551
|
Gruner K, Zeier T, Aretz C, Zeier J. A critical role for Arabidopsis MILDEW RESISTANCE LOCUS O2 in systemic acquired resistance. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 94:1064-1082. [PMID: 29660188 DOI: 10.1111/tpj.13920] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 03/21/2018] [Accepted: 03/22/2018] [Indexed: 06/08/2023]
Abstract
Members of the MILDEW RESISTANCE LOCUS O (MLO) gene family confer susceptibility to powdery mildews in different plant species, and their existence therefore seems to be disadvantageous for the plant. We recognized that expression of the Arabidopsis MLO2 gene is induced after inoculation with the bacterial pathogen Pseudomonas syringae, promoted by salicylic acid (SA) signaling, and systemically enhanced in the foliage of plants exhibiting systemic acquired resistance (SAR). Importantly, distinct mlo2 mutant lines were unable to systemically increase resistance to bacterial infection after inoculation with P. syringae, indicating that the function of MLO2 is necessary for biologically induced SAR in Arabidopsis. Our data also suggest that the close homolog MLO6 has a supportive but less critical role in SAR. In contrast to SAR, basal resistance to bacterial infection was not affected in mlo2. Remarkably, SAR-defective mlo2 mutants were still competent in systemically increasing the levels of the SAR-activating metabolites pipecolic acid (Pip) and SA after inoculation, and to enhance SAR-related gene expression in distal plant parts. Furthermore, although MLO2 was not required for SA- or Pip-inducible defense gene expression, it was essential for the proper induction of disease resistance by both SAR signals. We conclude that MLO2 acts as a critical downstream component in the execution of SAR to bacterial infection, being required for the translation of elevated defense responses into disease resistance. Moreover, our data suggest a function for MLO2 in the activation of plant defense priming during challenge by P. syringae.
Collapse
Affiliation(s)
- Katrin Gruner
- Institute for Molecular Ecophysiology of Plants, Department of Biology, Heinrich Heine University, Universitätsstraße 1, Düsseldorf, D-40225, Germany
| | - Tatyana Zeier
- Institute for Molecular Ecophysiology of Plants, Department of Biology, Heinrich Heine University, Universitätsstraße 1, Düsseldorf, D-40225, Germany
| | - Christina Aretz
- Institute for Molecular Ecophysiology of Plants, Department of Biology, Heinrich Heine University, Universitätsstraße 1, Düsseldorf, D-40225, Germany
| | - Jürgen Zeier
- Institute for Molecular Ecophysiology of Plants, Department of Biology, Heinrich Heine University, Universitätsstraße 1, Düsseldorf, D-40225, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University, Universitätsstraße 1, Düsseldorf, D-40225, Germany
| |
Collapse
|
552
|
Hilleary R, Gilroy S. Systemic signaling in response to wounding and pathogens. CURRENT OPINION IN PLANT BIOLOGY 2018; 43:57-62. [PMID: 29351871 DOI: 10.1016/j.pbi.2017.12.009] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 12/18/2017] [Accepted: 12/27/2017] [Indexed: 05/06/2023]
Abstract
Plants possess systemic signaling networks that allow the perception of local stresses to be translated into plant-wide responses. Although information can be propagated via a variety of molecules such as hormones and RNAs moving within the bulk flow of the phloem or in the transpiration stream, the vasculature also appears to be a major pathway whereby extremely rapid signals move bi-directionally throughout the plant. In these cases, the movement mechanisms are not dependent on redistribution through bulk flow. For example, self-reinforcing systems based around changes in Ca2+ and reactive oxygen species, coupled to parallel electrical signaling events appear able to generate waves of information that can propagate at hundreds of μm/s. These signals then elicit distant responses that prime the plant for a more effective defense or stress response in unchallenged tissues. Although ion channels, Ca2+, reactive oxygen species and associated molecular machineries, such as the NADPH oxidases, have been identified as likely important players in this propagation system, the precise nature of these signaling networks remains to be defined. Critically, whether different stimuli are using the same rapid, systemic signaling network, or whether multiple, parallel pathways for signal propagation are operating to trigger specific systemic outputs remains a key open question.
Collapse
Affiliation(s)
- Richard Hilleary
- Department of Botany, University of Wisconsin, Birge Hall, 430 Lincoln Drive, Madison, WI 53706, USA
| | - Simon Gilroy
- Department of Botany, University of Wisconsin, Birge Hall, 430 Lincoln Drive, Madison, WI 53706, USA.
| |
Collapse
|
553
|
N-hydroxy-pipecolic acid is a mobile metabolite that induces systemic disease resistance in Arabidopsis. Proc Natl Acad Sci U S A 2018; 115:E4920-E4929. [PMID: 29735713 DOI: 10.1073/pnas.1805291115] [Citation(s) in RCA: 148] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Systemic acquired resistance (SAR) is a global response in plants induced at the site of infection that leads to long-lasting and broad-spectrum disease resistance at distal, uninfected tissues. Despite the importance of this priming mechanism, the identity and complexity of defense signals that are required to initiate SAR signaling is not well understood. In this paper, we describe a metabolite, N-hydroxy-pipecolic acid (N-OH-Pip) and provide evidence that this mobile molecule plays a role in initiating SAR signal transduction in Arabidopsis thaliana We demonstrate that FLAVIN-DEPENDENT MONOOXYGENASE 1 (FMO1), a key regulator of SAR-associated defense priming, can synthesize N-OH-Pip from pipecolic acid in planta, and exogenously applied N-OH-Pip moves systemically in Arabidopsis and can rescue the SAR-deficiency of fmo1 mutants. We also demonstrate that N-OH-Pip treatment causes systemic changes in the expression of pathogenesis-related genes and metabolic pathways throughout the plant and enhances resistance to a bacterial pathogen. This work provides insight into the chemical nature of a signal for SAR and also suggests that the N-OH-Pip pathway is a promising target for metabolic engineering to enhance disease resistance.
Collapse
|
554
|
Fukami J, Cerezini P, Hungria M. Azospirillum: benefits that go far beyond biological nitrogen fixation. AMB Express 2018; 8:73. [PMID: 29728787 PMCID: PMC5935603 DOI: 10.1186/s13568-018-0608-1] [Citation(s) in RCA: 141] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 04/30/2018] [Indexed: 12/25/2022] Open
Abstract
The genus Azospirillum comprises plant-growth-promoting bacteria (PGPB), which have been broadly studied. The benefits to plants by inoculation with Azospirillum have been primarily attributed to its capacity to fix atmospheric nitrogen, but also to its capacity to synthesize phytohormones, in particular indole-3-acetic acid. Recently, an increasing number of studies has attributed an important role of Azospirillum in conferring to plants tolerance of abiotic and biotic stresses, which may be mediated by phytohormones acting as signaling molecules. Tolerance of biotic stresses is controlled by mechanisms of induced systemic resistance, mediated by increased levels of phytohormones in the jasmonic acid/ethylene pathway, independent of salicylic acid (SA), whereas in the systemic acquired resistance-a mechanism previously studied with phytopathogens-it is controlled by intermediate levels of SA. Both mechanisms are related to the NPR1 protein, acting as a co-activator in the induction of defense genes. Azospirillum can also promote plant growth by mechanisms of tolerance of abiotic stresses, named as induced systemic tolerance, mediated by antioxidants, osmotic adjustment, production of phytohormones, and defense strategies such as the expression of pathogenesis-related genes. The study of the mechanisms triggered by Azospirillum in plants can help in the search for more-sustainable agricultural practices and possibly reveal the use of PGPB as a major strategy to mitigate the effects of biotic and abiotic stresses on agricultural productivity.
Collapse
Affiliation(s)
- Josiane Fukami
- Embrapa Soja, C.P. 231, Londrina, Paraná 86001-970 Brazil
- Department Biochemistry and Biotechnology, Universidade Estadual de Londrina, C.P. 60001, Londrina, Paraná 86051-990 Brazil
| | - Paula Cerezini
- Embrapa Soja, C.P. 231, Londrina, Paraná 86001-970 Brazil
| | - Mariangela Hungria
- Embrapa Soja, C.P. 231, Londrina, Paraná 86001-970 Brazil
- Department Biochemistry and Biotechnology, Universidade Estadual de Londrina, C.P. 60001, Londrina, Paraná 86051-990 Brazil
| |
Collapse
|
555
|
Ogita N, Okushima Y, Tokizawa M, Yamamoto YY, Tanaka M, Seki M, Makita Y, Matsui M, Okamoto-Yoshiyama K, Sakamoto T, Kurata T, Hiruma K, Saijo Y, Takahashi N, Umeda M. Identifying the target genes of SUPPRESSOR OF GAMMA RESPONSE 1, a master transcription factor controlling DNA damage response in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 94:439-453. [PMID: 29430765 DOI: 10.1111/tpj.13866] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 01/31/2018] [Accepted: 02/01/2018] [Indexed: 05/17/2023]
Abstract
In mammalian cells, the transcription factor p53 plays a crucial role in transmitting DNA damage signals to maintain genome integrity. However, in plants, orthologous genes for p53 and checkpoint proteins are absent. Instead, the plant-specific transcription factor SUPPRESSOR OF GAMMA RESPONSE 1 (SOG1) controls most of the genes induced by gamma irradiation and promotes DNA repair, cell cycle arrest, and stem cell death. To date, the genes directly controlled by SOG1 remain largely unknown, limiting the understanding of DNA damage signaling in plants. Here, we conducted a microarray analysis and chromatin immunoprecipitation (ChIP)-sequencing, and identified 146 Arabidopsis genes as direct targets of SOG1. By using ChIP-sequencing data, we extracted the palindromic motif [CTT(N)7 AAG] as a consensus SOG1-binding sequence, which mediates target gene induction in response to DNA damage. Furthermore, DNA damage-triggered phosphorylation of SOG1 is required for efficient binding to the SOG1-binding sequence. Comparison between SOG1 and p53 target genes showed that both transcription factors control genes responsible for cell cycle regulation, such as CDK inhibitors, and DNA repair, whereas SOG1 preferentially targets genes involved in homologous recombination. We also found that defense-related genes were enriched in the SOG1 target genes. Consistent with this finding, SOG1 is required for resistance against the hemi-biotrophic fungus Colletotrichum higginsianum, suggesting that SOG1 has a unique function in controlling the immune response.
Collapse
Affiliation(s)
- Nobuo Ogita
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
| | - Yoko Okushima
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
| | - Mutsutomo Tokizawa
- The United Graduate School of Agricultural Science, Gifu University, Gifu, Gifu, 501-1193, Japan
| | - Yoshiharu Y Yamamoto
- Faculty of Applied Biological Sciences, Gifu University, Gifu, Gifu, 501-1193, Japan
| | - Maho Tanaka
- RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Motoaki Seki
- RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
- JST, CREST, Kawaguchi, Saitama, 332-0012, Japan
| | - Yuko Makita
- RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Minami Matsui
- RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Kaoru Okamoto-Yoshiyama
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
| | - Tomoaki Sakamoto
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
| | - Tetsuya Kurata
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
| | - Kei Hiruma
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
| | - Yusuke Saijo
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
| | - Naoki Takahashi
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
| | - Masaaki Umeda
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
- JST, CREST, Ikoma, Nara, 630-0192, Japan
| |
Collapse
|
556
|
Hu Z, Shao S, Zheng C, Sun Z, Shi J, Yu J, Qi Z, Shi K. Induction of systemic resistance in tomato against Botrytis cinerea by N-decanoyl-homoserine lactone via jasmonic acid signaling. PLANTA 2018; 247:1217-1227. [PMID: 29445868 DOI: 10.1007/s00425-018-2860-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 02/06/2018] [Indexed: 05/16/2023]
Abstract
N-decanoyl-homoserine lactone activates plant systemic resistance against Botrytis cinerea in tomato plants, which is largely dependent on jasmonic acid biosynthesis and signal transduction pathways. Rhizosphere bacteria secrete N-acylated-homoserine lactones (AHLs), a type of specialized quorum-sensing signal molecule, to coordinate their population density during communication with their eukaryotic hosts. AHLs behave as low molecular weight ligands that are sensed by plants and promote the host's resistance against foliar pathogens. In this study, we report on N-decanoyl-homoserine lactone (DHL), which is a type of AHL that induces systemic immunity in tomato plants and protects the host organism against the necrotrophic fungus Botrytis cinerea. Upon DHL treatment, tomato endogenous jasmonic acid (JA) biosynthesis (rather than salicylic acid biosynthesis) and signal transduction were significantly activated. Strikingly, the DHL-induced systemic resistance against B. cinerea was blocked in the tomato JA biosynthesis mutant spr2 and JA signaling gene-silenced plants. Our findings highlight the role of DHL in systemic resistance against economically important necrotrophic pathogens and suggest that DHL-induced immunity against B. cinerea is largely dependent on the JA signaling pathway. Manipulation of DHL-induced resistance is an attractive disease management strategy that could potentially be used to enhance disease resistance in diverse plant species.
Collapse
Affiliation(s)
- Zhangjian Hu
- Department of Horticulture, Zhejiang University, 866 Yuhangtang Road, 310058, Hangzhou, People's Republic of China
| | - Shujun Shao
- Department of Horticulture, Zhejiang University, 866 Yuhangtang Road, 310058, Hangzhou, People's Republic of China
| | - Chenfei Zheng
- Department of Horticulture, Zhejiang University, 866 Yuhangtang Road, 310058, Hangzhou, People's Republic of China
| | - Zenghui Sun
- Department of Horticulture, Zhejiang University, 866 Yuhangtang Road, 310058, Hangzhou, People's Republic of China
| | - Junying Shi
- Department of Horticulture, Zhejiang University, 866 Yuhangtang Road, 310058, Hangzhou, People's Republic of China
| | - Jingquan Yu
- Department of Horticulture, Zhejiang University, 866 Yuhangtang Road, 310058, Hangzhou, People's Republic of China
| | - Zhenyu Qi
- Experimental Station of Zhejiang University, 866 Yuhangtang Road, 310058, Hangzhou, People's Republic of China
| | - Kai Shi
- Department of Horticulture, Zhejiang University, 866 Yuhangtang Road, 310058, Hangzhou, People's Republic of China.
| |
Collapse
|
557
|
Tobias PA, Guest DI, Külheim C, Park RF. De Novo Transcriptome Study Identifies Candidate Genes Involved in Resistance to Austropuccinia psidii (Myrtle Rust) in Syzygium luehmannii (Riberry). PHYTOPATHOLOGY 2018; 108:627-640. [PMID: 29231777 DOI: 10.1094/phyto-09-17-0298-r] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Austropuccinia psidii, causal agent of myrtle rust, was discovered in Australia in 2010 and has since become established on a wide range of species within the family Myrtaceae. Syzygium luehmannii, endemic to Australia, is an increasingly valuable berry crop. Plants were screened for responses to A. psidii inoculation, and specific resistance, in the form of localized necrosis, was determined in 29% of individuals. To understand the molecular basis underlying this response, mRNA was sequenced from leaf samples taken preinoculation, and at 24 and 48 h postinoculation, from four resistant and four susceptible plants. Analyses, based on de novo transcriptome assemblies for all plants, identified significant expression changes in resistant plants (438 transcripts) 48 h after pathogen exposure compared with susceptible plants (three transcripts). Most significantly up-regulated in resistant plants were gene homologs for transcription factors, receptor-like kinases, and enzymes involved in secondary metabolite pathways. A putative G-type lectin receptor-like kinase was exclusively expressed in resistant individuals and two transcripts incorporating toll/interleukin-1, nucleotide binding site, and leucine-rich repeat domains were up-regulated in resistant plants. The results of this study provide the first early gene expression profiles for a plant of the family Myrtaceae in response to the myrtle rust pathogen.
Collapse
Affiliation(s)
- Peri A Tobias
- First and second authors: Sydney Institute of Agriculture, School of Life and Environmental Sciences, University of Sydney, Biomedical Building C81, 1 Central Ave., Australian Technology Park, Eveleigh, NSW 2015, Australia; third author: Research School of Biology, College of Sciences, Australian National University, Canberra, ACT 2601, Australia; and fourth author: Plant Breeding Institute, School of Life and Environmental Sciences, University of Sydney, Private Bag 4011, Narellan, NSW 2567, Australia
| | - David I Guest
- First and second authors: Sydney Institute of Agriculture, School of Life and Environmental Sciences, University of Sydney, Biomedical Building C81, 1 Central Ave., Australian Technology Park, Eveleigh, NSW 2015, Australia; third author: Research School of Biology, College of Sciences, Australian National University, Canberra, ACT 2601, Australia; and fourth author: Plant Breeding Institute, School of Life and Environmental Sciences, University of Sydney, Private Bag 4011, Narellan, NSW 2567, Australia
| | - Carsten Külheim
- First and second authors: Sydney Institute of Agriculture, School of Life and Environmental Sciences, University of Sydney, Biomedical Building C81, 1 Central Ave., Australian Technology Park, Eveleigh, NSW 2015, Australia; third author: Research School of Biology, College of Sciences, Australian National University, Canberra, ACT 2601, Australia; and fourth author: Plant Breeding Institute, School of Life and Environmental Sciences, University of Sydney, Private Bag 4011, Narellan, NSW 2567, Australia
| | - Robert F Park
- First and second authors: Sydney Institute of Agriculture, School of Life and Environmental Sciences, University of Sydney, Biomedical Building C81, 1 Central Ave., Australian Technology Park, Eveleigh, NSW 2015, Australia; third author: Research School of Biology, College of Sciences, Australian National University, Canberra, ACT 2601, Australia; and fourth author: Plant Breeding Institute, School of Life and Environmental Sciences, University of Sydney, Private Bag 4011, Narellan, NSW 2567, Australia
| |
Collapse
|
558
|
Ali S, Ganai BA, Kamili AN, Bhat AA, Mir ZA, Bhat JA, Tyagi A, Islam ST, Mushtaq M, Yadav P, Rawat S, Grover A. Pathogenesis-related proteins and peptides as promising tools for engineering plants with multiple stress tolerance. Microbiol Res 2018; 212-213:29-37. [PMID: 29853166 DOI: 10.1016/j.micres.2018.04.008] [Citation(s) in RCA: 317] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 04/17/2018] [Accepted: 04/25/2018] [Indexed: 12/13/2022]
Abstract
Pathogenesis-related (PR) proteins and antimicrobial peptides (AMPs) are a group of diverse molecules that are induced by phytopathogens as well as defense related signaling molecules. They are the key components of plant innate immune system especially systemic acquired resistance (SAR), and are widely used as diagnostic molecular markers of defense signaling pathways. Although, PR proteins and peptides have been isolated much before but their biological function remains largely enigmatic despite the availability of new scientific tools. The earlier studies have demonstrated that PR genes provide enhanced resistance against both biotic and abiotic stresses, which make them one of the most promising candidates for developing multiple stress tolerant crop varieties. In this regard, plant genetic engineering technology is widely accepted as one of the most fascinating approach to develop the disease resistant transgenic crops using different antimicrobial genes like PR genes. Overexpression of PR genes (chitinase, glucanase, thaumatin, defensin and thionin) individually or in combination have greatly uplifted the level of defense response in plants against a wide range of pathogens. However, the detailed knowledge of signaling pathways that regulates the expression of these versatile proteins is critical for improving crop plants to multiple stresses, which is the future theme of plant stress biology. Hence, this review provides an overall overview on the PR proteins like their classification, role in multiple stresses (biotic and abiotic) as well as in various plant defense signaling cascades. We also highlight the success and snags of transgenic plants expressing PR proteins and peptides.
Collapse
Affiliation(s)
- Sajad Ali
- National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi, India; Centre of Research for Development, University of Kashmir, Jammu and Kashmir, India
| | - Bashir Ahmad Ganai
- Centre of Research for Development, University of Kashmir, Jammu and Kashmir, India
| | - Azra N Kamili
- Centre of Research for Development, University of Kashmir, Jammu and Kashmir, India
| | - Ajaz Ali Bhat
- Govt Degree College Boys Baramulla, Jammu and Kashmir, India
| | - Zahoor Ahmad Mir
- National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi, India
| | | | - Anshika Tyagi
- National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi, India
| | | | | | - Prashant Yadav
- National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi, India
| | - Sandhya Rawat
- National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi, India
| | - Anita Grover
- National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi, India.
| |
Collapse
|
559
|
Gourbal B, Pinaud S, Beckers GJM, Van Der Meer JWM, Conrath U, Netea MG. Innate immune memory: An evolutionary perspective. Immunol Rev 2018; 283:21-40. [DOI: 10.1111/imr.12647] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Benjamin Gourbal
- Interactions Hosts Pathogens Environments UMR 5244; University of Perpignan Via Domitia; CNRS; IFREMER, Univ. Montpellier; Perpignan France
| | - Silvain Pinaud
- Interactions Hosts Pathogens Environments UMR 5244; University of Perpignan Via Domitia; CNRS; IFREMER, Univ. Montpellier; Perpignan France
| | | | - Jos W. M. Van Der Meer
- Department of Internal Medicine and Radboud Center for Infectious Diseases; Radboud University Medical Center; Nijmegen The Netherlands
| | - Uwe Conrath
- Department of Plant Physiology; RWTH Aachen University; Aachen Germany
| | - Mihai G. Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases; Radboud University Medical Center; Nijmegen The Netherlands
- Department for Genomics & Immunoregulation, Life and Medical Sciences Institute (LIMES); University of Bonn; Bonn Germany
| |
Collapse
|
560
|
Zhang Y, Yan X, Guo H, Zhao F, Huang L. A Novel Protein Elicitor BAR11 From Saccharothrix yanglingensis Hhs.015 Improves Plant Resistance to Pathogens and Interacts With Catalases as Targets. Front Microbiol 2018; 9:700. [PMID: 29686663 PMCID: PMC5900052 DOI: 10.3389/fmicb.2018.00700] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Accepted: 03/26/2018] [Indexed: 12/16/2022] Open
Abstract
Previously, we reported the biocontrol effects of Saccharothrix yanglingensis strain Hhs.015 on Valsa mali. Here, we report a novel protein elicitor BAR11 from the biocontrol strain Hhs.015 and its functions in plant defense responses. Functional analysis showed that the elicitor BAR11 significantly stimulated plant systemic resistance in Arabidopsis thaliana to Pseudomonas syringae pv. tomato DC3000. In addition, systemic tissues accumulated reactive oxygen species and deposited callose in a short period post-treatment compared with the control. Quantitative RT-PCR results revealed that BAR11 can induce plant resistance through the salicylic acid and jasmonic acid signaling pathways. Further analysis indicated that BAR11 interacts with host catalases in plant cells. Taken together, we conclude that the elicitor BAR11 from the strain Hhs.015 can trigger defense responses in plants.
Collapse
Affiliation(s)
- Yanan Zhang
- College of Life Sciences, Northwest A&F University, Yangling, China.,State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, China
| | - Xia Yan
- College of Life Sciences, Northwest A&F University, Yangling, China.,State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, China
| | - Hongmei Guo
- College of Life Sciences, Northwest A&F University, Yangling, China.,State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, China
| | - Feiyang Zhao
- College of Life Sciences, Northwest A&F University, Yangling, China.,State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, China
| | - Lili Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, China.,College of Plant Protection, Northwest A&F University, Yangling, China
| |
Collapse
|
561
|
Carella P, Schornack S. Manipulation of Bryophyte Hosts by Pathogenic and Symbiotic Microbes. PLANT & CELL PHYSIOLOGY 2018; 59:651-660. [PMID: 29177478 PMCID: PMC6018959 DOI: 10.1093/pcp/pcx182] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 11/07/2017] [Indexed: 05/12/2023]
Abstract
The colonization of plant tissues by pathogenic and symbiotic microbes is associated with a strong and directed effort to reprogram host cells in order to permit, promote and sustain microbial growth. In response to colonization, hosts accommodate or sequester invading microbes by activating a set of complex regulatory programs that initiate symbioses or bolster defenses. Extensive research has elucidated a suite of molecular and physiological responses occurring in plant hosts and their microbial partners; however, this information is mostly limited to model systems representing evolutionarily young plant lineages such as angiosperms. The extent to which these processes are conserved across land plants is therefore poorly understood. In this review, we outline key aspects of host reprogramming that occur during plant-microbe interactions in early diverging land plants belonging to the bryophytes (liverworts, hornworts and mosses). We discuss how further knowledge of bryophyte-microbe interactions will advance our understanding of how plants and microbes co-operated and clashed during the conquest of land.
Collapse
Affiliation(s)
- Philip Carella
- Sainsbury Laboratory, University of Cambridge, 47 Bateman Street, Cambridge, UK
| | - Sebastian Schornack
- Sainsbury Laboratory, University of Cambridge, 47 Bateman Street, Cambridge, UK
| |
Collapse
|
562
|
Hartmann M, Zeier T, Bernsdorff F, Reichel-Deland V, Kim D, Hohmann M, Scholten N, Schuck S, Bräutigam A, Hölzel T, Ganter C, Zeier J. Flavin Monooxygenase-Generated N-Hydroxypipecolic Acid Is a Critical Element of Plant Systemic Immunity. Cell 2018; 173:456-469.e16. [PMID: 29576453 DOI: 10.1016/j.cell.2018.02.049] [Citation(s) in RCA: 254] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 01/16/2018] [Accepted: 02/20/2018] [Indexed: 12/21/2022]
Abstract
Following a previous microbial inoculation, plants can induce broad-spectrum immunity to pathogen infection, a phenomenon known as systemic acquired resistance (SAR). SAR establishment in Arabidopsis thaliana is regulated by the Lys catabolite pipecolic acid (Pip) and flavin-dependent-monooxygenase1 (FMO1). Here, we show that elevated Pip is sufficient to induce an FMO1-dependent transcriptional reprogramming of leaves that is reminiscent of SAR. In planta and in vitro analyses demonstrate that FMO1 functions as a pipecolate N-hydroxylase, catalyzing the biochemical conversion of Pip to N-hydroxypipecolic acid (NHP). NHP systemically accumulates in plants after microbial attack. When exogenously applied, it overrides the defect of NHP-deficient fmo1 in acquired resistance and acts as a potent inducer of plant immunity to bacterial and oomycete infection. Our work has identified a pathogen-inducible L-Lys catabolic pathway in plants that generates the N-hydroxylated amino acid NHP as a critical regulator of systemic acquired resistance to pathogen infection.
Collapse
Affiliation(s)
- Michael Hartmann
- Institute for Molecular Ecophysiology of Plants, Department of Biology, Heinrich Heine University, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Tatyana Zeier
- Institute for Molecular Ecophysiology of Plants, Department of Biology, Heinrich Heine University, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Friederike Bernsdorff
- Institute for Molecular Ecophysiology of Plants, Department of Biology, Heinrich Heine University, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Vanessa Reichel-Deland
- Institute for Molecular Ecophysiology of Plants, Department of Biology, Heinrich Heine University, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Denis Kim
- Institute for Molecular Ecophysiology of Plants, Department of Biology, Heinrich Heine University, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Michele Hohmann
- Institute for Molecular Ecophysiology of Plants, Department of Biology, Heinrich Heine University, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Nicola Scholten
- Institute for Molecular Ecophysiology of Plants, Department of Biology, Heinrich Heine University, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Stefan Schuck
- Institute for Molecular Ecophysiology of Plants, Department of Biology, Heinrich Heine University, Universitätsstraße 1, 40225 Düsseldorf, Germany; Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Andrea Bräutigam
- Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University, Universitätsstraße 1, 40225 Düsseldorf, Germany; Institute for Plant Biochemistry, Department of Biology, Heinrich Heine University, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Torsten Hölzel
- Institute of Inorganic and Structural Chemistry, Department of Chemistry, Heinrich Heine University, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Christian Ganter
- Institute of Inorganic and Structural Chemistry, Department of Chemistry, Heinrich Heine University, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Jürgen Zeier
- Institute for Molecular Ecophysiology of Plants, Department of Biology, Heinrich Heine University, Universitätsstraße 1, 40225 Düsseldorf, Germany; Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University, Universitätsstraße 1, 40225 Düsseldorf, Germany.
| |
Collapse
|
563
|
Hao Q, Wang W, Han X, Wu J, Lyu B, Chen F, Caplan A, Li C, Wu J, Wang W, Xu Q, Fu D. Isochorismate-based salicylic acid biosynthesis confers basal resistance to Fusarium graminearum in barley. MOLECULAR PLANT PATHOLOGY 2018; 19:1995-2010. [PMID: 29517854 PMCID: PMC6638154 DOI: 10.1111/mpp.12675] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 03/02/2018] [Accepted: 03/05/2018] [Indexed: 05/18/2023]
Abstract
Salicylic acid (SA) plays an important role in signal transduction and disease resistance. In Arabidopsis, SA can be made by either of two biosynthetic branches, one involving isochorismate synthase (ICS) and the other involving phenylalanine ammonia-lyase (PAL). However, the biosynthetic pathway and the importance of SA remain largely unknown in Triticeae. Here, we cloned one ICS and seven PAL genes from barley, and studied their functions by their overexpression and suppression in that plant. Suppression of the ICS gene significantly delayed plant growth, whereas PAL genes, both overexpressed and suppressed, had no significant effect on plant growth. Similarly, suppression of ICS compromised plant resistance to Fusarium graminearum, whereas similar suppression of PAL genes had no significant effect. We then focused on transgenic plants with ICS. In a leaf-based test with F. graminearum, transgenic plants with an up-regulated ICS were comparable with wild-type control plants. By contrast, transgenic plants with a suppressed ICS lost the ability to accumulate SA during pathogen infection and were also more susceptible to Fusarium than the wild-type controls. This suggests that ICS plays a unique role in SA biosynthesis in barley, which, in turn, confers a basal resistance to F. graminearum by modulating the accumulation of H2 O2 , O2- and reactive oxygen-associated enzymatic activities. Although SA mediates systemic acquired resistance (SAR) in dicots, there was no comparable SAR response to F. graminearum in barley. This study expands our knowledge about SA biosynthesis in barley and proves that SA confers basal resistance to fungal pathogens.
Collapse
Affiliation(s)
- Qunqun Hao
- State Key Laboratory of Crop BiologyShandong Agricultural UniversityTaianShandong271018China
- College of AgronomyShandong Agricultural UniversityTaianShandong271018China
- Department of Plant SciencesUniversity of IdahoMoscowID83844USA
| | - Wenqiang Wang
- State Key Laboratory of Crop BiologyShandong Agricultural UniversityTaianShandong271018China
- College of Life SciencesShandong Agricultural UniversityTaianShandong271018China
| | - Xiuli Han
- State Key Laboratory of Crop BiologyShandong Agricultural UniversityTaianShandong271018China
- College of AgronomyShandong Agricultural UniversityTaianShandong271018China
- Present address:
College of Biological SciencesChina Agricultural UniversityBeijing100193China
| | - Jingzheng Wu
- State Key Laboratory of Crop BiologyShandong Agricultural UniversityTaianShandong271018China
- College of AgronomyShandong Agricultural UniversityTaianShandong271018China
| | - Bo Lyu
- Department of Plant SciencesUniversity of IdahoMoscowID83844USA
| | - Fengjuan Chen
- State Key Laboratory of Crop BiologyShandong Agricultural UniversityTaianShandong271018China
| | - Allan Caplan
- Department of Plant SciencesUniversity of IdahoMoscowID83844USA
| | - Caixia Li
- State Key Laboratory of Crop BiologyShandong Agricultural UniversityTaianShandong271018China
- College of AgronomyShandong Agricultural UniversityTaianShandong271018China
| | - Jiajie Wu
- State Key Laboratory of Crop BiologyShandong Agricultural UniversityTaianShandong271018China
- College of AgronomyShandong Agricultural UniversityTaianShandong271018China
| | - Wei Wang
- State Key Laboratory of Crop BiologyShandong Agricultural UniversityTaianShandong271018China
- College of Life SciencesShandong Agricultural UniversityTaianShandong271018China
| | - Qian Xu
- State Key Laboratory of Crop BiologyShandong Agricultural UniversityTaianShandong271018China
- College of AgronomyShandong Agricultural UniversityTaianShandong271018China
| | - Daolin Fu
- Department of Plant SciencesUniversity of IdahoMoscowID83844USA
- Center for Reproductive BiologyWashington State UniversityPullmanWA99164USA
| |
Collapse
|
564
|
The Arabidopsis thaliana Mediator subunit MED8 regulates plant immunity to Botrytis Cinerea through interacting with the basic helix-loop-helix (bHLH) transcription factor FAMA. PLoS One 2018. [PMID: 29513733 PMCID: PMC5841781 DOI: 10.1371/journal.pone.0193458] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The Mediator complex is at the core of transcriptional regulation and plays a central role in plant immunity. The MEDIATOR25 (MED25) subunit of Arabidopsis thaliana regulates jasmonate-dependent resistance to Botrytis cinerea through interacting with the basic helix-loop-helix (bHLH) transcription factor of jasmonate signaling, MYC2. Another Mediator subunit, MED8, acts independently or together with MED25 in plant immunity. However, unlike MED25, the underlying action mechanisms of MED8 in regulating B. cinerea resistance are still unknown. Here, we demonstrated that MED8 regulated plant immunity to B. cinerea through interacting with another bHLH transcription factor, FAMA, which was previously shown to control the final proliferation/differentiation switch during stomatal development. Our research demonstrates that FAMA is also an essential component of B. cinerea resistance. The fama loss-of-function mutants (fama-1 and fama-2) increased susceptibility to B. cinerea infection and reduced defense-gene expression. On the contrary, transgenic lines constitutively overexpressing FAMA showed opposite B. cinerea responses compared with the fama loss-of-function mutants. FAMA-overexpressed plants displayed enhanced resistance to B. cinerea infection and increased expression levels of defensin genes following B. cinerea treatment. Genetic analysis of MED8 and FAMA suggested that FAMA-regulated pathogen resistance was dependent on MED8. In addition, MED8 and FAMA were both associated with the G-box region in the promoter of ORA59. Our findings indicate that the MED8 subunit of the A. thaliana Mediator regulates plant immunity to B. cinerea through interacting with the transcription factor FAMA, which was discovered to be a key component in B. cinerea resistance.
Collapse
|
565
|
Sun Y, Guo H, Yuan E, Ge F. Elevated CO 2 increases R gene-dependent resistance of Medicago truncatula against the pea aphid by up-regulating a heat shock gene. THE NEW PHYTOLOGIST 2018; 217:1696-1711. [PMID: 29154460 DOI: 10.1111/nph.14892] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 10/11/2017] [Indexed: 05/23/2023]
Abstract
Resistance against pathogens and herbivorous insects in many plant results from the expression of resistance (R) genes. Few reports, however, have considered the effects of elevated CO2 on R gene-based resistance in plants. The current study determined the responses of two near isogenic Medicago truncatula genotypes (Jester has an R gene and A17 does not) to the pea aphid and elevated CO2 in open-top chambers in the field. Aphid abundance, mean relative growth rate and feeding efficiency were increased by elevated CO2 on A17 plants but were reduced on Jester plants. According to proteomic and gene expression data, elevated CO2 enhanced pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) but decreased the effector-triggered immunity (ETI) in aphid-infested A17 plants. For aphid-infested Jester plants, by contrast, elevated CO2 enhanced the ETI-related heat shock protein (HSP) 90 and its co-chaperones, the jasmonic acid (JA) signaling pathway, and ubiquitin-mediated proteolysis. In a loss-of-function experiment, silencing of the HSP90 gene in Jester plants impaired the JA signaling pathway and ubiquitin-mediated proteolysis against the aphid under ambient CO2 , and negated the increased resistance against the aphid under elevated CO2 . Our results suggest that increases in expression of HSP90 are responsible for the enhanced resistance against the aphid under elevated CO2 .
Collapse
Affiliation(s)
- Yucheng Sun
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Huijuan Guo
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Erliang Yuan
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Feng Ge
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
566
|
Dalio RJD, Máximo HJ, Oliveira TS, Azevedo TDM, Felizatti HL, Campos MDA, Machado MA. Molecular Basis of Citrus sunki Susceptibility and Poncirus trifoliata Resistance Upon Phytophthora parasitica Attack. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018; 31:386-398. [PMID: 29125028 DOI: 10.1094/mpmi-05-17-0112-fi] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Coevolution has shaped the molecular basis of an extensive number of defense mechanisms in plant-pathogen interactions. Phytophthora parasitica, a hemibiothrophic oomycete pathogen and the causal agent of citrus root rot and gummosis, interacts differently with Citrus sunki and Poncirus trifoliata, two commonly favored citrus rootstocks that are recognized as susceptible and resistant, respectively, to P. parasitica. The molecular core of these interactions remains elusive. Here, we provide evidence on the defense strategies employed by both susceptible and resistant citrus rootstocks, in parallel with P. parasitica deployment of effectors. Time course expression analysis (quantitative real-time polymerase chain reaction) of several defense-related genes were evaluated during i) plant disease development, ii) necrosis, and iii) pathogen effector gene expression. In C. sunki, P. parasitica deploys effectors, including elicitins, NPP1 (necrosis-inducing Phytophthora protein 1), CBEL (cellulose-binding elicitor and lectin activity), RxLR, and CRN (crinkler), and, consequently, this susceptible plant activates its main defense signaling pathways that result in the hypersensitive response and necrosis. Despite the strong plant-defense response, it fails to withstand P. parasitica invasion, confirming its hemibiothrophic lifestyle. In Poncirus trifoliata, the effectors were strongly expressed, nevertheless failing to induce any immunity manipulation and disease development, suggesting a nonhost resistance type, in which the plant relies on preformed biochemical and anatomical barriers.
Collapse
Affiliation(s)
| | - Heros José Máximo
- 1 Biotechnology Lab, Centro de Citricultura Sylvio Moreira. Cordeirópolis-SP, Brazil
| | - Tiago Silva Oliveira
- 1 Biotechnology Lab, Centro de Citricultura Sylvio Moreira. Cordeirópolis-SP, Brazil
| | | | - Henrique Leme Felizatti
- 2 Instituto de Matemática, Estatística e Computação Científica, Universidade de Campinas, Campinas-SP, Brazil; and
| | | | | |
Collapse
|
567
|
Hassan JA, de la Torre‐Roche R, White JC, Lewis JD. Soil mixture composition alters Arabidopsis susceptibility to Pseudomonas syringae infection. PLANT DIRECT 2018; 2:e00044. [PMID: 31245710 PMCID: PMC6508533 DOI: 10.1002/pld3.44] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 01/08/2018] [Accepted: 01/23/2018] [Indexed: 05/25/2023]
Abstract
Pseudomonas syringae is a gram-negative bacterial pathogen that causes disease on more than 100 different plant species, including the model plant Arabidopsis thaliana. Dissection of the Arabidopsis thaliana-Pseudomonas syringae pathosystem has identified many factors that contribute to successful infection or immunity, including the genetics of the host, the genetics of the pathogen, and the environment. Environmental factors that contribute to a successful interaction can include temperature, light, and the circadian clock, as well as the soil environment. As silicon-amended Resilience soil is advertised to enhance plant health, we sought to examine the extent to which this soil might affect the behavior of the A. thaliana-P. syringae model pathosystem and to characterize the mechanisms through which these effects may occur. We found that plants grown in Si-amended Resilience soil displayed enhanced resistance to bacteria compared to plants grown in non-Si-amended Sunshine soil, and salicylic acid biosynthesis and signaling were not required for resistance. Although silicon has been shown to contribute to broad-spectrum resistance, our data indicate that silicon is not the direct cause of enhanced resistance and that the Si-amended Resilience soil has additional properties that modulate plant resistance. Our work demonstrates the importance of environmental factors, such as soil in modulating interactions between the plant and foliar pathogens, and highlights the significance of careful annotation of the environmental conditions under which plant-pathogen interactions are studied.
Collapse
Affiliation(s)
- Jana A. Hassan
- Department of Plant and Microbial BiologyUniversity of California BerkeleyBerkeleyCAUSA
| | | | - Jason C. White
- Department of Analytical ChemistryThe Connecticut Agricultural Experiment StationNew HavenCTUSA
| | - Jennifer D. Lewis
- Department of Plant and Microbial BiologyUniversity of California BerkeleyBerkeleyCAUSA
- Plant Gene Expression CenterUnited States Department of AgricultureAlbanyCAUSA
| |
Collapse
|
568
|
Banday ZZ, Nandi AK. Arabidopsis thaliana GLUTATHIONE-S-TRANSFERASE THETA 2 interacts with RSI1/FLD to activate systemic acquired resistance. MOLECULAR PLANT PATHOLOGY 2018; 19:464-475. [PMID: 28093893 PMCID: PMC6638090 DOI: 10.1111/mpp.12538] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 12/21/2016] [Accepted: 01/09/2017] [Indexed: 05/08/2023]
Abstract
A partly infected plant develops systemic acquired resistance (SAR) and shows heightened resistance during subsequent infections. The infected parts generate certain mobile signals that travel to the distal tissues and help to activate SAR. SAR is associated with epigenetic modifications of several defence-related genes. However, the mechanisms by which mobile signals contribute to epigenetic changes are little known. Previously, we have shown that the Arabidopsis REDUCED SYSTEMIC IMMUNITY 1 (RSI1, alias FLOWERING LOCUS D; FLD), which codes for a putative histone demethylase, is required for the activation of SAR. Here, we report the identification of GLUTATHIONE-S-TRANSFERASE THETA 2 (GSTT2) as an interacting factor of FLD. GSTT2 expression increases in pathogen-inoculated as well as pathogen-free distal tissues. The loss-of-function mutant of GSTT2 is compromised for SAR, but activates normal local resistance. Complementation lines of GSTT2 support its role in SAR activation. The distal tissues of gstt2 mutant plants accumulate significantly less salicylic acid (SA) and express a reduced level of the SA biosynthetic gene PAL1. In agreement with the established histone modification activity of FLD, gstt2 mutant plants accumulate an enhanced level of methylated and acetylated histones in the promoters of WRKY6 and WRKY29 genes. Together, these results demonstrate that GSTT2 is an interactor of FLD, which is required for SAR and SAR-associated epigenetic modifications.
Collapse
Affiliation(s)
| | - Ashis Kumar Nandi
- School of Life SciencesJawaharlal Nehru UniversityNew Delhi110067India
| |
Collapse
|
569
|
A Localized Pseudomonas syringae Infection Triggers Systemic Clock Responses in Arabidopsis. Curr Biol 2018; 28:630-639.e4. [PMID: 29398214 DOI: 10.1016/j.cub.2018.01.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 11/05/2017] [Accepted: 01/02/2018] [Indexed: 11/22/2022]
Abstract
The circadian clock drives daily rhythms of many plant physiological responses, providing a competitive advantage that improves plant fitness and survival rates [1-5]. Whereas multiple environmental cues are predicted to regulate the plant clock function, most studies focused on understanding the effects of light and temperature [5-8]. Increasing evidence indicates a significant role of plant-pathogen interactions on clock regulation [9, 10], but the underlying mechanisms remain elusive. In Arabidopsis, the clock function largely relies on a transcriptional feedback loop between morning (CCA1 and LHY)- and evening (TOC1)-expressed transcription factors [6-8]. Here, we focused on these core components to investigate the Arabidopsis clock regulation using a unique biotic stress approach. We found that a single-leaf Pseudomonas syringae infection systemically lengthened the period and reduced the amplitude of circadian rhythms in distal uninfected tissues. Remarkably, the low-amplitude phenotype observed upon infection was recapitulated by a transient treatment with the defense-related phytohormone salicylic acid (SA), which also triggered a significant clock phase delay. Strikingly, despite SA-modulated circadian rhythms, we revealed that the master regulator of SA signaling, NPR1 [11, 12], antagonized clock responses triggered by both SA treatment and P. syringae. In contrast, we uncovered that the NADPH oxidase RBOHD [13] largely mediated the aforementioned clock responses after either SA treatment or the bacterial infection. Altogether, we demonstrated novel and unexpected roles for SA, NPR1, and redox signaling in clock regulation by P. syringae and revealed a previously unrecognized layer of systemic clock regulation by locally perceived environmental cues.
Collapse
|
570
|
Hussain RMF, Kim HK, Khurshid M, Akhtar MT, Linthorst HJM. Overexpression of AtWRKY50 is correlated with enhanced production of sinapic derivatives in Arabidopsis. Metabolomics 2018; 14:25. [PMID: 30830336 DOI: 10.1007/s11306-018-1317-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 01/03/2018] [Indexed: 12/22/2022]
Abstract
INTRODUCTION WRKY proteins belong to a plant-specific class of transcription factors. Seventy-four WKRY genes have been identified in Arabidopsis and many WRKY proteins are known to be involved in responses to stress, especially to biotic stress. They may act either as transcriptional activators or as repressors of genes that play roles in the stress response. A number of studies have proposed the connection of Arabidopsis WRKY transcription factors in induced pathogenesis-related (PR) gene expression, although no direct evidence has been presented for specific WRKY-PR promoter interactions. OBJECTIVE We previously identified AtWRKY50 as a transcriptional activator of SAR gene PR1. Although PR1 accumulates to high levels in plants after attack by pathogens, its function is still elusive. Here we investigated the effects of overexpression of several WRKY proteins, including AtWRKY50, on the metabolome of Arabidopsis thaliana. METHODS The influence of overexpression of WRKY proteins on the metabolites of Arabidopsis was investigated by using an NMR spectroscopy-based metabolomic approach. The 1H NMR data was analysed using the multivariate data analysis methods, such as principal component analysis, hierarchical cluster analysis and partial least square-discriminant analysis. RESULTS The results showed that the metabolome of transgenic Arabidopsis seedlings overexpressing AtWRKY50 was different from wild type Arabidopsis and transgenic Arabidopsis overexpressing other WRKY genes. Amongst other metabolites, sinapic acid and 1-O-sinapoyl-β-D-glucose especially appeared to be the most prominent discriminating metabolites, accumulating to levels 2 to 3 times higher in the AtWRKY50 overexpressor lines. CONCLUSION Our results indicate a possible involvement of AtWRKY50 in secondary metabolite production in Arabidopsis, in particular of hydroxycinnamates such as sinapic acid and 1-O-sinapoyl-β-D-glucose.
Collapse
Affiliation(s)
- Rana M F Hussain
- Institute of Biology, Leiden University, P.O. Box 9505, 2300 RA, Leiden, The Netherlands
| | - Hye K Kim
- Institute of Biology, Leiden University, P.O. Box 9505, 2300 RA, Leiden, The Netherlands
| | - Muhammad Khurshid
- Institute of Biology, Leiden University, P.O. Box 9505, 2300 RA, Leiden, The Netherlands
- Institute of Biochemistry and Biotechnology, University of the Punjab, Quaid-e-Azam campus, P.O Box 54590, Lahore, Pakistan
| | - Muhammad T Akhtar
- Institute of Biology, Leiden University, P.O. Box 9505, 2300 RA, Leiden, The Netherlands.
- Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| | - Huub J M Linthorst
- Institute of Biology, Leiden University, P.O. Box 9505, 2300 RA, Leiden, The Netherlands
| |
Collapse
|
571
|
Khorramdelazad M, Bar I, Whatmore P, Smetham G, Bhaaskaria V, Yang Y, Bai SH, Mantri N, Zhou Y, Ford R. Transcriptome profiling of lentil (Lens culinaris) through the first 24 hours of Ascochyta lentis infection reveals key defence response genes. BMC Genomics 2018; 19:108. [PMID: 29385986 PMCID: PMC5793396 DOI: 10.1186/s12864-018-4488-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 01/17/2018] [Indexed: 09/14/2023] Open
Abstract
Background Ascochyta blight, caused by the fungus Ascochyta lentis, is one of the most destructive lentil diseases worldwide, resulting in over $16 million AUD annual loss in Australia alone. The use of resistant cultivars is currently considered the most effective and environmentally sustainable strategy to control this disease. However, little is known about the genes and molecular mechanisms underlying lentil resistance against A. lentis. Results To uncover the genetic basis of lentil resistance to A. lentis, differentially expressed genes were profiled in lentil plants during the early stages of A. lentis infection. The resistant ‘ILL7537’ and susceptible ‘ILL6002’ lentil genotypes were examined at 2, 6, and 24 h post inoculation utilising high throughput RNA-Sequencing. Genotype and time-dependent differential expression analysis identified genes which play key roles in several functions of the defence response: fungal elicitors recognition and early signalling; structural response; biochemical response; transcription regulators; hypersensitive reaction and cell death; and systemic acquired resistance. Overall, the resistant genotype displayed an earlier and faster detection and signalling response to the A. lentis infection and demonstrated higher expression levels of structural defence-related genes. Conclusions This study presents a first-time defence-related transcriptome of lentil to A. lentis, including a comprehensive characterisation of the molecular mechanism through which defence against A. lentis is induced in the resistant lentil genotype. Electronic supplementary material The online version of this article (10.1186/s12864-018-4488-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mahsa Khorramdelazad
- Glycomics institute, School of Sciences, Griffith University, 58 Parklands Dr., Southport, Gold Coast, 4215, QLD, Australia
| | - Ido Bar
- Environmental Futures Research Institute, School of Natural Sciences, Griffith University, 170 Kessels Rd., Nathan, 4111, QLD, Australia.
| | - Paul Whatmore
- Environmental Futures Research Institute, School of Natural Sciences, Griffith University, 170 Kessels Rd., Nathan, 4111, QLD, Australia.,Genecology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore DC, 4558, Queensland, Australia
| | - Gabrielle Smetham
- Fish Nutrition and Feed Safety, the National Institute of Nutrition and Seafood Research (NIFES), Strandgaten 229, Bergen, 5002, Norway
| | - Vijay Bhaaskaria
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, 142 University St., Parkville, 3053, VIC, Australia
| | - Yuedong Yang
- Pangenomics Group, School of Sciences, RMIT University, Bundoora, 3083, VIC, Australia
| | - Shahla Hosseini Bai
- Glycomics institute, School of Sciences, Griffith University, 58 Parklands Dr., Southport, Gold Coast, 4215, QLD, Australia
| | - Nitin Mantri
- Environmental Futures Research Institute, School of Natural Sciences, Griffith University, 170 Kessels Rd., Nathan, 4111, QLD, Australia.,Genecology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore DC, 4558, Queensland, Australia
| | - Yaoqi Zhou
- Pangenomics Group, School of Sciences, RMIT University, Bundoora, 3083, VIC, Australia
| | - Rebecca Ford
- Glycomics institute, School of Sciences, Griffith University, 58 Parklands Dr., Southport, Gold Coast, 4215, QLD, Australia
| |
Collapse
|
572
|
Trujillo M. News from the PUB: plant U-box type E3 ubiquitin ligases. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:371-384. [PMID: 29237060 DOI: 10.1093/jxb/erx411] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 10/25/2017] [Indexed: 05/05/2023]
Abstract
Plant U-box type E3 ubiquitin ligases (PUBs) are well known for their functions in a variety of stress responses, including immune responses and the adaptation to abiotic stresses. First linked to pollen self-incompatibility, their repertoire of roles has grown to encompass also the regulation of developmental processes. Notably, new studies provide clues to their mode of action, underline the existence of conserved PUB-kinase modules, and suggest new links to G-protein signalling, placing PUBs at the crossroads of major signalling hubs. The frequent association with membranes, by interacting and/or targeting membrane proteins, as well as through a recently reported direct interaction with phospholipids, indicates a general function in the control of vesicle transport and their cargoes. This review aims to give an overview of the most significant advances in the field, while also trying to identify common themes of PUB function.
Collapse
Affiliation(s)
- Marco Trujillo
- Independent Junior Research Group-Ubiquitination in Immunity, Leibniz Institute of Plant Biochemistry, Germany
| |
Collapse
|
573
|
Hael-Conrad V, Perato SM, Arias ME, Martínez-Zamora MG, Di Peto PDLÁ, Martos GG, Castagnaro AP, Díaz-Ricci JC, Chalfoun NR. The Elicitor Protein AsES Induces a Systemic Acquired Resistance Response Accompanied by Systemic Microbursts and Micro-Hypersensitive Responses in Fragaria ananassa. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018; 31:46-60. [PMID: 28635519 DOI: 10.1094/mpmi-05-17-0121-fi] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The elicitor AsES (Acremonium strictum elicitor subtilisin) is a 34-kDa subtilisin-like protein secreted by the opportunistic fungus Acremonium strictum. AsES activates innate immunity and confers resistance against anthracnose and gray mold diseases in strawberry plants (Fragaria × ananassa Duch.) and the last disease also in Arabidopsis. In the present work, we show that, upon AsES recognition, a cascade of defense responses is activated, including: calcium influx, biphasic oxidative burst (O2⋅- and H2O2), hypersensitive cell-death response (HR), accumulation of autofluorescent compounds, cell-wall reinforcement with callose and lignin deposition, salicylic acid accumulation, and expression of defense-related genes, such as FaPR1, FaPG1, FaMYB30, FaRBOH-D, FaRBOH-F, FaCHI23, and FaFLS. All these responses occurred following a spatial and temporal program, first induced in infiltrated leaflets (local acquired resistance), spreading out to untreated lateral leaflets, and later, to distal leaves (systemic acquired resistance). After AsES treatment, macro-HR and macro-oxidative bursts were localized in infiltrated leaflets, while micro-HRs and microbursts occurred later in untreated leaves, being confined to a single cell or a cluster of a few epidermal cells that differentiated from the surrounding ones. The differentiated cells initiated a time-dependent series of physiological and anatomical changes, evolving to idioblasts accumulating H2O2 and autofluorescent compounds that blast, delivering its content into surrounding cells. This kind of systemic cell-death process in plants is described for the first time in response to a single elicitor. All data presented in this study suggest that AsES has the potential to activate a wide spectrum of biochemical and molecular defense responses in F. ananassa that may explain the induced protection toward pathogens of opposite lifestyle, like hemibiotrophic and necrotrophic fungi.
Collapse
Affiliation(s)
- Verónica Hael-Conrad
- 1 Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, and Instituto de Química Biológica "Dr. Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia, UNT. Chacabuco 461, T4000ILI, San Miguel de Tucumán, Argentina
| | - Silvia Marisa Perato
- 1 Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, and Instituto de Química Biológica "Dr. Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia, UNT. Chacabuco 461, T4000ILI, San Miguel de Tucumán, Argentina
| | - Marta Eugenia Arias
- 2 Cátedra de Anatomía Vegetal, Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán. Miguel Lillo 205, 4000, Tucumán, Argentina, and Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Catamarca. Av. Belgrano 300, 4700, San Fernando del Valle de Catamarca, Catamarca, Argentina; and
| | - Martín Gustavo Martínez-Zamora
- 1 Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, and Instituto de Química Biológica "Dr. Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia, UNT. Chacabuco 461, T4000ILI, San Miguel de Tucumán, Argentina
| | - Pía de Los Ángeles Di Peto
- 3 Instituto de Tecnología Agroindustrial del Noroeste Argentino (ITANOA, CONICET-Estación Experimental Agroindustrial Obispo Colombres). Av. William Cross 3150, T4101XAC, Las Talitas, Tucumán, Argentina
| | - Gustavo Gabriel Martos
- 1 Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, and Instituto de Química Biológica "Dr. Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia, UNT. Chacabuco 461, T4000ILI, San Miguel de Tucumán, Argentina
| | - Atilio Pedro Castagnaro
- 3 Instituto de Tecnología Agroindustrial del Noroeste Argentino (ITANOA, CONICET-Estación Experimental Agroindustrial Obispo Colombres). Av. William Cross 3150, T4101XAC, Las Talitas, Tucumán, Argentina
| | - Juan Carlos Díaz-Ricci
- 1 Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, and Instituto de Química Biológica "Dr. Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia, UNT. Chacabuco 461, T4000ILI, San Miguel de Tucumán, Argentina
| | - Nadia Regina Chalfoun
- 3 Instituto de Tecnología Agroindustrial del Noroeste Argentino (ITANOA, CONICET-Estación Experimental Agroindustrial Obispo Colombres). Av. William Cross 3150, T4101XAC, Las Talitas, Tucumán, Argentina
| |
Collapse
|
574
|
Jain P, Bhatla SC. Molecular mechanisms accompanying nitric oxide signalling through tyrosine nitration and S-nitrosylation of proteins in plants. FUNCTIONAL PLANT BIOLOGY : FPB 2018; 45:70-82. [PMID: 32291022 DOI: 10.1071/fp16279] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 02/01/2017] [Indexed: 05/08/2023]
Abstract
Nitric oxide (NO) signalling in plants is responsible for modulation of a variety of plant developmental processes. Depending on the tissue system, the signalling of NO-modulated biochemical responses majorly involves the processes of tyrosine nitration or S-nitrosylation of specific proteins/enzymes. It has further been observed that there is a significant impact of various biotic/abiotic stress conditions on the extent of tyrosine nitration and S-nitrosylation of various metabolic enzymes, which may act as a positive or negative modulator of the specific routes associated with adaptive mechanisms employed by plants under the said stress conditions. In addition to recent findings on the modulation of enzymes of primary metabolism by NO through these two biochemical mechanisms, a major mechanism for regulating the levels of reactive oxygen species (ROS) under stress conditions has also been found to be through tyrosine nitration or S-nitrosylation of ROS-scavenging enzymes. Recent investigations have further highlighted the differential manner in which the ROS-scavenging enzymes may be S-nitrosylated and tyrosine nitrated, with reference to their tissue distribution. Keeping in mind the very recent findings on these aspects, the present review has been prepared to provide an analytical view on the significance of protein tyrosine nitration and S-nitrosylation in plant development.
Collapse
Affiliation(s)
- Prachi Jain
- Laboratory of Plant Physiology and Biochemistry, Department of Botany, University of Delhi, Delhi, India
| | - Satish C Bhatla
- Laboratory of Plant Physiology and Biochemistry, Department of Botany, University of Delhi, Delhi, India
| |
Collapse
|
575
|
Verhoeven KJF, Verbon EH, van Gurp TP, Oplaat C, Ferreira de Carvalho J, Morse AM, Stahl M, Macel M, McIntyre LM. Intergenerational environmental effects: functional signals in offspring transcriptomes and metabolomes after parental jasmonic acid treatment in apomictic dandelion. THE NEW PHYTOLOGIST 2018; 217:871-882. [PMID: 29034954 PMCID: PMC5741498 DOI: 10.1111/nph.14835] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 08/31/2017] [Indexed: 05/23/2023]
Abstract
Parental environments can influence offspring traits. However, the magnitude of the impact of parental environments on offspring molecular phenotypes is poorly understood. Here, we test the direct effects and intergenerational effects of jasmonic acid (JA) treatment, which is involved in herbivory-induced defense signaling, on transcriptomes and metabolomes in apomictic common dandelion (Taraxacum officinale). In a full factorial crossed design with parental and offspring JA and control treatments, we performed leaf RNA-seq gene expression analysis, LC-MS metabolomics and total phenolics assays in offspring plants. Expression analysis, leveraged by a de novo assembled transcriptome, revealed an induced response to JA exposure that is consistent with known JA effects. The intergenerational effect of treatment was considerable: 307 of 858 detected JA-responsive transcripts were affected by parental JA treatment. In terms of the numbers of metabolites affected, the magnitude of the chemical response to parental JA exposure was c. 10% of the direct JA treatment response. Transcriptome and metabolome analyses both identified the phosphatidylinositol signaling pathway as a target of intergenerational JA effects. Our results highlight that parental environments can have substantial effects in offspring generations. Transcriptome and metabolome assays provide a basis for zooming in on the potential mechanisms of inherited JA effects.
Collapse
Affiliation(s)
- Koen J. F. Verhoeven
- Terrestrial EcologyNetherlands Institute of Ecology (NIOO‐KNAW)Droevendaalsesteeg 10Wageningenthe Netherlands
| | - Eline H. Verbon
- Plant–Microbe InteractionsUtrecht UniversityPadualaan 6Utrechtthe Netherlands
| | - Thomas P. van Gurp
- Terrestrial EcologyNetherlands Institute of Ecology (NIOO‐KNAW)Droevendaalsesteeg 10Wageningenthe Netherlands
| | - Carla Oplaat
- Terrestrial EcologyNetherlands Institute of Ecology (NIOO‐KNAW)Droevendaalsesteeg 10Wageningenthe Netherlands
| | - Julie Ferreira de Carvalho
- Terrestrial EcologyNetherlands Institute of Ecology (NIOO‐KNAW)Droevendaalsesteeg 10Wageningenthe Netherlands
| | - Alison M. Morse
- Molecular Genetics and Microbiology, and the Genetics InstituteUniversity of Florida2033 Mowry RoadGainesvilleFL32610USA
| | - Mark Stahl
- Center for Plant Molecular BiologyTübingen UniversityAuf der Morgenstelle 32TübingenD‐72076Germany
| | - Mirka Macel
- Molecular Interaction EcologyDepartment of Plant ScienceRadboud University NijmegenPO Box 9010Nijmegen6500 NLthe Netherlands
| | - Lauren M. McIntyre
- Molecular Genetics and Microbiology, and the Genetics InstituteUniversity of Florida2033 Mowry RoadGainesvilleFL32610USA
| |
Collapse
|
576
|
Fister AS, Landherr L, Maximova SN, Guiltinan MJ. Transient Expression of CRISPR/Cas9 Machinery Targeting TcNPR3 Enhances Defense Response in Theobroma cacao. FRONTIERS IN PLANT SCIENCE 2018; 9:268. [PMID: 29552023 PMCID: PMC5841092 DOI: 10.3389/fpls.2018.00268] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 02/14/2018] [Indexed: 05/19/2023]
Abstract
Theobroma cacao, the source of cocoa, suffers significant losses to a variety of pathogens resulting in reduced incomes for millions of farmers in developing countries. Development of disease resistant cacao varieties is an essential strategy to combat this threat, but is limited by sources of genetic resistance and the slow generation time of this tropical tree crop. In this study, we present the first application of genome editing technology in cacao, using Agrobacterium-mediated transient transformation to introduce CRISPR/Cas9 components into cacao leaves and cotyledon cells. As a first proof of concept, we targeted the cacao Non-Expressor of Pathogenesis-Related 3 (TcNPR3) gene, a suppressor of the defense response. After demonstrating activity of designed single-guide RNAs (sgRNA) in vitro, we used Agrobacterium to introduce a CRISPR/Cas9 system into leaf tissue, and identified the presence of deletions in 27% of TcNPR3 copies in the treated tissues. The edited tissue exhibited an increased resistance to infection with the cacao pathogen Phytophthora tropicalis and elevated expression of downstream defense genes. Analysis of off-target mutagenesis in sequences similar to sgRNA target sites using high-throughput sequencing did not reveal mutations above background sequencing error rates. These results confirm the function of NPR3 as a repressor of the cacao immune system and demonstrate the application of CRISPR/Cas9 as a powerful functional genomics tool for cacao. Several stably transformed and genome edited somatic embryos were obtained via Agrobacterium-mediated transformation, and ongoing work will test the effectiveness of this approach at a whole plant level.
Collapse
Affiliation(s)
- Andrew S. Fister
- Department of Plant Science, Pennsylvania State University, University Park, PA, United States
| | - Lena Landherr
- Department of Plant Science, Pennsylvania State University, University Park, PA, United States
| | - Siela N. Maximova
- Department of Plant Science, Pennsylvania State University, University Park, PA, United States
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, United States
| | - Mark J. Guiltinan
- Department of Plant Science, Pennsylvania State University, University Park, PA, United States
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, United States
- *Correspondence: Mark J. Guiltinan
| |
Collapse
|
577
|
Silva KJP, Mahna N, Mou Z, Folta KM. NPR1 as a transgenic crop protection strategy in horticultural species. HORTICULTURE RESEARCH 2018; 5:15. [PMID: 29581883 PMCID: PMC5862871 DOI: 10.1038/s41438-018-0026-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 01/19/2018] [Accepted: 01/25/2018] [Indexed: 05/08/2023]
Abstract
The NPR1 (NONEXPRESSOR OF PATHOGENESIS RELATED GENES1) gene has a central role in the long-lasting, broad-spectrum defense response known as systemic acquired resistance (SAR). When overexpressed in a transgenic context in Arabidopsis thaliana, this gene enhances resistance to a number of biotic and abiotic stresses. Its position as a key regulator of defense across diverse plant species makes NPR1 a strong candidate gene for genetic engineering disease and stress tolerance into other crops. High-value horticultural crops face many new challenges from pests and pathogens, and their emergence exceeds the pace of traditional breeding, making the application of NPR1-based strategies potentially useful in fruit and vegetable crops. However, plants overexpressing NPR1 occasionally present detrimental morphological traits that make its application less attractive. The practical utility of NPR-based approaches will be a balance of resistance gains versus other losses. In this review, we summarize the progress on the understanding of NPR1-centered applications in horticultural and other crop plants. We also discuss the effect of the ectopic expression of the A. thaliana NPR1 gene and its orthologs in crop plants and outline the future challenges of using NPR1 in agricultural applications.
Collapse
Affiliation(s)
| | - Nasser Mahna
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611 USA
- Department of Horticultural Sciences, University of Tabriz, Tabriz, Iran
| | - Zhonglin Mou
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611 USA
- Graduate Program in Plant Molecular and Cellular Biology, University of Florida, Gainesville, FL 32611 USA
| | - Kevin M. Folta
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611 USA
- Graduate Program in Plant Molecular and Cellular Biology, University of Florida, Gainesville, FL 32611 USA
| |
Collapse
|
578
|
Bendix C, Lewis JD. The enemy within: phloem-limited pathogens. MOLECULAR PLANT PATHOLOGY 2018; 19:238-254. [PMID: 27997761 PMCID: PMC6638166 DOI: 10.1111/mpp.12526] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 12/06/2016] [Accepted: 12/08/2016] [Indexed: 05/06/2023]
Abstract
The growing impact of phloem-limited pathogens on high-value crops has led to a renewed interest in understanding how they cause disease. Although these pathogens cause substantial crop losses, many are poorly characterized. In this review, we present examples of phloem-limited pathogens that include intracellular bacteria with and without cell walls, and viruses. Phloem-limited pathogens have small genomes and lack many genes required for core metabolic processes, which is, in part, an adaptation to the unique phloem environment. For each pathogen class, we present multiple case studies to highlight aspects of disease caused by phloem-limited pathogens. The pathogens presented include Candidatus Liberibacter asiaticus (citrus greening), Arsenophonus bacteria, Serratia marcescens (cucurbit yellow vine disease), Candidatus Phytoplasma asteris (Aster Yellows Witches' Broom), Spiroplasma kunkelii, Potato leafroll virus and Citrus tristeza virus. We focus on commonalities in the virulence strategies of these pathogens, and aim to stimulate new discussions in the hope that widely applicable disease management strategies can be found.
Collapse
Affiliation(s)
- Claire Bendix
- United States Department of AgriculturePlant Gene Expression CenterAlbanyCA94710USA
| | - Jennifer D. Lewis
- United States Department of AgriculturePlant Gene Expression CenterAlbanyCA94710USA
- Department of Plant and Microbial BiologyUniversity of California, BerkeleyBerkeleyCA94720USA
| |
Collapse
|
579
|
Vahabi K, Reichelt M, Scholz SS, Furch ACU, Matsuo M, Johnson JM, Sherameti I, Gershenzon J, Oelmüller R. Alternaria Brassicae Induces Systemic Jasmonate Responses in Arabidopsis Which Travel to Neighboring Plants via a Piriformsopora Indica Hyphal Network and Activate Abscisic Acid Responses. FRONTIERS IN PLANT SCIENCE 2018; 9:626. [PMID: 29868082 PMCID: PMC5952412 DOI: 10.3389/fpls.2018.00626] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 04/20/2018] [Indexed: 05/20/2023]
Abstract
Stress information received by a particular local plant tissue is transferred to other tissues and neighboring plants, but how the information travels is not well understood. Application of Alternaria Brassicae spores to Arabidopsis leaves or roots stimulates local accumulation of jasmonic acid (JA), the expression of JA-responsive genes, as well as of NITRATE TRANSPORTER (NRT)2.5 and REDOX RESPONSIVE TRANSCRIPTION FACTOR1 (RRTF1). Infection information is systemically spread over the entire seedling and propagates radially from infected to non-infected leaves, axially from leaves to roots, and vice versa. The local and systemic NRT2.5 responses are reduced in the jar1 mutant, and the RRTF1 response in the rbohD mutant. Information about A. brassicae infection travels slowly to uninfected neighboring plants via a Piriformospora Indica hyphal network, where NRT2.5 and RRTF1 are up-regulated. The systemic A. brassicae-induced JA response in infected plants is converted to an abscisic acid (ABA) response in the neighboring plant where ABA and ABA-responsive genes are induced. We propose that the local threat information induced by A. brassicae infection is spread over the entire plant and transferred to neighboring plants via a P. indica hyphal network. The JA-specific response is converted to a general ABA-mediated stress response in the neighboring plant.
Collapse
Affiliation(s)
- Khabat Vahabi
- Department of Plant Physiology, Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich-Schiller-University Jena, Jena, Germany
| | - Michael Reichelt
- Department of Biochemistry, Max-Planck Institute for Chemical Ecology, Jena, Germany
| | - Sandra S. Scholz
- Department of Plant Physiology, Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich-Schiller-University Jena, Jena, Germany
| | - Alexandra C. U. Furch
- Department of Plant Physiology, Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich-Schiller-University Jena, Jena, Germany
| | - Mitsuhiro Matsuo
- Department of Plant Physiology, Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich-Schiller-University Jena, Jena, Germany
| | - Joy M. Johnson
- Department of Plant Physiology, Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich-Schiller-University Jena, Jena, Germany
| | - Irena Sherameti
- Department of Plant Physiology, Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich-Schiller-University Jena, Jena, Germany
| | - Jonathan Gershenzon
- Department of Biochemistry, Max-Planck Institute for Chemical Ecology, Jena, Germany
| | - Ralf Oelmüller
- Department of Plant Physiology, Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich-Schiller-University Jena, Jena, Germany
- *Correspondence: Ralf Oelmüller
| |
Collapse
|
580
|
Burns EE, Keith BK, Refai MY, Bothner B, Dyer WE. Constitutive redox and phosphoproteome changes in multiple herbicide resistant Avena fatua L. are similar to those of systemic acquired resistance and systemic acquired acclimation. JOURNAL OF PLANT PHYSIOLOGY 2018; 220:105-114. [PMID: 29169105 DOI: 10.1016/j.jplph.2017.11.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 09/26/2017] [Accepted: 11/13/2017] [Indexed: 06/07/2023]
Abstract
Plants are routinely confronted with numerous biotic and abiotic stressors, and in response have evolved highly effective strategies of systemic acquired resistance (SAR) and systemic acquired acclimation (SAA), respectively. A much more evolutionarily recent abiotic stress is the application of herbicides to control weedy plants, and their intensive use has selected for resistant weed populations that cause substantial crop yield losses and increase production costs. Non-target site resistance (NTSR) to herbicides is rapidly increasing worldwide and is associated with alterations in generalized stress defense networks. This work investigated protein post-translational modifications associated with NTSR in multiple herbicide resistant (MHR) Avena fatua, and their commonalities with those of SAR and SAA. We used proteomic, biochemical, and immunological approaches to compare constitutive protein profiles in MHR and herbicide susceptible (HS) A. fatua populations. Phosphoproteome and redox proteome surveys showed that post-translational modifications of proteins with functions in core cellular processes were reduced in MHR plants, while those involved in xenobiotic and stress response, reactive oxygen species detoxification and redox maintenance, heat shock response, and intracellular signaling were elevated in MHR as compared to HS plants. More specifically, MHR plants contained constitutively elevated levels of three protein kinases including the lectin S-receptor-like serine/threonine-protein kinase LecRK2, a well-characterized component of SAR. Analyses of superoxide dismutase enzyme activity and protein levels did not reveal constitutive differences between MHR and HS plants. The overall results support the idea that herbicide stress is perceived similarly to other abiotic stresses, and that A. fatua NTSR shares analogous features with SAR and SAA. We speculate that MHR A. fatua's previous exposure to sublethal herbicide doses, as well as earlier evolution under a diversity of abiotic and biotic stressors, has led to a heightened state of stress preparedness that includes NTSR to a number of unrelated herbicides.
Collapse
Affiliation(s)
- Erin E Burns
- Department of Plant Sciences & Plant Pathology, PO Box 173150, Montana State University, Bozeman, MT 59717, United States
| | - Barbara K Keith
- Department of Plant Sciences & Plant Pathology, PO Box 173150, Montana State University, Bozeman, MT 59717, United States
| | - Mohammed Y Refai
- Department of Chemistry & Biochemistry Research, PO Box 173400, Montana State University, Bozeman, MT 59717, United States
| | - Brian Bothner
- Department of Chemistry & Biochemistry Research, PO Box 173400, Montana State University, Bozeman, MT 59717, United States
| | - William E Dyer
- Department of Plant Sciences & Plant Pathology, PO Box 173150, Montana State University, Bozeman, MT 59717, United States.
| |
Collapse
|
581
|
Li M, Chen H, Chen J, Chang M, Palmer IA, Gassmann W, Liu F, Fu ZQ. TCP Transcription Factors Interact With NPR1 and Contribute Redundantly to Systemic Acquired Resistance. FRONTIERS IN PLANT SCIENCE 2018; 9:1153. [PMID: 30154809 PMCID: PMC6102491 DOI: 10.3389/fpls.2018.01153] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 07/19/2018] [Indexed: 05/20/2023]
Abstract
In Arabidopsis, TEOSINTE BRANCHED 1, CYCLOIDEA, PCF1 (TCP) transcription factors (TF) play critical functions in developmental processes. Recent studies suggest they also function in plant immunity, but whether they play an important role in systemic acquired resistance (SAR) is still unknown. NON-EXPRESSER OF PR GENES 1 (NPR1), as an essential transcriptional regulatory node in SAR, exerts its regulatory role in downstream genes expression through interaction with TFs. In this work, we provide biochemical and genetic evidence that TCP8, TCP14, and TCP15 are involved in the SAR signaling pathway. TCP8, TCP14, and TCP15 physically interacted with NPR1 in yeast two-hybrid assays, and these interactions were further confirmed in vivo. SAR against the infection of virulent strain Pseudomonas syringae pv. maculicola (Psm) ES4326 in the triple T-DNA insertion mutant tcp8-1 tcp14-5 tcp15-3 was partially compromised compared with Columbia 0 (Col-0) wild type plants. The induction of SAR marker genes PR1, PR2, and PR5 in local and systemic leaves was dramatically decreased in the tcp8-1 tcp14-5 tcp15-3 mutant compared with that in Col-0 after local treatment with Psm ES4326 carrying avrRpt2. Results from yeast one-hybrid and chromatin immunoprecipitation (ChIP) assays demonstrated that TCP15 can bind to a conserved TCP binding motif, GCGGGAC, within the promoter of PR5, and this binding was enhanced by NPR1. Results from RT-qPCR assays showed that TCP15 promotes the expression of PR5 in response to salicylic acid induction. Taken together, these data reveal that TCP8, TCP14, and TCP15 physically interact with NPR1 and function redundantly to establish SAR, that TCP15 promotes the expression of PR5 through directly binding a TCP binding site within the promoter of PR5, and that this binding is enhanced by NPR1.
Collapse
Affiliation(s)
- Min Li
- Department of Biological Sciences, University of South Carolina, Columbia, SC, United States
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Huan Chen
- Department of Biological Sciences, University of South Carolina, Columbia, SC, United States
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Jian Chen
- Department of Biological Sciences, University of South Carolina, Columbia, SC, United States
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Ming Chang
- Department of Biological Sciences, University of South Carolina, Columbia, SC, United States
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Ian A. Palmer
- Department of Biological Sciences, University of South Carolina, Columbia, SC, United States
| | - Walter Gassmann
- Division of Plant Sciences, C.S. Bond Life Sciences Center and Interdisciplinary Plant Group, University of Missouri, Columbia, MO, United States
| | - Fengquan Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- *Correspondence: Fengquan Liu
| | - Zheng Qing Fu
- Department of Biological Sciences, University of South Carolina, Columbia, SC, United States
- Zheng Qing Fu
| |
Collapse
|
582
|
Izhaki A, Alvarez JP, Cinnamon Y, Genin O, Liberman-Aloni R, Eyal Y. The Tomato BLADE ON PETIOLE and TERMINATING FLOWER Regulate Leaf Axil Patterning Along the Proximal-Distal Axes. FRONTIERS IN PLANT SCIENCE 2018; 9:1126. [PMID: 30127796 PMCID: PMC6087763 DOI: 10.3389/fpls.2018.01126] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 07/12/2018] [Indexed: 05/22/2023]
Abstract
Leaf axil patterning occurs concomitantly with leaf development and takes place at the boundary zone which demarcates the initiating leaf primordium from the shoot apical meristem. Subsequent growth and differentiation result in establishment of the axillary meristem and abscission zone (AZ) along the proximal-distal axis of the leaf axil, yet the molecular mechanisms that regulate these events are poorly understood. We studied the role of the tomato BLADE ON PETIOLE (SlBOP) boundary gene family on the development of the leaf axil using BOP-silenced plants as well as BOP-mutated lines. We show that silencing of the tomato SlBOP gene family affects patterning of the leaf axil along the proximal-distal axis, manifested by dispositioning of the AM and abnormal development of the adjacent tissue resulting in lack of a functional leaf AZ. Dissection of the role of each of the three tomato SlBOPs by analysis of single, double and triple null-mutants demonstrated that SlBOP2 is the dominant gene in leaf axil patterning, but does not rule out involvement of SlBOP1 and SlBOP3 in correct AM positioning. We further studied the potential role of TERMINATING FLOWER (TMF), a transcription factor which was previously shown to interact with SlBOPs, in leaf axil patterning using TMF mutant tomato lines. The results suggest that similar to SlBOP2, TMF is involved in leaf axil proximal-distal patterning and AZ development.
Collapse
Affiliation(s)
- Anat Izhaki
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
- *Correspondence: Anat Izhaki,
| | - John P. Alvarez
- School of Biological Sciences, Clayton Campus, Monash University, Melbourne, VIC, Australia
| | - Yuval Cinnamon
- Department of Poultry and Aquaculture Science, Institute of Animal Science, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Olga Genin
- Department of Poultry and Aquaculture Science, Institute of Animal Science, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Raya Liberman-Aloni
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Yoram Eyal
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| |
Collapse
|
583
|
Gao J, Bi W, Li H, Wu J, Yu X, Liu D, Wang X. WRKY Transcription Factors Associated With NPR1-Mediated Acquired Resistance in Barley Are Potential Resources to Improve Wheat Resistance to Puccinia triticina. FRONTIERS IN PLANT SCIENCE 2018; 9:1486. [PMID: 30386355 PMCID: PMC6199750 DOI: 10.3389/fpls.2018.01486] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 09/25/2018] [Indexed: 05/18/2023]
Abstract
Systemic acquired resistance (SAR) in Arabidopsis is established beyond the initial pathogenic infection or is directly induced by treatment with salicylic acid or its functional analogs (SA/INA/BTH). NPR1 protein and WRKY transcription factors are considered the master regulators of SAR. Our previous study showed that NPR1 homologs in wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.) regulated the expression of genes encoding pathogenesis-related (PR) proteins during acquired resistance (AR) triggered by Pseudomonas syringae pv. tomato DC3000. In the present examination, AR induced by P. syringae DC3000 was also found to effectively improve wheat resistance to Puccinia triticina (Pt). However, with more complex genomes, genes associated with this SAR-like response in wheat and barley are largely unknown and no specific WRKYs has been reported to be involved in this biological process. In our subsequent analysis, barley transgenic line overexpressing wheat wNPR1 (wNPR1-OE) showed enhanced resistance to Magnaporthe oryzae isolate Guy11, whereas AR to Guy11 was suppressed in a barley transgenic line with knocked-down barley HvNPR1 (HvNPR1-Kd). We performed RNA-seq to reveal the genes that were differentially expressed among these transgenic lines and the wild-type barley plants during the AR. Several PR and BTH-induced (BCI) genes were designated as downstream genes of NPR1. The expression of few WRKYs was significantly associated with NPR1 expression during the AR events. The transient expression of three WRKY genes, including HvWRKY6, HvWRKY40, and HvWRKY70, in wheat leaves by Agrobacterium-mediated infiltration enhanced the resistance to Pt. In conclusion, a profile of genes associated with NPR1-mediated AR in barley was drafted and WRKYs discovered in the current study showed a substantial potential for improving wheat resistance to Pt.
Collapse
Affiliation(s)
- Jing Gao
- College of Plant Protection, Biological Control Center for Plant Diseases and Plant Pests of Hebei, Hebei Agricultural University, Baoding, China
| | - Weishuai Bi
- College of Plant Protection, Biological Control Center for Plant Diseases and Plant Pests of Hebei, Hebei Agricultural University, Baoding, China
| | - Huanpeng Li
- College of Plant Protection, Biological Control Center for Plant Diseases and Plant Pests of Hebei, Hebei Agricultural University, Baoding, China
| | - Jiaojiao Wu
- College of Plant Protection, Biological Control Center for Plant Diseases and Plant Pests of Hebei, Hebei Agricultural University, Baoding, China
| | - Xiumei Yu
- College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Daqun Liu
- College of Plant Protection, Biological Control Center for Plant Diseases and Plant Pests of Hebei, Hebei Agricultural University, Baoding, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Xiaodong Wang, Daqun Liu,
| | - Xiaodong Wang
- College of Plant Protection, Biological Control Center for Plant Diseases and Plant Pests of Hebei, Hebei Agricultural University, Baoding, China
- *Correspondence: Xiaodong Wang, Daqun Liu,
| |
Collapse
|
584
|
Sheshukova EV, Komarova TV, Ershova NM, Shindyapina AV, Dorokhov YL. An Alternative Nested Reading Frame May Participate in the Stress-Dependent Expression of a Plant Gene. FRONTIERS IN PLANT SCIENCE 2017; 8:2137. [PMID: 29312392 PMCID: PMC5742262 DOI: 10.3389/fpls.2017.02137] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 12/04/2017] [Indexed: 06/07/2023]
Abstract
Although plants as sessile organisms are affected by a variety of stressors in the field, the stress factors for the above-ground and underground parts of the plant and their gene expression profiles are not the same. Here, we investigated NbKPILP, a gene encoding a new member of the ubiquitous, pathogenesis-related Kunitz peptidase inhibitor (KPI)-like protein family, that we discovered in the genome of Nicotiana benthamiana and other representatives of the Solanaceae family. The NbKPILP gene encodes a protein that has all the structural elements characteristic of KPI but in contrast to the proven A. thaliana KPI (AtKPI), it does not inhibit serine peptidases. Unlike roots, NbKPILP mRNA and its corresponding protein were not detected in intact leaves, but abiotic and biotic stressors drastically affected NbKPILP mRNA accumulation. In search of the causes of suppressed NbKPILP mRNA accumulation in leaves, we found that the NbKPILP gene is "matryoshka," containing an alternative nested reading frame (ANRF) encoding a 53-amino acid (aa) polypeptide (53aa-ANRF) which has an amphipathic helix (AH). We confirmed ANRF expression experimentally. A vector containing a GFP-encoding sequence was inserted into the NbKPILP gene in frame with 53aa-ANRF, resulting in a 53aa-GFP fused protein that localized in the membrane fraction of cells. Using the 5'-RACE approach, we have shown that the expression of ANRF was not explained by the existence of a cryptic promoter within the NbKPILP gene but was controlled by the maternal NbKPILP mRNA. We found that insertion of mutations destroying the 53aa-ANRF AH resulted in more than a two-fold increase of the NbKPILP mRNA level. The NbKPILP gene represents the first example of ANRF functioning as a repressor of a maternal gene in an intact plant. We proposed a model where the stress influencing the translation initiation promotes the accumulation of NbKPILP and its mRNA in leaves.
Collapse
Affiliation(s)
- Ekaterina V. Sheshukova
- Department of Genetics and Biotechnology, N.I. Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Tatiana V. Komarova
- Department of Genetics and Biotechnology, N.I. Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Natalia M. Ershova
- Department of Genetics and Biotechnology, N.I. Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Anastasia V. Shindyapina
- Department of Genetics and Biotechnology, N.I. Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Yuri L. Dorokhov
- Department of Genetics and Biotechnology, N.I. Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
585
|
Gómez‐Muñoz N, Velázquez K, Vives MC, Ruiz‐Ruiz S, Pina JA, Flores R, Moreno P, Guerri J. The resistance of sour orange to Citrus tristeza virus is mediated by both the salicylic acid and RNA silencing defence pathways. MOLECULAR PLANT PATHOLOGY 2017; 18:1253-1266. [PMID: 27588892 PMCID: PMC6638288 DOI: 10.1111/mpp.12488] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 08/26/2016] [Accepted: 08/30/2016] [Indexed: 05/08/2023]
Abstract
Citrus tristeza virus (CTV) induces in the field the decline and death of citrus varieties grafted on sour orange (SO) rootstock, which has forced the use of alternative decline-tolerant rootstocks in affected countries, despite the highly desirable agronomic features of the SO rootstock. Declining citrus plants display phloem necrosis below the bud union. In addition, SO is minimally susceptible to CTV compared with other citrus varieties, suggesting partial resistance of SO to CTV. Here, by silencing different citrus genes with a Citrus leaf blotch virus-based vector, we have examined the implication of the RNA silencing and salicylic acid (SA) defence pathways in the resistance of SO to CTV. Silencing of the genes RDR1, NPR1 and DCL2/DCL4, associated with these defence pathways, enhanced virus spread and accumulation in SO plants in comparison with non-silenced controls, whereas silencing of the genes NPR3/NPR4, associated with the hypersensitive response, produced a slight decrease in CTV accumulation and reduced stunting of SO grafted on CTV-infected rough lemon plants. We also found that the CTV RNA silencing suppressors p20 and p23 also suppress the SA signalling defence, with the suppressor activity being higher in the most virulent isolates.
Collapse
Affiliation(s)
- Neus Gómez‐Muñoz
- Instituto Valenciano de Investigaciones Agrarias (IVIA)Centro de Protección Vegetal y BiotecnologíaMoncada, Valencia46113Spain
| | - Karelia Velázquez
- Instituto Valenciano de Investigaciones Agrarias (IVIA)Centro de Protección Vegetal y BiotecnologíaMoncada, Valencia46113Spain
| | - María Carmen Vives
- Instituto Valenciano de Investigaciones Agrarias (IVIA)Centro de Protección Vegetal y BiotecnologíaMoncada, Valencia46113Spain
| | - Susana Ruiz‐Ruiz
- Instituto Valenciano de Investigaciones Agrarias (IVIA)Centro de Protección Vegetal y BiotecnologíaMoncada, Valencia46113Spain
| | - José Antonio Pina
- Instituto Valenciano de Investigaciones Agrarias (IVIA)Centro de Protección Vegetal y BiotecnologíaMoncada, Valencia46113Spain
| | - Ricardo Flores
- Instituto de Biología Molecular y Celular de Plantas (UPV‐CSIC), Universidad Politécnica de Valencia, Avenida de los NaranjosValencia46022Spain
| | - Pedro Moreno
- Instituto Valenciano de Investigaciones Agrarias (IVIA)Centro de Protección Vegetal y BiotecnologíaMoncada, Valencia46113Spain
| | - José Guerri
- Instituto Valenciano de Investigaciones Agrarias (IVIA)Centro de Protección Vegetal y BiotecnologíaMoncada, Valencia46113Spain
| |
Collapse
|
586
|
A Bacterial Type III Effector Targets the Master Regulator of Salicylic Acid Signaling, NPR1, to Subvert Plant Immunity. Cell Host Microbe 2017; 22:777-788.e7. [DOI: 10.1016/j.chom.2017.10.019] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Revised: 07/10/2017] [Accepted: 10/25/2017] [Indexed: 11/19/2022]
|
587
|
Roeschlin RA, Favaro MA, Chiesa MA, Alemano S, Vojnov AA, Castagnaro AP, Filippone MP, Gmitter FG, Gadea J, Marano MR. Resistance to citrus canker induced by a variant of Xanthomonas citri ssp. citri is associated with a hypersensitive cell death response involving autophagy-associated vacuolar processes. MOLECULAR PLANT PATHOLOGY 2017; 18:1267-1281. [PMID: 27647752 PMCID: PMC6638218 DOI: 10.1111/mpp.12489] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 07/25/2016] [Accepted: 08/31/2016] [Indexed: 05/14/2023]
Abstract
Xanthomonas citri ssp. citri (X. citri) is the causal agent of Asiatic citrus canker, a disease that seriously affects most commercially important Citrus species worldwide. We have identified previously a natural variant, X. citri AT , that triggers a host-specific defence response in Citrus limon. However, the mechanisms involved in this canker disease resistance are unknown. In this work, the defence response induced by X. citri AT was assessed by transcriptomic, physiological and ultrastructural analyses, and the effects on bacterial biofilm formation were monitored in parallel. We show that X. citri AT triggers a hypersensitive response associated with the interference of biofilm development and arrest of bacterial growth in C. limon. This plant response involves an extensive transcriptional reprogramming, setting in motion cell wall reinforcement, the oxidative burst and the accumulation of salicylic acid (SA) and phenolic compounds. Ultrastructural analyses revealed subcellular changes involving the activation of autophagy-associated vacuolar processes. Our findings show the activation of SA-dependent defence in response to X. citri AT and suggest a coordinated regulation between the SA and flavonoid pathways, which is associated with autophagy mechanisms that control pathogen invasion in C. limon. Furthermore, this defence response protects C. limon plants from disease on subsequent challenges by pathogenic X. citri. This knowledge will allow the rational exploitation of the plant immune system as a biotechnological approach for the management of the disease.
Collapse
Affiliation(s)
- Roxana A. Roeschlin
- Instituto de Biología Molecular y Celular de Rosario (IBR)–Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET)Área Virología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Ocampo y Esmeralda s/nRosarioS2000FHNArgentina
| | - María A. Favaro
- Instituto de Biología Molecular y Celular de Rosario (IBR)–Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET)Área Virología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Ocampo y Esmeralda s/nRosarioS2000FHNArgentina
| | - María A. Chiesa
- Instituto de Biología Molecular y Celular de Rosario (IBR)–Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET)Área Virología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Ocampo y Esmeralda s/nRosarioS2000FHNArgentina
| | - Sergio Alemano
- Laboratorio de Fisiología Vegetal, Departamento de Ciencias Naturales, Facultad de Ciencias Exactas, Físico‐Químicas y NaturalesUniversidad Nacional de Río Cuarto, Ruta 36 Km. 601Río Cuarto X5804ZABCórdobaArgentina
| | - Adrián A. Vojnov
- Instituto de Ciencia y Tecnología Dr. Cesar MilsteinFundación Pablo Cassará‐CONICET, Saladillo 2468Ciudad de Buenos AiresC1440FFXArgentina
| | - Atilio P. Castagnaro
- Instituto de Tecnología Agroindustrial del Noroeste Argentino (ITA‐NOA)Estación Experimental Agroindustrial Obispo Colombres (EEAOC)‐CONICET, Av. William Cross 3150Las TalitasTucumánT4101XACArgentina
| | - María P. Filippone
- Instituto de Tecnología Agroindustrial del Noroeste Argentino (ITA‐NOA)Estación Experimental Agroindustrial Obispo Colombres (EEAOC)‐CONICET, Av. William Cross 3150Las TalitasTucumánT4101XACArgentina
| | - Frederick G. Gmitter
- Citrus Research and Education Center (CREC)University of Florida, 700 Experiment Station Rd.Lake AlfredFL33850USA
| | - José Gadea
- Instituto de Biología Molecular y Celular de Plantas (IBMCP)Universidad Politécnica de Valencia (UPV)‐Consejo Superior de Investigaciones Científicas (CSIC), Ciudad Politécnica de la Innovación (CPI), Ed. 8E, C/Ingeniero Fausto Elio s/nValencia46022Spain
| | - María R. Marano
- Instituto de Biología Molecular y Celular de Rosario (IBR)–Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET)Área Virología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Ocampo y Esmeralda s/nRosarioS2000FHNArgentina
| |
Collapse
|
588
|
Zhang Y, Wang X, Rong W, Yang J, Li Z, Wu L, Zhang G, Ma Z. Histochemical Analyses Reveal That Stronger Intrinsic Defenses in Gossypium barbadense Than in G. hirsutum Are Associated With Resistance to Verticillium dahliae. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2017; 30:984-996. [PMID: 28850286 DOI: 10.1094/mpmi-03-17-0067-r] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Verticillium wilt, caused by Verticillium dahliae Kleb., is a serious threat to cotton (Gossypium spp.) crop production. To enhance our understanding of the plant's complex defensive mechanism, we examined colonization patterns and interactions between V. dahliae and two cotton species, the resistant G. barbadense and the susceptible G. hirsutum. Microscopic examinations and grafting experiments showed that the progression of infection was restricted within G. barbadense. At all pre- and postinoculation sampling times, levels of salicylic acid (SA) were also higher in that species than in G. hirsutum. Comparative RNA-Seq analyses indicated that infection induced dramatic changes in the expression of thousands of genes in G. hirsutum, whereas those changes were fewer and weaker in G. barbadense. Investigations of the morphological and biochemical nature of cell-wall barriers demonstrated that depositions of lignin, phenolic compounds, and callose were significantly higher in G. barbadense. To determine the contribution of a known resistance gene to these processes, we silenced GbEDS1 and found that the transformed plants had decreased SA production, which led to the upregulation of PLASMODESMATA-LOCATED PROTEIN (PDLP) 1 and PDLP6. This was followed by a decline in callose deposition in the plasmodesmata, which then led to increased pathogen susceptibility. This comparison between resistant and susceptible species indicated that both physical and chemical mechanisms play important roles in the defenses of cotton against V. dahliae.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Agronomy, North China Key Laboratory for Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding 071001, People's Republic of China
| | - Xingfen Wang
- Department of Agronomy, North China Key Laboratory for Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding 071001, People's Republic of China
| | - Wei Rong
- Department of Agronomy, North China Key Laboratory for Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding 071001, People's Republic of China
| | - Jun Yang
- Department of Agronomy, North China Key Laboratory for Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding 071001, People's Republic of China
| | - Zhikun Li
- Department of Agronomy, North China Key Laboratory for Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding 071001, People's Republic of China
| | - Liqiang Wu
- Department of Agronomy, North China Key Laboratory for Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding 071001, People's Republic of China
| | - Guiyin Zhang
- Department of Agronomy, North China Key Laboratory for Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding 071001, People's Republic of China
| | - Zhiying Ma
- Department of Agronomy, North China Key Laboratory for Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding 071001, People's Republic of China
| |
Collapse
|
589
|
Singh D, Kumar D, Satapathy L, Pathak J, Chandra S, Riaz A, Bhaganagre G, Dhariwal R, Kumar M, Prabhu KV, Balyan HS, Gupta PK, Mukhopadhyay K. Insights of Lr28 mediated wheat leaf rust resistance: Transcriptomic approach. Gene 2017; 637:72-89. [DOI: 10.1016/j.gene.2017.09.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 08/31/2017] [Accepted: 09/14/2017] [Indexed: 01/09/2023]
|
590
|
Kachroo A, Vincelli P, Kachroo P. Signaling Mechanisms Underlying Resistance Responses: What Have We Learned, and How Is It Being Applied? PHYTOPATHOLOGY 2017; 107:1452-1461. [PMID: 28609156 DOI: 10.1094/phyto-04-17-0130-rvw] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Plants have evolved highly specific mechanisms to resist pathogens including preformed barriers and the induction of elaborate signaling pathways. Induced signaling requires recognition of the pathogen either via conserved pathogen-derived factors or specific pathogen-encoded proteins called effectors. Recognition of these factors by host encoded receptor proteins can result in the elicitation of different tiers of resistance at the site of pathogen infection. In addition, plants induce a type of systemic immunity which is effective at the whole plant level and protects against a broad spectrum of pathogens. Advances in our understanding of pathogen-recognition mechanisms, identification of the underlying molecular components, and their significant conservation across diverse plant species has enabled the development of novel strategies to combat plant diseases. This review discusses key advances in plant defense signaling that have been adapted or have the potential to be adapted for plant protection against microbial diseases.
Collapse
Affiliation(s)
- Aardra Kachroo
- Department of Plant Pathology, University of Kentucky, Lexington 40546
| | - Paul Vincelli
- Department of Plant Pathology, University of Kentucky, Lexington 40546
| | - Pradeep Kachroo
- Department of Plant Pathology, University of Kentucky, Lexington 40546
| |
Collapse
|
591
|
Huot B, Castroverde CDM, Velásquez AC, Hubbard E, Pulman JA, Yao J, Childs KL, Tsuda K, Montgomery BL, He SY. Dual impact of elevated temperature on plant defence and bacterial virulence in Arabidopsis. Nat Commun 2017; 8:1808. [PMID: 29180698 PMCID: PMC5704021 DOI: 10.1038/s41467-017-01674-2] [Citation(s) in RCA: 144] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Accepted: 10/06/2017] [Indexed: 11/16/2022] Open
Abstract
Environmental conditions profoundly affect plant disease development; however, the underlying molecular bases are not well understood. Here we show that elevated temperature significantly increases the susceptibility of Arabidopsis to Pseudomonas syringae pv. tomato (Pst) DC3000 independently of the phyB/PIF thermosensing pathway. Instead, elevated temperature promotes translocation of bacterial effector proteins into plant cells and causes a loss of ICS1-mediated salicylic acid (SA) biosynthesis. Global transcriptome analysis reveals a major temperature-sensitive node of SA signalling, impacting ~60% of benzothiadiazole (BTH)-regulated genes, including ICS1 and the canonical SA marker gene, PR1. Remarkably, BTH can effectively protect Arabidopsis against Pst DC3000 infection at elevated temperature despite the lack of ICS1 and PR1 expression. Our results highlight the broad impact of a major climate condition on the enigmatic molecular interplay between temperature, SA defence and function of a central bacterial virulence system in the context of a widely studied susceptible plant–pathogen interaction. Temperature is known to influence plant disease development. Here Huot et al. show that elevated temperature can enhance Pseudomonas syringae effector delivery into plant cells and suppress SA biosynthesis while also finding a temperature-sensitive branch of the SA signaling pathway in Arabidopsis.
Collapse
Affiliation(s)
- Bethany Huot
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA.,Cell and Molecular Biology Program, Michigan State University, East Lansing, MI, 48824, USA.,Plant Resilience Institute, Michigan State University, East Lansing, MI, 48824, USA
| | - Christian Danve M Castroverde
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA.,Plant Resilience Institute, Michigan State University, East Lansing, MI, 48824, USA
| | - André C Velásquez
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
| | - Emily Hubbard
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
| | - Jane A Pulman
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA.,Center for Genomics Enabled Plant Science, Michigan State University, East Lansing, MI, 48824, USA
| | - Jian Yao
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, 49008, USA
| | - Kevin L Childs
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA.,Center for Genomics Enabled Plant Science, Michigan State University, East Lansing, MI, 48824, USA
| | - Kenichi Tsuda
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
| | - Beronda L Montgomery
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA. .,Cell and Molecular Biology Program, Michigan State University, East Lansing, MI, 48824, USA. .,Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA. .,Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, 48824, USA.
| | - Sheng Yang He
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA. .,Cell and Molecular Biology Program, Michigan State University, East Lansing, MI, 48824, USA. .,Plant Resilience Institute, Michigan State University, East Lansing, MI, 48824, USA. .,Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA. .,Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, 48824, USA. .,Howard Hughes Medical Institute, Michigan State University, East Lansing, MI, 48933, USA.
| |
Collapse
|
592
|
Gao M, Yin X, Yang W, Lam SM, Tong X, Liu J, Wang X, Li Q, Shui G, He Z. GDSL lipases modulate immunity through lipid homeostasis in rice. PLoS Pathog 2017; 13:e1006724. [PMID: 29131851 PMCID: PMC5703576 DOI: 10.1371/journal.ppat.1006724] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 11/27/2017] [Accepted: 10/31/2017] [Indexed: 12/04/2022] Open
Abstract
Lipids and lipid metabolites play important roles in plant-microbe interactions. Despite the extensive studies of lipases in lipid homeostasis and seed oil biosynthesis, the involvement of lipases in plant immunity remains largely unknown. In particular, GDSL esterases/lipases, characterized by the conserved GDSL motif, are a subfamily of lipolytic enzymes with broad substrate specificity. Here, we functionally identified two GDSL lipases, OsGLIP1 and OsGLIP2, in rice immune responses. Expression of OsGLIP1 and OsGLIP2 was suppressed by pathogen infection and salicylic acid (SA) treatment. OsGLIP1 was mainly expressed in leaf and leaf sheath, while OsGLIP2 showed high expression in elongating internodes. Biochemical assay demonstrated that OsGLIP1 and OsGLIP2 are functional lipases that could hydrolyze lipid substrates. Simultaneous down-regulation of OsGLIP1 and OsGLIP2 increased plant resistance to both bacterial and fungal pathogens, whereas disease resistance in OsGLIP1 and OsGLIP2 overexpression plants was significantly compromised, suggesting that both genes act as negative regulators of disease resistance. OsGLIP1 and OsGLIP2 proteins mainly localize to lipid droplets and the endoplasmic reticulum (ER) membrane. The proper cellular localization of OsGLIP proteins is indispensable for their functions in immunity. Comprehensive lipid profiling analysis indicated that the alteration of OsGLIP gene expression was associated with substantial changes of the levels of lipid species including monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG). We show that MGDG and DGDG feeding could attenuate disease resistance. Taken together, our study indicates that OsGLIP1 and OsGLIP2 negatively regulate rice defense by modulating lipid metabolism, thus providing new insights into the function of lipids in plant immunity. Lipases are a large family of enzymes conferring lipid metabolism. Lipids and their metabolites play diverse roles in plant growth as well as response to environmental stimuli. Accumulating evidence implicates lipids as signaling molecules mediating plant immunity. Therefore, lipases are presumed to be actively involved in plant defense responses. Based on gene expression profiling, we have identified two functional GDSL lipases, encoded by OsGLIP1 and OsGLIP2, whose expression was suppressed by pathogen infection in the model cereal rice. Both OsGLIP1 and OsGLIP2 proteins localize to lipid droplets and the endoplasmic reticulum (ER) membrane, and they likely coordinate lipid metabolism with differential but complementary expression patterns in tissues and developmental stages. Consequently, alteration of OsGLIP gene expression was associated with substantial changes of lipid abundance and plant disease resistance. Our work identifies and characterizes two lipases that function as negative regulators of plant immune responses, strengthening the understanding of lipid metabolism in plant-microbe interactions.
Collapse
Affiliation(s)
- Mingjun Gao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences/Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Xin Yin
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences/Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Weibing Yang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences/Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Sin Man Lam
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Xiaohong Tong
- China National Rice Research Institute, Hangzhou, China
| | - Jiyun Liu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences/Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Xin Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences/Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Qun Li
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences/Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Guanghou Shui
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Zuhua He
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences/Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai, China
- * E-mail:
| |
Collapse
|
593
|
Wang L, Guo Z, Zhang Y, Wang Y, Wang L, Yang G, Li W, Wang R, Xie Z. Characterization of LhSorTGA2, a novel TGA2-like protein that interacts with LhSorNPR1 in oriental hybrid lily Sorbonne. BOTANICAL STUDIES 2017; 58:46. [PMID: 29127659 PMCID: PMC5681460 DOI: 10.1186/s40529-017-0201-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 11/06/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Non-expressor of pathogenesis-related genes 1 (NPR1) regulates expression of pathogenesis-related (PR) genes by interacting with TGA family proteins during systemic acquired resistance (SAR). However, no TGA-like proteins or their interacting partners have been characterized in lily. RESULTS In the present study, LhSorTGA2, a novel TGA-like protein, was identified as an interacting partner of LhSorNPR1 (an NPR-like protein) by bimolecular fluorescence complementation (BIFC) and yeast two-hybrid assay (Y2H). Subcellular localization of GFP-tagged proteins targeted LhSorTGA2 to the nucleus, whereas GFP-labeled LhSorNPR1 was observed both in the nucleus and at the cytomembrane. Sequence alignment revealed that LhSorTGA2 was featured with a basic leucine zipper (bZIP) domain and two glutamine rich acid domains (QI and QII). Further phylogenetic analysis showed that TGA family proteins can be grouped into three subclades, within which LhSorTGA2 was clustered into subclade I, together with AtTGA2/5/6. Expression of LhSorTGA2 was investigated in different tissues by qPCR, and the highest expression level was observed in stem. Besides, when treated with phytohormones (SA, MeJA, ETH and ABA) or fungal pathogen Botrytis elliptica, LhSorTGA2 expression was also induced at different time points post treatments. CONCLUSIONS Collectively, these results suggested that LhSorTGA2 was an interacting partner of LhSorNPR1, which might function in regulating expression of PR genes in lily during SAR.
Collapse
Affiliation(s)
- Le Wang
- Gaolan Station of the Agricultural and Ecological Experiment, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Zhihong Guo
- Gaolan Station of the Agricultural and Ecological Experiment, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000 China
| | - Yubao Zhang
- Gaolan Station of the Agricultural and Ecological Experiment, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000 China
| | - Yajun Wang
- Gaolan Station of the Agricultural and Ecological Experiment, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000 China
| | - Li Wang
- The Forest Tree Seedling Station of the Alxa League, Alxa League, 750300 China
| | - Guo Yang
- Gaolan Station of the Agricultural and Ecological Experiment, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000 China
| | - Wenmei Li
- Gaolan Station of the Agricultural and Ecological Experiment, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Ruoyu Wang
- Gaolan Station of the Agricultural and Ecological Experiment, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000 China
| | - Zhongkui Xie
- Gaolan Station of the Agricultural and Ecological Experiment, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000 China
| |
Collapse
|
594
|
Torres DP, Proels RK, Schempp H, Hückelhoven R. Silencing of RBOHF2 Causes Leaf Age-Dependent Accelerated Senescence, Salicylic Acid Accumulation, and Powdery Mildew Resistance in Barley. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2017; 30:906-918. [PMID: 28795634 DOI: 10.1094/mpmi-04-17-0088-r] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Plant RBOH (RESPIRATORY BURST OXIDASE HOMOLOGS)-type NADPH oxidases produce superoxide radical anions and have a function in developmental processes and in response to environmental challenges. Barley RBOHF2 has diverse reported functions in interaction with the biotrophic powdery mildew fungus Blumeria graminis f. sp. hordei. Here, we analyzed, in detail, plant leaf level- and age-specific susceptibility of stably RBOHF2-silenced barley plants. This revealed enhanced susceptibility to fungal penetration of young RBOHF2-silenced leaf tissue but strongly reduced susceptibility of older leaves when compared with controls. Loss of susceptibility in old RBOHF2-silenced leaves was associated with spontaneous leaf-tip necrosis and constitutively elevated levels of free and conjugated salicylic acid. Additionally, these leaves more strongly expressed pathogenesis-related genes, both constitutively and during interaction with B. graminis f. sp. hordei. Together, this supports the idea that barley RBOHF2 contributes to basal resistance to powdery mildew infection in young leaf tissue but is required to control leaf cell death, salicylic acid accumulation, and defense gene expression in older leaves, explaining leaf age-specific resistance of RBOHF2-silenced barley plants.
Collapse
Affiliation(s)
- Denise Pereira Torres
- Lehrstuhl für Phytopathologie, Technische Universität München Emil-Ramann-Straße 2, D-85354 Freising-Weihenstephan, Germany
| | - Reinhard K Proels
- Lehrstuhl für Phytopathologie, Technische Universität München Emil-Ramann-Straße 2, D-85354 Freising-Weihenstephan, Germany
| | - Harald Schempp
- Lehrstuhl für Phytopathologie, Technische Universität München Emil-Ramann-Straße 2, D-85354 Freising-Weihenstephan, Germany
| | - Ralph Hückelhoven
- Lehrstuhl für Phytopathologie, Technische Universität München Emil-Ramann-Straße 2, D-85354 Freising-Weihenstephan, Germany
| |
Collapse
|
595
|
Chang Y, Yang H, Ren D, Li Y. Activation of ZmMKK10, a maize mitogen-activated protein kinase kinase, induces ethylene-dependent cell death. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 264:129-137. [PMID: 28969793 DOI: 10.1016/j.plantsci.2017.09.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/12/2017] [Accepted: 09/16/2017] [Indexed: 05/08/2023]
Abstract
Mitogen-activated protein kinase (MAPK) cascades play important roles in regulating plant growth, development and stress responses. Here, we report that ZmMKK10, a maize MAP kinase kinase, positively regulates cell death. Sequence comparison to Arabidopsis MKKs has led to ZmMKK10 being classified as a group D MKK. Kinase activity analysis of recombinant ZmMKK10 showed that the Mg2+ ion was required for its kinase activity. Transient expression of ZmMKK10WT or ZmMKK10DD (the active form of ZmMKK10) in maize mesophyll protoplast significantly increased the cell death rate. Inducible expression of ZmMKK10WT or ZmMKK10DD in Arabidopsis transgenic plants caused rapid HR-like cell death, whereas induction of ZmMKK10KR (the inactive form of ZmMKK10) expression in transgenic plants did not yield the same phenotype. Genetic and pharmacological analysis revealed that ZmMKK10-induced cell death in transgenic plants requires the activation of Arabidopsis MPK3 and MPK6 and that it partially depended on ethylene biosynthesis. ZmMPK3 and ZmMPK7, the orthologues of Arabidopsis MPK3 and MPK6, interacted with ZmMKK10 in yeast and ZmMKK10 phosphorylated them both in vitro. Our results demonstrate that ZmMKK10 induces cell death in an ethylene-dependent manner. Furthermore, ZmMPK3 and ZmMPK7 may be the downstream MAPKs in this process.
Collapse
Affiliation(s)
- Ying Chang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Hailian Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Dongtao Ren
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yuan Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
596
|
Pan D, Li QX, Lin Z, Chen Z, Tang W, Pan C, Tan H, Zeng D. Interactions between salicylic acid and antioxidant enzymes tilting the balance of H 2O 2 from photorespiration in non-target crops under halosulfuron-methyl stress. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2017; 143:214-223. [PMID: 29183595 DOI: 10.1016/j.pestbp.2017.09.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Revised: 07/14/2017] [Accepted: 09/14/2017] [Indexed: 06/07/2023]
Abstract
Halosulfuron-methyl (HSM) is a safe, selective and effective sulfonylurea herbicide (SU) for the control of sedge and broadleaf weeds in sugarcane, corn, tomato, and other crops. The primary site of action is acetolactate synthase (ALS), a key enzyme of branched chain amino acids (BCAAs) synthesis. In addition to ALS inhibition, BCAAs deficiencies and oxidative damage may be involved in toxic effects of SUs. However, secondary targets of HSM relevant to plant physiological responses are unclear. In the present study, comparative growth inhibition and peroxidization injury between sensitive and tolerance crops were observed at biochemical and physiological levels suggesting involvement of H2O2, ethylene, salicylic acid (SA) in the oxidative stress responses to HSM. HSM caused accumulation of H2O2, stimulated photorespiration and consequent accumulation of SA that worsened the peroxidization injury to the sensitive C3 plant soybean (Glycine max). The growth inhibition at low concentrations of HSM could be lessened by supplementary BCAAs, reactive oxygen species scavengers or ethylene inducers, whereas the oxidation damage at high concentrations of HSM could not be reversed and ultimately lead to plant death. H2O2 at a low level stimulated the antioxidase system including glutathione S-transferase activities in the HSM-tolerant C4 maize (Zea mays), which contributes to HSM tolerance. H2O2 plays an important role on HSM stress responses in both HSM-sensitive and HSM-tolerant soybean and maize.
Collapse
Affiliation(s)
- Dongjin Pan
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, Agricultural College, Guangxi University, Nanning, Guangxi 530005, China; Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI 96822, United States
| | - Qing X Li
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI 96822, United States
| | - Zhangxing Lin
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, Agricultural College, Guangxi University, Nanning, Guangxi 530005, China
| | - Zhaojie Chen
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, Agricultural College, Guangxi University, Nanning, Guangxi 530005, China
| | - Wenwei Tang
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, Agricultural College, Guangxi University, Nanning, Guangxi 530005, China
| | - Canping Pan
- College of Sciences, China Agricultural University, Beijing 100193, China
| | - Huihua Tan
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, Agricultural College, Guangxi University, Nanning, Guangxi 530005, China.
| | - Dongqiang Zeng
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, Agricultural College, Guangxi University, Nanning, Guangxi 530005, China.
| |
Collapse
|
597
|
Goupil P, Benouaret R, Richard C. Ethyl Gallate Displays Elicitor Activities in Tobacco Plants. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:9006-9012. [PMID: 28960978 DOI: 10.1021/acs.jafc.7b03051] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Alkyl gallates showed elicitor activities on tobacco in both whole plants and cell suspensions. Methyl gallate (MG), ethyl gallate (EG), and propyl gallate (PG) infiltration into tobacco leaves induced hypersensitive reaction-like lesions and topical production of autofluorescent compounds revealed under UV light. When sprayed on tobacco plants at 5 mM, EG promoted upregulation of defense-related genes such as the antimicrobial PR1, β-1,3-glucanase PR2, Chitinase PR3, and osmotin PR5 target genes. Tobacco BY-2 cells challenged with EG underwent cell death in 48 h, which was significantly reduced in the presence of the protease inhibitor aprotinin. The three alkyl gallates all caused alkalinization of the BY-2 extracellular medium, whereas gallic acid did not trigger any pH variation. Using EGTA or LaCl3, we showed that Ca2+ mobilization occurred in BY-2 cells elicited with EG. Overall, our findings are the first evidence of alkyl gallate elicitor properties with early perception events on the plasma membrane, potential hypersensitive reactions, and PR-related downstream defense responses in tobacco.
Collapse
Affiliation(s)
- Pascale Goupil
- UMR 547-UBP/INRA PIAF, Campus universitaire des Cézeaux, Université Clermont Auvergne , 8 avenue Blaise Pascal, 63178 Aubière cedex, France
- UMR 547 PIAF, INRA , 63000 Clermont-Ferrand, France
| | - Razik Benouaret
- UMR 547-UBP/INRA PIAF, Campus universitaire des Cézeaux, Université Clermont Auvergne , 8 avenue Blaise Pascal, 63178 Aubière cedex, France
- UMR 547 PIAF, INRA , 63000 Clermont-Ferrand, France
| | - Claire Richard
- CNRS, UMR 6296, Campus universitaire des Cézeaux, Institut de Chimie de Clermont-Ferrand (ICCF), Université Clermont Auvergne , 24 avenue Blaise Pascal, 63178 Aubière cedex, France
- Equipe Photochimie CNRS, UMR 6296, ICCF , 63178 Aubière, France
| |
Collapse
|
598
|
Majumdar R, Rajasekaran K, Sickler C, Lebar M, Musungu BM, Fakhoury AM, Payne GA, Geisler M, Carter-Wientjes C, Wei Q, Bhatnagar D, Cary JW. The Pathogenesis-Related Maize Seed ( PRms) Gene Plays a Role in Resistance to Aspergillus flavus Infection and Aflatoxin Contamination. FRONTIERS IN PLANT SCIENCE 2017; 8:1758. [PMID: 29089952 PMCID: PMC5651032 DOI: 10.3389/fpls.2017.01758] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 09/25/2017] [Indexed: 05/26/2023]
Abstract
Aspergillus flavus is an opportunistic plant pathogen that colonizes and produces the toxic and carcinogenic secondary metabolites, aflatoxins, in oil-rich crops such as maize (Zea mays ssp. mays L.). Pathogenesis-related (PR) proteins serve as an important defense mechanism against invading pathogens by conferring systemic acquired resistance in plants. Among these, production of the PR maize seed protein, ZmPRms (AC205274.3_FG001), has been speculated to be involved in resistance to infection by A. flavus and other pathogens. To better understand the relative contribution of ZmPRms to A. flavus resistance and aflatoxin production, a seed-specific RNA interference (RNAi)-based gene silencing approach was used to develop transgenic maize lines expressing hairpin RNAs to target ZmPRms. Downregulation of ZmPRms in transgenic kernels resulted in a ∼250-350% increase in A. flavus infection accompanied by a ∼4.5-7.5-fold higher accumulation of aflatoxins than control plants. Gene co-expression network analysis of RNA-seq data during the A. flavus-maize interaction identified ZmPRms as a network hub possibly responsible for regulating several downstream candidate genes associated with disease resistance and other biochemical functions. Expression analysis of these candidate genes in the ZmPRms-RNAi lines demonstrated downregulation (vs. control) of a majority of these ZmPRms-regulated genes during A. flavus infection. These results are consistent with a key role of ZmPRms in resistance to A. flavus infection and aflatoxin accumulation in maize kernels.
Collapse
Affiliation(s)
- Rajtilak Majumdar
- Food and Feed Safety Research Unit, United States Department of Agriculture – Agricultural Research Service, Southern Regional Research Center, New Orleans, LA, United States
| | - Kanniah Rajasekaran
- Food and Feed Safety Research Unit, United States Department of Agriculture – Agricultural Research Service, Southern Regional Research Center, New Orleans, LA, United States
| | - Christine Sickler
- Food and Feed Safety Research Unit, United States Department of Agriculture – Agricultural Research Service, Southern Regional Research Center, New Orleans, LA, United States
| | - Matthew Lebar
- Food and Feed Safety Research Unit, United States Department of Agriculture – Agricultural Research Service, Southern Regional Research Center, New Orleans, LA, United States
| | - Bryan M. Musungu
- Department of Plant Biology, Southern Illinois University, Carbondale, IL, United States
- Warm Water Aquaculture Unit, United States Department of Agriculture – Agricultural Research Service, Stoneville, MS, United States
| | - Ahmad M. Fakhoury
- Department of Plant, Soil and Agriculture Systems, Southern Illinois University, Carbondale, IL, United States
| | - Gary A. Payne
- Department of Plant Pathology, North Carolina State University, Raleigh, NC, United States
| | - Matt Geisler
- Department of Plant Biology, Southern Illinois University, Carbondale, IL, United States
| | - Carol Carter-Wientjes
- Food and Feed Safety Research Unit, United States Department of Agriculture – Agricultural Research Service, Southern Regional Research Center, New Orleans, LA, United States
| | - Qijian Wei
- Food and Feed Safety Research Unit, United States Department of Agriculture – Agricultural Research Service, Southern Regional Research Center, New Orleans, LA, United States
| | - Deepak Bhatnagar
- Food and Feed Safety Research Unit, United States Department of Agriculture – Agricultural Research Service, Southern Regional Research Center, New Orleans, LA, United States
| | - Jeffrey W. Cary
- Food and Feed Safety Research Unit, United States Department of Agriculture – Agricultural Research Service, Southern Regional Research Center, New Orleans, LA, United States
| |
Collapse
|
599
|
Ali S, Mir ZA, Tyagi A, Mehari H, Meena RP, Bhat JA, Yadav P, Papalou P, Rawat S, Grover A. Overexpression of NPR1 in Brassica juncea Confers Broad Spectrum Resistance to Fungal Pathogens. FRONTIERS IN PLANT SCIENCE 2017; 8:1693. [PMID: 29046679 PMCID: PMC5632730 DOI: 10.3389/fpls.2017.01693] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Accepted: 09/14/2017] [Indexed: 05/18/2023]
Abstract
Brassica juncea (Indian mustard) is a commercially important oil seed crop, which is highly affected by many biotic stresses. Among them, Alternaria leaf blight and powdery mildew are the most devastating diseases leading to huge yield losses in B. juncea around the world. In this regard, genetic engineering is a promising tool that may possibly allow us to enhance the B. juncea disease resistance against these pathogens. NPR1 (non-expressor of pathogen-related gene 1) is a bonafide receptor of salicylic acid (SA) which modulates multiple immune responses in plants especially activation of induced and systemic acquired resistance (SAR). Here, we report the isolation and characterization of new NPR1 homolog (BjNPR1) from B. juncea. The phylogenetic tree constructed based on the deduced sequence of BjNPR1 with homologs from other species revealed that BjNPR1 grouped together with other known NPR1 proteins of Cruciferae family, and was nearest to B. napus. Furthermore, expression analysis showed that BjNPR1 was upregulated after SA treatment and fungal infection but not by jasmonic acid or abscisic acid. To understand the defensive role of this gene, we generated B. juncea transgenic lines overexpressing BjNPR1, and further confirmed by PCR and Southern blotting. The transgenic lines showed no phenotypic abnormalities, and constitutive expression of BjNPR1 activates defense signaling pathways by priming the expression of antifungal PR genes. Moreover, BjNPR1 transgenic lines showed enhanced resistance to Alternaria brassicae and Erysiphe cruciferarum as there was delay in symptoms and reduced disease severity than non-transgenic plants. In addition, the rate of disease spreading to uninfected or distal parts was also delayed in transgenic plants thus suggesting the activation of SAR. Altogether, the present study suggests that BjNPR1 is involved in broad spectrum of disease resistance against fungal pathogens.
Collapse
Affiliation(s)
- Sajad Ali
- National Research Centre on Plant Biotechnology, New Delhi, India
- Centre of Research for Development, University of Kashmir, Srinagar, India
| | - Zahoor A. Mir
- National Research Centre on Plant Biotechnology, New Delhi, India
| | - Anshika Tyagi
- National Research Centre on Plant Biotechnology, New Delhi, India
| | - Hailay Mehari
- National Research Centre on Plant Biotechnology, New Delhi, India
| | | | - Javaid A. Bhat
- Division of Genetics, Indian Agricultural Research Institute, New Delhi, India
| | - Prashant Yadav
- National Research Centre on Plant Biotechnology, New Delhi, India
| | | | - Sandhya Rawat
- National Research Centre on Plant Biotechnology, New Delhi, India
| | - Anita Grover
- National Research Centre on Plant Biotechnology, New Delhi, India
| |
Collapse
|
600
|
Chen Y, Dong J, Bennetzen JL, Zhong M, Yang J, Zhang J, Li S, Hao X, Zhang Z, Wang X. Integrating transcriptome and microRNA analysis identifies genes and microRNAs for AHO-induced systemic acquired resistance in N. tabacum. Sci Rep 2017; 7:12504. [PMID: 28970509 PMCID: PMC5624873 DOI: 10.1038/s41598-017-12249-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 09/04/2017] [Indexed: 11/09/2022] Open
Abstract
3-Acetonyl-3-hydroxyoxindole (AHO) induces systemic acquired resistance (SAR) in Nicotiana. However, the underlying molecular mechanism is not well understood. To understand the molecular regulation during SAR induction, we examined mRNA levels, microRNA (miRNA) expression, and their regulatory mechanisms in control and AHO-treated tobacco leaves. Using RNA-seq analysis, we identified 1,445 significantly differentially expressed genes (DEGs) at least 2 folds with AHO treatment. The DEGs significantly enriched in six metabolism pathways including phenylpropanoid biosynthesis, sesquiterpenoid and triterpenoid biosynthesis for protective cuticle and wax. Key DEGs including PALs and PR-10 in salicylic acid pathway involved in SAR were significantly regulated. In addition, we identified 403 miRNAs belonging to 200 miRNA families by miRNA sequencing. In total, AHO treatment led to 17 up- and 6 down-regulated at least 2 folds (Wald test, P < 0.05) miRNAs (DEMs), respectively. Targeting analysis implicated four DEMs regulating three DEGs involved in disease resistance, including miR156, miR172f, miR172g, miR408a, SPL6 and AP2. We concluded that both mRNA and miRNA regulation enhances AHO-induced SAR. These data regarding DEGs, miRNAs, and their regulatory mechanisms provide molecular evidence for the mechanisms involved in tobacco SAR, which are likely to be present in other plants.
Collapse
Affiliation(s)
- Yongdui Chen
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences; Yunnan Provincial Key Laboratory of Agricultural Biotechnology; Key Lab of Southwestern Crop Gene Resource and Germplasm Innovation, Ministry of Agriculture, Kunming, 650223, P. R. China
| | - Jiahong Dong
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences; Yunnan Provincial Key Laboratory of Agricultural Biotechnology; Key Lab of Southwestern Crop Gene Resource and Germplasm Innovation, Ministry of Agriculture, Kunming, 650223, P. R. China
| | - Jeffrey L Bennetzen
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650201, P. R. China
- Department of Genetics, University of Georgia, Athens, USA
| | - Micai Zhong
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650201, P. R. China
| | - Jun Yang
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, P. R. China
| | - Jie Zhang
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences; Yunnan Provincial Key Laboratory of Agricultural Biotechnology; Key Lab of Southwestern Crop Gene Resource and Germplasm Innovation, Ministry of Agriculture, Kunming, 650223, P. R. China
| | - Shunlin Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, P. R. China
| | - Xiaojiang Hao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, P. R. China
| | - Zhongkai Zhang
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences; Yunnan Provincial Key Laboratory of Agricultural Biotechnology; Key Lab of Southwestern Crop Gene Resource and Germplasm Innovation, Ministry of Agriculture, Kunming, 650223, P. R. China.
| | - Xuewen Wang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650201, P. R. China.
- Department of Genetics, University of Georgia, Athens, USA.
| |
Collapse
|