551
|
Dontu G, Liu S, Wicha MS. Stem cells in mammary development and carcinogenesis: implications for prevention and treatment. STEM CELL REVIEWS 2007. [PMID: 17142857 DOI: 10.1385/scr: 1: 3: 207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Recently, substantial progress has been made in the identification and characterization of stem and progenitor cells in the mouse and human mammary gland. Furthermore, there is increasing evidence that a variety of neoplasms, including breast cancer, may result from transformation of normal stem and progenitor cells. Consistent with this model of carcinogenesis, a breast cancer stem cell population, with the phenotype CD24-CD44+ lineage, was recently identified utilizing flow-cytometry based cell sorting and nonobese diabetic/severe combined immunodeficient (NOD/SCID) mice xenografts. As few as 200 cells of this cancer stem cell population were capable of generating tumors in animals, whereas the bulk of the tumor population was tumorigenic only when implanted in high numbers. Like their normal counterparts, the cancer stem cells have the ability to self-renew, driving tumorigenicity and possibly recurrence and metastasis, and have the ability to differentiate, generating the heterogeneity of the tumors. This stem cell model of carcinogenesis has important implications for understanding the basic biology of breast cancer, as well as other cancers. Furthermore, the concept of cancer as a disease of stem and progenitor cells has profound implications for the development of new strategies for cancer prevention and therapy.
Collapse
Affiliation(s)
- Gabriela Dontu
- Department of Internal Medicine, Hematology-Oncology, Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA.
| | | | | |
Collapse
|
552
|
Anderson ARA, Weaver AM, Cummings PT, Quaranta V. Tumor morphology and phenotypic evolution driven by selective pressure from the microenvironment. Cell 2007; 127:905-15. [PMID: 17129778 DOI: 10.1016/j.cell.2006.09.042] [Citation(s) in RCA: 493] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2006] [Revised: 06/28/2006] [Accepted: 09/21/2006] [Indexed: 12/14/2022]
Abstract
Emergence of invasive behavior in cancer is life-threatening, yet ill-defined due to its multifactorial nature. We present a multiscale mathematical model of cancer invasion, which considers cellular and microenvironmental factors simultaneously and interactively. Unexpectedly, the model simulations predict that harsh tumor microenvironment conditions (e.g., hypoxia, heterogenous extracellular matrix) exert a dramatic selective force on the tumor, which grows as an invasive mass with fingering margins, dominated by a few clones with aggressive traits. In contrast, mild microenvironment conditions (e.g., normoxia, homogeneous matrix) allow clones with similar aggressive traits to coexist with less aggressive phenotypes in a heterogeneous tumor mass with smooth, noninvasive margins. Thus, the genetic make-up of a cancer cell may realize its invasive potential through a clonal evolution process driven by definable microenvironmental selective forces. Our mathematical model provides a theoretical/experimental framework to quantitatively characterize this selective pressure for invasion and test ways to eliminate it.
Collapse
|
553
|
Berstein LM, Kovalevskij AY, Poroshina TE, Kotov AV, Kovalenko IG, Tsyrlina EV, Leenman EE, Revskoy SY, Semiglazov VF, Pozharisski KM. Signs of proinflammatory/genotoxic switch (adipogenotoxicosis) in mammary fat of breast cancer patients: Role of menopausal status, estrogens and hyperglycemia. Int J Cancer 2007; 121:514-9. [PMID: 17397026 DOI: 10.1002/ijc.22552] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The abundance of fat tissue surrounding normal and malignant epithelial mammary cells raises the questions whether such "adipose milieu" is important in the local proinflammatory/genotoxic shift, which apparently promotes tumor development and worsens prognosis, and what conditions stimulate this shift, or "adipogenotoxicosis." We studied 95 mammary fat samples from 70 postmenopausal and 25 premenopausal breast cancer (BC) patients at a distance of 1.5-2.0 cm from tumors. The levels of leptin, adiponectin, TNFalpha and IL-6 release after 4-hr incubation of the samples were evaluated with ELISA, nitric oxide (NO) production by Griess reaction and lipid peroxidation by determination of thiobarbiturate-reactive products (TBRP). Infiltration of fat with macrophages (CD68-positive cells) and expression of cytochrome P450 1B1/estrogen 4-hydroxylase (CYP1B1) were detected by immunohistochemistry. Aromatase (CYP19) activity in mammary fat was measured by (3)H(2)O release from (3)H-1beta-androstenedione. In the postmenopausal BC patients, NO and TNFalpha production by adipose tissue explants increased independent of BMI and in parallel with decreasing leptin and, especially, adiponectin release. In the premenopausal patients, higher CYP1B1 expression and TBRP level were found in mammary fat, while higher aromatase activity was combined with higher CYP1B1 expression as well as NO and IL-6 production. In the postmenopausal group, impaired glucose tolerance was associated with higher IL-6 release production by fat and with higher IL-6/adiponectin ratio. Thus, signs of adipogenotoxicosis in mammary fat can be found in both pre- and postmenopausal BC patients. This condition is likely being maintained through estrogen- and glucose-related factors and mechanisms presumably associated with less favorable types of hormonal carcinogenesis.
Collapse
Affiliation(s)
- Lev M Berstein
- Laboratory of Oncoendocrinology, N.N. Petrov Research Institute of Oncology, St. Petersburg, Russia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
554
|
Howell A, Clarke RB, Evans G, Bundred N, Cuzick J, Santen R, Allred C. Estrogen deprivation for breast cancer prevention. Recent Results Cancer Res 2007; 174:151-67. [PMID: 17302193 DOI: 10.1007/978-3-540-37696-5_13] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Estrogen deprivation (ED) either as a result of a natural or artificial menopause or the use of aromatase inhibitors in postmenopausal women results in a reduction of the incidence of breast cancer. Two major clinical trials of this approach comparing anastrozole or exemestane with placebo are currently in progress to test their efficacy for prevention. Reduction of contralateral breast lesions by at least 50% compared with tamoxifen indicate this approach has promise. The target lesion within the breast for ED is not known but we argue that hyperplastic enlarged lobular units (HELUs) as well as more advanced lesions are good candidates. A major problem for ED is de novo or acquired resistance to its effectiveness. We discuss potential mechanisms of resistance including high concentrations of tissue estrogens, increase in growth factor, and signal transduction pathways within the epithelial cell and activation of paracrine pathways from breast adipocytes, macrophages and fibroblasts. It may be possible to increase effectiveness of ED by additional preventive agents or by lifestyle alterations.
Collapse
Affiliation(s)
- Anthony Howell
- CRUK Department of Medical Oncology, Christie Hospital, University of Manchester, UK
| | | | | | | | | | | | | |
Collapse
|
555
|
Baer L, Formenti SC. Breast cancer clinical and translational research: analogies and implications for prostate cancer. Rev Urol 2007; 9 Suppl 2:S28-39. [PMID: 17554404 PMCID: PMC1887816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Breast and prostate cancer, respectively, are the most common cancers in women and in men in the United States. The management of locally advanced prostate cancer involves a multidisciplinary approach, bearing similarity to the therapeutic approach to breast cancer. Better understanding of the molecular biology of these cancers and the identification of the role played by the cancer stem cells and the tumor microenvironment may translate into better clinical decision making regarding risk classification and treatment allocation. A systematic assessment is presented of the many parallel evolutions in defining and treating high-risk breast cancer as they pertain to prostate cancer.
Collapse
Affiliation(s)
- Lea Baer
- Departments of Radiation Oncology and Medicine, New York University Medical Center New York, NY
| | | |
Collapse
|
556
|
Lederle W, Stark HJ, Skobe M, Fusenig NE, Mueller MM. Platelet-derived growth factor-BB controls epithelial tumor phenotype by differential growth factor regulation in stromal cells. THE AMERICAN JOURNAL OF PATHOLOGY 2006; 169:1767-83. [PMID: 17071599 PMCID: PMC1780216 DOI: 10.2353/ajpath.2006.060120] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Platelet-derived growth factor (PDGF) stimulates tumor growth and progression by affecting tumor and stromal cells. In the HaCaT skin carcinogenesis model, transfection of immortal nontumorigenic and PDGF-receptor-negative HaCaT keratinocytes with PDGF-B induced formation of benign tumors. Here, we present potential mechanisms underlying this tumorigenic conversion. In vivo, persistent PDGF-B expression induced enhanced tumor cell proliferation but only transiently stimulated stromal cell proliferation and angiogenesis. In vitro and in vivo studies identified fibroblasts as PDGF target cells essential for mediating transient angiogenesis and persistent epithelial hyperproliferation. In fibroblast cultures, long-term PDGF-BB treatment caused an initial up-regulation of vascular endothelial growth factor (VEGF)-A, followed by a drastic VEGF down-regulation and myofibroblast differentiation. Accordingly, in HaCaT/PDGF-B transplants, initially enhanced VEGF expression by stromal fibroblasts was subsequently reduced, followed by down-regulation of angiogenesis, myofibroblast accumulation, and vessel maturation. The PDGF-induced, persistently increased expression of the hepatocyte growth factor by fibroblasts in vitro and in vivo was most probably responsible for enhanced epithelial cell proliferation and benign tumor formation. Thus, by paracrine stimulation of the stroma, PDGF-BB induced epithelial hyperproliferation, thereby promoting tumorigenicity, whereas the time-limited activation of the stroma followed by stromal maturation provides a possible explanation for the benign tumor phenotype.
Collapse
Affiliation(s)
- Wiltrud Lederle
- Tumor and Microenvironment Group, German Cancer Research Center, Heidelberg, Germany
| | | | | | | | | |
Collapse
|
557
|
Neve RM, Chin K, Fridlyand J, Yeh J, Baehner FL, Fevr T, Clark L, Bayani N, Coppe JP, Tong F, Speed T, Spellman PT, DeVries S, Lapuk A, Wang NJ, Kuo WL, Stilwell JL, Pinkel D, Albertson DG, Waldman FM, McCormick F, Dickson RB, Johnson MD, Lippman M, Ethier S, Gazdar A, Gray JW. A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. Cancer Cell 2006; 10:515-27. [PMID: 17157791 PMCID: PMC2730521 DOI: 10.1016/j.ccr.2006.10.008] [Citation(s) in RCA: 2451] [Impact Index Per Article: 129.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2006] [Revised: 09/05/2006] [Accepted: 10/17/2006] [Indexed: 01/18/2023]
Abstract
Recent studies suggest that thousands of genes may contribute to breast cancer pathophysiologies when deregulated by genomic or epigenomic events. Here, we describe a model "system" to appraise the functional contributions of these genes to breast cancer subsets. In general, the recurrent genomic and transcriptional characteristics of 51 breast cancer cell lines mirror those of 145 primary breast tumors, although some significant differences are documented. The cell lines that comprise the system also exhibit the substantial genomic, transcriptional, and biological heterogeneity found in primary tumors. We show, using Trastuzumab (Herceptin) monotherapy as an example, that the system can be used to identify molecular features that predict or indicate response to targeted therapies or other physiological perturbations.
Collapse
Affiliation(s)
- Richard M Neve
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94270, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
558
|
Abstract
Neoplasms are microcosms of evolution. Within a neoplasm, a mosaic of mutant cells compete for space and resources, evade predation by the immune system and can even cooperate to disperse and colonize new organs. The evolution of neoplastic cells explains both why we get cancer and why it has been so difficult to cure. The tools of evolutionary biology and ecology are providing new insights into neoplastic progression and the clinical control of cancer.
Collapse
Affiliation(s)
- Lauren M F Merlo
- Cellular and Molecular Oncology Program, The Wistar Institute, 3601 Spruce Street, Philadelphia, Pennsylvania 19104, USA
| | | | | | | |
Collapse
|
559
|
Dewan MZ, Terunuma H, Takada M, Tanaka Y, Abe H, Sata T, Toi M, Yamamoto N. Role of natural killer cells in hormone-independent rapid tumor formation and spontaneous metastasis of breast cancer cells in vivo. Breast Cancer Res Treat 2006; 104:267-75. [PMID: 17066321 DOI: 10.1007/s10549-006-9416-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2006] [Accepted: 09/20/2006] [Indexed: 10/24/2022]
Abstract
Natural killer (NK) cells play a central role in host defense against tumor and virus-infected cells. Direct role of NK cells in tumor growth and metastasis remains to be elucidated. We here demonstrated that NOD/SCID/gammac(null) (NOG) mice lacking T, B and NK cells inoculated with breast cancer cells were efficient in the formation of a large tumor and spontaneous organ-metastasis. In contrast, breast cancer cells produced a small tumor at inoculated site in T and B cell knock-out NOD/SCID mice with NK cells while completely failed to metastasize into various organs. Immunosupression of NOD/SCID by treatment with an anti-murine TM-beta1 antibody, which transiently abrogates NK cell activity in vivo, resulted in enhancing tumor formation and organ-metastasis in comparison with non-treated NOD/SCID mice. Activated NK cells inhibited tumor growth in vivo. The rapid and efficient engraftment of the breast cancer cells in NOG mice suggests that this new animal model could provide a unique opportunity to understand and investigate the mechanism of tumor cell growth and metastasis. Our results suggest that NK cells play an important role in cancer growth and metastasis and could be a promising immunotherapeutic strategy against cancer either alone or in combination with conventional therapy.
Collapse
Affiliation(s)
- Md Zahidunnabi Dewan
- Department of Molecular Virology, Graduate School, Tokyo Medical and Dental University, 1-5-45 Yushima, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
560
|
|
561
|
Abstract
Unlike other branched organs, the mammary gland undergoes most of its branching during adolescent rather than embryonic development. Its morphogenesis begins in utero, pauses between birth and puberty, and resumes in response to ovarian estrogens to form an open ductal tree that eventually fills the entire mammary fat pad of the young female adult. Importantly, this "open" architecture leaves room during pregnancy for the organ to develop milk-producing alveoli like leaves on otherwise bare branches. Thereafter, the ducts serve to deliver the milk that is produced throughout lactation. The hormonal cues that elicit these various phases of mammary development utilize local signaling cascades and reciprocal stromal-epithelial interactions to orchestrate the tissue reorganization, differentiation and specific activities that define each phase. Fortunately, the mammary gland is rather amenable to experimental inquiry and, as a result, we have a fair, although incomplete, understanding of the mechanisms that control its development. This review discusses our current sense and understanding of those mechanisms as they pertain to mammary branching, with the caveat that many more aspects are still waiting to be solved.
Collapse
Affiliation(s)
- Mark D Sternlicht
- Department of Anatomy and Program in Biomedical Sciences, University of California, San Francisco, CA 94143-0452, USA.
| | | | | | | |
Collapse
|
562
|
Kruger JA, Kaplan CD, Luo Y, Zhou H, Markowitz D, Xiang R, Reisfeld RA. Characterization of stem cell-like cancer cells in immune-competent mice. Blood 2006; 108:3906-12. [PMID: 16912222 DOI: 10.1182/blood-2006-05-024687] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Recently, the cancer stem cell hypothesis has gained significant recognition as the descriptor of tumorigenesis. Although previous studies relied on transplanting human or rat tumor cells into immunecompromised mice, our study used the Hoechst 33342 dye-based side population (SP) technique to isolate and transplant stem cell-like cancer cells (SCLCCs) from the 4T1 and NXS2 murine carcinoma cell lines into the immune-competent microenvironment of syngeneic mice. 4T1 cells displayed an SP of 2% with a Sca-1(high)c-Kit(-)CD45(-) phenotype, whereas NXS2 cells contained an SP of 0.2% with a Sca-1(high)CD24(high)c-Kit(-)CD45(-)GD (high)(2) phenotype. Reverse transcription-polymerase chain reaction (RT-PCR) further revealed up-regulation in SP cells of ABCG2, Sca-1, Wnt-1, and TGF-beta2. Additionally, 4T1 and NXS2 SP cells exhibited increased resistance to chemotherapy, and 4T1 SP cells also showed an increased ability to efflux doxorubicin, which correlated with a selective increase in the percentage of SP cells found in the tumors of doxorubicin-treated mice. Most importantly, SP cells showed a markedly higher repopulation and tumorigenic potential in vivo, which correlated with an increased number of cells in the SP compartment of SP-derived tumors. Taken together, these results show that we successfully characterized SCLCCs from 2 murine carcinoma cell lines in the immune-competent microenvironment of syngeneic mice.
Collapse
Affiliation(s)
- Jorg A Kruger
- The Scripps Research Institute, Department of Immunology, 10550 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | | | | | | | | | | | | |
Collapse
|
563
|
Liu S, Dontu G, Mantle ID, Patel S, Ahn NS, Jackson KW, Suri P, Wicha MS. Hedgehog signaling and Bmi-1 regulate self-renewal of normal and malignant human mammary stem cells. Cancer Res 2006. [PMID: 16778178 DOI: 10.1158/0008-5472.can-06-0054.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The epithelial components of the mammary gland are thought to arise from stem cells with a capacity for self-renewal and multilineage differentiation. Furthermore, these cells and/or their immediate progeny may be targets for transformation. We have used both in vitro cultivation and a xenograft mouse model to examine the role of hedgehog signaling and Bmi-1 in regulating self-renewal of normal and malignant human mammary stem cells. We show that hedgehog signaling components PTCH1, Gli1, and Gli2 are highly expressed in normal human mammary stem/progenitor cells cultured as mammospheres and that these genes are down-regulated when cells are induced to differentiate. Activation of hedgehog signaling increases mammosphere-initiating cell number and mammosphere size, whereas inhibition of the pathway results in a reduction of these effects. These effects are mediated by the polycomb gene Bmi-1. Overexpression of Gli2 in mammosphere-initiating cells results in the production of ductal hyperplasia, and modulation of Bmi-1 expression in mammosphere-initiating cells alters mammary development in a humanized nonobese diabetic-severe combined immunodeficient mouse model. Furthermore, we show that the hedgehog signaling pathway is activated in human breast "cancer stem cells" characterized as CD44+CD24-/lowLin-. These studies support a cancer stem cell model in which the hedgehog pathway and Bmi-1 play important roles in regulating self-renewal of normal and tumorigenic human mammary stem cells.
Collapse
Affiliation(s)
- Suling Liu
- Comprehensive Cancer Center, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109-0946, USA
| | | | | | | | | | | | | | | |
Collapse
|
564
|
Liu S, Dontu G, Mantle ID, Patel S, Ahn NS, Jackson KW, Suri P, Wicha MS. Hedgehog signaling and Bmi-1 regulate self-renewal of normal and malignant human mammary stem cells. Cancer Res 2006; 66:6063-71. [PMID: 16778178 PMCID: PMC4386278 DOI: 10.1158/0008-5472.can-06-0054] [Citation(s) in RCA: 933] [Impact Index Per Article: 49.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The epithelial components of the mammary gland are thought to arise from stem cells with a capacity for self-renewal and multilineage differentiation. Furthermore, these cells and/or their immediate progeny may be targets for transformation. We have used both in vitro cultivation and a xenograft mouse model to examine the role of hedgehog signaling and Bmi-1 in regulating self-renewal of normal and malignant human mammary stem cells. We show that hedgehog signaling components PTCH1, Gli1, and Gli2 are highly expressed in normal human mammary stem/progenitor cells cultured as mammospheres and that these genes are down-regulated when cells are induced to differentiate. Activation of hedgehog signaling increases mammosphere-initiating cell number and mammosphere size, whereas inhibition of the pathway results in a reduction of these effects. These effects are mediated by the polycomb gene Bmi-1. Overexpression of Gli2 in mammosphere-initiating cells results in the production of ductal hyperplasia, and modulation of Bmi-1 expression in mammosphere-initiating cells alters mammary development in a humanized nonobese diabetic-severe combined immunodeficient mouse model. Furthermore, we show that the hedgehog signaling pathway is activated in human breast "cancer stem cells" characterized as CD44+CD24-/lowLin-. These studies support a cancer stem cell model in which the hedgehog pathway and Bmi-1 play important roles in regulating self-renewal of normal and tumorigenic human mammary stem cells.
Collapse
Affiliation(s)
- Suling Liu
- Comprehensive Cancer Center, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109-0946, USA
| | | | | | | | | | | | | | | |
Collapse
|
565
|
Filer A, Pitzalis C, Buckley CD. Targeting the stromal microenvironment in chronic inflammation. Curr Opin Pharmacol 2006; 6:393-400. [PMID: 16682252 PMCID: PMC3119430 DOI: 10.1016/j.coph.2006.03.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2006] [Accepted: 03/07/2006] [Indexed: 01/06/2023]
Abstract
A characteristic feature of chronic inflammatory reactions is their persistence and predilection for certain sites. The molecular basis for such tissue tropism (as, for example, seen with metastatic spread) has until recently remained obscure, but recent studies have strongly implicated tissue-resident, stromal cells, such as macrophages, endothelial cells and fibroblasts. These cell types make attractive therapeutic targets as they help define the three-dimensional structure of tissues and are key orchestrators of the inflammatory infiltrate. Most current anti-inflammatory therapies target immune cells in an attempt to inhibit the production of pro-inflammatory mediators; however, an equally important target is the active induction of anti-inflammatory mediators involved in the resolution of inflammation. Recent work suggests that stromal cells are an important source of these mediators. Targeting of multiple signals may be required to inhibit tissue damage associated with inflammatory disease. Cells of the monocyte lineage are present as tissue-resident cells and interact closely with other stromal populations. These cells form an ideal target for modulation of the inflammatory environment as, in some cases, they appear to induce tissue repair. Therapeutic manipulation of the stromal microenvironment has been particularly effective in treating cancer and is likely to provide a novel method to achieve improved control of chronic inflammatory disease.
Collapse
Affiliation(s)
- Andrew Filer
- Rheumatology Research Group, Division of Immunity and Infection, MRC Centre for Immune Regulation, University of Birmingham, Birmingham B15 2TT, UK
| | | | | |
Collapse
|
566
|
Matsumoto K, Nakamura T. Hepatocyte growth factor and the Met system as a mediator of tumor-stromal interactions. Int J Cancer 2006; 119:477-83. [PMID: 16453287 DOI: 10.1002/ijc.21808] [Citation(s) in RCA: 172] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Crosstalk between carcinoma cells and host stromal cells such as fibroblasts has a great deal of influence on the invasive and metastatic behavior of cancer cells. The oncogenic action of fibroblasts has been demonstrated through genetic alterations that occur specifically in fibroblasts. Hepatocyte growth factor (HGF), a ligand for the Met receptor tyrosine kinase, plays a definitive role, particularly in the progression to invasive and metastatic cancers, predominantly as a stroma-derived paracrine mediator. Many types of cancer cells secrete molecules that enhance HGF production in fibroblasts, while fibroblast-derived HGF, in turn, is a potent stimulator of the invasion of cancer cells. Fibroblast-specific genetic alterations leading to an overexpression of HGF are associated with the development of epithelial neoplasia and invasive carcinoma. Strategies for targeting the HGF-Met axis are being pursued, in attempts to block the malignant behavior of cancers. In normal tissues, the HGF-Met axis plays diverse roles in organogenesis and in wound healing. The simile that "cancer is a never-healing wound" appears to be pertinent here.
Collapse
Affiliation(s)
- Kunio Matsumoto
- Division of Molecular Regenerative Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan.
| | | |
Collapse
|
567
|
Hoeyer K, Koch L. The ethics of functional genomics: same, same, but different? Trends Biotechnol 2006; 24:387-9. [PMID: 16843557 DOI: 10.1016/j.tibtech.2006.06.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2005] [Revised: 05/05/2006] [Accepted: 06/29/2006] [Indexed: 10/24/2022]
Abstract
Respect for human life--a notion of worth uniting all members of the human race--constitutes a sense of anthropocentrism that has long been the justification for the enrollment of animals in experimentation executed to develop therapies to alleviate human suffering. Currently, however, advances in functional genomics are causing a qualitative transformation of the rationale for medical research performed on animals. The notion of human distinctness is being fundamentally challenged when gene sequences similar to those found in humans are identified in different species. In this Opinion article, we would like to highlight an inherent tension brought about by the current developments in functional genomics: a tension between the scientific and the ethical status of gene sequences. Is it reasonable to argue that they are the same for all practical purposes but different in ethical status?
Collapse
Affiliation(s)
- Klaus Hoeyer
- Department of Health Services Research, Institute of Public Health, University of Copenhagen, Øster Farimagsgade 5, Building 15, DK-1014 Copenhagen K, Denmark.
| | | |
Collapse
|
568
|
Abstract
Ionizing radiation is a well-known carcinogen for various human tissues and a complete carcinogen that is able to initiate and promote neoplastic progression. Studies of radiation-induced mouse thymic lymphomas, one of the classic models in radiation carcinogenesis, demonstrated that even the unirradiated thymus is capable of developing into full malignancy when transplanted into the kidney capsule or subcutaneous tissue of irradiated mice. This suggests that radiation targets tissues other than thymocytes to allow expansion of cells with tumorigenic potential in the thymus. The idea is regarded as the 'indirect mechanism' for tumor development. This paper reviews the indirect mechanism and genes affecting the development of thymic lymphomas that we have analyzed. One is the Bcl11b/Rit1 tumor suppressor gene and the other is Mtf-1 gene affecting tumor susceptibility.
Collapse
Affiliation(s)
- Ryo Kominami
- Department of Molecular Genetics, Graduate School of Medical and Dental Sciences, and Center for Transdisciplinary Research, Niigata University, 1-757 Asahimachi, Niigata 951-8122.
| | | |
Collapse
|
569
|
Smith GH. Mammary stem cells come of age, prospectively. Trends Mol Med 2006; 12:287-9. [PMID: 16750424 DOI: 10.1016/j.molmed.2006.05.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2006] [Revised: 03/29/2006] [Accepted: 05/19/2006] [Indexed: 01/23/2023]
Abstract
Two recent reports have contributed direct evidence for the existence of a pluripotent mouse mammary epithelial stem cell. In both reports, the investigators have prospectively isolated an enriched fraction of mammary stem cells using fluorescence-activated cell sorting from freshly dispersed epithelial cells. This fraction of cells, upon transplantation in limiting dilution (in some cases as a single cell), produces complete mammary development within the host mammary fat pad. These studies extend and confirm earlier work that demonstrated that retroviral-tagged mammary fragments produce complete functional mammary glands comprising their clonal progeny upon fat-pad transplantation. This technical advance opens the possibility to use similar methodologies to isolate and characterize human breast epithelial stem cells, and elucidate their role in regeneration and neoplasia.
Collapse
Affiliation(s)
- Gilbert H Smith
- Laboratory of Mammary Biology and Tumorigenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA.
| |
Collapse
|
570
|
Micke P, Ostman A. Exploring the tumour environment: cancer-associated fibroblasts as targets in cancer therapy. Expert Opin Ther Targets 2006; 9:1217-33. [PMID: 16300472 DOI: 10.1517/14728222.9.6.1217] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Stroma cells contribute to the microenvironment that is essential for cancer growth, invasion and metastatic progression. Fibroblasts, often termed myofibroblasts or cancer-associated fibroblasts (CAFs), represent the most abundant cell type in the tumour stroma. The demonstrated tumour-promoting capacities of CAFs has increased the interest to exploit them as drug targets for anticancer therapy. Although single factors, such as platelet-derived growth factor, transforming growth factor-beta1, hepatocyte growth factor and matrix metalloproteinases have been identified as mediators in the fibroblast tumour interaction, the morphological and functional differences of CAFs compared with their normal counterparts are only incompletely understood. Recently, novel global methods for gene expression profiling were applied to comprehensively characterise CAFs from breast, pancreas, colon and basal cell cancer in their in situ environment. The analysis of different CAF preparations revealed regulated genes that were previously not described in the tumour-stroma context. Additionally, besides a few striking overlaps, the comparison of the gene lists indicates a high level of heterogeneity in the expression pattern of CAFs from different tumour types. Together, these studies emphasise the importance of cross-talk between stromal and malignant cells of the tumour. It is likely that the continued characterisation of this interaction, and the molecular identification of key mediators, will provide insights into tumour biology and suggest novel therapeutic options.
Collapse
Affiliation(s)
- Patrick Micke
- Department of Genetics and Pathology, Uppsala University, S-751 85, Uppsala, Sweden.
| | | |
Collapse
|
571
|
Costea DE, Kulasekara K, Neppelberg E, Johannessen AC, Vintermyr OK. Species-specific fibroblasts required for triggering invasiveness of partially transformed oral keratinocytes. THE AMERICAN JOURNAL OF PATHOLOGY 2006; 168:1889-97. [PMID: 16723704 PMCID: PMC1606610 DOI: 10.2353/ajpath.2006.050843] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/02/2006] [Indexed: 11/20/2022]
Abstract
This study tests the hypothesis that invasion of partially transformed keratinocytes is initiated by diffusible, proinvasive signals provided by species-specific fibroblasts. In vitro organotypic cultures of neoplastic human oral mucosa were constructed by growing a partially transformed, nontumorigenic keratinocytic cell line isolated from a dysplastic human oral lesion (DOK-ECACC94122104) on top of various types of connective tissue equivalents. Cultured tissues were analyzed by histomorphometry (depth and area of invasion: Dinv, Ainv) and immunohistochemistry. Presence of human fibroblasts in the matrix induced a local invasion of DOK (Dinv = 95.6 +/- 7.1 microm, Ainv = 45.8 +/- 3.5%). Minimal invasion (P < 0.05) was observed when DOK grew on simple collagen matrix (Dinv = 14.1 +/- 2.1 microm, Ainv = 3.7 +/- 0.8%) or matrices containing fibroblasts from mouse (Dinv = 11.5 +/- 4.0 microm, Ainv = 4.3 +/- 1.0%) or rat (Dinv = 15.6 +/- 1.2 microm, Ainv = 6.1 +/- 0.5%). In these cultures, local invasion could be induced by the presence of human fibroblasts in a bottom layer of the collagen matrix (P < 0.05) or by conditioned medium from organotypic cultures of DOK on human fibroblast-containing matrix (P < 0.05) but not by conditioned medium from human fibroblast monocultures (P > 0.05). Deposition of human collagen IV was observed at epithelial-matrix interface only when DOK behaved invasively. In conclusion, invasion of partially transformed oral keratinocytes was triggered by keratinocyte-induced fibroblast-derived diffusible factor(s) in a species-specific manner and associated with de novo synthesis of collagen IV.
Collapse
Affiliation(s)
- Daniela Elena Costea
- Department of Odontology, Oral Pathology and Forensic Odontology, University of Bergen, The Gade Institute, Haukeland University Hospital, N-5021, Bergen, Norway.
| | | | | | | | | |
Collapse
|
572
|
Tzukerman M, Rosenberg T, Reiter I, Ben-Eliezer S, Denkberg G, Coleman R, Reiter Y, Skorecki K. The influence of a human embryonic stem cell-derived microenvironment on targeting of human solid tumor xenografts. Cancer Res 2006; 66:3792-801. [PMID: 16585206 DOI: 10.1158/0008-5472.can-05-3467] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The awareness of the important role that the surrounding tissue microenvironment and stromal response play in the process of tumorigenesis has grown as a result of in vivo models of tumor xenograft growth in immunocompromised mice. In the current study, we used human embryonic stem cells in order to study the interactions of tumor cells with the surrounding microenvironment of differentiated human cell tissues and structures. Several cancer cell types stably expressing an H2A-green fluorescence protein fusion protein, which allowed tracking of tumor cells, were injected into mature teratomas and developed into tumors. The salient findings were: (a) the observation of growth of tumor cells with high proliferative capacity within the differentiated microenvironment of the teratoma, (b) the identification of invasion by tumor cells into surrounding differentiated teratoma structures, and (c) the identification of blood vessels of human teratoma origin, growing adjacent to and within the cancer cell-derived tumor. Mouse embryonic stem cell-derived teratomas also supported cancer cell growth, but provided a less suitable model for human tumorigenesis studies. Anticancer immunotherapy treatment directed against A431 epidermoid carcinoma cell-related epitopes induced the complete regression of A431-derived tumor xenografts following direct i.m. injection in immunocompromised mice, as opposed to corresponding tumors growing within a human embryonic stem cell-derived microenvironment, wherein remnant foci of viable tumor cells were detected and resulted in tumor recurrence. We propose using this novel experimental model as a preclinical platform for investigating and manipulating the stromal response in tumor cell growth as an additional tool in cancer research.
Collapse
MESH Headings
- Animals
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/pathology
- Carcinoma, Squamous Cell/therapy
- Cell Communication/physiology
- Cell Growth Processes/physiology
- Cell Line, Tumor
- Embryo, Mammalian/cytology
- Green Fluorescent Proteins/biosynthesis
- Green Fluorescent Proteins/genetics
- Humans
- Immunotherapy/methods
- Mice
- Mice, SCID
- Neoplasms/blood supply
- Neoplasms/genetics
- Neoplasms/pathology
- Neoplasms/therapy
- Neovascularization, Pathologic/genetics
- Neovascularization, Pathologic/pathology
- Neovascularization, Pathologic/therapy
- Stem Cells/cytology
- Teratoma/blood supply
- Teratoma/genetics
- Teratoma/pathology
- Teratoma/therapy
- Transfection
- Transplantation, Heterologous
Collapse
Affiliation(s)
- Maty Tzukerman
- Rambam Medical Center, Rappaport Faculty of Medicine and Research Institute, Department of Biology, Technion-Israel Institute of Technology, 1 Efrom Street, Haifa, 31096 Israel.
| | | | | | | | | | | | | | | |
Collapse
|
573
|
Abstract
The emergence of tissue engineering raises new possibilities for the study of complex physiological and pathophysiological processes in vitro. Many tools are now available to create 3D tissue models in vitro, but the blueprints for what to make have been slower to arrive. We discuss here some of the 'design principles' for recreating the interwoven set of biochemical and mechanical cues in the cellular microenvironment, and the methods for implementing them. We emphasize applications that involve epithelial tissues for which 3D models could explain mechanisms of disease or aid in drug development.
Collapse
Affiliation(s)
- Linda G Griffith
- Biological Engineering Division, Mechanical Engineering Department and Biotech/Pharma Engineering Center, Massachusetts Institute of Technology, 16-429, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA.
| | | |
Collapse
|
574
|
Abstract
Tumours are known as wounds that do not heal - this implies that cells that are involved in angiogenesis and the response to injury, such as endothelial cells and fibroblasts, have a prominent role in the progression, growth and spread of cancers. Fibroblasts are associated with cancer cells at all stages of cancer progression, and their structural and functional contributions to this process are beginning to emerge. Their production of growth factors, chemokines and extracellular matrix facilitates the angiogenic recruitment of endothelial cells and pericytes. Fibroblasts are therefore a key determinant in the malignant progression of cancer and represent an important target for cancer therapies.
Collapse
Affiliation(s)
- Raghu Kalluri
- Center for Matrix Biology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02215, USA.
| | | |
Collapse
|
575
|
Ponti D, Zaffaroni N, Capelli C, Daidone MG. Breast cancer stem cells: an overview. Eur J Cancer 2006; 42:1219-24. [PMID: 16624548 DOI: 10.1016/j.ejca.2006.01.031] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2006] [Accepted: 01/23/2006] [Indexed: 11/23/2022]
Abstract
The theory that cancer may be originated and sustained by a small proportion of stem-like, self-renewing cells (termed 'cancer stem cells') has gained support in recent years. Breast cancer stem cells have been identified as CD44+CD24- breast tumour cells and have recently been isolated and propagated in vitro. It has been demonstrated that these cells exclusively retain the ability to form new tumours in mouse models and that they display stem/progenitor cell properties. The ability to identify breast cancer stem cells in vivo and to propagate them in vitro provides the means to compare them with normal cells, in order to investigate from which cell they originate, which molecular alterations critically affect them, and how they interact with the microenvironment. Elucidation of these critical points is essential to develop new therapeutic strategies and to improve diagnosis and prognosis for breast cancer patients.
Collapse
Affiliation(s)
- Dario Ponti
- Translational Research Unit, Unit 10, Department of Experimental Oncology and Laboratories, Istituto Nazionale per lo Studio e la Cura dei Tumori, Via Venezian, 1, 20133 Milan, Italy
| | | | | | | |
Collapse
|
576
|
Abstract
The capacity to induce neoplasia in human tissue in the laboratory has recently provided a new platform for cancer research. Malignant conversion can be achieved in vivo by expressing genes of interest in human tissue that has been regenerated on immune-deficient mice. Induction of cancer in regenerated human skin recapitulates the three-dimensional architecture, tissue polarity, basement membrane structure, extracellular matrix, oncogene signalling and therapeutic target proteins found in intact human skin in vivo. Human-tissue cancer models therefore provide an opportunity to elucidate fundamental cancer mechanisms, to assess the oncogenic potency of mutations associated with specific human cancers and to develop new cancer therapies.
Collapse
Affiliation(s)
- Paul A Khavari
- Veterans Affairs, Palo Alto Healthcare System, Palo Alto, California 94304, USA.
| |
Collapse
|
577
|
McDaniel SM, Rumer KK, Biroc SL, Metz RP, Singh M, Porter W, Schedin P. Remodeling of the mammary microenvironment after lactation promotes breast tumor cell metastasis. THE AMERICAN JOURNAL OF PATHOLOGY 2006; 168:608-20. [PMID: 16436674 PMCID: PMC1606507 DOI: 10.2353/ajpath.2006.050677] [Citation(s) in RCA: 172] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The mammary gland microenvironment during postlactational involution shares similarities with inflammation, including high matrix metalloproteinase activity, fibrillar collagen deposition, and release of bioactive fragments of fibronectin and laminin. Because inflammation can promote tumorigenesis, we evaluated whether the tissue microenvironment of the involuting gland is also promotional. Extracellular matrix was isolated from mammary glands of nulliparous rats or rats with mammary glands undergoing weaning-induced involution. Using these matrices as substratum, nulliparous matrix was found to promote ductal organization of normal mammary epithelial MCF-12A cells in three-dimensional culture and to suppress invasion of mammary tumor MDA-MB-231 cells in transwell filter assays. Conversely, involution matrix failed to support ductal development in normal cells and promoted invasiveness in tumor cells. To evaluate the effects of these matrices on metastasis in vivo, MDA-MB-231 cells, premixed with Matrigel, nulliparous matrix, or involution matrix, were injected into mammary fat pads of nude mice. Metastases to lung, liver, and kidney were increased in the involution matrix group, and correlated with a twofold increase in tumor vascular endothelial growth factor expression and increased angiogenesis. These data suggest that the mammary gland microenvironment becomes promotional for tumor cell dissemination during involution, thus providing a plausible mechanism to explain the high rate of metastases that occur with pregnancy-associated breast cancer.
Collapse
|
578
|
Howell A, Sims AH, Ong KR, Harvie MN, Evans DGR, Clarke RB. Mechanisms of Disease: prediction and prevention of breast cancer--cellular and molecular interactions. ACTA ACUST UNITED AC 2006; 2:635-46. [PMID: 16341119 DOI: 10.1038/ncponc0361] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2005] [Accepted: 10/12/2005] [Indexed: 01/31/2023]
Abstract
Breast cancer is the most prevalent female cancer in the world and its incidence is increasing, largely because of the Western lifestyle. There is a need, not only to predict women who will develop the disease, but also to apply drug and lifestyle measures in order to prevent the disease. Current risk prediction models are based on combinations of risk factors and have good predictive but low discriminatory power. New risk prediction methods might come from examination of single nucleotide polymorphisms in several genes or from an increased knowledge of the molecular and cellular biology of the breast, particularly with respect to aberrant gene expression and protein synthesis. These methods might also determine new targets for preventive agents and lifestyle change. Many potential preventive measures are available and some have been successful. New approaches are required, however, not only to prevent the disease but to devise methods for their assessment that do not require very large and expensive clinical trials.
Collapse
Affiliation(s)
- Anthony Howell
- Dept of Medical Oncology, University of Manchester, Christie Hospital, Withington, UK.
| | | | | | | | | | | |
Collapse
|
579
|
Lewis CM, Herbert BS, Bu D, Halloway S, Beck A, Shadeo A, Zhang C, Ashfaq R, Shay JW, Euhus DM. Telomerase immortalization of human mammary epithelial cells derived from a BRCA2 mutation carrier. Breast Cancer Res Treat 2006; 99:103-15. [PMID: 16541310 DOI: 10.1007/s10549-006-9189-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2005] [Accepted: 02/05/2006] [Indexed: 12/13/2022]
Abstract
A novel human mammary epithelial cell line, HME348, was established from benign breast tissue from a 44-year-old germ-line BRCA2 mutation carrier with a history of stage 1 breast cancer. Mutation analysis showed that the patient had a known 6872del4 BRCA2 heterozygous mutation. The human mammary epithelial cells passaged in culture exhibited cellular replicative aging as evidenced by telomere shortening, lack of telomerase activity, and senescence. Ectopic expression of telomerase (hTERT) reconstituted telomerase activity in these cells and led to the immortalization of the cells. When grown on glass, the majority of immortalized HME348 cells expressed ESA and p63 with a small population also expressing EMA. In three-dimensional Matrigel culture, HME348 cells formed complex branching acini structures that expressed luminal (EMA, CK18) and myoepithelial (p63, CALLA, CK14) markers. Three clones derived from this culture were also p63(+)/ESA(+)/EMA(+/-) on glass but formed similar acinar structures with both luminal and myoepithelial cell differentiation in Matrigel confirming the mammary progenitor nature of these cells. Additionally, the experimentally immortalized HME348 cells formed acini in cleared mammary fat pads in vivo. As this is the first report establishing and characterizing a benign human mammary epithelial cell line derived from a BRCA2 patient without the use of viral oncogenes, these cells may be useful for the study of BRCA2 function in breast morphogenesis and carcinogenesis.
Collapse
Affiliation(s)
- Cheryl M Lewis
- Hamon Center for Therapeutic Oncology Research and Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390-9039, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
580
|
Ormestad M, Astorga J, Landgren H, Wang T, Johansson BR, Miura N, Carlsson P. Foxf1andFoxf2control murine gut development by limiting mesenchymal Wnt signaling and promoting extracellular matrix production. Development 2006; 133:833-43. [PMID: 16439479 DOI: 10.1242/dev.02252] [Citation(s) in RCA: 189] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Development of the vertebrate gut is controlled by paracrine crosstalk between the endodermal epithelium and the associated splanchnic mesoderm. In the adult, the same types of signals control epithelial proliferation and survival, which account for the importance of the stroma in colon carcinoma progression. Here, we show that targeting murine Foxf1 and Foxf2, encoding forkhead transcription factors, has pleiotropic effects on intestinal paracrine signaling. Inactivation of both Foxf2alleles, or one allele each of Foxf1 and Foxf2, cause a range of defects, including megacolon, colorectal muscle hypoplasia and agangliosis. Foxf expression in the splanchnic mesoderm is activated by Indian and sonic hedgehog secreted by the epithelium. In Foxf mutants, mesenchymal expression of Bmp4 is reduced, whereas Wnt5a expression is increased. Activation of the canonical Wnt pathway – with nuclear localization of β-catenin in epithelial cells – is associated with over-proliferation and resistance to apoptosis. Extracellular matrix,particularly collagens, is severely reduced in Foxf mutant intestine, which causes epithelial depolarization and tissue disintegration. Thus, Foxf proteins are mesenchymal factors that control epithelial proliferation and survival, and link hedgehog to Bmp and Wnt signaling.
Collapse
Affiliation(s)
- Mattias Ormestad
- Department of Cell and Molecular Biology, Göteborg University, Göteborg, Sweden
| | | | | | | | | | | | | |
Collapse
|
581
|
Bavik C, Coleman I, Dean JP, Knudsen B, Plymate S, Nelson PS. The gene expression program of prostate fibroblast senescence modulates neoplastic epithelial cell proliferation through paracrine mechanisms. Cancer Res 2006; 66:794-802. [PMID: 16424011 DOI: 10.1158/0008-5472.can-05-1716] [Citation(s) in RCA: 335] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The greatest risk factor for developing carcinoma of the prostate is advanced age. Potential molecular and physiologic contributors to the frequency of cancer occurrence in older individuals include the accumulation of somatic mutations through defects in genome maintenance, epigenetic gene silencing, oxidative stress, loss of immune surveillance, telomere dysfunction, chronic inflammation, and alterations in tissue microenvironment. In this context, the process of prostate carcinogenesis can be influenced through interactions between intrinsic cellular alterations and the extrinsic microenvironment and macroenvironment, both of which change substantially as a consequence of aging. In this study, we sought to characterize the molecular alterations that occur during the process of prostate fibroblast senescence to identify factors in the aged tissue microenvironment capable of promoting the proliferation and potentially the neoplastic progression of prostate epithelium. We evaluated three mechanisms leading to cell senescence: oxidative stress, DNA damage, and replicative exhaustion. We identified a consistent program of gene expression that includes a subset of paracrine factors capable of influencing adjacent prostate epithelial growth. Both direct coculture and conditioned medium from senescent prostate fibroblasts stimulated epithelial cell proliferation, 3-fold and 2-fold, respectively. The paracrine-acting proteins fibroblast growth factor 7, hepatocyte growth factor, and amphiregulin (AREG) were elevated in the extracellular environment of senescent prostate fibroblasts. Exogenous AREG alone stimulated prostate epithelial cell growth, and neutralizing antibodies and small interfering RNA targeting AREG attenuated, but did not completely abrogate the growth-promoting effects of senescent fibroblast conditioned medium. These results support the concept that aging-related changes in the prostate microenvironment may contribute to the progression of prostate neoplasia.
Collapse
Affiliation(s)
- Claes Bavik
- Division of Human Biology, Fred Hutchinson Cancer Research Center, University of Washington, 1100 Fairview Avenue North, Seattle, WA 98109, USA
| | | | | | | | | | | |
Collapse
|
582
|
Abstract
Since stem cells are present throughout the lifetime of an organism, it is thought that they may accumulate mutations, eventually leading to cancer. In the breast, tumours are predominantly oestrogen and progesterone receptor-positive (ERalpha/PR+). We therefore studied the biology of ERalpha/PR-positive cells and their relationship to stem cells in normal human mammary epithelium. We demonstrated that ERalpha/PR-positive cells co-express the putative stem cell markers p21(CIP1/WAF1), cytokeratin (CK) 19 and Musashi-1 when examined using dual label immunofluorescence on tissue sections. Next, we isolated a Hoechst dye-effluxing 'side population' (SP) from the epithelium using flow cytometry and demonstrated them to be undifferentiated cells by lack of expression of myoepithelial and luminal cell-specific antigens such as CALLA and MUC1. Epithelial SP cells were shown to be enriched for the putative stem cell markers p21(CIP1/WAF1), Musashi-1 and ERalpha/PR-positive cells. Lastly, SP cells, compared to non-SP, were highly enriched for the capacity to produce colonies containing multiple lineages in 3D basement membrane (Matrigel) culture. We conclude that breast stem cells include two populations: a primitive ERalpha/PR-negative stem cell necessary for development and a shorter term ERalpha/PR-positive stem cell necessary for adult tissue homeostasis during menstrual cycling. We speculate these two basic stem cell types may therefore be the cells of origin for ERalpha-positive and -negative breast tumours.
Collapse
Affiliation(s)
- R B Clarke
- Breast Biology Group, Division of Cancer Studies, University of Manchester, Christie Hospital, Wilmslow Road, Withington, Manchester, M20 4BX, UK.
| |
Collapse
|
583
|
Beacham DA, Cukierman E. Stromagenesis: the changing face of fibroblastic microenvironments during tumor progression. Semin Cancer Biol 2005; 15:329-41. [PMID: 15970443 DOI: 10.1016/j.semcancer.2005.05.003] [Citation(s) in RCA: 171] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
During tumorigenesis, reciprocal changes in stromal fibroblasts and tumor cells induce changes to the neoplastic microenvironmental landscape. In stromagenesis, both the complex network of bi-directional stromal fibroblastic signaling pathways and the stromal extracellular matrix are modified. The presence of a 'primed' stroma during the early, reversible stage of tumorigenesis is optimal for stromal-directed therapeutic intervention. Three-dimensional (3D) cell culture systems have been developed that mimic the in vivo microenvironment. These systems provide unique experimental tools to identify early alterations in stromagenesis that are supportive of tumor progression with the ultimate goal of blocking neoplastic permissiveness and restoring normal phenotypes.
Collapse
Affiliation(s)
- Dorothy A Beacham
- Fox Chase Cancer Center, Basic Science/Tumor Cell Biology, 333 Cottman Avenue, Philadelphia, PA 19111-2497, USA
| | | |
Collapse
|
584
|
Azuma M, Hirao A, Takubo K, Hamaguchi I, Kitamura T, Suda T. A quantitative matrigel assay for assessing repopulating capacity of prostate stem cells. Biochem Biophys Res Commun 2005; 338:1164-70. [PMID: 16286093 DOI: 10.1016/j.bbrc.2005.10.055] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2005] [Accepted: 10/12/2005] [Indexed: 10/25/2022]
Abstract
Homeostasis of prostate tissue is maintained by stem cells, although such cells have not been well characterized. Here, we report establishment of such a method using matrigel. Matrigel containing a single-cell suspension from adult prostatic cells was subcutaneously grafted into the flank of nude mice. Prostatic duct-like structures derived from donor tissue were observed in the gel 2 weeks after transplantation. Luminal and basal cells observed in the gel expressed several markers characteristic of prostatic and/or epithelial cells. When a mixture with both EGFP-positive and negative prostate cells was transplanted, prostatic ducts consisted of either EGFP-positive or negative cells and chimeric patterns were rarely observed, suggesting that ducts were reconstituted from a single cell. Stem cell number and function were also evaluated by competition with control cells. Overall this method revealed that cells localized in the proximal portion in prostate ducts had higher reconstitution capacity than those in the distal portion. We conclude that prostate stem/progenitor cells exist and that our method is applicable to analysis of prostate stem cells, epithelial mesenchyme interactions, and prostate cancer stem cells.
Collapse
Affiliation(s)
- Masaki Azuma
- Department of Cell Differentiation, Keio University School of Medicine, Japan
| | | | | | | | | | | |
Collapse
|
585
|
Tsai KKC, Chuang EYY, Little JB, Yuan ZM. Cellular mechanisms for low-dose ionizing radiation-induced perturbation of the breast tissue microenvironment. Cancer Res 2005; 65:6734-44. [PMID: 16061655 DOI: 10.1158/0008-5472.can-05-0703] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Radiation exposure is an important form of environmental carcinogen and has been associated with increased risk of breast cancer. Epigenetic events, especially those involving alterations in the breast stromal microenvironment, may play an important role in radiation-induced carcinogenesis but remain not well understood. We here show that human mammary stromal fibroblasts respond to protracted low-dose ionizing radiation exposures by displaying a senescence-like phenotype. Using a three-dimensional coculture system to model the interactions of different mammary cell types with their neighbors and with their environment, we provide a direct experimental proof that ionizing radiation-induced senescence-like fibroblasts significantly perturb the mammary stromal microenvironment, which is highlighted by impaired formation of pseudopodia networks due to marked cytoskeletal alterations in senescence-like fibroblasts and increased extracellular matrix degradation because of the up-regulation of multiple secreted matrix metalloproteinases. Within such a perturbed environment, mammary ductal morphogenesis is completely disrupted and epithelial cells instead grow into enlarged cystic structures, which further develop and become disorganized cell masses on inactivation of cellular death pathways. Breast carcinoma cells growing in such an environment are enabled to fully express their malignant potential as evidenced by the alpha6beta4 integrin/phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin pathway-dependent invasive growth. Our results suggest that ionizing radiation, in addition to causing gene mutations in epithelial cells, can contribute to breast carcinogenesis by perturbing the tissue microenvironment that leads to dysregulated cell-cell and cell-matrix interactions.
Collapse
Affiliation(s)
- Kelvin K C Tsai
- Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
586
|
Michelini M, Rosellini A, Mandys V, Simoncini T, Revoltella RP. Cytoarchitecture modifications of the human uterine endocervical mucosa in long-term three-dimensional organotypic culture. Pathol Res Pract 2005; 201:679-89. [PMID: 16325510 DOI: 10.1016/j.prp.2005.07.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2005] [Accepted: 07/15/2005] [Indexed: 11/24/2022]
Abstract
We assayed the effects of phenol red (pr), estrogen (Es), and progesterone (Pg) in three-dimensional organotypic cultures of human uterine endocervix. Small intact fragments deposited on sponges submerged in DMEM with 10% fetal bovine serum were cultured in three different conditions: with pr (DMEM(pr+)), without pr (DMEM(pr-)), and without pr but with the addition of physiological concentrations of Es and Pg [DMEM(pr-)(Es+Pg)]. Cell viability and cellular responses were assayed after 4, 10, and 21 days using immunohistochemistry for the expression and distribution of the following markers: mucins and mucopolysaccharides (PAS staining), pan-cytokeratins (AE1/AE3), CK19, p63, Ki-67, vimentin, estrogen receptor-alpha (ER-alpha), and progesterone receptor (PR). The fragments cultivated in DMEM(pr+) showed a cuboidal, poorly differentiated epithelial phenotype and signs of stroma degeneration. In DMEM(pr-), both tissue architecture and cellular heterogeneity were much better preserved: epithelial cells showed a more columnar shape, and stroma was very well conserved, maintaining cell density. The addition of Es and Pg further improved the histology and physiology of the fragments: in DMEM(pr-)(Es+Pg), epithelial cells retained a columnar shape, secreted mucins, and formed areas of squamous hyperplasia.
Collapse
Affiliation(s)
- Monica Michelini
- Immunobiology and Cell Differentiation Unit, Institute of Biomedical Technologies, CNR, Via G. Moruzzi 1, 56100 Pisa, Italy
| | | | | | | | | |
Collapse
|
587
|
Amatangelo MD, Bassi DE, Klein-Szanto AJP, Cukierman E. Stroma-derived three-dimensional matrices are necessary and sufficient to promote desmoplastic differentiation of normal fibroblasts. THE AMERICAN JOURNAL OF PATHOLOGY 2005; 167:475-88. [PMID: 16049333 PMCID: PMC1603576 DOI: 10.1016/s0002-9440(10)62991-4] [Citation(s) in RCA: 188] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Stromagenesis is a host reaction of connective tissue that, when induced in cancer, produces a progressive and permissive mesenchymal microenvironment, thereby supporting tumor progression. The stromal microenvironment is complex and comprises several cell types, including fibroblasts, the primary producers of the noncellular scaffolds known as extracellular matrices. The events that support tumor progression during stromagenesis are for the most part unknown due to the lack of suitable, physiologically relevant, experimental model systems. In this report, we introduce a novel in vivo-like three-dimensional system derived from tumor-associated fibroblasts at diverse stages of tumor development that mimic the stromagenic features of fibroblasts and their matrices observed in vivo. Harvested primary stromal fibroblasts, obtained from different stages of tumor development, did not retain in vivo stromagenic characteristics when cultured on traditional two-dimensional substrates. However, they were capable of effectively maintaining the tumor-associated stromal characteristics within three-dimensional cultures. In this study, we demonstrate that in vivo-like three-dimensional matrices appear to have the necessary topographical and molecular information sufficient to induce desmoplastic stroma differentiation of normal fibroblasts.
Collapse
Affiliation(s)
- Michael D Amatangelo
- Basic Science/Tumor Cell Biology, Fox Chase Cancer Center, Philadelphia, PA 19111-2497, USA
| | | | | | | |
Collapse
|
588
|
Kuperwasser C, Dessain S, Bierbaum BE, Garnet D, Sperandio K, Gauvin GP, Naber SP, Weinberg RA, Rosenblatt M. A mouse model of human breast cancer metastasis to human bone. Cancer Res 2005; 65:6130-8. [PMID: 16024614 DOI: 10.1158/0008-5472.can-04-1408] [Citation(s) in RCA: 144] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Currently, an in vivo model of human breast cancer metastasizing from the orthotopic site to bone does not exist, making it difficult to study the many steps of skeletal metastasis. Moreover, models used to identify the mechanisms by which breast cancer metastasizes to bone are limited to intracardiac injection, which seeds the cancer cells directly into the circulation, thus bypassing the early steps in the metastatic process. Such models do not reflect the full process of metastasis occurring in patients. We have developed an animal model of breast cancer metastasis in which the breast cancer cells and the bone target of osteotropic metastasis are both of human origin. The engrafted human bone is functional, based on finding human IgG in the mouse bloodstream, human B cells in the mouse spleen, and normal bone histology. Furthermore, orthotopic injection of a specific human breast cancer cell line, SUM1315 (derived from a metastatic nodule in a patient), later resulted in both bone and lung metastases. In the case of bone, metastasis was to the human implant and not the mouse skeleton, indicating a species-specific osteotropism. This model replicates the events observed in patients with breast cancer skeletal metastases and serves as a useful and relevant model for studying the disease.
Collapse
Affiliation(s)
- Charlotte Kuperwasser
- Department of Physiology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
589
|
Abstract
Little is known about how the genotypic and molecular abnormalities associated with epithelial cancers actually contribute to the histological phenotypes observed in tumours in vivo. 3D epithelial culture systems are a valuable tool for modelling cancer genes and pathways in a structurally appropriate context. Here, we review the important features of epithelial structures grown in 3D basement membrane cultures, and how such models have been used to investigate the mechanisms associated with tumour initiation and progression.
Collapse
Affiliation(s)
- Jayanta Debnath
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
590
|
Zeh HJ, Lotze MT. Addicted to death: invasive cancer and the immune response to unscheduled cell death. J Immunother 2005; 28:1-9. [PMID: 15614039 DOI: 10.1097/00002371-200501000-00001] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The development of an invasive cancer involves a progressive switch from predominantly apoptotic (scheduled) to necrotic (unscheduled) tumor cell death. This switch is associated with chronic and increasing release of intracellular factors that in turn promote reactive angiogenesis and stromal proliferation and mediates the disordered tumor microenvironment associated with local immune suppression. The authors review the relevant immunobiology of these factors, including the nuclear protein HMGB1; the products of purine metabolism (uric acid, ATP, and adenosine); the S100 family members; and the heat shock proteins, which we believe drive futile cycles of cell death followed by reparative cell growth. The authors also present a novel and provocative hypothesis that suggests that most of the derangements that we associate with progression of cancer and the associated immunologic consequences can indeed be ascribed to the consequences of disordered tumor cell death rather than cell growth. Thus the fundamental defect in invasive human cancers, in the authors' view, is not one of cell growth but rather one of disordered cell death, resulting in turn in a tumor microenvironment that encourages tumor growth, progression, and local immunosuppression, a condition the authors have termed "addicted to death." This new understanding could inform and drive the development of more effective biologic therapies for patients with cancer.
Collapse
Affiliation(s)
- Herbert J Zeh
- University of Pittsburgh School of Medicine Institute, Room 411, 300 Technology Drive, Pittsburgh, PA 15219, USA
| | | |
Collapse
|
591
|
Cheng N, Bhowmick NA, Chytil A, Gorksa AE, Brown KA, Muraoka R, Arteaga CL, Neilson EG, Hayward SW, Moses HL. Loss of TGF-beta type II receptor in fibroblasts promotes mammary carcinoma growth and invasion through upregulation of TGF-alpha-, MSP- and HGF-mediated signaling networks. Oncogene 2005; 24:5053-68. [PMID: 15856015 PMCID: PMC3074577 DOI: 10.1038/sj.onc.1208685] [Citation(s) in RCA: 208] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2005] [Revised: 03/01/2005] [Accepted: 03/02/2005] [Indexed: 01/12/2023]
Abstract
Stromal fibroblasts regulate epithelial cell behavior through direct and indirect cell-cell interactions. To clarify the role of TGF-beta signaling in stromal fibroblasts during mammary development and tumorigenesis, we conditionally knocked out the TGF-beta type II receptor gene in mouse mammary fibroblasts (Tgfbr2(fspKO)). Tgfbr2(fspKO) mice exhibit defective mammary ductal development, characterized in part by increased ductal epithelial cell turnover associated with an increase in stromal fibroblast abundance. Tgfbr2(fspKO) mammary fibroblasts transplanted with mammary carcinoma cells promote growth and invasion, which is associated with increased activating phosphorylation of the receptors: erbB1, erbB2, RON, and c-Met. Furthermore, the increased receptor phosphorylation correlates with increased secretion of the cognate ligands by Tgfbr2(fspKO) fibroblasts. Treatment of tumor cells with fibroblast-conditioned medium leads to increased tumor cell proliferation and motility, which are blocked by addition of pharmacologic inhibitors of TGF-alpha signaling or neutralizing antibodies to macrophage-stimulating protein (MSP), HGF, or c-Met. These studies characterize a significant role for stromal TGF-beta signaling in mammary tissue homeostasis and mammary tumor progression via regulation of TGF-alpha, MSP, and HGF signaling pathways.
Collapse
Affiliation(s)
- Nikki Cheng
- Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN 37232-6838, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
592
|
Wang X, Wang E, Kavanagh JJ, Freedman RS. Ovarian cancer, the coagulation pathway, and inflammation. J Transl Med 2005; 3:25. [PMID: 15969748 PMCID: PMC1182397 DOI: 10.1186/1479-5876-3-25] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2005] [Accepted: 06/21/2005] [Indexed: 02/06/2023] Open
Abstract
Epithelial ovarian cancer (EOC) represents the most frequent cause of death in the United States from a cancer involving the female genital tract. Contributing to the overall poor outcome in EOC patients, are the metastases to the peritoneum and stroma that are common in this cancer. In one study, cDNA microarray analysis was performed on fresh tissue to profile gene expression in patients with EOC. This study showed a number of genes with significantly altered expression in the pelvic peritoneum and stroma, and in the vicinity of EOC implants. These genes included those encoding coagulation factors and regulatory proteins in the coagulation cascade and genes encoding proteins associated with inflammatory responses. In addition to promoting the formation of blood clots, coagulation factors exhibit many other biologic functions as well as tumorigenic functions, the later including tumor cell proliferation, angiogenesis, invasion, and metastasis. Coagulation pathway proteins involved in tumorigenesis consist of factor II (thrombin), thrombin receptor (protease-activated receptors), factor III (tissue factor), factor VII, factor X and factor I (fibrinogen), and fibrin and factor XIII. In a recent study we conducted, we found that factor XII, factor XI, and several coagulation regulatory proteins, including heparin cofactor-II and epithelial protein C receptor (EPCR), were also upregulated in the peritoneum of EOC. In this review, we summarize evidence in support of a role for these factors in promoting tumor cell progression and the formation of ascites. We also discuss the different roles of coagulation factor pathways in the tumor and peritumoral microenvironments as they relate to angiogenesis, proliferation, invasion, and metastasis. Since inflammatory responses are another characteristic of the peritoneum in EOC, we also discuss the linkage between the coagulation cascade and the cytokines/chemokines involved in inflammation. Interleukin-8, which is considered an important chemokine associated with tumor progression, appears to be a linkage point for coagulation and inflammation in malignancy. Lastly, we review findings regarding the inflammatory process yielded by certain clinical trials of agents that target members of the coagulation cascade in the treatment of cancer. Current data suggest that disrupting certain elements of the coagulation and inflammation processes in the tumor microenvironment could be a new biologic approach to cancer therapeutics.
Collapse
Affiliation(s)
- Xipeng Wang
- Department of Gynecologic Medical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| | - Ena Wang
- Department of Transfusion Medicine, National Institutes of Health, Bethesda, MD, USA
| | - John J Kavanagh
- Department of Gynecologic Medical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| | - Ralph S Freedman
- Department of Gynecologic Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
593
|
Norton L. Conceptual and Practical Implications of Breast Tissue Geometry: Toward a More Effective, Less Toxic Therapy. Oncologist 2005; 10:370-81. [PMID: 15967831 DOI: 10.1634/theoncologist.10-6-370] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Mathematics provides greater understanding of the complex process of tumorigenesis. Based on the Gompertzian phenomenon and the Norton-Simon hypothesis, enhanced cell kill can be obtained through a greater chemotherapy dose rate. Results from the 1995 Bonadonna et al. study and the CALGB/Intergroup C9741 study demonstrated that patients in the dose-dense arms had significantly longer disease-free survival and overall survival. Because of the demonstrated applicability of Gompertzian kinetics, attention has been turned to the etiology of the Gompertzian curve. Breast tumor dimensions, as with all tissue dimensions in biology, can be calculated by fractals. A less cell-dense tissue usually has a lower fractal dimension than a tissue with more cells (i.e., a higher cell density is usually due to a higher fractal dimension). Density is the number of cells divided by the tissue volume. When allowed to grow, the density of a tissue with a lower fractal dimension drops quickly. However, a tumor, since it has a higher fractal mass dimension, maintains a high density as it grows bigger, resulting in a more rapid growth rate and a larger final size. Fractal dimensions of infiltrating ductal adenocarcinomas of the breast are high (i.e., 2.98), which results in a very dense tissue compared with normal breast tissue (with a fractal dimension of about 2.25). As expected, the higher fractal dimension results in a high rate of growth. The reason for this high fractal dimension is that breast cancer can be considered as a conglomerate of many small Gompertzian tumors, each of which has a high cell density and hence ratio of mitosis to apoptosis. In mathematical terms, each component of the conglomerate can be considered a small metastasis in itself. Thus, the primary tumor is composed of multiple self-metastases that form around a seed from the tumor to itself. Conventional thinking is that cancers metastasize because they are large, but in fact it may be that they are large because they are self-metastatic. Many genes are associated with the biology of metastasis; these include: A) obligatory cancer genes (most of which regulate mitosis and mitotic rate); B) genes relating to self-metastasis and growth of tumors at local sites, conferring the ability to invade and grow with high cell density; and C) genes that relate to the ability of the cancer to metastasize to distant areas. Additionally, fibroblasts may send out abnormal growth signals causing abnormal breast tissue growth. Consequently, we are not only dealing with abnormal cancer cells, but also with the tissue that surrounds them, or the microenvironment, that is, the "Smith-Bissell" model. These new insights may lead us to change the thrust of our attack from genes involved in mitosis to those involved in metastasis, including metastasis to self, and to use and further improve dose-dense regimens.
Collapse
Affiliation(s)
- Larry Norton
- Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, New York 10021-6007, USA.
| |
Collapse
|
594
|
Affiliation(s)
- Johanna A Joyce
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA.
| |
Collapse
|
595
|
Abstract
Cancer is a collection of complex genetic diseases characterized by multiple defects in the homeostatic mechanisms that regulate cell growth, proliferation and differentiation. Although the analysis of human tumor specimens has allowed the identification of many molecules and pathways important for the malignant phenotype, we still lack a complete understanding of the events that conspire to program any specific type of cancer. Recent advances in developing human experimental models of cancer have provided new insights into the pathways whose perturbation is necessary to achieve cell transformation. These studies indicate that many combinations of genetic mutations confer tumorigenicity on human cells and that both cell-type and tumor-stromal interactions play critical roles in dictating the tumor phenotype.
Collapse
Affiliation(s)
- Jesse S Boehm
- Department of Medical Oncology, Dana-Farber Cancer Institute, Departments of Medicine and Pathology, Harvard Medical School, 44 Binney Street, Boston, MA 02115, USA
| | | |
Collapse
|
596
|
Abstract
The importance of stromal cells and the factors that they express during cancer initiation and progression has been highlighted by recent literature. The cellular components of the stroma of epithelial tissues are well-recognized as having a supportive role in carcinogenesis, where the initiating mutations of a tumor originate in the epithelial cells. The use of mouse models and xenografts suggests that mutations in the stromal fibroblasts can also initiate epithelial tumors. Many of these tumors result from the alteration of paracrine growth factor pathways that act on the epithelia. However, the tissue specificity of the responses to the growth factors is a mystery not yet solved.
Collapse
Affiliation(s)
- Neil A. Bhowmick
- Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
- Department of Urologic Surgery, Vanderbilt University School of Medicine, Nashville, TN 37232
- Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Harold L. Moses
- Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
- To whom Correspondence should be addressed. Harold L. Moses, 649 Preston Research Building, Nashville, TN 37232, phone: 615-, FAX: 615-936-1719, , Neil A. Bhowmick, A1302 Medical Center North, Nashville, TN 37232, phone: 615-343-7140, FAX: 615-,
| |
Collapse
|
597
|
Stuelten CH, DaCosta Byfield S, Arany PR, Karpova TS, Stetler-Stevenson WG, Roberts AB. Breast cancer cells induce stromal fibroblasts to express MMP-9 via secretion of TNF-alpha and TGF-beta. J Cell Sci 2005; 118:2143-53. [PMID: 15855236 DOI: 10.1242/jcs.02334] [Citation(s) in RCA: 180] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
We used 2D-cocultures employing fibroblasts of different genetic backgrounds and MCF10A-derived human breast epithelial cells of increasingly malignant potential to investigate tumor-stroma interactions in breast cancer and to identify possible signaling pathways involved. Tumor cells induced expression of matrix-metalloproteinase 9 (MMP-9) in fibroblasts in a pattern dependent on the degree of their malignancy. In-situ zymography localized the main gelatinolytic activity around stromal cells in cocultures and xenografted tumors. Use of Smad3 knockout fibroblasts, small molecule inhibitors, and neutralizing antibodies showed that MMP-9 expression was induced by tumor cell-derived TNF-alpha and TGF-beta, dependent on Smad-, Ras-, and PI3-kinase-signaling, and likewise modulated by subsequent HGF- and EGF-signaling. Together, our results indicate that MMP-9 levels in tumor fibroblasts are regulated by a complex tumor-stroma cross-talk, involving multiple ligands and cellular signaling pathways.
Collapse
Affiliation(s)
- Christina H Stuelten
- Laboratory of Cell Regulation and Carcinogenesis, CCR, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
598
|
Schwartsburd PM. Age-promoted creation of a pro-cancer microenvironment by inflammation: pathogenesis of dyscoordinated feedback control. Mech Ageing Dev 2005; 125:581-90. [PMID: 15491675 DOI: 10.1016/j.mad.2004.08.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2004] [Revised: 07/16/2004] [Accepted: 08/10/2004] [Indexed: 11/19/2022]
Abstract
Aging and local chronic inflammation are established risk factors for epithelial tumorigenesis. These risk factors can act individually and/or synergistically to increase the incidence of age-related carcinomas. The basis for this co-stimulatory response has not yet been defined, nor have the feedback mechanisms that are responsible for this synergism. This review provides insight into the age-stimulated dysregulation of coordination of feedbacks in oxygen-, heme-, and proteolysis-dependent metabolic pathways caused by acute and chronic inflammation, and its role as a possible pathological basis for the creation of a pro-cancer microenvironment (PCM). The PCM facilitates the selective survival and growth of transformed cells (in a manner similar to a cancer-supportive microenvironment (CM)). The cancer-induced environment has certain features in common with chronic inflammatory-induced PCM. Namely, there are: enhanced oxidative cell resistance against apoptosis, increased production of matrix-degrading enzymes, switching to glycolytic metabolism, angiogenesis and vasorelaxation thus providing nutrient delivery, but restriction of the immune cell mobilization and/or its activation. The hypothetical model of PCM-genesis is presented as a result of enzymatic dysregulation of feedback control including oxygen-, heme-, prostaglandin E(2)-, metalloproteinase-9-, and NO/CO-dependent pathways. PCM-genesis takes place between the growth-inhibiting (cytotoxic) and growth promoting (regenerative) stages of inflammatory response. According to this model, age-related metabolic changes create opportunities for chronic (not acute) inflammatory response, which supports the PCM-condition with the non-healing wound state that often occurs around carcinomas.
Collapse
Affiliation(s)
- P M Schwartsburd
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Science, Pushchino, Moscow Region.
| |
Collapse
|
599
|
Kiaris H, Chatzistamou I, Trimis G, Frangou-Plemmenou M, Pafiti-Kondi A, Kalofoutis A. Evidence for nonautonomous effect of p53 tumor suppressor in carcinogenesis. Cancer Res 2005; 65:1627-30. [PMID: 15753354 DOI: 10.1158/0008-5472.can-04-3791] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Prostate, breast, and probably other epithelial tumors harbor inactivating mutations in the p53 tumor suppressor gene in the stromal cells, implying the nonautonomous action of p53 in carcinogenesis. We have tested this hypothesis by evaluating the tumorigenicity of MCF7 human breast cancer cells in severe combined immunodeficient mice that differ in their p53 status. Our results showed that, indeed, p53 ablation in the hosts reduced the latency for the development of MCF7 tumors. Furthermore, we show that heterozygous hosts frequently undergo loss of heterozygosity at the p53 locus in the tumor stroma tissue by mechanism that resembles the inactivation of p53 in primary tumors. To evaluate the impact of p53 ablation in the stromal fibroblasts, in tumorigenesis, tumors were reconstituted in mice bearing wild-type p53 alleles, by mixing MCF7 cells with fibroblasts isolated from mutant or wild-type p53 mice. Our results suggest that tumors containing p53-deficient fibroblasts developed faster and were more aggressive than their counterparts with wild-type fibroblasts, although their neoplastic component, namely MCF7 mammary carcinoma cells, was identical in both cases. These data strongly support the notion for the operation of a nonautonomous mechanism for p53 action in primary tumors and provide a mechanistic association between p53 mutations in the stromal component of epithelial tumors and carcinogenesis.
Collapse
Affiliation(s)
- Hippokratis Kiaris
- Department of Biological Chemistry, Aretaieion Hospital, University of Athens Medical School, Athens, Greece.
| | | | | | | | | | | |
Collapse
|
600
|
Samoszuk M, Tan J, Chorn G. Clonogenic growth of human breast cancer cells co-cultured in direct contact with serum-activated fibroblasts. Breast Cancer Res 2005; 7:R274-83. [PMID: 15987422 PMCID: PMC1143574 DOI: 10.1186/bcr995] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2004] [Revised: 11/25/2004] [Accepted: 12/20/2004] [Indexed: 12/16/2022] Open
Abstract
Introduction Accumulating evidence suggests that fibroblasts play a pivotal role in promoting the growth of breast cancer cells. The objective of the present study was to characterize and validate an in vitro model of the interaction between small numbers of human breast cancer cells and human fibroblasts. Methods We measured the clonogenic growth of small numbers of human breast cancer cells co-cultured in direct contact with serum-activated, normal human fibroblasts. Using DNA microarrays, we also characterized the gene expression profile of the serum-activated fibroblasts. In order to validate the in vivo relevance of our experiments, we then analyzed clinical samples of metastatic breast cancer for the presence of myofibroblasts expressing α-smooth muscle actin. Results Clonogenic growth of human breast cancer cells obtained directly from in situ and invasive tumors was dramatically and consistently enhanced when the tumor cells were co-cultured in direct contact with serum-activated fibroblasts. This effect was abolished when the cells were co-cultured in transwells separated by permeable inserts. The fibroblasts in our experimental model exhibited a gene expression signature characteristic of 'serum response' (i.e. myofibroblasts). Immunostaining of human samples of metastatic breast cancer tissue confirmed that myofibroblasts are in direct contact with breast cancer cells. Conclusion Serum-activated fibroblasts promote the clonogenic growth of human breast cancer cells in vitro through a mechanism that involves direct physical contact between the cells. This model shares many important molecular and phenotypic similarities with the fibroblasts that are naturally found in breast cancers.
Collapse
Affiliation(s)
- Michael Samoszuk
- Pathology Department, University of California, Irvine, California, USA
| | - Jenny Tan
- Pathology Department, University of California, Irvine, California, USA
| | - Guillaume Chorn
- Biology Department, Stanford University, Stanford, California, USA
| |
Collapse
|