501
|
Sung CK, Choi WS, Sanchez-Margalet V. Guanosine triphosphatase-activating protein-associated protein, but not src-associated protein p68 in mitosis, is a part of insulin signaling complexes. Endocrinology 1998; 139:2392-8. [PMID: 9564850 DOI: 10.1210/endo.139.5.6019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The insulin receptor, following insulin stimulation of cells, triggers formation of various signaling complexes. In rat HTC hepatoma cells overexpressing normal human insulin receptors (HTC-IR), p85 regulatory subunit of phosphatidylinositol-3-kinase (PI3K) forms signaling complexes containing the insulin receptor, insulin receptor substrate 1 (IRS-1), guanosine triphosphatase-activating protein (GAP) and 60-70 kDa phosphotyrosine proteins (p60-70). In the present study, we demonstrate that p60-70 interacts directly with the p85 subunit via src homology 2 domain of the latter. Employing antibodies specific to two p85 isoforms, p85alpha and p85beta, we demonstrate that HTC-IR cells express both p85 isoforms, and these isoforms induce the formation of similar signaling complexes in response to insulin. p60-70, present in both alpha-p85alpha and alpha-p85beta immunoprecipitates, is a GAP-associated protein, but is distinct from the p68 src-associated protein in mitosis (Sam68) by several criteria. These data suggest that 1) GAP-associated protein, but not Sam68, is a part of insulin signaling complexes; and 2) p85alpha and p85beta form similar, but distinct, insulin receptor signaling complexes.
Collapse
Affiliation(s)
- C K Sung
- Department of Physiology and Biophysics, University of Southern California School of Medicine, Los Angeles 90033, USA.
| | | | | |
Collapse
|
502
|
Jiang T, Sweeney G, Rudolf MT, Klip A, Traynor-Kaplan A, Tsien RY. Membrane-permeant esters of phosphatidylinositol 3,4,5-trisphosphate. J Biol Chem 1998; 273:11017-24. [PMID: 9556583 DOI: 10.1074/jbc.273.18.11017] [Citation(s) in RCA: 129] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Phosphoinositide 3-OH kinases and their products, D-3 phosphorylated phosphoinositides, are increasingly recognized as crucial elements in many signaling cascades. A reliable means to introduce these lipids into intact cells would be of great value for showing the physiological roles of this pathway and for testing the specificity of pharmacological inhibitors of the kinases. We have stereospecifically synthesized di-C8-PIP3/AM and di-C12-PIP3/AM, the heptakis(acetoxymethyl) esters of dioctanoyl- and dilauroylphosphatidylinositol 3,4,5-trisphosphate, in 14 steps from myo-inositol. The ability of these uncharged lipophilic derivatives to deliver phosphatidylinositol 3,4,5-trisphosphate across cell membranes was demonstrated on 3T3-L1 adipocytes and T84 colon carcinoma monolayers. Insulin stimulation of hexose uptake into adipocytes was inhibited by the kinase inhibitor wortmannin and was largely restored by di-C8-PIP3/AM, which had no effect in the absence of insulin. Thus phosphatidylinositol 3,4,5-trisphosphate or a metabolite was necessary but not sufficient for stimulation of hexose transport. In T84 epithelial monolayers, di-C12-PIP3/AM mimicked epidermal growth factor in inhibiting chloride secretion and potassium efflux, suggesting that phosphatidylinositol 3,4, 5-trisphosphate was sufficient to modulate these fluxes and mediate epidermal growth factor's action.
Collapse
Affiliation(s)
- T Jiang
- Department of Pharmacology and Howard Hughes Medical Institute, University of California San Diego, La Jolla, California 92093-0647, USA
| | | | | | | | | | | |
Collapse
|
503
|
Avruch J. Insulin signal transduction through protein kinase cascades. Mol Cell Biochem 1998; 182:31-48. [PMID: 9609112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This review summarizes the evolution of ideas concerning insulin signal transduction, the current information on protein ser/thr kinase cascades as signalling intermediates, and their status as participants in insulin regulation of energy metabolism. Best characterized is the Ras-MAPK pathway, whose input is crucial to cell fate decisions, but relatively dispensable in metabolic regulation. By contrast the effectors downstream of PI-3 kinase, although less well elucidated, include elements indispensable for the insulin regulation of glucose transport, glycogen and cAMP metabolism. Considerable information has accrued on PKB/cAkt, a protein kinase that interacts directly with Ptd Ins 3'OH phosphorylated lipids, as well as some of the elements further downstream, such as glycogen synthase kinase-3 and the p70 S6 kinase. Finally, some information implicates other erk pathways (e.g. such as the SAPK/JNK pathway) and Nck/cdc42-regulated PAKs (homologs of the yeast Ste 20) as participants in the cellular response to insulin. Thus insulin recruits a broad array of protein (ser/thr) kinases in its target cells to effectuate its characteristic anabolic and anticatabolic programs.
Collapse
Affiliation(s)
- J Avruch
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| |
Collapse
|
504
|
Kraemer FB, Takeda D, Natu V, Sztalryd C. Insulin regulates lipoprotein lipase activity in rat adipose cells via wortmannin- and rapamycin-sensitive pathways. Metabolism 1998; 47:555-9. [PMID: 9591746 DOI: 10.1016/s0026-0495(98)90239-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Lipoprotein lipase (LPL) hydrolyzes the triacylglycerol component of circulating lipoprotein particles, mediating the uptake of fatty acids into adipose tissue and muscle. Insulin is the principal factor responsible for regulating LPL activity in adipose tissue, yet the mechanisms whereby insulin controls LPL expression are unknown. The current studies used wortmannin, a specific inhibitor of phosphatidylinositol (PI) 3-kinase, and rapamycin, a specific inhibitor of activation of phosphoprotein 70 ribosomal protein S6 kinase (p70s6k), to explore some of the components of the insulin signaling pathway controlling LPL activity in adipose cells. Preincubation of isolated rat adipose cells with wortmannin completely abrogated the stimulation of LPL activity by insulin, while preincubation with rapamycin caused approximately a 60% inhibition of insulin-stimulated LPL activity. Thus, the current studies show that the regulation of adipose tissue LPL by insulin is mediated via a wortmannin-sensitive pathway, most likely PI 3-kinase, and that a rapamycin-sensitive pathway, most likely p705s6k, constitutes an important downstream component in the insulin signaling pathway through which LPL is regulated.
Collapse
Affiliation(s)
- F B Kraemer
- Department of Medicine, Stanford University School of Medicine, CA, USA
| | | | | | | |
Collapse
|
505
|
Convergence and Divergence of the Signaling Pathways for Insulin and Phosphoinositolglycans. Mol Med 1998. [DOI: 10.1007/bf03401738] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
506
|
Welch H, Eguinoa A, Stephens LR, Hawkins PT. Protein kinase B and rac are activated in parallel within a phosphatidylinositide 3OH-kinase-controlled signaling pathway. J Biol Chem 1998; 273:11248-56. [PMID: 9556616 DOI: 10.1074/jbc.273.18.11248] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The GTPase Rac and the protein kinase B (PKB) are downstream targets of phosphatidylinositide 3OH-kinase in platelet-derived growth factor-stimulated signaling pathways. We have generated PAE cell lines inducibly expressing mutants of Rac. Use of these cell lines suggests that Rac is involved in both platelet-derived growth factor-stimulated membrane ruffling and the activation of p70(S6K) but not in the activation of PKB. Furthermore, expression of constitutively active alleles of PKB in PAE cells suggests that PKB is able to regulate the activity of p70(S6K) but not the cytoskeletal changes underlying membrane ruffling. Thus, our results indicate that Rac and PKB are on separate pathways downstream of phosphatidylinositide 3OH-kinase in these cells but that both of these pathways are involved in the regulation of p70(S6K).
Collapse
Affiliation(s)
- H Welch
- Inositide Laboratory, Department of Signaling, the Babraham Institute, Cambridge CB2 4AT, United Kingdom
| | | | | | | |
Collapse
|
507
|
Ogawa W, Matozaki T, Kasuga M. Role of binding proteins to IRS-1 in insulin signalling. Mol Cell Biochem 1998; 182:13-22. [PMID: 9609110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Insulin elicits its divergent metabolic and mitogenic effects by binding to its specific receptor, which belongs to the family of receptor tyrosine kinases. The activated insulin receptor phosphorylates the intracellular substrate IRS-1, which then binds various signalling molecules that contain SRC homology 2 domains, thereby propagating the insulin signal. Among these IRS-1-binding proteins, the Grb2-Sos complex and the protein tyrosine phosphatase SHP-2 transmit mitogenic signals through the activation of Ras, and phosphoinositide 3-kinase is implicated in the major metabolic actions of insulin. Although substantial evidence indicates the importance of IRS-1 in insulin signal transduction, the generation of IRS-1-deficient mice has revealed the existence of redundant signalling pathways.
Collapse
Affiliation(s)
- W Ogawa
- Second Department of Internal Medicine, Kobe University School of Medicine, Japan
| | | | | |
Collapse
|
508
|
Sweeney G, Klip A. Regulation of the Na+/K+-ATPase by insulin: why and how? Mol Cell Biochem 1998; 182:121-33. [PMID: 9609121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The sodium-potassium ATPase (Na+/K+-ATPase or Na+/K+-pump) is an enzyme present at the surface of all eukaryotic cells, which actively extrudes Na+ from cells in exchange for K+ at a ratio of 3:2, respectively. Its activity also provides the driving force for secondary active transport of solutes such as amino acids, phosphate, vitamins and, in epithelial cells, glucose. The enzyme consists of two subunits (alpha and beta) each expressed in several isoforms. Many hormones regulate Na+/K+-ATPase activity and in this review we will focus on the effects of insulin. The possible mechanisms whereby insulin controls Na+/K+-ATPase activity are discussed. These are tissue- and isoform-specific, and include reversible covalent modification of catalytic subunits, activation by a rise in intracellular Na+ concentration, altered Na+ sensitivity and changes in subunit gene or protein expression. Given the recent escalation in knowledge of insulin-stimulated signal transduction systems, it is pertinent to ask which intracellular signalling pathways are utilized by insulin in controlling Na+/K+-ATPase activity. Evidence for and against a role for the phosphatidylinositol-3-kinase and mitogen activated protein kinase arms of the insulin-stimulated intracellular signalling networks is suggested. Finally, the clinical relevance of Na+/K+-ATPase control by insulin in diabetes and related disorders is addressed.
Collapse
Affiliation(s)
- G Sweeney
- Division of Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | | |
Collapse
|
509
|
Müller G, Wied S, Piossek C, Bauer A, Bauer J, Frick W. Convergence and divergence of the signaling pathways for insulin and phosphoinositolglycans. Mol Med 1998; 4:299-323. [PMID: 9642681 PMCID: PMC2230381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Phosphoinositolglycan molecules isolated from insulin-sensitive mammalian tissues have been demonstrated in numerous in vitro studies to exert partial insulin-mimetic activity on glucose and lipid metabolism in insulin-sensitive cells. However, their ill-defined structures, heterogeneous nature, and limited availability have prohibited the analysis of the underlying molecular mechanism. Phosphoinositolglycan-peptide (PIG-P) of defined and homogeneous structure prepared in large scale from the core glycan of a glycosyl-phosphatidylinositol-anchored membrane protein from Saccharomyces cerevisiae has recently been shown to stimulate glucose transport as well as a number of glucose-metabolizing enzymes and pathways to up to 90% (at 2 to 10 microns) of the maximal insulin effect in isolated rat adipocytes, cardiomyocytes, and diaphragms (G. Müller et al., 1997, Endocrinology 138: 3459-3476). Consequently, we used this PIG-P for the present study in which we compare its intracellular signaling with that of insulin. The activation of glucose transport by both PIG-P and insulin in isolated rat adipocytes and diaphragms was found to require stimulation of phosphatidylinositol (PI) 3-kinase but to be independent of functional p70S6kinase and mitogen-activated protein kinase. The increase in glycerol-3-phosphate acyltransferase activity in rat adipocytes in response to PIG-P and insulin was dependent on both PI 3-kinase and p70S6kinase. This suggest that the signaling pathways for PIG-P and insulin to glucose transport and metabolism converage at the level of PI 3-kinase. A component of the PIG-P signaling pathway located up-stream of PI 3-kinase was identified by desensitization of isolated rat adipocytes for PIG-P action by combined treatment with trypsin and NaCl under conditions that preserved cell viability and the insulin-mimetic activity of sodium vanadate but completely blunted the insulin response. Incubation of the cells with either trypsin or NaCl alone was ineffective. The desensitized adipocytes were reconstituted for stimulation of lipogenesis by PIG-P by addition of the concentrated trypsin/salt extract. The reconstituted adipocytes exhibited 65-75% of the maximal PIG-P response and similar EC50 values for PIG-P (2 to 5 microns) compared with control cells. A proteinaceous N-ethylmaleimide (NEM)-sensitive component contained in the trypsin/salt extract was demonstrated to bind in a functional manner to the adipocyte plasma membrane of desensitized adipocytes via bipolar interactions. An excess of trypsin/salt extract inhibited PIG-P action in untreated adipocytes in a competitive fashion compatible with a receptor function for PIG-P of this protein. The presence of the putative PIG-P receptor protein in detergent-insoluble complexes prepared from isolated rat adipocytes suggests that caveolae/detergent-insoluble complexes of the plasma membrane may play a role in insulin-mimetic signaling by PIG-P. Furthermore, treatment of isolated rat diaphragms and adipocytes with PIG-P as well as with other agents exerting partially insulin-mimetic activity, such as PI-specific phospholipase C (PLC) and the sulfonylurea glimepiride, triggered tyrosine phosphorylation of the caveolar marker protein caveolin, which was apparently correlated with stimulation of lipogenesis. Strikingly, in adipocytes subjected to combined trypsin/salt treatment, PIG-P, PI-specific PLC, and glimepiride failed completely to provoke insulin-mimetic effects. A working model is presented for a signaling pathway in insulin-sensitive cells used by PIG(-P) molecules which involves GPI structures, the trypsin/salt- and NEM-sensitive receptor protein for PIG-P, and additional proteins located in caveolae/detergent-insoluble complexes.
Collapse
Affiliation(s)
- G Müller
- Hoechst Marion Roussel Deutschland GmbH, Frankfurt am Main, Germany.
| | | | | | | | | | | |
Collapse
|
510
|
Pearson RB, Thomas G. Regulation of p70s6k/p85s6k and its role in the cell cycle. PROGRESS IN CELL CYCLE RESEARCH 1998; 1:21-32. [PMID: 9552351 DOI: 10.1007/978-1-4615-1809-9_3] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Two to three-fold increases in the rate of protein synthesis are required both to enter the G1 phase of the cell cycle from G0 and to proceed to S phase in response to growth factors and mitogens. This increase is in part regulated via multiple phosphorylation of the 40S ribosomal protein S6 by the mitogen-stimulated p70s6k/p85s6k. At the protein synthesis level this event appears to be involved in specifically increasing the efficiency of translation of a family of essential mRNAs containing a polypyrimidine tract at their 5' transcriptional start site. The activation of p70s6k/p85s6k and maintenance of its activity throughout G1 is controlled via multiple phosphorylation events mediated by a complex signalling network acting on distinct sets of phosphorylation sites.
Collapse
Affiliation(s)
- R B Pearson
- Friedrich Miescher Institute, Basel, Switzerland
| | | |
Collapse
|
511
|
Sano H, Higashi T, Matsumoto K, Melkko J, Jinnouchi Y, Ikeda K, Ebina Y, Makino H, Smedsrod B, Horiuchi S. Insulin enhances macrophage scavenger receptor-mediated endocytic uptake of advanced glycation end products. J Biol Chem 1998; 273:8630-7. [PMID: 9535837 DOI: 10.1074/jbc.273.15.8630] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hyperglycemia accelerates the formation and accumulation of advanced glycation end products (AGE) in plasma and tissue, which may cause diabetic vascular complications. We recently reported that scavenger receptors expressed by liver endothelial cells (LECs) dominantly mediate the endocytic uptake of AGE proteins from plasma, suggesting its potential role as an eliminating system for AGE proteins in vivo (Smedsrod, B., Melkko, J., Araki, N., Sano, H., and Horiuchi, S. (1997) Biochem. J. 322, 567-573). In the present study we examined the effects of insulin on macrophage scavenger receptor (MSR)-mediated endocytic uptake of AGE proteins. LECs expressing MSR showed an insulin-sensitive increase of endocytic uptake of AGE-bovine serum albumin (AGE-BSA). Next, RAW 264.7 cells expressing a high amount of MSR were overexpressed with human insulin receptor (HIR). Insulin caused a 3.7-fold increase in endocytic uptake of 125I-AGE-BSA by these cells. The effect of insulin was inhibited by wortmannin, a phosphatidylinositol-3-OH kinase (PI3 kinase) inhibitor. To examine at a molecular level the relationship between insulin signal and MSR function, Chinese hamster ovary (CHO) cells expressing a negligible level of MSR were cotransfected with both MSR and HIR. Insulin caused a 1.7-fold increase in the endocytic degradation of 125I-AGE-BSA by these cells, the effect of which was also inhibited by wortmannin and LY294002, another PI3 kinase inhibitor. Transfection of CHO cells overexpressing MSR with two HIR mutants, a kinase-deficient mutant, and another lacking the binding site for insulin receptor substrates (IRS) resulted in disappearance of the stimulatory effect of insulin on endocytic uptake of AGE proteins. The present results indicate that insulin may accelerate MSR-mediated endocytic uptake of AGE proteins through an IRS/PI3 kinase pathway.
Collapse
MESH Headings
- Androstadienes/pharmacology
- Animals
- CHO Cells
- Cell Line
- Cells, Cultured
- Chromones/pharmacology
- Cricetinae
- Endocytosis/drug effects
- Endothelium, Vascular/cytology
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/physiology
- Enzyme Inhibitors/pharmacology
- Glycation End Products, Advanced/pharmacokinetics
- Humans
- Insulin/pharmacology
- Kinetics
- Lipoproteins, LDL/pharmacokinetics
- Liver/physiology
- Macrophages/drug effects
- Macrophages/physiology
- Membrane Proteins
- Models, Biological
- Morpholines/pharmacology
- Polyenes/pharmacology
- Rats
- Receptor, Insulin/biosynthesis
- Receptor, Insulin/physiology
- Receptors, Immunologic/drug effects
- Receptors, Immunologic/physiology
- Receptors, Lipoprotein
- Receptors, Scavenger
- Recombinant Fusion Proteins/biosynthesis
- Scavenger Receptors, Class B
- Serum Albumin, Bovine/pharmacokinetics
- Sirolimus
- Transfection
- Wortmannin
Collapse
Affiliation(s)
- H Sano
- Department of Biochemistry, Kumamoto University School of Medicine, Honjo 2-2-1, Kumamoto 860-0811, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
512
|
Record RD, Froelich LL, Vlahos CJ, Blazer-Yost BL. Phosphatidylinositol 3-kinase activation is required for insulin-stimulated sodium transport in A6 cells. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 274:E611-7. [PMID: 9575821 DOI: 10.1152/ajpendo.1998.274.4.e611] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Insulin stimulates amiloride-sensitive sodium transport in models of the distal nephron. Here we demonstrate that, in the A6 cell line, this action is mediated by the insulin receptor tyrosine kinase and that activation of phosphatidylinositol 3-kinase (PI 3-kinase) lies downstream of the receptor tyrosine kinase. Functionally, a specific inhibitor of PI 3-kinase, LY-294002, blocks basal as well as insulin-stimulated sodium transport in a dose-dependent manner (IC50 approximately 6 microM). Biochemically, PI 3-kinase is present in A6 cells and is inhibited both in vivo and in vitro by LY-294002. Furthermore, a subsequent potential downstream signaling element, pp70 S6 kinase, is activated in response to insulin but does not appear to be part of the pathway involved in insulin-stimulated sodium transport. Together with previous reports, these results suggest that insulin may induce the exocytotic insertion of sodium channels into the apical membrane of A6 cells in a PI 3-kinase-mediated manner.
Collapse
Affiliation(s)
- R D Record
- Roudebush Veterans Medical Center, Indianapolis, Indianapolis, USA
| | | | | | | |
Collapse
|
513
|
Davis KE, Straff DJ, Weinstein EA, Bannerman PG, Correale DM, Rothstein JD, Robinson MB. Multiple signaling pathways regulate cell surface expression and activity of the excitatory amino acid carrier 1 subtype of Glu transporter in C6 glioma. J Neurosci 1998; 18:2475-85. [PMID: 9502808 PMCID: PMC6793087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/1997] [Revised: 01/09/1998] [Accepted: 01/09/1998] [Indexed: 02/06/2023] Open
Abstract
Neuronal and glial sodium-dependent transporters are crucial for the control of extracellular glutamate levels in the CNS. The regulation of these transporters is relatively unexplored, but the activity of other transporters is regulated by protein kinase C (PKC)- and phosphatidylinositol 3-kinase (PI3K)-mediated trafficking to and from the cell surface. In the present study the C6 glioma cell line was used as a model system that endogenously expresses the excitatory amino acid carrier 1 (EAAC1) subtype of neuronal glutamate transporter. As previously observed, phorbol 12-myristate 13-acetate (PMA) caused an 80% increase in transporter activity within minutes that cannot be attributed to the synthesis of new transporters. This increase in activity correlated with an increase in cell surface expression of EAAC1 as measured by using a membrane-impermeant biotinylation reagent. Both effects of PMA were blocked by the PKC inhibitor bisindolylmaleimide II (Bis II). The putative PI3K inhibitor, wortmannin, decreased L-[3H]-glutamate uptake activity by >50% within minutes. Wortmannin decreased the Vmax of L-[3H]-glutamate and D-[3H]-aspartate transport, but it did not affect Na+-dependent [3H]-glycine transport. Wortmannin also decreased cell surface expression of EAAC1. Although wortmannin did not block the effects of PMA on activity, it prevented the PMA-induced increase in cell surface expression. This trafficking of EAAC1 also was examined with immunofluorescent confocal microscopy, which supported the biotinylation studies and also revealed a clustering of EAAC1 at cell surface after treatment with PMA. These studies suggest that the trafficking of the neuronal glutamate transporter EAAC1 is regulated by two independent signaling pathways and also may suggest a novel endogenous protective mechanism to limit glutamate-induced excitotoxicity.
Collapse
Affiliation(s)
- K E Davis
- Department of Neuroscience, Children's Hospital of Philadelphia, Children's Seashore House, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | |
Collapse
|
514
|
Han XX, Bonen A. Epinephrine translocates GLUT-4 but inhibits insulin-stimulated glucose transport in rat muscle. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 274:E700-7. [PMID: 9575832 DOI: 10.1152/ajpendo.1998.274.4.e700] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We examined the effects of epinephrine (25, 50, and 150 nM) on 1) basal and insulin-stimulated 3-O-methylglucose (3-MG) transport in perfused rat muscles and 2) GLUT-4 in skeletal muscle plasma membranes. Insulin increased glucose transport 330-600% in three types of skeletal muscle [white (WG) and (RG) gastrocnemius and soleus (SOL)]. Glucose transport was also increased by epinephrine (22-48%) in these muscles (P < 0.05). In contrast, the insulin-stimulated 3-MG transport was reduced by epinephrine in all three types of muscles; maximal reductions were observed at 25 nM epinephrine in WG (-25%) and RG (-32.5%). A dose-dependent decrease occurred in SOL (-27% at 25 nM; -55% at 150 nM, P < 0.05). Insulin (20 mU/ml) and epinephrine (150 nM) each translocated GLUT-4 to the plasma membrane, and no differences in translocation were observed between insulin and epinephrine (P > 0.05). In addition, epinephrine did not inhibit insulin-stimulated GLUT-4 translocation, and the combined epinephrine and insulin effects on GLUT-4 translocation were not additive. The increase in surface GLUT-4 was associated with increases in muscle cAMP concentrations, but only when epinephrine alone was present. No relationship was evident between muscle cAMP concentrations and surface GLUT-4 in the combined epinephrine and insulin-stimulated muscles. These studies indicate that epinephrine can translocate GLUT-4 while at the same time increasing glucose transport when insulin is absent, or can inhibit glucose transport when insulin is present.
Collapse
Affiliation(s)
- X X Han
- Department of Kinesiology, University of Waterloo, Ontario, Canada
| | | |
Collapse
|
515
|
Gong TW, Meyer DJ, Liao J, Hodge CL, Campbell GS, Wang X, Billestrup N, Carter-Su C, Schwartz J. Regulation of glucose transport and c-fos and egr-1 expression in cells with mutated or endogenous growth hormone receptors. Endocrinology 1998; 139:1863-71. [PMID: 9528972 DOI: 10.1210/endo.139.4.5893] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
To identify mechanisms by which GH receptors (GHR) mediate downstream events representative of growth and metabolic responses to GH, stimulation by GH of c-fos and egr-1 expression and glucose transport activity were examined in Chinese hamster ovary (CHO) cells expressing mutated GHR. In CHO cells expressing wild-type GHR(GHR(1-638)), GH stimulated the expression of c-fos and egr-1, and stimulated 2-deoxyglucose uptake, responses also mediated by endogenous GHR in 3T3-F442A cells. Deletion of the proline-rich box 1 of GHR (GHR(deltaP)) abrogated all of these responses to GH, indicating that box 1, a site of association of GHR with the tyrosine kinase JAK2, is crucial for these GH-stimulated responses. As the C-terminal half of the cytoplasmic domain of GHR is required for GH-stimulated calcium flux and for stimulation of spi-2.1 transcription, GHR lacking this sequence (GHR(1-454)) were examined. Not only did GHR(1-454) mediate stimulation of c-fos and egr-1 expression and 2-deoxyglucose uptake, but they also mediated GH-stimulated transcriptional activation via Elk-1, a transcription factor associated with the c-fos Serum Response Element. Thus, the C-terminal half of the cytoplasmic domain of GHR is not required for GH-stimulated c-fos transcription, suggesting that increased calcium is not required for GH-stimulated c-fos expression. In CHO cells lacking all but five N-terminal residues of the cytoplasmic domain (GHR(1-294)), GH did not induce c-fos or egr-1 expression or stimulate 2-deoxyglucose uptake. Further, in 3T3-F442A fibroblasts with endogenous GHR, GH-stimulated c-fos expression and 2-deoxyglucose uptake were reduced by the tyrosine kinase inhibitors herbimycin A, staurosporine, and P11. Herbimycin A and staurosporine inhibit JAK2 and tyrosyl phosphorylation of all proteins stimulated by GH, whereas P11 inhibits the GH-dependent tyrosyl phosphorylation of only some proteins, including extracellular signal regulated kinases ERK1 and -2, but not JAK2. Taken together, these results implicate association of GHR with JAK2 and GH-stimulated tyrosyl phosphorylation of an additional cellular protein in GH-stimulated glucose transport and c-fos and egr-1 expression. These studies also indicate that, in contrast to spi-2.1, the N-terminal half of the cytoplasmic domain of GHR is sufficient to mediate stimulation of c-fos and egr-1 expression and Elk-1 activation, supporting multiple mechanisms for GH signaling to the nucleus.
Collapse
Affiliation(s)
- T W Gong
- Department of Physiology, University of Michigan Medical School, Ann Arbor 48109-0622, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
516
|
Calera MR, Martinez C, Liu H, Jack AK, Birnbaum MJ, Pilch PF. Insulin increases the association of Akt-2 with Glut4-containing vesicles. J Biol Chem 1998; 273:7201-4. [PMID: 9516411 DOI: 10.1074/jbc.273.13.7201] [Citation(s) in RCA: 168] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Expression of a constitutively active, membrane-associated Akt-1 (PKB alpha) construct in 3T3L1 adipocytes was shown to induce glucose uptake in the absence of insulin by stimulating Glut4 translocation to the plasma membrane (Kohn, A. D., Summers, S. A., Birnbaum, M. J., and Roth, R. A. (1996) J. Biol. Chem. 271, 31372-31378). However, in rat fat cell the vast majority of Akt-1 is cytosolic and shows no re-distribution to the plasma membrane in response to insulin. On the other hand, little work has been done with other Akt family members such as Akt-2 (PKB beta) or Akt-3 (PKB gamma). In this report, an analysis of the subcellular distribution of Akt-2 in rat adipocytes shows that Akt-2 is present in significant amounts in various membrane compartments, as well as in the cytosol, and the former include the light microsomes where Glut4 is present in the basal state. The distribution of Akt-2 in resting adipocytes was found to substantially overlap with that of Glut4 when light microsomes were subfractionated by a sucrose velocity gradient indicating possible co-localization. We confirmed co-localization of Akt-2 and Glut4 in the basal state by immunopurification of Glut4 vesicles, which exhibited a 5.5-fold increase in Akt-2 in response to insulin relative to the amount of Glut4. These results are consistent with the possibility that Akt-2 may be involved in Glut4 vesicle translocation.
Collapse
Affiliation(s)
- M R Calera
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | | | | | | | | |
Collapse
|
517
|
Molero JC, Martínez C, Andrés A, Satrústegui J, Carrascosa JM. Vanadate fully stimulates insulin receptor substrate-1 associated phosphatidyl inositol 3-kinase activity in adipocytes from young and old rats. FEBS Lett 1998; 425:298-304. [PMID: 9559669 DOI: 10.1016/s0014-5793(98)00258-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Vanadate stimulates adipocyte 2-deoxyglucose transport and GLUT-4 translocation to the membrane through an insulin receptor-independent but wortmannin-inhibitable pathway. Vanadate stimulates PI 3-kinase in anti-IRS-1 immunoprecipitates and the binding between IRS-1 and the p85alpha subunit of PI 3-kinase. In insulin-resistant adipocytes from old rats vanadate fully stimulates IRS-1-associated PI 3-kinase, but partially activates glucose uptake. We conclude that: (a) vanadate stimulates 2-deoxyglucose uptake using a pathway that converges with that of insulin at the level of PI 3-kinase; and (b) adipocytes from old rats are defective in the insulin pathway at steps located both upstream and downstream of PI 3-kinase.
Collapse
Affiliation(s)
- J C Molero
- Departamento de Biología Molecular, Centro de Biología Molecular (CSIC), Facultad de Ciencias, Universidad Autónoma, Cantoblanco, Madrid, Spain
| | | | | | | | | |
Collapse
|
518
|
Onuma H, Makino H, Osawa H, Suzuki Y, Taira M, Kanatsuka A, Saito Y. Mitogen-activated protein kinase and p70 ribosomal protein S6 kinase are not involved in the insulin-dependent stimulation of cAMP phosphodiesterase kinase in rat adipocytes. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1402:197-208. [PMID: 9561805 DOI: 10.1016/s0167-4889(98)00003-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
To elucidate the mechanism of anti-lipolytic action of insulin in rat epididymal adipocytes, we explored the potential mechanism that might be involved in the hormone-dependent stimulation of cAMP phosphodiesterase (PDE) kinase. PDE kinase was assayed in a cell-free system. Both wortmannin and LY294002, highly specific inhibitors of phosphatidylinositol 3-kinase, almost completely blocked the hormonal effect not only on PDE kinase but also on mitogen-activated protein (MAP) kinase. Neither PD98059, a specific inhibitor of MAP kinase, nor rapamycin, a potent inhibitor of insulin-dependent stimulation of p70 ribosomal protein S6 kinase (p70S6K), had inhibitory effect on that of PDE kinase. These results are consistent with the view that (i) insulin-activated PDE kinase as well as MAP kinase and p70S6K are localized downstream of phosphatidylinositol 3-kinase, (ii) PDE kinase is distinct from either MAP kinase or p70S6K and (iii) PDE kinase does not exist downstream of either MAP kinase or p70S6K. It is suggested that PDE kinase and MAP kinase or p70S6K may be localized in separate branches of the cascade of insulin action. The branching point of the cascade could be either at or below the level of phosphatidylinositol 3-kinase.
Collapse
Affiliation(s)
- H Onuma
- Department of Laboratory Medicine, Ehime University School of Medicine, Japan
| | | | | | | | | | | | | |
Collapse
|
519
|
Abstract
Physical exercise can be an important adjunct in the treatment of both non-insulin-dependent diabetes mellitus and insulin-dependent diabetes mellitus. Over the past several years, considerable progress has been made in understanding the molecular basis for these clinically important effects of physical exercise. Similarly to insulin, a single bout of exercise increases the rate of glucose uptake into the contracting skeletal muscles, a process that is regulated by the translocation of GLUT4 glucose transporters to the plasma membrane and transverse tubules. Exercise and insulin utilize different signaling pathways, both of which lead to the activation of glucose transport, which perhaps explains why humans with insulin resistance can increase muscle glucose transport in response to an acute bout of exercise. Exercise training in humans results in numerous beneficial adaptations in skeletal muscles, including an increase in GLUT4 expression. The increase in muscle GLUT4 in trained individuals contributes to an increase in the responsiveness of muscle glucose uptake to insulin, although not all studies show that exercise training in patients with diabetes improves overall glucose control. However, there is now extensive epidemiological evidence demonstrating that long-term regular physical exercise can significantly reduce the risk of developing non-insulin-dependent diabetes mellitus.
Collapse
Affiliation(s)
- L J Goodyear
- Research Division, Joslin Diabetes Center, Brigham and Women's Hospital, Boston, Massachusetts, USA.
| | | |
Collapse
|
520
|
Boehm JE, Chaika OV, Lewis RE. Anti-apoptotic signaling by a colony-stimulating factor-1 receptor/insulin receptor chimera with a juxtamembrane deletion. J Biol Chem 1998; 273:7169-76. [PMID: 9507032 DOI: 10.1074/jbc.273.12.7169] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The intracellular mechanisms used by insulin and insulin-like growth factors to block programmed cell death are unknown. To identify receptor structures and signaling pathways essential for anti-apoptotic effects on cells, we have created a chimeric receptor (colony-stimulating factor-1 receptor/insulin receptor chimera (CSF1R/IR)) connecting the extracellular, ligand-binding domain of the colony-stimulating factor-1 (CSF-1) receptor to the transmembrane and cytoplasmic domains of the insulin receptor. Upon activation with CSF-1, the CSF1R/IR phosphorylates itself and intracellular substrates in a manner characteristic of normal insulin receptors. CSF-1 treatment protected cells expressing the CSF1R/IR from staurosporine-induced apoptosis. A chimeric receptor (CSF1R/IRDelta960) with a deletion of 12 amino acids from its juxtamembrane domain was constructed and expressed. CSF-1-treated cells expressing the CSF1R/IRDelta960 are unable to phosphorylate IRS-1 and Shc (Chaika, O. V., Chaika, N., Volle, D. J., Wilden, P. A. , Pirrucello, S. J., and Lewis, R. E. (1997) J. Biol. Chem. 272, 11968-11974). CSF-1 stimulated glucose uptake, mitogen-activated protein kinases, and IRS-1-associated phosphatidylinositol 3' kinase in cells expressing the CSF1R/IR but not in cells expressing the CSF1R/IRDelta960. Surprisingly, the CSF1R/IRDelta960 was as effective as the CSF1R/IR in mediating CSF-1 protection of cells from staurosporine-induced apoptosis. These observations indicate that the anti-apoptotic effects of the insulin receptor cytoplasmic domain can be mediated by signaling pathways distinct from those requiring IRS-1 and Shc.
Collapse
Affiliation(s)
- J E Boehm
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska 68198-6805, USA
| | | | | |
Collapse
|
521
|
Yoo JY, Hamburger AW. Changes in heregulin beta1 (HRGbeta1) signaling after inhibition of ErbB-2 expression in a human breast cancer cell line. Mol Cell Endocrinol 1998; 138:163-71. [PMID: 9685225 DOI: 10.1016/s0303-7207(98)00004-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Specific biological responses to the erbB3-erbB4 ligand heregulin (HRG) have been postulated to be due to the formation of heterodimers of those receptors with erbB2. To test the role that erbB2 plays in the response to HRG in a human breast carcinoma cell line, antisense oriented erbB2 was stably transfected into AU565 cells. In the absence of HRG, inhibition of erbB2 expression slowed cell growth, leading to accumulation of cells in the G2/M phase, and suppressed colony growth in soft agar. Low concentrations of HRG induced cell proliferation in both the erbB2-nonexpressing cells and the parental AU565 cells. In contrast, high concentrations of HRG failed to induce differentiation of the erbB2-nonexpressing cells as compared with the parental cells. ErbB3 expression was significantly decreased in the erbB2 nonexpressing cells. ErbB3 was constitutively tyrosine phosphorylated in both the parental AU565 cells and in the erbB2 nonexpressing cells. HRG further increased tyrosine phosphorylation of erbB3 with a maximum response at 1 ng/ml of HRG in erbB2 nonexpressing cells, as compared with 10 ng/ml of HRG in AU565 cells. This finding suggested that the biochemical responsiveness of erbB3 to HRG was changed, but not abrogated, by inhibition of erbB2 expression. These results suggest that inhibition of erbB2 expression modulates, but does not abolish, HRG mediated signal transduction pathways in a human breast cancer cell line.
Collapse
Affiliation(s)
- J Y Yoo
- Molecular and Cellular Biology Program, University of Maryland, School of Medicine, Baltimore 21201, USA
| | | |
Collapse
|
522
|
Cichy SB, Uddin S, Danilkovich A, Guo S, Klippel A, Unterman TG. Protein kinase B/Akt mediates effects of insulin on hepatic insulin-like growth factor-binding protein-1 gene expression through a conserved insulin response sequence. J Biol Chem 1998; 273:6482-6487. [PMID: 9497382 DOI: 10.1074/jbc.273.11.6482] [Citation(s) in RCA: 131] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Insulin regulates the expression of multiple hepatic genes through a conserved insulin response sequence (IRS) (CAAAAC/TAA) by an as yet undetermined mechanism. Protein kinase B/Akt (PKB/Akt), a member of the PKA/PKC serine/threonine kinase family, functions downstream from phosphatidylinositol 3'-kinase (PI3K) in mediating effects of insulin on glucose transport and glycogen synthesis. We asked whether PKB/Akt mediates sequence-specific effects of insulin on hepatic gene expression using the model of the insulin-like growth factor binding protein-1 (IGFBP-1) promoter. Insulin lowers IGFBP-1 mRNA levels, inhibits IGFBP-1 promoter activity, and activates PKB/Akt in HepG2 hepatoma cells through a PI3K-dependent, rapamycin-insensitive mechanism. Constitutively active PI3K and PKB/Akt are each sufficient to mediate effects of insulin on the IGFBP-1 promoter in a nonadditive fashion. Dominant negative K179 PKB/Akt disrupts the ability of insulin and PI3K to activate PKB/Akt and to inhibit promoter activity. The IGFBP-1 promoter contains two IRSs each of which is sufficient to mediate sequence-specific effects of insulin, PI3K, and PKB/Akt on promoter activity. Highly related IRSs from the phosphoenolpyruvate carboxykinase and apolipoprotein CIII genes also are effective in this setting. These results indicate that PKB/Akt functions downstream from PI3K in mediating sequence-specific effects of insulin on the expression of IGFBP-1 and perhaps multiple hepatic genes through a conserved IRS.
Collapse
Affiliation(s)
- S B Cichy
- Department of Medicine, University of Illinois College of Medicine at Chicago, Chicago, Illinois 60612, USA
| | | | | | | | | | | |
Collapse
|
523
|
Abstract
An elevated content of membrane glycoprotein PC-1 has been observed in cells and tissues of insulin resistant patients. In addition, in vitro overexpression of PC-1 in cultured cells induces insulin resistance associated with diminished insulin receptor tyrosine kinase activity. We now find that PC-1 overexpression also influences insulin receptor signaling at a step downstream of insulin receptor tyrosine kinase, independent of insulin receptor tyrosine kinase. In the present studies, we employed Chinese hamster ovary cells that overexpress the human insulin receptor (CHO IR cells; approximately 10(6) receptors per cell), and transfected them with human PC-1 c-DNA (CHO IR PC-1). In CHO IR PC-1 cells, insulin receptor tyrosine kinase activity was unchanged, following insulin treatment of cells. However, several biological effects of insulin, including glucose and amino acid uptake, were decreased. In CHO IR PC-1 cells, insulin stimulation of mitogen-activated protein (MAP) kinase activity was normal, suggesting that PC-1 overexpression did not affect insulin receptor activation of Ras, which is upstream of MAP kinase. Also, insulin-stimulated phosphatidylinositol (PI)-3-kinase activity was normal, suggesting that PC-1 overexpression did not interfere with the activation of this enzyme by insulin receptor substrate-1. In these cells, however, insulin stimulation of p70 ribosomal S6 kinase activity was diminished. These studies suggest, therefore, that, in addition to blocking insulin receptor tyrosine kinase activation, PC-1 can also block insulin receptor signaling at a post-receptor site.
Collapse
Affiliation(s)
- S Kumakura
- Diabetes and Endocrine Research, Mt. Zion Medical Center, University of California, San Francisco 94115, USA
| | | | | |
Collapse
|
524
|
Ueki K, Yamamoto-Honda R, Kaburagi Y, Yamauchi T, Tobe K, Burgering BM, Coffer PJ, Komuro I, Akanuma Y, Yazaki Y, Kadowaki T. Potential role of protein kinase B in insulin-induced glucose transport, glycogen synthesis, and protein synthesis. J Biol Chem 1998; 273:5315-22. [PMID: 9478990 DOI: 10.1074/jbc.273.9.5315] [Citation(s) in RCA: 288] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Various biological responses stimulated by insulin have been thought to be regulated by phosphatidylinositol 3-kinase, including glucose transport, glycogen synthesis, and protein synthesis. However, the molecular link between phosphatidylinositol 3-kinase and these biological responses has been poorly understood. Recently, it has been shown that protein kinase B (PKB/c-Akt/Rac) lies immediately downstream from phosphatidylinositol 3-kinase. Here, we show that expression of a constitutively active form of PKB induced glucose uptake, glycogen synthesis, and protein synthesis in L6 myotubes downstream of phosphatidylinositol 3-kinase and independent of Ras and mitogen-activated protein kinase activation. Introduction of constitutively active PKB induced glucose uptake and protein synthesis but not glycogen synthesis in 3T3L-1 adipocytes, which lack expression of glycogen synthase kinase 3 different from L6 myotubes. Furthermore, we show that deactivation of glycogen synthase kinase 3 and activation of rapamycin-sensitive serine/threonine kinase by PKB in L6 myotubes might be involved in the enhancement of glycogen synthesis and protein synthesis, respectively. These results suggest that PKB acts as a key enzyme linking phosphatidylinositol 3-kinase activation to multiple biological functions of insulin through regulation of downstream kinases in skeletal muscle, a major target tissue of insulin.
Collapse
Affiliation(s)
- K Ueki
- Third Department of Internal Medicine, Faculty of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
525
|
Withers DJ, Gutierrez JS, Towery H, Burks DJ, Ren JM, Previs S, Zhang Y, Bernal D, Pons S, Shulman GI, Bonner-Weir S, White MF. Disruption of IRS-2 causes type 2 diabetes in mice. Nature 1998; 391:900-4. [PMID: 9495343 DOI: 10.1038/36116] [Citation(s) in RCA: 1277] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Human type 2 diabetes is characterized by defects in both insulin action and insulin secretion. It has been difficult to identify a single molecular abnormality underlying these features. Insulin-receptor substrates (IRS proteins) may be involved in type 2 diabetes: they mediate pleiotropic signals initiated by receptors for insulin and other cytokines. Disruption of IRS-1 in mice retards growth, but diabetes does not develop because insulin secretion increases to compensate for the mild resistance to insulin. Here we show that disruption of IRS-2 impairs both peripheral insulin signalling and pancreatic beta-cell function. IRS-2-deficient mice show progressive deterioration of glucose homeostasis because of insulin resistance in the liver and skeletal muscle and a lack of beta-cell compensation for this insulin resistance. Our results indicate that dysfunction of IRS-2 may contribute to the pathophysiology of human type 2 diabetes.
Collapse
Affiliation(s)
- D J Withers
- Howard Hughes Medical Institute, Joslin Diabetes Center, Department of Medicine, Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
526
|
Jacob KK, Sap J, Stanley FM. Receptor-like protein-tyrosine phosphatase alpha specifically inhibits insulin-increased prolactin gene expression. J Biol Chem 1998; 273:4800-9. [PMID: 9468545 DOI: 10.1074/jbc.273.8.4800] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
A physiologically relevant response to insulin, stimulation of prolactin promoter activity in GH4 pituitary cells, was used as an assay to study the specificity of protein-tyrosine phosphatase function. Receptor-like protein-tyrosine phosphatase alpha (RPTPalpha) blocks the effect of insulin to increase prolactin gene expression but potentiates the effects of epidermal growth factor and cAMP on prolactin promoter activity. RPTPalpha was the only protein-tyrosine phosphatase tested that did this. Thus, the effect of RPTPalpha on prolactin-chloramphenicol acetyltransferase (CAT) promoter activity is specific by two criteria. A number of potential RPTPalpha targets were ruled out by finding (a) that they are not affected or (b) that they are not on the pathway to insulin-increased prolactin-CAT activity. The negative effect of RPTPalpha on insulin activation of the prolactin promoter is not due to reduced phosphorylation or kinase activity of the insulin receptor or to reduced phosphorylation of insulin receptor substrate-1 or Shc. Inhibitor studies suggest that insulin-increased prolactin gene expression is mediated by a Ras-like GTPase but is not mitogen-activated protein kinase dependent. Experiments with inhibitors of phosphatidylinositol 3-kinase suggest that insulin-increased prolactin-CAT expression is phosphatidylinositol 3-kinase-independent. These results suggest that RPTPalpha may be a physiological regulator of insulin action.
Collapse
Affiliation(s)
- K K Jacob
- Department of Medicine, New York University Medical Center, New York, New York 10016, USA
| | | | | |
Collapse
|
527
|
Conus NM, Hemmings BA, Pearson RB. Differential regulation by calcium reveals distinct signaling requirements for the activation of Akt and p70S6k. J Biol Chem 1998; 273:4776-82. [PMID: 9468542 DOI: 10.1074/jbc.273.8.4776] [Citation(s) in RCA: 103] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Activation of the phosphatidylinositol 3-kinase (PI3K) plays an important role in the mitogenic response of many cell types. Recently, two serine/threonine kinases Akt and p70(S6k) have been identified as physiological targets of PI3K. Observations that expression of activated forms of Akt led to the activation of p70(S6k) implied Akt might mediate mitogenic signaling through activation of p70(S6k). To clarify the relationship between signaling through these two kinases, we have examined their regulation by various mitogenic stimuli. In this study we have focused on the role of calcium in the regulation of each kinase in Balb/c-3T3 fibroblasts. Depletion of intracellular calcium stores by EGTA pretreatment has no effect on growth factor-induced Akt activation but completely abolishes p70(S6k) stimulation. Increase of intracellular calcium induced by ionomycin or thapsigargin results in a full activation of p70(S6k), whereas little or no activation of Akt is observed. Furthermore, although PI3K in anti-phosphotyrosine immunoprecipitates is only very weakly activated by ionomycin, the calcium-induced stimulation of p70(S6k) is completely inhibited by the specific PI3K inhibitor wortmannin. We conclude Akt and p70(S6k) lie on separate signaling pathways. Activation of signaling to Akt is insufficient for the activation of p70(S6k), which can be achieved independently of Akt. p70(S6k) requires a separate calcium-dependent and wortmannin-sensitive process that is likely to be independent of type IA PI3K family members.
Collapse
Affiliation(s)
- N M Conus
- Trescowthick Research Laboratories, Peter MacCallum Cancer Institute, Locked Bag 1, A'Beckett Street, Melbourne, Victoria 3000, Australia
| | | | | |
Collapse
|
528
|
Su TZ, Wang M, Syu LJ, Saltiel AR, Oxender DL. Regulation of system A amino acid transport in 3T3-L1 adipocytes by insulin. J Biol Chem 1998; 273:3173-9. [PMID: 9452428 DOI: 10.1074/jbc.273.6.3173] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The insulin-stimulated uptake of 2-(methylamino)isobutyric acid (MeAIB), a nonmetabolizable substrate for system A, in 3T3-L1 adipocytes was investigated. As cells took on a more adipogenic phenotype, the insulin-stimulated versus the saturable basal MeAIB uptake increased by 5-fold. The induced transport activity showed properties characteristic of system A, with a Km value of 190 microM. The half-life of the induced system A activity was independent of de novo mRNA and protein synthesis and was not accelerated by ambient amino acids, therefore, it was mechanistically distinct from the previously described adaptive and hormonal regulation of system A. Inhibition of mitogen-activated protein kinase kinase by PD98059, Ras farnesylation by PD152440 and B581, p70(S6K) by rapamycin, and phosphatidylinositol 3-kinase (PI 3'-K) by wortmannin and LY294002 revealed that only wortmannin and LY294002 inhibited the insulin-induced MeAIB uptake with IC50 values close to that previously reported for inhibition of PI 3'-K. These results suggest that the Ras/mitogen-activated protein kinase and pp70(S6K) insulin signaling pathways are neither required nor sufficient for insulin stimulation of MeAIB uptake, and activation of PI 3'-K or a wortmannin/LY294002-sensitive pathway may play an important role in regulation of system A transport by insulin in 3T3-L1 cells.
Collapse
Affiliation(s)
- T Z Su
- Department of Molecular Biology, Parke-Davis Pharmaceutical Research Division of Warner Lambert Co., Ann Arbor, Michigan 48105, USA
| | | | | | | | | |
Collapse
|
529
|
Wang J, Riedel H. Insulin-like growth factor-I receptor and insulin receptor association with a Src homology-2 domain-containing putative adapter. J Biol Chem 1998; 273:3136-9. [PMID: 9452421 DOI: 10.1074/jbc.273.6.3136] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Insulin receptor (IR) and the related insulin-like growth factor-I (IGF-I) receptor (IGF-IR) mediate a variety of metabolic and mitogenic cellular responses, some of which may involve unidentified receptor targets. A Src homology-2 (SH2) domain-coding region of a mouse protein was cloned based on its interaction with IR. It was designated mSH2-B based on its high similarity to an earlier reported rat sequence SH2-B. A role of mSH2-B in IGF-I and insulin action was suggested by the interaction of the SH2 domain with activated IGF-IR and IR catalytic fragments but not with an inactive IR catalytic fragment in the yeast two-hybrid system in vivo and by the hormone-dependent association of a glutathione S-transferase (GST) SH2 domain fusion protein of mSH2-B with both receptors in cell extracts. A comparison of IGF-IR and IR mutants lacking individual Tyr autophosphorylation sites for association with GST mSH2-B showed that homologous juxtamembrane (IR960/IGF-IR950) and C-terminal (IR1322/IGF-IR1316) receptor motifs were required. Synthetic phosphopeptides representing IR960 and IR1322 competed for GST mSH2-B binding to the receptor, suggesting that both motifs participate in the association with mSH2-B. Antibodies raised against GST mSH2-B identified a cellular protein of 92 kDa that was not found to be phosphorylated on Tyr. It co-immunoprecipitated with IGF-IR or IR, which was strictly dependent on receptor activation. IR and IGF-IR Tyr phosphorylation motifs were not identified in the complete SH2-B primary structure, suggesting that it may participate as an adapter rather than a substrate in the IGF-I and insulin signaling pathways.
Collapse
Affiliation(s)
- J Wang
- Department of Biological Sciences, Wayne State University, Detroit, Michigan 48202, USA
| | | |
Collapse
|
530
|
Abstract
Cell surface receptors play a central role in the regulation of both cellular and systemic physiology by mediating intercellular communication, facilitating protein trafficking, and regulating virtually all intracellular processes. Receptor expression is often cell specific and is determined by cellular lineage, genetics, and a variety of factors in the extracellular milieu. As receptors are generally localized on the plasma membrane and differentially expressed in certain cell types and tissues, they provide a potential target for drug delivery. However, since most receptors are integrally connected with intracellular signal transduction networks, targeting via these receptors may elicit a biological response. This review describes some established and emerging concepts regarding the structure and functions of receptors. In addition, some aspects related to the regulation and crosstalk between receptors are discussed.
Collapse
|
531
|
Hamilton JA, Byrne R, Whitty G, Vadiveloo PK, Marmy N, Pearson RB, Christy E, Jaworowski A. Effects of wortmannin and rapamycin on CSF-1-mediated responses in macrophages. Int J Biochem Cell Biol 1998; 30:271-83. [PMID: 9608681 DOI: 10.1016/s1357-2725(97)00111-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
There are differing views regarding the roles of phosphatidylinositol 3-kinases (PI3-kinases) and p70 S6 kinase (p70s6k) in growth factor-induced cellular responses. One approach that is widely employed to investigate these roles is to use the inhibitors, wortmannin and rapamycin, respectively. This approach is used here to study the responses in macrophages to colony stimulating factor-1 (CSF-1). Wortmannin (> or = 30 nM) and rapamycin (> or = 3 nM) both weakly inhibited CSF-1-stimulated DNA synthesis in murine bone marrow-derived macrophages (BMM), suggesting that there are PI3-kinase- and p70s6k-independent pathways required for the onset of S phase; interestingly the combination of the drugs gave dramatic suppression. Inhibition of DNA synthesis by rapamycin on the BMM was much less than that observed with the CSF-1-dependent cell line, BAC1.2F5. In BMM, wortmannin suppressed CSF-1-stimulated increase in p70s6k activity indicating that PI3-kinase activity may lie upstream. In contrast to some other growth factor/cell systems, no evidence was obtained using the inhibitors for the involvement of PI3-kinase or p70s6k in CSF-1-mediated induction of c-fos mRNA expression or Erk-1 activity; in addition, no evidence was found for an involvement in the CSF-1-mediated increase in cyclin D1 expression or STAT activation. The findings reinforce the need to study the signal transduction cascades relevant to each individual growth factor and preferably not in cell lines.
Collapse
Affiliation(s)
- J A Hamilton
- Inflammation Research Centre, University of Melbourne, Department of Medicine, Royal Melbourne Hospital, Parkville, Vic., Australia.
| | | | | | | | | | | | | | | |
Collapse
|
532
|
Cengel KA, Godbout JP, Freund GG. Phosphatidylinositol 3'-kinase is associated with a serine kinase that is activated by okadaic acid. Biochem Biophys Res Commun 1998; 242:513-7. [PMID: 9464247 DOI: 10.1006/bbrc.1997.7996] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Okadaic acid (OA) is a potent inhibitor of PP1 and PP2A serine/threonine phosphatases and an inhibitor of phosphatidylinositol 3'-kinase (PI 3-kinase) recruitment/ activation. Here we report that PI 3-kinase associates with a serine kinase activated by OA. Whole cell phosphorylation studies showed that PI 3-kinase associates with a wortmannin insensitive 76 kDa serine phosphoprotein (pp76) distinct from the p85 subunit of PI 3-kinase. Serine kinase assays demonstrated that pp76 phosphorylation was dependent upon a wortmannin insensitive serine kinase contained within PI 3-kinase/pp76 complexes and that this kinase had different cation requirements than PI 3-kinase serine kinase. Treatment of whole cells with OA lead to a wortmannin-independent 7.6-fold increase in pp76 serine phosphorylation and to a 7-fold rise in pp76 kinase activity. Together, these findings indicate that pp76 is a PI 3-kinase associated phosphoprotein and suggest that pp76 may be a novel PI 3-kinase associated serine kinase that is activated by OA.
Collapse
Affiliation(s)
- K A Cengel
- Department of Pathology, University of Illinois at Urbana-Champaign 61801, USA
| | | | | |
Collapse
|
533
|
Thirone AC, Paez-Espinosa EV, Carvalho CR, Saad MJ. Regulation of insulin-stimulated tyrosine phosphorylation of Shc and IRS-1 in the muscle of rats: effect of growth hormone and epinephrine. FEBS Lett 1998; 421:191-6. [PMID: 9468304 DOI: 10.1016/s0014-5793(97)01560-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Insulin receptor substrate-1 (IRS-1) and Shc protein have the same binding site at the insulin receptor and compete in their association with the phosphorylated receptor. The present study demonstrates that a decrease in the level of muscle insulin receptor phosphorylation induced by chronic growth hormone (GH) treatment or acute epinephrine infusion is accompanied by a reduction in the level of IRS-1 phosphorylation and in the association with phosphatidylinositol 3-kinase. In contrast, no change is observed in insulin-stimulated Shc tyrosine phosphorylation, or in the association of this substrate with Grb2. These data suggest that a reduction in insulin receptor phosphorylation may affect post-receptor processes differentially by preserving the phosphorylation of some substrates and pathways, but not of others.
Collapse
Affiliation(s)
- A C Thirone
- Departamento de Clínica Médica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, S.P., Brazil
| | | | | | | |
Collapse
|
534
|
Greenwood JA, Pallero MA, Theibert AB, Murphy-Ullrich JE. Thrombospondin signaling of focal adhesion disassembly requires activation of phosphoinositide 3-kinase. J Biol Chem 1998; 273:1755-63. [PMID: 9430723 DOI: 10.1074/jbc.273.3.1755] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Thrombospondin is an extracellular matrix protein involved in modulating cell adhesion. Thrombospondin stimulates a rapid loss of focal adhesion plaques and reorganization of the actin cytoskeleton in cultured bovine aortic endothelial cells. The focal adhesion labilizing activity of thrombospondin is localized to the amino-terminal domain, specifically amino acids 17-35. Use of a synthetic peptide (hep I), containing amino acids 17-35 of thrombospondin, enables us to examine the signaling mechanisms specifically involved in thrombospondin-induced disassembly of focal adhesions. We tested the hypothesis that activation of phosphoinositide 3-kinase is a necessary step in the thrombospondin-induced signaling pathway regulating focal adhesion disassembly. Both wortmannin and LY294002, membrane permeable inhibitors of phosphoinositide 3-kinase activity, blocked hep I-induced disassembly of focal adhesions. Similarly, wortmannin inhibited hep I-mediated actin microfilament reorganization and the hep I-induced translocation of alpha-actinin from focal adhesion plaques. Hep I also stimulated phosphoinositide 3-kinase activity approximately 2-3-fold as measured in anti-phosphoinositide 3-kinase and anti-phosphotyrosine immunoprecipitates. Increased immunoreactivity for the 85-kDa regulatory subunit in anti-phosphotyrosine immunoprecipitates suggests that the p85/p110 form of phosphoinositide 3-kinase is involved in this pathway. In 32Pi-labeled cells, hep I increased levels of phosphatidylinositol (3,4,5)-trisphosphate, the major product of phosphoinositide 3-kinase phosphorylation. These results suggest that thrombospondin signals the disassembly of focal adhesions and reorganization of the actin cytoskeleton by a pathway involving stimulation of phosphoinositide 3-kinase activity.
Collapse
Affiliation(s)
- J A Greenwood
- Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama at Birmingham 35294, USA.
| | | | | | | |
Collapse
|
535
|
Mithieux G, Daniele N, Payrastre B, Zitoun C. Liver microsomal glucose-6-phosphatase is competitively inhibited by the lipid products of phosphatidylinositol 3-kinase. J Biol Chem 1998; 273:17-9. [PMID: 9417039 DOI: 10.1074/jbc.273.1.17] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We have studied the effect of various phospholipids on the activity of glucose-6-phosphatase (Glc6Pase) in untreated and detergent-treated rat liver microsomes. Glc6Pase is inhibited in the presence of phosphoinositides in a dose-dependent manner within a range of concentration 0.5-10 microM. The order of efficiency in untreated microsomes is: phosphatidylinositol (PI) 3,4,5P3 > PI3,4P2 = PI4,5P2 > PI3P = PI4P > PI. In contrast, Glc6Pase is not inhibited in the presence of phosphatidylserine, phosphatidylcholine, and phosphatidylethanolamine, diacylglycerol, and inositol 1,4, 5-trisphosphate at concentrations up to 100 microM. The mechanism of Glc6Pase inhibition by PI4,5P2, PI3,4P2, and PI3,4,5P3 is competitive in both untreated and detergent-treated microsomes. In untreated microsomes, the Ki for PI3,4,5P3 (1.7 +/- 0.3 microM, mean +/- S.D. n = 3) is significantly lower (p < 0.01) than that for PI3, 4P2 (5.0 +/- 0.8 microM) and for PI4,5P2 (4.7 +/- 0.7 microM). In detergent-treated microsomes, Glc6Pase is less sensitive to the inhibition and there is no difference anymore among the Ki values for the three compounds: 8.3 +/- 0.8, 11.1 +/- 0.5 and 8.9 +/- 0.4 microM for PI3,4,5P3, PI3,4P2, and PI4,5P2, respectively. This inhibition phenomenon might be of special importance with regards to the insulin's inhibition of hepatic glucose production.
Collapse
Affiliation(s)
- G Mithieux
- Institut National de la Santé et de la Recherche Médicale, Unit 449, Faculty of Medicine R. T. H. Laënnec, 69372 Lyon Cédex 08, France.
| | | | | | | |
Collapse
|
536
|
Haruta T, Morris AJ, Vollenweider P, Nelson JG, Rose DW, Mueckler M, Olefsky JM. Ligand-independent GLUT4 translocation induced by guanosine 5'-O-(3-thiotriphosphate) involves tyrosine phosphorylation. Endocrinology 1998; 139:358-64. [PMID: 9421434 DOI: 10.1210/endo.139.1.5698] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
To delineate the signaling pathway leading to glucose transport protein (GLUT4) translocation, we examined the effect of microinjection of the nonhydrolyzable GTP analog, guanosine 5'-O-(3-thiotriphosphate) (GTPgammaS), into 3T3-L1 adipocytes. Thirty minutes after the injection of 5 mM GTPgammaS, 40% of injected cells displayed surface GLUT4 staining indicative of GLUT4 translocation compared with 55% for insulin-treated cells and 10% in control IgG-injected cells. Treatment of the cells with the phosphatidylinositol 3-kinase inhibitor wortmannin or coinjection of GST-p85 SH2 fusion protein had no effect on GTPgammaS-mediated GLUT4 translocation. On the other hand, coinjection of antiphosphotyrosine antibodies (PY20) blocked GTPgammaS-induced GLUT4 translocation by 65%. Furthermore, microinjection of GTPgammaS led to the appearance of tyrosine-phosphorylated proteins around the periphery of the plasma membrane, as observed by immunostaining with PY20. Treatment of the cells with insulin caused a similar phosphotyrosine-staining pattern. Electroporation of GTPgammaS stimulated 2-deoxy-D-glucose transport to 70% of the extent of insulin stimulation. In addition, immunoblotting with phosphotyrosine antibodies after electroporation of GTPgammaS revealed increased tyrosine phosphorylation of several proteins, including 70- to 80-kDa and 120- to 130-kDa species. These results suggest that GTPgammaS acts upon a signaling pathway either downstream of or parallel to activation of phosphatidylinositol 3-kinase and that this pathway involves tyrosine-phosphorylated protein(s).
Collapse
Affiliation(s)
- T Haruta
- Department of Medicine, University of California-San Diego, La Jolla 92093-0673, USA
| | | | | | | | | | | | | |
Collapse
|
537
|
Fox HL, Kimball SR, Jefferson LS, Lynch CJ. Amino acids stimulate phosphorylation of p70S6k and organization of rat adipocytes into multicellular clusters. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 274:C206-13. [PMID: 9458729 DOI: 10.1152/ajpcell.1998.274.1.c206] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In previous studies we have shown that rat adipocytes suspended in Matrigel and placed in primary culture migrate through the gel to form multicellular clusters over a 5- to 6-day period. In the present study, phosphorylation of the insulin-regulated 70-kDa ribosomal protein S6 kinase (p70S6k) was observed within 30 min of establishment of adipocytes in primary culture. Two inhibitors of the p70S6k signaling pathway, rapamycin and LY-294002, greatly reduced phosphorylation of p70S6k and organization of adipocytes into multicellular clusters. Of all the components of the cell culture medium, amino acids, and in particular a subset of neutral amino acids, were found to promote both phosphorylation of p70S6k and cluster formation. Lowering the concentrations of amino acids in the medium to levels approximating those in plasma of fasted rats decreased both phosphorylation of p70S6k and cluster formation. Furthermore, stimulation of p70S6k phosphorylation by amino acids was prevented by either rapamycin or LY-294002. These findings demonstrate that amino acids stimulate the p70S6k signaling pathway in adipocytes and imply a role for this pathway in multicellular clustering.
Collapse
Affiliation(s)
- H L Fox
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey 17033, USA
| | | | | | | |
Collapse
|
538
|
Kaliman P, Canicio J, Shepherd PR, Beeton CA, Testar X, Palacín M, Zorzano A. Insulin-like growth factors require phosphatidylinositol 3-kinase to signal myogenesis: dominant negative p85 expression blocks differentiation of L6E9 muscle cells. Mol Endocrinol 1998; 12:66-77. [PMID: 9440811 DOI: 10.1210/mend.12.1.0047] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Phosphatidylinositol 3 (PI 3)-kinases are potently inhibited by two structurally unrelated membrane-permeant reagents: wortmannin and LY294002. By using these two inhibitors we first suggested the involvement of a PI 3-kinase activity in muscle cell differentiation. However, several reports have described that these compounds are not as selective for PI 3-kinase activity as assumed. Here we show that LY294002 blocks the myogenic pathway elicited by insulin-like growth factors (IGFs), and we confirm the specific involvement of PI 3-kinase in IGF-induced myogenesis by overexpressing in L6E9 myoblasts a dominant negative p85 PI 3-kinase-regulatory subunit (L6E9-delta p85). IGF-I, des(1-3)IGF-I, or IGF-II induced L6E9 skeletal muscle cell differentiation as measured by myotube formation, myogenin gene expression, and GLUT4 glucose carrier induction. The addition of LY294002 to the differentiation medium totally inhibited these IGF-induced myogenic events without altering the expression of a non-muscle-specific protein, beta1-integrin. Independent clones of L6E9 myoblasts expressing a dominant negative mutant of the p85-regulatory subunit (delta p85) showed markedly impaired glucose transport activity and formation of p85/p110 complexes in response to insulin, consistent with the inhibition of PI 3-kinase activity. IGF-induced myogenic parameters in L6E9-delta p85 cells, ie. cell fusion and myogenin gene and GLUT4 expression, were severely impaired compared with parental cells or L6E9 cells expressing wild-type p85. In all, data presented here indicate that PI 3-kinase is essential for IGF-induced muscle differentiation and that the specific PI 3-kinase subclass involved in myogenesis is the heterodimeric p85-p110 enzyme.
Collapse
Affiliation(s)
- P Kaliman
- Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
539
|
Dufourny B, Alblas J, van Teeffelen HA, van Schaik FM, van der Burg B, Steenbergh PH, Sussenbach JS. Mitogenic signaling of insulin-like growth factor I in MCF-7 human breast cancer cells requires phosphatidylinositol 3-kinase and is independent of mitogen-activated protein kinase. J Biol Chem 1997; 272:31163-71. [PMID: 9388270 DOI: 10.1074/jbc.272.49.31163] [Citation(s) in RCA: 184] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Addition of insulin-like growth factor I (IGF-I) to quiescent breast tumor-derived MCF-7 cells causes stimulation of cyclin D1 synthesis, hyperphosphorylation of the retinoblastoma protein pRb, DNA synthesis, and cell division. All of these effects are independent of the mitogen-activated protein kinase (MAPK) pathway since none of them is blocked by PD098059, the specific inhibitor of the MAPK activating kinase MEK1. This observation is consistent with the finding that the phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA), a strong inducer of MAPK activity in MCF-7 cells, effectively inhibits proliferation. The anti-proliferative effect of TPA in these cells may be accounted for, at least in part, by the MAPK-dependent stimulation of the synthesis of p21(WAF1/CIP1), an inhibitor of cyclin/cyclin-dependent kinase complexes. In contrast, all of the observed stimulatory effects of IGF-I on cell cycle progression, cyclin D1 synthesis, and pRb hyperphosphorylation were blocked by the specific phosphatidylinositol 3-kinase inhibitor LY294002, suggesting that phosphatidylinositol 3-kinase activity but not MAPK activity is required for transduction of the mitogenic IGF-I signal in MCF-7 cells.
Collapse
Affiliation(s)
- B Dufourny
- Utrecht Graduate School of Developmental Biology, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
540
|
Hayashi T, Wojtaszewski JF, Goodyear LJ. Exercise regulation of glucose transport in skeletal muscle. THE AMERICAN JOURNAL OF PHYSIOLOGY 1997; 273:E1039-51. [PMID: 9435517 DOI: 10.1152/ajpendo.1997.273.6.e1039] [Citation(s) in RCA: 167] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Exercise increases the rate of glucose uptake into the contracting skeletal muscles. This effect of exercise is similar to the action of insulin on glucose uptake, and the mechanism through which both stimuli increase skeletal muscle glucose uptake involves the translocation of GLUT-4 glucose transporters to the plasma membrane and transverse tubules. Most studies suggest that exercise and insulin recruit distinct GLUT-4-containing vesicles and/or mobilize different "pools" of GLUT-4 proteins originating from unique intracellular locations. There are different intracellular signaling pathways that lead to insulin- and exercise-stimulated GLUT-4 translocation. Insulin utilizes a phosphatidylinositol 3-kinase-dependent mechanism, whereas the exercise signal may be initiated by calcium release from the sarcoplasmic reticulum leading to the activation of other signaling intermediaries, and there is also evidence for autocrine- or paracrine-mediated activation of transport. The period after exercise is characterized by increased sensitivity of muscle glucose uptake to insulin, which can be substantially prolonged in the face of carbohydrate deprivation. The ability of exercise to utilize insulin-independent mechanisms to increase glucose uptake in skeletal muscle has important clinical implications, especially for patients with diseases that are associated with peripheral insulin resistance, such as non-insulin-dependent diabetes mellitus.
Collapse
Affiliation(s)
- T Hayashi
- Joslin Diabetes Center, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02215, USA
| | | | | |
Collapse
|
541
|
Abstract
It is now clear that PCOS is often associated with profound insulin resistance as well as with defects in insulin secretion. These abnormalities, together with obesity, explain the substantially increased prevalence of glucose intolerance in PCOS. Moreover, since PCOS is an extremely common disorder, PCOS-related insulin resistance is an important cause of NIDDM in women (Table 3). The insulin resistance in at least 50% of PCOS women appears to be related to excessive serine phosphorylation of the insulin receptor. A factor extrinsic to the insulin receptor, presumably a serine/threonine kinase, causes this abnormality and is an example of an important new mechanism for human insulin resistance related to factors controlling insulin receptor signaling. Serine phosphorylation appears to modulate the activity of the key regulatory enzyme of androgen biosynthesis, P450c17. It is thus possible that a single defect produces both the insulin resistance and the hyperandrogenism in some PCOS women (Fig. 19). Recent studies strongly suggest that insulin is acting through its own receptor (rather than the IGF-I receptor) in PCOS to augment not only ovarian and adrenal steroidogenesis but also pituitary LH release. Indeed, the defect in insulin action appears to be selective, affecting glucose metabolism but not cell growth. Since PCOS usually has a menarchal age of onset, this makes it a particularly appropriate disorder in which to examine the ontogeny of defects in carbohydrate metabolism and for ascertaining large three-generation kindreds for positional cloning studies to identify NIDDM genes. Although the presence of lipid abnormalities, dysfibrinolysis, and insulin resistance would be predicted to place PCOS women at high risk for cardiovascular disease, appropriate prospective studies are necessary to directly assess this.
Collapse
Affiliation(s)
- A Dunaif
- Pennsylvania State University College of Medicine, Hershey 17033, USA
| |
Collapse
|
542
|
Carver RS, Mathew PM, Russell WE. Hepatic expression of ErbB3 is repressed by insulin in a pathway sensitive to PI-3 kinase inhibitors. Endocrinology 1997; 138:5195-201. [PMID: 9389501 DOI: 10.1210/endo.138.12.5601] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
ErbB3 is an epidermal growth factor receptor-related type I tyrosine kinase receptor capable, in conjunction with ErbB2 or epidermal growth factor receptor, of transmitting proliferative and differentiative signals in a variety of cell types. We previously showed that ErbB3 messenger RNA and protein increase in cultured hepatocytes during the first 12 h in culture, as does the binding of heregulin beta1, a ligand for ErbB3. Insulin inhibits the increase in heregulin beta1 binding, as well as the increase in ErbB3 messenger RNA and protein. Two models of insulin deficiency in vivo (diabetes and fasting) demonstrated elevated levels of hepatic ErbB3 protein, strengthening the relevance of our observations in vitro. Using chemical activators or antagonists, we sought to identify the signaling pathways that link insulin to ErbB3 expression. The PI-3 kinase inhibitors, wortmannin and LY294002, completely blocked the inhibition of ErbB3 protein expression by insulin, suggesting a role for PI-3 kinase in the regulation of this growth factor receptor. Rapamycin, an inhibitor of p70 S6 kinase, an enzyme downstream of PI-3 kinase, failed to block the effect of insulin on ErbB3 expression. These results suggest a complex regulatory paradign for ErbB3 that includes PI-3 kinase and may be linked, via insulin, to the metabolic status of the animal.
Collapse
Affiliation(s)
- R S Carver
- Department of Cell Biology, Vanderbilt University, Nashville, Tennessee 37232, USA
| | | | | |
Collapse
|
543
|
Hill MM, Clark SF, James DE. Insulin-regulatable phosphoproteins in 3T3-L1 adipocytes form detergent-insoluble complexes not associated with caveolin. Electrophoresis 1997; 18:2629-37. [PMID: 9527493 DOI: 10.1002/elps.1150181419] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Whole body glucose homeostasis is dependent on the action of insulin. In muscle and adipose tissues, insulin stimulates glucose uptake by inducing the translocation of vesicles containing the glucose transporter GLUT4 to the cell surface. While the mechanisms of insulin-regulated GLUT4 translocation are not fully understood, some signaling intermediates have been implicated in this process. Interestingly, some of these intermediates, including IRS-1 and PI3K, have been localised to the same intracellular membrane fraction as the GLUT4 storage pool, designated here as the high-speed pellet (HSP) fraction. This raises the possibility that many of the downstream insulin signaling intermediates may be located within close proximity to intracellular GLUT4. The goal of this study was to test this hypothesis in 3T3-L1 adipocytes. A large proportion of adipocyte phosphoproteins co-fractionated in the HSP fraction. In an attempt to resolve insulin-regulatable phosphoproteins, we subjected 32P-labeled subcellular fractions to two-dimensional gel electrophoresis (2-DE). Insulin reproducibly stimulated the phosphorylation of 12 spots in the HSP fraction. Most of the HSP phosphoproteins were insoluble in the nonionic detergent Triton X-100, whereas integral membrane proteins such as GLUT4 and intracellular caveolin were soluble under the same conditions. These results suggest that insulin-regulatable phosphoproteins in adipocytes may be organized in microdomains within the cell and that this assembly may act as an efficient conductor of the signaling proteins to rapidly facilitate downstream biological responses. Further study is required to establish the molecular basis for these detergent-insoluble signaling complexes.
Collapse
Affiliation(s)
- M M Hill
- Centre for Molecular and Cellular Biology, Department of Physiology and Pharmacology, University of Queensland, St. Lucia, Australia
| | | | | |
Collapse
|
544
|
Zhou L, Chen H, Lin CH, Cong LN, McGibbon MA, Sciacchitano S, Lesniak MA, Quon MJ, Taylor SI. Insulin receptor substrate-2 (IRS-2) can mediate the action of insulin to stimulate translocation of GLUT4 to the cell surface in rat adipose cells. J Biol Chem 1997; 272:29829-33. [PMID: 9368055 DOI: 10.1074/jbc.272.47.29829] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Insulin receptor substrates-1 and -2 (IRS-1 and -2) are important substrates of the insulin receptor tyrosine kinase. Previous studies have focused upon the role of IRS-1 in mediating the actions of insulin. In the present study, we demonstrate that IRS-2 can mediate translocation of the insulin responsive glucose transporter GLUT4 in a physiologically relevant target cell for insulin action. Co-immunoprecipitation experiments performed on cell lysates derived from freshly isolated rat adipose cells incubated in the presence or absence of insulin indicated that twice as much phosphatidylinositol 3-kinase was associated with endogenous IRS-1 as with IRS-2 after insulin stimulation. When rat adipose cells in primary culture were transfected with expression vectors for IRS-1 or IRS-2, we observed 40-fold overexpression of human IRS-1 or murine IRS-2. In addition, anti-phosphotyrosine immunoblotting experiments confirmed that the recombinant substrates were phosphorylated in response to insulin stimulation. To examine the role of IRS-2 in insulin-stimulated translocation of GLUT4, we studied the effects of overexpression of IRS-1 and -2 on translocation of a co-transfected epitope-tagged GLUT4 (GLUT4-HA). Overexpression of IRS-1 or IRS-2 in adipose cells resulted in a significant increase in the basal level of cell surface GLUT4 (in the absence of insulin). Interestingly, at maximally effective concentrations of insulin (60 nM), the level of cell surface GLUT4 in cells overexpressing IRS-1 or -2 significantly exceeded the maximal recruitment observed in the control cells (160 and 135% of control, respectively; p < 0.003). Our data directly demonstrate that IRS-2, like IRS-1, is capable of participating in insulin signal transduction pathways leading to the recruitment of GLUT4. Thus, IRS-2 may provide an alternative pathway for critical metabolic actions of insulin.
Collapse
Affiliation(s)
- L Zhou
- Diabetes Branch, NIDDK, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
545
|
Abstract
Insulin receptor substrate (IRS) proteins are key regulators of basic functions such as cellular growth and metabolism. They provide an interface between multiple receptors and a complex network of intracellular signaling molecules. Two members of this family (IRS-1 and IRS-2) have been identified previously. In this investigation, we analyzed a mouse expressed sequence tag clone that proved to be a new member of the IRS family. Sequence analysis of this clone and comparison with the sequences deposited in GenBank demonstrates this protein may be the murine homolog of rat IRS-3, recently purified and cloned from rat adipocytes. Accordingly, we have named our protein mouse IRS-3. The expressed sequence tag clone contains the complete coding sequence of 1485 bp, encoding a protein of 495 amino acids. Sequence alignment with the other members of the IRS family shows that this protein contains pleckstrin homology and phosphotyrosine-binding domains that are highly conserved. In addition, there is conservation of many tyrosine phosphorylation motifs responsible for interactions with downstream signaling molecules containing SH2 domains. The murine IRS-3 messenger RNA (2.4 kilobases in length) is expressed in many tissues, with highest levels in liver and lung. Mouse IRS-3 is highly expressed in the first part of the embryonic life, when IRS-1 messenger RNA is barely detectable. Unlike the genes encoding IRS-1 and IRS-2, the IRS-3 gene contains an intron (344 bp in length) in the region between the pleckstrin homology and the phosphotyrosine-binding domains. Fluorescent in situ hybridization localized the mouse IRS-3 gene on the telomeric region of chromosome 5G2. Cloning of the murine IRS-3 gene will make it possible to apply genetic approaches to elucidate the physiological role of this new member of the IRS family of proteins.
Collapse
Affiliation(s)
- S Sciacchitano
- Diabetes Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-1829, USA
| | | |
Collapse
|
546
|
Abstract
Hepatocyte growth factor/scatter factor (HGF/SF) is a multifunctional cytokine that induces mitogenesis, motility, invasion, and morphogenesis of several epithelial and endothelial cell lines in culture. The receptor for HGF/SF has been identified as the Met tyrosine kinase. To investigate the signaling pathways that are involved in these events, we have generated chimeric receptors containing the extracellular domain of the colony stimulating factor-1 (CSF-1) receptor fused to the transmembrane and intracellular domains of the Met receptor (MET). Madin-Darby canine kidney (MDCK) epithelial cells, expressing the CSF-MET chimera dissociate, scatter and form branching tubules in response to CSF-1. However, cells expressing a mutant CSF-MET receptor containing a phenylalanine substitution for tyrosine 1356 (Y1356F) are unable to scatter or form branching tubules following stimulation with CSF-1. Tyrosine 1356 is essential for the recruitment of multiple substrates including Grb2, the p85 subunit of PI3-kinase, and PLC gamma. To investigate the role of these signaling pathways, we have generated a mutant receptor that selectively fails to associate with Grb2, and have treated MDCK cells with potent inhibitors of PLC gamma, PI3-kinase, and p70S6K, a downstream target of PI3-kinase. Our results implicate pathways downstream from PI3-kinase in cell dissociation and scatter, whereas pathways downstream from Grb2 are required for branching tubulogenesis in MDCK cells.
Collapse
Affiliation(s)
- I Royal
- Royal Victoria Hospital, Department of Medicine, McGill University, Montreal, Quebec, Canada
| | | | | |
Collapse
|
547
|
Chen D, Elmendorf JS, Olson AL, Li X, Earp HS, Pessin JE. Osmotic shock stimulates GLUT4 translocation in 3T3L1 adipocytes by a novel tyrosine kinase pathway. J Biol Chem 1997; 272:27401-10. [PMID: 9341192 DOI: 10.1074/jbc.272.43.27401] [Citation(s) in RCA: 108] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Similar to insulin, osmotic shock of 3T3L1 adipocytes stimulated an increase in glucose transport activity and translocation of GLUT4 protein from intracellularly localized vesicles to the plasma membrane. The docking/fusion of GLUT4 vesicles with the plasma membrane appeared to utilize a similar mechanism, since expression of a dominant interfering mutant of syntaxin-4 prevented both insulin- and osmotic shock-induced GLUT4 translocation. However, although the insulin stimulation of GLUT4 translocation and glucose transport activity was completely inhibited by wortmannin, activation by osmotic shock was wortmannin-insensitive. Furthermore, insulin stimulated the phosphorylation and activation of the Akt kinase, whereas osmotic shock was completely without effect. Surprisingly, treatment of cells with the tyrosine kinase inhibitor, genistein, or microinjection of phosphotyrosine antibody prevented both the insulin- and osmotic shock-stimulated translocation of GLUT4. In addition, osmotic shock induced the tyrosine phosphorylation of several discrete proteins including Cbl, p130(cas), and the recently identified soluble tyrosine kinase, calcium-dependent tyrosine kinase (CADTK). In contrast, insulin had no effect on CADTK but stimulated the tyrosine phosphorylation of Cbl and the tyrosine dephosphorylation of pp125(FAK) and p130(cas). These data demonstrate that the osmotic shock stimulation of GLUT4 translocation in adipocytes occurs through a novel tyrosine kinase pathway that is independent of both the phosphatidylinositol 3-kinase and the Akt kinase.
Collapse
Affiliation(s)
- D Chen
- Program in Molecular Biology, The University of Iowa, Iowa City, Iowa 52242, USA
| | | | | | | | | | | |
Collapse
|
548
|
Cortright RN, Azevedo JL, Hickey MS, Tapscott EB, Dohm GL. Vanadate stimulation of 2-deoxyglucose transport is not mediated by PI 3-kinase in human skeletal muscle. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1358:300-6. [PMID: 9366261 DOI: 10.1016/s0167-4889(97)00072-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Glucose transport in mammalian skeletal muscle is stimulated by insulin, hypoxia and tyrosine protein phosphatase inhibitors such as vanadate. However, it is unknown whether the vanadate signaling mechanism shares a common or separate pathway with insulin or hypoxia. Therefore, experiments were conducted on incubated human muscle strips to compare the effects of vanadate with insulin and hypoxia stimulated 2-deoxyglucose transport (2-DOG). We also used the phosphatidylinositol 3-kinase (PI 3-kinase) inhibitor wortmannin to examine whether PI 3-kinase is a common step by which each stimulate glucose transport. Results demonstrate that whereas the effects of vanadate and hypoxia were additive with insulin stimulated glucose transport, the effect of vanadate plus hypoxia was not. In addition, wortmannin significantly (P < 0.05) reduced insulin but not vanadate or hypoxia stimulated 2-DOG transport. Moreover, PI 3-kinase activity was significantly elevated (P < 0.05) in the presence of insulin but not vanadate. In conclusion, these data suggest that vanadate and hypoxia stimulate glucose transport via a similar signaling pathway which is distinct from insulin and that the vanadate signaling pathway is not mediated by PI 3-kinase in human skeletal muscle.
Collapse
Affiliation(s)
- R N Cortright
- Department of Biochemistry, School of Medicine, East Carolina University, Greenville, NC 27858-4354, USA
| | | | | | | | | |
Collapse
|
549
|
Kaburagi Y, Satoh S, Tamemoto H, Yamamoto-Honda R, Tobe K, Veki K, Yamauchi T, Kono-Sugita E, Sekihara H, Aizawa S, Cushman SW, Akanuma Y, Yazaki Y, Kadowaki T. Role of insulin receptor substrate-1 and pp60 in the regulation of insulin-induced glucose transport and GLUT4 translocation in primary adipocytes. J Biol Chem 1997; 272:25839-44. [PMID: 9325314 DOI: 10.1074/jbc.272.41.25839] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
In muscle and fat, glucose transport occurs through the translocation of GLUT4 from an intracellular pool to the cell surface. Phosphatidylinositol (PI) 3-kinase has been shown to be required in this process. Insulin is thought to activate this enzyme by stimulating its association with tyrosine-phosphorylated proteins such as insulin receptor substrate (IRS)-1, IRS-2, Grb2-associated binder-1, and pp60. To study the role of these endogenous substrates in glucose transport, we analyzed adipocytes from IRS-1 null mice that we previously generated (Tamemoto, H., Kadowaki, T., Tobe, K., Yagi, T., Sakura, H., Hayakawa, T., Terauchi, Y., Ueki, K., Kaburagi, Y., Satoh, S., Sekihara, H., Yoshioka, S., Horikoshi, H., Furuta, Y. , Ikawa, Y., Kasuga, M., Yazaki Y., and Aizawa S. (1994) Nature 372, 182-186). In adipocytes from these mice, we showed that: 1) insulin-induced PI 3-kinase activity in the antiphosphotyrosine immunoprecipitates was 54% of wild-type; 2) pp60 was the major tyrosine-phosphorylated protein that associated with PI 3-kinase, whereas tyrosine phosphorylaion of IRS-2 as well as its association with this enzyme was almost undetectable; and 3) glucose transport and GLUT4 translocation at maximal insulin stimulation were decreased to 52 and 68% of those from wild-type. These data suggest that both IRS-1 and pp60 play a major role in insulin-induced glucose transport in adipocytes, and that pp60 is predominantly involved in regulating this process in the absence of IRS-1.
Collapse
Affiliation(s)
- Y Kaburagi
- Third Department of Internal Medicine, Faculty of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
550
|
Ikezu T, Okamoto T, Yonezawa K, Tompkins RG, Martyn JA. Analysis of thermal injury-induced insulin resistance in rodents. Implication of postreceptor mechanisms. J Biol Chem 1997; 272:25289-95. [PMID: 9312146 DOI: 10.1074/jbc.272.40.25289] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Burn injury is associated with insulin resistance. The molecular basis of this resistance was investigated by examining insulin receptor signaling in rats after thermal injury. The impaired insulin-stimulated transport of [3H]2-deoxyglucose into soleus muscle strips confirmed the insulin resistance following burns. In vivo insulin-stimulated phosphoinositide 3-kinase activity, pivotal in translocation of GLUT4, was decreased in burns when assessed by its insulin receptor substrate-1 (IRS-1)-associated activity. Insulin-induced tyrosine kinase activity of insulin receptor (IR) and tyrosine phosphorylation of IRS-1 were also attenuated. Immunoprecipitated IR, however, appeared to have normal insulin-responsive kinase activity. Finally, immunoprecipitated IRS-1 was tested for its effect on partially purified recombinant IR and was found to inhibit its kinase activity. This inhibitory effect of IRS-1 was abolished by prior treatment of IRS-1 with alkaline phosphatase, indicating that burn injury-related hyperphosphorylation of IRS-1 is similar to that observed in TNFalpha-induced inhibition of IR signaling. All of these changes were observed in the absence of quantitative changes in IR, IRS-1, and phosphoinositide 3-kinase. Alterations in postreceptor insulin signaling, therefore, may be responsible for the insulin resistance after thermal injury.
Collapse
Affiliation(s)
- T Ikezu
- Department of Anesthesiology, Harvard Medical School, Shriners Burns Institute, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | | | | | | | | |
Collapse
|