551
|
Ma Y, Wise AK, Shepherd RK, Richardson RT. New molecular therapies for the treatment of hearing loss. Pharmacol Ther 2019; 200:190-209. [PMID: 31075354 DOI: 10.1016/j.pharmthera.2019.05.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 05/02/2019] [Indexed: 12/11/2022]
Abstract
An estimated 466 million people suffer from hearing loss worldwide. Sensorineural hearing loss is characterized by degeneration of key structures of the sensory pathway in the cochlea such as the sensory hair cells, the primary auditory neurons and their synaptic connection to the hair cells - the ribbon synapse. Various strategies to protect or regenerate these sensory cells and structures are the subject of intensive research. Yet despite recent advances in our understandings of the capacity of the cochlea for repair and regeneration there are currently no pharmacological or biological interventions for hearing loss. Current research focusses on localized cochlear drug, gene and cell-based therapies. One of the more promising drug-based therapies is based on neurotrophic factors for the repair of the ribbon synapse after noise exposure, as well as preventing loss of primary auditory neurons and regrowth of the auditory neuron fibers after severe hearing loss. Drug therapy delivery technologies are being employed to address the specific needs of neurotrophin and other therapies for hearing loss that include the need for high doses, long-term delivery, localised or cell-specific targeting and techniques for their safe and efficacious delivery to the cochlea. Novel biomaterials are enabling high payloads of drugs to be administered to the cochlea with subsequent slow-release properties that are proving to be beneficial for treating hearing loss. In parallel, new gene therapy technologies are addressing the need for cell specificity and high efficacy for the treatment of both genetic and acquired hearing loss with promising reports of hearing recovery. Some biomaterials and cell therapies are being used in conjunction with the cochlear implant ensuring therapeutic benefit to the primary neurons during electrical stimulation. This review will introduce the auditory system, hearing loss and the potential for repair and regeneration in the cochlea. Drug delivery to the cochlea will then be reviewed, with a focus on new biomaterials, gene therapy technologies, cell therapy and the use of the cochlear implant as a vehicle for drug delivery. With the current pre-clinical research effort into therapies for hearing loss, including clinical trials for gene therapy, the future for the treatment for hearing loss is looking bright.
Collapse
Affiliation(s)
- Yutian Ma
- Bionics Institute, East Melbourne, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Australia; University of Melbourne, Department of Chemical Engineering, Parkville, Victoria, Australia
| | - Andrew K Wise
- Bionics Institute, East Melbourne, Australia; University of Melbourne, Medical Bionics Department, East Melbourne, Australia; University of Melbourne, Department of Surgery - Otolaryngology, East Melbourne, Australia
| | - Robert K Shepherd
- Bionics Institute, East Melbourne, Australia; University of Melbourne, Medical Bionics Department, East Melbourne, Australia; University of Melbourne, Department of Surgery - Otolaryngology, East Melbourne, Australia
| | - Rachael T Richardson
- Bionics Institute, East Melbourne, Australia; University of Melbourne, Medical Bionics Department, East Melbourne, Australia; University of Melbourne, Department of Surgery - Otolaryngology, East Melbourne, Australia.
| |
Collapse
|
552
|
Gradinaru V, Treweek J, Overton K, Deisseroth K. Hydrogel-Tissue Chemistry: Principles and Applications. Annu Rev Biophys 2019; 47:355-376. [PMID: 29792820 PMCID: PMC6359929 DOI: 10.1146/annurev-biophys-070317-032905] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Over the past five years, a rapidly developing experimental approach has enabled high-resolution and high-content information retrieval from intact multicellular animal (metazoan) systems. New chemical and physical forms are created in the hydrogel-tissue chemistry process, and the retention and retrieval of crucial phenotypic information regarding constituent cells and molecules (and their joint interrelationships) are thereby enabled. For example, rich data sets defining both single-cell-resolution gene expression and single-cell-resolution activity during behavior can now be collected while still preserving information on three-dimensional positioning and/or brain-wide wiring of those very same neurons-even within vertebrate brains. This new approach and its variants, as applied to neuroscience, are beginning to illuminate the fundamental cellular and chemical representations of sensation, cognition, and action. More generally, reimagining metazoans as metareactants-or positionally defined three-dimensional graphs of constituent chemicals made available for ongoing functionalization, transformation, and readout-is stimulating innovation across biology and medicine.
Collapse
Affiliation(s)
- Viviana Gradinaru
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA;
| | - Jennifer Treweek
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA;
| | - Kristin Overton
- Department of Bioengineering, Stanford University, Stanford, California 94305, USA;
| | - Karl Deisseroth
- Department of Bioengineering, Stanford University, Stanford, California 94305, USA; .,Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California 94305, USA.,H oward Hughes Medical Institute, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
553
|
Abstract
Adeno-associated virus (AAV) vectors are the leading platform for gene delivery for the treatment of a variety of human diseases. Recent advances in developing clinically desirable AAV capsids, optimizing genome designs and harnessing revolutionary biotechnologies have contributed substantially to the growth of the gene therapy field. Preclinical and clinical successes in AAV-mediated gene replacement, gene silencing and gene editing have helped AAV gain popularity as the ideal therapeutic vector, with two AAV-based therapeutics gaining regulatory approval in Europe or the United States. Continued study of AAV biology and increased understanding of the associated therapeutic challenges and limitations will build the foundation for future clinical success.
Collapse
Affiliation(s)
- Dan Wang
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, MA, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA
| | - Phillip W L Tai
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, MA, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA
| | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA.
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, MA, USA.
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
554
|
Near physiological spectral selectivity of cochlear optogenetics. Nat Commun 2019; 10:1962. [PMID: 31036812 PMCID: PMC6488702 DOI: 10.1038/s41467-019-09980-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 03/28/2019] [Indexed: 01/06/2023] Open
Abstract
Cochlear implants (CIs) electrically stimulate spiral ganglion neurons (SGNs) and partially restore hearing to half a million CI users. However, wide current spread from intracochlear electrodes limits spatial selectivity (i.e. spectral resolution) of electrical CIs. Optogenetic stimulation might become an alternative, since light can be confined in space, promising artificial sound encoding with increased spectral selectivity. Here we compare spectral selectivity of optogenetic, electric, and acoustic stimulation by multi-channel recordings in the inferior colliculus (IC) of gerbils. When projecting light onto tonotopically distinct SGNs, we observe corresponding tonotopically ordered IC activity. An activity-based comparison reveals that spectral selectivity of optogenetic stimulation is indistinguishable from acoustic stimulation for modest intensities. Moreover, optogenetic stimulation outperforms bipolar electric stimulation at medium and high intensities and monopolar electric stimulation at all intensities. In conclusion, we demonstrate better spectral selectivity of optogenetic over electric SGN stimulation, suggesting the potential for improved hearing restoration by optical CIs. Cochlear implant spectral resolution is limited by current spread from each stimulation electrode. Here the authors compare optogenetic, electric and acoustic stimulation in gerbils and demonstrate improved spectral resolution of optogenetic over conventional electric stimulation.
Collapse
|
555
|
Identification of peripheral neural circuits that regulate heart rate using optogenetic and viral vector strategies. Nat Commun 2019; 10:1944. [PMID: 31028266 PMCID: PMC6486614 DOI: 10.1038/s41467-019-09770-1] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 03/27/2019] [Indexed: 11/26/2022] Open
Abstract
Heart rate is under the precise control of the autonomic nervous system. However, the wiring of peripheral neural circuits that regulate heart rate is poorly understood. Here, we develop a clearing-imaging-analysis pipeline to visualize innervation of intact hearts in 3D and employed a multi-technique approach to map parasympathetic and sympathetic neural circuits that control heart rate in mice. We identify cholinergic neurons and noradrenergic neurons in an intrinsic cardiac ganglion and the stellate ganglia, respectively, that project to the sinoatrial node. We also report that the heart rate response to optogenetic versus electrical stimulation of the vagus nerve displays different temporal characteristics and that vagal afferents enhance parasympathetic and reduce sympathetic tone to the heart via central mechanisms. Our findings provide new insights into neural regulation of heart rate, and our methodology to study cardiac circuits can be readily used to interrogate neural control of other visceral organs. The wiring of peripheral neural circuits that regulate heart rate is poorly understood. In this study, authors used tissue clearing for high-resolution characterization of nerves in the heart in 3D and transgenic and novel viral vector approaches to identify peripheral parasympathetic and sympathetic neuronal populations involved in heart rate control in mice.
Collapse
|
556
|
Goswami R, Subramanian G, Silayeva L, Newkirk I, Doctor D, Chawla K, Chattopadhyay S, Chandra D, Chilukuri N, Betapudi V. Gene Therapy Leaves a Vicious Cycle. Front Oncol 2019; 9:297. [PMID: 31069169 PMCID: PMC6491712 DOI: 10.3389/fonc.2019.00297] [Citation(s) in RCA: 229] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 04/01/2019] [Indexed: 12/14/2022] Open
Abstract
The human genetic code encrypted in thousands of genes holds the secret for synthesis of proteins that drive all biological processes necessary for normal life and death. Though the genetic ciphering remains unchanged through generations, some genes get disrupted, deleted and or mutated, manifesting diseases, and or disorders. Current treatment options—chemotherapy, protein therapy, radiotherapy, and surgery available for no more than 500 diseases—neither cure nor prevent genetic errors but often cause many side effects. However, gene therapy, colloquially called “living drug,” provides a one-time treatment option by rewriting or fixing errors in the natural genetic ciphering. Since gene therapy is predominantly a viral vector-based medicine, it has met with a fair bit of skepticism from both the science fraternity and patients. Now, thanks to advancements in gene editing and recombinant viral vector development, the interest of clinicians and pharmaceutical industries has been rekindled. With the advent of more than 12 different gene therapy drugs for curing cancer, blindness, immune, and neuronal disorders, this emerging experimental medicine has yet again come in the limelight. The present review article delves into the popular viral vectors used in gene therapy, advances, challenges, and perspectives.
Collapse
Affiliation(s)
- Reena Goswami
- Neuroscience Branch, Research Division, United States Army Medical Research Institute of Chemical Defense, Aberdeen, MD, United States
| | - Gayatri Subramanian
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| | - Liliya Silayeva
- Neuroscience Branch, Research Division, United States Army Medical Research Institute of Chemical Defense, Aberdeen, MD, United States
| | - Isabelle Newkirk
- Neuroscience Branch, Research Division, United States Army Medical Research Institute of Chemical Defense, Aberdeen, MD, United States
| | - Deborah Doctor
- Neuroscience Branch, Research Division, United States Army Medical Research Institute of Chemical Defense, Aberdeen, MD, United States
| | - Karan Chawla
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| | - Saurabh Chattopadhyay
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| | - Dhyan Chandra
- Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Nageswararao Chilukuri
- Neuroscience Branch, Research Division, United States Army Medical Research Institute of Chemical Defense, Aberdeen, MD, United States
| | - Venkaiah Betapudi
- Neuroscience Branch, Research Division, United States Army Medical Research Institute of Chemical Defense, Aberdeen, MD, United States.,Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
557
|
Ittner LM, Klugmann M, Ke YD. Adeno-associated virus-based Alzheimer's disease mouse models and potential new therapeutic avenues. Br J Pharmacol 2019; 176:3649-3665. [PMID: 30817847 DOI: 10.1111/bph.14637] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 12/23/2018] [Accepted: 02/15/2019] [Indexed: 12/22/2022] Open
Abstract
Alzheimer's disease (AD) is a highly prevalent neurodegenerative condition that presents with cognitive decline. The current understanding of underlying disease mechanisms remains incomplete. Genetically modified mouse models have been instrumental in deciphering pathomechanisms in AD. While these models were typically generated by classical transgenesis and genome editing, the use of adeno-associated viruses (AAVs) to model and investigate AD in mice, as well as to develop novel gene-therapy approaches, is emerging. Here, we reviewed literature that used AAVs to study and model AD and discuss potential gene therapy strategies. LINKED ARTICLES: This article is part of a themed section on Therapeutics for Dementia and Alzheimer's Disease: New Directions for Precision Medicine. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.18/issuetoc.
Collapse
Affiliation(s)
- Lars M Ittner
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia.,School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Matthias Klugmann
- School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Yazi D Ke
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia.,School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
558
|
Lau CH, Ho JWT, Lo PK, Tin C. Targeted Transgene Activation in the Brain Tissue by Systemic Delivery of Engineered AAV1 Expressing CRISPRa. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 16:637-649. [PMID: 31108320 PMCID: PMC6526230 DOI: 10.1016/j.omtn.2019.04.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 04/14/2019] [Accepted: 04/14/2019] [Indexed: 01/10/2023]
Abstract
Targeted transcriptional modulation in the central nervous system (CNS) can be achieved by adeno-associated virus (AAV) delivery of CRISPR activation (CRISPRa) and interference (CRISPRi) transgenes. To enable AAV packaging, we constructed minimal CRISPRa and CRISPRi transgenes by fusing catalytically inactive Staphylococcus aureus Cas9 (dSaCas9) to the transcriptional activator (VP64 and VP160) and repressor (KRAB and SID4X) domains along with truncated regulatory elements. We then evaluated the performance of these constructs in two reporter assays (bioluminescent and fluorescent), five endogenous genes (Camk2a, Mycn, Nrf2, Keap1, and PDGFRA), and two cell lines (neuro-2a [N2a] and U87) by targeting the promoter and/or enhancer regions. To enable systemic delivery of AAVs to the CNS, we have also generated an AAV1-PHP.B by inserting a 7-mer PHP.B peptide on AAV1 capsid. We showed that AAV1-PHP.B can efficiently cross the blood-brain barrier (BBB) and be taken up by the brain tissue upon lateral tail vein injection in mice. Importantly, a single-dose intravenous administration of AAV1-PHP.B expressing CRISPRa was shown to achieve targeted transgene activation in the mouse brain. This proof-of-concept study will contribute to the development of a non-invasive, specific and potent AAV-CRISPR system for correcting transcriptional misregulation in broad brain areas and multiple neuroanatomical structures.
Collapse
Affiliation(s)
- Cia-Hin Lau
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Jonathan Weng-Thim Ho
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Pik Kwan Lo
- Department of Chemistry, City University of Hong Kong, Kowloon Tong, Hong Kong; CityU Shenzhen Research Institute, Shenzhen, China
| | - Chung Tin
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong; CityU Shenzhen Research Institute, Shenzhen, China.
| |
Collapse
|
559
|
Vandenberghe LH. AAV Engineering Identifies a Species Barrier That Highlights a Portal to the Brain. Mol Ther 2019; 27:901-903. [PMID: 31000409 DOI: 10.1016/j.ymthe.2019.04.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Luk H Vandenberghe
- Grousbeck Gene Therapy Center, Schepens Eye Research Institute, Mass Eye and Ear, Boston, MA, USA; Ocular Genomics Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA; The Broad Institute of Harvard and MIT, Cambridge, MA, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
560
|
Belbellaa B, Reutenauer L, Monassier L, Puccio H. Correction of half the cardiomyocytes fully rescue Friedreich ataxia mitochondrial cardiomyopathy through cell-autonomous mechanisms. Hum Mol Genet 2019; 28:1274-1285. [PMID: 30544254 DOI: 10.1093/hmg/ddy427] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 12/06/2018] [Accepted: 12/07/2018] [Indexed: 12/17/2023] Open
Abstract
Friedreich ataxia (FA) is currently an incurable inherited mitochondrial neurodegenerative disease caused by reduced levels of frataxin. Cardiac failure constitutes the main cause of premature death in FA. While adeno-associated virus-mediated cardiac gene therapy was shown to fully reverse the cardiac and mitochondrial phenotype in mouse models, this was achieved at high dose of vector resulting in the transduction of almost all cardiomyocytes, a dose and biodistribution that is unlikely to be replicated in clinic. The purpose of this study was to define the minimum vector biodistribution corresponding to the therapeutic threshold, at different stages of the disease progression. Correlative analysis of vector cardiac biodistribution, survival, cardiac function and biochemical hallmarks of the disease revealed that full rescue of the cardiac function was achieved when only half of the cardiomyocytes were transduced. In addition, meaningful therapeutic effect was achieved with as little as 30% transduction coverage. This therapeutic effect was mediated through cell-autonomous mechanisms for mitochondria homeostasis, although a significant increase in survival of uncorrected neighboring cells was observed. Overall, this study identifies the biodistribution thresholds and the underlying mechanisms conditioning the success of cardiac gene therapy in Friedreich ataxia and provides guidelines for the development of the clinical administration paradigm.
Collapse
Affiliation(s)
- Brahim Belbellaa
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Department of Translational Medicine and Neurogenetics, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, Illkirch, France
- Centre National de la Recherche Scientifique, Illkirch, France
- Université de Strasbourg, Illkirch, France
| | - Laurence Reutenauer
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Department of Translational Medicine and Neurogenetics, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, Illkirch, France
- Centre National de la Recherche Scientifique, Illkirch, France
- Université de Strasbourg, Illkirch, France
| | - Laurent Monassier
- Faculté de Médecine, Laboratoire de Neurobiologie et Pharmacologie Cardiovasculaire, Strasbourg, France
| | - Hélène Puccio
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Department of Translational Medicine and Neurogenetics, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, Illkirch, France
- Centre National de la Recherche Scientifique, Illkirch, France
- Université de Strasbourg, Illkirch, France
| |
Collapse
|
561
|
Abstract
The ability to generate region-specific three-dimensional (3D) models to study human brain development offers great promise for understanding the nervous system in both healthy individuals and patients. In this protocol, we describe how to generate and assemble subdomain-specific forebrain spheroids, also known as brain region-specific organoids, from human pluripotent stem cells (hPSCs). We describe how to pattern the neural spheroids toward either a dorsal forebrain or a ventral forebrain fate, establishing human cortical spheroids (hCSs) and human subpallial spheroids (hSSs), respectively. We also describe how to combine the neural spheroids in vitro to assemble forebrain assembloids that recapitulate the interactions of glutamatergic and GABAergic neurons seen in vivo. Astrocytes are also present in the human forebrain-specific spheroids, and these undergo maturation when the forebrain spheroids are cultured long term. The initial generation of neural spheroids from hPSCs occurs in <1 week, with regional patterning occurring over the subsequent 5 weeks. After the maturation stage, brain region-specific spheroids are amenable to a variety of assays, including live-cell imaging, calcium dynamics, electrophysiology, cell purification, single-cell transcriptomics, and immunohistochemistry studies. Once generated, forebrain spheroids can also be matured for >24 months in culture.
Collapse
|
562
|
Zeng J, Wang Y, Luo Z, Chang LC, Yoo JS, Yan H, Choi Y, Xie X, Deverman BE, Gradinaru V, Gupton SL, Zlokovic BV, Zhao Z, Jung JU. TRIM9-Mediated Resolution of Neuroinflammation Confers Neuroprotection upon Ischemic Stroke in Mice. Cell Rep 2019; 27:549-560.e6. [PMID: 30970257 PMCID: PMC6485958 DOI: 10.1016/j.celrep.2018.12.055] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 08/26/2018] [Accepted: 12/12/2018] [Indexed: 12/31/2022] Open
Abstract
Excessive and unresolved neuroinflammation is a key component of the pathological cascade in brain injuries such as ischemic stroke. Here, we report that TRIM9, a brain-specific tripartite motif (TRIM) protein, was highly expressed in the peri-infarct areas shortly after ischemic insults in mice, but expression was decreased in aged mice, which are known to have increased neuroinflammation after stroke. Mechanistically, TRIM9 sequestered β-transducin repeat-containing protein (β-TrCP) from the Skp-Cullin-F-box ubiquitin ligase complex, blocking IκBα degradation and thereby dampening nuclear factor κB (NF-κB)-dependent proinflammatory mediator production and immune cell infiltration to limit neuroinflammation. Consequently, Trim9-deficient mice were highly vulnerable to ischemia, manifesting uncontrolled neuroinflammation and exacerbated neuropathological outcomes. Systemic administration of a recombinant TRIM9 adeno-associated virus that drove brain-wide TRIM9 expression effectively resolved neuroinflammation and alleviated neuronal death, especially in aged mice. These findings reveal that TRIM9 is essential for resolving NF-κB-dependent neuroinflammation to promote recovery and repair after brain injury and may represent an attractive therapeutic target.
Collapse
Affiliation(s)
- Jianxiong Zeng
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Yaoming Wang
- Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Zhifei Luo
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Lin-Chun Chang
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Ji Seung Yoo
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Huan Yan
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Younho Choi
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Xiaochun Xie
- Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Benjamin E Deverman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Viviana Gradinaru
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Stephanie L Gupton
- Neuroscience Center and Curriculum in Neurobiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Berislav V Zlokovic
- Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| | - Zhen Zhao
- Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| | - Jae U Jung
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| |
Collapse
|
563
|
Zelikowsky M, Ding K, Anderson DJ. Neuropeptidergic Control of an Internal Brain State Produced by Prolonged Social Isolation Stress. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2019; 83:97-103. [PMID: 30948452 DOI: 10.1101/sqb.2018.83.038109] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Prolonged periods of social isolation can generate an internal state that exerts profound effects on the brain and behavior. However, the neurobiological underpinnings of protracted social isolation have been relatively understudied. Here, we review recent literature implicating peptide neuromodulators in the establishment and maintenance of such internal states. More specifically, we describe an evolutionarily conserved role for the neuropeptide tachykinin in the control of social isolation-induced aggression and review recent data that elucidate the manner by which Tac2 controls the widespread effects of social isolation on behavior in mice. Last, we discuss potential roles for additional neuromodulators in controlling social isolation and a more general role for Tac2 in the response to other forms of stress.
Collapse
Affiliation(s)
- Moriel Zelikowsky
- Department of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Keke Ding
- Department of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - David J Anderson
- Department of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA
- Howard Hughes Medical Institute, California Institute of Technology, Pasadena, California 91125, USA
- TianQiao and Chrissy Chen Institute for Neuroscience, California Institute of Technology, Pasadena, California 91125, USA
| |
Collapse
|
564
|
Bowser LE, Young M, Wenger OK, Ammous Z, Brigatti KW, Carson VJ, Moser T, Deline J, Aoki K, Morlet T, Scott EM, Puffenberger EG, Robinson DL, Hendrickson C, Salvin J, Gottlieb S, Heaps AD, Tiemeyer M, Strauss KA. Recessive GM3 synthase deficiency: Natural history, biochemistry, and therapeutic frontier. Mol Genet Metab 2019; 126:475-488. [PMID: 30691927 DOI: 10.1016/j.ymgme.2019.01.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/20/2019] [Accepted: 01/20/2019] [Indexed: 11/19/2022]
Abstract
GM3 synthase, encoded by ST3GAL5, initiates synthesis of all downstream cerebral gangliosides. Here, we present biochemical, functional, and natural history data from 50 individuals homozygous for a pathogenic ST3GAL5 c.862C>T founder allele (median age 8.1, range 0.7-30.5 years). GM3 and its derivatives were undetectable in plasma. Weight and head circumference were normal at birth and mean Apgar scores were 7.7 ± 2.0 (1 min) and 8.9 ± 0.5 (5 min). Somatic growth failure, progressive microcephaly, global developmental delay, visual inattentiveness, and dyskinetic movements developed within a few months of life. Infantile-onset epileptic encephalopathy was characterized by a slow, disorganized, high-voltage background, poor state transitions, absent posterior rhythm, and spike trains from multiple independent cortical foci; >90% of electrographic seizures were clinically silent. Hearing loss affected cochlea and central auditory pathways and 76% of children tested failed the newborn hearing screen. Development stagnated early in life; only 13 (26%) patients sat independently (median age 30 months), three (6%) learned to crawl, and none achieved reciprocal communication. Incessant irritability, often accompanied by insomnia, began during infancy and contributed to high parental stress. Despite catastrophic neurological dysfunction, neuroimaging showed only subtle or no destructive changes into late childhood and hospitalizations were surprisingly rare (0.2 per patient per year). Median survival was 23.5 years. Our observations corroborate findings from transgenic mice which indicate that gangliosides might have a limited role in embryonic neurodevelopment but become vital for postnatal brain growth and function. These results have critical implications for the design and implementation of ganglioside restitution therapies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Kazuhiro Aoki
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Thierry Morlet
- Auditory Physiology and Psychoacoustics Research Laboratory, Nemours Alfred I. duPont Hospital for Children, Wilmington, DE, USA
| | - Ethan M Scott
- Department of Pediatrics, Akron Children's Hospital, Akron, OH, USA
| | | | | | | | - Jonathan Salvin
- Division of Pediatric Ophthalmology, Nemours Alfred I. duPont Hospital for Children, Wilmington, DE, USA
| | - Steven Gottlieb
- Division of Pediatric Neurology, Nemours Alfred I. duPont Hospital for Children, Wilmington, DE, USA
| | | | - Michael Tiemeyer
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | | |
Collapse
|
565
|
Michelson NJ, Vanni MP, Murphy TH. Comparison between transgenic and AAV-PHP.eB-mediated expression of GCaMP6s using in vivo wide-field functional imaging of brain activity. NEUROPHOTONICS 2019; 6:025014. [PMID: 31763351 PMCID: PMC6864505 DOI: 10.1117/1.nph.6.2.025014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 05/22/2019] [Indexed: 05/13/2023]
Abstract
We employ transcranial wide-field single-photon imaging to compare genetically encoded calcium sensors under transgenic or viral vector expression strategies. Awake, head-fixed animals and brief visual flash stimuli are used to assess function. The use of awake transcranial imaging may reduce confounds attributed to cranial window implantation or anesthesia states. We report differences in wide-field epifluorescence brightness and peak Δ F / F 0 response to visual stimulation between expression strategies. Other metrics for indicator performance include fluctuation analysis (standard deviation) and regional correlation maps made from spontaneous activity. We suggest that multiple measures, such as stimulus-evoked signal-to-noise ratio, brightness, and averaged visual Δ F / F 0 response, may be necessary to characterize indicator sensitivity and methods of expression. Furthermore, we show that strategies using blood brain barrier-permeable viruses, such as PHP.eB, yield comparable expression and function as those derived from transgenic mice. We suggest that testing of new genetically engineered activity sensors could employ a single-photon, wide-field imaging pipeline involving visual stimulation in awake mice that have been intravenously injected with PHP.eB.
Collapse
Affiliation(s)
- Nicholas J. Michelson
- Kinsmen Laboratory of Neurological Research, Department of Psychiatry, Vancouver, British Columbia, Canada
- University of British Columbia, Djavad Mowafaghian Centre for Brain Health, Vancouver, British Columbia, Canada
| | - Matthieu P. Vanni
- Kinsmen Laboratory of Neurological Research, Department of Psychiatry, Vancouver, British Columbia, Canada
- University of British Columbia, Djavad Mowafaghian Centre for Brain Health, Vancouver, British Columbia, Canada
- Université de Montréal, School of Optometry, Montréal, Québec, Canada
| | - Timothy H. Murphy
- Kinsmen Laboratory of Neurological Research, Department of Psychiatry, Vancouver, British Columbia, Canada
- University of British Columbia, Djavad Mowafaghian Centre for Brain Health, Vancouver, British Columbia, Canada
- Address all correspondence to Timothy H. Murphy E-mail:
| |
Collapse
|
566
|
Chen SH, Haam J, Walker M, Scappini E, Naughton J, Martin NP. Recombinant Viral Vectors as Neuroscience Tools. ACTA ACUST UNITED AC 2019; 87:e67. [PMID: 30901512 DOI: 10.1002/cpns.67] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Recombinant viruses are highly efficient vehicles for in vivo gene delivery. Viral vectors expand the neurobiology toolbox to include direct and rapid anterograde, retrograde, and trans-synaptic delivery of tracers, sensors, and actuators to the mammalian brain. Each viral type offers unique advantages and limitations. To establish strategies for selecting a suitable viral type, this article aims to provide readers with an overview of viral recombinant technology, viral structure, tropism, and differences between serotypes and pseudotypes for three of the most commonly used vectors in neurobiology research: adeno-associated viruses, retro/lentiviruses, and glycoprotein-deleted rabies viruses. © 2019 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Shih-Heng Chen
- Viral Vector Core, National Institute of Environmental Health Sciences, NIH/DHHS, Research Triangle Park, North Carolina.,Neurobiology Laboratory, National Institute of Environmental Health Sciences, NIH/DHHS, Research Triangle Park, North Carolina
| | - Juhee Haam
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, NIH/DHHS, Research Triangle Park, North Carolina
| | - Mitzie Walker
- Viral Vector Core, National Institute of Environmental Health Sciences, NIH/DHHS, Research Triangle Park, North Carolina.,Neurobiology Laboratory, National Institute of Environmental Health Sciences, NIH/DHHS, Research Triangle Park, North Carolina
| | - Erica Scappini
- Signal Transduction Laboratory, Fluorescence Microscopy and Imaging Center, National Institute of Environmental Health Sciences, NIH/DHHS, Research Triangle Park, North Carolina
| | - John Naughton
- Gene Transfer, Targeting and Therapeutics (GT3) Core, Salk Institute for Biological Studies, La Jolla, California
| | - Negin P Martin
- Viral Vector Core, National Institute of Environmental Health Sciences, NIH/DHHS, Research Triangle Park, North Carolina.,Neurobiology Laboratory, National Institute of Environmental Health Sciences, NIH/DHHS, Research Triangle Park, North Carolina
| |
Collapse
|
567
|
Zhang Q, Lee WCA, Paul DL, Ginty DD. Multiplexed peroxidase-based electron microscopy labeling enables simultaneous visualization of multiple cell types. Nat Neurosci 2019; 22:828-839. [PMID: 30886406 PMCID: PMC6555422 DOI: 10.1038/s41593-019-0358-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 02/07/2019] [Indexed: 01/06/2023]
Abstract
Electron microscopy (EM) is a powerful tool for circuit mapping, but identifying specific cell types in EM datasets remains a major challenge. Here we describe a technique enabling simultaneous visualization of multiple, genetically identified neuronal populations so that synaptic interactions between them can be unequivocally defined. We present 15 AAV constructs and six mouse reporter lines for multiplexed EM labeling in the mammalian nervous system. These reporters feature dAPEX2, which exhibits dramatically improved signal compared to previously described ascorbate peroxidases. By targeting this enhanced peroxidase to different subcellular compartments, multiple orthogonal reporters can be simultaneously visualized and distinguished under EM using a protocol compatible with existing EM pipelines. Proof-of-principle double and triple EM labeling experiments demonstrated synaptic connections between primary afferents, descending cortical inputs, and inhibitory interneurons in the spinal cord dorsal horn. Our multiplexed peroxidase-based EM labeling system should therefore greatly facilitate analysis of connectivity in the nervous system.
Collapse
Affiliation(s)
- Qiyu Zhang
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA.,Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Wei-Chung A Lee
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
| | - David L Paul
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA.
| | - David D Ginty
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA. .,Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
568
|
Hudry E, Vandenberghe LH. Therapeutic AAV Gene Transfer to the Nervous System: A Clinical Reality. Neuron 2019; 101:839-862. [PMID: 30844402 PMCID: PMC11804970 DOI: 10.1016/j.neuron.2019.02.017] [Citation(s) in RCA: 229] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 02/07/2019] [Accepted: 02/11/2019] [Indexed: 02/07/2023]
Abstract
Gene transfer has long been a compelling yet elusive therapeutic modality. First mainly considered for rare inherited disorders, gene therapy may open treatment opportunities for more challenging and complex diseases such as Alzheimer's or Parkinson's disease. Today, examples of striking clinical proof of concept, the first gene therapy drugs coming onto the market, and the emergence of powerful new molecular tools have broadened the number of avenues to target neurological disorders but have also highlighted safety concerns and technology gaps. The vector of choice for many nervous system targets currently is the adeno-associated viral (AAV) vector due to its desirable safety profile and strong neuronal tropism. In aggregate, the clinical success, the preclinical potential, and the technological innovation have made therapeutic AAV drug development a reality, particularly for nervous system disorders. Here, we discuss the rationale, opportunities, limitations, and progress in clinical AAV gene therapy.
Collapse
Affiliation(s)
- Eloise Hudry
- Department of Neurology, The Massachusetts General Hospital and NeuroDiscovery Center, Harvard Medical School, Boston, MA, USA.
| | - Luk H Vandenberghe
- Grousbeck Gene Therapy Center, Schepens Eye Research Institute and Massachusetts Eye and Ear Infirmary, Boston, MA, USA; Ocular Genomics Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA; Harvard Program in Therapeutic Science, Harvard University, Cambridge, MA, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA; The Broad Institute of Harvard and MIT, Cambridge, MA, USA.
| |
Collapse
|
569
|
Tabrizi SJ, Ghosh R, Leavitt BR. Huntingtin Lowering Strategies for Disease Modification in Huntington's Disease. Neuron 2019; 101:801-819. [PMID: 30844400 DOI: 10.1016/j.neuron.2019.01.039] [Citation(s) in RCA: 201] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 12/21/2018] [Accepted: 01/17/2019] [Indexed: 12/24/2022]
Abstract
Huntington's disease is caused by an abnormally expanded CAG repeat expansion in the HTT gene, which confers a predominant toxic gain of function in the mutant huntingtin (mHTT) protein. There are currently no disease-modifying therapies available, but approaches that target proximally in disease pathogenesis hold great promise. These include DNA-targeting techniques such as zinc-finger proteins, transcription activator-like effector nucleases, and CRISPR/Cas9; post-transcriptional huntingtin-lowering approaches such as RNAi, antisense oligonucleotides, and small-molecule splicing modulators; and novel methods to clear the mHTT protein, such as proteolysis-targeting chimeras. Improvements in the delivery and distribution of such agents as well as the development of objective biomarkers of disease and of HTT lowering pharmacodynamic outcomes have brought these potential therapies to the forefront of Huntington's disease research, with clinical trials in patients already underway.
Collapse
Affiliation(s)
- Sarah J Tabrizi
- Huntington's Disease Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK; UK Dementia Research Institute (DRI) at UCL, London, UK.
| | - Rhia Ghosh
- Huntington's Disease Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Blair R Leavitt
- UBC Centre for Huntington's Disease, Department of Medical Genetics and Centre for Molecular Medicine and Therapeutics, BC Children's Hospital, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
570
|
Anderson HE, Weir RFF. On the development of optical peripheral nerve interfaces. Neural Regen Res 2019; 14:425-436. [PMID: 30539808 PMCID: PMC6334609 DOI: 10.4103/1673-5374.245461] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Accepted: 09/19/2018] [Indexed: 11/04/2022] Open
Abstract
Limb loss and spinal cord injury are two debilitating conditions that continue to grow in prevalence. Prosthetic limbs and limb reanimation present two ways of providing affected individuals with means to interact in the world. These techniques are both dependent on a robust interface with the peripheral nerve. Current methods for interfacing with the peripheral nerve tend to suffer from low specificity, high latency and insufficient robustness for a chronic implant. An optical peripheral nerve interface may solve some of these problems by decreasing invasiveness and providing single axon specificity. In order to implement such an interface three elements are required: (1) a transducer capable of translating light into a neural stimulus or translating neural activity into changes in fluorescence, (2) a means for delivering said transducer and (3) a microscope for providing the stimulus light and detecting the fluorescence change. There are continued improvements in both genetically encoded calcium and voltage indicators as well as new optogenetic actuators for stimulation. Similarly, improvements in specificity of viral vectors continue to improve expression in the axons of the peripheral nerve. Our work has recently shown that it is possible to virally transduce axons of the peripheral nerve for recording from small fibers. The improvements of these components make an optical peripheral nerve interface a rapidly approaching alternative to current methods.
Collapse
Affiliation(s)
- Hans E. Anderson
- Department of Bioengineering, University of Colorado Denver | Anschutz Medical Campus, Aurora, CO, USA
| | - Richard F. ff. Weir
- Department of Bioengineering, University of Colorado Denver | Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
571
|
Matsuzaki Y, Tanaka M, Hakoda S, Masuda T, Miyata R, Konno A, Hirai H. Neurotropic Properties of AAV-PHP.B Are Shared among Diverse Inbred Strains of Mice. Mol Ther 2019; 27:700-704. [PMID: 30842039 DOI: 10.1016/j.ymthe.2019.02.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Yasunori Matsuzaki
- Department of Neurophysiology & Neural Repair, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Masami Tanaka
- Department of Neurophysiology & Neural Repair, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Sachiko Hakoda
- Department of Neurophysiology & Neural Repair, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Tatsuki Masuda
- Department of Neurophysiology & Neural Repair, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Ryota Miyata
- Department of Neurophysiology & Neural Repair, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Ayumu Konno
- Department of Neurophysiology & Neural Repair, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Hirokazu Hirai
- Department of Neurophysiology & Neural Repair, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan; Research Program for Neural Signaling, Division of Endocrinology, Metabolism and Signal Research, Gunma University Initiative for Advanced Research, Gunma, Japan.
| |
Collapse
|
572
|
Zelikowsky M, Hui M, Karigo T, Choe A, Yang B, Blanco MR, Beadle K, Gradinaru V, Deverman BE, Anderson DJ. The Neuropeptide Tac2 Controls a Distributed Brain State Induced by Chronic Social Isolation Stress. Cell 2019; 173:1265-1279.e19. [PMID: 29775595 DOI: 10.1016/j.cell.2018.03.037] [Citation(s) in RCA: 183] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 01/29/2018] [Accepted: 03/15/2018] [Indexed: 01/06/2023]
Abstract
Chronic social isolation causes severe psychological effects in humans, but their neural bases remain poorly understood. 2 weeks (but not 24 hr) of social isolation stress (SIS) caused multiple behavioral changes in mice and induced brain-wide upregulation of the neuropeptide tachykinin 2 (Tac2)/neurokinin B (NkB). Systemic administration of an Nk3R antagonist prevented virtually all of the behavioral effects of chronic SIS. Conversely, enhancing NkB expression and release phenocopied SIS in group-housed mice, promoting aggression and converting stimulus-locked defensive behaviors to persistent responses. Multiplexed analysis of Tac2/NkB function in multiple brain areas revealed dissociable, region-specific requirements for both the peptide and its receptor in different SIS-induced behavioral changes. Thus, Tac2 coordinates a pleiotropic brain state caused by SIS via a distributed mode of action. These data reveal the profound effects of prolonged social isolation on brain chemistry and function and suggest potential new therapeutic applications for Nk3R antagonists.
Collapse
Affiliation(s)
- Moriel Zelikowsky
- Division of Biology and Biological Engineering 156-29, California Institute of Technology, Pasadena, CA 91125, USA.
| | - May Hui
- Division of Biology and Biological Engineering 156-29, California Institute of Technology, Pasadena, CA 91125, USA
| | - Tomomi Karigo
- Division of Biology and Biological Engineering 156-29, California Institute of Technology, Pasadena, CA 91125, USA
| | - Andrea Choe
- Division of Biology and Biological Engineering 156-29, California Institute of Technology, Pasadena, CA 91125, USA
| | - Bin Yang
- Division of Biology and Biological Engineering 156-29, California Institute of Technology, Pasadena, CA 91125, USA
| | - Mario R Blanco
- Division of Biology and Biological Engineering 156-29, California Institute of Technology, Pasadena, CA 91125, USA
| | - Keith Beadle
- Division of Biology and Biological Engineering 156-29, California Institute of Technology, Pasadena, CA 91125, USA
| | - Viviana Gradinaru
- Division of Biology and Biological Engineering 156-29, California Institute of Technology, Pasadena, CA 91125, USA
| | - Benjamin E Deverman
- Division of Biology and Biological Engineering 156-29, California Institute of Technology, Pasadena, CA 91125, USA
| | - David J Anderson
- Division of Biology and Biological Engineering 156-29, California Institute of Technology, Pasadena, CA 91125, USA; Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA 91125, USA; Tianqiao and Chrissy Chen Institute for Neuroscience, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
573
|
Hordeaux J, Yuan Y, Clark PM, Wang Q, Martino RA, Sims JJ, Bell P, Raymond A, Stanford WL, Wilson JM. The GPI-Linked Protein LY6A Drives AAV-PHP.B Transport across the Blood-Brain Barrier. Mol Ther 2019; 27:912-921. [PMID: 30819613 DOI: 10.1016/j.ymthe.2019.02.013] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 02/13/2019] [Accepted: 02/14/2019] [Indexed: 12/30/2022] Open
Abstract
Efficient delivery of gene therapy vectors across the blood-brain barrier (BBB) is the holy grail of neurological disease therapies. A variant of the neurotropic vector adeno-associated virus (AAV) serotype 9, called AAV-PHP.B, was shown to very efficiently deliver transgenes across the BBB in C57BL/6J mice. Based on our recent observation that this phenotype is mouse strain dependent, we used whole-exome sequencing-based genetics to map this phenotype to a specific haplotype of lymphocyte antigen 6 complex, locus A (Ly6a) (stem cell antigen-1 [Sca-1]), which encodes a glycosylphosphatidylinositol (GPI)-anchored protein whose function had been thought to be limited to the biology of hematopoiesis. Additional biochemical and genetic studies definitively linked high BBB transport to the binding of AAV-PHP.B with LY6A (SCA-1). These studies identify, for the first time, a ligand for this GPI-anchored protein and suggest a role for it in BBB transport that could be hijacked by viruses in natural infections or by gene therapy vectors to treat neurological diseases.
Collapse
Affiliation(s)
- Juliette Hordeaux
- Gene Therapy Program, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Yuan Yuan
- Gene Therapy Program, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Peter M Clark
- Gene Therapy Program, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Qiang Wang
- Gene Therapy Program, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - R Alexander Martino
- Gene Therapy Program, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Joshua J Sims
- Gene Therapy Program, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Peter Bell
- Gene Therapy Program, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Angela Raymond
- Regenerative Medicine Program, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON K1H 8L6, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8L6, Canada
| | - William L Stanford
- Regenerative Medicine Program, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON K1H 8L6, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8L6, Canada
| | - James M Wilson
- Gene Therapy Program, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
574
|
Challis RC, Ravindra Kumar S, Chan KY, Challis C, Beadle K, Jang MJ, Kim HM, Rajendran PS, Tompkins JD, Shivkumar K, Deverman BE, Gradinaru V. Systemic AAV vectors for widespread and targeted gene delivery in rodents. Nat Protoc 2019; 14:379-414. [PMID: 30626963 DOI: 10.1038/s41596-018-0097-3] [Citation(s) in RCA: 220] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We recently developed adeno-associated virus (AAV) capsids to facilitate efficient and noninvasive gene transfer to the central and peripheral nervous systems. However, a detailed protocol for generating and systemically delivering novel AAV variants was not previously available. In this protocol, we describe how to produce and intravenously administer AAVs to adult mice to specifically label and/or genetically manipulate cells in the nervous system and organs, including the heart. The procedure comprises three separate stages: AAV production, intravenous delivery, and evaluation of transgene expression. The protocol spans 8 d, excluding the time required to assess gene expression, and can be readily adopted by researchers with basic molecular biology, cell culture, and animal work experience. We provide guidelines for experimental design and choice of the capsid, cargo, and viral dose appropriate for the experimental aims. The procedures outlined here are adaptable to diverse biomedical applications, from anatomical and functional mapping to gene expression, silencing, and editing.
Collapse
Affiliation(s)
- Rosemary C Challis
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Sripriya Ravindra Kumar
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Ken Y Chan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Collin Challis
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Keith Beadle
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Min J Jang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Hyun Min Kim
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Pradeep S Rajendran
- Cardiac Arrhythmia Center and Neurocardiology Research Center of Excellence, University of California, Los Angeles, Los Angeles, CA, USA
| | - John D Tompkins
- Cardiac Arrhythmia Center and Neurocardiology Research Center of Excellence, University of California, Los Angeles, Los Angeles, CA, USA
| | - Kalyanam Shivkumar
- Cardiac Arrhythmia Center and Neurocardiology Research Center of Excellence, University of California, Los Angeles, Los Angeles, CA, USA
| | - Benjamin E Deverman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Viviana Gradinaru
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
575
|
Differentiation and maturation of oligodendrocytes in human three-dimensional neural cultures. Nat Neurosci 2019; 22:484-491. [PMID: 30692691 PMCID: PMC6788758 DOI: 10.1038/s41593-018-0316-9] [Citation(s) in RCA: 233] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 12/05/2018] [Indexed: 02/07/2023]
Abstract
Investigating human oligodendrogenesis and the interaction of oligodendrocytes with neurons and astrocytes would accelerate our understanding of the mechanisms underlying white matter disorders. However, this is challenging due to limited accessibility of functional human brain tissue. Here, we developed a novel differentiation method of human induced pluripotent stem cells (hiPS cells) to generate three-dimensional (3D) neural spheroids that contain oligodendrocytes as well as neurons and astrocytes, called human oligodendrocyte spheroids (hOLS). We demonstrate that oligodendrocyte-lineage cells derived in hOLS transition through developmental stages similar to primary human oligodendrocytes and that the migration of oligodendrocyte-lineage cells and their susceptibility to lysolecithin exposure can be captured by live imaging. Moreover, their morphology changes as they mature over time in vitro and start myelinating neurons. We anticipate that this method can be used to study oligodendrocyte development, myelination, and interactions with other major cell types in the central nervous system.
Collapse
|
576
|
Büning H, Srivastava A. Capsid Modifications for Targeting and Improving the Efficacy of AAV Vectors. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2019; 12:248-265. [PMID: 30815511 PMCID: PMC6378346 DOI: 10.1016/j.omtm.2019.01.008] [Citation(s) in RCA: 182] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In the past decade, recombinant vectors based on a non-pathogenic parvovirus, the adeno-associated virus (AAV), have taken center stage as a gene delivery vehicle for the potential gene therapy for a number of human diseases. To date, the safety of AAV vectors in 176 phase I, II, and III clinical trials and their efficacy in at least eight human diseases are now firmly documented. Despite these remarkable achievements, it has also become abundantly clear that the full potential of first generation AAV vectors composed of naturally occurring capsids is not likely to be realized, since the wild-type AAV did not evolve for the purpose of therapeutic gene delivery. In this article, we provide a brief historical account of the progress that has been made in the development of capsid-modified, next-generation AAV vectors to ensure both the safety and efficacy of these vectors in targeting a wide variety of human diseases.
Collapse
Affiliation(s)
- Hildegard Büning
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.,REBIRTH Cluster of Excellence, Hannover Medical School, Hannover, Germany
| | - Arun Srivastava
- Division of Cellular and Molecular Therapy, Departments of Pediatrics and Molecular Genetics & Microbiology, Powell Gene Therapy Center, University of Florida College of Medicine, Gainesville, FL, USA
| |
Collapse
|
577
|
Lim JA, Yi H, Gao F, Raben N, Kishnani PS, Sun B. Intravenous Injection of an AAV-PHP.B Vector Encoding Human Acid α-Glucosidase Rescues Both Muscle and CNS Defects in Murine Pompe Disease. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2019; 12:233-245. [PMID: 30809555 PMCID: PMC6376130 DOI: 10.1016/j.omtm.2019.01.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 01/21/2019] [Indexed: 01/01/2023]
Abstract
Pompe disease, a severe and often fatal neuromuscular disorder, is caused by a deficiency of the lysosomal enzyme acid alpha-glucosidase (GAA). The disease is characterized by the accumulation of excess glycogen in the heart, skeletal muscle, and CNS. Currently approved enzyme replacement therapy or experimental adeno-associated virus (AAV)-mediated gene therapy has little effect on CNS correction. Here we demonstrate that a newly developed AAV-PHP.B vector can robustly transduce both the CNS and skeletal muscles in GAA-knockout (GAAKO) mice. A single intravenous injection of an AAV-PHP.B vector expressing human GAA under the control of cytomegalovirus (CMV) enhancer-chicken β-actin (CB) promoter into 2-week-old GAAKO mice resulted in widespread GAA expression in the affected tissues. Glycogen contents were reduced to wild-type levels in the brain and heart, and they were significantly decreased in skeletal muscle by the AAV treatment. The histological assay showed no visible glycogen in any region of the brain and spinal cord of AAV-treated mice. In this study, we describe a set of behavioral tests that can detect early neurological deficits linked to extensive lysosomal glycogen accumulation in the CNS of untreated GAAKO mice. Furthermore, we demonstrate that the therapy can help prevent the development of these abnormalities.
Collapse
Affiliation(s)
- Jeong-A Lim
- Department of Pediatrics, Division of Medical Genetics, Duke University School of Medicine, Durham, NC, USA
| | - Haiqing Yi
- Department of Pediatrics, Division of Medical Genetics, Duke University School of Medicine, Durham, NC, USA
| | - Fengqin Gao
- Department of Pediatrics, Division of Medical Genetics, Duke University School of Medicine, Durham, NC, USA
| | - Nina Raben
- Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
| | - Priya S Kishnani
- Department of Pediatrics, Division of Medical Genetics, Duke University School of Medicine, Durham, NC, USA
| | - Baodong Sun
- Department of Pediatrics, Division of Medical Genetics, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
578
|
Kim MA, Ryu N, Kim HM, Kim YR, Lee B, Kwon TJ, Bok J, Kim UK. Targeted Gene Delivery into the Mammalian Inner Ear Using Synthetic Serotypes of Adeno-Associated Virus Vectors. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2019; 13:197-204. [PMID: 30805407 PMCID: PMC6374519 DOI: 10.1016/j.omtm.2019.01.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 01/07/2019] [Indexed: 12/15/2022]
Abstract
Targeting specific cell types in the mammalian inner ear is important for treating genetic hearing loss due to the different cell type-specific functions. Adeno-associated virus (AAV) is an efficient in vivo gene transfer vector, and it has demonstrated promise for treating genetic hearing loss. Although more than 100 AAV serotypes have been identified, few studies have investigated whether AAV can be distributed to specific inner ear cell types. Here we screened three EGFP-AAV reporter constructs (serotypes DJ, DJ8, and PHP.B) in the neonatal mammalian inner ear by injection via the round window membrane to determine the cellular specificity of the AAV vectors. Sensory hair cells, supporting cells, cells in Reissner’s membrane, interdental cells, and root cells were successfully transduced. Hair cells in the cochlear sensory epithelial region were the most frequently transduced cell type by all tested AAV serotypes. The recombinant DJ serotype most effectively transduced a range of cell types at a high rate. Our findings provide a basis for improving treatment of hereditary hearing loss using targeted AAV-mediated gene therapy.
Collapse
Affiliation(s)
- Min-A Kim
- Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Nari Ryu
- Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Hye-Min Kim
- Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Ye-Ri Kim
- Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Byeonghyeon Lee
- Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Tae-Jun Kwon
- Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, Republic of Korea
| | - Jinwoong Bok
- Department of Anatomy, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- BK21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- Corresponding author: Jinwoong Bok, PhD, Department of Anatomy, Yonsei University College of Medicine, Seoul 03722, Republic of Korea.
| | - Un-Kyung Kim
- Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
- Corresponding author: Un-Kyung Kim, PhD, Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu 41566, Republic of Korea.
| |
Collapse
|
579
|
Aldrin-Kirk P, Björklund T. Practical Considerations for the Use of DREADD and Other Chemogenetic Receptors to Regulate Neuronal Activity in the Mammalian Brain. Methods Mol Biol 2019; 1937:59-87. [PMID: 30706390 DOI: 10.1007/978-1-4939-9065-8_4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Chemogenetics is the process of genetically expressing a macromolecule receptor capable of modulating the activity of the cell in response to selective chemical ligand. This chapter will cover the chemogenetic technologies that are available to date, focusing on the commonly available engineered or otherwise modified ligand-gated ion channels and G-protein-coupled receptors in the context of neuromodulation. First, we will give a brief overview of each chemogenetic approach as well as in vitro/in vivo applications, then we will list their strengths and weaknesses. Finally, we will provide tips for ligand application in each case.Each technology has specific limitations that make them more or less suitable for different applications in neuroscience although we will focus mainly on the most commonly used and versatile family named designer receptors exclusively activated by designer drugs or DREADDs. We here describe the most common cases where these can be implemented and provide tips on how and where these technologies can be applied in the field of neuroscience.
Collapse
Affiliation(s)
- Patrick Aldrin-Kirk
- Molecular Neuromodulation, Wallenberg Neuroscience Center, Lund University, Lund, Sweden
| | - Tomas Björklund
- Molecular Neuromodulation, Wallenberg Neuroscience Center, Lund University, Lund, Sweden.
| |
Collapse
|
580
|
Gessler DJ, Tai PWL, Li J, Gao G. Intravenous Infusion of AAV for Widespread Gene Delivery to the Nervous System. Methods Mol Biol 2019; 1950:143-163. [PMID: 30783972 PMCID: PMC7339923 DOI: 10.1007/978-1-4939-9139-6_8] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The central nervous system (CNS) is a fascinating and intricate set of biological structures that we have yet to fully understand. Studying the in vivo function of the CNS and finding novel methods for treating neurological disorders have been particularly challenging. One difficulty is correcting genetic disorders afflicting the CNS in a targeted manner. Recombinant adeno-associated viruses (rAAVs) have emerged as promising therapeutic tools for treating genetic defects of the CNS, due to their excellent safety profile and ability to cross the blood-brain barrier (BBB). While stereotactic injection of AAV is promising for localized gene delivery, it is less desirable for some applications because of the technique's invasiveness and limited intraparenchymal spread. Alternatively, intravascular administration can achieve widespread delivery of rAAV to the CNS. In this chapter, we will discuss the prevalent routes of administration to deliver rAAV to the CNS via intravenous (IV) injection in mice. We will highlight key considerations for using rAAV, and the advantages and disadvantages of each administration method. We will also briefly discuss intravenous delivery in larger animal models, factors that may impact experimental interpretations, and outlooks for clinical translation.
Collapse
Affiliation(s)
- Dominic J Gessler
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, MA, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA
| | - Phillip W L Tai
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, MA, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA
| | - Jia Li
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, MA, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA
| | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA.
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, MA, USA.
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
581
|
Perocheau DP, Cunningham SC, Lee J, Antinao Diaz J, Waddington SN, Gilmour K, Eaglestone S, Lisowski L, Thrasher AJ, Alexander IE, Gissen P, Baruteau J. Age-Related Seroprevalence of Antibodies Against AAV-LK03 in a UK Population Cohort. Hum Gene Ther 2019; 30:79-87. [PMID: 30027761 PMCID: PMC6343184 DOI: 10.1089/hum.2018.098] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 06/28/2018] [Indexed: 12/16/2022] Open
Abstract
Recombinant adeno-associated virus (rAAV) vectors are a promising platform for in vivo gene therapy. The presence of neutralizing antibodies (Nab) against AAV capsids decreases cell transduction efficiency and is a common exclusion criterion for participation in clinical trials. Novel engineered capsids are being generated to improve gene delivery to the target cells and facilitate success of clinical trials; however, the prevalence of antibodies against such capsids remains largely unknown. We therefore assessed the seroprevalence of antibodies against a novel synthetic liver-tropic capsid AAV-LK03. We measured seroprevalence of immunoglobulin (Ig)G (i.e., neutralizing and nonneutralizing) antibodies and Nab to AAV-LK03 in a cohort of 323 UK patients (including 260 pediatric) and 52 juvenile rhesus macaques. We also performed comparative analysis of seroprevalence of Nab against wild-type AAV8 and AAV3B capsids. Overall IgG seroprevalence for AAV-LK03 was 39% in human samples. The titer increased with age. Prevalence of Nab was 23%, 35%, and 18% for AAV-LK03, AAV3B, and AAV8, respectively, with the lowest seroprevalence between 3 and 17 years of age for all serotypes. Presence of Nab against AAV-LK03 decreased from 36% in the youngest cohort (birth to 6 months) to 7% in older primary school-age children (9-11 years) and then progressively increased to 54% in late adulthood. Cross-reactivity between serotypes was >60%. Nab seroprevalence in macaques was 62%, 85%, and 40% for AAV-LK03, AAV3B, and AAV8, respectively. When planning for AAV gene therapy clinical trials, knowing the seropositivity of the target population is critical. In the population studied, AAV seroprevalence for AAV serotypes tested was low. However, high cross-reactivity between AAV serotypes remains a barrier for re-injection. Shifts in Nab seroprevalence during the first decade need to be confirmed by longitudinal studies. This possibility suggests that pediatric patients could respond differently to AAV therapy according to age. If late childhood is an ideal age window, intervention at an early age when maternal Nab levels are high may be challenging. Nab-positive children excluded from trials could be rescreened for eligibility at regular intervals because this status may change.
Collapse
Affiliation(s)
- Dany P. Perocheau
- Genetics and Genomic Medicine Programme, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
- Gene Transfer Technology Group, Institute for Women's Health, University College London, London, United Kingdom
| | - Sharon C. Cunningham
- Gene Therapy Research Unit, Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney and Sydney Children's Hospital Network, Westmead, Australia
| | - Juhee Lee
- Genetics and Genomic Medicine Programme, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
- Gene Transfer Technology Group, Institute for Women's Health, University College London, London, United Kingdom
| | - Juan Antinao Diaz
- Gene Transfer Technology Group, Institute for Women's Health, University College London, London, United Kingdom
| | - Simon N. Waddington
- Gene Transfer Technology Group, Institute for Women's Health, University College London, London, United Kingdom
- Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, University of the Witswatersrand, Johannesburg, South Africa
| | - Kimberly Gilmour
- Clinical Immunology Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Simon Eaglestone
- Translational Research Office, University College London, London, United Kingdom
| | - Leszek Lisowski
- Gene Therapy Research Unit, Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney and Sydney Children's Hospital Network, Westmead, Australia
- Translational Vectorology Group, Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, Australia
- Military Institute of Hygiene and Epidemiology, The Biological Threats Identification and Countermeasure Centre, Puławy, Poland
| | - Adrian J. Thrasher
- Clinical Immunology Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
- Infection, Immunity and Inflammation Programme, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Ian E. Alexander
- Gene Therapy Research Unit, Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney and Sydney Children's Hospital Network, Westmead, Australia
- Discipline of Child and Adolescent Health, Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Westmead, Australia
| | - Paul Gissen
- Genetics and Genomic Medicine Programme, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
- MRC Laboratory for Molecular Biology, University College London, London, United Kingdom
- Metabolic Medicine Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Julien Baruteau
- Genetics and Genomic Medicine Programme, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
- Gene Transfer Technology Group, Institute for Women's Health, University College London, London, United Kingdom
- Metabolic Medicine Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
582
|
Watanave M, Hoshino C, Konno A, Fukuzaki Y, Matsuzaki Y, Ishitani T, Hirai H. Pharmacological enhancement of retinoid-related orphan receptor α function mitigates spinocerebellar ataxia type 3 pathology. Neurobiol Dis 2019; 121:263-273. [DOI: 10.1016/j.nbd.2018.10.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 09/26/2018] [Accepted: 10/17/2018] [Indexed: 01/02/2023] Open
|
583
|
Sweeney MD, Zhao Z, Montagne A, Nelson AR, Zlokovic BV. Blood-Brain Barrier: From Physiology to Disease and Back. Physiol Rev 2019; 99:21-78. [PMID: 30280653 PMCID: PMC6335099 DOI: 10.1152/physrev.00050.2017] [Citation(s) in RCA: 1373] [Impact Index Per Article: 228.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 04/17/2018] [Accepted: 04/17/2018] [Indexed: 12/12/2022] Open
Abstract
The blood-brain barrier (BBB) prevents neurotoxic plasma components, blood cells, and pathogens from entering the brain. At the same time, the BBB regulates transport of molecules into and out of the central nervous system (CNS), which maintains tightly controlled chemical composition of the neuronal milieu that is required for proper neuronal functioning. In this review, we first examine molecular and cellular mechanisms underlying the establishment of the BBB. Then, we focus on BBB transport physiology, endothelial and pericyte transporters, and perivascular and paravascular transport. Next, we discuss rare human monogenic neurological disorders with the primary genetic defect in BBB-associated cells demonstrating the link between BBB breakdown and neurodegeneration. Then, we review the effects of genes underlying inheritance and/or increased susceptibility for Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease, and amyotrophic lateral sclerosis (ALS) on BBB in relation to other pathologies and neurological deficits. We next examine how BBB dysfunction relates to neurological deficits and other pathologies in the majority of sporadic AD, PD, and ALS cases, multiple sclerosis, other neurodegenerative disorders, and acute CNS disorders such as stroke, traumatic brain injury, spinal cord injury, and epilepsy. Lastly, we discuss BBB-based therapeutic opportunities. We conclude with lessons learned and future directions, with emphasis on technological advances to investigate the BBB functions in the living human brain, and at the molecular and cellular level, and address key unanswered questions.
Collapse
Affiliation(s)
- Melanie D Sweeney
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California , Los Angeles, California ; and Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California , Los Angeles, California
| | - Zhen Zhao
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California , Los Angeles, California ; and Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California , Los Angeles, California
| | - Axel Montagne
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California , Los Angeles, California ; and Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California , Los Angeles, California
| | - Amy R Nelson
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California , Los Angeles, California ; and Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California , Los Angeles, California
| | - Berislav V Zlokovic
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California , Los Angeles, California ; and Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California , Los Angeles, California
| |
Collapse
|
584
|
Panoptic imaging of transparent mice reveals whole-body neuronal projections and skull-meninges connections. Nat Neurosci 2018; 22:317-327. [PMID: 30598527 PMCID: PMC6494982 DOI: 10.1038/s41593-018-0301-3] [Citation(s) in RCA: 301] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Accepted: 11/21/2018] [Indexed: 01/06/2023]
Abstract
Analysis of entire transparent rodent bodies after clearing could provide holistic biological information in health and disease, but reliable imaging and quantification of fluorescent protein signals deep inside the tissues has remained a challenge. Here, we developed vDISCO, a pressure-driven, nanobody-based whole-body immunolabeling technology to enhance the signal of fluorescent proteins by up to two orders of magnitude. This allowed us to image and quantify subcellular details through bones, skin and highly autofluorescent tissues of intact transparent mice. For the first time, we visualized whole-body neuronal projections in adult mice. We assessed CNS trauma effects in the whole body and found degeneration of peripheral nerve terminals in the torso. Furthermore, vDISCO revealed short vascular connections between skull marrow and brain meninges, which were filled with immune cells upon stroke. Thus, our new approach enables unbiased comprehensive studies of the interactions between the nervous system and the rest of the body.
Collapse
|
585
|
Blandini F, Cilia R, Cerri S, Pezzoli G, Schapira AHV, Mullin S, Lanciego JL. Glucocerebrosidase mutations and synucleinopathies: Toward a model of precision medicine. Mov Disord 2018; 34:9-21. [PMID: 30589955 DOI: 10.1002/mds.27583] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 10/24/2018] [Accepted: 11/01/2018] [Indexed: 12/21/2022] Open
Abstract
Glucocerebrosidase is a lysosomal enzyme. The characterization of a direct link between mutations in the gene coding for glucocerebrosidase (GBA1) with the development of Parkinson's disease and dementia with Lewy bodies has heightened interest in this enzyme. Although the mechanisms through which glucocerebrosidase regulates the homeostasis of α-synuclein remains poorly understood, the identification of reduced glucocerebrosidase activity in the brains of patients with PD and dementia with Lewy bodies has paved the way for the development of novel therapeutic strategies directed at enhancing glucocerebrosidase activity and reducing α-synuclein burden, thereby slowing down or even preventing neuronal death. Here we reviewed the current literature relating to the mechanisms underlying the cross talk between glucocerebrosidase and α-synuclein, the GBA1 mutation-associated clinical phenotypes, and ongoing therapeutic approaches targeting glucocerebrosidase. © 2018 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Fabio Blandini
- Laboratory of Functional Neurochemistry, IRCCS Mondino Foundation, Pavia, Italy
| | - Roberto Cilia
- Parkinson Institute, ASST Gaetano Pini-CTO, Milan, Italy
| | - Silvia Cerri
- Laboratory of Functional Neurochemistry, IRCCS Mondino Foundation, Pavia, Italy
| | - Gianni Pezzoli
- Parkinson Institute, ASST Gaetano Pini-CTO, Milan, Italy
| | - Anthony H V Schapira
- Department of Clinical Neurosciences, Institute of Neurology, University College London, Hampstead, UK
| | - Stephen Mullin
- Department of Clinical Neurosciences, Institute of Neurology, University College London, Hampstead, UK.,Institute of Translational and Stratified Medicine, Plymouth University Peninsula School of Medicine, Plymouth, UK
| | - José L Lanciego
- Programa de Neurociencias, Fundación para la Investigación Médica Aplicada (FIMA), Universidad de Navarra, Pamplona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CiberNed), Madrid, Spain.,Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| |
Collapse
|
586
|
Wang D, Gao G. Taking a Hint from Structural Biology: To Better Understand AAV Transport across the BBB. Mol Ther 2018; 26:336-338. [PMID: 29398483 DOI: 10.1016/j.ymthe.2018.01.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- Dan Wang
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA; Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, MA 01605, USA; Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA; Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, MA 01605, USA; Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01605, USA; Institute of Urology, Department of Thoracic Oncology, Cancer Center and National Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
587
|
Ronzitti E, Zampini V, Emiliani V. Optimized Chronos sets the clock for optogenetic hearing restoration. EMBO J 2018; 37:embj.2018101103. [PMID: 30509969 DOI: 10.15252/embj.2018101103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Emiliano Ronzitti
- Institut de la Vision, Inserm S968, CNRS UMR7210, Sorbonne University, Paris, France
| | - Valeria Zampini
- Institut de la Vision, Inserm S968, CNRS UMR7210, Sorbonne University, Paris, France
| | - Valentina Emiliani
- Institut de la Vision, Inserm S968, CNRS UMR7210, Sorbonne University, Paris, France
| |
Collapse
|
588
|
Sago CD, Lokugamage MP, Islam FZ, Krupczak BR, Sato M, Dahlman JE. Nanoparticles That Deliver RNA to Bone Marrow Identified by in Vivo Directed Evolution. J Am Chem Soc 2018; 140:17095-17105. [PMID: 30394729 PMCID: PMC6556374 DOI: 10.1021/jacs.8b08976] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Bone marrow endothelial cells (BMECs) regulate their microenvironment, which includes hematopoietic stem cells. This makes BMECs an important target cell type for siRNA or gene editing (e.g., CRISPR) therapies. However, siRNA and sgRNA have not been delivered to BMECs using systemically administered nanoparticles. Given that in vitro nanoparticle screens have not identified nanoparticles with BMEC tropism, we developed a system to quantify how >100 different nanoparticles deliver siRNA in a single mouse. This is the first barcoding system capable of quantifying functional cytosolic siRNA delivery (where the siRNA drug is active), distinguishing it from in vivo screens that quantify biodistribution (where the siRNA drug went). Combining this approach with bioinformatics, we performed in vivo directed evolution, and identified BM1, a lipid nanoparticle (LNP) that delivers siRNA and sgRNA to BMECs. Interestingly, chemical analysis revealed BMEC tropism was not related to LNP size; tropism changed with the structure of poly(ethylene glycol), as well as the presence of cholesterol. These results suggest that significant changes to vascular targeting can be imparted to a LNP by making simple changes to its chemical composition, rather than using active targeting ligands. BM1 is the first nanoparticle to efficiently deliver siRNA and sgRNA to BMECs in vivo, demonstrating that this functional in vivo screen can identify nanoparticles with novel tropism in vivo. More generally, in vivo screening may help reveal the complex relationship between nanoparticle structure and tropism, thereby helping scientists understand how simple chemical changes control nanoparticle targeting.
Collapse
Affiliation(s)
- Cory D Sago
- Wallace H. Coulter Department of Biomedical Engineering , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | - Melissa P Lokugamage
- Wallace H. Coulter Department of Biomedical Engineering , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | - Fatima Z Islam
- Wallace H. Coulter Department of Biomedical Engineering , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | - Brandon R Krupczak
- Wallace H. Coulter Department of Biomedical Engineering , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | - Manaka Sato
- Wallace H. Coulter Department of Biomedical Engineering , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | - James E Dahlman
- Wallace H. Coulter Department of Biomedical Engineering , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| |
Collapse
|
589
|
Sago CD, Kalathoor S, Fitzgerald JP, Lando GN, Djeddar N, Bryksin AV, Dahlman JE. Barcoding chemical modifications into nucleic acids improves drug stability in vivo. J Mater Chem B 2018; 6:7197-7203. [PMID: 30555697 PMCID: PMC6238725 DOI: 10.1039/c8tb01642a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 08/10/2018] [Indexed: 12/12/2022]
Abstract
The efficacy of nucleic acid therapies can be limited by unwanted degradation. Chemical modifications are known to improve nucleic acid stability, but the (i) types, (ii) positions, and (iii) numbers of modifications all matter, making chemically optimizing nucleic acids a combinatorial problem. As a result, in vivo studies of nucleic acid stability are time consuming and expensive. We reasoned that DNA barcodes could simultaneously study how chemical modification patterns affect nucleic acid stability, saving time and resources. We confirmed that rationally designed DNA barcodes can elucidate the role of specific chemical modifications in serum, in vitro and in vivo; we also identified a modification pattern that enhanced stability. This approach to screening chemical modifications in vivo can efficiently optimize nucleic acid structure, which will improve biomaterial-based nucleic acid drugs.
Collapse
Affiliation(s)
- Cory D Sago
- Wallace H. Coulter Department of Biomedical Engineering , Georgia Institute of Technology , Atlanta , GA 30332 , USA .
| | - Sujay Kalathoor
- Parker H. Petit Institute for Bioengineering and Bioscience , Georgia Institute of Technology , Atlanta , GA 30332 , USA
| | - Jordan P Fitzgerald
- Wallace H. Coulter Department of Biomedical Engineering , Georgia Institute of Technology , Atlanta , GA 30332 , USA .
| | - Gwyneth N Lando
- Wallace H. Coulter Department of Biomedical Engineering , Georgia Institute of Technology , Atlanta , GA 30332 , USA .
| | - Naima Djeddar
- Parker H. Petit Institute for Bioengineering and Bioscience , Georgia Institute of Technology , Atlanta , GA 30332 , USA
| | - Anton V Bryksin
- Parker H. Petit Institute for Bioengineering and Bioscience , Georgia Institute of Technology , Atlanta , GA 30332 , USA
| | - James E Dahlman
- Wallace H. Coulter Department of Biomedical Engineering , Georgia Institute of Technology , Atlanta , GA 30332 , USA .
| |
Collapse
|
590
|
György B, Meijer EJ, Ivanchenko MV, Tenneson K, Emond F, Hanlon KS, Indzhykulian AA, Volak A, Karavitaki KD, Tamvakologos PI, Vezina M, Berezovskii VK, Born RT, O'Brien M, Lafond JF, Arsenijevic Y, Kenna MA, Maguire CA, Corey DP. Gene Transfer with AAV9-PHP.B Rescues Hearing in a Mouse Model of Usher Syndrome 3A and Transduces Hair Cells in a Non-human Primate. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2018; 13:1-13. [PMID: 30581889 PMCID: PMC6297893 DOI: 10.1016/j.omtm.2018.11.003] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 11/14/2018] [Indexed: 12/01/2022]
Abstract
Hereditary hearing loss often results from mutation of genes expressed by cochlear hair cells. Gene addition using AAV vectors has shown some efficacy in mouse models, but clinical application requires two additional advances. First, new AAV capsids must mediate efficient transgene expression in both inner and outer hair cells of the cochlea. Second, to have the best chance of clinical translation, these new vectors must also transduce hair cells in non-human primates. Here, we show that an AAV9 capsid variant, PHP.B, produces efficient transgene expression of a GFP reporter in both inner and outer hair cells of neonatal mice. We show also that AAV9-PHP.B mediates almost complete transduction of inner and outer HCs in a non-human primate. In a mouse model of Usher syndrome type 3A deafness (gene CLRN1), we use AAV9-PHP.B encoding Clrn1 to partially rescue hearing. Thus, we have identified a vector with promise for clinical treatment of hereditary hearing disorders, and we demonstrate, for the first time, viral transduction of the inner ear of a primate with an AAV vector.
Collapse
Affiliation(s)
- Bence György
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA.,Molecular Neurogenetics Unit, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02114, USA
| | - Elise J Meijer
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | - Killian S Hanlon
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA.,Molecular Neurogenetics Unit, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02114, USA
| | - Artur A Indzhykulian
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA.,Department of Otolaryngology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - Adrienn Volak
- Molecular Neurogenetics Unit, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02114, USA
| | | | | | - Mark Vezina
- Charles River Laboratories, Senneville, QC, Canada
| | | | - Richard T Born
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | | | | | - Yvan Arsenijevic
- Unit of Retinal Degeneration and Regeneration, Department of Ophthalmology, University of Lausanne, Jules-Gonin Eye Hospital, Lausanne, Switzerland
| | - Margaret A Kenna
- Department of Otolaryngology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Casey A Maguire
- Molecular Neurogenetics Unit, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02114, USA
| | - David P Corey
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
591
|
Keppeler D, Merino RM, Lopez de la Morena D, Bali B, Huet AT, Gehrt A, Wrobel C, Subramanian S, Dombrowski T, Wolf F, Rankovic V, Neef A, Moser T. Ultrafast optogenetic stimulation of the auditory pathway by targeting-optimized Chronos. EMBO J 2018; 37:embj.201899649. [PMID: 30396994 DOI: 10.15252/embj.201899649] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 09/25/2018] [Accepted: 09/28/2018] [Indexed: 12/16/2022] Open
Abstract
Optogenetic tools, providing non-invasive control over selected cells, have the potential to revolutionize sensory prostheses for humans. Optogenetic stimulation of spiral ganglion neurons (SGNs) in the ear provides a future alternative to electrical stimulation used in cochlear implants. However, most channelrhodopsins do not support the high temporal fidelity pertinent to auditory coding because they require milliseconds to close after light-off. Here, we biophysically characterized the fast channelrhodopsin Chronos and revealed a deactivation time constant of less than a millisecond at body temperature. In order to enhance neural expression, we improved its trafficking to the plasma membrane (Chronos-ES/TS). Following efficient transduction of SGNs using early postnatal injection of the adeno-associated virus AAV-PHPB into the mouse cochlea, fiber-based optical stimulation elicited optical auditory brainstem responses (oABR) with minimal latencies of 1 ms, thresholds of 5 μJ and 100 μs per pulse, and sizable amplitudes even at 1,000 Hz of stimulation. Recordings from single SGNs demonstrated good temporal precision of light-evoked spiking. In conclusion, efficient virus-mediated expression of targeting-optimized Chronos-ES/TS achieves ultrafast optogenetic control of neurons.
Collapse
Affiliation(s)
- Daniel Keppeler
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany.,Göttingen Graduate School for Neurosciences and Molecular Biosciences, University of Göttingen, Göttingen, Germany
| | - Ricardo Martins Merino
- Göttingen Graduate School for Neurosciences and Molecular Biosciences, University of Göttingen, Göttingen, Germany.,Biophysics of Neural Computation Group, Bernstein Center for Computational Neuroscience Göttingen, Göttingen, Germany.,Neurophysics Group, Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany.,Max Planck Institute for Experimental Medicine, Göttingen, Germany
| | - David Lopez de la Morena
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany.,Göttingen Graduate School for Neurosciences and Molecular Biosciences, University of Göttingen, Göttingen, Germany.,Auditory Neuroscience and Optogenetics Laboratory, German Primate Center, Göttingen, Germany
| | - Burak Bali
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany.,Göttingen Graduate School for Neurosciences and Molecular Biosciences, University of Göttingen, Göttingen, Germany.,Restorative Cochlear Genomics Group, German Primate Center, Göttingen, Germany
| | - Antoine Tarquin Huet
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany.,Biophysics of Neural Computation Group, Bernstein Center for Computational Neuroscience Göttingen, Göttingen, Germany.,Auditory Neuroscience and Optogenetics Laboratory, German Primate Center, Göttingen, Germany
| | - Anna Gehrt
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany.,Collaborative Research Center 889, University of Göttingen, Göttingen, Germany
| | - Christian Wrobel
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany.,Collaborative Research Center 889, University of Göttingen, Göttingen, Germany
| | - Swati Subramanian
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany.,Göttingen Graduate School for Neurosciences and Molecular Biosciences, University of Göttingen, Göttingen, Germany
| | - Tobias Dombrowski
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany
| | - Fred Wolf
- Neurophysics Group, Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany.,Max Planck Institute for Experimental Medicine, Göttingen, Germany.,Collaborative Research Center 889, University of Göttingen, Göttingen, Germany.,Bernstein Center for Computational Neuroscience, Göttingen, Germany.,Campus Institute for Dynamics of Biological Networks, Göttingen, Germany
| | - Vladan Rankovic
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany .,Restorative Cochlear Genomics Group, German Primate Center, Göttingen, Germany
| | - Andreas Neef
- Biophysics of Neural Computation Group, Bernstein Center for Computational Neuroscience Göttingen, Göttingen, Germany .,Neurophysics Group, Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany.,Campus Institute for Dynamics of Biological Networks, Göttingen, Germany
| | - Tobias Moser
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany .,Göttingen Graduate School for Neurosciences and Molecular Biosciences, University of Göttingen, Göttingen, Germany.,Biophysics of Neural Computation Group, Bernstein Center for Computational Neuroscience Göttingen, Göttingen, Germany.,Max Planck Institute for Experimental Medicine, Göttingen, Germany.,Auditory Neuroscience and Optogenetics Laboratory, German Primate Center, Göttingen, Germany.,Collaborative Research Center 889, University of Göttingen, Göttingen, Germany.,Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Göttingen, Germany
| |
Collapse
|
592
|
Castle MJ, Cheng Y, Asokan A, Tuszynski MH. Physical positioning markedly enhances brain transduction after intrathecal AAV9 infusion. SCIENCE ADVANCES 2018; 4:eaau9859. [PMID: 30443600 PMCID: PMC6235539 DOI: 10.1126/sciadv.aau9859] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 10/15/2018] [Indexed: 05/10/2023]
Abstract
Several neurological disorders may benefit from gene therapy. However, even when using the lead vector candidate for intrathecal administration, adeno-associated virus serotype 9 (AAV9), the strength and distribution of gene transfer to the brain are inconsistent. On the basis of preliminary observations that standard intrathecal AAV9 infusions predominantly drive reporter gene expression in brain regions where gravity might cause cerebrospinal fluid to settle, we tested the hypothesis that counteracting vector "settling" through animal positioning would enhance vector delivery to the brain. When rats are either inverted in the Trendelenburg position or continuously rotated after intrathecal AAV9 infusion, we find (i) a significant 15-fold increase in the number of transduced neurons, (ii) a marked increase in gene delivery to cortical regions, and (iii) superior animal-to-animal consistency of gene expression. Entorhinal, prefrontal, frontal, parietal, hippocampal, limbic, and basal forebrain neurons are extensively transduced: 95% of transduced cells are neurons, and greater than 70% are excitatory. These findings provide a novel and simple method for broad gene delivery to the cortex and are of substantial relevance to translational programs for neurological disorders, including Alzheimer's disease and related dementias, stroke, and traumatic brain injury.
Collapse
Affiliation(s)
- Michael J. Castle
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Yuhsiang Cheng
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Aravind Asokan
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Mark H. Tuszynski
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
- Veterans Administration Medical Center, San Diego, CA 92161, USA
| |
Collapse
|
593
|
Mano T, Albanese A, Dodt HU, Erturk A, Gradinaru V, Treweek JB, Miyawaki A, Chung K, Ueda HR. Whole-Brain Analysis of Cells and Circuits by Tissue Clearing and Light-Sheet Microscopy. J Neurosci 2018; 38:9330-9337. [PMID: 30381424 PMCID: PMC6706004 DOI: 10.1523/jneurosci.1677-18.2018] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 09/27/2018] [Accepted: 09/27/2018] [Indexed: 12/21/2022] Open
Abstract
In this photo essay, we present a sampling of technologies from laboratories at the forefront of whole-brain clearing and imaging for high-resolution analysis of cell populations and neuronal circuits. The data presented here were provided for the eponymous Mini-Symposium presented at the Society for Neuroscience's 2018 annual meeting.
Collapse
Affiliation(s)
- Tomoyuki Mano
- Department of Information Physics and Computing, Graduate School of Information Science and Technology
- International Research Center for Neurointelligence, UTIAS
| | | | - Hans-Ulrich Dodt
- Department of Bioelectronics, Vienna University of Technology, FKE, 1040 Vienna, Austria
- Center for Brain Research, Medical University of Vienna, 1090 Vienna, Austria
| | - Ali Erturk
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig Maximilians University of Munich, 80539 Munich, Germany
- Graduate School of Systemic Neurosciences, 80539 Munich, Germany
- Munich Cluster for Systems Neurology, 81377 Munich, Germany
| | - Viviana Gradinaru
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, 91125
| | - Jennifer B Treweek
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, 91125
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089
| | - Atsushi Miyawaki
- Laboratory for Cell Function and Dynamics, Center for Brain Science
- Biotechnological Optics Research Team, Center for Advanced Photonics, RIKEN, Wako-City, 351-0198 Saitama, Japan
| | - Kwanghun Chung
- Institute for Medical Engineering and Science,
- Picower Institute for Learning and Memory
- Department of Chemical Engineering
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts 02139
- Broad Institute of Harvard University and MIT, Cambridge, Massachusetts 02142, and
| | - Hiroki R Ueda
- International Research Center for Neurointelligence, UTIAS,
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, 113-0033 Tokyo, Japan
- Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research, 565-0871 Suita, Japan
| |
Collapse
|
594
|
Shinohara Y, Konno A, Nitta K, Matsuzaki Y, Yasui H, Suwa J, Hiromura K, Hirai H. Effects of Neutralizing Antibody Production on AAV-PHP.B-Mediated Transduction of the Mouse Central Nervous System. Mol Neurobiol 2018; 56:4203-4214. [PMID: 30291583 DOI: 10.1007/s12035-018-1366-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 09/25/2018] [Indexed: 01/02/2023]
Abstract
Adeno-associated virus (AAV)-PHP.B, a capsid variant of AAV serotype 9, is highly permeable to the blood-brain barrier. A major obstacle to the systemic use of AAV-PHP.B is the generation of neutralizing antibodies (NAbs); however, temporal profiles of NAb production after exposure to AAV-PHP.B, and the influence on later AAV-PHP.B administration, remains unknown. To address these, AAV-PHP.Bs expressing either GFP or mCherry by neuron-specific or astrocyte-specific promoters were intravenously administered to mice at various intervals, and brain expression was examined. Injection of two AAV-PHP.Bs, separated temporally, showed that as little as a 1-day interval between injections resulted in a significant decrease in expression of the second transgene, with a complete loss of expression after 7 days, paralleling an increase in serum NAb titers. Brain parenchymal injection was explored to circumvent the presence of NAbs. Mice systemically pre-treated with an AAV-PHP.B were injected intra-cerebrally with an AAV-PHP.B expressing GFP. After 2 weeks, marked GFP expression in the cerebellum was evident, showing that pre-existing NAbs did not affect the AAV-PHP.B directly injected into the brain. In contrast, reversing the injection order, i.e., cerebellar injection followed by systemic injection, completely eliminated expression of the second transgene. We confirmed that intra-cerebellar injection produced NAbs in the serum, but not in the cerebrospinal fluid (CSF). Our results indicate that the preclusion of brain transduction by a second AAV-PHP.B administration begins from the first day following systemic injection and is established within 1 week. Serum NAbs can be avoided by directly injecting AAV-PHP.Bs into brain tissue.
Collapse
Affiliation(s)
- Yoichiro Shinohara
- Department of Neurophysiology and Neural Repair, Gunma University Graduate School of Medicine, Maebashi, Gunma, 371-8511, Japan.,Department of Ophthalmology, Gunma University Graduate School of Medicine, Maebashi, Gunma, 371-8511, Japan
| | - Ayumu Konno
- Department of Neurophysiology and Neural Repair, Gunma University Graduate School of Medicine, Maebashi, Gunma, 371-8511, Japan
| | - Keisuke Nitta
- Department of Neurophysiology and Neural Repair, Gunma University Graduate School of Medicine, Maebashi, Gunma, 371-8511, Japan.,Department of Ophthalmology, Gunma University Graduate School of Medicine, Maebashi, Gunma, 371-8511, Japan
| | - Yasunori Matsuzaki
- Department of Neurophysiology and Neural Repair, Gunma University Graduate School of Medicine, Maebashi, Gunma, 371-8511, Japan
| | - Hiroyuki Yasui
- Department of Neurophysiology and Neural Repair, Gunma University Graduate School of Medicine, Maebashi, Gunma, 371-8511, Japan
| | - Junya Suwa
- Department of Nephrology and Rheumatology, Gunma University Graduate School of Medicine, Maebashi, Gunma, 371-8511, Japan
| | - Keiju Hiromura
- Department of Nephrology and Rheumatology, Gunma University Graduate School of Medicine, Maebashi, Gunma, 371-8511, Japan
| | - Hirokazu Hirai
- Department of Neurophysiology and Neural Repair, Gunma University Graduate School of Medicine, Maebashi, Gunma, 371-8511, Japan. .,Research Program for Neural Signaling, Division of Endocrinology, Metabolism and Signal Research, Gunma University Initiative for Advanced Research, Maebashi, Gunma, 371-8511, Japan.
| |
Collapse
|
595
|
Abstract
Lysosomal storage diseases (LSDs) are a group of over 70 diseases that are characterized by lysosomal dysfunction, most of which are inherited as autosomal recessive traits. These disorders are individually rare but collectively affect 1 in 5,000 live births. LSDs typically present in infancy and childhood, although adult-onset forms also occur. Most LSDs have a progressive neurodegenerative clinical course, although symptoms in other organ systems are frequent. LSD-associated genes encode different lysosomal proteins, including lysosomal enzymes and lysosomal membrane proteins. The lysosome is the key cellular hub for macromolecule catabolism, recycling and signalling, and defects that impair any of these functions cause the accumulation of undigested or partially digested macromolecules in lysosomes (that is, 'storage') or impair the transport of molecules, which can result in cellular damage. Consequently, the cellular pathogenesis of these diseases is complex and is currently incompletely understood. Several LSDs can be treated with approved, disease-specific therapies that are mostly based on enzyme replacement. However, small-molecule therapies, including substrate reduction and chaperone therapies, have also been developed and are approved for some LSDs, whereas gene therapy and genome editing are at advanced preclinical stages and, for a few disorders, have already progressed to the clinic.
Collapse
|
596
|
Hudry E, Andres-Mateos E, Lerner EP, Volak A, Cohen O, Hyman BT, Maguire CA, Vandenberghe LH. Efficient Gene Transfer to the Central Nervous System by Single-Stranded Anc80L65. Mol Ther Methods Clin Dev 2018; 10:197-209. [PMID: 30109242 PMCID: PMC6083902 DOI: 10.1016/j.omtm.2018.07.006] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 07/10/2018] [Indexed: 12/27/2022]
Abstract
Adeno-associated viral vectors (AAVs) have demonstrated potential in applications for neurologic disorders, and the discovery that some AAVs can cross the blood-brain barrier (BBB) after intravenous injection has further expanded these opportunities for non-invasive brain delivery. Anc80L65, a novel AAV capsid designed from in silico reconstruction of the viral evolutionary lineage, has previously demonstrated robust transduction capabilities after local delivery in various tissues such as liver, retina, or cochlea, compared with conventional AAVs. Here, we compared the transduction efficacy of Anc80L65 with conventional AAV9 in the CNS after intravenous, intracerebroventricular (i.c.v.), or intraparenchymal injections. Anc80L65 was more potent at targeting the brain and spinal cord after intravenous injection than AAV9, and mostly transduced astrocytes and a wide range of neuronal subpopulations. Although the efficacy of Anc80L65 and AAV9 is similar after direct intraparenchymal injection in the striatum, Anc80L65's diffusion throughout the CNS was more extensive than AAV9 after i.c.v. infusion, leading to widespread EGFP expression in the cerebellum. These findings demonstrate that Anc80L65 is a highly efficient gene transfer vector for the murine CNS. Systemic injection of Anc80L65 leads to notable expression in the CNS that does not rely on a self-complementary genome. These data warrant further testing in larger animal models.
Collapse
Affiliation(s)
- Eloise Hudry
- MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Eva Andres-Mateos
- Grousbeck Gene Therapy Center, Schepens Eye Research Institute and Massachusetts Eye and Ear Infirmary, Boston, MA 02114, USA
- Ocular Genomics Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
| | - Eli P. Lerner
- MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Adrienn Volak
- Department of Neurology, The Massachusetts General Hospital and NeuroDiscovery Center, Harvard Medical School, Boston, MA 02114, USA
| | - Olivia Cohen
- MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Bradley T. Hyman
- MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Casey A. Maguire
- Department of Neurology, The Massachusetts General Hospital and NeuroDiscovery Center, Harvard Medical School, Boston, MA 02114, USA
| | - Luk H. Vandenberghe
- Grousbeck Gene Therapy Center, Schepens Eye Research Institute and Massachusetts Eye and Ear Infirmary, Boston, MA 02114, USA
- Ocular Genomics Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
- The Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| |
Collapse
|
597
|
Cwetsch AW, Pinto B, Savardi A, Cancedda L. In vivo methods for acute modulation of gene expression in the central nervous system. Prog Neurobiol 2018; 168:69-85. [PMID: 29694844 PMCID: PMC6080705 DOI: 10.1016/j.pneurobio.2018.04.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 04/17/2018] [Accepted: 04/20/2018] [Indexed: 12/17/2022]
Abstract
Accurate and timely expression of specific genes guarantees the healthy development and function of the brain. Indeed, variations in the correct amount or timing of gene expression lead to improper development and/or pathological conditions. Almost forty years after the first successful gene transfection in in vitro cell cultures, it is currently possible to regulate gene expression in an area-specific manner at any step of central nervous system development and in adulthood in experimental animals in vivo, even overcoming the very poor accessibility of the brain. Here, we will review the diverse approaches for acute gene transfer in vivo, highlighting their advantages and disadvantages with respect to the efficiency and specificity of transfection as well as to brain accessibility. In particular, we will present well-established chemical, physical and virus-based approaches suitable for different animal models, pointing out their current and future possible applications in basic and translational research as well as in gene therapy.
Collapse
Affiliation(s)
- Andrzej W Cwetsch
- Local Micro-environment and Brain Development Laboratory, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genova, Italy; Università degli Studi di Genova, Via Balbi, 5, 16126 Genova, Italy
| | - Bruno Pinto
- Local Micro-environment and Brain Development Laboratory, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genova, Italy; Bio@SNS, Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126, Pisa, Italy
| | - Annalisa Savardi
- Local Micro-environment and Brain Development Laboratory, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genova, Italy; Università degli Studi di Genova, Via Balbi, 5, 16126 Genova, Italy
| | - Laura Cancedda
- Local Micro-environment and Brain Development Laboratory, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genova, Italy; DulbeccoTelethon Institute, Italy.
| |
Collapse
|
598
|
Fuentes CM, Schaffer DV. Adeno-associated virus-mediated delivery of CRISPR-Cas9 for genome editing in the central nervous system. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2018; 7:33-41. [PMID: 34046535 PMCID: PMC8153090 DOI: 10.1016/j.cobme.2018.08.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The emergence of CRISPR-Cas9 as a powerful genome editing tool has led to several studies exploring its potential to treat neurological disorders. Cas9 and its sgRNA can be readily engineered to target any gene and can be multiplexed to target several genes at once. Furthermore, the use of adeno-associated virus (AAV) to deliver with Cas9 and its sgRNA is a promising therapeutic combination with strong potential to reach the clinic. Here we discuss how Cas9 editing has been utilized for gene insertion, knockout, and deletion in vivo for applications in the central nervous system (CNS). Furthermore, we highlight major challenges that remain for AAV-Cas9-sgRNA clinical translation.
Collapse
Affiliation(s)
- Christina M. Fuentes
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA
| | - David V. Schaffer
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA
- Department of Chemical and Biolomolecular Engineering, University of California, Berkeley, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- The Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
| |
Collapse
|
599
|
McDougald DS, Dine KE, Zezulin AU, Bennett J, Shindler KS. SIRT1 and NRF2 Gene Transfer Mediate Distinct Neuroprotective Effects Upon Retinal Ganglion Cell Survival and Function in Experimental Optic Neuritis. Invest Ophthalmol Vis Sci 2018; 59:1212-1220. [PMID: 29494741 PMCID: PMC5839257 DOI: 10.1167/iovs.17-22972] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Purpose Optic neuritis is a condition defined by autoimmune-mediated demyelination of the optic nerve and death of retinal ganglion cells. SIRT1 and NRF2 stimulate anti-inflammatory mechanisms and have previously demonstrated therapeutic value in preclinical models of neurodegenerative disease. Here we investigated the neuroprotective potential of SIRT1 or NRF2 gene transfer using adeno-associated virus (AAV) vectors in the experimental autoimmune encephalomyelitis (EAE) model of multiple sclerosis. Methods C57Bl/6J mice were administered intravitreal doses of AAV2 vectors and immunized to induce EAE symptoms. Visual function was examined by recording the optokinetic response (OKR) just prior to EAE induction and once every 7 days postinduction for 7 weeks. Retina and optic nerves were harvested to investigate retinal ganglion cell survival (immunolabeling with Brn3a antibodies); inflammation (hematoxylin and eosin staining); and demyelination (luxol fast blue staining). Results Animals modeling EAE demonstrate reduced visual acuity compared to sham-induced controls. Intravitreal delivery of AAV2-NRF2 did not preserve visual function. However, AAV2-SIRT1 mediated significant preservation of the OKR compared to AAV2-eGFP controls. Treatment with AAV2-NRF2 promoted RGC survival while AAV2-SIRT1 mediated an upward trend in protection compared to vehicle and AAV2-eGFP controls. Neither NRF2 nor SIRT1 gene augmentation was able to suppress optic nerve inflammation or demyelination. Conclusions AAV-mediated overexpression of NRF2 or SIRT1 within RGCs mediates distinct neuroprotective effects upon visual function and RGC survival. This study expands our understanding of SIRT1 and NRF2-mediated neuroprotection in the context of MS pathogenesis and optic neuropathies.
Collapse
Affiliation(s)
- Devin S McDougald
- Center for Advanced Retinal and Ocular Therapeutics, F. M. Kirby Center for Molecular Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Kimberly E Dine
- Center for Advanced Retinal and Ocular Therapeutics, F. M. Kirby Center for Molecular Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Alexandra U Zezulin
- Center for Advanced Retinal and Ocular Therapeutics, F. M. Kirby Center for Molecular Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Jean Bennett
- Center for Advanced Retinal and Ocular Therapeutics, F. M. Kirby Center for Molecular Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Kenneth S Shindler
- Center for Advanced Retinal and Ocular Therapeutics, F. M. Kirby Center for Molecular Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| |
Collapse
|
600
|
Lokugamage MP, Sago CD, Dahlman JE. Testing thousands of nanoparticles in vivo using DNA barcodes. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2018; 7:1-8. [PMID: 30931416 DOI: 10.1016/j.cobme.2018.08.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Nanoparticles improve drug efficacy by delivering drugs to sites of disease. To effectively deliver a drug in vivo, a nanoparticle must overcome physical and physiological hurdles that are not present in cell culture, yet in vitro screens are used to predict nanoparticle delivery in vivo. An ideal nanoparticle discovery pipeline would enable scientists to study thousands of nanoparticles in vivo. Here, we discuss technologies that enable high throughput in vivo screens, focusing on DNA barcoded nanoparticles.
Collapse
Affiliation(s)
- Melissa P Lokugamage
- Address: Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory School of Medicine, Atlanta, GA, USA
| | - Cory D Sago
- Address: Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory School of Medicine, Atlanta, GA, USA
| | - James E Dahlman
- Address: Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory School of Medicine, Atlanta, GA, USA
| |
Collapse
|