterase activities of 2.72 U mg(-1) protein for Kre1/EstA/Cwp2p and 1.27 U mg(-1) protein for Kre1/EstA/Flo1p. Furthermore, esterase display on the yeast cell surface enabled the cells to effectively grow on the esterase-dependent carbon source glycerol triacetate (Triacetin). In the case of Kre1/EstA/Flo1p, in vivo maturation within the yeast secretory pathway and final incorporation into the wall were further enhanced when there was constitutive activation of the unfolded protein response pathway. Our results demonstrate that esterase cell surface display in yeast, which, as shown here, is remarkably more effective than EstA surface display in Escherichia coli, can be further optimized by activating the protein folding machinery in the eukaryotic secretion pathway.
Collapse
Affiliation(s)
- Frank Breinig
- Angewandte Molekularbiologie, FR 8.3, Gebäude A1 5, Universität des Saarlandes, Postfach 151150, D-66041 Saarbrücken, Germany
| | | | | | | | | | | |
Collapse
|
514
|
Clososki GC, Costa CE, Missio LJ, Cass QB, Comasseto JV. Enzymatic Resolution of 5‐Phenylselanyltetrahydro‐2‐furanone. Enantioselective Preparation of (R) and (S)‐γ‐Valerolactone. SYNTHETIC COMMUN 2006. [DOI: 10.1081/scc-120028354] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Giuliano C. Clososki
- a Instituto de Química , Universidade de São Paulo , C.P. 26077, 05599‐070, São Paulo, SP, Brazil
| | - Carlos E. Costa
- a Instituto de Química , Universidade de São Paulo , C.P. 26077, 05599‐070, São Paulo, SP, Brazil
| | - Lauri J. Missio
- b Departamento de Química , Universidade Federal de São Carlos , São Carlos, SP, Brazil
| | - Quezia B. Cass
- b Departamento de Química , Universidade Federal de São Carlos , São Carlos, SP, Brazil
| | - João V. Comasseto
- a Instituto de Química , Universidade de São Paulo , C.P. 26077, 05599‐070, São Paulo, SP, Brazil
| |
Collapse
|
515
|
Liu Z, Sun Z, Leng Y. Directed evolution and characterization of a novel D-pantonohydrolase from Fusarium moniliforme. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2006; 54:5823-30. [PMID: 16881683 DOI: 10.1021/jf060794m] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
D-Pantonohydrolase has attracted increasing attention as a biocatalyst for stereospecific production of D-pantoic acid. The Fusarium moniliforme D-pantonohydrolase was selected for directed evolution through error-prone Polymerase Chain Reaction (PCR) combined with DNA shuffling for improved activity and pH stability using a convenient two-step high-throughput screening method based on the product formation and pH indicator. After three sequential error-prone PCRs and two rounds of DNA shuffling followed by screening, about 60 positive mutants were produced and a best mutant, Mut H-1287, with improved activity and pH stability was obtained. As compared to wild-type D-pantonohydrolase, Mut H-1287 showed a 10.5-fold higher specific activity; moreover, it could retain 85% of its original activity after incubation under low pH. Gene analysis indicated that the Mut H-1287 had D63H, K118Q, and V241I substitutions. The wild-type and evolved D-pantonohydrolase (Mut H-1287) was purified in three steps. The activities and characteristics of purified wild-type and evolved D-pantonohydrolase were also studied and compared.
Collapse
Affiliation(s)
- Zhiqiang Liu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, Southern Yangtze University, Wuxi, People's Republic of China
| | | | | |
Collapse
|
516
|
Guto PM, Rusling JF. Enzyme-like kinetics of ferryloxy myoglobin formation in films on electrodes in microemulsions. J Phys Chem B 2006; 109:24457-64. [PMID: 16375448 DOI: 10.1021/jp054621w] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Covalently linked films of the ferric heme protein myoglobin and poly-L-lysine on pyrolytic graphite electrodes reacted with tert-butylhydroperoxide (tBuOOH) to form ferryloxy protein species according to Michaelis-Menten enzyme kinetics. Rotating disk voltammetry data obtained in microemulsions, micellar solution, and buffers revealed a strong influence of water phase acidity on kinetic parameters. Microemulsion and surfactant type had a much smaller influence on reaction kinetics, possibly because the reaction takes place entirely in a water environment surrounding Mb in the films in all fluids. A large apparent Michaelis kcat in microemulsions with neutral water phases was offset by much weaker binding as shown by larger protein-substrate dissociation constants (Km). Acidic SDS microemulsions and pH 2 buffer provided the most efficient reaction conditions as judged by the ratio kcat/Km. Apparent kinetic constants are most likely governed by acidity-controlled protein conformations and their binding with tBuOOH in the intermediate protein-substrate complex.
Collapse
Affiliation(s)
- Peterson M Guto
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269-3060, USA
| | | |
Collapse
|
517
|
Mang H, Gross J, Lara M, Goessler C, Schoemaker HE, Guebitz GM, Kroutil W. Biokatalytische einstufige Alkenspaltung von Arylalkenen: ein enzymatisches Äquivalent zur reduktiven Ozonisierung. Angew Chem Int Ed Engl 2006. [DOI: 10.1002/ange.200601574] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
518
|
Langer M, Gabor EM, Liebeton K, Meurer G, Niehaus F, Schulze R, Eck J, Lorenz P. Metagenomics: An inexhaustible access to nature's diversity. Biotechnol J 2006; 1:815-21. [PMID: 16897828 DOI: 10.1002/biot.200600111] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The chemical industry has an enormous need for innovation. To save resources, energy and time, currently more and more established chemical processes are being switched to biotechnological routes. This requires white biotechnology to discover and develop novel enzymes, biocatalysts and applications. Due to a limitation in the cultivability of microbes living in certain habitats, technologies have to be established which give access to the enormous resource of uncultivated microbial diversity. Metagenomics promises to provide new and diverse enzymes and biocatalysts as well as bioactive molecules and has the potential to make industrial biotechnology an economic, sustainable success.
Collapse
|
519
|
Zhao Y, Halpert JR. Structure-function analysis of cytochromes P450 2B. Biochim Biophys Acta Gen Subj 2006; 1770:402-12. [PMID: 16935426 DOI: 10.1016/j.bbagen.2006.07.006] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2006] [Revised: 07/14/2006] [Accepted: 07/18/2006] [Indexed: 01/11/2023]
Abstract
In the last 4 years, breakthroughs were made in the field of P450 2B (CYP2B) structure-function through determination of one ligand-free and two inhibitor-bound X-ray crystal structures of CYP2B4, which revealed many of the structural features required for binding ligands of different size and shape. Large conformational changes of several plastic regions of CYP2B4 can dramatically reshape the active site of the enzyme to fit the size and shape of the bound ligand without perturbing the overall P450 fold. Solution biophysical studies using isothermal titration calorimetry (ITC) have revealed the large difference in the thermodynamic parameters of CYP2B4 in binding inhibitors of different ring chemistry and side chains. Other studies have revealed that the effects of site-specific mutations on steady-state kinetic parameters and mechanism-based inactivation are often substrate dependent. These findings agree with the structural data that the enzymes adopt different conformations to bind various ligands. Thus, the substrate specificity of an individual enzyme is determined not only by active site residues but also non-active site residues that modulate conformational changes that are important for substrate access and rearrangement of the active site to accommodate the bound substrate.
Collapse
Affiliation(s)
- Yonghong Zhao
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, Galveston, TX 77555-1031, USA.
| | | |
Collapse
|
520
|
Cao L, Lee J, Chen W, Wood TK. Enantioconvergent production of (R)-1-phenyl-1,2-ethanediol from styrene oxide by combining the Solanum tuberosum and an evolved Agrobacterium radiobacter AD1 epoxide hydrolases. Biotechnol Bioeng 2006; 94:522-9. [PMID: 16498626 DOI: 10.1002/bit.20860] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Soluble epoxide hydrolase (EH) from the potato Solanum tuberosum and an evolved EH of the bacterium Agrobacterium radiobacter AD1, EchA-I219F, were purified for the enantioconvergent hydrolysis of racemic styrene oxide into the single product (R)-1-phenyl-1,2-ethanediol, which is an important intermediate for pharmaceuticals. EchA-I219F has enhanced enantioselectivity (enantiomeric ratio of 91 based on products) for converting (R)-styrene oxide to (R)-1-phenyl-1,2-ethanediol (2.0 +/- 0.2 micromol/min/mg), and the potato EH converts (S)-styrene oxide primarily to the same enantiomer, (R)-1-phenyl-1,2-ethanediol (22 +/- 1 micromol/min/mg), with an enantiomeric ratio of 40 +/- 17 (based on substrates). By mixing these two purified enzymes, inexpensive racemic styrene oxide (5 mM) was converted at 100% yield to 98% enantiomeric excess (R)-1-phenyl-1,2-ethanediol at 4.7 +/- 0.7 micromol/min/mg. Hence, at least 99% of substrate is converted into a single stereospecific product at a rapid rate.
Collapse
Affiliation(s)
- Li Cao
- Department of Chemical Engineering, University of Connecticut, Storrs, Connecticut 06269-3222, USA
| | | | | | | |
Collapse
|
521
|
Trivedi AH, Spiess AC, Daussmann T, Büchs J. Effect of additives on gas-phase catalysis with immobilised Thermoanaerobacter species alcohol dehydrogenase (ADH T). Appl Microbiol Biotechnol 2006; 71:407-14. [PMID: 16228205 DOI: 10.1007/s00253-005-0169-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2005] [Revised: 09/01/2005] [Accepted: 09/02/2005] [Indexed: 10/25/2022]
Abstract
This paper presents a strategy for preparing an efficient immobilised alcohol dehydrogenase preparation for a gas-phase reaction. The effects of additives such as buffers and sucrose on the immobilisation efficiency (residual activity and protein loading) and on the gas-phase reaction efficiency (initial reaction rate and half-life) of Thermoanaerobacter sp. alcohol dehydrogenase were studied. The reduction of acetophenone to 1-phenylethanol under in situ cofactor regeneration using isopropanol as co-substrate was used as a model reaction at fixed reaction conditions (temperature and thermodynamic activities). A strongly enhanced thermostability of the enzyme in the gas-phase reaction was achieved when the enzyme was immobilised with 50 mM phosphate buffer (pH 7) containing sucrose five times the protein amount (on weight/weight basis). This resulted in a remarkable productivity of 200 g L(-1) day(-1) even at non-optimised reaction conditions. The interaction of additives with the enzyme and water affects the immobilisation and gas-phase efficiencies of the enzyme. However, it was not possible to predict the effect of additives on the gas-phase reaction efficiency even after knowing their effect on the immobilisation efficiency.
Collapse
Affiliation(s)
- A H Trivedi
- Biochemical Engineering, Sammelbau Biologie, RWTH Aachen University, Worringerweg 1, 52056, Aachen, Germany
| | | | | | | |
Collapse
|
522
|
Hofrichter M, Ullrich R. Heme-thiolate haloperoxidases: versatile biocatalysts with biotechnological and environmental significance. Appl Microbiol Biotechnol 2006; 71:276-88. [PMID: 16628447 DOI: 10.1007/s00253-006-0417-3] [Citation(s) in RCA: 146] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2005] [Revised: 03/06/2006] [Accepted: 03/06/2006] [Indexed: 11/24/2022]
Abstract
Heme-thiolate haloperoxidases are undoubtedly the most versatile biocatalysts of the hemeprotein family and share catalytic properties with at least three further classes of heme-containing oxidoreductases, namely, classic plant and fungal peroxidases, cytochrome P450 monooxygenases, and catalases. For a long time, only one enzyme of this type--the chloroperoxidase (CPO) of the ascomycete Caldariomyces fumago--has been known. The enzyme is commercially available as a fine chemical and catalyzes the unspecific chlorination, bromination, and iodation (but no fluorination) of a variety of electrophilic organic substrates via hypohalous acid as actual halogenating agent. In the absence of halide, CPO resembles cytochrome P450s and epoxidizes and hydroxylates activated substrates such as organic sulfides and olefins; aromatic rings, however, are not susceptible to CPO-catalyzed oxygen-transfer. Recently, a second fungal haloperoxidase of the heme-thiolate type has been discovered in the agaric mushroom Agrocybe aegerita. The UV-Vis adsorption spectrum of the isolated enzyme shows little similarity to that of CPO but is almost identical to a resting-state P450. The Agrocybe aegerita peroxidase (AaP) has strong brominating as well as weak chlorinating and iodating activities, and catalyzes both benzylic and aromatic hydroxylations (e.g., of toluene and naphthalene). AaP and related fungal peroxidases could become promising biocatalysts in biotechnological applications because they seemingly fill the gap between CPO and P450 enzymes and act as "self-sufficient" peroxygenases. From the environmental point of view, the existence of a halogenating mushroom enzyme is interesting because it could be linked to the multitude of halogenated compounds known from these organisms.
Collapse
Affiliation(s)
- Martin Hofrichter
- Unit of Environmental Biotechnology, International Graduate School of Zittau, Germany.
| | | |
Collapse
|
523
|
Ohtake H, Yamashita S, Kato J. Development of a New Biotechnological Basis for Improving Industrial Sustainability in Japan. Eng Life Sci 2006. [DOI: 10.1002/elsc.200620124] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
524
|
Yang J, Lorrain MJ, Rho D, Lau PC. Monitoring of Baeyer-Villiger biotransformation kinetics and fingerprinting using ReactIR 4000 spectroscopy. Ind Biotechnol (New Rochelle N Y) 2006. [DOI: 10.1089/ind.2006.2.138] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Jianzhong Yang
- Biotechnology Research Institute, National Research Council Canada, BRI–NRCC, 6100 Royalmount Avenue, Montreal, Quebec H4P 2R2, Canada
| | - Marie-Josée Lorrain
- Biotechnology Research Institute, National Research Council Canada, BRI–NRCC, 6100 Royalmount Avenue, Montreal, Quebec H4P 2R2, Canada
| | - Denis Rho
- Biotechnology Research Institute, National Research Council Canada, BRI–NRCC, 6100 Royalmount Avenue, Montreal, Quebec H4P 2R2, Canada
| | - Peter C.K. Lau
- Biotechnology Research Institute, National Research Council Canada, BRI–NRCC, 6100 Royalmount Avenue, Montreal, Quebec H4P 2R2, Canada
| |
Collapse
|
525
|
Vink MKS, Wijtmans R, Reisinger C, van den Berg RJF, Schortinghuis CA, Schwab H, Schoemaker HE, Rutjes FPJT. Nitrile hydrolysis activity ofRhodococcus erythropolis NCIMB 11540 whole cells. Biotechnol J 2006; 1:569-73. [PMID: 16892293 DOI: 10.1002/biot.200600028] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The nitrile hydrolyzing properties of the bacterium strain Rhodococcus erythropolis NCIMB 11540 have been investigated. Using whole cells of the microorganism, a wide variety of aromatic and aliphatic cyanide-containing substrates was successfully hydrolyzed to the corresponding amide or acid. In the case of dicyanides, selective monohydrolysis took place, which was further explored in the desymmetrization of malononitriles resulting in the corresponding cyano amides in enantiomeric excesses of up to 98%.
Collapse
Affiliation(s)
- Mandy K S Vink
- J.H. van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
526
|
Jung HC, Kwon SJ, Pan JG. Display of a thermostable lipase on the surface of a solvent-resistant bacterium, Pseudomonas putida GM730, and its applications in whole-cell biocatalysis. BMC Biotechnol 2006; 6:23. [PMID: 16620394 PMCID: PMC1459859 DOI: 10.1186/1472-6750-6-23] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2005] [Accepted: 04/19/2006] [Indexed: 12/02/2022] Open
Abstract
Background Whole-cell biocatalysis in organic solvents has been widely applied to industrial bioprocesses. In two-phase water-solvent processes, substrate conversion yields and volumetric productivities can be limited by the toxicity of solvents to host cells and by the low mass transfer rates of the substrates from the solvent phase to the whole-cell biocatalysts in water. Results To solve the problem of solvent toxicity, we immobilized a thermostable lipase (TliA) from Pseudomonas fluorescens on the cell surface of a solvent-resistant bacterium, Pseudomonas putida GM730. Surface immobilization of enzymes eliminates the mass-transfer limitation imposed by the cell wall and membranes. TliA was successfully immobilized on the surface of P. putida cells using the ice-nucleation protein (INP) anchoring motif from Pseudomonas syrinage. The surface location was confirmed by flow cytometry, protease accessibility and whole-cell enzyme activity using a membrane-impermeable substrate. Three hundred and fifty units of whole-cell hydrolytic activity per gram dry cell mass were obtained when the enzyme was immobilized with a shorter INP anchoring motif (INPNC). The surface-immobilized TliA retained full enzyme activity in a two-phase water-isooctane reaction system after incubation at 37°C for 12 h, while the activity of the free form enzyme decreased to 65% of its initial value. Whole cells presenting immobilized TliA were shown to catalyze three representative lipase reactions: hydrolysis of olive oil, synthesis of triacylglycerol and chiral resolution. Conclusion In vivo surface immobilization of enzymes on solvent-resistant bacteria was demonstrated, and appears to be useful for a variety of whole-cell bioconversions in the presence of organic solvents.
Collapse
Affiliation(s)
- Heung-Chae Jung
- National Research Laboratory of Microbial Display, GenoFocus, Inc., 461-58 Jeonmindong, Yusong, Daejeon 305-811, Republic of Korea
- Systems Microbiology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 52 Oundong, Yusong, Daejeon 305-333, Republic of Korea
| | - Seok-Joon Kwon
- National Research Laboratory of Microbial Display, GenoFocus, Inc., 461-58 Jeonmindong, Yusong, Daejeon 305-811, Republic of Korea
- Present address: Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180-3590, USA
| | - Jae-Gu Pan
- National Research Laboratory of Microbial Display, GenoFocus, Inc., 461-58 Jeonmindong, Yusong, Daejeon 305-811, Republic of Korea
- Systems Microbiology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 52 Oundong, Yusong, Daejeon 305-333, Republic of Korea
| |
Collapse
|
527
|
Johannes TW, Zhao H. Directed evolution of enzymes and biosynthetic pathways. Curr Opin Microbiol 2006; 9:261-7. [PMID: 16621678 DOI: 10.1016/j.mib.2006.03.003] [Citation(s) in RCA: 154] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2006] [Accepted: 03/31/2006] [Indexed: 11/19/2022]
Abstract
Directed evolution is an important tool for overcoming the limitations of natural enzymes as biocatalysts. Recent advances have focused on applying directed evolution to a variety of enzymes, such as epoxide hydrolase, glyphosate N-acetyltransferase, xylanase and phosphotriesterase, in order to improve their activity, selectivity, stability and solubility. The focus has also shifted to manipulating biosynthetic pathways for the production of many naturally synthesized compounds, as well as the production of novel 'unnatural' compounds. A combined directed evolution and computational design approach is becoming increasingly important in exploring enzyme sequence-space and creating improved or novel enzymes. Fueled by recent breakthroughs in genomics and metagenomics, these developments should help expand the use of biocatalysts in industry.
Collapse
Affiliation(s)
- Tyler W Johannes
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 600 S Mathews Avenue, Urbana, IL 61801, USA
| | | |
Collapse
|
528
|
Sylvestre J, Chautard H, Cedrone F, Delcourt M. Directed Evolution of Biocatalysts. Org Process Res Dev 2006. [DOI: 10.1021/op050243h] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Julien Sylvestre
- Biométhodes, Bâtiment Genavenir 8 5, Rue Henri Desbruères 91030 Evry Cedex, France
| | - Hélène Chautard
- Biométhodes, Bâtiment Genavenir 8 5, Rue Henri Desbruères 91030 Evry Cedex, France
| | - Frédéric Cedrone
- Biométhodes, Bâtiment Genavenir 8 5, Rue Henri Desbruères 91030 Evry Cedex, France
| | - Marc Delcourt
- Biométhodes, Bâtiment Genavenir 8 5, Rue Henri Desbruères 91030 Evry Cedex, France
| |
Collapse
|
529
|
|
530
|
Percival Zhang YH, Himmel ME, Mielenz JR. Outlook for cellulase improvement: screening and selection strategies. Biotechnol Adv 2006; 24:452-81. [PMID: 16690241 DOI: 10.1016/j.biotechadv.2006.03.003] [Citation(s) in RCA: 674] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2006] [Revised: 03/06/2006] [Accepted: 03/11/2006] [Indexed: 10/24/2022]
Abstract
Cellulose is the most abundant renewable natural biological resource, and the production of biobased products and bioenergy from less costly renewable lignocellulosic materials is important for the sustainable development of human beings. A reduction in cellulase production cost, an improvement in cellulase performance, and an increase in sugar yields are all vital to reduce the processing costs of biorefineries. Improvements in specific cellulase activities for non-complexed cellulase mixtures can be implemented through cellulase engineering based on rational design or directed evolution for each cellulase component enzyme, as well as on the reconstitution of cellulase components. Here, we review quantitative cellulase activity assays using soluble and insoluble substrates, and focus on their advantages and limitations. Because there are no clear relationships between cellulase activities on soluble substrates and those on insoluble substrates, soluble substrates should not be used to screen or select improved cellulases for processing relevant solid substrates, such as plant cell walls. Cellulase improvement strategies based on directed evolution using screening on soluble substrates have been only moderately successful, and have primarily targeted improvement in thermal tolerance. Heterogeneity of insoluble cellulose, unclear dynamic interactions between insoluble substrate and cellulase components, and the complex competitive and/or synergic relationship among cellulase components limit rational design and/or strategies, depending on activity screening approaches. Herein, we hypothesize that continuous culture using insoluble cellulosic substrates could be a powerful selection tool for enriching beneficial cellulase mutants from the large library displayed on the cell surface.
Collapse
Affiliation(s)
- Y-H Percival Zhang
- Biological Systems Engineering Department, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA.
| | | | | |
Collapse
|
531
|
Abstract
In this issue of Chemistry and Biology, Ferrer and coworkers describe the discovery of five esterases from a distinct deep sea hypersaline biotope. Interestingly, one enzyme has two unique features-it contains three active centers mediating distinct esterolytic activities, and its tertiary/quaternary structure can be modulated by environmental changes.
Collapse
Affiliation(s)
- Uwe T Bornscheuer
- Institute of Chemistry and Biochemistry, Department of Technical Chemistry and Biotechnology, Greifswald University, 17487 Greifswald, Germany.
| |
Collapse
|
532
|
Ingram CU, Bommer M, Smith MEB, Dalby PA, Ward JM, Hailes HC, Lye GJ. One-pot synthesis of amino-alcohols using a de-novo transketolase and β-alanine: Pyruvate transaminase pathway inEscherichia coli. Biotechnol Bioeng 2006; 96:559-69. [PMID: 16902948 DOI: 10.1002/bit.21125] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Biocatalysis continues to emerge as a powerful technique for the efficient synthesis of optically pure pharmaceuticals that are difficult to access via conventional chemistry. The power of biocatalysis can be enhanced if two or more reactions can be achieved by a single whole cell biocatalyst containing a pathway designed de-novo to facilitate a required synthetic sequence. The enzymes transketolase (TK) and transaminase (TAm) respectively catalyze asymmetric carbon--carbon bond formation and amine group addition to suitable substrate molecules. The ability of a transaminase to accept the product of the transketolase reaction can allow the two catalysts to be employed in series to create chiral amino-alcohols from achiral substrates. As proof of principle, the beta-alanine: pyruvate aminotransferase (beta-A:P TAm) from Pseudomonas aeruginosa has been cloned, to create plasmid pQR428, for overexpression in E.coli strain BL21gold(DE3). Production of the beta-A:P TAm alongside the native transketolase (overexpressed from plasmid pQR411), in a single E.coli host, has created a novel biocatalyst capable of the synthesis of chiral amino alcohols via a synthetic two-step pathway. The feasibility of using the biocatalyst has been demonstrated by the formation of a single diastereoisomer of 2-amino-1,3,4-butanetriol (ABT) product, in up to 21% mol/mol yield, by the beta-A:P TAm, via transamination of L-erythrulose synthesized by TK, from achiral substrates glycolaldehyde (GA) and beta-hydroxypyruvate (beta-HPA). ABT synthesis was achieved in a one-pot process, using either whole cells of the dual plasmid strain or cell lysate, while the dual alcohol-amine functionality of ABT makes it an excellent synthon for many pharmaceutical syntheses.
Collapse
Affiliation(s)
- C U Ingram
- Department of Biochemical Engineering, University College London, London, WC1E 7JW, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
533
|
Neumann G, Kabelitz N, Zehnsdorf A, Miltner A, Lippold H, Meyer D, Schmid A, Heipieper HJ. Prediction of the adaptability of Pseudomonas putida DOT-T1E to a second phase of a solvent for economically sound two-phase biotransformations. Appl Environ Microbiol 2005; 71:6606-12. [PMID: 16269688 PMCID: PMC1287635 DOI: 10.1128/aem.71.11.6606-6612.2005] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The strain Pseudomonas putida DOT-T1E was tested for its ability to tolerate second phases of different alkanols for their use as solvents in two-liquid-phase biotransformations. Although 1-decanol showed an about 10-fold higher toxicity to the cells than 1-octanol, the cells were able to adapt completely to 1-decanol only and could not be adapted in order to grow stably in the presence of a second phase of 1-octanol. The main explanation for this observation can be seen in the higher water and membrane solubility of 1-octanol. The hydrophobicity (log P) of a substance correlates with a certain partitioning of that compound into the membrane. Combining the log P value with the water solubility, the maximum membrane concentration of a compound can be calculated. With this simple calculation, it is possible to predict the property of an organic chemical for its potential applicability as a solvent for two-liquid-phase biotransformations with solvent-tolerant P. putida strains. Only compounds that show a maximum membrane concentration of less than 400 mM, such as 1-decanol, seem to be tolerated by these bacterial strains when applied in supersaturating concentrations to the medium. Taking into consideration that a solvent for a two-liquid-phase system should possess partitioning properties for potential substrates and products of a fine chemical synthesis, it can be seen that 1-decanol is a suitable solvent for such biotransformation processes. This was also demonstrated in shake cultures, where increasing amounts of a second phase of 1-decanol led to bacteria tolerating higher concentrations of the model substrate 3-nitrotoluene. Transferring this example to a 5-liter-scale bioreactor with 10% (vol/vol) 1-decanol, the amount of 3-nitrotoluene tolerated by the cells is up to 200-fold higher than in pure aqueous medium. The system demonstrates the usefulness of two-phase biotransformations utilizing solvent-tolerant bacteria.
Collapse
Affiliation(s)
- Grit Neumann
- Department of Bioremediation, Centre for Environmental Research Leipzig-Halle (UFZ), Permoserstr. 15, 04318 Leipzig, Germany
| | | | | | | | | | | | | | | |
Collapse
|
534
|
Bornscheuer UT. Trends and challenges in enzyme technology. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2005; 100:181-203. [PMID: 16270658 DOI: 10.1007/b136413] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Abstract
Several major developments took place in the field of biocatalysis over the past few years. These include the invention of directed evolution as an extremely useful method for biocatalyst improvement on the molecular level in combination with high-throughput screening systems, methods for accessing "nonculturable" biodiversity using metagenome approaches and progress in sequence-based biocatalyst discovery. In addition, new carriers and tools for immobilization of enzymes have been developed. For the synthesis of optically active compounds impressive examples using new enzymes and major progress in dynamic kinetic resolutions of racemates took place. These achievements are summarized in this review.
Collapse
Affiliation(s)
- Uwe T Bornscheuer
- Department of Technical Chemistry and Biotechnology, Institute of Chemistry and Biochemistry, Greifswald University, Soldmannstr. 16, 17487 Greifswald, Germany.
| |
Collapse
|
535
|
Synthesis, test and application of chirale fluorescence substrates to evaluate enzymatic processes in different reaction media. Enzyme Microb Technol 2005. [DOI: 10.1016/j.enzmictec.2004.04.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
536
|
Kim J, Lee J, Na HB, Kim BC, Youn JK, Kwak JH, Moon K, Lee E, Kim J, Park J, Dohnalkova A, Park HG, Gu MB, Chang HN, Grate JW, Hyeon T. A magnetically separable, highly stable enzyme system based on nanocomposites of enzymes and magnetic nanoparticles shipped in hierarchically ordered, mesocellular, mesoporous silica. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2005; 1:1203-7. [PMID: 17193420 DOI: 10.1002/smll.200500245] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Affiliation(s)
- Jungbae Kim
- Pacific Northwest National Laboratory, Richland, WA 99352, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
537
|
Kumar S, Halpert JR. Use of directed evolution of mammalian cytochromes P450 for investigating the molecular basis of enzyme function and generating novel biocatalysts. Biochem Biophys Res Commun 2005; 338:456-64. [PMID: 16126165 DOI: 10.1016/j.bbrc.2005.08.080] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2005] [Indexed: 10/25/2022]
Abstract
Directed evolution has been successfully applied to the design of industrial biocatalysts for enhanced catalytic efficiency and stability, and for examining the molecular basis of enzyme function. Xenobiotic-metabolizing mammalian cytochromes P450 with their catalytic versatility and broad substrate specificity offer the possibility of widespread applications in industrial synthesis, medicine, and bioremediation. However, the requirement for NADPH-cytochrome P450 reductase, often cytochrome b5, and an expensive cofactor, NADPH, complicates the design of mammalian P450 enzymes as biocatalysts. Recently, Guengerich and colleagues have successfully performed directed evolution of P450s 1A2 and 2A6 initially by using colony-based colorimetric and genotoxicity screening assays, respectively, followed by in vitro fluorescence-based activity screening assays. More recently, our laboratory has developed a fluorescence-based in vitro activity screening assay system for enhanced catalytic activity of P450s 2B1 and 3A4. The studies indicate an important role of amino acid residues outside of the active site, which would be difficult to target by other methods. The approach can now be expanded to design these as well as new P450s using more targeted substrates of environmental, industrial, and medical importance.
Collapse
Affiliation(s)
- Santosh Kumar
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-1031, USA.
| | | |
Collapse
|
538
|
Na KS, Kuroda A, Takiguchi N, Ikeda T, Ohtake H, Kato J. Isolation and characterization of benzene-tolerant Rhodococcus opacus strains. J Biosci Bioeng 2005; 99:378-82. [PMID: 16233805 DOI: 10.1263/jbb.99.378] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2004] [Accepted: 01/06/2005] [Indexed: 11/17/2022]
Abstract
Twenty-two benzene-utilizing bacteria were isolated from soil samples. Among them, three isolates were highly tolerant to benzene. They grew on benzene when liquid benzene was added to the basal salt medium at 10--90% (v/v). Taxonomical analysis identified the benzene-tolerant isolates as Rhodococcus opacus. One of the benzene-tolerant isolates, designated B-4, could utilize many aromatic and aliphatic hydrocarbons including benzene, toluene, styrene, xylene, ethylbenzene, propylbenzene, n-octane and n-decane as sole sources of carbon and energy. Strain B-4 grew well in the presence of 10% (v/v) organic solvents that it was capable of using as growth substrates. Genetic analysis revealed the benzene dioxygenase pathway is involved in benzene catabolism in strain B-4. A deletion-insertion mutant defective in the benzene dioxygenase large and small subunits genes (bnz A 1 and bnz A 2) was as tolerant to organic solvents as the wild-type strain B-4, suggesting that utilization or degradation of organic solvents is not essential for the organic solvent tolerance of R. opacus B-4.
Collapse
Affiliation(s)
- Kyung-Su Na
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan
| | | | | | | | | | | |
Collapse
|
539
|
Hibbert EG, Dalby PA. Directed evolution strategies for improved enzymatic performance. Microb Cell Fact 2005; 4:29. [PMID: 16212665 PMCID: PMC1262762 DOI: 10.1186/1475-2859-4-29] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2005] [Accepted: 10/07/2005] [Indexed: 11/10/2022] Open
Abstract
The engineering of enzymes with altered activity, specificity and stability, using directed evolution techniques that mimic evolution on a laboratory timescale, is now well established. However, the general acceptance of these methods as a route to new biocatalysts for organic synthesis requires further improvement of the methods for both ease-of-use and also for obtaining more significant changes in enzyme properties than is currently possible. Recent advances in library design, and methods of random mutagenesis, combined with new screening and selection tools, continue to push forward the potential of directed evolution. For example, protein engineers are now beginning to apply the vast body of knowledge and understanding of protein structure and function, to the design of focussed directed evolution libraries, with striking results compared to the previously favoured random mutagenesis and recombination of entire genes. Significant progress in computational design techniques which mimic the experimental process of library screening is also now enabling searches of much greater regions of sequence-space for those catalytic reactions that are broadly understood and, therefore, possible to model. Biocatalysis for organic synthesis frequently makes use of whole-cells, in addition to isolated enzymes, either for a single reaction or for transformations via entire metabolic pathways. As many new whole-cell biocatalysts are being developed by metabolic engineering, the potential of directed evolution to improve these initial designs is also beginning to be realised.
Collapse
Affiliation(s)
- Edward G Hibbert
- The Advanced Centre for Biochemical Engineering, Department of Biochemical Engineering, University College London, Torrington Place, London WC1E 7JE, UK
| | - Paul A Dalby
- The Advanced Centre for Biochemical Engineering, Department of Biochemical Engineering, University College London, Torrington Place, London WC1E 7JE, UK
| |
Collapse
|
540
|
Ferreira-Torres C, Micheletti M, Lye GJ. Microscale process evaluation of recombinant biocatalyst libraries: application to Baeyer–Villiger monooxygenase catalysed lactone synthesis. Bioprocess Biosyst Eng 2005; 28:83-93. [PMID: 16208497 DOI: 10.1007/s00449-005-0422-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2005] [Accepted: 04/25/2005] [Indexed: 11/29/2022]
Abstract
Microscale processing techniques are rapidly emerging as a cost- effective means for parallel experimentation and hence the evaluation of large libraries of recombinant biocatalysts. In this work, the potential of an automated microscale process is demonstrated in a linked sequence of operations comprising fermentation, enzyme induction and bioconversion using three whole-cell biocatalysts each expressing cyclohexanone monoxygenase (CHMO). The biocatalysts, Escherichia coli TOP 10 [pQR239], E. coli JM107 and Acinetobacter calcoaceticus NCIMB 9871, were first produced in 96-deep square well fermentations at various carbon source concentrations (10 and 20 g L(-1) glycerol). Following induction of CHMO activity biomass concentrations of up to 6 gDCW L(-1) were obtained. Cells from each fermentation were subsequently used for the Baeyer-Villiger oxidation of bicyclo[3.2.0]hept-2-en-6-one, cyclohexanone and cyclopentanone. Each bioconversion was performed at two initial substrate concentrations (0.5 and 1.0 g L(-1)) in order to simultaneously explore both substrate specificity and inhibition. The microscale process sequences yielded quantitative and reproducible data for each biocatalyst on maximum growth rate, biomass yield, initial rate of lactone formation, specific biocatalyst activity and bioconversion yield. E. coli TOP 10 [pQR239] was demonstrated to be an efficient biocatalyst showing substrate specificities and substrate inhibition effects in line with previous studies. Finally, in order to show that the data obtained with E. coli TOP 10 [pQR239] at microwell scale (1,000 microL) could be related to larger scales of operation, the process was performed in a 2-L stirred-tank bioreactor. Using conditions designed to enable microwell kinetic measurements under none oxygen-limited conditions, the fermentation and bioconversion data obtained at the two scales showed good quantitative agreement. This study therefore confirms the potential of automated microscale experimentation for the whole-process evaluation of recombinant biocatalyst libraries and the specification of pilot and process scale operating conditions.
Collapse
Affiliation(s)
- C Ferreira-Torres
- The Advanced Centre for Biochemical Engineering, Department of Biochemical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK
| | | | | |
Collapse
|
541
|
Otten LG, Quax WJ. Directed evolution: selecting today's biocatalysts. ACTA ACUST UNITED AC 2005; 22:1-9. [PMID: 15857778 DOI: 10.1016/j.bioeng.2005.02.002] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2004] [Revised: 11/21/2004] [Accepted: 11/22/2004] [Indexed: 10/25/2022]
Abstract
Directed evolution has become a full-grown tool in molecular biology nowadays. The methods that are involved in creating a mutant library are extensive and can be divided into several categories according to their basic ideas. Furthermore, both screening and selection can be used to target the enzyme towards the desired direction. Nowadays, this technique is broadly used in two major applications: (industrial) biocatalysis and research. In the first field enzymes are engineered in order to produce suitable biocatalysts with high catalytic activity and stability in an industrial environment. In the latter area methods are established to quickly engineer new enzymes for every possible catalytic step, thereby creating a universal biotechnological toolbox. Furthermore, directed evolution can be used to try to understand the natural evolutionary processes. This review deals with new mutagenesis and recombination strategies published recently. A full overview of new methods for creating more specialised mutant libraries is given. The importance of selection in directed evolution strategies is being exemplified by some current successes including the beta-lactam acylases.
Collapse
Affiliation(s)
- Linda G Otten
- University of Groningen, University Centre for Pharmacy, Pharmaceutical Biology, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | | |
Collapse
|
542
|
Kaspereit M, Gedicke K, Zahn V, Mahoney AW, Seidel-Morgenstern A. Shortcut method for evaluation and design of a hybrid process for enantioseparations. J Chromatogr A 2005; 1092:43-54. [PMID: 16188559 DOI: 10.1016/j.chroma.2005.02.043] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2004] [Revised: 02/04/2005] [Accepted: 02/11/2005] [Indexed: 11/15/2022]
Abstract
Hybrid processes for enantioseparations have a considerable potential for reducing investment and operational costs. An example is the combination of simulated moving bed (SMB) chromatography and selective crystallisation. However, the design of integrated processes is a difficult task. A shortcut method is presented that can serve as a tool for design and estimation of the potential of such processes. The approach requires only limited experimental data and thus allows for systematic parameter studies. The method is based on the determination of the purity-performance characteristic of the SMB process and rigorous application of mass balances. The use of relative mass fluxes allows derivation of simple algebraic expressions for essential process parameters. The significant potential of combining SMB and crystallisation is demonstrated for the example of the separation of mandelic acid enantiomers.
Collapse
Affiliation(s)
- Malte Kaspereit
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstr. 1, D-39106 Magdeburg, Germany.
| | | | | | | | | |
Collapse
|
543
|
Woodyer R, Zhao H, van der Donk WA. Mechanistic investigation of a highly active phosphite dehydrogenase mutant and its application for NADPH regeneration. FEBS J 2005; 272:3816-27. [PMID: 16045753 DOI: 10.1111/j.1742-4658.2005.04788.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
NAD(P)H regeneration is important for biocatalytic reactions that require these costly cofactors. A mutant phosphite dehydrogenase (PTDH-E175A/A176R) that utilizes both NAD and NADP efficiently is a very promising system for NAD(P)H regeneration. In this work, both the kinetic mechanism and practical application of PTDH-E175A/A176R were investigated for better understanding of the enzyme and to provide a basis for future optimization. Kinetic isotope effect studies with PTDH-E175A/A176R showed that the hydride transfer step is (partially) rate determining with both NAD and NADP giving (D)V values of 2.2 and 1.7, respectively, and (D)V/K(m,phosphite) values of 1.9 and 1.7, respectively. To better comprehend the relaxed cofactor specificity, the cofactor dissociation constants were determined utilizing tryptophan intrinsic fluorescence quenching. The dissociation constants of NAD and NADP with PTDH-E175A/A176R were 53 and 1.9 microm, respectively, while those of the products NADH and NADPH were 17.4 and 1.22 microm, respectively. Using sulfite as a substrate mimic, the binding order was established, with the cofactor binding first and sulfite binding second. The low dissociation constant for the cofactor product NADPH combined with the reduced values for (D)V and k(cat) implies that product release may become partially rate determining. However, product inhibition does not prevent efficient in situ NADPH regeneration by PTDH-E175A/A176R in a model system in which xylose was converted into xylitol by NADP-dependent xylose reductase. The in situ regeneration proceeded at a rate approximately fourfold faster with PTDH-E175A/A176R than with either WT PTDH or a NADP-specific Pseudomonas sp.101 formate dehydrogenase mutant with a total turnover number for NADPH of 2500.
Collapse
Affiliation(s)
- Ryan Woodyer
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | | | | |
Collapse
|
544
|
Wang SN, Xu P, Tang HZ, Meng J, Liu XL, Qing C. "Green" route to 6-hydroxy-3-succinoyl-pyridine from (S)-nicotine of tobacco waste by whole cells of a Pseudomonas sp. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2005; 39:6877-80. [PMID: 16190252 DOI: 10.1021/es0500759] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
A new technology for 6-hydroxy-3-succinoyl-pyridine (HSP) production from (S)-nicotine in tobacco waste by whole cells of a Pseudomonas sp. has been developed. When deionized water was used in the transformation reaction as a medium and the initial pH value of reaction mixture was adjusted to 7.0, 1.45 g/L HSP was produced from 3 g/L of nicotine in 5 h with 3.4 g/L of cells in a 5-L flask at 30 degrees C. HSP could be easily purified from the reaction without perplexing separation steps. A quantity of 1.3 g of HSP was recovered without impurity, and the overall yield of HSP was 43.8% (w/w), based on an initial concentration of 3.0 g/L of nicotine in reaction. This biotransformation made it possible to convert nicotine in tobacco wastes with high nicotine content into valuable compounds.
Collapse
Affiliation(s)
- Shu Ning Wang
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, People's Republic of China
| | | | | | | | | | | |
Collapse
|
545
|
Abstract
Different industries have different motivations to probe the enormous resource that is uncultivated microbial diversity. Currently, there is a global political drive to promote white (industrial) biotechnology as a central feature of the sustainable economic future of modern industrialized societies. This requires the development of novel enzymes, processes, products and applications. Metagenomics promises to provide new molecules with diverse functions, but ultimately, expression systems are required for any new enzymes and bioactive molecules to become an economic success. This review highlights industrial efforts and achievements in metagenomics.
Collapse
Affiliation(s)
- Patrick Lorenz
- BRAIN AG, Darmstaedterstrasse 34, 64673 Zwingenberg, Germany.
| | | |
Collapse
|
546
|
The separation of oil from an oil–water–bacteria mixture using a hydrophobic tubular membrane. Biochem Eng J 2005. [DOI: 10.1016/j.bej.2004.11.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
547
|
|
548
|
Kumar S, Chen CS, Waxman DJ, Halpert JR. Directed Evolution of Mammalian Cytochrome P450 2B1. J Biol Chem 2005; 280:19569-75. [PMID: 15774478 DOI: 10.1074/jbc.m500158200] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cytochrome P450 2B1 has been subjected to directed evolution to investigate the role of amino acid residues outside of the active site and to engineer novel, more active P450 catalysts. A high throughput screening system was developed to measure H(2)O(2)-supported oxidation of the marker fluorogenic substrate 7-ethoxy-4-trifluoromethylcoumarin (7-EFC). Random mutagenesis by error-prone polymerase chain reaction and activity screening were optimized using the L209A mutant of P450 2B1 in an N-terminally modified construct with a C-terminal His tag (P450 2B1dH). Two rounds of mutagenesis and screening and one subcloning step yielded the P450 2B1 quadruple mutant V183L/F202L/L209A/S334P, which demonstrated a 6-fold higher k(cat) than L209A. Further random or site-directed mutagenesis did not improve the activity. When assayed in an NADPH-supported reconstituted system, V183L/L209A demonstrated lower 7-EFC oxidation than L209A. Therefore, F202L/L209A/S334P was generated, which showed a 2.5-fold higher k(cat)/K(m) for NADPH-dependent 7-EFC oxidation than L209A. F202L/L209A/S334P also showed enhanced catalytic efficiency with 7-benzyloxyresorufin, benzphetamine, and testosterone, and a 10-fold increase in stereoselectivity for testosterone 16alpha-versus 16beta-hydroxylation compared with 2B1dH. Enhanced catalytic efficiency of F202L/L209A/S334P was also retained in the full-length P450 2B1 background with 7-EFC and testosterone as substrates. Finally, the individual mutants were tested for metabolism of the anti-cancer prodrugs cyclophosphamide and ifosfamide. Several of the mutants showed increased metabolism via the therapeutically beneficial 4-hydroxylation pathway, with L209A/S334P showing 2.8-fold enhancement of k(cat)/K(m) with cyclophosphamide and V183L/L209A showing 3.5-fold enhancement with ifosfamide. Directed evolution can thus be used to enhance P450 2B1 catalytic efficiency across a panel of substrates and to identify functionally important residues distant from the active site.
Collapse
Affiliation(s)
- Santosh Kumar
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, 77555, USA.
| | | | | | | |
Collapse
|
549
|
Abstract
The use of biocatalysts for the industrial synthesis of chemicals has been attracting much attention as an environment-friendly synthetic method. Microbial cells play a leading role in 'chemo-enzymatic synthesis' because of their great diversity. Several microbes with unique catalytic abilities have been found through intensive screening and put to practical use. Besides, advanced molecular biological techniques are powerful tools for developing more satisfactory biocatalysts.
Collapse
Affiliation(s)
- Takeru Ishige
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | | | | |
Collapse
|
550
|
Antikainen NM, Martin SF. Altering protein specificity: techniques and applications. Bioorg Med Chem 2005; 13:2701-16. [PMID: 15781382 DOI: 10.1016/j.bmc.2005.01.059] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2004] [Accepted: 01/26/2005] [Indexed: 10/25/2022]
Abstract
Protein engineering constitutes a powerful tool for generating novel proteins that serve as catalysts to induce selective chemical and biological transformations that would not otherwise be possible. Protocols that are commonly employed for altering the substrate specificity and selectivity profiles by mutating known enzymes include rational and random methods as well as techniques that entail evolution, selection and screening. Proteins identified by these techniques play important roles in a variety of industrial and medicinal applications and in the study of protein structure-function relationships. Herein we present a critical overview of methods for creating new functional proteins having altered specificity profiles and some practical case studies in which these techniques have been applied to solving problems in synthetic and medicinal chemistry and to elucidating enzyme function and biological pathways.
Collapse
Affiliation(s)
- Nina M Antikainen
- Department of Chemistry and Biochemistry, The Institute of Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | | |
Collapse
|