551
|
Silvestre MPC, Morais HA, Silva MR, de Souza MWS, Silva VDM. Preparation and analysis of hydrolysates from whey protein concentrate using the proteases fromBacillus licheniformisandAspergillus oryzae. Int J Food Sci Technol 2012. [DOI: 10.1111/j.1365-2621.2012.03003.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
552
|
Manjarin R, Zamora V, Wu G, Steibel JP, Kirkwood RN, Taylor NP, Wils-Plotz E, Trifilo K, Trottier NL. Effect of amino acids supply in reduced crude protein diets on performance, efficiency of mammary uptake, and transporter gene expression in lactating sows. J Anim Sci 2012; 90:3088-100. [PMID: 22585816 DOI: 10.2527/jas.2011-4338] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
To test the hypothesis that reduction in dietary CP concentration coupled with crystalline AA inclusion increases the efficiency of AA use for milk production, mammary AA arteriovenous concentration differences (A-V), AA transport efficiency (A-V/A × 100), and transcript abundance of AA transporters and milk protein genes were determined in lactating sows fed 1 of 3 diets containing 9.5% (Deficient), 13.5% (Ideal), or 17.5% (Standard) CP, with a similar profile of indispensable and dispensable AA. On d 7 and 18, arterial and mammary venous blood and mammary tissue were sampled postfeeding. Transcript abundance of AA transporters b(0,+)AT (SLC7A9), y(+)LAT2 (SLC7A6), ATB(0,+) (SLC6A14), CAT-1 (SLC7A1), and CAT-2b (SLC7A2) and milk protein β-casein (CSN2) and LALBA (α-lactalbumin) were determined using reverse transcription quantitative PCR. Piglet ADG increased curvilinearly (linear and quadratic, P < 0.03) with increasing percent CP from Deficient to Standard. On d 7, Lys and Arg A-V and transport efficiency increased quadratically (P < 0.05) with increasing percent CP. On d 18, Lys A-V tended to increase (linear, P = 0.08) with increasing percent CP. Increasing CP increased Ile and Val A-V on d 7 (linear, P = 0.05 and P = 0.08, respectively) and Leu and Val on d 18 (linear, P = 0.07 and P = 0.04, respectively). On d 7, plasma concentrations of branched chain AA (BCAA):Lys decreased quadratically (P < 0.05). Expression of genes SLC7A9, SLC7A6, SLC6A14, SLC7A1, SLC7A2, CSN2, and LALBA was unaffected by diet. In conclusion, decreasing the dietary CP from 17.5% to 13.5% with inclusion of crystalline AA did not affect piglet ADG, AA transporter, or milk protein gene expression but increased mammary transport efficiency and A-V of Lys and Arg on d 7 of lactation. This increase was associated with a decrease in plasma concentration of BCAA:Lys, suggesting a competitive mechanism between cationic and BCAA for transport of AA across mammary cells.
Collapse
Affiliation(s)
- R Manjarin
- Department of Animal Science, Michigan State University, East Lansing 48824, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
553
|
Fanjul C, Barrenetxe J, Iñigo C, Sakar Y, Ducroc R, Barber A, Lostao MP. Leptin regulates sugar and amino acids transport in the human intestinal cell line Caco-2. Acta Physiol (Oxf) 2012; 205:82-91. [PMID: 22252010 DOI: 10.1111/j.1748-1716.2012.02412.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Revised: 10/04/2011] [Accepted: 01/09/2012] [Indexed: 01/09/2023]
Abstract
AIM Studies in rodents have shown that leptin controls sugars and glutamine entry in the enterocytes by regulating membrane transporters. Here, we have examined the effect of leptin on sugar and amino acids absorption in the human model of intestinal cells Caco-2 and investigated the transporters involved. METHODS Substrate uptake experiments were performed in Caco-2 cells, grown on plates, in the presence and the absence of leptin, and the expression of the different transporters in brush border membrane vesicles was analysed by Western blot. RESULTS Leptin inhibited 0.1 mm α-methyl-D-glucoside uptake after 5 or 30 min treatment and decreased SGLT1 protein abundance in the apical membrane. Uptake of 20 μm glutamine and 0.1 mm phenylalanine was also inhibited by leptin, indicating sensitivity to the hormone of the Na(+) -dependent neutral amino acid transporters ASCT2 and B(0) AT1. This inhibition was accompanied by a reduction in the transporters expression at the brush border membrane. Leptin also inhibited 1 mm proline and β-alanine uptake in Na(+) medium at pH 6, conditions for optimal activity of the H(+) -dependent neutral amino acid transporter PAT1. In this case, abundance of PAT1 in the brush border membrane after leptin treatment was not modified. Interestingly, leptin inhibitory effect on β-alanine uptake was reversed by the PKA inhibitor H-89 suggesting involvement of PKA pathway in leptin's regulation of PAT1 activity. CONCLUSION These data show in human intestinal cells that leptin can rapidly control the activity of physiologically relevant transporters for rich-energy molecules, that is, D-glucose (SGLT1) and amino acids (ASCT2, B(0) AT1 and PAT1).
Collapse
Affiliation(s)
- C. Fanjul
- Department of Nutrition, Food Science, Physiology and Toxicology; University of Navarra; Pamplona; Spain
| | - J. Barrenetxe
- Department of Nutrition, Food Science, Physiology and Toxicology; University of Navarra; Pamplona; Spain
| | - C. Iñigo
- Department of Biochemistry; Miguel Servet Hospital; Zaragoza; Spain
| | | | | | - A. Barber
- Department of Nutrition, Food Science, Physiology and Toxicology; University of Navarra; Pamplona; Spain
| | - M. P. Lostao
- Department of Nutrition, Food Science, Physiology and Toxicology; University of Navarra; Pamplona; Spain
| |
Collapse
|
554
|
Ladwig F, Stahl M, Ludewig U, Hirner AA, Hammes UZ, Stadler R, Harter K, Koch W. Siliques are Red1 from Arabidopsis acts as a bidirectional amino acid transporter that is crucial for the amino acid homeostasis of siliques. PLANT PHYSIOLOGY 2012; 158:1643-55. [PMID: 22312005 PMCID: PMC3320175 DOI: 10.1104/pp.111.192583] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Many membrane proteins are involved in the transport of nutrients in plants. While the import of amino acids into plant cells is, in principle, well understood, their export has been insufficiently described. Here, we present the identification and characterization of the membrane protein Siliques Are Red1 (SIAR1) from Arabidopsis (Arabidopsis thaliana) that is able to translocate amino acids bidirectionally into as well as out of the cell. Analyses in yeast and oocytes suggest a SIAR1-mediated export of amino acids. In Arabidopsis, SIAR1 localizes to the plasma membrane and is expressed in the vascular tissue, in the pericycle, in stamen, and in the chalazal seed coat of ovules and developing seeds. Mutant alleles of SIAR1 accumulate anthocyanins as a symptom of reduced amino acid content in the early stages of silique development. Our data demonstrate that the SIAR1-mediated export of amino acids plays an important role in organic nitrogen allocation and particularly in amino acid homeostasis in developing siliques.
Collapse
Affiliation(s)
- Friederike Ladwig
- Zentrum für Molekularbiologie der Pflanzen, Plant Physiology, D-72076 Tuebingen, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
555
|
Sterling KM, Okech BA, Xiang MA, Linser PJ, Price DA, Vanekeris L, Becnel JJ, Harvey WR. High affinity (3)H-phenylalanine uptake by brush border membrane vesicles from whole larvae of Aedes aegypti (AaBBMVw). JOURNAL OF INSECT PHYSIOLOGY 2012; 58:580-589. [PMID: 22251673 DOI: 10.1016/j.jinsphys.2012.01.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Revised: 12/27/2011] [Accepted: 01/03/2012] [Indexed: 05/31/2023]
Abstract
Brush border membrane vesicles from whole Aedes aegypti larvae (AaBBMVw) are confirmed to be valid preparations for membrane transport studies. The Abdul-Rauf and Ellar method was used to isolate AaBBMVw that were frozen, stored for several months, transported to a distant site, thawed and used to study Na(+)-coupled, (3)H-labeled, phenylalanine (Phe) uptake. The affinity for all components of the uptake was very high with half maximal values in the sub-micromolar range. By contrast a K(0.5)(Phe) of 0.2mM and a K(0.5)(Na) of 26 mM were calculated from Phe-induced electrical currents in Xenopus oocytes that were heterologously expressing the Anopheles gambiae symporter (co-transporter), AgNAT8, in a buffer with 98 mM Na(+). What accounts for the >1000-fold discrepancy in affinity for substrates between the BBMV and oocyte experiments? Is it because Ae. aegypti were used to isolate BBMVw whereas An. gambiae were used to transfect oocytes? More likely, it is because BBMVw were exposed to [Na(+)] in the micromolar range with the transporter(s) being surrounded by native lipids. By contrast, the oocyte measurements were made at [Na(+)] 100,000 times higher with AgNAT8 surrounded by foreign frog lipids. The results show that AaBBMVw are osmotically sealed; the time-course has a Na(+)-induced overshoot, the pH optimum is ∼7 and the K(0.5) values for Phe and Na(+) are very low. The transport is virtually unchanged when Na(+) is replaced by K(+) or Li(+) but decreased by Rb(+). This approach to resolving discrepancies between electrical data on solute transporters such as AgNAT8 that are over-expressed in oocytes and flux data on corresponding transporters that are highly expressed in native membrane vesicles, may serve as a model for similar studies that add membrane biochemistry to molecular biology in efforts to identify targets for the development of new methods to control disease-vector mosquitoes.
Collapse
Affiliation(s)
- Kenneth M Sterling
- Whitney Mosquito Biology Group, University of Florida, St. Augustine, FL 32080, USA
| | | | | | | | | | | | | | | |
Collapse
|
556
|
Nielsen CU, Carstensen M, Brodin B. Carrier-mediated γ-aminobutyric acid transport across the basolateral membrane of human intestinal Caco-2 cell monolayers. Eur J Pharm Biopharm 2012; 81:458-62. [PMID: 22452873 DOI: 10.1016/j.ejpb.2012.03.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Accepted: 03/12/2012] [Indexed: 10/28/2022]
Abstract
The aim of the present study was to investigate the transport of γ-aminobutyric acid (GABA) across the basolateral membrane of intestinal cells. The proton-coupled amino acid transporter, hPAT1, mediates the influx of GABA and GABA mimetic drug substances such as vigabatrin and gaboxadol and the anticancer prodrug δ-aminolevulinic acid across the apical membrane of small intestinal enterocytes. Little is however known about the basolateral transport of these substances. We investigated basolateral transport of GABA in mature Caco-2 cell monolayers using isotope studies. Here we report that, at least two transporters seem to be involved in the basolateral transport of GABA. The basolateral uptake consisted of a high-affinity system with a K(m) of 290 μM and V(max) of 75 pmol cm(-2) min(-1) and a low affinity system with a K(m) of approximately 64 mM and V(max) of 1.6 nmol cm(-2) min(-1). The high-affinity transporter is Na(+) and Cl(-) dependent. The substrate specificity of the high-affinity transporter was further studied and Gly-Sar, Leucine, gaboxadol, sarcosine, lysine, betaine, 5-hydroxythryptophan, proline and glycine reduced the GABA uptake to approximately 44-70% of the GABA uptake in the absence of inhibitor. Other substances such as β-alanine, GABA, 5-aminovaleric acid, taurine and δ-aminolevulinic acid reduced the basolateral GABA uptake to 6-25% of the uptake in the absence of inhibitor. Our results indicate that the distance between the charged amino- and acid-groups is particular important for inhibition of basolateral GABA uptake. Thus, there seems to be a partial substrate overlap between the basolateral GABA transporter and hPAT1, which may prove important for understanding drug interactions at the level of intestinal transport.
Collapse
Affiliation(s)
- Carsten Uhd Nielsen
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken, Copenhagen, Denmark.
| | | | | |
Collapse
|
557
|
Thwaites DT, Anderson CMH. The SLC36 family of proton-coupled amino acid transporters and their potential role in drug transport. Br J Pharmacol 2012; 164:1802-16. [PMID: 21501141 DOI: 10.1111/j.1476-5381.2011.01438.x] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Members of the solute carrier (SLC) 36 family are involved in transmembrane movement of amino acids and derivatives. SLC36 consists of four members. SLC36A1 and SLC36A2 both function as H(+) -coupled amino acid symporters. SLC36A1 is expressed at the luminal surface of the small intestine but is also commonly found in lysosomes in many cell types (including neurones), suggesting that it is a multipurpose carrier with distinct roles in different cells including absorption in the small intestine and as an efflux pathway following intralysosomal protein breakdown. SLC36A1 has a relatively low affinity (K(m) 1-10 mM) for its substrates, which include zwitterionic amino and imino acids, heterocyclic amino acids and amino acid-based drugs and derivatives used experimentally and/or clinically to treat epilepsy, schizophrenia, bacterial infections, hyperglycaemia and cancer. SLC36A2 is expressed at the apical surface of the human renal proximal tubule where it functions in the reabsorption of glycine, proline and hydroxyproline. SLC36A2 also transports amino acid derivatives but has a narrower substrate selectivity and higher affinity (K(m) 0.1-0.7 mM) than SLC36A1. Mutations in SLC36A2 lead to hyperglycinuria and iminoglycinuria. SLC36A3 is expressed only in testes and is an orphan transporter with no known function. SLC36A4 is widely distributed at the mRNA level and is a high-affinity (K(m) 2-3 µM) transporter for proline and tryptophan. We have much to learn about this family of transporters, but from current knowledge, it seems likely that their function will influence the pharmacokinetic profiles of amino acid-based drugs by mediating transport in both the small intestine and kidney.
Collapse
Affiliation(s)
- David T Thwaites
- Epithelial Research Group, Institute for Cell & Molecular Biosciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.
| | | |
Collapse
|
558
|
Woodward AD, Fan MZ, Geor RJ, McCutcheon LJ, Taylor NP, Trottier NL. Characterization of L-lysine transport across equine and porcine jejunal and colonic brush border membrane. J Anim Sci 2012; 90:853-62. [DOI: 10.2527/jas.2011-4210] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- A. D. Woodward
- Department of Animal Science, Michigan State University, East Lansing 48824
| | - M. Z. Fan
- Department of Animal and Poultry Science, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - R. J. Geor
- Department of Large Animal Clinical Science, Michigan State University, East Lansing 48824
| | - L. J. McCutcheon
- Department of Large Animal Clinical Science, Michigan State University, East Lansing 48824
| | - N. P. Taylor
- Department of Animal Science, Michigan State University, East Lansing 48824
| | - N. L. Trottier
- Department of Animal Science, Michigan State University, East Lansing 48824
| |
Collapse
|
559
|
Activated human CD4+ T cells express transporters for both cysteine and cystine. Sci Rep 2012; 2:266. [PMID: 22355778 PMCID: PMC3278673 DOI: 10.1038/srep00266] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Accepted: 01/16/2012] [Indexed: 12/22/2022] Open
Abstract
Because naïve T cells are unable to import cystine due to the absence of cystine transporters, it has been suggested that T cell activation is dependent on cysteine generated by antigen presenting cells. The aim of this study was to determine at which phases during T cell activation exogenous cystine/cysteine is required and how T cells meet this requirement. We found that early activation of T cells is independent of exogenous cystine/cysteine, whereas T cell proliferation is strictly dependent of uptake of exogenous cystine/cysteine. Naïve T cells express no or very low levels of both cystine and cysteine transporters. However, we found that these transporters become strongly up-regulated during T cell activation and provide activated T cells with the required amount of cystine/cysteine needed for T cell proliferation. Thus, T cells are equipped with mechanisms that allow T cell activation and proliferation independently of cysteine generated by antigen presenting cells.
Collapse
|
560
|
Zhou Y, Holmseth S, Hua R, Lehre AC, Olofsson AM, Poblete-Naredo I, Kempson SA, Danbolt NC. The betaine-GABA transporter (BGT1, slc6a12) is predominantly expressed in the liver and at lower levels in the kidneys and at the brain surface. Am J Physiol Renal Physiol 2012; 302:F316-28. [DOI: 10.1152/ajprenal.00464.2011] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The Na+- and Cl−-dependent GABA-betaine transporter (BGT1) has received attention mostly as a protector against osmolarity changes in the kidney and as a potential controller of the neurotransmitter GABA in the brain. Nevertheless, the cellular distribution of BGT1, and its physiological importance, is not fully understood. Here we have quantified mRNA levels using TaqMan real-time PCR, produced a number of BGT1 antibodies, and used these to study BGT1 distribution in mice. BGT1 (protein and mRNA) is predominantly expressed in the liver (sinusoidal hepatocyte plasma membranes) and not in the endothelium. BGT1 is also present in the renal medulla, where it localizes to the basolateral membranes of collecting ducts (particularly at the papilla tip) and the thick ascending limbs of Henle. There is some BGT1 in the leptomeninges, but brain parenchyma, brain blood vessels, ependymal cells, the renal cortex, and the intestine are virtually BGT1 deficient in 1- to 3-mo-old mice. Labeling specificity was assured by processing tissue from BGT1-deficient littermates in parallel as negative controls. Addition of 2.5% sodium chloride to the drinking water for 48 h induced a two- to threefold upregulation of BGT1, tonicity-responsive enhancer binding protein, and sodium- myo-inositol cotransporter 1 (slc5a3) in the renal medulla, but not in the brain and barely in the liver. BGT1-deficient and wild-type mice appeared to tolerate the salt treatment equally well, possibly because betaine is one of several osmolytes. In conclusion, this study suggests that BGT1 plays its main role in the liver, thereby complementing other betaine-transporting carrier proteins (e.g., slc6a20) that are predominantly expressed in the small intestine or kidney rather than the liver.
Collapse
Affiliation(s)
- Y. Zhou
- Department of Anatomy, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - S. Holmseth
- Department of Anatomy, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - R. Hua
- Department of Anatomy, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - A. C. Lehre
- Department of Anatomy, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - A. M. Olofsson
- Department of Anatomy, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - I. Poblete-Naredo
- Departamento de Genética y Biología Molecular, Centro de Investigación y de studios Avanzados del Instituto Politécnico Nacional, México City, Mexico; and
| | - S. A. Kempson
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana
| | - N. C. Danbolt
- Department of Anatomy, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
561
|
Nerveless and gutsy: intestinal nutrient sensing from invertebrates to humans. Semin Cell Dev Biol 2012; 23:614-20. [PMID: 22248674 PMCID: PMC3712190 DOI: 10.1016/j.semcdb.2012.01.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Revised: 12/27/2011] [Accepted: 01/04/2012] [Indexed: 12/22/2022]
Abstract
The increasingly recognized role of gastrointestinal signals in the regulation of food intake, insulin production and peripheral nutrient storage has prompted a surge of interest in studying how the gastrointestinal tract senses and responds to nutritional information. Identification of metabolically important intestinal nutrient sensors could provide potential new drug targets for the treatment of diabetes, obesity and gastrointestinal disorders. From a more fundamental perspective, the study of intestinal chemosensation is revealing novel, non-neuronal modes of communication involving differentiated epithelial cells. It is also identifying signalling mechanisms downstream of not only canonical receptors but also nutrient transporters, thereby supporting a chemosensory role for “transceptors” in the intestine. This review describes known and proposed mechanisms of intestinal carbohydrate, protein and lipid sensing, best characterized in mammalian systems. It also highlights the potential of invertebrate model systems such as C. elegans and Drosophila melanogaster by summarizing known examples of molecular evolutionary conservation. Recently developed genetic tools in Drosophila, an emerging model system for the study of physiology and metabolism, allow the temporal, spatial and high-throughput manipulation of putative intestinal sensors. Hence, fruit flies may prove particularly suited to the study of the link between intestinal nutrient sensing and metabolic homeostasis.
Collapse
|
562
|
Morales A, Barrera MA, Araiza AB, Zijlstra RT, Bernal H, Cervantes M. Effect of excess levels of lysine and leucine in wheat-based, amino acid-fortified diets on the mRNA expression of two selected cationic amino acid transporters in pigs. J Anim Physiol Anim Nutr (Berl) 2012; 97:263-70. [PMID: 22211733 DOI: 10.1111/j.1439-0396.2011.01266.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An experiment was conducted to evaluate the effect of excess levels of Leu and Lys on the expression of b(0,+) and CAT-1 mRNA in jejunum, liver and the muscles Longissimus dorsi (LDM) and Semitendinosus (STM). Twenty pigs with an average initial BW of 16.4 ± 1.7 kg were used in a Randomized Complete Block. Dietary treatments (T) were as follows: T1, basal diet; T2, basal plus 3.5 g l-Lys/kg diet; T3, basal plus 1.5 g l-Leu/kg diet; T4, basal plus 3.5 g l-Lys plus 1.5 g l-Leu/kg diet. Diets in T1 and T3 met 100% the requirement of Lys for pigs within the 10 to 20 kg body weight range; diets in T2 and T4 contained 35% excess of Lys. Also, diets in T1 and T2 supplied 104%, whereas diets in T3 and T4 supplied 116% the requirement of Leu. The expression of b(0,+) in jejunum was reduced (p = 0.002) because of the supplementation of l-Leu, but l-Lys supplementation had no effect (p = 0.738). In contrast, the expression of b(0,+) in STM (p = 0.012) and liver (p = 0.095) was reduced by the high level of Lys, but Leu had no effect (p > 0.100). CAT-1 expression in STM increased by high Lys (p = 0.023) and Leu (p = 0.007) levels. In liver, the expression of CAT-1 substantially increased (p = 0.001) because of Lys. In conclusion, excess levels of dietary Lys and Leu affect the expression of cationic amino acid transporters, and this effect varies depending on the studied tissue.
Collapse
Affiliation(s)
- A Morales
- Instituto de Ciencias Agrícolas, UABC, Mexicali, México
| | | | | | | | | | | |
Collapse
|
563
|
Oka S, Okudaira H, Yoshida Y, Schuster DM, Goodman MM, Shirakami Y. Transport mechanisms of trans-1-amino-3-fluoro[1-14C]cyclobutanecarboxylic acid in prostate cancer cells. Nucl Med Biol 2012; 39:109-19. [DOI: 10.1016/j.nucmedbio.2011.06.008] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Revised: 05/23/2011] [Accepted: 06/22/2011] [Indexed: 11/30/2022]
|
564
|
Brim RL, Noon KR, Collins GT, Stein A, Nichols J, Narasimhan D, Ko MC, Woods JH, Sunahara RK. The fate of bacterial cocaine esterase (CocE): an in vivo study of CocE-mediated cocaine hydrolysis, CocE pharmacokinetics, and CocE elimination. J Pharmacol Exp Ther 2012; 340:83-95. [PMID: 21990608 PMCID: PMC3251018 DOI: 10.1124/jpet.111.186049] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Accepted: 10/06/2011] [Indexed: 11/22/2022] Open
Abstract
Cocaine abuse and toxicity remain widespread problems in the United States. Currently cocaine toxicity is treated only symptomatically, because there is no Food and Drug Administration-approved pharmacotherapy for this indication. To address the unmet need, a stabilized mutant of bacterial cocaine esterase [T172R/G173Q-CocE (DM-CocE)], which hydrolyzes cocaine into inactive metabolites and has low immunogenic potential, has been developed and previously tested in animal models of cocaine toxicity. Here, we document the rapid cocaine hydrolysis by low doses of DM-CocE in vitro and in vivo, as well as the pharmacokinetics and distribution of the DM-CocE protein in rats. DM-CocE at 50.5 μg/kg effectively eliminated 4 mg/kg cocaine within 2 min in both male and female rats as measured by mass spectrometry. We expanded on these findings by using a pharmacologically relevant dose of DM-CocE (0.32 mg/kg) in rats and monkeys to hydrolyze convulsant doses of cocaine. DM-CocE reduced cocaine to below detection limits rapidly after injection; however, elimination of DM-CocE resulted in peripheral cocaine redistribution by 30 to 60 min. Elimination of DM-CocE was quantified by using [³⁵S] labeling of the enzyme and was found to have a half-life of 2.1 h in rats. Minor urinary output of DM-CocE was also observed. Immunohistochemistry, Western blotting, and radiography all were used to elucidate the mechanism of DM-CocE elimination, rapid proteolysis, and recycling of amino acids into all tissues. This rapid elimination of DM-CocE is a desirable property of a therapeutic for cocaine toxicity and should reduce the likelihood of immunogenic or adverse reactions as DM-CocE moves toward clinical use.
Collapse
Affiliation(s)
- Remy L Brim
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
565
|
Unwalla HJ, Horvath G, Roth FD, Conner GE, Salathe M. Albuterol modulates its own transepithelial flux via changes in paracellular permeability. Am J Respir Cell Mol Biol 2011; 46:551-8. [PMID: 22162907 DOI: 10.1165/rcmb.2011-0220oc] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Although inhaled bronchodilators are commonly used in the treatment of airway disease to dilate airway smooth muscle, little is known regarding the mechanisms that regulate albuterol movement across the epithelium to reach its target, the airway smooth muscle. Because the rate of onset depends on the transepithelial transport of albuterol, to determine the mechanisms that regulate the transepithelial movement of albuterol is essential. Human bronchial epithelial cells, fully redifferentiated in culture at the air-liquid interface, were used to study the cellular uptake and total transepithelial flux of (3)H-albuterol from the apical to the basolateral surfaces. (3)H-mannitol and transepithelial electrical resistance were used to quantify changes in paracellular permeability. The majority of albuterol flux across the epithelium occurred via the paracellular route. The cellular uptake of albuterol was found to be saturable, whereas transepithelial flux was not. Cellular uptake could be inhibited by the amino acids lysine and histidine, with no effect on net transepithelial flux. Transepithelial flux was altered by maneuvers that collapsed or disrupted intercellular junctions. Acidification, usually seen in exacerbations of airway disease, decreased albuterol flux. In addition, albuterol increased its own paracellular permeability. The ability of albuterol to modulate paracellular permeability was blocked by the β(2)-adrenergic receptor-selective antagonist ICI 118551. Albuterol mainly crosses the epithelium via the paracellular pathway, but has the ability to modulate its own permeability through changes in the leakiness of tight junctions, which is modulated through the signaling of the β(2)-adrenergic receptor.
Collapse
Affiliation(s)
- Hoshang J Unwalla
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of Miami and Miller School of Medicine, Florida, USA
| | | | | | | | | |
Collapse
|
566
|
Banerjee R. Redox outside the box: linking extracellular redox remodeling with intracellular redox metabolism. J Biol Chem 2011; 287:4397-402. [PMID: 22147695 DOI: 10.1074/jbc.r111.287995] [Citation(s) in RCA: 144] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Aerobic organisms generate reactive oxygen species as metabolic side products and must achieve a delicate balance between using them for signaling cellular functions and protecting against collateral damage. Small molecule (e.g. glutathione and cysteine)- and protein (e.g. thioredoxin)-based buffers regulate the ambient redox potentials in the various intracellular compartments, influence the status of redox-sensitive macromolecules, and protect against oxidative stress. Less well appreciated is the fact that the redox potential of the extracellular compartment is also carefully regulated and is dynamic. Changes in intracellular metabolism alter the redox poise in the extracellular compartment, and these are correlated with cellular processes such as proliferation, differentiation, and death. In this minireview, the mechanism of extracellular redox remodeling due to intracellular sulfur metabolism is discussed in the context of various cell-cell communication paradigms.
Collapse
Affiliation(s)
- Ruma Banerjee
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA.
| |
Collapse
|
567
|
Modeling of Cellular Arginine Uptake by More Than One Transporter. J Membr Biol 2011; 245:1-13. [DOI: 10.1007/s00232-011-9408-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Accepted: 11/06/2011] [Indexed: 11/26/2022]
|
568
|
l(2)01810 is a novel type of glutamate transporter that is responsible for megamitochondrial formation. Biochem J 2011; 439:277-86. [PMID: 21728998 DOI: 10.1042/bj20110582] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
l(2)01810 causes glutamine-dependent megamitochondrial formation when it is overexpressed in Drosophila cells. In the present study, we elucidated the function of l(2)01810 during megamitochondrial formation. The overexpression of l(2)01810 and the inhibition of glutamine synthesis showed that l(2)01810 is involved in the accumulation of glutamate. l(2)01810 was predicted to contain transmembrane domains and was found to be localized to the plasma membrane. By using (14)C-labelled glutamate, l(2)01810 was confirmed to uptake glutamate into Drosophila cells with high affinity (K(m)=69.4 μM). Also, l(2)01810 uptakes glutamate in a Na(+)-independent manner. Interestingly, however, this uptake was not inhibited by cystine, which is a competitive inhibitor of Na(+)-independent glutamate transporters, but by aspartate. A signal peptide consisting of 34 amino acid residues targeting to endoplasmic reticulum was predicted at the N-terminus of l(2)01810 and this signal peptide is essential for the protein's localization to the plasma membrane. In addition, l(2)01810 has a conserved functional domain of a vesicular-type glutamate transporter, and Arg(146) in this domain was found to play a key role in glutamate transport and megamitochondrial formation. These results indicate that l(2)01810 is a novel type of glutamate transporter and that glutamate uptake is a rate-limiting step for megamitochondrial formation.
Collapse
|
569
|
Aminoaciduria, but normal thyroid hormone levels and signalling, in mice lacking the amino acid and thyroid hormone transporter Slc7a8. Biochem J 2011; 439:249-55. [PMID: 21726201 DOI: 10.1042/bj20110759] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
LAT2 (system L amino acid transporter 2) is composed of the subunits Slc7a8/Lat2 and Slc3a2/4F2hc. This transporter is highly expressed along the basolateral membranes of absorptive epithelia in kidney and small intestine, but is also abundant in the brain. Lat2 is an energy-independent exchanger of neutral amino acids, and was shown to transport thyroid hormones. We report in the present paper that targeted inactivation of Slc7a8 leads to increased urinary loss of small neutral amino acids. Development and growth of Slc7a8(-/-) mice appears normal, suggesting functional compensation of neutral amino acid transport by alternative transporters in kidney, intestine and placenta. Movement co-ordination is slightly impaired in mutant mice, although cerebellar development and structure remained inconspicuous. Circulating thyroid hormones, thyrotropin and thyroid hormone-responsive genes remained unchanged in Slc7a8(-/-) mice, possibly because of functional compensation by the thyroid hormone transporter Mct8 (monocarboxylate transporter 8), which is co-expressed in many cell types. The reason for the mild neurological phenotype remains unresolved.
Collapse
|
570
|
Amat S, Czerkiewicz I, Benoist JF, Eurin D, Fontanges M, Muller F. Isolated hyperechoic fetal colon before 36 weeks' gestation reveals cystinuria. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2011; 38:543-547. [PMID: 22028043 DOI: 10.1002/uog.8917] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
OBJECTIVES To determine whether there is an association between the fetal ultrasound finding of hyperechoic colon and the gestational age at which it presents and cystinuria. METHODS A prospective national survey was performed in France including all observations of isolated fetal hyperechoic colon detected at routine second- and third-trimester ultrasound over a 2-year period. Collected images were reviewed by experts. Colon was defined as being hyperechoic when its echogenicity was at least equal to that of the iliac bone. It was diagnosed when large tubular echogenic portions of the colon, without a focal mass and without posterior acoustic shadows, were observed at the periphery of the abdomen. Urinary amino acid analysis was performed after birth in the cases identified to test for cystinuria. RESULTS Nineteen fetuses with ultrasound findings of hyperechoic colon were included, and the mothers of 16 of these agreed to participate in the study. In eight of nine cases of hyperechoic colon observed before 36 weeks' gestation cystinuria was confirmed at birth. In the seven remaining cases, observed after 36 weeks, none was found to have cystinuria and all had normal images at previous routine ultrasound scans at 22 and 33 weeks. When present, no difference in the sonographic appearance of hyperechoic colon was noted between the two groups. In the cystinuria-affected cases, the length of the hyperechoic mass appeared to increase with gestational age. CONCLUSIONS In our experience, the presence of a hyperechoic colon at routine ultrasound scan before 36 weeks' gestation should prompt screening for cystinuria at birth, while later observation (> 36 weeks) of this finding does not appear to be related to any disease.
Collapse
Affiliation(s)
- S Amat
- Diagnostic Prénatal, Hôpital Privé Jean Villar, Bordeaux, France
| | | | | | | | | | | |
Collapse
|
571
|
Zeng P, Li X, Wang X, Zhang D, Shu G, Luo Q. The relationship between gene expression of cationic and neutral amino acid transporters in the small intestine of chick embryos and chick breed, development, sex, and egg amino acid concentration. Poult Sci 2011; 90:2548-56. [DOI: 10.3382/ps.2011-01458] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
572
|
Nässl AM, Rubio-Aliaga I, Sailer M, Daniel H. The intestinal peptide transporter PEPT1 is involved in food intake regulation in mice fed a high-protein diet. PLoS One 2011; 6:e26407. [PMID: 22031831 PMCID: PMC3198773 DOI: 10.1371/journal.pone.0026407] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Accepted: 09/26/2011] [Indexed: 01/04/2023] Open
Abstract
High-protein diets are effective in achieving weight loss which is mainly explained by increased satiety and thermogenic effects. Recent studies suggest that the effects of protein-rich diets on satiety could be mediated by amino acids like leucine or arginine. Although high-protein diets require increased intestinal amino acid absorption, amino acid and peptide absorption has not yet been considered to contribute to satiety effects. We here demonstrate a novel finding that links intestinal peptide transport processes to food intake, but only when a protein-rich diet is provided. When mice lacking the intestinal peptide transporter PEPT1 were fed diets containing 8 or 21 energy% of protein, no differences in food intake and weight gain were observed. However, upon feeding a high-protein (45 energy%) diet, Pept1(-/-) mice reduced food intake much more pronounced than control animals. Although there was a regain in food consumption after a few days, no weight gain was observed which was associated with a reduced intestinal energy assimilation and increased fecal energy losses. Pept1(-/-) mice on high-protein diet displayed markedly reduced plasma leptin levels during the period of very low food intake, suggesting a failure of leptin signaling to increase energy intake. This together with an almost two-fold elevated plasma arginine level in Pept1(-/-) but not wildtype mice, suggests that a cross-talk of arginine with leptin signaling in brain, as described previously, could cause these striking effects on food intake.
Collapse
Affiliation(s)
- Anna-Maria Nässl
- ZIEL Research Center of Nutrition and Food Sciences, Abteilung Biochemie, Technische Universität München, Freising, Germany
| | - Isabel Rubio-Aliaga
- ZIEL Research Center of Nutrition and Food Sciences, Abteilung Biochemie, Technische Universität München, Freising, Germany
| | - Manuela Sailer
- ZIEL Research Center of Nutrition and Food Sciences, Abteilung Biochemie, Technische Universität München, Freising, Germany
| | - Hannelore Daniel
- ZIEL Research Center of Nutrition and Food Sciences, Abteilung Biochemie, Technische Universität München, Freising, Germany
- * E-mail:
| |
Collapse
|
573
|
Wang Q, Bailey CG, Ng C, Tiffen J, Thoeng A, Minhas V, Lehman ML, Hendy SC, Buchanan G, Nelson CC, Rasko JEJ, Holst J. Androgen receptor and nutrient signaling pathways coordinate the demand for increased amino acid transport during prostate cancer progression. Cancer Res 2011; 71:7525-36. [PMID: 22007000 DOI: 10.1158/0008-5472.can-11-1821] [Citation(s) in RCA: 134] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
L-Type amino acid transporters such as LAT1 and LAT3 mediate the uptake of essential amino acids. Here, we report that prostate cancer cells coordinate the expression of LAT1 and LAT3 to maintain sufficient levels of leucine needed for mTORC1 signaling and cell growth. Inhibiting LAT function was sufficient to decrease cell growth and mTORC1 signaling in prostate cancer cells. These cells maintained levels of amino acid influx through androgen receptor-mediated regulation of LAT3 expression and ATF4 regulation of LAT1 expression after amino acid deprivation. These responses remained intact in primary prostate cancer, as indicated by high levels of LAT3 in primary disease, and by increased levels of LAT1 after hormone ablation and in metastatic lesions. Taken together, our results show how prostate cancer cells respond to demands for increased essential amino acids by coordinately activating amino acid transporter pathways vital for tumor outgrowth.
Collapse
Affiliation(s)
- Qian Wang
- Origins of Cancer Laboratory, Centenary Institute, Newtown, NSW, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
574
|
Delgado-Andrade C, Tessier FJ, Niquet-Leridon C, Seiquer I, Pilar Navarro M. Study of the urinary and faecal excretion of Nε-carboxymethyllysine in young human volunteers. Amino Acids 2011; 43:595-602. [PMID: 21984382 DOI: 10.1007/s00726-011-1107-8] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Accepted: 09/24/2011] [Indexed: 01/12/2023]
Abstract
The dietary habits of the adolescent population with a high intake of snack and fast foods mean that they consume a high rate of which in turn leads to the development of different degenerative disorders. There are few studies available on MRP absorption and metabolism. We investigated the effects of a MRP-high and a MRP-low diet on carboxymethyllysine (CML) intake and excretion in 11-14 years adolescent males. In a 2-period crossover trial, 20 healthy subjects were randomly assigned to two groups. The first group consumed the MRP-low diet for 2 weeks, observed a 40-day washout period, and then consumed the MRP-high diet for 2 weeks. The second group received the diets in the reverse order. Subjects collected urine and faeces on the last 3 days of each dietary period. The consumption of the MRP-high diet led to a higher CML input (P < 0.05) (11.28 vs. 5.36 mg/day CML for MRP-high and -low diet, respectively). In parallel, the faecal excretion was also greater (P < 0.05) (3.52 vs. 1.23 mg/day CML, respectively) and proportional to the dietary intake. The urinary elimination of CML was not increased significantly when the MRP-high diet was consumed compared to consumption of the MRP-low diet, and was not proportional to the dietary exposure of CML. In conclusion it was shown that CML absorption and faecal excretion were highly influenced by dietary CML levels. Since the compound has long-term effects on health, an excessive intake deserves attention, especially in a population nutritionally at risk as adolescents.
Collapse
Affiliation(s)
- Cristina Delgado-Andrade
- Instituto en Formación de Nutrición Animal, Estación Experimental del Zaidín-CSIC, Camino del Jueves, 18100 Armilla, Granada, Spain.
| | | | | | | | | |
Collapse
|
575
|
Benner J, Daniel H, Spanier B. A glutathione peroxidase, intracellular peptidases and the TOR complexes regulate peptide transporter PEPT-1 in C. elegans. PLoS One 2011; 6:e25624. [PMID: 21980510 PMCID: PMC3182239 DOI: 10.1371/journal.pone.0025624] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Accepted: 09/08/2011] [Indexed: 11/18/2022] Open
Abstract
The intestinal peptide transporter PEPT-1 in Caenorhabditis elegans is a rheogenic H+-dependent carrier responsible for the absorption of di- and tripeptides. Transporter-deficient pept-1(lg601) worms are characterized by impairments in growth, development and reproduction and develop a severe obesity like phenotype. The transport function of PEPT-1 as well as the influx of free fatty acids was shown to be dependent on the membrane potential and on the intracellular pH homeostasis, both of which are regulated by the sodium-proton exchanger NHX-2. Since many membrane proteins commonly function as complexes, there could be proteins that possibly modulate PEPT-1 expression and function. A systematic RNAi screening of 162 genes that are exclusively expressed in the intestine combined with a functional transport assay revealed four genes with homologues existing in mammals as predicted PEPT-1 modulators. While silencing of a glutathione peroxidase surprisingly caused an increase in PEPT-1 transport function, silencing of the ER to Golgi cargo transport protein and of two cytosolic peptidases reduced PEPT-1 transport activity and this even corresponded with lower PEPT-1 protein levels. These modifications of PEPT-1 function by gene silencing of homologous genes were also found to be conserved in the human epithelial cell line Caco-2/TC7 cells. Peptidase inhibition, amino acid supplementation and RNAi silencing of targets of rapamycin (TOR) components in C. elegans supports evidence that intracellular peptide hydrolysis and amino acid concentration are a part of a sensing system that controls PEPT-1 expression and function and that involves the TOR complexes TORC1 and TORC2.
Collapse
Affiliation(s)
- Jacqueline Benner
- ZIEL Research Center of Nutrition and Food Sciences, Abteilung Biochemie, Technische Universität München, Freising, Germany
| | - Hannelore Daniel
- ZIEL Research Center of Nutrition and Food Sciences, Abteilung Biochemie, Technische Universität München, Freising, Germany
| | - Britta Spanier
- ZIEL Research Center of Nutrition and Food Sciences, Abteilung Biochemie, Technische Universität München, Freising, Germany
- * E-mail:
| |
Collapse
|
576
|
Wang XQ, Zeng PL, Feng Y, Zhang CM, Yang JP, Shu G, Jiang QY. Effects of dietary lysine levels on apparent nutrient digestibility and cationic amino acid transporter mRNA abundance in the small intestine of finishing pigs, Sus scrofa. Anim Sci J 2011; 83:148-55. [PMID: 22339696 DOI: 10.1111/j.1740-0929.2011.00941.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
One hundred and twenty pigs were used to evaluate the effects of different dietary lysine levels on the growth performance, apparent nutrient digestibility, and abundance of cationic amino acid transporter messenger RNA (mRNA) in the small intestine of finishing pigs. Pigs received a low lysine diet (LL, 0.60% lysine), moderate lysine diet (ML, 0.80% lysine) or a high lysine diet (HL, 1.00% lysine) for 28 days. A digestion test was carried out during the third week. Although the apparent nutrient digestibility in pigs fed experimental diets were different (P < 0.05) and the highest when pigs were fed ML diet, diets did not change the growth performance. In the duodenum, mRNA abundance of PepT-1, as detected by real-time RT-PCR, was reduced in the LL diet (P < 0.05). A greater abundance of b(0,+) AT and PepT-1 mRNA was associated with the ML diet (P < 0.05) in the jejunum and ileum, respectively. In the ileum, the HL diet had a lower abundance of CAT-1 mRNA compared with other diets. These results showed that the finishing pigs would gain better nutrient digestibility when the dietary lysine content was 0.80%, and dietary lysine levels influenced the expression of cationic amino acid transporter mRNA in the small intestine of finishing pigs.
Collapse
Affiliation(s)
- Xiu-Qi Wang
- Department of Animal Science, South China Agricultural University, Guangzhou, China.
| | | | | | | | | | | | | |
Collapse
|
577
|
Bröer A, Juelich T, Vanslambrouck JM, Tietze N, Solomon PS, Holst J, Bailey CG, Rasko JEJ, Bröer S. Impaired nutrient signaling and body weight control in a Na+ neutral amino acid cotransporter (Slc6a19)-deficient mouse. J Biol Chem 2011; 286:26638-51. [PMID: 21636576 PMCID: PMC3143628 DOI: 10.1074/jbc.m111.241323] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Revised: 06/01/2011] [Indexed: 01/11/2023] Open
Abstract
Amino acid uptake in the intestine and kidney is mediated by a variety of amino acid transporters. To understand the role of epithelial neutral amino acid uptake in whole body homeostasis, we analyzed mice lacking the apical broad-spectrum neutral (0) amino acid transporter B(0)AT1 (Slc6a19). A general neutral aminoaciduria was observed similar to human Hartnup disorder which is caused by mutations in SLC6A19. Na(+)-dependent uptake of neutral amino acids into the intestine and renal brush-border membrane vesicles was abolished. No compensatory increase of peptide transport or other neutral amino acid transporters was detected. Mice lacking B(0)AT1 showed a reduced body weight. When adapted to a standard 20% protein diet, B(0)AT1-deficient mice lost body weight rapidly on diets containing 6 or 40% protein. Secretion of insulin in response to food ingestion after fasting was blunted. In the intestine, amino acid signaling to the mammalian target of rapamycin (mTOR) pathway was reduced, whereas the GCN2/ATF4 stress response pathway was activated, indicating amino acid deprivation in epithelial cells. The results demonstrate that epithelial amino acid uptake is essential for optimal growth and body weight regulation.
Collapse
Affiliation(s)
- Angelika Bröer
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory 0200, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
578
|
Abu Hossain S, Chaudhry FA, Zahedi K, Siddiqui F, Amlal H. Cellular and molecular basis of increased ammoniagenesis in potassium deprivation. Am J Physiol Renal Physiol 2011; 301:F969-78. [PMID: 21795646 DOI: 10.1152/ajprenal.00010.2011] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Hypokalemia is associated with increased ammoniagenesis and stimulation of net acid excretion by the kidney in both humans and experimental animals. The molecular mechanisms underlying these effects remain unknown. Toward this end, rats were placed in metabolic cages and fed a control or K(+)-deficient diet (KD) for up to 6 days. Rats subjected to KD showed normal acid-base status and serum electrolytes composition. Interestingly, urinary NH(4)(+) excretion increased significantly and correlated with a parallel decrease in urine K(+) excretion in KD vs. control animals. Molecular studies showed a specific upregulation of the glutamine transporter SN1, which correlated with the upregulation of glutaminase (GA), glutamate dehydrogenase (GDH), and phosphoenolpyruvate carboxykinase. These effects occurred as early as day 2 of KD. Rats subjected to a combined KD and 280 mM NH(4)Cl loading (to induce metabolic acidosis) for 2 days showed an additive increase in NH(4)(+) excretion along with an additive increment in the expression levels of ammoniagenic enzymes GA and GDH compared with KD or NH(4)Cl loading alone. The incubation of cultured proximal tubule cells NRK 52E or LLC-PK(1) in low-K(+) medium did not affect NH(4)(+) production and did not alter the expression of SN1, GA, or GDH in NRK cells. These results demonstrate that K(+) deprivation stimulates ammoniagenesis through a coordinated upregulation of glutamine transporter SN1 and ammoniagenesis enzymes. This effect is developed before the onset of hypokalemia. The signaling pathway mediating these events is likely independent of KD-induced intracellular acidosis. Finally, the correlation between increased NH(4)(+) production and decreased K(+) excretion indicate that NH(4)(+) synthesis and transport likely play an important role in renal K(+) conservation during hypokalemia.
Collapse
Affiliation(s)
- Shaikh Abu Hossain
- Center on Genetics of Transport and Epithelial Biology and Department of Medicine, University of Cincinnati, Cincinnati, Ohio 45267-0585, USA
| | | | | | | | | |
Collapse
|
579
|
Dextran sulfate sodium inhibits alanine synthesis in Caco-2 cells. Int J Mol Sci 2011; 12:2325-35. [PMID: 21731444 PMCID: PMC3127120 DOI: 10.3390/ijms12042325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2011] [Revised: 03/12/2011] [Accepted: 03/28/2011] [Indexed: 01/17/2023] Open
Abstract
To understand and characterize the pathogenic mechanisms of inflammatory bowel disease, dextran sulfate sodium (DSS) has been used to induce acute and chronic colitis in animal models by causing intestinal epithelium damage. The mechanism of action of DSS in producing this outcome is not well understood. In an effort to understand how DSS might impact epithelial cell metabolism, we studied the intestinal epithelial cell line Caco-2 incubated with 1% DSS over 56 hours using (1)H NMR spectroscopy. We observed no difference in cell viability as compared to control cultures, and an approximately 1.5-fold increase in IL-6 production upon incubation with 1% DSS. The effect on Caco-2 cell metabolism as measured through changes in the concentration of metabolites in the cell supernatant included a three-fold decrease in the concentration of alanine. Given that the concentrations of other amino acids in the cell culture supernatant were not different between treated and control cultures over 56 hours suggest that DSS inhibits alanine synthesis, specifically alanine aminotransferase, without affecting other key metabolic pathways. The importance of alanine aminotransferase in inflammatory bowel disease is discussed.
Collapse
|
580
|
Nässl AM, Rubio-Aliaga I, Fenselau H, Marth MK, Kottra G, Daniel H. Amino acid absorption and homeostasis in mice lacking the intestinal peptide transporter PEPT1. Am J Physiol Gastrointest Liver Physiol 2011; 301:G128-37. [PMID: 21350187 DOI: 10.1152/ajpgi.00017.2011] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The intestinal peptide transporter PEPT1 mediates the uptake of di- and tripeptides derived from dietary protein breakdown into epithelial cells. Whereas the transporter appears to be essential to compensate for the reduced amino acid delivery in patients with mutations in amino acid transporter genes, such as in cystinuria or Hartnup disease, its physiological role in overall amino acid absorption is still not known. To assess the quantitative importance of PEPT1 in overall amino acid absorption and metabolism, PEPT1-deficient mice were studied by using brush border membrane vesicles, everted gut sacs, and Ussing chambers, as well as by transcriptome and proteome analysis of intestinal tissue samples. Neither gene expression nor proteome profiling nor functional analysis revealed evidence for any compensatory changes in the levels and/or function of transporters for free amino acids in the intestine. However, most plasma amino acid levels were increased in Pept1(-/-) compared with Pept1(+/+) animals, suggesting that amino acid handling is altered. Plasma appearance rates of (15)N-labeled amino acids determined after intragastric administration of a low dose of protein remained unchanged, whereas administration of a large protein load via gavage revealed marked differences in plasma appearance of selected amino acids. PEPT1 seems, therefore, important for overall amino acid absorption only after high dietary protein intake when amino acid transport processes are saturated and PEPT1 can provide additional absorption capacity. Since renal amino acid excretion remained unchanged, elevated basal concentrations of plasma amino acids in PEPT1-deficient animals seem to arise mainly from alterations in hepatic amino acid metabolism.
Collapse
Affiliation(s)
- Anna-Maria Nässl
- ZIEL Research Center of Nutrition and Food Sciences, Abteilung Biochemie, Technische Universität München, Freising, Germany
| | | | | | | | | | | |
Collapse
|
581
|
Manjarin R, Steibel J, Zamora V, Am-in N, Kirkwood R, Ernst C, Weber P, Taylor N, Trottier N. Transcript abundance of amino acid transporters, β-casein, and α-lactalbumin in mammary tissue of periparturient, lactating, and postweaned sows. J Dairy Sci 2011; 94:3467-76. [DOI: 10.3168/jds.2011-4163] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Accepted: 03/14/2011] [Indexed: 11/19/2022]
|
582
|
Corzo A, Loar IIRE, Kidd MT, Burgess SC. Dietary protein effects on growth performance, carcass traits and expression of selected jejunal peptide and amino acid transporters in broiler chickens. BRAZILIAN JOURNAL OF POULTRY SCIENCE 2011. [DOI: 10.1590/s1516-635x2011000200008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Affiliation(s)
- A Corzo
- Mississippi State University, USA
| | | | | | | |
Collapse
|
583
|
Pinto V, Amaral J, Silva E, Simão S, Cabral JM, Afonso J, Serrão MP, Gomes P, Pinho MJ, Soares-da-Silva P. Age-related changes in the renal dopaminergic system and expression of renal amino acid transporters in WKY and SHR rats. Mech Ageing Dev 2011; 132:298-304. [DOI: 10.1016/j.mad.2011.06.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Revised: 05/01/2011] [Accepted: 06/06/2011] [Indexed: 01/11/2023]
|
584
|
The B°AT1 amino acid transporter from rat kidney reconstituted in liposomes: kinetics and inactivation by methylmercury. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1808:2551-8. [PMID: 21621508 DOI: 10.1016/j.bbamem.2011.05.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Revised: 04/20/2011] [Accepted: 05/11/2011] [Indexed: 11/23/2022]
Abstract
The neutral amino acid transporter B°-like from rat kidney, previously reconstituted in liposomes, was identified as B°AT1 by a specific antibody. Collectrin was present in the brush-border extract but not in functionally active proteoliposomes, indicating that it was not required for the transport function. Neutral amino acids behaved as competitive inhibitors of the glutamine transport mediated by B°AT1 with half saturation constants ranging from 0.13 to 4.74mM. The intraliposomal half saturation constant for glutamine was 2.0mM. By a bisubstrate kinetic analysis of the glutamine-Na(+) cotransport, a random simultaneous mechanism was found. Methylmercury and HgCl(2) inhibited the transporter; the inhibition was reversed by dithioerythritol, Cys and, at a lower extent, N-acetylcysteine but not by S-carboxymethylcysteine. The IC(50) of the transporter for methylmercury and HgCl(2) was 1.88 and 1.75μM, respectively. The reagents behaved as non-competitive inhibitors toward both glutamine and Na(+) and no protection by glutamine or Na(+) was found for the two inhibitors.
Collapse
|
585
|
Sheen JH, Zoncu R, Kim D, Sabatini DM. Defective regulation of autophagy upon leucine deprivation reveals a targetable liability of human melanoma cells in vitro and in vivo. Cancer Cell 2011; 19:613-28. [PMID: 21575862 PMCID: PMC3115736 DOI: 10.1016/j.ccr.2011.03.012] [Citation(s) in RCA: 178] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Revised: 08/10/2010] [Accepted: 03/15/2011] [Indexed: 02/08/2023]
Abstract
Autophagy is of increasing interest as a target for cancer therapy. We find that leucine deprivation causes the caspase-dependent apoptotic death of melanoma cells because it fails to appropriately activate autophagy. Hyperactivation of the RAS-MEK pathway, which is common in melanoma, prevents leucine deprivation from inhibiting mTORC1, the main repressor of autophagy under nutrient-rich conditions. In an in vivo tumor xenograft model, the combination of a leucine-free diet and an autophagy inhibitor synergistically suppresses the growth of human melanoma tumors and triggers widespread apoptosis of the cancer cells. Together, our study represents proof of principle that anticancer effects can be obtained with a combination of autophagy inhibition and strategies to deprive tumors of leucine.
Collapse
Affiliation(s)
- Joon-Ho Sheen
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA
| | | | | | | |
Collapse
|
586
|
Abstract
Amino acids are essential building blocks of all mammalian cells. In addition to their role in protein synthesis, amino acids play an important role as energy fuels, precursors for a variety of metabolites and as signalling molecules. Disorders associated with the malfunction of amino acid transporters reflect the variety of roles that they fulfil in human physiology. Mutations of brain amino acid transporters affect neuronal excitability. Mutations of renal and intestinal amino acid transporters affect whole-body homoeostasis, resulting in malabsorption and renal problems. Amino acid transporters that are integral parts of metabolic pathways reduce the function of these pathways. Finally, amino acid uptake is essential for cell growth, thereby explaining their role in tumour progression. The present review summarizes the involvement of amino acid transporters in these roles as illustrated by diseases resulting from transporter malfunction.
Collapse
|
587
|
Hackett NR, Shaykhiev R, Walters MS, Wang R, Zwick RK, Ferris B, Witover B, Salit J, Crystal RG. The human airway epithelial basal cell transcriptome. PLoS One 2011; 6:e18378. [PMID: 21572528 PMCID: PMC3087716 DOI: 10.1371/journal.pone.0018378] [Citation(s) in RCA: 149] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Accepted: 03/05/2011] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND The human airway epithelium consists of 4 major cell types: ciliated, secretory, columnar and basal cells. During natural turnover and in response to injury, the airway basal cells function as stem/progenitor cells for the other airway cell types. The objective of this study is to better understand human airway epithelial basal cell biology by defining the gene expression signature of this cell population. METHODOLOGY/PRINCIPAL FINDINGS Bronchial brushing was used to obtain airway epithelium from healthy nonsmokers. Microarrays were used to assess the transcriptome of basal cells purified from the airway epithelium in comparison to the transcriptome of the differentiated airway epithelium. This analysis identified the "human airway basal cell signature" as 1,161 unique genes with >5-fold higher expression level in basal cells compared to differentiated epithelium. The basal cell signature was suppressed when the basal cells differentiated into a ciliated airway epithelium in vitro. The basal cell signature displayed overlap with genes expressed in basal-like cells from other human tissues and with that of murine airway basal cells. Consistent with self-modulation as well as signaling to other airway cell types, the human airway basal cell signature was characterized by genes encoding extracellular matrix components, growth factors and growth factor receptors, including genes related to the EGF and VEGF pathways. Interestingly, while the basal cell signature overlaps that of basal-like cells of other organs, the human airway basal cell signature has features not previously associated with this cell type, including a unique pattern of genes encoding extracellular matrix components, G protein-coupled receptors, neuroactive ligands and receptors, and ion channels. CONCLUSION/SIGNIFICANCE The human airway epithelial basal cell signature identified in the present study provides novel insights into the molecular phenotype and biology of the stem/progenitor cells of the human airway epithelium.
Collapse
Affiliation(s)
- Neil R. Hackett
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York, United States of America
| | - Renat Shaykhiev
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York, United States of America
| | - Matthew S. Walters
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York, United States of America
| | - Rui Wang
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York, United States of America
| | - Rachel K. Zwick
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York, United States of America
| | - Barbara Ferris
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York, United States of America
| | - Bradley Witover
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York, United States of America
| | - Jacqueline Salit
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York, United States of America
| | - Ronald G. Crystal
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York, United States of America
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Weill Cornell Medical College, New York, New York, United States of America
| |
Collapse
|
588
|
Okudaira H, Shikano N, Nishii R, Miyagi T, Yoshimoto M, Kobayashi M, Ohe K, Nakanishi T, Tamai I, Namiki M, Kawai K. Putative Transport Mechanism and Intracellular Fate of Trans-1-Amino-3-18F-Fluorocyclobutanecarboxylic Acid in Human Prostate Cancer. J Nucl Med 2011; 52:822-9. [DOI: 10.2967/jnumed.110.086074] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
589
|
Woodward A, Fan M, Steibel J, Goer R, Taylor N, Trottier N. Characterization of L-Lysine Transport across Equine Small Intestine and Large Colon Brush Border Membrane. J Equine Vet Sci 2011. [DOI: 10.1016/j.jevs.2011.03.070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
590
|
Nakatsukasa M, Sotozono C, Shimbo K, Ono N, Miyano H, Okano A, Hamuro J, Kinoshita S. Amino Acid profiles in human tear fluids analyzed by high-performance liquid chromatography and electrospray ionization tandem mass spectrometry. Am J Ophthalmol 2011; 151:799-808.e1. [PMID: 21310375 DOI: 10.1016/j.ajo.2010.11.003] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Revised: 10/29/2010] [Accepted: 11/01/2010] [Indexed: 11/29/2022]
Abstract
PURPOSE To identify the 23 amino acid profiles in human tear fluids, and to evaluate whether the ocular disease conditions reflect the amino acid profiles. DESIGN Laboratory investigation. METHODS We evaluated the concentrations and relative composition of 23 amino acids in tear fluids obtained from 31 healthy volunteers using reversed-phase high-performance liquid chromatography and electrospray ionization tandem mass spectrometry, and compared them with those in plasma and aqueous humor. We also evaluated the tear-fluid amino acid profiles from 33 affected subjects. RESULTS The amino acid profiles of the basal tear and reflex tear were found to be similar, and 4 distinct groups of healthy volunteers (male, female, young, and elderly) showed similar profiles. Absolute concentrations of taurine (Tau) and L-glutamine were significantly dominant in these tear fluids. The relative compositions of Tau, L-glutamic acid, L-arginine (Arg), and citrulline in the tear fluid were significantly higher than those in the plasma and aqueous humor. Analysis of the hierarchical clustering of the amino acid profiles clearly distinguished severe ocular surface diseases from non-ocular surface diseases. The relative compositions of Tau, L-methionine, and Arg decreased in severe ocular surface disease subjects compared with non-ocular surface disease subjects. CONCLUSIONS Tear-fluid amino acid profiles differ from those in plasma and aqueous humor. Steady-state tear-fluid amino acid profiles might reflect ocular-surface homeostasis and the observed changes of amino acids might have a close relation with the disease conditions on the ocular surface.
Collapse
Affiliation(s)
- Mina Nakatsukasa
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | | | | | | | | | | | | | | |
Collapse
|
591
|
Glover CN, Bucking C, Wood CM. Characterisation of l-alanine and glycine absorption across the gut of an ancient vertebrate. J Comp Physiol B 2011; 181:765-71. [DOI: 10.1007/s00360-011-0571-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2011] [Revised: 03/07/2011] [Accepted: 03/09/2011] [Indexed: 10/18/2022]
|
592
|
Nose S, Wasa M, Tazuke Y, Owari M, Fukuzawa M. Cisplatin upregulates glutamine transport in human intestinal epithelial cells: the protective mechanism of glutamine on intestinal mucosa after chemotherapy. JPEN J Parenter Enteral Nutr 2011; 34:530-7. [PMID: 20852181 DOI: 10.1177/0148607110362694] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Glutamine (GLN) prevents the intestinal mucosal injury induced by chemotherapy, although the mechanism of this protective action has not yet been elucidated. Amino acid transport across the plasma membrane is essential for supplying enterocytes with amino acids for cellular metabolism. It was hypothesized that chemotherapy stimulates GLN transport, which enables GLN to be used more efficiently as a metabolic fuel. METHODS A rat model was used to examine the effect of enteral GLN on intestinal mucosal injury induced by intraperitoneal injection of cisplatin (7.0 mg/kg of body weight). The effects of cisplatin on amino acid transport and the expression of messenger RNA and protein were evaluated by real-time polymerase chain reaction and Western blot analysis, respectively, in the human intestinal epithelial cell line Caco-2. The effects of cisplatin on glutaminase activity and intracellular glutathione were also studied. RESULTS GLN prevented mucosal atrophy induced by cisplatin in rats. In Caco-2 cells, cisplatin significantly increased GLN transport and the expression of GLN transporter ASCT2 messenger RNA and protein. Leucine, but not glutamate, transport significantly increased in the cisplatin-treated group due to the increase in LAT1 (leucine transporter) protein expression. Glutaminase activity and intracellular glutathione increased significantly in the cisplatin-treated group. CONCLUSIONS Bolus enteral GLN prevents intestinal mucosal injury induced by cisplatin in rats, as demonstrated by increased GLN transport and increased GLN transporter expression after cisplatin administration.
Collapse
Affiliation(s)
- Satoko Nose
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Osaka, Japan.
| | | | | | | | | |
Collapse
|
593
|
Sebastio G, Sperandeo MP, Andria G. Lysinuric protein intolerance: reviewing concepts on a multisystem disease. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2011; 157C:54-62. [PMID: 21308987 DOI: 10.1002/ajmg.c.30287] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Lysinuric protein intolerance (LPI) is an inherited aminoaciduria caused by defective cationic amino acid transport at the basolateral membrane of epithelial cells in intestine and kidney. LPI is caused by mutations in the SLC7A7 gene, which encodes the y(+)LAT-1 protein, the catalytic light chain subunit of a complex belonging to the heterodimeric amino acid transporter family. LPI was initially described in Finland, but has worldwide distribution. Typically, symptoms begin after weaning with refusal of feeding, vomiting, and consequent failure to thrive. Hepatosplenomegaly, hematological anomalies, neurological involvement, including hyperammonemic coma are recurrent clinical features. Two major complications, pulmonary alveolar proteinosis and renal disease are increasingly observed in LPI patients. There is extreme variability in the clinical presentation even within individual families, frequently leading to misdiagnosis or delayed diagnosis. This condition is diagnosed by urine amino acids, showing markedly elevated excretion of lysine and other dibasic amino acids despite low plasma levels of lysine, ornithine, and arginine. The biochemical diagnosis can be uncertain, requiring confirmation by DNA testing. So far, approximately 50 different mutations have been identified in the SLC7A7 gene in a group of 142 patients from 110 independent families. No genotype-phenotype correlation could be established. Therapy requires a low protein diet, low-dose citrulline supplementation, nitrogen-scavenging compounds to prevent hyperammonemia, lysine, and carnitine supplements. Supportive therapy is available for most complications with bronchoalveolar lavage being necessary for alveolar proteinosis.
Collapse
|
594
|
Yadgary L, Yair R, Uni Z. The chick embryo yolk sac membrane expresses nutrient transporter and digestive enzyme genes. Poult Sci 2011; 90:410-6. [DOI: 10.3382/ps.2010-01075] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
595
|
Sun J, Miller JM, Beig A, Rozen L, Amidon GL, Dahan A. Mechanistic enhancement of the intestinal absorption of drugs containing the polar guanidino functionality. Expert Opin Drug Metab Toxicol 2011; 7:313-23. [DOI: 10.1517/17425255.2011.550875] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
596
|
Černá M. Seaweed proteins and amino acids as nutraceuticals. ADVANCES IN FOOD AND NUTRITION RESEARCH 2011; 64:297-312. [PMID: 22054957 DOI: 10.1016/b978-0-12-387669-0.00024-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Seaweeds demonstrate original and interesting nutritional characteristics. Protein concentration ranges from 5% to 47% of dry basic. Its value depends particularly on species and the environmental conditions. Seaweed protein is a source of all amino acids, especially glycine, alanine, arginine, proline, glutamic, and aspartic acids. In algae, essential amino acids (EAAs) represent almost a half of total amino acids and their protein profile is close to the profile of egg protein. In case of non-EAAs, all three groups (green, brown, and red seaweeds) contain the similar amount. Red seaweed seems to be a good source of protein because its value reaches 47%. The issue of protein malnutrition supports the trend to find a new and cheap alternative source of protein. Algae could play an important role in the above-mentioned challenge because of relatively high content of nitrogen compounds. Algae may be used in the industry as a source of ingredients with high nutritional quality.
Collapse
Affiliation(s)
- Monika Černá
- Department of Food Technology and Microbiology, Faculty of Technology, Tomas Bata University in Zlín, Zlín, Czech Republic.
| |
Collapse
|
597
|
Stentebjerg-Andersen A, Notlevsen IV, Brodin B, Nielsen CU. Calu-3 cells grown under AIC and LCC conditions: implications for dipeptide uptake and transepithelial transport of substances. Eur J Pharm Biopharm 2010; 78:19-26. [PMID: 21195173 DOI: 10.1016/j.ejpb.2010.12.030] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Revised: 12/15/2010] [Accepted: 12/20/2010] [Indexed: 11/18/2022]
Abstract
The aim of the present study was to investigate whether Calu-3 cell culture conditions influence drug and nutrient transport known to occur via carriers or transporters. Calu-3 cell layers, an in vitro model of the lung epithelium, were cultured using air interfaced culture (AIC) or liquid covered culture (LCC) on either polycarbonate or polyester as filter support material. We found that the development of the Calu-3 cell layer barrier function did not depend on the filter material but rather on the culture conditions as follows: (i) the apical uptake of Gly-Sar was significantly larger for cells grown in AIC compared to LCC, (ii) the TEER values for cells grown in LCC were approximately three times larger than for cells grown in AIC, (iii) the transepithelial transport in both AIC and LCC Calu-3 cells was polarized in the apical-basolateral direction of proline, glycine, α-methyl-d-glucoside, glipizide, taurocholic acid and estrone-3-sulfate, whereas inulin, mannitol and Gly-Sar showed no polarized transport. Etoposide showed polarized efflux (basolateral to apical transport) in AIC and LCC Calu-3 layers. These findings provide information about nutrient and drug transport in Calu-3 cells, and this may have implications for selecting culture conditions for transport studies in this in vitro model of the lung epithelium.
Collapse
|
598
|
Bailey CG, Ryan RM, Thoeng AD, Ng C, King K, Vanslambrouck JM, Auray-Blais C, Vandenberg RJ, Bröer S, Rasko JEJ. Loss-of-function mutations in the glutamate transporter SLC1A1 cause human dicarboxylic aminoaciduria. J Clin Invest 2010; 121:446-53. [PMID: 21123949 DOI: 10.1172/jci44474] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Accepted: 10/20/2010] [Indexed: 11/17/2022] Open
Abstract
Solute carrier family 1, member 1 (SLC1A1; also known as EAAT3 and EAAC1) is the major epithelial transporter of glutamate and aspartate in the kidneys and intestines of rodents. Within the brain, SLC1A1 serves as the predominant neuronal glutamate transporter and buffers the synaptic release of the excitatory neurotransmitter glutamate within the interneuronal synaptic cleft. Recent studies have also revealed that polymorphisms in SLC1A1 are associated with obsessive-compulsive disorder (OCD) in early-onset patient cohorts. Here we report that SLC1A1 mutations leading to substitution of arginine to tryptophan at position 445 (R445W) and deletion of isoleucine at position 395 (I395del) cause human dicarboxylic aminoaciduria, an autosomal recessive disorder of urinary glutamate and aspartate transport that can be associated with mental retardation. These mutations of conserved residues impeded or abrogated glutamate and cysteine transport by SLC1A1 and led to near-absent surface expression in a canine kidney cell line. These findings provide evidence that SLC1A1 is the major renal transporter of glutamate and aspartate in humans and implicate SLC1A1 in the pathogenesis of some neurological disorders.
Collapse
Affiliation(s)
- Charles G Bailey
- Gene and Stem Cell Therapy Program, Centenary Institute, Camperdown, New South Wales, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
599
|
Hong SY, Borchert GL, Maciag AE, Nandurdikar RS, Saavedra JE, Keefer LK, Phang JM, Chakrapani H. The Nitric Oxide Prodrug V-PROLI/NO Inhibits Cellular Uptake of Proline. ACS Med Chem Lett 2010; 1:386-389. [PMID: 21212855 DOI: 10.1021/ml1000905] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
V-PYRRO/NO is a well studied nitric oxide (NO) prodrug which has been shown to protect human liver cells from arsenic, acetaminophen, and other toxic assaults in vivo. Its proline-based analogue, V-PROLI/NO, was designed to be a more biocompatible form that decomposes to the naturally occurring metabolites of proline, NO, and glycolaldehyde. Like V-PYRRO/NO, this cytochrome P450-activated prodrug was previously assumed to passively diffuse through the cellular membrane. Using (14)C-labeled proline in a competition assay, we show that V-PROLI/NO is transported through proline transporters into multiple cell lines. A fluorescent NO-sensitive dye (DAF-FM diacetate) and nitrite excretion indicated elevated intracellular NO release after metabolism over V-PYRRO/NO. These results also allowed us to predict and design a more permeable analogue, V-SARCO/NO. We report a proline transporter-based strategy for the selective transport of NO prodrugs that may have enhanced efficacy and aid in development of further NO prodrugs with increased permeability.
Collapse
Affiliation(s)
- Sam Y. Hong
- Chemistry Section, Laboratory of Comparative Carcinogenesis
| | | | | | | | | | | | | | - Harinath Chakrapani
- Department of Chemistry, Indian Institute of Science Education and Research, Pune 411 008, Maharashtra, India
| |
Collapse
|
600
|
Boudry G, David ES, Douard V, Monteiro IM, Le Huërou-Luron I, Ferraris RP. Role of intestinal transporters in neonatal nutrition: carbohydrates, proteins, lipids, minerals, and vitamins. J Pediatr Gastroenterol Nutr 2010; 51:380-401. [PMID: 20808244 DOI: 10.1097/mpg.0b013e3181eb5ad6] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
To support rapid growth and a high metabolic rate, infants require enormous amounts of nutrients. The small intestine must have the complete array of transporters that absorb the nutrients released from digested food. Failure of intestinal transporters to function properly often presents symptoms as "failure to thrive" because nutrients are not absorbed and as diarrhea because unabsorbed nutrients upset luminal osmolality or become substrates of intestinal bacteria. We enumerate the nutrients that constitute human milk and various infant milk formulas, explain their importance in neonatal nutrition, then describe for each nutrient the transporter(s) that absorbs it from the intestinal lumen into the enterocyte cytosol and from the cytosol to the portal blood. More than 100 membrane and cytosolic transporters are now thought to facilitate absorption of minerals and vitamins as well as products of digestion of the macronutrients carbohydrates, proteins, and lipids. We highlight research areas that should yield information needed to better understand the important role of these transporters during normal development.
Collapse
Affiliation(s)
- Gaëlle Boudry
- Institut National de Recherche Agronomique, UMR1079 Système d'Elevage, Nutrition, Animale et Humaine, St-Gilles, France
| | | | | | | | | | | |
Collapse
|