551
|
Liu T, Song X, Khan S, Li Y, Guo Z, Li C, Wang S, Dong W, Liu W, Wang B, Cao H. The gut microbiota at the intersection of bile acids and intestinal carcinogenesis: An old story, yet mesmerizing. Int J Cancer 2019; 146:1780-1790. [DOI: 10.1002/ijc.32563] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 07/05/2019] [Indexed: 12/24/2022]
Affiliation(s)
- Tianyu Liu
- Department of Gastroenterology and Hepatology, General HospitalTianjin Medical University Tianjin China
| | - Xueli Song
- Department of Gastroenterology and Hepatology, General HospitalTianjin Medical University Tianjin China
| | - Samiullah Khan
- Department of Gastroenterology and Hepatology, General HospitalTianjin Medical University Tianjin China
| | - Yun Li
- Department of Pharmacy, General HospitalTianjin Medical University Tianjin China
| | - Zixuan Guo
- Department of Gastroenterology and Hepatology, General HospitalTianjin Medical University Tianjin China
| | - Chuqiao Li
- Department of Gastroenterology and Hepatology, General HospitalTianjin Medical University Tianjin China
| | - Sinan Wang
- Department of Gastroenterology and Hepatology, General HospitalTianjin Medical University Tianjin China
| | - Wenxiao Dong
- Department of Gastroenterology and Hepatology, General HospitalTianjin Medical University Tianjin China
| | - Wentian Liu
- Department of Gastroenterology and Hepatology, General HospitalTianjin Medical University Tianjin China
| | - Bangmao Wang
- Department of Gastroenterology and Hepatology, General HospitalTianjin Medical University Tianjin China
| | - Hailong Cao
- Department of Gastroenterology and Hepatology, General HospitalTianjin Medical University Tianjin China
| |
Collapse
|
552
|
Li XC, Yin XJ, Hong W, Liu J, Jin F, Wang BY, Wang YM, Tian FJ. The orphan nuclear receptor NUR77 promotes trophoblast invasion at early pregnancy through paracrine placental growth factor. J Mol Med (Berl) 2019; 97:1359-1373. [PMID: 31312859 DOI: 10.1007/s00109-019-01819-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 07/02/2019] [Accepted: 07/08/2019] [Indexed: 10/26/2022]
Abstract
NR4A1 (NUR77) is an orphan nuclear receptor that has been implicated in both cell survival and apoptosis. However, the role of NUR77 in trophoblast function during early placenta development has not been fully elucidated. In this study, we showed that NUR77 expression was significantly lower in the villi of the recurrent miscarriage (RM) group compared to that in the healthy controls (HCs) group. We used immunohistochemistry and found that NUR77 was highly expressed in human placental villi during early pregnancy, especially in syncytiotrophoblast (STB), and was expressed at a much lower level in STB from the RM group than in those from HC group. Western blotting data further confirmed that NUR77 was highly expressed in primary human term placental STB and the FSK-induced BeWo cell line. Moreover, antibody array screening and ELISA revealed that NUR77 promoted significant placental growth factor (PGF) expression during trophoblast fusion. Ectopic overexpression and knockdown experiments demonstrated that PGF was a novel downstream target of NUR77, and serum PGF expression correlated positively with trophoblast NUR77 mRNA levels in HCs and RM patients. Importantly, bioinformatics analysis identified two NUR77 binding sites in the PGF promoter region, and chromatin immunoprecipitation (ChIP) coupled with Western blotting analysis further verified that NUR77 bound directly to the PGF promoter region and promoted PGF expression. Furthermore, in a BeWo/HTR-8 co-culture system, FSK-induced BeWo-secreted PGF promoted HTR-8 cell migration and invasion, and an anti-PGF antibody reversed this effect. Collectively, these results indicated that NUR77 may play a key role in regulating trophoblast invasion at early pregnancy. KEY MESSAGES: NUR77 expression was significantly decreased in the syncytiotrophoblast of the recurrent miscarriage group compared to that in the healthy control group. NUR77 promoted PGF expression during trophoblast fusion. ChIP and western blotting experiments verified that NUR77 bound directly to the PGF promoter region and activated PGF expression in trophoblast. Trophoblast-derived PGF promoted HTR-8 cell migration and invasion in a cell co-culture system.
Collapse
Affiliation(s)
- Xiao-Cui Li
- Department of Gynecology and Obstetrics, Shanghai First Maternity and Infant Hospital, TongJi University School of Medicine, Shanghai, 201204, People's Republic of China
| | - Xiang-Jie Yin
- Department of Gynecology and Obstetrics, Shanghai First Maternity and Infant Hospital, TongJi University School of Medicine, Shanghai, 201204, People's Republic of China
| | - Wei Hong
- Department of Gynecology and Obstetrics, Shanghai First Maternity and Infant Hospital, TongJi University School of Medicine, Shanghai, 201204, People's Republic of China
| | - Jie Liu
- Reproductive Medicine, Qingdao Municipal Hospital, Qingdao, 266071, Shandong, People's Republic of China
| | - Feng Jin
- Department of Obstetrics and Gynecology, the Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, 200233, People's Republic of China
| | - Bei-Ying Wang
- Department of Gynecology and Obstetrics, Shanghai First Maternity and Infant Hospital, TongJi University School of Medicine, Shanghai, 201204, People's Republic of China
| | - Yu-Mei Wang
- Department of Gynecology and Obstetrics, Shanghai First Maternity and Infant Hospital, TongJi University School of Medicine, Shanghai, 201204, People's Republic of China
| | - Fu-Ju Tian
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, People's Republic of China. .,Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030, People's Republic of China.
| |
Collapse
|
553
|
An excreted small molecule promotes C. elegans reproductive development and aging. Nat Chem Biol 2019; 15:838-845. [PMID: 31320757 PMCID: PMC6650165 DOI: 10.1038/s41589-019-0321-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 05/31/2019] [Indexed: 01/16/2023]
Abstract
Excreted small-molecule signals can bias developmental trajectories and physiology in diverse animal species. However, the chemical identity of these signals remains largely obscure. Here we report identification of an unusual N-acylated glutamine derivative, nacq#1, that accelerates reproductive development and shortens lifespan in C. elegans. Produced predominantly by C. elegans males, nacq#1 hastens onset of sexual maturity in hermaphrodites by promoting exit from the larval dauer diapause and by accelerating late larval development. Even at picomolar concentrations, nacq#1 shortens hermaphrodite lifespan, suggesting a trade-off between reproductive investment and longevity. Acceleration of development by nacq#1 requires chemosensation and depends on three homologs of vertebrate steroid hormone receptors. Unlike ascaroside pheromones, which are restricted to nematodes, fatty acylated amino acid derivatives similar to nacq#1 have been reported from humans and invertebrates, suggesting that related compounds may serve signaling functions throughout Metazoa.
Collapse
|
554
|
Omar M, Laknaur A, Al-Hendy A, Yang Q. Myometrial progesterone hyper-responsiveness associated with increased risk of human uterine fibroids. BMC Womens Health 2019; 19:92. [PMID: 31288815 PMCID: PMC6617862 DOI: 10.1186/s12905-019-0795-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 07/02/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Uterine Fibroids (UFs) growth is ovarian steroid-dependent. Previous studies have shown that estrogen and progesterone play an important role in UF development. However, the mechanism underlying progesterone induced UF pathogenesis is largely unknown. In this study, we determined the expression of progesterone receptor and compared the expression level of progesterone-regulated genes (PRGs) in human myometrial cells from normal uteri (MyoN) versus uteri with UFs (MyoF) in response to progesterone. METHODS Primary human myometrial cells were isolated from premenopausal patients with structurally normal uteri (PrMyoN). Primary human myometrial cells were also isolated from uterus with UFs (PrMyoF). Isolated tissues were excised at least 2 cm from the closest UFs lesion(s). Progesterone receptor (PR) expression was assessed using Western blot (WB). Expression levels of 15 PRGs were measured by qRT-PCR in PrMyoN and PrMyoF cells in the presence or absence of progesterone. RESULTS WB analysis revealed higher expression levels of PR in PrMyoF cells as compared to PrMyoN cells. Furthermore, we compared the expression patterns of 15 UF-related PRGs in PrMyoN and PrMyoF primary cells in response to progesterone hormone treatment. Our studies demonstrated that five PRGs including Bcl2, FOXO1A, SCGB2A2, CYP26a1 and MMP11 exhibited significant progesterone-hyper-responsiveness in human PrMyoF cells as compared to PrMyoN cells (P < 0.05). Another seven PRGs, including CIDEC, CANP6, ADHL5, ALDHA1, MT1E, KIK6, HHI showed gain in repression in response to progesterone treatment (P > 0.05). Importantly, these genes play crucial roles in cell proliferation, apoptosis, cell cycle, tissue remodeling and tumorigenesis in the development of UFs. CONCLUSION These data support the idea that progesterone acts as contributing mechanism in the origin of UFs. Identification and analysis of these PRGs will help to further understand the role of progesterone in UF development.
Collapse
Affiliation(s)
- Mona Omar
- Division of Translation Research, Department of Obstetrics and Gynecology, Augusta University, Medical College of Georgia, Augusta, GA USA
- Department of Obstetrics and Gynecology, Tanta University Faculty of Medicine, 3 El-Bahr Street, Tanta, Egypt
| | - Archana Laknaur
- Division of Translation Research, Department of Obstetrics and Gynecology, Augusta University, Medical College of Georgia, Augusta, GA USA
- Georgia Cancer Center, Augusta University, 1410 Laney Walker Blvd, Augusta, GA 30912 USA
| | - Ayman Al-Hendy
- Department of Obstetrics and Gynecology, University of Illinois at Chicago, 909 S. Wood Street, (M/C 808), Chicago, IL 60612 USA
- Department of Obstetrics and Gynecology, University of Illinois @ Chicago (UIC), 820 South Wood Street, Chicago, IL 60612 USA
| | - Qiwei Yang
- Department of Obstetrics and Gynecology, University of Illinois at Chicago, 909 S. Wood Street, (M/C 808), Chicago, IL 60612 USA
| |
Collapse
|
555
|
Riegraf C, Reifferscheid G, Belkin S, Moscovici L, Shakibai D, Hollert H, Buchinger S. Combination of yeast-based in vitro screens with high-performance thin-layer chromatography as a novel tool for the detection of hormonal and dioxin-like compounds. Anal Chim Acta 2019; 1081:218-230. [PMID: 31446961 DOI: 10.1016/j.aca.2019.07.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 07/05/2019] [Accepted: 07/06/2019] [Indexed: 12/27/2022]
Abstract
The combination of classic in vitro bioassays with high-performance thin-layer chromatography (HPTLC) is a promising technique to directly link chemical analysis of contaminants to their potential adverse biological effects. With respect to endocrine disruption, much work is focused on estrogenicity. While a direct combination of HPTLC and the yeast estrogen screen is already developed, it is well accepted that further endocrine effects are relevant for monitoring environmental wellbeing. Here we show that non-estrogenic specific biological endpoints, (partly) related to the endocrine system, can also be addressed by combining respective yeast reporter gene assays with HPTLC to support effect-directed analysis (EDA). These are: androgenicity (YAS), thyroidogenicity (YTS), dioxin-like effects (YDS), effects on the vitamin D (YVS) and the retinoic acid receptor (YRaS). A proof of principle is demonstrated within this study by the characterization of dose-dependent responses to different model compounds for the respective receptors with and without chromatographic development of the HPTLC-plate. Limits of quantification (LOQ) for several model compounds were determined, e.g. 37 pg for testosterone (p-YAS), 0.476 ng for β-naphthoflavone (p-YDS) and 1.02 ng for calcipotriol hydrate (p-YVS) with chromatographic development. The LOQ for p-YTS and p-YRaS were 10.16 pg for 3,3',5-triiodothyroacetic acid (p-YTS) and 0.41 pg for tamibarotene (p-YRaS), without chromatographic separation. Furthermore, we challenged the developed methodology using environmental samples, demonstrating an elimination efficiency of androgenic activity from municipal wastewater by a wastewater treatment plant between 99.4 and 100%. We anticipate our methodology to substantially broaden the spectrum of specific endpoints combined with HPTLC for an efficient and robust screening of environmental samples to guide a subsequent in-depth EDA.
Collapse
Affiliation(s)
- Carolin Riegraf
- Federal Institute of Hydrology, Am Mainzer Tor 1, D-56068, Koblenz, Germany; RWTH Aachen University, Worringerweg 1, D-52074, Aachen, Germany
| | | | - Shimshon Belkin
- Hebrew University, Institute of Life Sciences, Department of Plant and Environmental Sciences, Jerusalem, 9190401, Israel
| | - Liat Moscovici
- Hebrew University, Institute of Life Sciences, Department of Plant and Environmental Sciences, Jerusalem, 9190401, Israel
| | - Dror Shakibai
- Hebrew University, Institute of Life Sciences, Department of Plant and Environmental Sciences, Jerusalem, 9190401, Israel
| | - Henner Hollert
- RWTH Aachen University, Worringerweg 1, D-52074, Aachen, Germany
| | - Sebastian Buchinger
- Federal Institute of Hydrology, Am Mainzer Tor 1, D-56068, Koblenz, Germany.
| |
Collapse
|
556
|
Park C, Park J, Shim MK, Rhyu MR, Yoon BK, Kim KS, Lee Y. Indazole-Cl inhibits hypoxia-induced cyclooxygenase-2 expression in vascular smooth muscle cells. J Mol Endocrinol 2019; 63:27-38. [PMID: 31075756 DOI: 10.1530/jme-19-0018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 04/18/2019] [Indexed: 12/22/2022]
Abstract
Atherosclerosis is the most common root cause of arterial disease, such as coronary artery disease and carotid artery disease. Hypoxia is associated with the formation of macrophages and increased inflammation and is known to be present in lesions of atherosclerotic. Vascular smooth muscle cells (VSMCs) are one of the major components of blood vessels, and hypoxic conditions affect VSMC inflammation, proliferation and migration, which contribute to vascular stenosis and play a major role in the atherosclerotic process. Estrogen receptor (ER)-β is thought to play an important role in preventing the inflammatory response in VSMCs. In this report, we studied the anti-inflammatory effect of indazole (In)-Cl, an ERβ-specific agonist, under conditions of hypoxia. Expression of cyclooxygenase-2 reduced by hypoxia was inhibited by In-Cl treatment in VSMCs, and this effect was antagonized by an anti-estrogen compound. Additionally, the production of reactive oxygen species induced under conditions of hypoxia was reduced by treatment with In-Cl. Increased cell migration and invasion by hypoxia were also dramatically decreased following treatment with In-Cl. The increase in cell proliferation following treatment with platelet-derived growth factor was attenuated by In-Cl in VSMCs. RNA sequencing analysis was performed to identify changes in inflammation-related genes following In-Cl treatment in the hypoxic state. Our results suggest that ERβ is a potential therapeutic target for the suppression of hypoxia-induced inflammation in VSMCs.
Collapse
Affiliation(s)
- Choa Park
- Department of Integrative Bioscience and Biotechnology, College of Life Science, Sejong University, Seoul, Korea
| | - Joonwoo Park
- Department of Integrative Bioscience and Biotechnology, College of Life Science, Sejong University, Seoul, Korea
| | - Myeong Kuk Shim
- Department of Integrative Bioscience and Biotechnology, College of Life Science, Sejong University, Seoul, Korea
| | - Mee-Ra Rhyu
- Division of Functional Food Research, Korea Food Research Institute, Jeollabuk-do, Korea
| | - Byung-Koo Yoon
- Department of Obstetrics, Gynecology and Women's Health, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Kyung Sook Kim
- Department of Biomedical Engineering, College of Medicine, Kyung Hee University, Seoul, Korea
| | - YoungJoo Lee
- Department of Integrative Bioscience and Biotechnology, College of Life Science, Sejong University, Seoul, Korea
| |
Collapse
|
557
|
Li D, Cai Y, Teng D, Li W, Tang Y, Liu G. Computational insights into the interaction mechanisms of estrogen-related receptor alpha with endogenous ligand cholesterol. Chem Biol Drug Des 2019; 94:1316-1329. [PMID: 30811808 DOI: 10.1111/cbdd.13506] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 01/29/2019] [Accepted: 02/11/2019] [Indexed: 11/30/2022]
Abstract
Estrogen-related receptor alpha (ERRα) has attracted increasing concerns. ERRα, orphan nuclear receptor, plays important roles in energy metabolism. Therefore, small molecule agonists of ERRα could be a potential therapeutic strategy in the treatment of metabolic diseases such as diabetes. Recently, Wei et al. identified cholesterol as the endogenous agonist of ERRα. However, the detailed molecular mechanism of cholesterol bound with ERRα remains ambiguous. Thus, in this study molecular docking and molecular dynamics (MD) simulations were performed to characterize how cholesterol affects the behavior of ERRα. Based on the results, we found that a proven residue Phe232 and others including Leu228, Glu235, Arg276, and Phe399 were key residues to ligand binding. A hydrogen-bonding interaction between cholesterol and Glu235 ensured the orientation of the ligand in the binding pocket, while hydrophobic interactions between cholesterol and the above-mentioned residues promoted the stability of ERRα-cholesterol complex. In the presence of the proliferator-activated receptor γ coactivator 1α (PGC-1α), the cholesterol-ERRα interaction became more stable. Interestingly, we observed that cholesterol facilitated the binding of ERRα with its coactivator PGC-1α via stabilizing the conformation of helix 12 and the interaction surface of ERRα/PGC-1α. Overall, these findings would be valuable for the future rational design of novel ERRα agonists.
Collapse
Affiliation(s)
- Dongping Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Yingchun Cai
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Dan Teng
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Weihua Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Yun Tang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Guixia Liu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
558
|
Jung TW, Kim HC, Shin YK, Min H, Cho SW, Kim ZS, Han SM, Abd El-Aty AM, Hacımüftüoğlu A, Jeong JH. Humulus japonicus stimulates thermogenesis and ameliorates oxidative stress in mouse adipocytes. J Mol Endocrinol 2019; 63:1-9. [PMID: 30978698 DOI: 10.1530/jme-19-0010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 04/11/2019] [Indexed: 12/16/2022]
Abstract
An aqueous extract of Humulus japonicus (AH) has been documented to ameliorate hypertension and non-alcoholic fatty liver disease (NAFLD). Here, we investigated the effects of an aqueous extract of AH on thermogenesis and palmitate-induced oxidative stress in adipocytes. To verify the effect of AH on browning, we measured the expression levels of specific markers in 3T3-L1 adipocytes using qPCR and Western blotting, respectively. To assess the role of oxidative stress, cells were stained with DCFDA and observed by fluorescence microscopy. AH increased the expression of brown adipose tissue-specific markers. Additionally, it induced fatty acid oxidation and lipolysis and suppressed both lipogenic markers and lipid accumulation. Furthermore, AH ameliorated hydrogen peroxide-induced oxidative stress. Enhanced expression of these markers contributed to fat browning, fatty acid oxidation and lipolysis of 3T3-L1 adipocytes via the AMP-activated protein kinase (AMPK) and peroxisome proliferator-activated receptor delta (PPARδ) signaling pathways. Moreover, AMPK and PPARδ resulting in protective effects of AH against oxidative stress. In sum, AH could promote the browning, lipolysis and thermogenesis in 3T3-L1 adipocytes and would suppress the hydrogen peroxide-induced oxidative stress and lipogenesis during differentiation. We therefore suggest that AH could be used as a potential candidate for treating obesity and related metabolic disorders.
Collapse
Affiliation(s)
- Tae Woo Jung
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, Republic of Korea
| | - Yong Kyoo Shin
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - Hyeyoung Min
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
| | - Seong-Wan Cho
- Department of Pharmaceutics & Biotechnology, Konyang University, Daejeon, Republic of Korea
| | - Zi Soo Kim
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - Su Mi Han
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - A M Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
- Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum, Turkey
| | - Ahmet Hacımüftüoğlu
- Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum, Turkey
| | - Ji Hoon Jeong
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| |
Collapse
|
559
|
Yamamoto K. Discovery of Nuclear Receptor Ligands and Elucidation of Their Mechanisms of Action. Chem Pharm Bull (Tokyo) 2019; 67:609-619. [DOI: 10.1248/cpb.c19-00131] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Keiko Yamamoto
- Laboratory of Drug Design and Medicinal Chemistry, Showa Pharmaceutical University
| |
Collapse
|
560
|
Shahoei SH, Nelson ER. Nuclear receptors, cholesterol homeostasis and the immune system. J Steroid Biochem Mol Biol 2019; 191:105364. [PMID: 31002862 PMCID: PMC6589364 DOI: 10.1016/j.jsbmb.2019.04.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/09/2019] [Accepted: 04/10/2019] [Indexed: 12/30/2022]
Abstract
Cholesterol is essential for maintaining membrane fluidity in eukaryotes. Additionally, the synthetic cascade of cholesterol results in precursor molecules important for cellular function such as lipid raft formation and protein prenylation. As such, cholesterol homeostasis is tightly regulated. Interestingly, it is now known that some cholesterol precursors and many metabolites serve as active signaling molecules, binding to different classes of receptors including the nuclear receptors. Furthermore, many cholesterol metabolites or their nuclear receptors have been implicated in the regulation of the immune system in normal physiology and disease. Therefore, in this focused review, cholesterol homeostasis and nuclear receptors involved in this regulation will be discussed, with particular emphasis on how these cascades influence the immune system.
Collapse
Affiliation(s)
- Sayyed Hamed Shahoei
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana Champaign, Urbana, IL, United States
| | - Erik R Nelson
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana Champaign, Urbana, IL, United States; Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States; Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL, United States; University of Illinois Cancer Center, University of Illinois at Chicago, Chicago, IL, United States; Carl R. Woese Institute for Genomic Biology, Anticancer Discovery from Pets to People Theme, University of Illinois at Urbana Champaign, Urbana, IL, United States.
| |
Collapse
|
561
|
Oh HYP, Visvalingam V, Wahli W. The PPAR-microbiota-metabolic organ trilogy to fine-tune physiology. FASEB J 2019; 33:9706-9730. [PMID: 31237779 DOI: 10.1096/fj.201802681rr] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The human gut is colonized by commensal microorganisms, predominately bacteria that have coevolved in symbiosis with their host. The gut microbiota has been extensively studied in recent years, and many important findings on how it can regulate host metabolism have been unraveled. In healthy individuals, feeding timing and type of food can influence not only the composition but also the circadian oscillation of the gut microbiota. Host feeding habits thus influence the type of microbe-derived metabolites produced and their concentrations throughout the day. These microbe-derived metabolites influence many aspects of host physiology, including energy metabolism and circadian rhythm. Peroxisome proliferator-activated receptors (PPARs) are a group of ligand-activated transcription factors that regulate various metabolic processes such as fatty acid metabolism. Similar to the gut microbiota, PPAR expression in various organs oscillates diurnally, and studies have shown that the gut microbiota can influence PPAR activities in various metabolic organs. For example, short-chain fatty acids, the most abundant type of metabolites produced by anaerobic fermentation of dietary fibers by the gut microbiota, are PPAR agonists. In this review, we highlight how the gut microbiota can regulate PPARs in key metabolic organs, namely, in the intestines, liver, and muscle. Knowing that the gut microbiota impacts metabolism and is altered in individuals with metabolic diseases might allow treatment of these patients using noninvasive procedures such as gut microbiota manipulation.-Oh, H. Y. P., Visvalingam, V., Wahli, W. The PPAR-microbiota-metabolic organ trilogy to fine-tune physiology.
Collapse
Affiliation(s)
- Hui Yun Penny Oh
- Interdisciplinary Graduate School, Institute for Health Technologies, Nanyang Technological University, Singapore.,Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Vivegan Visvalingam
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Walter Wahli
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore.,Unité Mixte de Recherche (UMR) 1331, Institut National de la Recherche Agronomique (INRA)-ToxAlim, Toulouse, France.,Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
562
|
Charni-Natan M, Aloni-Grinstein R, Osher E, Rotter V. Liver and Steroid Hormones-Can a Touch of p53 Make a Difference? Front Endocrinol (Lausanne) 2019; 10:374. [PMID: 31244779 PMCID: PMC6581675 DOI: 10.3389/fendo.2019.00374] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 05/28/2019] [Indexed: 12/12/2022] Open
Abstract
The liver is the main metabolic organ in the body, serving as a significant hormonal secretory gland and functioning to maintain hormone balance and homeostasis. Steroid hormones regulate various biological pathways, mainly in the reproductive system and in many metabolic processes. The liver, as well as steroid hormones, contribute significantly, through functional intertwine, to homeostasis maintenance, and proper responses during stress. Malfunction of either has a significant impact on the other and may lead to severe liver diseases as well as to several endocrine syndromes. Thus, the regulation on liver functions as on steroid hormones levels and activities is well-controlled. p53, the well-known tumor suppressor gene, was recently found to regulate metabolism and general homeostasis processes, particularly within the liver. Moreover, p53 was shown to be involved in steroid hormones regulation. In this review, we discuss the bi-directional regulation of the liver and the steroid hormones pointing to p53 as a novel regulator in this axis. A comprehensive understanding of the molecular mechanisms of this axis may help to prevent and treat related disease, especially with the increasing exposure of the population to environmental steroid hormones and steroid hormone-based medication.
Collapse
Affiliation(s)
- Meital Charni-Natan
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Ronit Aloni-Grinstein
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Etty Osher
- Sackler Faculty of Medicine, Tel Aviv-Sourasky Medical Center, Institute of Endocrinology Metabolism and Hypertension, Tel Aviv University, Tel Aviv, Israel
| | - Varda Rotter
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
563
|
Liu X, Sakai H, Nishigori M, Suyama K, Nawaji T, Ikeda S, Nishigouchi M, Okada H, Matsushima A, Nose T, Shimohigashi M, Shimohigashi Y. Receptor-binding affinities of bisphenol A and its next-generation analogs for human nuclear receptors. Toxicol Appl Pharmacol 2019; 377:114610. [PMID: 31195007 DOI: 10.1016/j.taap.2019.114610] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 05/26/2019] [Accepted: 06/03/2019] [Indexed: 12/12/2022]
Abstract
An endocrine-disrupting chemical Bisphenol A (BPA) binds specifically to a nuclear receptor (NR) named ERRγ. Although the importance of receptor-binding evaluation for human NRs is often stressed, the binding characteristics of so-called next-generation (NextGen) bisphenol compounds are still poorly understood. The ultimate objective of this investigation was to evaluate BPA and its NextGen analogs for their abilities to bind to 21 human NRs, the greatest members of NRs for which tritium-labeled specific ligands were available. After establishing the detailed assay conditions for each NR, the receptor binding affinities of total 11 bisphenols were evaluated in competitive binding assays. The results clearly revealed that BPA and the NextGen bisphenols of BPAF, BPAP, BPB, BPC, BPE, and BPZ were highly potent against one or more of NRs such as CAR, ERα, ERβ, ERRγ, and GR, with IC50 values of 3.3-73 nM. These bisphenols were suggested strongly to be disruptive to these NRs. BPM and BPP also appeared to be disruptive, but less potently. BPF exhibited only weak effects and only against estrogen-related NRs. Surprisingly, most doubtful bisphenol BPS was supposed not to be disruptive. The NRs to which BPA and NextGen bisphenols did not bind were RARα, RARβ, RARγ, and VDR. PPARγ, RORα, RORβ, RORγ, RXRα, RXRβ, and RXRγ, exhibited very weak interaction with these bisphenols. The ten remaining NRs, namely, ERRγ, ERβ, ERα, CAR, GR, PXR, PR, AR, LXRβ, and LXRα, showed distinctly strong binding to some bisphenols in this order, being likely to have consequential endocrine-disruption effects.
Collapse
Affiliation(s)
- Xiaohui Liu
- Laboratory of Structure-Function Biochemistry, Department of Chemistry, Faculty of Science, Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan; Risk Science Research Center, Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Hiroki Sakai
- Laboratory of Structure-Function Biochemistry, Department of Chemistry, Faculty of Science, Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan
| | - Mitsuhiro Nishigori
- Laboratory of Structure-Function Biochemistry, Department of Chemistry, Faculty of Science, Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan
| | - Keitaro Suyama
- Laboratory of Structure-Function Biochemistry, Department of Chemistry, Faculty of Science, Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan
| | - Tasuku Nawaji
- Laboratory of Structure-Function Biochemistry, Department of Chemistry, Faculty of Science, Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan
| | - Shin Ikeda
- Laboratory of Structure-Function Biochemistry, Department of Chemistry, Faculty of Science, Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan
| | - Makoto Nishigouchi
- Laboratory of Structure-Function Biochemistry, Department of Chemistry, Faculty of Science, Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan
| | - Hiroyuki Okada
- Laboratory of Structure-Function Biochemistry, Department of Chemistry, Faculty of Science, Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan
| | - Ayami Matsushima
- Laboratory of Structure-Function Biochemistry, Department of Chemistry, Faculty of Science, Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan; Risk Science Research Center, Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan
| | - Takeru Nose
- Laboratory of Structure-Function Biochemistry, Department of Chemistry, Faculty of Science, Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan; Risk Science Research Center, Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan
| | - Miki Shimohigashi
- Division of Biology, Department of Earth System of Science, Faculty of Science, Fukuoka University, Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan; Risk Science Research Institute, Ikimatsudai 3-7-5, Nishi-ku, Fukuoka 819-0044, Japan
| | - Yasuyuki Shimohigashi
- Laboratory of Structure-Function Biochemistry, Department of Chemistry, Faculty of Science, Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan; Risk Science Research Center, Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan; Risk Science Research Institute, Ikimatsudai 3-7-5, Nishi-ku, Fukuoka 819-0044, Japan.
| |
Collapse
|
564
|
Kaitoh K, Nakatsu A, Mori S, Kagechika H, Hashimoto Y, Fujii S. Design, Synthesis and Biological Evaluation of Novel Nonsteroidal Progesterone Receptor Antagonists Based on Phenylamino-1,3,5-triazine Scaffold. Chem Pharm Bull (Tokyo) 2019; 67:566-575. [PMID: 31155562 DOI: 10.1248/cpb.c19-00094] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We report here the development of phenylamino-1,3,5-triazine derivatives as novel nonsteroidal progesterone receptor (PR) antagonists. PR plays key roles in various physiological systems, including the female reproductive system, and PR antagonists are promising candidates for clinical treatment of multiple diseases. By using the phenylamino-1,3,5-triazine scaffold as a template structure, we designed and synthesized a series of 4-cyanophenylamino-1,3,5-triazine derivatives. The synthesized compounds exhibited PR antagonistic activity, and among them, compound 12n was the most potent (IC50 = 0.30 µM); it also showed significant binding affinity to the PR ligand-binding domain. Docking simulation supported the design rationale of the compounds. Our results suggest that the phenylamino-1,3,5-triazine scaffold is a versatile template for development of nonsteroidal PR antagonists and that the developed compounds are promising lead compounds for further structural development of nonsteroidal PR antagonists.
Collapse
Affiliation(s)
- Kazuma Kaitoh
- Institute for Quantitative Biosciences, The University of Tokyo
| | - Aki Nakatsu
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University
| | - Shuichi Mori
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University
| | - Hiroyuki Kagechika
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University
| | | | - Shinya Fujii
- Institute for Quantitative Biosciences, The University of Tokyo.,Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University
| |
Collapse
|
565
|
Nakajima K, Tazawa I, Shi YB. A unique role of thyroid hormone receptor β in regulating notochord resorption during Xenopus metamorphosis. Gen Comp Endocrinol 2019; 277:66-72. [PMID: 30851299 PMCID: PMC6535367 DOI: 10.1016/j.ygcen.2019.03.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/22/2019] [Accepted: 03/05/2019] [Indexed: 12/14/2022]
Abstract
Tail resorption during anuran metamorphosis is perhaps the most dramatic tissue transformation that occurs during vertebrate development. Earlier studies in highly related anuran species Xenopus laevis and Xenopus tropicalis have shown that thyroid hormone (T3) receptor (TR) plays a necessary and sufficient role to mediate the causative effect of T3 on metamorphosis. Of the two known TR genes in vertebrates, TRα is highly expressed during both premetamorphosis and metamorphosis while TRβ expression is low in premetamorphic tadpoles but highly upregulated as a direct target gene of T3 during metamorphosis, suggesting potentially different functions during metamorphosis. Indeed, gene knockout studies have shown that knocking out TRα and TRβ has different effects on tadpole development. In particularly, homozygous TRβ knockout tadpoles become tailed frogs well after sibling wild type ones complete metamorphosis. Most noticeably, in TRβ-knockout tadpoles, an apparently normal notochord is present when the notochord in wild-type and TRα-knockout tadpoles disappears. Here, we have investigated how tail notochord resorption is regulated by TR. We show that TRβ is selectively very highly expressed in the notochord compared to TRα. We have also discovered differential regulation of several matrix metalloproteinases (MMPs), which are known to be upregulated by T3 and implicated to play a role in tissue resorption by degrading the extracellular matrix (ECM). In particular, MMP9-TH and MMP13 are extremely highly expressed in the notochord compared to the rest of the tail. In situ hybridization analyses show that these MMPs are expressed in the outer sheath cells and/or the connective tissue sheath surrounding the notochord. Our findings suggest that high levels of TRβ expression in the notochord specifically upregulate these MMPs, which in turn degrades the ECM, leading to the collapse of the notochord and its subsequent resorption during metamorphosis.
Collapse
Affiliation(s)
- Keisuke Nakajima
- Division of Embryology, Amphibian Research Center, Hiroshima University, Higashihiroshima 739-8526, Japan; Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA.
| | - Ichiro Tazawa
- Division of Embryology, Amphibian Research Center, Hiroshima University, Higashihiroshima 739-8526, Japan
| | - Yun-Bo Shi
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA.
| |
Collapse
|
566
|
Ni S, Liu J, Huang X, Wang W, Huang Y, Qin Q. Transducin β-like 1 X-linked receptor 1 (TBLR1) affects RGNNV infection through negative regulation of interferon immune response in orange-spotted grouper, Epinephelus coioides. FISH & SHELLFISH IMMUNOLOGY 2019; 89:76-82. [PMID: 30917925 DOI: 10.1016/j.fsi.2019.03.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 03/12/2019] [Accepted: 03/22/2019] [Indexed: 06/09/2023]
Abstract
Transducin β-like 1 X-linked receptor 1 (TBLR1) was identified as an important component of nuclear receptor corepressor (N-CoR) complex, and functionally participated in regulation of transcriptional activation. However, the potential roles of TBLR1 in innate immune response still remain uncertain. In the present work, a novel TBLR1 from orange-spotted grouper, Epinephelus coioides (named as EcTBLR1) was cloned and its effect on fish virus infection was characterized. The full length open reading frame (ORF) of EcTBLR1 was 1548 bp and encoded a putative 515-aa polypeptide, which shared 99% and 95% identity with its homologue from large yellow croaker (Larimichthys crocea) and human (Homo sapiens), respectively. Quantitative PCR (qPCR) analysis revealed a ubiquitous expression of EcTBLR1 in different tissues with remarkable expression in brain, spleen and head-kidney. Subcellular location analysis showed that EcTBLR1 was mainly located in cytoplasm of grouper spleen cells, and partly translocated into nucleus after infection with red spotted grouper nervous necrosis virus (RGNNV). Moreover, RGNNV infection suppressed the protein synthesis of EcTBLR1 in grouper cells. Using RNA interference (RNAi) technology, we found that effective knock-down of EcTBLR1 significantly suppressed the transcription of RGNNV capsid protein (Cp) and RNA-dependent RNA polymerase (RdRp) genes, which implied the crucial role of EcTBLR1 in RGNNV infection. Consistently, overexpression of EcTBLR1 in vitro significantly inhibited IFN promoter activity, as well as the transcription of IFN-related downstream effectors, including interferon stimulated gene 15 (ISG15) and interferon regulatory factor 3 (IRF3). Together, our results for the first time demonstrated that fish TBLR1 might exert critical roles during fish RNA virus replication by negatively regulating interferon response.
Collapse
Affiliation(s)
- Songwei Ni
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Jiaxin Liu
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaohong Huang
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - WenXiong Wang
- Department of Ocean Science, Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, 999077,Hong Kong, China
| | - Youhua Huang
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China.
| | - Qiwei Qin
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266000, China.
| |
Collapse
|
567
|
Kataoka H, Mori T, Okimura H, Matsushima H, Ito F, Koshiba A, Tanaka Y, Akiyama K, Maeda E, Sugahara T, Tarumi Y, Kusuki I, Khan KN, Kitawaki J. Peroxisome proliferator-activated receptor-γ coactivator 1α-mediated pathway as a possible therapeutic target in endometriosis. Hum Reprod 2019; 34:1019-1029. [DOI: 10.1093/humrep/dez067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 04/10/2019] [Accepted: 04/17/2019] [Indexed: 01/01/2023] Open
Affiliation(s)
- Hisashi Kataoka
- Department of Obstetrics and Gynecology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, Japan
| | - Taisuke Mori
- Department of Obstetrics and Gynecology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, Japan
| | - Hiroyuki Okimura
- Department of Obstetrics and Gynecology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, Japan
| | - Hiroshi Matsushima
- Department of Obstetrics and Gynecology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, Japan
| | - Fumitake Ito
- Department of Obstetrics and Gynecology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, Japan
| | - Akemi Koshiba
- Department of Obstetrics and Gynecology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, Japan
| | - Yukiko Tanaka
- Department of Obstetrics and Gynecology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, Japan
| | - Kanoko Akiyama
- Department of Obstetrics and Gynecology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, Japan
| | - Eiko Maeda
- Department of Obstetrics and Gynecology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, Japan
| | - Takuya Sugahara
- Department of Obstetrics and Gynecology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, Japan
| | - Yosuke Tarumi
- Department of Obstetrics and Gynecology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, Japan
| | - Izumi Kusuki
- Department of Obstetrics and Gynecology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, Japan
| | - Khaleque N Khan
- Department of Obstetrics and Gynecology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, Japan
| | - Jo Kitawaki
- Department of Obstetrics and Gynecology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, Japan
| |
Collapse
|
568
|
Nolte C, De Kumar B, Krumlauf R. Hox genes: Downstream "effectors" of retinoic acid signaling in vertebrate embryogenesis. Genesis 2019; 57:e23306. [PMID: 31111645 DOI: 10.1002/dvg.23306] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 05/09/2019] [Accepted: 05/10/2019] [Indexed: 12/31/2022]
Abstract
One of the major regulatory challenges of animal development is to precisely coordinate in space and time the formation, specification, and patterning of cells that underlie elaboration of the basic body plan. How does the vertebrate plan for the nervous and hematopoietic systems, heart, limbs, digestive, and reproductive organs derive from seemingly similar population of cells? These systems are initially established and patterned along the anteroposterior axis (AP) by opposing signaling gradients that lead to the activation of gene regulatory networks involved in axial specification, including the Hox genes. The retinoid signaling pathway is one of the key signaling gradients coupled to the establishment of axial patterning. The nested domains of Hox gene expression, which provide a combinatorial code for axial patterning, arise in part through a differential response to retinoic acid (RA) diffusing from anabolic centers established within the embryo during development. Hence, Hox genes are important direct effectors of retinoid signaling in embryogenesis. This review focuses on describing current knowledge on the complex mechanisms and regulatory processes, which govern the response of Hox genes to RA in several tissue contexts including the nervous system during vertebrate development.
Collapse
Affiliation(s)
- Christof Nolte
- Stowers Institute for Medical Research, Kansas City, Missouri
| | - Bony De Kumar
- Stowers Institute for Medical Research, Kansas City, Missouri
| | - Robb Krumlauf
- Stowers Institute for Medical Research, Kansas City, Missouri.,Department of Anatomy and Cell Biology, Kansas University Medical Center, Kansas City, Kansas
| |
Collapse
|
569
|
Ismail NI, Othman I, Abas F, H Lajis N, Naidu R. Mechanism of Apoptosis Induced by Curcumin in Colorectal Cancer. Int J Mol Sci 2019; 20:E2454. [PMID: 31108984 PMCID: PMC6566943 DOI: 10.3390/ijms20102454] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 04/20/2019] [Accepted: 04/26/2019] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer (CRC) is among the top three cancer with higher incident and mortality rate worldwide. It is estimated that about over than 1.1 million of death and 2.2 million new cases by the year 2030. The current treatment modalities with the usage of chemo drugs such as FOLFOX and FOLFIRI, surgery and radiotherapy, which are usually accompanied with major side effects, are rarely cured along with poor survival rate and at higher recurrence outcome. This trigger the needs of exploring new natural compounds with anti-cancer properties which possess fewer side effects. Curcumin, a common spice used in ancient medicine was found to induce apoptosis by targeting various molecules and signaling pathways involved in CRC. Disruption of the homeostatic balance between cell proliferation and apoptosis could be one of the promoting factors in colorectal cancer progression. In this review, we describe the current knowledge of apoptosis regulation by curcumin in CRC with regard to molecular targets and associated signaling pathways.
Collapse
Affiliation(s)
- Nor Isnida Ismail
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway Darul Ehsan, Malaysia.
- UniKL MESTECH, A1-1 Jalan TKS1, Taman Kajang Sentral, 43000 Kajang, Malaysia.
| | - Iekhsan Othman
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway Darul Ehsan, Malaysia.
| | - Faridah Abas
- Laboratory of Natural Products, Faculty of Science, University Putra Malaysia, UPM, 43400 Serdang, Malaysia.
- Department of Food Science, Faculty of Food Science and Technology, University Putra Malaysia, UPM, 434000 Serdang, Malaysia.
| | - Nordin H Lajis
- Laboratory of Natural Products, Faculty of Science, University Putra Malaysia, UPM, 43400 Serdang, Malaysia.
| | - Rakesh Naidu
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway Darul Ehsan, Malaysia.
| |
Collapse
|
570
|
Loew A, Köhnke T, Rehbeil E, Pietzner A, Weylandt KH. A Role for Lipid Mediators in Acute Myeloid Leukemia. Int J Mol Sci 2019; 20:ijms20102425. [PMID: 31100828 PMCID: PMC6567850 DOI: 10.3390/ijms20102425] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/05/2019] [Accepted: 05/06/2019] [Indexed: 12/14/2022] Open
Abstract
In spite of therapeutic improvements in the treatment of different hematologic malignancies, the prognosis of acute myeloid leukemia (AML) treated solely with conventional induction and consolidation chemotherapy remains poor, especially in association with high risk chromosomal or molecular aberrations. Recent discoveries describe the complex interaction of immune effector cells, as well as the role of the bone marrow microenvironment in the development, maintenance and progression of AML. Lipids, and in particular omega-3 as well as omega-6 polyunsaturated fatty acids (PUFAs) have been shown to play a vital role as signaling molecules of immune processes in numerous benign and malignant conditions. While the majority of research in cancer has been focused on the role of lipid mediators in solid tumors, some data are showing their involvement also in hematologic malignancies. There is a considerable amount of evidence that AML cells are targetable by innate and adaptive immune mechanisms, paving the way for immune therapy approaches in AML. In this article we review the current data showing the lipid mediator and lipidome patterns in AML and their potential links to immune mechanisms.
Collapse
MESH Headings
- Adaptive Immunity/drug effects
- Bone Marrow
- Disease Progression
- Fatty Acids, Omega-3/immunology
- Fatty Acids, Omega-3/therapeutic use
- Fatty Acids, Omega-6/immunology
- Fatty Acids, Omega-6/therapeutic use
- Fatty Acids, Unsaturated
- Hematologic Neoplasms/drug therapy
- Hematopoiesis
- Humans
- Immunity, Innate/drug effects
- Immunotherapy
- Inflammation
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/immunology
- Lipids/immunology
- Lipids/therapeutic use
- Neoplasms/drug therapy
- Prognosis
- Tumor Microenvironment
Collapse
Affiliation(s)
- Andreas Loew
- Department of Medicine B, Ruppin General Hospital, Brandenburg Medical School, 16816 Neuruppin, Germany.
| | - Thomas Köhnke
- Department of Internal Medicine III, University of Munich, 81377 Munich, Germany.
| | - Emma Rehbeil
- Department of Medicine B, Ruppin General Hospital, Brandenburg Medical School, 16816 Neuruppin, Germany.
| | - Anne Pietzner
- Department of Medicine B, Ruppin General Hospital, Brandenburg Medical School, 16816 Neuruppin, Germany.
| | - Karsten-H Weylandt
- Department of Medicine B, Ruppin General Hospital, Brandenburg Medical School, 16816 Neuruppin, Germany.
- Medical Department, Campus Virchow Klinikum, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany.
| |
Collapse
|
571
|
Tan S, Bajalovic N, Wong ESP, Lin VCL. Ligand-activated progesterone receptor B activates transcription factor EB to promote autophagy in human breast cancer cells. Exp Cell Res 2019; 382:111433. [PMID: 31100306 DOI: 10.1016/j.yexcr.2019.05.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 04/30/2019] [Accepted: 05/10/2019] [Indexed: 02/08/2023]
Abstract
Autophagy is an evolutionary conserved, self-eating process that targets cellular constituents for lysosomal degradation. Transcription factor EB (TFEB) is a master regulator of autophagy by inducing the expression of genes involved in autophagic and lysosomal degradation. In breast cancer, ligand-activated progesterone receptor has been reported to influence cancer development by manipulating the autophagy pathway. However, understanding of the mechanism that underlies this autophagic response remains limited. Herein, we report that prolonged treatment with progestin R5020 upregulates autophagy in MCF-7 human breast cancer cells via a novel interplay between progesterone receptor B (PRB) and TFEB. R5020 upregulates TFEB gene expression and protein levels in a PRB-dependent manner. Additionally, R5020 enhances the co-recruitment of PRB and TFEB to each other to facilitate TFEB nuclear localization. Once in the nucleus, TFEB induces the expression of autophagy and lysosomal genes to potentiate autophagy. Together, our findings highlight a novel functional connection between ligand-activated PRB and TFEB to modulate autophagy in MCF-7 breast cancer cells. As breast cancer development is controlled by autophagy, the progestin-PRB-TFEB transduction pathway warrants future attention as a potential therapeutic target in cancer therapy.
Collapse
Affiliation(s)
- Sijie Tan
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Natasa Bajalovic
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Esther S P Wong
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore; Centre for Healthy Ageing, National University Health System, Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117593, Singapore
| | - Valerie C L Lin
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore.
| |
Collapse
|
572
|
Klepsch V, Moschen AR, Tilg H, Baier G, Hermann-Kleiter N. Nuclear Receptors Regulate Intestinal Inflammation in the Context of IBD. Front Immunol 2019; 10:1070. [PMID: 31139192 PMCID: PMC6527601 DOI: 10.3389/fimmu.2019.01070] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 04/26/2019] [Indexed: 12/26/2022] Open
Abstract
Gastrointestinal (GI) homeostasis is strongly dependent on nuclear receptor (NR) functions. They play a variety of roles ranging from nutrient uptake, sensing of microbial metabolites, regulation of epithelial intestinal cell integrity to shaping of the intestinal immune cell repertoire. Several NRs are associated with GI pathologies; therefore, systematic analysis of NR biology, the underlying molecular mechanisms, and regulation of target genes can be expected to help greatly in uncovering the course of GI diseases. Recently, an increasing number of NRs has been validated as potential drug targets for therapeutic intervention in patients with inflammatory bowel disease (IBD). Besides the classical glucocorticoids, especially PPARγ, VDR, or PXR-selective ligands are currently being tested with promising results in clinical IBD trials. Also, several pre-clinical animal studies are being performed with NRs. This review focuses on the complex biology of NRs and their context-dependent anti- or pro-inflammatory activities in the regulation of gastrointestinal barrier with special attention to NRs already pharmacologically targeted in clinic and pre-clinical IBD treatment regimens.
Collapse
Affiliation(s)
- Victoria Klepsch
- Translational Cell Genetics, Department of Pharmacology and Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Alexander R. Moschen
- Department of Internal Medicine I, Gastroenterology, Endocrinology and Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Herbert Tilg
- Department of Internal Medicine I, Gastroenterology, Endocrinology and Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Gottfried Baier
- Translational Cell Genetics, Department of Pharmacology and Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Natascha Hermann-Kleiter
- Translational Cell Genetics, Department of Pharmacology and Genetics, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
573
|
Saito N, Kawase K, Yamashita N, Tang Y, Wang Y, Wang J, Liu Y, Li N, Li W, Cheng MS, Koike K, Kanno Y, Nemoto K. Identification of 10-dehydrooxyglycyuralin E as a selective human estrogen receptor alpha partial agonist. Bioorg Chem 2019; 88:102977. [PMID: 31100617 DOI: 10.1016/j.bioorg.2019.102977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 05/03/2019] [Accepted: 05/07/2019] [Indexed: 12/01/2022]
Abstract
Selective estrogen receptor modulators (SERMs) act as either agonist or antagonist of estrogen receptor (ER) in a tissue selective manner and have been used in several diseases such as breast cancer, postmenopausal syndrome, osteoporosis, and cardiovascular diseases. However, current SERMs may also increase the risk of serious side effects and trigger drug resistance. Herein, a screening program, that was designed to search for novel SERMs, resulted in the identification of a series of 2-arylbenzofuran-containing compounds that are ligands for ERα, when applying the Gaussia-luciferase reporter assay. One of these compounds, 10-dehydrooxyglycyuralin E (T9) was chemically synthesized. T9 showed anti-estrogenic/proliferative activity in ERα-positive breast cancer cells. Pretreatment of T9 prevented the mRNA expression of GREB1, which is an estrogen response gene. Furthermore, by an in silico docking simulation study we demonstrated that T9 showed interactions directly to ERα. Taken together, these results demonstrated that T9 is a candidate of SERMs and a useful seed compound for the foundation of the selective activity of SERMs.
Collapse
Affiliation(s)
- Nao Saito
- Department of Molecular Toxicology, Faculty of Pharmaceutical Sciences, Toho University, Miyama 2-2-1, Funabashi, Chiba 274-8510, Japan
| | - Keiko Kawase
- Department of Molecular Toxicology, Faculty of Pharmaceutical Sciences, Toho University, Miyama 2-2-1, Funabashi, Chiba 274-8510, Japan
| | - Naoya Yamashita
- Department of Molecular Toxicology, Faculty of Pharmaceutical Sciences, Toho University, Miyama 2-2-1, Funabashi, Chiba 274-8510, Japan
| | - Yingzhan Tang
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, PR China
| | - Ying Wang
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, PR China
| | - Jian Wang
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, PR China
| | - Yongxiang Liu
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, PR China
| | - Ning Li
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, PR China
| | - Wei Li
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, PR China; Faculty of Pharmaceutical Sciences, Toho University, Miyama 2-2-1, Funabashi, Chiba 274-8510, Japan.
| | - Mao-Sheng Cheng
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, PR China.
| | - Kazuo Koike
- Faculty of Pharmaceutical Sciences, Toho University, Miyama 2-2-1, Funabashi, Chiba 274-8510, Japan
| | - Yuichiro Kanno
- Department of Molecular Toxicology, Faculty of Pharmaceutical Sciences, Toho University, Miyama 2-2-1, Funabashi, Chiba 274-8510, Japan.
| | - Kiyomitsu Nemoto
- Department of Molecular Toxicology, Faculty of Pharmaceutical Sciences, Toho University, Miyama 2-2-1, Funabashi, Chiba 274-8510, Japan
| |
Collapse
|
574
|
Wang J, Chen R, Collins JJ. Systematically improved in vitro culture conditions reveal new insights into the reproductive biology of the human parasite Schistosoma mansoni. PLoS Biol 2019; 17:e3000254. [PMID: 31067225 PMCID: PMC6505934 DOI: 10.1371/journal.pbio.3000254] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 04/18/2019] [Indexed: 11/19/2022] Open
Abstract
Schistosomes infect over 200 million people. The prodigious egg output of these parasites is the sole driver of pathology due to infection, yet our understanding of sexual reproduction by schistosomes is limited because normal egg production is not sustained for more than a few days in vitro. Here, we describe culture conditions that support schistosome sexual development and sustained egg production in vitro. Female schistosomes rely on continuous pairing with male worms to fuel the maturation of their reproductive organs. Exploiting these new culture conditions, we explore the process of male-stimulated female maturation and demonstrate that physical contact with a male worm, and not insemination, is sufficient to induce female development and the production of viable parthenogenetic haploid embryos. We further report the characterization of a nuclear receptor (NR), which we call Vitellogenic Factor 1 (VF1), that is essential for female sexual development following pairing with a male worm. Taken together, these results provide a platform to study the fascinating sexual biology of these parasites on a molecular level, illuminating new strategies to control schistosome egg production. Schistosomes infect over 200 million people worldwide. This paper describes culture conditions that support sexual development and sustained egg production of the human parasitic flatworm Schistosoma mansoni in vitro, providing new insights into its reproductive biology.
Collapse
Affiliation(s)
- Jipeng Wang
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, Texas, United States of America
| | - Rui Chen
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, Texas, United States of America
| | - James J Collins
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, Texas, United States of America
| |
Collapse
|
575
|
Song T, Li J. New Insights into the Binding Mechanism of Co-regulator BUD31 to AR AF2 Site: Structural Determination and Analysis of the Mutation Effect. Curr Comput Aided Drug Des 2019; 16:45-53. [PMID: 31057123 PMCID: PMC6967182 DOI: 10.2174/1573409915666190502153307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 03/19/2019] [Accepted: 04/18/2019] [Indexed: 12/01/2022]
Abstract
Introduction Androgen Receptor (AR) plays a pivotal role in the development of male sex and contributes to prostate cancer growth. Different from other nuclear receptors that bind to the co-regulator LxxLL motif in coregulator peptide interaction, the AR Ligand Binding Domain (LBD) prefers to bind to the FxxLF motif. BUD31, a novel co-regulator with FxxLF motif, has been demonstrated to suppress wild-type and mutated AR-mediated prostate cancer growth. Methods To find out the interaction mechanisms of BUD31 with WT/T877A/W741L AR complex, molecular dynamics simulations were employed to study the complex BUD31 and WT/mutant ARs. The molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) results demonstrated that T877A and W741L point mutations can reduce the binding affinity between BUD31 and AR. The RMSF and dynamic cross-correlation analysis indicated that amino acid point mutations can affect the motions of loop residues in the AR structure. Results These results indicated that AR co-regulator binding site AF2 can serve as a target for drug discovery to solve the resistance problem.
Collapse
Affiliation(s)
- Tianqing Song
- School of Pharmacy, Lanzhou University, 199 West Donggang Rd., 730000 Lanzhou, China
| | - Jiazhong Li
- School of Pharmacy, Lanzhou University, 199 West Donggang Rd., 730000 Lanzhou, China
| |
Collapse
|
576
|
Zheng L, Xia K, Mu Y. Ligand Binding Induces Agonistic-Like Conformational Adaptations in Helix 12 of Progesterone Receptor Ligand Binding Domain. Front Chem 2019; 7:315. [PMID: 31134186 PMCID: PMC6514052 DOI: 10.3389/fchem.2019.00315] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 04/23/2019] [Indexed: 01/28/2023] Open
Abstract
Progesterone receptor (PR) is a member of the nuclear receptor (NR) superfamily and plays a vital role in the female reproductive system. The malfunction of it would lead to several types of cancers. The understanding of conformational changes in its ligand binding domain (LBD) is valuable for both biological function studies and therapeutically intervenes. A key unsolved question is how the binding of a ligand (agonist, antagonist, or a selective modulator) induces conformational changes of PR LBD, especially its helix 12. We applied molecular dynamics (MD) simulations to explore the conformational adaptations of PR LBD with or without a ligand or the co-repressor peptides binding. From the simulations, both the agonist progesterone (P4) and the selective PR modulator (SPRM) asoprisnil induces agonistic-like helix 12 conformations (the "closed" states) in PR LBD and the complex of LBD-SPRM is less stable, comparing to the agonist-liganded PR LBD. The results, therefore, explain the partial agonism of the SPRM, which could induce weak agonistic effects in PR. We also found that co-repressor peptides could be stably associated with the LBD and stabilize the LBD in a "semi-open" state for helix 12. These findings would enhance our understanding of PR structural and functional relationships and would also be useful for future structure and knowledge-based drug discovery.
Collapse
Affiliation(s)
- Liangzhen Zheng
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Kelin Xia
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.,School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore
| | - Yuguang Mu
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.,School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
577
|
Jia J, Zhang H, Zhang H, Du H, Liu W, Shu M. Activated androgen receptor accelerates angiogenesis in cutaneous neurofibroma by regulating VEGFA transcription. Int J Oncol 2019; 55:157-166. [PMID: 31059067 DOI: 10.3892/ijo.2019.4797] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 04/16/2019] [Indexed: 11/05/2022] Open
Abstract
Accumulating evidence has demonstrated the significant progression of cutaneous neurofibroma (cNF) without necrosis during puberty. However, the molecular events involved in this process remain unclear. The alteration of the steroid hormone levels during puberty has led to the investigation of the expression levels of the androgen receptor (AR). A positive correlation between AR expression and microvessel density has been reported in human cNF tissues in combination with enhanced endothelial cell tube formation in vitro. In addition, activated AR signaling can promote neurofibroma cell growth in vivo and in vitro and tube formation in vitro. In the present study, AR was shown to bind directly to the promoter of vascular endothelial growth factor A (VEGFA), a key factor involved in angiogenesis, and to sequentially induce its expression. Furthermore, the AR inhibitor, MDV3100, downregulated VEGFA expression and abolished endothelial cell recruitment and tube formation. Taken collectively, the findings of this study revealed that AR signaling enhanced tumor growth and angiogenesis in cNF by regulating VEGFA transcription. However, whether AR can be regarded a therapeutic target for cNF requires further investigation.
Collapse
Affiliation(s)
- Jing Jia
- Department of Plastic, Cosmetic and Maxillofacial Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Haibao Zhang
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Hongke Zhang
- Department of Plastic, Cosmetic and Maxillofacial Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Huicong Du
- Department of Plastic, Cosmetic and Maxillofacial Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Wenbo Liu
- Department of Plastic, Cosmetic and Maxillofacial Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Maoguo Shu
- Department of Plastic, Cosmetic and Maxillofacial Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
578
|
Qian H, He P, Lv F, Wu W. Genome-wide analysis of LXXLL-mediated DAX1/SHP–nuclear receptor interaction network and rational design of stapled LXXLL-based peptides to target the specific network profile. Int J Biol Macromol 2019; 129:13-22. [DOI: 10.1016/j.ijbiomac.2019.02.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 02/02/2019] [Accepted: 02/02/2019] [Indexed: 01/22/2023]
|
579
|
Elshan NGRD, Rettig MB, Jung ME. Molecules targeting the androgen receptor (AR) signaling axis beyond the AR-Ligand binding domain. Med Res Rev 2019; 39:910-960. [PMID: 30565725 PMCID: PMC6608750 DOI: 10.1002/med.21548] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 09/21/2018] [Accepted: 10/09/2018] [Indexed: 02/06/2023]
Abstract
Prostate cancer (PCa) is the second most common cause of cancer-related mortality in men in the United States. The androgen receptor (AR) and the physiological pathways it regulates are central to the initiation and progression of PCa. As a member of the nuclear steroid receptor family, it is a transcription factor with three distinct functional domains (ligand-binding domain [LBD], DNA-binding domain [DBD], and transactivation domain [TAD]) in its structure. All clinically approved drugs for PCa ultimately target the AR-LBD. Clinically active drugs that target the DBD and TAD have not yet been developed due to multiple factors. Despite these limitations, the last several years have seen a rise in the discovery of molecules that could successfully target these domains. This review aims to present and comprehensively discuss such molecules that affect AR signaling through direct or indirect interactions with the AR-TAD or the DBD. The compounds discussed here include hairpin polyamides, niclosamide, marine sponge-derived small molecules (eg, EPI compounds), mahanine, VPC compounds, JN compounds, and bromodomain and extraterminal domain inhibitors. We highlight the significant in vitro and in vivo data found for each compound and the apparent limitations and/or potential for further development of these agents as PCa therapies.
Collapse
Affiliation(s)
| | - Matthew B. Rettig
- . Division of Hematology/Oncology, VA Greater Los Angeles Healthcare System West LA, Los Angeles, CA, United States
- . Departments of Medicine and Urology, David Geffen School of Medicine, UCLA, Los Angeles, CA, United States
| | - Michael E. Jung
- . Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, United States
| |
Collapse
|
580
|
Leopold Wager CM, Arnett E, Schlesinger LS. Mycobacterium tuberculosis and macrophage nuclear receptors: What we do and don't know. Tuberculosis (Edinb) 2019; 116S:S98-S106. [PMID: 31060958 DOI: 10.1016/j.tube.2019.04.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 10/12/2018] [Indexed: 01/08/2023]
Abstract
Nuclear receptors (NRs) are ligand-activated transcription factors that are expressed in a wide variety of cells and play a major role in lipid signaling. NRs are key regulators of immune and metabolic functions in macrophages and are linked to macrophage responses to microbial pathogens. Pathogens are also known to induce the expression of specific NRs to promote their own survival. In this review, we focus on the NRs recently shown to influence macrophage responses to Mycobacterium tuberculosis (M.tb), a significant cause of morbidity and mortality worldwide. We provide an overview of NR-controlled transcriptional activity and regulation of macrophage activation. We also discuss in detail the contribution of specific NRs to macrophage responses to M.tb, including influence on macrophage phenotype, cell signaling, and cellular metabolism. We pay particular attention to PPARγ since it is required for differentiation of alveolar macrophages, an important niche for M.tb, and its role during M.tb infection is becoming increasingly appreciated. Research into NRs and M.tb is still in its early stages, therefore continuing to advance our understanding of the complex interactions between M.tb and macrophage NRs may reveal the potential of NRs as pharmacological targets for the treatment of tuberculosis.
Collapse
|
581
|
Falomir-Lockhart LJ, Cavazzutti GF, Giménez E, Toscani AM. Fatty Acid Signaling Mechanisms in Neural Cells: Fatty Acid Receptors. Front Cell Neurosci 2019; 13:162. [PMID: 31105530 PMCID: PMC6491900 DOI: 10.3389/fncel.2019.00162] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 04/08/2019] [Indexed: 12/15/2022] Open
Abstract
Fatty acids (FAs) are typically associated with structural and metabolic roles, as they can be stored as triglycerides, degraded by β-oxidation or used in phospholipids’ synthesis, the main components of biological membranes. It has been shown that these lipids exhibit also regulatory functions in different cell types. FAs can serve as secondary messengers, as well as modulators of enzymatic activities and substrates for cytokines synthesis. More recently, it has been documented a direct activity of free FAs as ligands of membrane, cytosolic, and nuclear receptors, and cumulative evidence has emerged, demonstrating its participation in a wide range of physiological and pathological conditions. It has been long known that the central nervous system is enriched with poly-unsaturated FAs, such as arachidonic (C20:4ω-6) or docosohexaenoic (C22:6ω-3) acids. These lipids participate in the regulation of membrane fluidity, axonal growth, development, memory, and inflammatory response. Furthermore, a whole family of low molecular weight compounds derived from FAs has also gained special attention as the natural ligands for cannabinoid receptors or key cytokines involved in inflammation, largely expanding the role of FAs as precursors of signaling molecules. Nutritional deficiencies, and alterations in lipid metabolism and lipid signaling have been associated with developmental and cognitive problems, as well as with neurodegenerative diseases. The molecular mechanism behind these effects still remains elusive. But in the last two decades, different families of proteins have been characterized as receptors mediating FAs signaling. This review focuses on different receptors sensing and transducing free FAs signals in neural cells: (1) membrane receptors of the family of G Protein Coupled Receptors known as Free Fatty Acid Receptors (FFARs); (2) cytosolic transport Fatty Acid-Binding Proteins (FABPs); and (3) transcription factors Peroxisome Proliferator-Activated Receptors (PPARs). We discuss how these proteins modulate and mediate direct regulatory functions of free FAs in neural cells. Finally, we briefly discuss the advantages of evaluating them as potential targets for drug design in order to manipulate lipid signaling. A thorough characterization of lipid receptors of the nervous system could provide a framework for a better understanding of their roles in neurophysiology and, potentially, help for the development of novel drugs against aging and neurodegenerative processes.
Collapse
Affiliation(s)
- Lisandro Jorge Falomir-Lockhart
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), Centro Científico Tecnológico - La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), La Plata, Argentina.,Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), La Plata, Argentina
| | - Gian Franco Cavazzutti
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), Centro Científico Tecnológico - La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), La Plata, Argentina.,Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), La Plata, Argentina
| | - Ezequiel Giménez
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), Centro Científico Tecnológico - La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), La Plata, Argentina.,Facultad de Ciencias Médicas, Universidad Nacional de La Plata (UNLP), La Plata, Argentina
| | - Andrés Martín Toscani
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), Centro Científico Tecnológico - La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), La Plata, Argentina.,Facultad de Ciencias Médicas, Universidad Nacional de La Plata (UNLP), La Plata, Argentina
| |
Collapse
|
582
|
Esler WP, Bence KK. Metabolic Targets in Nonalcoholic Fatty Liver Disease. Cell Mol Gastroenterol Hepatol 2019; 8:247-267. [PMID: 31004828 PMCID: PMC6698700 DOI: 10.1016/j.jcmgh.2019.04.007] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 04/09/2019] [Accepted: 04/11/2019] [Indexed: 12/18/2022]
Abstract
The prevalence and diagnosis of nonalcoholic fatty liver disease (NAFLD) is on the rise worldwide and currently has no FDA-approved pharmacotherapy. The increase in disease burden of NAFLD and a more severe form of this progressive liver disease, nonalcoholic steatohepatitis (NASH), largely mirrors the increase in obesity and type 2 diabetes (T2D) and reflects the hepatic manifestation of an altered metabolic state. Indeed, metabolic syndrome, defined as a constellation of obesity, insulin resistance, hyperglycemia, dyslipidemia and hypertension, is the major risk factor predisposing the NAFLD and NASH. There are multiple potential pharmacologic strategies to rebalance aspects of disordered metabolism in NAFLD. These include therapies aimed at reducing hepatic steatosis by directly modulating lipid metabolism within the liver, inhibiting fructose metabolism, altering delivery of free fatty acids from the adipose to the liver by targeting insulin resistance and/or adipose metabolism, modulating glycemia, and altering pleiotropic metabolic pathways simultaneously. Emerging data from human genetics also supports a role for metabolic drivers in NAFLD and risk for progression to NASH. In this review, we highlight the prominent metabolic drivers of NAFLD pathogenesis and discuss the major metabolic targets of NASH pharmacotherapy.
Collapse
Key Words
- acc, acetyl-coa carboxylase
- alt, alanine aminotransferase
- aso, anti-sense oligonucleotide
- ast, aspartate aminotransferase
- chrebp, carbohydrate response element binding protein
- ci, confidence interval
- dgat, diacylglycerol o-acyltransferase
- dnl, de novo lipogenesis
- fas, fatty acid synthase
- ffa, free fatty acid
- fgf, fibroblast growth factor
- fxr, farnesoid x receptor
- glp-1, glucagon-like peptide-1
- hdl, high-density lipoprotein
- homa-ir, homeostatic model assessment of insulin resistance
- ldl, low-density lipoprotein
- nafld, nonalcoholic fatty liver disease
- nas, nonalcoholic fatty liver disease activity score
- nash, nonalcoholic steatohepatitis
- or, odds ratio
- pdff, proton density fat fraction
- ppar, peroxisome proliferator-activated receptor
- sglt2, sodium glucose co-transporter 2
- srebp-1c, sterol regulatory element binding protein-1c
- t2d, type 2 diabetes
- t2dm, type 2 diabetes mellitus
- tg, triglyceride
- th, thyroid hormone
- thr, thyroid hormone receptor
- treg, regulatory t cells
- tzd, thiazolidinedione
- vldl, very low-density lipoprotein
Collapse
Affiliation(s)
- William P Esler
- Internal Medicine Research Unit, Pfizer Worldwide Research, Development, and Medical, Cambridge, Massachusetts
| | - Kendra K Bence
- Internal Medicine Research Unit, Pfizer Worldwide Research, Development, and Medical, Cambridge, Massachusetts.
| |
Collapse
|
583
|
Frump AL, Selej M, Wood JA, Albrecht M, Yakubov B, Petrache I, Lahm T. Hypoxia Upregulates Estrogen Receptor β in Pulmonary Artery Endothelial Cells in a HIF-1α-Dependent Manner. Am J Respir Cell Mol Biol 2019; 59:114-126. [PMID: 29394091 DOI: 10.1165/rcmb.2017-0167oc] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
17β-Estradiol (E2) attenuates hypoxia-induced pulmonary hypertension (HPH) through estrogen receptor (ER)-dependent effects, including inhibition of hypoxia-induced endothelial cell proliferation; however, the mechanisms responsible for this remain unknown. We hypothesized that the protective effects of E2 in HPH are mediated through hypoxia-inducible factor 1α (HIF-1α)-dependent increases in ERβ expression. Sprague-Dawley rats and ERα or ERβ knockout mice were exposed to hypobaric hypoxia for 2-3 weeks. The effects of hypoxia were also studied in primary rat or human pulmonary artery endothelial cells (PAECs). Hypoxia increased expression of ERβ, but not ERα, in lungs from HPH rats as well as in rat and human PAECs. ERβ mRNA time dependently increased in PAECs exposed to hypoxia. Normoxic HIF-1α/HIF-2α stabilization increased PAEC ERβ, whereas HIF-1α knockdown decreased ERβ abundance in hypoxic PAECs. In turn, ERβ knockdown in hypoxic PAECs increased HIF-2α expression, suggesting a hypoxia-sensitive feedback mechanism. ERβ knockdown in hypoxic PAECs also decreased expression of the HIF inhibitor prolyl hydroxylase 2 (PHD2), whereas ERβ activation increased PHD2 and decreased both HIF-1α and HIF-2α, suggesting that ERβ regulates the PHD2/HIF-1α/HIF-2α axis during hypoxia. Whereas hypoxic wild-type or ERα knockout mice treated with E2 demonstrated less pulmonary vascular remodeling and decreased HIF-1α after hypoxia compared with untreated hypoxic mice, ERβ knockout mice exhibited increased HIF-2α and an attenuated response to E2 during hypoxia. Taken together, our results demonstrate a novel and potentially therapeutically targetable mechanism whereby hypoxia, via HIF-1α, increases ERβ expression and the E2-ERβ axis targets PHD2, HIF-1α, and HIF-2α to attenuate HPH development.
Collapse
Affiliation(s)
- Andrea L Frump
- 1 Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Department of Medicine
| | - Mona Selej
- 1 Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Department of Medicine
| | - Jordan A Wood
- 1 Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Department of Medicine
| | - Marjorie Albrecht
- 1 Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Department of Medicine
| | - Bakhtiyor Yakubov
- 1 Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Department of Medicine
| | - Irina Petrache
- 1 Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Department of Medicine.,2 Richard L. Roudebush VA Medical Center, and
| | - Tim Lahm
- 1 Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Department of Medicine.,2 Richard L. Roudebush VA Medical Center, and.,3 Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
584
|
Lanciotti L, Cofini M, Leonardi A, Bertozzi M, Penta L, Esposito S. Different Clinical Presentations and Management in Complete Androgen Insensitivity Syndrome (CAIS). INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16071268. [PMID: 30970592 PMCID: PMC6480640 DOI: 10.3390/ijerph16071268] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/01/2019] [Accepted: 04/04/2019] [Indexed: 01/08/2023]
Abstract
Complete androgen insensitivity syndrome (CAIS) is an X-linked recessive genetic disorder resulting from maternally inherited or de novo mutations involving the androgen receptor gene, situated in the Xq11-q12 region. The diagnosis is based on the presence of female external genitalia in a 46, XY human individual, with normally developed but undescended testes and complete unresponsiveness of target tissues to androgens. Subsequently, pelvic ultrasound or magnetic resonance imaging (MRI) could be helpful in confirming the absence of Mullerian structures, revealing the presence of a blind-ending vagina and identifying testes. CAIS management still represents a unique challenge throughout childhood and adolescence, particularly regarding timing of gonadectomy, type of hormonal therapy, and psychological concerns. Indeed this condition is associated with an increased risk of testicular germ cell tumour (TGCT), although TGCT results less frequently than in other disorders of sex development (DSD). Furthermore, the majority of detected tumoral lesions are non-invasive and with a low probability of progression into aggressive forms. Therefore, histological, epidemiological, and prognostic features of testicular cancer in CAIS allow postponing of the gonadectomy until after pubertal age in order to guarantee the initial spontaneous pubertal development and avoid the necessity of hormonal replacement therapy (HRT) induction. However, HRT is necessary after gonadectomy in order to prevent symptoms of hypoestrogenism and to maintain secondary sexual features. This article presents differential clinical presentations and management in patients with CAIS to emphasize the continued importance of standardizing the clinical and surgical approach to this disorder.
Collapse
Affiliation(s)
- Lucia Lanciotti
- Pediatric Clinic, Department of Surgical and Biomedical Sciences, Università degli Studi di Perugia, 06132 Perugia, Italy.
| | - Marta Cofini
- Pediatric Clinic, Department of Surgical and Biomedical Sciences, Università degli Studi di Perugia, 06132 Perugia, Italy.
| | - Alberto Leonardi
- Pediatric Clinic, Department of Surgical and Biomedical Sciences, Università degli Studi di Perugia, 06132 Perugia, Italy.
| | - Mirko Bertozzi
- Pediatric Surgery, Azienda Ospedaliera Santa Maria della Misericordia, 20122 Perugia, Italy.
| | - Laura Penta
- Pediatric Clinic, Department of Surgical and Biomedical Sciences, Università degli Studi di Perugia, 06132 Perugia, Italy.
| | - Susanna Esposito
- Pediatric Clinic, Department of Surgical and Biomedical Sciences, Università degli Studi di Perugia, 06132 Perugia, Italy.
| |
Collapse
|
585
|
Costa PLF, França MM, Katayama ML, Carneiro ET, Martin RM, Folgueira MAK, Latronico AC, Ferraz-de-Souza B. Transcriptomic Response to 1,25-Dihydroxyvitamin D in Human Fibroblasts with or without a Functional Vitamin D Receptor (VDR): Novel Target Genes and Insights into VDR Basal Transcriptional Activity. Cells 2019; 8:cells8040318. [PMID: 30959822 PMCID: PMC6523947 DOI: 10.3390/cells8040318] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/29/2019] [Accepted: 04/03/2019] [Indexed: 01/30/2023] Open
Abstract
The vitamin D receptor (VDR) mediates vitamin D actions beyond bone health. While VDR activation by 1,25-dihydroxyvitamin D (1,25D) leads to robust transcriptional regulation, less is known about VDR actions in the absence of 1,25D. We analyzed the transcriptomic response to 1,25D in fibroblasts bearing a severe homozygous hereditary vitamin D resistant rickets-related p.Arg30* VDR mutation (MUT) and in control fibroblasts (CO). Roughly 4.5% of the transcriptome was regulated by 1,25D in CO fibroblasts, while MUT cells without a functional VDR were insensitive to 1,25D. Novel VDR target genes identified in human fibroblasts included bone and cartilage factors CILP, EFNB2, and GALNT12. Vehicle-treated CO and MUT fibroblasts had strikingly different transcriptomes, suggesting basal VDR activity. Indeed, oppositional transcriptional effects in basal conditions versus after 1,25D activation were implied for a subset of target genes mostly involved with cell cycle. Cell proliferation assays corroborated this conjectured oppositional basal VDR activity, indicating that precise 1,25D dosage in target tissues might be essential for modulating vitamin D actions in human health.
Collapse
Affiliation(s)
- Pedro L F Costa
- Laboratorio de Endocrinologia Celular e Molecular LIM-25 e Unidade de Doencas Osteometabolicas, Divisao de Endocrinologia, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 01246-903, SP, Brazil.
| | - Monica M França
- Laboratorio de Endocrinologia Celular e Molecular LIM-25 e Unidade de Doencas Osteometabolicas, Divisao de Endocrinologia, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 01246-903, SP, Brazil.
- Laboratorio de Hormonios e Genetica Molecular LIM-42, Divisao de Endocrinologia, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 05403-900, SP, Brazil.
| | - Maria L Katayama
- Departamento de Radiologia e Oncologia, Instituto do Cancer do Estado de Sao Paulo (ICESP), Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo 01246-000, SP, Brazil.
| | - Eduardo T Carneiro
- Laboratorio de Endocrinologia Celular e Molecular LIM-25 e Unidade de Doencas Osteometabolicas, Divisao de Endocrinologia, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 01246-903, SP, Brazil.
| | - Regina M Martin
- Laboratorio de Hormonios e Genetica Molecular LIM-42, Divisao de Endocrinologia, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 05403-900, SP, Brazil.
| | - Maria A K Folgueira
- Departamento de Radiologia e Oncologia, Instituto do Cancer do Estado de Sao Paulo (ICESP), Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo 01246-000, SP, Brazil.
| | - Ana C Latronico
- Laboratorio de Hormonios e Genetica Molecular LIM-42, Divisao de Endocrinologia, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 05403-900, SP, Brazil.
| | - Bruno Ferraz-de-Souza
- Laboratorio de Endocrinologia Celular e Molecular LIM-25 e Unidade de Doencas Osteometabolicas, Divisao de Endocrinologia, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 01246-903, SP, Brazil.
| |
Collapse
|
586
|
de Almeida NR, Conda-Sheridan M. A review of the molecular design and biological activities of RXR agonists. Med Res Rev 2019; 39:1372-1397. [PMID: 30941786 DOI: 10.1002/med.21578] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 03/09/2019] [Accepted: 03/16/2019] [Indexed: 12/13/2022]
Abstract
An attractive approach to combat disease is to target theregulation of cell function. At the heart of this task are nuclear receptors (NRs); which control functions such as gene transcription. Arguably, the key player in this regulatory machinery is the retinoid X receptor (RXR). This NR associates with a third of the NRs found in humans. Scientists have hypothesized that controlling the activity of RXR is an attractive approach to control cellular functions that modulate diseases such as cancer, diabetes, Alzheimer's disease and Parkinson's disease. In this review, we will describe the key features of the RXR, present a historic perspective of the first RXR agonists, and discuss various templates that have been reported to activate RXR with a focus on their molecular structure, biological activity, and limitations. Finally, we will present an outlook of the field and future directions and considerations to synthesize or modulate RXR agonists to make these compounds a clinical reality.
Collapse
Affiliation(s)
| | - Martin Conda-Sheridan
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska
| |
Collapse
|
587
|
Nassar SZ, Badae NM. Protective effect of vitamin D supplementation in a rat modal of preeclampsia: a possible implication of chemerin. Hypertens Pregnancy 2019; 38:149-156. [DOI: 10.1080/10641955.2019.1597108] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Seham Zakaria Nassar
- Medical Physiology departement, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Noha Mohamed Badae
- Medical Physiology departement, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| |
Collapse
|
588
|
Chen X, Cao X, Tu X, Alitongbieke G, Xia Z, Li X, Chen Z, Yin M, Xu D, Guo S, Li Z, Chen L, Zhang X, Xu D, Gao M, Liu J, Zeng Z, Zhou H, Su Y, Zhang XK. BI1071, a Novel Nur77 Modulator, Induces Apoptosis of Cancer Cells by Activating the Nur77-Bcl-2 Apoptotic Pathway. Mol Cancer Ther 2019; 18:886-899. [PMID: 30926635 DOI: 10.1158/1535-7163.mct-18-0918] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 12/28/2018] [Accepted: 03/14/2019] [Indexed: 11/16/2022]
Abstract
Nur77 (also called TR3 or NGFI-B), an orphan member of the nuclear receptor superfamily, induces apoptosis by translocating to mitochondria where it interacts with Bcl-2 to convert Bcl-2 from an antiapoptotic to a pro-apoptotic molecule. Nur77 posttranslational modification such as phosphorylation has been shown to induce Nur77 translocation from the nucleus to mitochondria. However, small molecules that can bind directly to Nur77 to trigger its mitochondrial localization and Bcl-2 interaction remain to be explored. Here, we report our identification and characterization of DIM-C-pPhCF3 +MeSO3 - (BI1071), an oxidized product derived from indole-3-carbinol metabolite, as a modulator of the Nur77-Bcl-2 apoptotic pathway. BI1071 binds Nur77 with high affinity, promotes Nur77 mitochondrial targeting and interaction with Bcl-2, and effectively induces apoptosis of cancer cells in a Nur77- and Bcl-2-dependent manner. Studies with animal model showed that BI1071 potently inhibited the growth of tumor cells in animals through its induction of apoptosis. Our results identify BI1071 as a novel Nur77-binding modulator of the Nur77-Bcl-2 apoptotic pathway, which may serve as a promising lead for treating cancers with overexpression of Bcl-2.
Collapse
Affiliation(s)
- Xiaohui Chen
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen, China
| | - Xihua Cao
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - Xuhuang Tu
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen, China
| | - Gulimiran Alitongbieke
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen, China
| | - Zebin Xia
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - Xiaotong Li
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen, China
| | - Ziwen Chen
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen, China
| | | | - Dan Xu
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen, China
| | - Shangjie Guo
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen, China
| | - Zongxi Li
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen, China
| | - Liqun Chen
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen, China
| | - Xindao Zhang
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen, China
| | - Dingyu Xu
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen, China
| | - Meichun Gao
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen, China
| | - Jie Liu
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen, China
| | - Zhiping Zeng
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen, China
| | - Hu Zhou
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen, China
| | - Ying Su
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California.
| | - Xiao-Kun Zhang
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen, China. .,Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| |
Collapse
|
589
|
Abstract
Nutrigenomics studies how environmental factors, such as food intake and lifestyle, influence the expression of the genome. Vitamin D₃ represents a master example of nutrigenomics, since via its metabolite 1α,25-dihydroxyvitamin D₃, which binds with high-affinity to the vitamin D receptor, the secosteroid directly affects the epigenome and transcriptome at thousands of loci within the human genome. Vitamin D is important for both cellular metabolism and immunity, as it controls calcium homeostasis and modulates the response of the innate and adaptive immune system. At sufficient UV-B exposure, humans can synthesize vitamin D₃ endogenously in their skin, but today's lifestyle often makes the molecule a true vitamin and micronutrient that needs to be taken up by diet or supplementation with pills. The individual's molecular response to vitamin D requires personalized supplementation with vitamin D₃, in order to obtain optimized clinical benefits in the prevention of osteoporosis, sarcopenia, autoimmune diseases, and possibly different types of cancer. The importance of endogenous synthesis of vitamin D₃ created an evolutionary pressure for reduced skin pigmentation, when, during the past 50,000 years, modern humans migrated from Africa towards Asia and Europe. This review will discuss different aspects of how vitamin D interacts with the human genome, focusing on nutritional epigenomics in context of immune responses. This should lead to a better understanding of the clinical benefits of vitamin D.
Collapse
Affiliation(s)
- Carsten Carlberg
- School of Medicine, Institute of Biomedicine, University of Eastern Finland, FI-70211 Kuopio, Finland.
| |
Collapse
|
590
|
There is an association between a genetic polymorphism in the ZNF259 gene involved in lipid metabolism and coronary artery disease. Gene 2019; 704:80-85. [PMID: 30902787 DOI: 10.1016/j.gene.2019.02.101] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 02/09/2019] [Accepted: 02/22/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Recent genome-wide association studies (GWAS) have identified several genetic variants that influence the risk of dyslipidemia and coronary artery disease (CAD). In this study, we have examined the potential association of five SNPs variants related to lipid pathway, previously identified in GWAS studies (ZNF259 C>G, CETP I405VA/G, LPA C>T, LPLS447X and PSRC1 A>G) with CAD. METHODS Two hundred and ninety subjects including 194 patients with coronary artery disease and 96 controls were enrolled, followed by the analyses of anthropometric/biochemical parameters. Genotyping was carried out using Taq-Man real-time PCR based method. The association of the genetic polymorphisms with CAD was determined using univariate and multivariate analyses. RESULTS CAD patients had a higher (p < 0.05) fasting blood glucose (FBG), total cholesterol (TC), high sensitivity C-reactive protein (hs-CRP), low-density lipoprotein cholesterol (LDL-C) and waist circumference. Results showed that subjects with CETP rs5882 genetic variant, AA&AG genotypes, had a higher risk of developing Coronary artery disease [OR: 2.1, 95% CI (1.2-4.1), p value = 0.015]. Also subjects who carried the G allele of the ZNF259 polymorphism were at an increased the risk of developing CAD [OR 1.86, 95% CI: 1.06-3.25, p value = 0.029] and had an increased TC, LDL and TG levels (p < 0.05). Furthermore, no statistically significant association was found between genetic polymorphisms of PSRC1 A>G, LPL S447X and LPA C>T and CAD. CONCLUSION We identified a relationship between a genetic variant in CETP and ZNF259 gene with CAD and CAD and lipid profile, respectively. Further investigation in a larger population may help to investigate the value of emerging marker as a risk stratification marker in CAD and its risk factors.
Collapse
|
591
|
Ma L, Nelson ER. Oxysterols and nuclear receptors. Mol Cell Endocrinol 2019; 484:42-51. [PMID: 30660701 DOI: 10.1016/j.mce.2019.01.016] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 01/08/2019] [Accepted: 01/16/2019] [Indexed: 12/11/2022]
Abstract
Oxysterols are derivatives of cholesterol and an important regulator of cholesterol metabolism, in part due to their role as ligands for nuclear receptors, such as the liver X receptors. Oxysterols are also known to be ligands for the RAR-related orphan receptors, involved in normal T cell differentiation. However, increasing evidence supports a role for oxysterols in the progression of several diseases. Here, we review recent developments in oxysterol research, highlighting the biological functions that oxysterols exert through their target nuclear receptors: the liver X receptors, estrogen receptors, RAR-related orphan receptors and the glucocorticoid receptor. We also bring the regulation of the immune system into the context of interaction between oxysterols and nuclear receptors, discussing the effect of such interaction on the pro-inflammatory function of macrophages and the development of T cells. Finally, we examine the impact that oxysterols have on various disease models, including cancer, Alzheimer's disease and atherosclerosis, stressing the role of nuclear receptors if previously identified. This review underscores the need to consider the multifaceted roles of oxysterols in terms of multiple receptor engagements and selective modulation of these receptors.
Collapse
Affiliation(s)
- Liqian Ma
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Erik R Nelson
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, United States; University of Illinois Cancer Center, Chicago, IL, United States; Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States; Carl R. Woese Institute for Genomic Biology, Anticancer Discovery from Pets to People Theme, University of Illinois at Urbana Champaign, Urbana, IL, United States; Cancer Center at Illinois, University of Illinois at Urbana-Champaign, IL, United States.
| |
Collapse
|
592
|
Sakamoto K, Kurokawa J. Involvement of sex hormonal regulation of K + channels in electrophysiological and contractile functions of muscle tissues. J Pharmacol Sci 2019; 139:259-265. [PMID: 30962088 DOI: 10.1016/j.jphs.2019.02.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 02/14/2019] [Accepted: 02/28/2019] [Indexed: 11/19/2022] Open
Abstract
Sex hormones, such as testosterone, progesterone, and 17β-estradiol, control various physiological functions. This review focuses on the sex hormonal regulation of K+ channels and the effects of such regulation on electrophysiological and contractile functions of muscles. In the cardiac tissue, testosterone and progesterone shorten action potential, and estrogen lengthens QT interval, a marker of increased risk of ventricular tachyarrhythmias. We have shown that testosterone and progesterone in physiological concentration activate KCNQ1 channels via membrane-delimited sex hormone receptor/eNOS pathways to shorten the action potential duration. Mitochondrial K+ channels are also involved in the protection of cardiac muscle. Testosterone and 17β-estradiol directly activate mitochondrial inner membrane K+ channels (Ca2+ activated K+ channel (KCa channel) and ATP-sensitive K+ channel (KATP channel)) that are involved in ischemic preconditioning and cardiac protection. During pregnancy, uterine blood flow increases to support fetal growth and development. It has been reported that 17β-estradiol directly activates large-conductance Ca2+-activated K+ channel (BKCa channel) attenuating arterial contraction. Furthermore, 17β-estradiol increases expression of BKCa channel β1 subunit which enhances BKCa channel activity by DNA demethylation. These findings are useful for understanding the mechanisms of sex or generation-dependent differences in the physiological and pathological functions of muscles, and the mechanisms of drug actions.
Collapse
Affiliation(s)
- Kazuho Sakamoto
- Department of Bio-Informational Pharmacology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan.
| | - Junko Kurokawa
- Department of Bio-Informational Pharmacology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan.
| |
Collapse
|
593
|
Yamamoto E, Jørgensen TN. Immunological effects of vitamin D and their relations to autoimmunity. J Autoimmun 2019; 100:7-16. [PMID: 30853311 DOI: 10.1016/j.jaut.2019.03.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 02/27/2019] [Accepted: 03/04/2019] [Indexed: 02/07/2023]
Abstract
Vitamin D deficiency is an established risk factor for many autoimmune diseases and the anti-inflammatory properties of vitamin D underscore its potential therapeutic value for these diseases. However, results of vitamin D3 supplementation clinical trials have been varied. To understand the clinical heterogeneity, we reviewed the pre-clinical data on vitamin D activity in four common autoimmune diseases: multiple sclerosis (MS), rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), and inflammatory bowel disease (IBD), in which patients are commonly maintained on oral vitamin D3 supplementation. In contrast, many pre-clinical studies utilize other methods of manipulation (i.e. genetic, injection). Given the many actions of vitamin D3 and data supporting a vitamin D-independent role of the Vitamin D receptor (VDR), a more detailed mechanistic understanding of vitamin D3 activity is needed to properly translate pre-clinical findings into the clinic. Therefore, we assessed studies based on route of vitamin D3 administration, and identified where discrepancies in results exist and where more research is needed to establish the benefit of vitamin D supplementation.
Collapse
Affiliation(s)
- Erin Yamamoto
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, 44195, USA
| | - Trine N Jørgensen
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44106, USA.
| |
Collapse
|
594
|
Santen RJ, Simpson E. History of Estrogen: Its Purification, Structure, Synthesis, Biologic Actions, and Clinical Implications. Endocrinology 2019; 160:605-625. [PMID: 30566601 DOI: 10.1210/en.2018-00529] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 07/20/2018] [Indexed: 12/31/2022]
Abstract
This mini-review summarizes key points from the Clark Sawin Memorial Lecture on the History of Estrogen delivered at Endo 2018 and focuses on the rationales and motivation leading to various discoveries and their clinical applications. During the classical period of antiquity, incisive clinical observations uncovered important findings; however, extensive anatomical dissections to solidify proof were generally lacking. Initiation of the experimental approach followed later, influenced by Claude Bernard's treatise "An Introduction to the Study of Experimental Medicine." With this approach, investigators began to explore the function of the ovaries and their "internal secretions" and, after intensive investigations for several years, purified various estrogens. Clinical therapies for hot flashes, osteoporosis, and dysmenorrhea were quickly developed and, later, methods of hormonal contraception. Sophisticated biochemical methods revealed the mechanisms of estrogen synthesis through the enzyme aromatase and, after discovery of the estrogen receptors, their specific biologic actions. Molecular techniques facilitated understanding of the specific transcriptional and translational events requiring estrogen. This body of knowledge led to methods to prevent and treat hormone-dependent neoplasms as well as a variety of other estrogen-related conditions. More recently, the role of estrogen in men was uncovered by prismatic examples of estrogen deficiency in male patients and by knockout of the estrogen receptor and aromatase in animals. As studies became more extensive, the effects of estrogen on nearly every organ were described. We conclude that the history of estrogen illustrates the role of intellectual reasoning, motivation, and serendipity in advancing knowledge about this important sex steroid.
Collapse
Affiliation(s)
- Richard J Santen
- Division of Endocrinology and Metabolism, University of Virginia, Charlottesville, Virginia
| | - Evan Simpson
- Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Centre for Reproductive Health, Queen's Medical Research Institute, University of Edinburgh Medical School, Edinburgh, United Kingdom
| |
Collapse
|
595
|
Likhite N, Yadav V, Milliman EJ, Sopariwala DH, Lorca S, Narayana NP, Sheth M, Reineke EL, Giguère V, Narkar V. Loss of Estrogen-Related Receptor Alpha Facilitates Angiogenesis in Endothelial Cells. Mol Cell Biol 2019; 39:e00411-18. [PMID: 30602497 PMCID: PMC6379583 DOI: 10.1128/mcb.00411-18] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 09/04/2018] [Accepted: 12/11/2018] [Indexed: 01/08/2023] Open
Abstract
Estrogen-related receptors (ERRs) have emerged as major metabolic regulators in various tissues. However, their expression and function in the vasculature remains unknown. Here, we report the transcriptional program and cellular function of ERRα in endothelial cells (ECs), a cell type with a multifaceted role in vasculature. Of the three ERR subtypes, ECs exclusively express ERRα. Gene expression profiling of ECs lacking ERRα revealed that ERRα predominantly acts as a transcriptional repressor, targeting genes linked with angiogenesis, cell migration, and cell adhesion. ERRα-deficient ECs exhibit decreased proliferation but increased migration and tube formation. ERRα depletion increased basal as well as vascular endothelial growth factor A (VEGFA)- and ANG1/2-stimulated angiogenic sprouting in endothelial spheroids. Moreover, retinal angiogenesis is enhanced in ERRα knockout mice compared to that in wild-type mice. Surprisingly, ERRα is dispensable for the regulation of its classic targets, such as metabolism, mitochondrial biogenesis, and cellular respiration in the ECs. ERRα is enriched at the promoters of angiogenic, migratory, and cell adhesion genes. Further, VEGFA increased ERRα recruitment to angiogenesis-associated genes and simultaneously decreased their expression. Despite increasing its gene occupancy, proangiogenic stimuli decrease ERRα expression in ECs. Our work shows that endothelial ERRα plays a repressive role in angiogenesis and potentially fine-tunes growth factor-mediated angiogenesis.
Collapse
Affiliation(s)
- Neah Likhite
- Metabolic and Degenerative Diseases, Institute of Molecular Medicine, The University of Texas McGovern Medical School, Houston, Texas, USA
| | - Vikas Yadav
- Metabolic and Degenerative Diseases, Institute of Molecular Medicine, The University of Texas McGovern Medical School, Houston, Texas, USA
| | | | - Danesh H Sopariwala
- Metabolic and Degenerative Diseases, Institute of Molecular Medicine, The University of Texas McGovern Medical School, Houston, Texas, USA
| | - Sabina Lorca
- Metabolic and Degenerative Diseases, Institute of Molecular Medicine, The University of Texas McGovern Medical School, Houston, Texas, USA
| | - Nithya P Narayana
- Metabolic and Degenerative Diseases, Institute of Molecular Medicine, The University of Texas McGovern Medical School, Houston, Texas, USA
| | - Megha Sheth
- Metabolic and Degenerative Diseases, Institute of Molecular Medicine, The University of Texas McGovern Medical School, Houston, Texas, USA
- Department of Biochemistry and Cell Biology, Rice University, Houston, Texas, USA
| | - Erin L Reineke
- Center for Bioenergetics, Houston Methodist Research Institute, Houston, Texas, USA
| | - Vincent Giguère
- Department of Biochemistry, Medicine and Oncology, Faculty of Medicine, Goodman Cancer Research Centre, McGill University, Montreal, Canada
| | - Vihang Narkar
- Metabolic and Degenerative Diseases, Institute of Molecular Medicine, The University of Texas McGovern Medical School, Houston, Texas, USA
- Integrative Biology and Pharmacology, The University of Texas McGovern Medical School, Houston, Texas, USA
- Graduate School of Biomedical Sciences at The University of Texas Health Science Center, Houston, Texas, USA
| |
Collapse
|
596
|
Hall JM, Powell HR, Rajic L, Korach KS. The Role of Dietary Phytoestrogens and the Nuclear Receptor PPARγ in Adipogenesis: An in Vitro Study. ENVIRONMENTAL HEALTH PERSPECTIVES 2019; 127:37007. [PMID: 30920877 PMCID: PMC6768326 DOI: 10.1289/ehp3444] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 02/04/2019] [Accepted: 02/08/2019] [Indexed: 05/26/2023]
Abstract
BACKGROUND Phytoestrogens, naturally occurring plant chemicals, have long been thought to confer beneficial effects on human cardiovascular and metabolic health. However, recent epidemiological studies, have yielded conflicting outcomes, in which phytoestrogen consumption was both positively and negatively correlated with adiposity. Interestingly, several dietary phytoestrogens are known to stimulate or inhibit the activity of the peroxisome proliferator-activated receptor gamma (PPARγ), a key physiological regulator of adipogenesis. OBJECTIVE The objective of this study was to test the hypothesis that the pro- or anti-adipogenic activity of phytoestrogen chemicals is related to the ability to activate PPARγ in adipocytes. METHODS The effects of resveratrol and the soy isoflavones genistein and daidzein on adipogenesis were examined in cell-based assays using the 3T3-L1 cell model. In parallel, ligand-mediated alterations in PPARγ target gene expression were measured by quantitative polymerase chain reaction. The agonist/antagonist activities of phytoestrogens on PPARγ were further assessed by quantifying their ability to affect recruitment of transcriptional cofactors to the receptor. RESULTS Resveratrol displayed significant anti-adipogenic activities as exhibited by the ability to antagonize PPARγ-dependent adipocyte differentiation, down-regulate genes involved in lipid metabolism, block cofactor recruitment to PPARγ, and antagonize the effects of the PPARγ agonist rosiglitazone. In contrast, genistein and daidzein functioned as PPARγ agonists while also displaying pro-adipogenic activities. CONCLUSIONS These data provide biological evidence that the pro- or anti-obesity effects of phytoestrogens are related to their relative agonist/antagonist activity on PPARγ. Thus, PPARγ-activation assays may enable the screening of dietary components and identification of agents with adipogenic activities. https://doi.org/10.1289/EHP3444.
Collapse
Affiliation(s)
- Julie M. Hall
- Department of Medical Sciences, Frank H. Netter MD School of Medicine NH-MED, Quinnipiac University, North Haven, Connecticut, USA
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Campbell University, Buies Creek, North Carolina, USA
| | - Heather R. Powell
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Campbell University, Buies Creek, North Carolina, USA
| | - Lara Rajic
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Campbell University, Buies Creek, North Carolina, USA
| | - Kenneth S. Korach
- Receptor Biology Section, Laboratory of Reproductive and Developmental Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| |
Collapse
|
597
|
Changes in the immunohistochemical localization of estrogen receptor alpha and in the stereological parameters of the testes of mature and aged chickens (Gallus domesticus). Biochem Biophys Res Commun 2019; 510:309-314. [DOI: 10.1016/j.bbrc.2019.01.097] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 01/22/2019] [Indexed: 01/06/2023]
|
598
|
Gendy HIE, Sadik NA, Helmy MY, Rashed LA. Vitamin D receptor gene polymorphisms and 25(OH) vitamin D: Lack of association to glycemic control and metabolic parameters in type 2 diabetic Egyptian patients. J Clin Transl Endocrinol 2019; 15:25-29. [PMID: 30555790 PMCID: PMC6279987 DOI: 10.1016/j.jcte.2018.11.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 11/27/2018] [Accepted: 11/27/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Vitamin D deficiency and vitamin D receptor (VDR) gene polymorphisms have been linked to type 2 diabetes mellitus (T2DM) and its metabolic parameters, however there are conflicting results therefore we aimed to evaluate VDR gene polymorphisms (Fok1, Bsm1 and Taq1) and vitamin D status in Egyptian patients with T2DM and to detect the associations of these polymorphisms to their metabolic parameters and glycemic control. METHODS 50 patients with T2DM and 50 healthy age matched control subjects were enrolled. FBG, 2 h -PPG, fasting lipids, Hb A1c, calcium, phosphorus, urea, creatinine, ALT, AST were measured. BMI has calculated. Serum 25 hydroxy vitamin D [25(OH)D] has measured by ELISA. VDR gene polymorphisms detection has done by polymerase chain reaction through restriction fragment length polymorphism (PCR-RFLP) technique. RESULTS Our study has shown lower mean levels of 25(OH)D in patients with T2DM (28.54 ± 10.02) in comparison with control subjects (44.65 ± 7.19), p < 0.001. Vitamin D insufficiency was more prevalent in T2DM 58% than in healthy control subjects 4%. There were statistically significant differences between patients with type 2 diabetes and controls regarding the distribution of FokI genotypes and alleles (p = 0.005) and non significant difference regarding Bsm1 and Taq1. Neither VDR gene polymorphisms nor 25(OH)D showed significant association with glycemic control, fasting lipids and BMI in patients with T2DM. CONCLUSIONS Vitamin D deficiency is prevalent in Egyptian patients with T2DM. Associations were found only between VDR FokI gene polymorphism and susceptibility to Egyptian patients with T2DM. Non significant differences in VDR gene polymorphisms distribution has found regarding glycemic control and metabolic parameters.
Collapse
Affiliation(s)
| | - Noha Adly Sadik
- Internal Medicine, Faculty of Medicine, Cairo University, Egypt
| | | | - Laila Ahmed Rashed
- Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Egypt
| |
Collapse
|
599
|
Sawatsubashi S, Nishimura K, Mori J, Kouzmenko A, Kato S. The Function of the Vitamin D Receptor and a Possible Role of Enhancer RNA in Epigenomic Regulation of Target Genes: Implications for Bone Metabolism. J Bone Metab 2019; 26:3-12. [PMID: 30899718 PMCID: PMC6416145 DOI: 10.11005/jbm.2019.26.1.3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 12/18/2018] [Accepted: 01/15/2019] [Indexed: 12/15/2022] Open
Abstract
Vitamin D (VD) is essential for bone health, and VD or its analogues are widely used in clinics to ameliorate bone loss. The targets and mode of VD anti-osteoporotic actions appear to be different from those of other classes of drugs modulating bone remodeling. VD exerts its biological activities through the nuclear VD receptor (VDR)-mediated transcriptional regulation of target mRNA and non-coding RNA genes. VD-induced gene regulation involves epigenetic modifications of chromatin conformation at the target loci as well as reconfiguration of higher-order chromosomal organization through VDR-mediated recruitment of various regulatory factors. Enhancer RNAs (eRNA), a class of non-coding enhancer-derived RNAs, have recently emerged as VDR target gene candidates that act through reorganization of chromatin looping to induce enhancer-promoter interaction in activation of mRNA-encoding genes. This review outlines the molecular mechanisms of VD actions mediated by the VDR and suggests novel function of eRNAs in VDR transactivation.
Collapse
Affiliation(s)
- Shun Sawatsubashi
- Department of Molecular Endocrinology, Fujii Memorial Institute of Medical Sciences, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan
| | - Koichi Nishimura
- Center for Regional Cooperation, Iwaki Meisei University, Iwaki, Japan.,Research Institute of Innovative Medicine, Tokiwa Foundation, Jyoban Kamiyunagayamachi, Iwaki, Japan
| | - Jinichi Mori
- Center for Regional Cooperation, Iwaki Meisei University, Iwaki, Japan.,Research Institute of Innovative Medicine, Tokiwa Foundation, Jyoban Kamiyunagayamachi, Iwaki, Japan
| | - Alexander Kouzmenko
- Research Institute of Innovative Medicine, Tokiwa Foundation, Jyoban Kamiyunagayamachi, Iwaki, Japan
| | - Shigeaki Kato
- Center for Regional Cooperation, Iwaki Meisei University, Iwaki, Japan.,Research Institute of Innovative Medicine, Tokiwa Foundation, Jyoban Kamiyunagayamachi, Iwaki, Japan
| |
Collapse
|
600
|
Abstract
Thyroid hormone receptors (TRs) were cloned based on their homology with the retroviral oncogene v-ERBA. In Vertebrates two genes, THRA and THRB, encode respectively many isotypes and isoforms of receptors TRα and TRβ, resulting from alternative splicing and/or internal transcription start sites. We present here a wide overview of this diversity and of their mechanisms of action as transcription regulators, as well as alternative actions through cytoplasmic signaling.
Collapse
|