551
|
Dong T, Wang M, Liu J, Ma P, Pang S, Liu W, Liu A. Diagnostics and analysis of SARS-CoV-2: current status, recent advances, challenges and perspectives. Chem Sci 2023; 14:6149-6206. [PMID: 37325147 PMCID: PMC10266450 DOI: 10.1039/d2sc06665c] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 05/03/2023] [Indexed: 06/17/2023] Open
Abstract
The disastrous spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has induced severe public healthcare issues and weakened the global economy significantly. Although SARS-CoV-2 infection is not as fatal as the initial outbreak, many infected victims suffer from long COVID. Therefore, rapid and large-scale testing is critical in managing patients and alleviating its transmission. Herein, we review the recent advances in techniques to detect SARS-CoV-2. The sensing principles are detailed together with their application domains and analytical performances. In addition, the advantages and limits of each method are discussed and analyzed. Besides molecular diagnostics and antigen and antibody tests, we also review neutralizing antibodies and emerging SARS-CoV-2 variants. Further, the characteristics of the mutational locations in the different variants with epidemiological features are summarized. Finally, the challenges and possible strategies are prospected to develop new assays to meet different diagnostic needs. Thus, this comprehensive and systematic review of SARS-CoV-2 detection technologies may provide insightful guidance and direction for developing tools for the diagnosis and analysis of SARS-CoV-2 to support public healthcare and effective long-term pandemic management and control.
Collapse
Affiliation(s)
- Tao Dong
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University 308 Ningxia Road Qingdao 266071 China
- School of Pharmacy, Medical College, Qingdao University 308 Ningxia Road Qingdao 266071 China
| | - Mingyang Wang
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University 308 Ningxia Road Qingdao 266071 China
| | - Junchong Liu
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University 308 Ningxia Road Qingdao 266071 China
| | - Pengxin Ma
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University 308 Ningxia Road Qingdao 266071 China
| | - Shuang Pang
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University 308 Ningxia Road Qingdao 266071 China
| | - Wanjian Liu
- Qingdao Hightop Biotech Co., Ltd 369 Hedong Road, Hi-tech Industrial Development Zone Qingdao 266112 China
| | - Aihua Liu
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University 308 Ningxia Road Qingdao 266071 China
| |
Collapse
|
552
|
Menting S, Erhart A, Schallig HDFH. Laboratory Evaluation of a SARS-CoV-2 RT-LAMP Test. Trop Med Infect Dis 2023; 8:320. [PMID: 37368738 DOI: 10.3390/tropicalmed8060320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/30/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
There is a need to have more accessible molecular diagnostic tests for the diagnosis of severe acute respiratory syndrome coronavirus 2 disease in low- and middle-income countries. Reverse transcription loop-mediated isothermal amplification (RT-LAMP) may provide an attractive option as this technology does not require a complex infrastructure. In this study, the diagnostic performance of a SARS-CoV-2 RT-LAMP was evaluated using RT-PCR-confirmed clinical specimens of COVID-19-positive (n = 55) and -negative patients (n = 55) from the Netherlands. The observed sensitivity of the RT-LAMP test was 97.2% (95% CI: 82.4-98.0%) and the specificity was 100% (95% CI: 93.5-100%). The positive predictive value of the RT-LAMP was 100%, the negative predictive value 93.2% (95% CI: 84.3-97.3%), and the diagnostic accuracy was 96.4% (95% CI: 91.0-99.0%). The agreement between the RT-LAMP and the RT-PCR was "almost perfect" (κ-value: 0.92). The evaluated RT-LAMP might provide an attractive alternative molecular diagnostic tool for SARS-CoV-2 in resource limited settings.
Collapse
Affiliation(s)
- Sandra Menting
- Amsterdam University Medical Centres, Academic Medical Centre at the University of Amsterdam, Laboratory for Experimental Parasitology, Department of Clinical Microbiology and Infection Prevention, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Annette Erhart
- MRC Unit The Gambia at the LSHTM, Atlantic Boulevard, Fajara, Banjul P.O. Box 273, The Gambia
| | - Henk D F H Schallig
- Amsterdam University Medical Centres, Academic Medical Centre at the University of Amsterdam, Laboratory for Experimental Parasitology, Department of Clinical Microbiology and Infection Prevention, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
553
|
Ghazizadeh H, Shakour N, Ghoflchi S, Mansoori A, Saberi-Karimiam M, Rashidmayvan M, Ferns G, Esmaily H, Ghayour-Mobarhan M. Use of data mining approaches to explore the association between type 2 diabetes mellitus with SARS-CoV-2. BMC Pulm Med 2023; 23:203. [PMID: 37308948 PMCID: PMC10258488 DOI: 10.1186/s12890-023-02495-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 05/25/2023] [Indexed: 06/14/2023] Open
Abstract
BACKGROUND AND OBJECTIVE Corona virus causes respiratory tract infections in mammals. The latest type of Severe Acute Respiratory Syndrome Corona-viruses 2 (SARS-CoV-2), Corona virus spread in humans in December 2019 in Wuhan, China. The purpose of this study was to investigate the relationship between type 2 diabetes mellitus (T2DM), and their biochemical and hematological factors with the level of infection with COVID-19 to improve the treatment and management of the disease. MATERIAL AND METHOD This study was conducted on a population of 13,170 including 5780 subjects with SARS-COV-2 and 7390 subjects without SARS-COV-2, in the age range of 35-65 years. Also, the associations between biochemical factors, hematological factors, physical activity level (PAL), age, sex, and smoking status were investigated with the COVID-19 infection. RESULT Data mining techniques such as logistic regression (LR) and decision tree (DT) algorithms were used to analyze the data. The results using the LR model showed that in biochemical factors (Model I) creatine phosphokinase (CPK) (OR: 1.006 CI 95% (1.006,1.007)), blood urea nitrogen (BUN) (OR: 1.039 CI 95% (1.033, 1.047)) and in hematological factors (Model II) mean platelet volume (MVP) (OR: 1.546 CI 95% (1.470, 1.628)) were significant factors associated with COVID-19 infection. Using the DT model, CPK, BUN, and MPV were the most important variables. Also, after adjustment for confounding factors, subjects with T2DM had higher risk for COVID-19 infection. CONCLUSION There was a significant association between CPK, BUN, MPV and T2DM with COVID-19 infection and T2DM appears to be important in the development of COVID-19 infection.
Collapse
Affiliation(s)
- Hamideh Ghazizadeh
- The Hospital for Sick Children, CALIPER Program, Division of Clinical Biochemistry, Pediatric Laboratory Medicine, Toronto, ON, Canada
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Neda Shakour
- Department of Medical Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sahar Ghoflchi
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amin Mansoori
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Biostatistics, School of Health, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Maryam Saberi-Karimiam
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Rashidmayvan
- Department of Nutrition, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Nutrition, Food Sciences and Clinical Biochemistry, School of Medicine, Social Determinants of Health Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Gordon Ferns
- Division of Medical Education, Brighton and Sussex Medical School, Brighton, UK
| | - Habibollah Esmaily
- Department of Biostatistics, School of Health, Mashhad University of Medical Sciences, Mashhad, Iran
- Social Determinants of Health Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Ghayour-Mobarhan
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Nutrition, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
554
|
Cimmino C, Rodrigues Capítulo L, Lerman A, Silva A, Von Haften G, Comino AP, Cigoy L, Scagliola M, Poncet V, Caló G, Uez O, Berón CM. Presence of SARS-CoV-2 in urban effluents in south-east Buenos Aires, Argentina, May 2020 to March 2022. Rev Panam Salud Publica 2023; 47:e94. [PMID: 37324201 PMCID: PMC10261580 DOI: 10.26633/rpsp.2023.94] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/14/2023] [Indexed: 06/17/2023] Open
Abstract
Objectives To implement and evaluate the use of wastewater sampling for detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in two coastal districts of Buenos Aires Province, Argentina. Methods In General Pueyrredon district, 400 mL of wastewater samples were taken with an automatic sampler for 24 hours, while in Pinamar district, 20 L in total (2.2 L at 20-minute intervals) were taken. Samples were collected once a week. The samples were concentrated based on flocculation using polyaluminum chloride. RNA purification and target gene amplification and detection were performed using reverse transcription polymerase chain reaction for clinical diagnosis of human nasopharyngeal swabs. Results In both districts, the presence of SARS-CoV-2 was detected in wastewater. In General Pueyrredon, SARS-CoV-2 was detected in epidemiological week 28, 2020, which was 20 days before the start of an increase in coronavirus virus disease 2019 (COVID-19) cases in the first wave (epidemiological week 31) and 9 weeks before the maximum number of laboratory-confirmed COVID-19 cases was recorded. In Pinamar district, the virus genome was detected in epidemiological week 51, 2020 but it was not possible to carry out the sampling again until epidemiological week 4, 2022, when viral circulation was again detected. Conclusions It was possible to detect SARS-CoV-2 virus genome in wastewater, demonstrating the usefulness of the application of wastewater epidemiology for long-term SARS-CoV-2 detection and monitoring.
Collapse
Affiliation(s)
- Carlos Cimmino
- Instituto Nacional de Epidemiología “Dr. Juan H. Jara”Mar del PlataArgentinaInstituto Nacional de Epidemiología “Dr. Juan H. Jara”, Mar del Plata, Argentina.
| | - Leandro Rodrigues Capítulo
- Centro de Estudios Integrales de la Dinámica ExógenaUniversidad Nacional de La PlataLa PlataArgentinaCentro de Estudios Integrales de la Dinámica Exógena, Universidad Nacional de La Plata, La Plata, Argentina.
| | - Andrea Lerman
- Instituto Nacional de Epidemiología “Dr. Juan H. Jara”Mar del PlataArgentinaInstituto Nacional de Epidemiología “Dr. Juan H. Jara”, Mar del Plata, Argentina.
| | - Andrea Silva
- Instituto Nacional de Epidemiología “Dr. Juan H. Jara”Mar del PlataArgentinaInstituto Nacional de Epidemiología “Dr. Juan H. Jara”, Mar del Plata, Argentina.
| | - Gabriela Von Haften
- Obras Sanitarias Sociedad de EstadoMar del PlataArgentinaObras Sanitarias Sociedad de Estado, Mar del Plata, Argentina.
| | - Ana P. Comino
- Obras Sanitarias Sociedad de EstadoMar del PlataArgentinaObras Sanitarias Sociedad de Estado, Mar del Plata, Argentina.
| | - Luciana Cigoy
- Obras Sanitarias Sociedad de EstadoMar del PlataArgentinaObras Sanitarias Sociedad de Estado, Mar del Plata, Argentina.
| | - Marcelo Scagliola
- Obras Sanitarias Sociedad de EstadoMar del PlataArgentinaObras Sanitarias Sociedad de Estado, Mar del Plata, Argentina.
| | - Verónica Poncet
- Instituto Nacional de Epidemiología “Dr. Juan H. Jara”Mar del PlataArgentinaInstituto Nacional de Epidemiología “Dr. Juan H. Jara”, Mar del Plata, Argentina.
| | - Gonzalo Caló
- Instituto de Investigaciones en Biodiversidad y Biotecnología and FIBAMar del PlataArgentinaInstituto de Investigaciones en Biodiversidad y Biotecnología and FIBA, Mar del Plata, Argentina.
| | - Osvaldo Uez
- Instituto Nacional de Epidemiología “Dr. Juan H. Jara”Mar del PlataArgentinaInstituto Nacional de Epidemiología “Dr. Juan H. Jara”, Mar del Plata, Argentina.
| | - Corina M. Berón
- Instituto de Investigaciones en Biodiversidad y Biotecnología and FIBAMar del PlataArgentinaInstituto de Investigaciones en Biodiversidad y Biotecnología and FIBA, Mar del Plata, Argentina.
| |
Collapse
|
555
|
Bolourinezhad M, Rezayi M, Meshkat Z, Soleimanpour S, Mojarrad M, Zibadi F, Aghaee-Bakhtiari SH, Taghdisi SM. Design of a rapid electrochemical biosensor based on MXene/Pt/C nanocomposite and DNA/RNA hybridization for the detection of COVID-19. Talanta 2023; 265:124804. [PMID: 37329753 PMCID: PMC10259158 DOI: 10.1016/j.talanta.2023.124804] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/29/2023] [Accepted: 06/09/2023] [Indexed: 06/19/2023]
Abstract
Since the rapid spread of the SARS-CoV-2 (2019), the need for early diagnostic techniques to control this pandemic has been highlighted. Diagnostic methods based on virus replication, such as RT-PCR, are exceedingly time-consuming and expensive. As a result, a rapid and accurate electrochemical test which is both available and cost-effective was designed in this study. MXene nanosheets (Ti3C2Tx) and carbon platinum (Pt/C) were employed to amplify the signal of this biosensor upon hybridization reaction of the DNA probe and the virus's specific oligonucleotide target in the RdRp gene region. By the differential pulse voltammetry (DPV) technique, the calibration curve was obtained for the target with varying concentrations ranging from 1 aM to 100 nM. Due to the increase in the concentration of the oligonucleotide target, the signal of DPV increased with a positive slope and a correlation coefficient of 0.9977. Therefore, at least a limit of detection (LOD) was obtained 0.4 aM. Furthermore, the specificity and sensitivity of the sensors were evaluated with 192 clinical samples with positive and negative RT-PCR tests, which revealed 100% accuracy and sensitivity, 97.87% specificity and limit of quantification (LOQ) of 60 copies/mL. Besides, various matrices such as saliva, nasopharyngeal swabs, and serum were assessed for detecting SARS-CoV-2 infection by the developed biosensor, indicating that this biosensor has the potential to be used for rapid Covid-19 test detection.
Collapse
Affiliation(s)
- Monireh Bolourinezhad
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Rezayi
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Meshkat
- Antimicrobial Resistance Research Center, Department of Medical Bacteriology and Virology, Qaem University Hospital, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saman Soleimanpour
- Antimicrobial Resistance Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Mojarrad
- Department of Genetics, School of Medicine Medical Genetics Research Center Basic Sciences Research Institute Mashhad University of Medical Sciences, Iran
| | - Farkhonde Zibadi
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Hamid Aghaee-Bakhtiari
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Bioinformatics Research Group, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
556
|
Gonzalez-Hernandez M, Kaiser FK, Steffen I, Ciurkiewicz M, van Amerongen G, Tchelet R, Emalfarb M, Saloheimo M, Wiebe MG, Vitikainen M, Albulescu IC, Bosch BJ, Baumgärtner W, Haagmans BL, Osterhaus ADME. Preclinical immunogenicity and protective efficacy of a SARS-CoV-2 RBD-based vaccine produced with the thermophilic filamentous fungal expression system Thermothelomyces heterothallica C1. Front Immunol 2023; 14:1204834. [PMID: 37359531 PMCID: PMC10289020 DOI: 10.3389/fimmu.2023.1204834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 05/22/2023] [Indexed: 06/28/2023] Open
Abstract
Introduction The emergency use of vaccines has been the most efficient way to control the coronavirus disease 19 (COVID-19) pandemic. However, the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern has reduced the efficacy of currently used vaccines. The receptor-binding domain (RBD) of the SARS-CoV-2 spike (S) protein is the main target for virus neutralizing (VN) antibodies. Methods A SARS-CoV-2 RBD vaccine candidate was produced in the Thermothelomyces heterothallica (formerly, Myceliophthora thermophila) C1 protein expression system and coupled to a nanoparticle. Immunogenicity and efficacy of this vaccine candidate was tested using the Syrian golden hamster (Mesocricetus auratus) infection model. Results One dose of 10-μg RBD vaccine based on SARS-CoV-2 Wuhan strain, coupled to a nanoparticle in combination with aluminum hydroxide as adjuvant, efficiently induced VN antibodies and reduced viral load and lung damage upon SARS-CoV-2 challenge infection. The VN antibodies neutralized SARS-CoV-2 variants of concern: D614G, Alpha, Beta, Gamma, and Delta. Discussion Our results support the use of the Thermothelomyces heterothallica C1 protein expression system to produce recombinant vaccines against SARS-CoV-2 and other virus infections to help overcome limitations associated with the use of mammalian expression system.
Collapse
Affiliation(s)
- Mariana Gonzalez-Hernandez
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Franziska Karola Kaiser
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Imke Steffen
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
- Institute for Biochemistry, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Malgorzata Ciurkiewicz
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | | | - Ronen Tchelet
- Dyadic International, Inc., Jupiter, FL, United States
| | - Mark Emalfarb
- Dyadic International, Inc., Jupiter, FL, United States
| | | | | | | | - Irina C. Albulescu
- Virology Section, Infectious Diseases and Immunology Division, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Berend-Jan Bosch
- Virology Section, Infectious Diseases and Immunology Division, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Bart L. Haagmans
- Department of Viroscience, Erasmus Medical Center, Rotterdam, Netherlands
| | - Albert D. M. E. Osterhaus
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| |
Collapse
|
557
|
Abdulrashid I, Friji H, Topuz K, Ghazzai H, Delen D, Massoud Y. An analytical approach to evaluate the impact of age demographics in a pandemic. STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT : RESEARCH JOURNAL 2023; 37:1-15. [PMID: 37362847 PMCID: PMC10248992 DOI: 10.1007/s00477-023-02477-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 05/13/2023] [Indexed: 06/28/2023]
Abstract
The time required to identify and confirm risk factors for new diseases and to design an appropriate treatment strategy is one of the most significant obstacles medical professionals face. Traditionally, this approach entails several clinical studies that may last several years, during which time strict preventative measures must be in place to contain the epidemic and limit the number of fatalities. Analytical tools may be used to direct and accelerate this process. This study introduces a six-state compartmental model to explain and assess the impact of age demographics by designing a dynamic, explainable analytics model of the SARS-CoV-2 coronavirus. An age-stratified mathematical model taking the form of a deterministic system of ordinary differential equations divides the population into different age groups to better understand and assess the impact of age on mortality. It also provides a more accurate and effective interpretation of the disease evolution, specifically in terms of the cumulative numbers of infected cases and deaths. The proposed Kermack-Mckendrick model is incorporated into a non-linear least-squares optimization curve-fitting problem whose optimized parameters are numerically obtained using the Levenberg-Marquard algorithm. The curve-fitting model's efficiency is proved by testing the age-stratified model's performance on three U.S. states: Connecticut, North Dakota, and South Dakota. Our results confirm that splitting the population into different age groups leads to better fitting and forecasting results overall as compared to those achieved by the traditional method, i.e., without age groups. By using comprehensive models that account for age, gender, and ethnicity, regional public health authorities may be able to avoid future epidemics from inflicting more fatalities and establish a public health policy that reduces the burden on the elderly population.
Collapse
Affiliation(s)
- Ismail Abdulrashid
- School of Finance and Operations Management, The University of Tulsa, 800 South Tucker Drive, Tulsa, OK 74104 USA
| | - Hamdi Friji
- School of Systems and Enterprises, Stevens Institute of Technology, Hoboken, NJ 07030 USA
| | - Kazim Topuz
- School of Finance and Operations Management, The University of Tulsa, 800 South Tucker Drive, Tulsa, OK 74104 USA
| | - Hakim Ghazzai
- Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, King Abdullah University of Science and Technology (KAUST), 23955-6900 Thuwal, Saudi Arabia
| | - Dursun Delen
- Department of Management Science and Information Systems, Oklahoma State University, Tulsa, OK 74106 USA
- Faculty of Engineering and Natural Sciences, Department of Industrial Engineering, Istinye University, Istanbul, Turkey
| | - Yehia Massoud
- Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, King Abdullah University of Science and Technology (KAUST), 23955-6900 Thuwal, Saudi Arabia
| |
Collapse
|
558
|
Zhang X, Qian C, Yang L, Gao H, Jiang P, Dai M, Wang Y, Kang H, Xu Y, Hu Q, Feng F, Cheng B, Dai E. Diagnostic value and characteristic analysis of serum nucleocapsid antigen in COVID-19 patients. PeerJ 2023; 11:e15515. [PMID: 37304882 PMCID: PMC10257392 DOI: 10.7717/peerj.15515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/15/2023] [Indexed: 06/13/2023] Open
Abstract
Background To date, several types of laboratory tests for coronavirus disease 2019 (COVID-19) diagnosis have been developed. However, the clinical importance of serum severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) nucleocapsid antigen (N-Ag) remains to be fully elucidated. In this study, we sought to investigate the value of serum SARS-CoV-2 N-Ag for COVID-19 diagnosis and to analyze N-Ag characteristics in COVID-19 individuals. Methods Serum samples collected from 215 COVID-19 patients and 65 non-COVID-19 individuals were used to quantitatively detect N-Ag via chemiluminescent immunoassay according to the manufacturer's instructions. Results The sensitivity and specificity of the N-Ag assay were 64.75% (95% confidence interval (95% CI) [55.94-72.66%]) and 100% (95% CI [93.05-100.00%]), respectively, according to the cut-off value recommended by the manufacturer. The receiver operating characteristic (ROC) curve showed a sensitivity of 100.00% (95% CI [94.42-100.00%]) and a specificity of 71.31% (95% CI [62.73-78.59%]). The positive rates and levels of serum SARS-CoV-2 N-Ag were not related to sex, comorbidity status or disease severity of COVID-19 (all P < 0.001). Compared with RT‒PCR, there was a lower positive rate of serum N-Ag for acute COVID-19 patients (P < 0.001). The positive rate and levels of serum SARS-CoV-2 N-Ag in acute patients were significantly higher than those in convalescent patients (all P < 0.001). In addition, the positive rate of serum SARS-CoV-2 N-Ag in acute COVID-19 patients was higher than that of serum antibodies (IgM, IgG, IgA and neutralizing antibodies (Nab)) against SARS-CoV-2 (all P < 0.001). However, the positive rate of serum SARS-CoV-2 N-Ag in convalescent COVID-19 patients was significantly lower than that of antibodies (all P < 0.001). Conclusion Serum N-Ag can be used as a biomarker for early COVID-19 diagnosis based on appropriate cut-off values. In addition, our study also demonstrated the relationship between serum N-Ag and clinical characteristics.
Collapse
Affiliation(s)
- Xihong Zhang
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei, China
- Department of Laboratory Medicine, The Fifth Hospital of Shijiazhuang, North China University of Science and Technology, Shijiazhuang, Hebei, China
| | - Chungen Qian
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Li Yang
- Department of Laboratory Medicine, The Fifth Hospital of Shijiazhuang, North China University of Science and Technology, Shijiazhuang, Hebei, China
| | - Huixia Gao
- Department of Laboratory Medicine, The Fifth Hospital of Shijiazhuang, North China University of Science and Technology, Shijiazhuang, Hebei, China
| | - Ping Jiang
- Department of Tuberculosis, The Fifth Hospital of Shijiazhuang, North China University of Science and Technology, Shijiazhuang, Hebei, China
| | - Muwei Dai
- Orthopaedic Department, The Fourth Hospital of Hebei Medical University and Hebei Cancer Hospital, Shijiazhuang, Hebei, China
| | - Yuling Wang
- Department of Tuberculosis, The Fifth Hospital of Shijiazhuang, North China University of Science and Technology, Shijiazhuang, Hebei, China
| | - Haiyan Kang
- Department of Tuberculosis, The Fifth Hospital of Shijiazhuang, North China University of Science and Technology, Shijiazhuang, Hebei, China
| | - Yi Xu
- Department of Laboratory Medicine, The Fifth Hospital of Shijiazhuang, North China University of Science and Technology, Shijiazhuang, Hebei, China
| | - Qian Hu
- Department of Laboratory Medicine, The Fifth Hospital of Shijiazhuang, North China University of Science and Technology, Shijiazhuang, Hebei, China
| | - Fumin Feng
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei, China
| | - Bangning Cheng
- Shenzhen YHLO Biotech Co., Ltd, Shenzhen, Guangdong, China
| | - Erhei Dai
- Department of Laboratory Medicine, The Fifth Hospital of Shijiazhuang, North China University of Science and Technology, Shijiazhuang, Hebei, China
| |
Collapse
|
559
|
Morales-Jadan D, Castro-Rodriguez B, Viteri-Dávila C, Orlando SA, Bruno A, Perez F, Garcia-Bereguiain MA. The quality of commercial SARS-CoV-2 nucleic acid tests in Ecuador: lessons from COVID-19 pandemic for advancing social equity through microbiology. Front Cell Infect Microbiol 2023; 13:1179786. [PMID: 37351183 PMCID: PMC10283003 DOI: 10.3389/fcimb.2023.1179786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 04/25/2023] [Indexed: 06/24/2023] Open
|
560
|
Tada T, Minnee J, Landau NR. Vectored immunoprophylaxis and treatment of SARS-CoV-2 infection in a preclinical model. Proc Natl Acad Sci U S A 2023; 120:e2303509120. [PMID: 37252952 PMCID: PMC10266030 DOI: 10.1073/pnas.2303509120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 04/28/2023] [Indexed: 06/01/2023] Open
Abstract
Vectored immunoprophylaxis was first developed as a means of establishing engineered immunity to HIV using an adenoassociated viral vector expressing a broadly neutralizing antibody. We applied this concept to establish long-term prophylaxis against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in a mouse model using adenoassociated virus and lentiviral vectors expressing a high-affinity angiotensin-converting enzyme 2 (ACE2) decoy. Administration of decoy-expressing (adenoassociated virus) AAV2.retro and AAV6.2 vectors by intranasal instillation or intramuscular injection protected mice against high-titered SARS-CoV-2 infection. AAV and lentiviral vectored immunoprophylaxis was durable and was active against SARS-CoV-2 Omicron subvariants. The AAV vectors were also effective therapeutically when administered postinfection. Vectored immunoprophylaxis could be of value for immunocompromised individuals for whom vaccination is not practical and as a means to rapidly establish protection from infection. Unlike monoclonal antibody therapy, the approach is expected to remain active despite continued evolution viral variants.
Collapse
Affiliation(s)
- Takuya Tada
- Department of Microbiology, New York University (NYU) Grossman School of Medicine, New York, NY10016
| | - Julia Minnee
- Department of Microbiology, New York University (NYU) Grossman School of Medicine, New York, NY10016
| | - Nathaniel R. Landau
- Department of Microbiology, New York University (NYU) Grossman School of Medicine, New York, NY10016
| |
Collapse
|
561
|
Kumar S, Ko T, Chae Y, Jang Y, Lee I, Lee A, Shin S, Nam MH, Kim BS, Jun HS, Seo S. Proof-of-Concept: Smartphone- and Cloud-Based Artificial Intelligence Quantitative Analysis System (SCAISY) for SARS-CoV-2-Specific IgG Antibody Lateral Flow Assays. BIOSENSORS 2023; 13:623. [PMID: 37366988 DOI: 10.3390/bios13060623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/31/2023] [Accepted: 06/02/2023] [Indexed: 06/28/2023]
Abstract
Smartphone-based point-of-care testing (POCT) is rapidly emerging as an alternative to traditional screening and laboratory testing, particularly in resource-limited settings. In this proof-of-concept study, we present a smartphone- and cloud-based artificial intelligence quantitative analysis system (SCAISY) for relative quantification of SARS-CoV-2-specific IgG antibody lateral flow assays that enables rapid evaluation (<60 s) of test strips. By capturing an image with a smartphone camera, SCAISY quantitatively analyzes antibody levels and provides results to the user. We analyzed changes in antibody levels over time in more than 248 individuals, including vaccine type, number of doses, and infection status, with a standard deviation of less than 10%. We also tracked antibody levels in six participants before and after SARS-CoV-2 infection. Finally, we examined the effects of lighting conditions, camera angle, and smartphone type to ensure consistency and reproducibility. We found that images acquired between 45° and 90° provided accurate results with a small standard deviation and that all illumination conditions provided essentially identical results within the standard deviation. A statistically significant correlation was observed (Spearman correlation coefficient: 0.59, p = 0.008; Pearson correlation coefficient: 0.56, p = 0.012) between the OD450 values of the enzyme-linked immunosorbent assay and the antibody levels obtained by SCAISY. This study suggests that SCAISY is a simple and powerful tool for real-time public health surveillance, enabling the acceleration of quantifying SARS-CoV-2-specific antibodies generated by either vaccination or infection and tracking of personal immunity levels.
Collapse
Affiliation(s)
- Samir Kumar
- Department of Electronics and Information Engineering, Korea University, Sejong 30019, Republic of Korea
| | - Taewoo Ko
- Department of Electronics and Information Engineering, Korea University, Sejong 30019, Republic of Korea
| | | | - Yuyeon Jang
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, Republic of Korea
| | - Inha Lee
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, Republic of Korea
| | - Ahyeon Lee
- Department of Electronics and Information Engineering, Korea University, Sejong 30019, Republic of Korea
| | - Sanghoon Shin
- Department of Electronics and Information Engineering, Korea University, Sejong 30019, Republic of Korea
| | - Myung-Hyun Nam
- Department of Laboratory Medicine, Anam Hospital, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Byung Soo Kim
- Department of Hematology, Anam Hospital, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Hyun Sik Jun
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, Republic of Korea
| | - Sungkyu Seo
- Department of Electronics and Information Engineering, Korea University, Sejong 30019, Republic of Korea
| |
Collapse
|
562
|
Jarovsky D, de Freitas Fongaro G, Zampol RM, de Oliveira TA, Farias CGA, da Silva DGBP, Cavalcante DTG, Nery SB, de Moraes JC, de Oliveira FI, Almeida FJ, Sáfadi MAP. Characteristics and clinical outcomes of COVID-19 in children: a hospital-based surveillance study in Latin America's hardest-hit city. IJID REGIONS 2023; 7:52-62. [PMID: 36536932 PMCID: PMC9753484 DOI: 10.1016/j.ijregi.2022.12.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND In 2020, Brazil became the epicentre of the coronavirus disease (COVID-19) pandemic in Latin America, resulting in an unparalleled health catastrophe. Nevertheless, comprehensive clinical reports in Brazilian children are not available. METHODS This retrospective, hospital-based, active surveillance study was performed to identify paediatric patients with COVID-19 who presented at a private academic medical centre in a large urban area between March 2020 and March 2021. Clinical and demographic information was analysed for those requiring hospitalization, those with severe illness and those with clinical syndromes. RESULTS In total, 964 symptomatic cases were evaluated; of these, 17.7% required hospitalization, and 27.5% of hospitalized cases were classified as severe/critical. Acute bronchiolitis and pneumonia were the most common causes of hospitalization among the severe cases. Twenty-seven hospitalized children fulfilled the diagnostic criteria for multi-system inflammatory syndrome (median age 29 months; 85.2% cases were non-severe). A significant co-existing condition was present in 29% of hospitalized children. The risk of hospitalization was higher in children with at least one comorbidity, children aged <2 years and obese children. Increased risk of severe disease was described among those with leukopenia, leukocytosis or any significant comorbidity. No deaths occurred among the study population. CONCLUSION Although most children with COVID-19 experienced mild disease, and no deaths occurred among the study population, a significant proportion of cases required hospitalization and developed severe illness. Obesity, young age, underlying comorbidity, leukopenia and leukocytosis were risk factors for hospitalization or severe disease.
Collapse
Affiliation(s)
- Daniel Jarovsky
- Hospital Infantil Sabará, São Paulo, Brazil
- Santa Casa de São Paulo School of Medical Sciences, São Paulo, Brazil
| | | | | | | | | | | | | | | | | | | | - Flávia Jacqueline Almeida
- Hospital Infantil Sabará, São Paulo, Brazil
- Santa Casa de São Paulo School of Medical Sciences, São Paulo, Brazil
| | - Marco Aurélio Palazzi Sáfadi
- Hospital Infantil Sabará, São Paulo, Brazil
- Santa Casa de São Paulo School of Medical Sciences, São Paulo, Brazil
| |
Collapse
|
563
|
A simplified viral RNA extraction method based on magnetic nanoparticles for fast and high-throughput detection of SARS-CoV-2. Talanta 2023; 258:124479. [PMID: 36966663 PMCID: PMC10035799 DOI: 10.1016/j.talanta.2023.124479] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 03/25/2023]
Abstract
The ongoing outbreak of the novel coronavirus disease 2019 (COVID-19) draws worldwide concerns due to its long incubation period and strong infectivity. Although RT-PCR-based methods are being widely applied for clinical diagnosis, timely and accurate diagnosis towards COVID-19 causing virus, the SARS-CoV-2, is still limited due to labor-intensive and time-consuming operations. Herein, we report a new viral RNA extraction method based on poly-(amino ester) with carboxyl group (PC)-coated magnetic nanoparticles (pcMNPs) for the sensitive detection of SARS-CoV-2. This method combines the lysis and binding steps into one step, and refines multiple washing steps into one step, giving a turnaround time of less than 9 min. Furthermore, the extracted pcMNP-RNA complexes can be directly introduced into subsequent RT-PCR reactions without elution. This simplified viral RNA method could be well adapted in fast manual and automated high-throughput nucleic acids extraction protocols suitable for different scenarios. A high sensitivity down to 100 copies/mL and a linear correlation between 100 and 106 copies/mL of SARS-CoV-2 pseudovirus particles are achieved in both protocols. Benefitting from the simplicity and excellent performances, this new method can dramatically improve the efficiency and reduce operational requirements for the early clinical diagnosis and large-scale SARS-CoV-2 nucleic acid screening.
Collapse
|
564
|
Barboza VDS, Domingues WB, de Souza TT, Collares TV, Seixas FK, Pacheco BS, Sousa FSS, Oliveira TL, de Lima M, de Pereira CMP, Spilki FR, Giongo JL, Vaucher RDA. Reverse transcription-loop-mediated isothermal amplification (RT-LAMP) assay as a rapid molecular diagnostic tool for COVID-19 in healthcare workers. JOURNAL OF CLINICAL VIROLOGY PLUS 2023; 3:100134. [PMID: 36742065 PMCID: PMC9891106 DOI: 10.1016/j.jcvp.2023.100134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 10/19/2022] [Accepted: 01/06/2023] [Indexed: 01/28/2023] Open
Abstract
In December 2019, the Chinese Center for Disease Control (CDC of China) reported an outbreak of pneumonia in the city of Wuhan (Hubei province, China) that haunted the world, resulting in a global pandemic. This outbreak was caused by a betacoronavirus named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Several of these cases have been observed in healthcare professionals working in hospitals and providing care on the pandemic's frontline. In the present study, nasopharyngeal swab samples of healthcare workers were used to assess the performance of the reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay and subsequently compared with the real-time reverse-transcription quantitative PCR (RT-qPCR) method. Thus, in this study, we validated a method for detecting SARS-CoV-2 based on RT-LAMP that can be used to diagnose these workers. The methodology used was based on analyzing the sensitivity, specificity, evaluation of the detection limit, and cross-reaction with other respiratory viruses. The agreement was estimated using a dispersion diagram designed using the Bland-Altman method. A total of 100 clinical specimens of nasopharyngeal swabs were collected from symptomatic and asymptomatic healthcare workers in Pelotas, Brazil, during the SARS-CoV-2 outbreak. RT-LAMP assay, it was possible to detect SARS-CoV-2 in 96.7% of the healthcare professionals tested using the E gene and N gene primers approximately and 100% for the gene of human β-actin. The observed agreement was considered excellent for the primer set of the E and N genes (k = 0.957 and k = 0.896), respectively. The sensitivity of the RT-LAMP assay was positive for the primer set of the E gene, detected to approximately 2 copies per reaction. For the primer set of the N gene, the assay was possible to verify an LoD of approximately 253 copies per reaction. After executing the RT-LAMP assay, no positive reactions were observed for any of the virus respiratory tested. Therefore, we conclude that RT-LAMP is effective for rapid molecular diagnosis during the COVID-19 outbreak period in healthcare professionals.
Collapse
Affiliation(s)
- Victor dos Santos Barboza
- Laboratório de Pesquisa em Bioquímica e Biologia Molecular de Micro-organismos, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - William Borges Domingues
- Laboratório de Genômica Estrutural, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Thobias Toniolo de Souza
- Laboratório de Pesquisa em Bioquímica e Biologia Molecular de Micro-organismos, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Tiago Veiras Collares
- Laboratório de Biotecnologia do Câncer, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Fabiana Kommling Seixas
- Laboratório de Biotecnologia do Câncer, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Bruna Silveira Pacheco
- Laboratório de Biotecnologia do Câncer, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Fernanda Severo Sabedra Sousa
- Laboratório de Biotecnologia do Câncer, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Thaís Larré Oliveira
- Laboratório de Vacinologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Marcelo de Lima
- Laboratório de Virologia e Imunologia, Faculdade de Veterinária, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | | | - Fernando Rosado Spilki
- Laboratório de Microbiologia Molecular, Universidade FEEVALE, Novo Hamburgo, Rio Grande do Sul, Brazil
| | - Janice Luehring Giongo
- Laboratório de Pesquisa em Bioquímica e Biologia Molecular de Micro-organismos, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Rodrigo de Almeida Vaucher
- Laboratório de Pesquisa em Bioquímica e Biologia Molecular de Micro-organismos, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brazil,Corresponding author
| |
Collapse
|
565
|
Erdem M, Andaç-Özketen A, Özketen AÇ, Karahan G, Tozluyurt A, Palaz F, Alp A, Ünal S. Clinical Validation and Evaluation of a Colorimetric SARS-CoV-2 RT-LAMP Assay Against RT-PCR. INFECTIOUS DISEASES & CLINICAL MICROBIOLOGY 2023; 5:136-143. [PMID: 38633012 PMCID: PMC10986683 DOI: 10.36519/idcm.2023.210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 05/27/2023] [Indexed: 04/19/2024]
Abstract
Objective Reverse transcriptase loop-mediated isothermal amplification (RT-LAMP) is one of the time-saving, accurate, and cost-effective alternative methods to real-time polymerase chain reaction (RT-PCR). This study aimed to identify the robustness of a colorimetric RT-LAMP assay kit that we developed, detecting SARS-COV-2 viral RNA within 30 minutes using a primer set special to the N gene against RT-PCR, the gold standard. Materials and Methods Both symptomatic and asymptomatic subjects were included from a single university hospital and the status of both RT-PCR and RT-LAMP assay results were compared, and the consistency of these two assays was analyzed. Results We showed that the RT-LAMP and RT-PCR assay results confirmed 90% consistency. When we consider the epidemiologic, clinical, and radiologic evaluation, the consistency reached 97%. Conclusion The results revealed that the colorimetric RT-LAMP assay was efficient, robust, and rapid to be used as in vitro diagnostic tool to display competitiveness compared with RT-PCR.
Collapse
Affiliation(s)
- Murat Erdem
- Department of Molecular Biology and Genetics, Middle East Technical University, Ankara, Turkey
| | | | - Ahmet Çağlar Özketen
- Department of Basic Sciences, TED University, Ankara, Turkey
- Department of Chemistry, Middle East Technical University, Ankara, Turkey
| | - Gizem Karahan
- Department of Infectious Diseases and Clinical Microbiology, Hacettepe University School of Medicine, Ankara, Turkey
| | - Abdullah Tozluyurt
- Department of Medical Microbiology, Hacettepe University School of Medicine, Ankara, Turkey
| | | | - Alpaslan Alp
- Department of Medical Microbiology, Hacettepe University School of Medicine, Ankara, Turkey
| | - Serhat Ünal
- Department of Infectious Diseases and Clinical Microbiology, Hacettepe University School of Medicine, Ankara, Turkey
| |
Collapse
|
566
|
Wani H, Menon S, Desai D, D’Souza N, Bhathena Z, Desai N, Rose JB, Shrivastava S. Wastewater-Based Epidemiology of SARS-CoV-2: Assessing Prevalence and Correlation with Clinical Cases. FOOD AND ENVIRONMENTAL VIROLOGY 2023; 15:131-143. [PMID: 37133676 PMCID: PMC10155169 DOI: 10.1007/s12560-023-09555-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 04/18/2023] [Indexed: 05/04/2023]
Abstract
Wastewater-based epidemiology has been recognized as a tool to monitor the progress of COVID-19 pandemic worldwide. The study presented herein aimed at quantitating the SARS-CoV-2 RNA in the wastewaters, predicting the number of infected individuals in the catchment areas, and correlating it with the clinically reported COVID-19 cases. Wastewater samples (n = 162) from different treatment stages were collected from three wastewater treatment plants (WWTPs) from Mumbai city during the 2nd surge of COVID-19 (April 2021 to June 2021). SARS-CoV-2 causing COVID-19, was detected in 76.2% and 4.8% of raw and secondary treated (n = 63 each) wastewater samples respectively while all tertiary treated samples (n = 36) were negative. The quantity of SARS-CoV-2 RNA determined as gene copies/100 mL varied among all the three WWTPs under study. The gene copy numbers thus obtained were further used to estimate the number of infected individuals within the population served by these WWTPs using two published methods. A positive correlation (p < 0.05) was observed between the estimated number of infected individuals and clinically confirmed COVID-19 cases reported during the sampling period in two WWTPs. Predicted infected individuals calculated in this study were 100 times higher than the reported COVID-19 cases in all the WWTPs assessed. The study findings demonstrated that the present wastewater treatment technologies at the three WWTPs studied were adequate to remove the virus. However, SARS-CoV-2 genome surveillance with emphasis on monitoring its variants should be implemented as a routine practice to prepare for any future surge in infections.
Collapse
Affiliation(s)
- Hima Wani
- Bhavan’s Research Center, Bhavan’s College Campus, Andheri West, Mumbai, Maharashtra 400058 India
| | - Smita Menon
- Bhavan’s Research Center, Bhavan’s College Campus, Andheri West, Mumbai, Maharashtra 400058 India
- Department of Microbiology, Bhavan’s College, Andheri West, Mumbai, Maharashtra 400058 India
| | - Dipen Desai
- Bhavan’s Research Center, Bhavan’s College Campus, Andheri West, Mumbai, Maharashtra 400058 India
| | - Nishita D’Souza
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI 48824 USA
| | - Zarine Bhathena
- Department of Microbiology, Bhavan’s College, Andheri West, Mumbai, Maharashtra 400058 India
| | - Nishith Desai
- Bhavan’s Research Center, Bhavan’s College Campus, Andheri West, Mumbai, Maharashtra 400058 India
| | - Joan B. Rose
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI 48824 USA
| | - Sandhya Shrivastava
- Bhavan’s Research Center, Bhavan’s College Campus, Andheri West, Mumbai, Maharashtra 400058 India
| |
Collapse
|
567
|
Ndiaye MDB, Rasoloharimanana LT, Razafimahatratra SL, Ratovoson R, Rasolofo V, Ranaivomanana P, Raskine L, Hoffmann J, Randremanana R, Rakotosamimanana N, Schoenhals M. Using a multiplex serological assay to estimate time since SARS-CoV-2 infection and past clinical presentation in malagasy patients. Heliyon 2023; 9:e17264. [PMID: 37332901 PMCID: PMC10263216 DOI: 10.1016/j.heliyon.2023.e17264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/01/2023] [Accepted: 06/12/2023] [Indexed: 06/20/2023] Open
Abstract
Background The world is facing a 2019 coronavirus (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In this context, efficient serological assays are needed to accurately describe the humoral responses against the virus. These tools could potentially provide temporal and clinical characteristics and are thus paramount in developing-countries lacking sufficient ongoing COVID-19 epidemic descriptions. Methods We developed and validated a Luminex xMAP® multiplex serological assay targeting specific IgM and IgG antibodies against the SARS-CoV-2 Spike subunit 1 (S1), Spike subunit 2 (S2), Spike Receptor Binding Domain (RBD) and the Nucleocapsid protein (N). Blood samples collected periodically for 12 months from 43 patients diagnosed with COVID-19 in Madagascar were tested for these antibodies. A random forest algorithm was used to build a predictive model of time since infection and symptom presentation. Findings The performance of the multiplex serological assay was evaluated for the detection of SARS-CoV-2 anti-IgG and anti-IgM antibodies. Both sensitivity and specificity were equal to 100% (89.85-100) for S1, RBD and N (S2 had a lower specificity = 95%) for IgG at day 14 after enrolment. This multiplex assay compared with two commercialized ELISA kits, showed a higher sensitivity. Principal Component Analysis was performed on serologic data to group patients according to time of sample collection and clinical presentations. The random forest algorithm built by this approach predicted symptom presentation and time since infection with an accuracy of 87.1% (95% CI = 70.17-96.37, p-value = 0.0016), and 80% (95% CI = 61.43-92.29, p-value = 0.0001) respectively. Interpretation This study demonstrates that the statistical model predicts time since infection and previous symptom presentation using IgM and IgG response to SARS-CoV2. This tool may be useful for global surveillance, discriminating recent- and past- SARS-CoV-2 infection, and assessing disease severity. Fundings This study was funded by the French Ministry for Europe and Foreign Affairs through the REPAIR COVID-19-Africa project coordinated by the Pasteur International Network association. WANTAI reagents were provided by WHO AFRO as part of a Sero-epidemiological "Unity" Study Grant/Award Number: 2020/1,019,828-0 P·O 202546047 and Initiative 5% grant n°AP-5PC-2018-03-RO.
Collapse
Affiliation(s)
| | | | | | - Rila Ratovoson
- Institut Pasteur de Madagascar, Antananarivo, Madagascar
| | | | | | - Laurent Raskine
- Medical and Scientific Department, Fondation Mérieux, Lyon, France
| | | | | | | | | |
Collapse
|
568
|
Apaa T, Withers AJ, Staley C, Blanchard A, Bennett M, Bremner-Harrison S, Chadwick EA, Hailer F, Harrison SWR, Loose M, Mathews F, Tarlinton R. Sarbecoviruses of British horseshoe bats; sequence variation and epidemiology. J Gen Virol 2023; 104. [PMID: 37319000 DOI: 10.1099/jgv.0.001859] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023] Open
Abstract
Horseshoe bats are the natural hosts of the Sarbecovirus subgenus that includes SARS-CoV and SARS-CoV- 2. Despite the devastating impact of the COVID-19 pandemic, there is still little known about the underlying epidemiology and virology of sarbecoviruses in their natural hosts, leaving large gaps in our pandemic preparedness. Here we describe the results of PCR testing for sarbecoviruses in the two horseshoe bat species (Rhinolophus hipposideros and R. ferrumequinum) present in Great Britain, collected in 2021-22 during the peak of COVID-19 pandemic. One hundred and ninety seven R. hipposideros samples from 33 roost sites and 277 R. ferrumequinum samples from 20 roost sites were tested. No coronaviruses were detected in any samples from R. ferrumequinum whereas 44 and 56 % of individual and pooled (respectively) faecal samples from R. hipposideros across multiple roost sites tested positive in a sarbecovirus-specific qPCR. Full genome sequences were generated from three of the positive samples (and partial genomes from two more) using Illumina RNAseq on unenriched samples. Phylogenetic analyses showed that the obtained sequences belong to the same monophyletic clade, with >95 % similarity to previously-reported European isolates from R. hipposideros. The sequences differed in the presence or absence of accessory genes ORF 7b, 9b and 10. All lacked the furin cleavage site of SARS-CoV-2 spike gene and are therefore unlikely to be infective for humans. These results demonstrate a lack, or at least low incidence, of SARS-CoV-2 spill over from humans to susceptible GB bats, and confirm that sarbecovirus infection is widespread in R. hipposideros. Despite frequently sharing roost sites with R. ferrumequinum, no evidence of cross-species transmission was found.
Collapse
Affiliation(s)
- Ternenge Apaa
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, UK
- Animal and Plant Health Agency (APHA), Addlestone, UK
| | - Amy J Withers
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, UK
- Animal and Plant Health Agency (APHA), Addlestone, UK
| | - Ceri Staley
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, UK
| | - Adam Blanchard
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, UK
| | - Malcolm Bennett
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, UK
| | - Samantha Bremner-Harrison
- School of Animal, Rural and Environmental Sciences, Nottingham Trent University, Southwell, UK
- Vincent Wildlife Trust, Herefordshire, UK
| | - Elizabeth A Chadwick
- School of Animal, Rural and Environmental Sciences, Nottingham Trent University, Southwell, UK
- Organisms and Environment, School of Biosciences, Cardiff University, UK
| | - Frank Hailer
- Organisms and Environment, School of Biosciences, Cardiff University, UK
| | - Stephen W R Harrison
- School of Animal, Rural and Environmental Sciences, Nottingham Trent University, Southwell, UK
| | - Matthew Loose
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Fiona Mathews
- School of Life sciences, University of Sussex, Brighton, UK
| | - Rachael Tarlinton
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, UK
| |
Collapse
|
569
|
Rondaan C, Gard L, Niesters HGM, van Leer-Buter C, Zhou X. COVID or no COVID: Interpreting inconclusive SARS-CoV-2 qPCR results in different populations and platforms. JOURNAL OF CLINICAL VIROLOGY PLUS 2023; 3:100145. [PMID: 36941981 PMCID: PMC9997055 DOI: 10.1016/j.jcvp.2023.100145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 03/01/2023] [Accepted: 03/06/2023] [Indexed: 03/19/2023] Open
Abstract
Introduction High cycle threshold values (Ct) value) results for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) may be true infections or false-positive results. Misinterpretation of results has negative consequences. Goal of this study was to evaluate quantitative real-time polymerase chain reaction (qPCR) results with high Ct-values, to reach a point where a correct interpretation can be given. Methods High Ct-value results of SARS-CoV-2 in respiratory samples taken between April 2020 and January 2021 were analysed. Three different SARS-CoV-2 qPCR assays (in-house, Alinity M and Xpert Xpress) were used for screening patients and healthcare workers (HCW). High Ct-value results were defined as "inconclusive". The Ct-value cut-off for the interpretation of the test as "positive" and "inconclusive" were based on quality assurance panel results and manufacturers' instructions. Results Out of totally 50.295 samples tested for SARS-CoV-2, the in-house and Alinity M qPCR together yielded 379 inconclusive results. A second sample existed for 217 samples, allowing dynamics of the PCR in time. Of these, 187 were negative (86%), 11 again inconclusive (5%) and 19 positive (9%). Sixteen out of 19 persons with a positive result were HCW, 14 (74%) had a link to a SARS-CoV-2 infected person. The majority of inconclusive results detected with the Xpert Xpress (n=45 of 3603), were related to individuals with a known history of SARS-CoV-2 infection (n=28, 62%). Conclusion This study shows the importance of re-testing inconclusive SARS-CoV-2 qPCR results. Only then, the correct (true or false) interpretation can be given, leading to the right measures.
Collapse
Affiliation(s)
- Christien Rondaan
- Department of Medical Microbiology and Infection Prevention, University Medical Centre Groningen, Groningen, The Netherlands
| | - Lilli Gard
- Department of Medical Microbiology and Infection Prevention, University Medical Centre Groningen, Groningen, The Netherlands
| | - Hubert G M Niesters
- Department of Medical Microbiology and Infection Prevention, University Medical Centre Groningen, Groningen, The Netherlands
| | - Coretta van Leer-Buter
- Department of Medical Microbiology and Infection Prevention, University Medical Centre Groningen, Groningen, The Netherlands
| | - Xuewei Zhou
- Department of Medical Microbiology and Infection Prevention, University Medical Centre Groningen, Groningen, The Netherlands
| |
Collapse
|
570
|
Zeghbib S, Kemenesi G, Jakab F. The importance of equally accessible genomic surveillance in the age of pandemics. Biol Futur 2023; 74:81-89. [PMID: 37199870 PMCID: PMC10193332 DOI: 10.1007/s42977-023-00164-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 03/29/2023] [Indexed: 05/19/2023]
Abstract
Genomic epidemiology is now a core component in investigating the spread of a disease during an outbreak and for future preparedness to tackle emerging zoonoses. During the last decades, several viral diseases arose and emphasized the importance of molecular epidemiology in tracking the dispersal route, supporting proper mitigation measures, and appropriate vaccine development. In this perspective article, we summarized what has been done so far in the genomic epidemiology field and what should be considered in the future. We traced back the methods and protocols employed over time for zoonotic disease response. Either to small outbreaks such as the severe acute respiratory syndrome (SARS) outbreak identified first in 2002 in Guangdong, China, or to a global pandemic like the one that we are experiencing now since 2019 when the severe acute respiratory syndrome 2 (SARS-CoV-2) virus emerged in Wuhan, China, following several pneumonia cases, and subsequently spread worldwide. We explored both the benefits and shortages encountered when relying on genomic epidemiology, and we clearly present the disadvantages of inequity in accessing these tools around the world, especially in countries with less developed economies. For effectively addressing future pandemics, it is crucial to work for better sequencing equity around the globe.
Collapse
Affiliation(s)
- Safia Zeghbib
- National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, Pecs, Hungary.
| | - Gábor Kemenesi
- National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, Pecs, Hungary
- Faculty of Sciences, Institute of Biology, University of Pécs, Pecs, Hungary
| | - Ferenc Jakab
- National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, Pecs, Hungary
- Faculty of Sciences, Institute of Biology, University of Pécs, Pecs, Hungary
| |
Collapse
|
571
|
de Bock E, Filipe MD, Herman ES, Pronk A, Boerma D, Heikens JT, Verheijen PM, Vriens MR, Richir MC. Risk factors of postoperative intensive care unit admission during the COVID-19 pandemic: A multicentre retrospective cohort study. INTERNATIONAL JOURNAL OF SURGERY OPEN 2023; 55:100620. [PMID: 37163195 PMCID: PMC10159662 DOI: 10.1016/j.ijso.2023.100620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 04/12/2023] [Accepted: 04/30/2023] [Indexed: 05/11/2023]
Abstract
Background During the Coronavirus disease 2019 (COVID-19) pandemic, intensive care unit (ICU) capacity was scarce. Since surgical patients also require ICU admission, determining which factors lead to an increased risk of postoperative ICU admission is essential. This study aims to determine which factors led to an increased risk of unplanned postoperative ICU admission during the COVID-19 pandemic. Methods This multicentre retrospective cohort study investigated all patients who underwent surgery between 9 March 2020 and 30 June 2020. The primary endpoint was the number of surgical patients requiring postoperative ICU admission. The secondary endpoint was to determine factors leading to an increased risk of unplanned postoperative ICU admission, calculated by multivariate analysis with odds ratios (OR's) and 95% confidence (CI) intervals. Results One hundred eighty-five (4.6%) of the 4051 included patients required unplanned postoperative ICU admission. COVID-19 positive patients were at an increased risk of being admitted to the ICU compared to COVID-19 negative (OR 3.14; 95% CI 1.06-9.33; p = 0.040) and untested patients (OR 0.48; 95% CI 0.32-0.70; p = 0.001). Other predictors were male gender (OR 1.36; 95% CI 1.02-1.82; p = 0.046), body mass index (BMI) (OR 1.05; 95% CI 1.02-1.08; p = 0.001), surgical urgency and surgical discipline. Conclusion A confirmed COVID-19 infection, male gender, elevated BMI, surgical urgency, and surgical discipline were independent factors for an increased risk of unplanned postoperative ICU admission. In the event of similar pandemics, postponing surgery in patients with an increased risk of postoperative ICU admission may be considered.
Collapse
Affiliation(s)
- Ellen de Bock
- Department of Surgery, Cancer Centre, University Medical Centre Utrecht, the Netherlands
| | - Mando D Filipe
- Department of Surgery, Cancer Centre, University Medical Centre Utrecht, the Netherlands
| | - Eline S Herman
- Department of Surgery, Diakonessenhuis, Utrecht, the Netherlands
| | - Apollo Pronk
- Department of Surgery, Diakonessenhuis, Utrecht, the Netherlands
| | - Djamila Boerma
- Department of Surgery, St. Antonius Hospital, Nieuwegein, the Netherlands
| | - Joost T Heikens
- Department of Surgery, St. Antonius Hospital, Nieuwegein, the Netherlands
- Department of Surgery, Rivierenland Hospital, Tiel, the Netherlands
| | - Paul M Verheijen
- Department of Surgery, Meander Medical Centre, Amersfoort, the Netherlands
| | - Menno R Vriens
- Department of Surgery, Cancer Centre, University Medical Centre Utrecht, the Netherlands
| | - Milan C Richir
- Department of Surgery, Cancer Centre, University Medical Centre Utrecht, the Netherlands
| |
Collapse
|
572
|
Sun J, Pi P, Tang C, Wang SH, Zhang YD. CTMLP: Can MLPs replace CNNs or transformers for COVID-19 diagnosis? Comput Biol Med 2023; 159:106847. [PMID: 37068316 PMCID: PMC10098038 DOI: 10.1016/j.compbiomed.2023.106847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/13/2023] [Accepted: 03/30/2023] [Indexed: 04/19/2023]
Abstract
BACKGROUND Convolutional Neural Networks (CNNs) and the hybrid models of CNNs and Vision Transformers (VITs) are the recent mainstream methods for COVID-19 medical image diagnosis. However, pure CNNs lack global modeling ability, and the hybrid models of CNNs and VITs have problems such as large parameters and computational complexity. These models are difficult to be used effectively for medical diagnosis in just-in-time applications. METHODS Therefore, a lightweight medical diagnosis network CTMLP based on convolutions and multi-layer perceptrons (MLPs) is proposed for the diagnosis of COVID-19. The previous self-supervised algorithms are based on CNNs and VITs, and the effectiveness of such algorithms for MLPs is not yet known. At the same time, due to the lack of ImageNet-scale datasets in the medical image domain for model pre-training. So, a pre-training scheme TL-DeCo based on transfer learning and self-supervised learning was constructed. In addition, TL-DeCo is too tedious and resource-consuming to build a new model each time. Therefore, a guided self-supervised pre-training scheme was constructed for the new lightweight model pre-training. RESULTS The proposed CTMLP achieves an accuracy of 97.51%, an f1-score of 97.43%, and a recall of 98.91% without pre-training, even with only 48% of the number of ResNet50 parameters. Furthermore, the proposed guided self-supervised learning scheme can improve the baseline of simple self-supervised learning by 1%-1.27%. CONCLUSION The final results show that the proposed CTMLP can replace CNNs or Transformers for a more efficient diagnosis of COVID-19. In addition, the additional pre-training framework was developed to make it more promising in clinical practice.
Collapse
Affiliation(s)
- Junding Sun
- School of Computer Science and Technology, Henan Polytechnic University, Jiaozuo, Henan, 454000, PR China.
| | - Pengpeng Pi
- School of Computer Science and Technology, Henan Polytechnic University, Jiaozuo, Henan, 454000, PR China.
| | - Chaosheng Tang
- School of Computer Science and Technology, Henan Polytechnic University, Jiaozuo, Henan, 454000, PR China.
| | - Shui-Hua Wang
- School of Computer Science and Technology, Henan Polytechnic University, Jiaozuo, Henan, 454000, PR China; School of Computing and Mathematical Sciences, University of Leicester, Leicester, LE1 7RH, UK; Department of Information Systems, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.
| | - Yu-Dong Zhang
- School of Computer Science and Technology, Henan Polytechnic University, Jiaozuo, Henan, 454000, PR China; School of Computing and Mathematical Sciences, University of Leicester, Leicester, LE1 7RH, UK; Department of Information Systems, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.
| |
Collapse
|
573
|
Hassard F, Vu M, Rahimzadeh S, Castro-Gutierrez V, Stanton I, Burczynska B, Wildeboer D, Baio G, Brown MR, Garelick H, Hofman J, Kasprzyk-Hordern B, Majeed A, Priest S, Denise H, Khalifa M, Bassano I, Wade MJ, Grimsley J, Lundy L, Singer AC, Di Cesare M. Wastewater monitoring for detection of public health markers during the COVID-19 pandemic: Near-source monitoring of schools in England over an academic year. PLoS One 2023; 18:e0286259. [PMID: 37252922 PMCID: PMC10228768 DOI: 10.1371/journal.pone.0286259] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/11/2023] [Indexed: 06/01/2023] Open
Abstract
BACKGROUND Schools are high-risk settings for infectious disease transmission. Wastewater monitoring for infectious diseases has been used to identify and mitigate outbreaks in many near-source settings during the COVID-19 pandemic, including universities and hospitals but less is known about the technology when applied for school health protection. This study aimed to implement a wastewater surveillance system to detect SARS-CoV-2 and other public health markers from wastewater in schools in England. METHODS A total of 855 wastewater samples were collected from 16 schools (10 primary, 5 secondary and 1 post-16 and further education) over 10 months of school term time. Wastewater was analysed for SARS-CoV-2 genomic copies of N1 and E genes by RT-qPCR. A subset of wastewater samples was sent for genomic sequencing, enabling determination of the presence of SARS-CoV-2 and emergence of variant(s) contributing to COVID-19 infections within schools. In total, >280 microbial pathogens and >1200 AMR genes were screened using RT-qPCR and metagenomics to consider the utility of these additional targets to further inform on health threats within the schools. RESULTS We report on wastewater-based surveillance for COVID-19 within English primary, secondary and further education schools over a full academic year (October 2020 to July 2021). The highest positivity rate (80.4%) was observed in the week commencing 30th November 2020 during the emergence of the Alpha variant, indicating most schools contained people who were shedding the virus. There was high SARS-CoV-2 amplicon concentration (up to 9.2x106 GC/L) detected over the summer term (8th June - 6th July 2021) during Delta variant prevalence. The summer increase of SARS-CoV-2 in school wastewater was reflected in age-specific clinical COVID-19 cases. Alpha variant and Delta variant were identified in the wastewater by sequencing of samples collected from December to March and June to July, respectively. Lead/lag analysis between SARS-CoV-2 concentrations in school and WWTP data sets show a maximum correlation between the two-time series when school data are lagged by two weeks. Furthermore, wastewater sample enrichment coupled with metagenomic sequencing and rapid informatics enabled the detection of other clinically relevant viral and bacterial pathogens and AMR. CONCLUSIONS Passive wastewater monitoring surveillance in schools can identify cases of COVID-19. Samples can be sequenced to monitor for emerging and current variants of concern at the resolution of school catchments. Wastewater based monitoring for SARS-CoV-2 is a useful tool for SARS-CoV-2 passive surveillance and could be applied for case identification and containment, and mitigation in schools and other congregate settings with high risks of transmission. Wastewater monitoring enables public health authorities to develop targeted prevention and education programmes for hygiene measures within undertested communities across a broad range of use cases.
Collapse
Affiliation(s)
- Francis Hassard
- Cranfield University, Bedfordshire, United Kingdom
- Institute for Nanotechnology and Water Sustainability, University of South Africa, Johannesburg, South Africa
| | - Milan Vu
- Department of Natural Science, School of Science and Technology, Middlesex University, London, United Kingdom
| | - Shadi Rahimzadeh
- Department of Natural Science, School of Science and Technology, Middlesex University, London, United Kingdom
| | - Victor Castro-Gutierrez
- Cranfield University, Bedfordshire, United Kingdom
- Environmental Pollution Research Centre (CICA), Universidad de Costa Rica, Montes de Oca, Costa Rica
| | - Isobel Stanton
- UK Centre for Ecology and Hydrology, Wallingford, United Kingdom
| | - Beata Burczynska
- Department of Natural Science, School of Science and Technology, Middlesex University, London, United Kingdom
| | - Dirk Wildeboer
- Department of Natural Science, School of Science and Technology, Middlesex University, London, United Kingdom
| | - Gianluca Baio
- Department of Statistical Science, University College London, London, United Kingdom
| | - Mathew R. Brown
- School of Engineering, Newcastle University, Newcastle-upon-Tyne, United Kingdom
- Environmental Monitoring for Health Protection, UK Health Security Agency, London, United Kingdom
| | - Hemda Garelick
- Department of Natural Science, School of Science and Technology, Middlesex University, London, United Kingdom
| | - Jan Hofman
- Water Innovation & Research Centre, Department of Chemical Engineering, University of Bath, Bath, United Kingdom
| | - Barbara Kasprzyk-Hordern
- Water Innovation & Research Centre, Department of Chemistry, University of Bath, Bath, United Kingdom
| | - Azeem Majeed
- Department of Primary Care & Public Health, Imperial College Faculty of Medicine, London, United Kingdom
| | - Sally Priest
- Department of Natural Science, School of Science and Technology, Middlesex University, London, United Kingdom
| | - Hubert Denise
- Environmental Monitoring for Health Protection, UK Health Security Agency, London, United Kingdom
| | - Mohammad Khalifa
- Environmental Monitoring for Health Protection, UK Health Security Agency, London, United Kingdom
| | - Irene Bassano
- Environmental Monitoring for Health Protection, UK Health Security Agency, London, United Kingdom
| | - Matthew J. Wade
- Environmental Monitoring for Health Protection, UK Health Security Agency, London, United Kingdom
| | - Jasmine Grimsley
- Environmental Monitoring for Health Protection, UK Health Security Agency, London, United Kingdom
| | - Lian Lundy
- Department of Natural Science, School of Science and Technology, Middlesex University, London, United Kingdom
| | - Andrew C. Singer
- UK Centre for Ecology and Hydrology, Wallingford, United Kingdom
| | - Mariachiara Di Cesare
- Department of Natural Science, School of Science and Technology, Middlesex University, London, United Kingdom
- Institute of Public Health and Wellbeing, University of Essex, Colchester, United Kingdom
| |
Collapse
|
574
|
Mendes-Correa MC, Salomão MC, Ghilardi F, Tozetto-Mendoza TR, Santos Villas-Boas L, de Paula AV, Paiao HGO, da Costa AC, Leal FE, Ferraz ADBC, Sales FCS, Claro IM, Ferreira NE, Pereira GM, da Silva AR, Freire W, Espinoza EPS, Manuli ER, Romano CM, de Jesus JG, Sabino EC, Witkin SS. SARS-CoV-2 Detection and Culture in Different Biological Specimens from Immunocompetent and Immunosuppressed COVID-19 Patients Infected with Two Different Viral Strains. Viruses 2023; 15:1270. [PMID: 37376568 DOI: 10.3390/v15061270] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 06/29/2023] Open
Abstract
Introduction-The dynamics of SARS-CoV-2 shedding and replication in humans remain incompletely understood. Methods-We analyzed SARS-CoV-2 shedding from multiple sites in individuals with an acute COVID-19 infection by weekly sampling for five weeks in 98 immunocompetent and 25 immunosuppressed individuals. Samples and culture supernatants were tested via RT-PCR for SARS-CoV-2 to determine viral clearance rates and in vitro replication. Results-A total of 2447 clinical specimens were evaluated, including 557 nasopharyngeal swabs, 527 saliva samples, 464 urine specimens, 437 anal swabs and 462 blood samples. The SARS-CoV-2 genome sequences at each site were classified as belonging to the B.1.128 (ancestral strain) or Gamma lineage. SARS-CoV-2 detection was highest in nasopharyngeal swabs regardless of the virus strain involved or the immune status of infected individuals. The duration of viral shedding varied between clinical specimens and individual patients. Prolonged shedding of potentially infectious virus varied from 10 days up to 191 days, and primarily occurred in immunosuppressed individuals. Virus was isolated in culture from 18 nasal swab or saliva samples collected 10 or more days after onset of disease. Conclusions-Our findings indicate that persistent SARS-CoV-2 shedding may occur in both competent or immunosuppressed individuals, at multiple clinical sites and in a minority of subjects is capable of in vitro replication.
Collapse
Affiliation(s)
- Maria Cássia Mendes-Correa
- Departamento de Molestias Infecciosas e Parasitarias, Aculdade de Medicina, Universidade de São Paulo, Av. Dr. Enéas Carvalho de Aguiar, n. 470, São Paulo 05403-000, Brazil
- Hospital das Clínicas, Faculdade de Medicina, Universidade de Sao Paulo, São Paulo 05403-010, Brazil
- Instituto de Medicina Tropical, Faculdade de Medicina, Universidade de São Paulo, São Paulo 05403-000, Brazil
| | - Matias Chiarastelli Salomão
- Departamento de Molestias Infecciosas e Parasitarias, Aculdade de Medicina, Universidade de São Paulo, Av. Dr. Enéas Carvalho de Aguiar, n. 470, São Paulo 05403-000, Brazil
- Hospital das Clínicas, Faculdade de Medicina, Universidade de Sao Paulo, São Paulo 05403-010, Brazil
- Rua Peixoto Gomide, 645, Sao Paulo 01409-002, Brazil
| | - Fábio Ghilardi
- Departamento de Molestias Infecciosas e Parasitarias, Aculdade de Medicina, Universidade de São Paulo, Av. Dr. Enéas Carvalho de Aguiar, n. 470, São Paulo 05403-000, Brazil
- Instituto de Medicina Tropical, Faculdade de Medicina, Universidade de São Paulo, São Paulo 05403-000, Brazil
| | - Tania Regina Tozetto-Mendoza
- Departamento de Molestias Infecciosas e Parasitarias, Aculdade de Medicina, Universidade de São Paulo, Av. Dr. Enéas Carvalho de Aguiar, n. 470, São Paulo 05403-000, Brazil
- Instituto de Medicina Tropical, Faculdade de Medicina, Universidade de São Paulo, São Paulo 05403-000, Brazil
| | - Lucy Santos Villas-Boas
- Departamento de Molestias Infecciosas e Parasitarias, Aculdade de Medicina, Universidade de São Paulo, Av. Dr. Enéas Carvalho de Aguiar, n. 470, São Paulo 05403-000, Brazil
- Instituto de Medicina Tropical, Faculdade de Medicina, Universidade de São Paulo, São Paulo 05403-000, Brazil
| | - Anderson Vicente de Paula
- Departamento de Molestias Infecciosas e Parasitarias, Aculdade de Medicina, Universidade de São Paulo, Av. Dr. Enéas Carvalho de Aguiar, n. 470, São Paulo 05403-000, Brazil
- Instituto de Medicina Tropical, Faculdade de Medicina, Universidade de São Paulo, São Paulo 05403-000, Brazil
| | - Heuder Gustavo Oliveira Paiao
- Departamento de Molestias Infecciosas e Parasitarias, Aculdade de Medicina, Universidade de São Paulo, Av. Dr. Enéas Carvalho de Aguiar, n. 470, São Paulo 05403-000, Brazil
- Instituto de Medicina Tropical, Faculdade de Medicina, Universidade de São Paulo, São Paulo 05403-000, Brazil
| | - Antonio Charlys da Costa
- Instituto de Medicina Tropical, Faculdade de Medicina, Universidade de São Paulo, São Paulo 05403-000, Brazil
| | - Fábio E Leal
- Faculdade de Medicina da, Universidade Municipal de Sao Caetano do Sul, São Paulo 09521-160, Brazil
- Programa de Oncovirologia, Instituto Nacional de Câncer, Rio de Janeiro 20230-130, Brazil
| | | | - Flavia C S Sales
- Departamento de Molestias Infecciosas e Parasitarias, Aculdade de Medicina, Universidade de São Paulo, Av. Dr. Enéas Carvalho de Aguiar, n. 470, São Paulo 05403-000, Brazil
- Instituto de Medicina Tropical, Faculdade de Medicina, Universidade de São Paulo, São Paulo 05403-000, Brazil
| | - Ingra M Claro
- Departamento de Molestias Infecciosas e Parasitarias, Aculdade de Medicina, Universidade de São Paulo, Av. Dr. Enéas Carvalho de Aguiar, n. 470, São Paulo 05403-000, Brazil
- Instituto de Medicina Tropical, Faculdade de Medicina, Universidade de São Paulo, São Paulo 05403-000, Brazil
| | - Noely E Ferreira
- Departamento de Molestias Infecciosas e Parasitarias, Aculdade de Medicina, Universidade de São Paulo, Av. Dr. Enéas Carvalho de Aguiar, n. 470, São Paulo 05403-000, Brazil
- Instituto de Medicina Tropical, Faculdade de Medicina, Universidade de São Paulo, São Paulo 05403-000, Brazil
| | - Geovana M Pereira
- Departamento de Molestias Infecciosas e Parasitarias, Aculdade de Medicina, Universidade de São Paulo, Av. Dr. Enéas Carvalho de Aguiar, n. 470, São Paulo 05403-000, Brazil
- Instituto de Medicina Tropical, Faculdade de Medicina, Universidade de São Paulo, São Paulo 05403-000, Brazil
| | - Almir Ribeiro da Silva
- Departamento de Molestias Infecciosas e Parasitarias, Aculdade de Medicina, Universidade de São Paulo, Av. Dr. Enéas Carvalho de Aguiar, n. 470, São Paulo 05403-000, Brazil
- Instituto de Medicina Tropical, Faculdade de Medicina, Universidade de São Paulo, São Paulo 05403-000, Brazil
| | - Wilton Freire
- Departamento de Molestias Infecciosas e Parasitarias, Aculdade de Medicina, Universidade de São Paulo, Av. Dr. Enéas Carvalho de Aguiar, n. 470, São Paulo 05403-000, Brazil
- Instituto de Medicina Tropical, Faculdade de Medicina, Universidade de São Paulo, São Paulo 05403-000, Brazil
| | - Evelyn Patricia Sánchez Espinoza
- Departamento de Molestias Infecciosas e Parasitarias, Aculdade de Medicina, Universidade de São Paulo, Av. Dr. Enéas Carvalho de Aguiar, n. 470, São Paulo 05403-000, Brazil
- Instituto de Medicina Tropical, Faculdade de Medicina, Universidade de São Paulo, São Paulo 05403-000, Brazil
| | - Erika R Manuli
- Departamento de Molestias Infecciosas e Parasitarias, Aculdade de Medicina, Universidade de São Paulo, Av. Dr. Enéas Carvalho de Aguiar, n. 470, São Paulo 05403-000, Brazil
- Instituto de Medicina Tropical, Faculdade de Medicina, Universidade de São Paulo, São Paulo 05403-000, Brazil
- Faculdade de Medicina da, Universidade Municipal de Sao Caetano do Sul, São Paulo 09521-160, Brazil
| | - Camila M Romano
- Hospital das Clínicas, Faculdade de Medicina, Universidade de Sao Paulo, São Paulo 05403-010, Brazil
- Instituto de Medicina Tropical, Faculdade de Medicina, Universidade de São Paulo, São Paulo 05403-000, Brazil
| | - Jaqueline G de Jesus
- Instituto de Medicina Tropical, Faculdade de Medicina, Universidade de São Paulo, São Paulo 05403-000, Brazil
| | - Ester C Sabino
- Departamento de Molestias Infecciosas e Parasitarias, Aculdade de Medicina, Universidade de São Paulo, Av. Dr. Enéas Carvalho de Aguiar, n. 470, São Paulo 05403-000, Brazil
- Instituto de Medicina Tropical, Faculdade de Medicina, Universidade de São Paulo, São Paulo 05403-000, Brazil
- Faculdade de Medicina da, Universidade Municipal de Sao Caetano do Sul, São Paulo 09521-160, Brazil
| | - Steven S Witkin
- Instituto de Medicina Tropical, Faculdade de Medicina, Universidade de São Paulo, São Paulo 05403-000, Brazil
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY 10065, USA
| |
Collapse
|
575
|
Nguyen TN, Phung VD, Tran VV. Recent Advances in Conjugated Polymer-Based Biosensors for Virus Detection. BIOSENSORS 2023; 13:586. [PMID: 37366951 DOI: 10.3390/bios13060586] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 06/28/2023]
Abstract
Nowadays, virus pandemics have become a major burden seriously affecting human health and social and economic development. Thus, the design and fabrication of effective and low-cost techniques for early and accurate virus detection have been given priority for prevention and control of such pandemics. Biosensors and bioelectronic devices have been demonstrated as promising technology to resolve the major drawbacks and problems of the current detection methods. Discovering and applying advanced materials have offered opportunities to develop and commercialize biosensor devices for effectively controlling pandemics. Along with various well-known materials such as gold and silver nanoparticles, carbon-based materials, metal oxide-based materials, and graphene, conjugated polymer (CPs) have become one of the most promising candidates for preparation and construction of excellent biosensors with high sensitivity and specificity to different virus analytes owing to their unique π orbital structure and chain conformation alterations, solution processability, and flexibility. Therefore, CP-based biosensors have been regarded as innovative technologies attracting great interest from the community for early diagnosis of COVID-19 as well as other virus pandemics. For providing precious scientific evidence of CP-based biosensor technologies in virus detection, this review aims to give a critical overview of the recent research related to use of CPs in fabrication of virus biosensors. We emphasize structures and interesting characteristics of different CPs and discuss the state-of-the-art applications of CP-based biosensors as well. In addition, different types of biosensors such as optical biosensors, organic thin film transistors (OTFT), and conjugated polymer hydrogels (CPHs) based on CPs are also summarized and presented.
Collapse
Affiliation(s)
- Thanh Ngoc Nguyen
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, Ward 13, District 4, Ho Chi Minh City 700000, Vietnam
| | - Viet-Duc Phung
- Institute of Fundamental and Applied Sciences, Duy Tan University, Ho Chi Minh City 700000, Vietnam
- Faculty of Environmental and Chemical Engineering, Duy Tan University, Da Nang 550000, Vietnam
| | - Vinh Van Tran
- Department of Mechanical Engineering, Gachon University, Seongnam 13120, Republic of Korea
| |
Collapse
|
576
|
Subramaniam K, Palanisamy N, Sinnaswamy RA, Muthusamy S, Mishra OP, Loganathan AK, Ramamoorthi P, Gnanakkan CARC, Thangavel G, Sundararajan SCM. A comprehensive review of analyzing the chest X-ray images to detect COVID-19 infections using deep learning techniques. Soft comput 2023; 27:1-22. [PMID: 37362273 PMCID: PMC10220331 DOI: 10.1007/s00500-023-08561-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2023] [Indexed: 06/28/2023]
Abstract
COVID-19, a highly infectious respiratory disease a used by SARS virus, has killed millions of people across many countries. To enhance quick and accurate diagnosis of COVID-19, chest X-ray (CXR) imaging methods were commonly utilized. Identifying the infection manually by radio imaging, on the other hand, was considered, extremely difficult due to the time commitment and significant risk of human error. Emerging artificial intelligence (AI) techniques promised exploration in the development of precise and as well as automated COVID-19 detection tools. Convolution neural networks (CNN), a well performing deep learning strategy tends to gain substantial favors among AI approaches for COVID-19 classification. The preprints and published studies to diagnose COVID-19 with CXR pictures using CNN and other deep learning methodologies are reviewed and critically assessed in this research. This study focused on the methodology, algorithms, and preprocessing techniques used in various deep learning architectures, as well as datasets and performance studies of several deep learning architectures used in prediction and diagnosis. Our research concludes with a list of future research directions in COVID-19 imaging categorization.
Collapse
Affiliation(s)
- Kavitha Subramaniam
- Department of Computer Science and Engineering, Kongu Engineering College (Autonomous), Perundurai, Erode, Tamil Nadu India
| | - Natesan Palanisamy
- Department of Computer Science and Engineering, Kongu Engineering College (Autonomous), Perundurai, Erode, Tamil Nadu India
| | - Renugadevi Ammapalayam Sinnaswamy
- Department of Electronics and Communication Engineering, Kongu Engineering College (Autonomous), Perundurai, Erode, Tamil Nadu India
| | - Suresh Muthusamy
- Department of Electronics and Communication Engineering, Kongu Engineering College (Autonomous), Perundurai, Erode, Tamil Nadu India
| | - Om Prava Mishra
- Department of Electronics and Communication Engineering, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Avadi, Chennai, Tamil Nadu India
| | - Ashok Kumar Loganathan
- Department of Electrical and Electronics Engineering, PSG College of Technology, Coimbatore, Tamil Nadu India
| | - Ponarun Ramamoorthi
- Department of Electrical and Electronics Engineering, Theni Kammavar Sangam College of Technology, Theni, Tamil Nadu India
| | | | - Gunasekaran Thangavel
- Department of Engineering, University of Technology and Applied Sciences, Muscat, Sultanate of Oman
| | | |
Collapse
|
577
|
Schmidt MM, Despres HW, Shirley DJ, Bose ME, McCaul KC, Crothers JW, Henrickson KJ, Lee B, Bruce EA. Viral infectivity in paediatric SARS-CoV-2 clinical samples does not vary by age. Access Microbiol 2023; 5:acmi000547.v4. [PMID: 37323941 PMCID: PMC10267661 DOI: 10.1099/acmi.0.000547.v4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/28/2023] [Indexed: 06/17/2023] Open
Abstract
At the start of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic, there was much uncertainty about the role of children in infection and transmission dynamics. Through the course of the pandemic, it became clear that children were susceptible to SARS-CoV-2 infection, although they were experiencing a notable lack of severe disease outcomes as compared to the adult population. This trend held true with the emergence of new SARS-CoV-2 variants, even in paediatric populations that were ineligible to be vaccinated. The difference in disease outcomes has prompted questions about the virological features of SARS-CoV-2 infection in this population. In order to determine if there was any difference in the infectivity of the virus produced by children with coronavirus disease 2019 (COVID-19), we compared viral RNA levels (clinical RT-qPCR C T) and infectious virus titres from 144 SARS-CoV-2-positive clinical samples collected from children aged 0 to 18 years old. We found that age had no impact on the infectiousness of SARS-CoV-2 within our cohort, with children of all ages able to produce high levels of infectious virus.
Collapse
Affiliation(s)
- Madaline M. Schmidt
- Department of Microbiology and Molecular Genetics, Robert Larner, MD College of Medicine, University of Vermont, Burlington, VT, USA
| | - Hannah W. Despres
- Department of Microbiology and Molecular Genetics, Robert Larner, MD College of Medicine, University of Vermont, Burlington, VT, USA
| | | | - Michael E. Bose
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Kate C. McCaul
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Jessica W. Crothers
- Department of Pathology and Laboratory Medicine, Robert Larner, MD College of Medicine, University of Vermont, Burlington, VT, USA
| | | | - Benjamin Lee
- Department of Pediatrics, Robert Larner, MD College of Medicine, University of Vermont, Burlington, VT, USA
| | - Emily A. Bruce
- Department of Microbiology and Molecular Genetics, Robert Larner, MD College of Medicine, University of Vermont, Burlington, VT, USA
| |
Collapse
|
578
|
Cerfoglio S, Capodaglio P, Rossi P, Verme F, Boldini G, Cvetkova V, Ruggeri G, Galli M, Cimolin V. Tele-Rehabilitation Interventions for Motor Symptoms in COVID-19 Patients: A Narrative Review. Bioengineering (Basel) 2023; 10:650. [PMID: 37370581 DOI: 10.3390/bioengineering10060650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/05/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
The COVID-19 pandemic brought new challenges to global healthcare systems regarding the care of acute patients and the delivery of rehabilitation programs to post-acute or chronic patients. Patients who survive severe forms of COVID-19 often report incomplete healing and long-term symptoms. The need of these patients for rehabilitation has been recognized as a public health problem. In this context, the application of tele-rehabilitation has been explored to reduce the burden on healthcare systems. The purpose of this narrative review is to present an overview of the state of the art regarding the application of remote motor rehabilitation programs for paucisymptomatic acute and post-acute COVID-19 patients, with a focus on the motor aspects of tele-rehabilitation. Following an extensive search on PubMed, the Web of Science, and Scopus, specific studies have been reviewed and compared in terms of study objectives and participants, experimental protocols and methods for home-based interventions, functional assessment, and rehabilitation outcomes. Overall, this review suggests the feasibility and the effectiveness of tele-rehabilitation as a promising tool to complement face-to-face rehabilitation interventions. However, further improvements are needed to overcome the limitations and the current lack of knowledge in the field.
Collapse
Affiliation(s)
- Serena Cerfoglio
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, 20133 Milano, Italy
- Orthopaedic Rehabilitation Unit and Research Laboratory in Biomechanics, Rehabilitation and Ergonomics, San Giuseppe Hospital, IRCCS Istituto Auxologico Italiano, 28824 Piancavallo, Italy
| | - Paolo Capodaglio
- Orthopaedic Rehabilitation Unit and Research Laboratory in Biomechanics, Rehabilitation and Ergonomics, San Giuseppe Hospital, IRCCS Istituto Auxologico Italiano, 28824 Piancavallo, Italy
- Department of Surgical Sciences, Physical Medicine and Rehabilitation, University of Turin, 10126 Turin, Italy
| | - Paolo Rossi
- Clinica Hildebrand, Centro di Riabilitazione Brissago, CH-6614 Brissago, Switzerland
| | - Federica Verme
- Orthopaedic Rehabilitation Unit and Research Laboratory in Biomechanics, Rehabilitation and Ergonomics, San Giuseppe Hospital, IRCCS Istituto Auxologico Italiano, 28824 Piancavallo, Italy
| | - Gabriele Boldini
- Orthopaedic Rehabilitation Unit and Research Laboratory in Biomechanics, Rehabilitation and Ergonomics, San Giuseppe Hospital, IRCCS Istituto Auxologico Italiano, 28824 Piancavallo, Italy
| | - Viktoria Cvetkova
- Clinica Hildebrand, Centro di Riabilitazione Brissago, CH-6614 Brissago, Switzerland
| | - Graziano Ruggeri
- Clinica Hildebrand, Centro di Riabilitazione Brissago, CH-6614 Brissago, Switzerland
| | - Manuela Galli
- Orthopaedic Rehabilitation Unit and Research Laboratory in Biomechanics, Rehabilitation and Ergonomics, San Giuseppe Hospital, IRCCS Istituto Auxologico Italiano, 28824 Piancavallo, Italy
| | - Veronica Cimolin
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, 20133 Milano, Italy
- Orthopaedic Rehabilitation Unit and Research Laboratory in Biomechanics, Rehabilitation and Ergonomics, San Giuseppe Hospital, IRCCS Istituto Auxologico Italiano, 28824 Piancavallo, Italy
| |
Collapse
|
579
|
Cerda A, Rivera M, Armijo G, Ibarra-Henriquez C, Reyes J, Blázquez-Sánchez P, Avilés J, Arce A, Seguel A, Brown AJ, Vásquez Y, Cortez-San Martín M, Cubillos FA, García P, Ferres M, Ramírez-Sarmiento CA, Federici F, Gutiérrez RA. An Open One-Step RT-qPCR for SARS-CoV-2 detection. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2021.11.29.21267000. [PMID: 34909786 PMCID: PMC8669853 DOI: 10.1101/2021.11.29.21267000] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The COVID-19 pandemic has resulted in millions of deaths globally, and while several diagnostic systems were proposed, real-time reverse transcription polymerase chain reaction (RT-PCR) remains the gold standard. However, diagnostic reagents, including enzymes used in RT-PCR, are subject to centralized production models and intellectual property restrictions, which present a challenge for less developed countries. With the aim of generating a standardized One-Step open RT-qPCR protocol to detect SARS-CoV-2 RNA in clinical samples, we purified and tested recombinant enzymes and a non-proprietary buffer. The protocol utilized M-MLV RT and Taq DNA pol enzymes to perform a Taqman probe-based assay. Synthetic RNA samples were used to validate the One-Step RT-qPCR components, and the kit showed comparable sensitivity to approved commercial kits. The One-Step RT-qPCR was then tested on clinical samples and demonstrated similar performance to commercial kits in terms of positive and negative calls. This study represents a proof of concept for an open approach to developing diagnostic kits for viral infections and diseases, which could provide a cost-effective and accessible solution for less developed countries.
Collapse
Affiliation(s)
- Ariel Cerda
- ANID - Millennium Science Initiative Program - Millennium Institute for Integrative Biology (iBio)
- FONDAP Center for Genome Regulation. Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Santiago, 8331150, Chile
| | - Maira Rivera
- ANID - Millennium Science Initiative Program - Millennium Institute for Integrative Biology (iBio)
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Grace Armijo
- ANID - Millennium Science Initiative Program - Millennium Institute for Integrative Biology (iBio)
- FONDAP Center for Genome Regulation. Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Santiago, 8331150, Chile
| | - Catalina Ibarra-Henriquez
- ANID - Millennium Science Initiative Program - Millennium Institute for Integrative Biology (iBio)
- FONDAP Center for Genome Regulation. Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Santiago, 8331150, Chile
| | - Javiera Reyes
- ANID - Millennium Science Initiative Program - Millennium Institute for Integrative Biology (iBio)
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Paula Blázquez-Sánchez
- ANID - Millennium Science Initiative Program - Millennium Institute for Integrative Biology (iBio)
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Javiera Avilés
- ANID - Millennium Science Initiative Program - Millennium Institute for Integrative Biology (iBio)
| | - Aníbal Arce
- ANID - Millennium Science Initiative Program - Millennium Institute for Integrative Biology (iBio)
| | - Aldo Seguel
- ANID - Millennium Science Initiative Program - Millennium Institute for Integrative Biology (iBio)
| | - Alexander J. Brown
- Department of Biomedical Research, National Jewish Health, Denver, CO, USA
- Department of Immunology & Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Yesseny Vásquez
- Escuela de Ciencias Médicas. Facultad de Medicina. Universidad de Santiago de Chile. USACH, Santiago, Chile
| | - Marcelo Cortez-San Martín
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, USACH, Santiago, Chile
| | - Francisco A. Cubillos
- ANID - Millennium Science Initiative Program - Millennium Institute for Integrative Biology (iBio)
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, USACH, Santiago, Chile
| | - Patricia García
- Departamento de Laboratorios Clínicos. Escuela de Medicina. Facultad de Medicina. Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Marcela Ferres
- Departamento de Laboratorios Clínicos. Escuela de Medicina. Facultad de Medicina. Pontificia Universidad Católica de Chile, Santiago, Chile
| | - César A. Ramírez-Sarmiento
- ANID - Millennium Science Initiative Program - Millennium Institute for Integrative Biology (iBio)
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Fernán Federici
- ANID - Millennium Science Initiative Program - Millennium Institute for Integrative Biology (iBio)
- FONDAP Center for Genome Regulation. Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Santiago, 8331150, Chile
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Rodrigo A. Gutiérrez
- ANID - Millennium Science Initiative Program - Millennium Institute for Integrative Biology (iBio)
- FONDAP Center for Genome Regulation. Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Santiago, 8331150, Chile
| |
Collapse
|
580
|
Burn Aschner C, Muthuraman K, Kucharska I, Cui H, Prieto K, Nair MS, Wang M, Huang Y, Christie-Holmes N, Poon B, Lam J, Sultana A, Kozak R, Mubareka S, Rubinstein JL, Rujas E, Treanor B, Ho DD, Jetha A, Julien JP. A multi-specific, multi-affinity antibody platform neutralizes sarbecoviruses and confers protection against SARS-CoV-2 in vivo. Sci Transl Med 2023; 15:eadf4549. [PMID: 37224226 DOI: 10.1126/scitranslmed.adf4549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 04/26/2023] [Indexed: 05/26/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), has been responsible for a global pandemic. Monoclonal antibodies (mAbs) have been used as antiviral therapeutics; however, these therapeutics have been limited in efficacy by viral sequence variability in emerging variants of concern (VOCs) and in deployment by the need for high doses. In this study, we leveraged the multi-specific, multi-affinity antibody (Multabody, MB) platform, derived from the human apoferritin protomer, to enable the multimerization of antibody fragments. MBs were shown to be highly potent, neutralizing SARS-CoV-2 at lower concentrations than their corresponding mAb counterparts. In mice infected with SARS-CoV-2, a tri-specific MB targeting three regions within the SARS-CoV-2 receptor binding domain was protective at a 30-fold lower dose than a cocktail of the corresponding mAbs. Furthermore, we showed in vitro that mono-specific MBs potently neutralize SARS-CoV-2 VOCs by leveraging augmented avidity, even when corresponding mAbs lose their ability to neutralize potently, and that tri-specific MBs expanded the neutralization breadth beyond SARS-CoV-2 to other sarbecoviruses. Our work demonstrates how avidity and multi-specificity combined can be leveraged to confer protection and resilience against viral diversity that exceeds that of traditional monoclonal antibody therapies.
Collapse
Affiliation(s)
- Clare Burn Aschner
- Program in Molecular Medicine, Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
| | - Krithika Muthuraman
- Program in Molecular Medicine, Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Iga Kucharska
- Program in Molecular Medicine, Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
| | - Hong Cui
- Program in Molecular Medicine, Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
| | - Katherine Prieto
- Program in Molecular Medicine, Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
| | - Manoj S Nair
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Maple Wang
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Yaoxing Huang
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | | | - Betty Poon
- Combined Containment Level 3 Unit, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Jessica Lam
- Combined Containment Level 3 Unit, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Azmiri Sultana
- Combined Containment Level 3 Unit, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Robert Kozak
- Department of Laboratory Medicine and Molecular Diagnostics, Division of Microbiology, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Samira Mubareka
- Department of Laboratory Medicine and Molecular Diagnostics, Division of Microbiology, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
- Division of Infectious Diseases, Sunnybrook Health Sciences Centre and Department of Medicine, University of Toronto, Toronto, ON M4N 3M5, Canada
| | - John L Rubinstein
- Program in Molecular Medicine, Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Edurne Rujas
- Program in Molecular Medicine, Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
- Pharmacokinetic, Nanotechnology and Gene Therapy Group, Faculty of Pharmacy, University of the Basque Country UPV/EHU, 01006 Vitoria, Spain
- Bioaraba, Microbiology, Infectious Disease, Antimicrobial Agents, and Gene Therapy, 01006 Vitoria, Spain
| | - Bebhinn Treanor
- Department of Immunology, University of Toronto, ON M5S 1A8, Canada
- Department of Cell and Systems Biology, University of Toronto, ON M5S 3G5, Canada
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON M1C 1A4, Canada
| | - David D Ho
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
- Department of Microbiology and Immunology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
- Division of Infectious Diseases, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Arif Jetha
- Program in Molecular Medicine, Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
| | - Jean-Philippe Julien
- Program in Molecular Medicine, Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Immunology, University of Toronto, ON M5S 1A8, Canada
| |
Collapse
|
581
|
Detection of live SARS-CoV-2 virus and its variants by specially designed SERS-active substrates and spectroscopic analyses. Anal Chim Acta 2023; 1256:341151. [PMID: 37037632 PMCID: PMC10060322 DOI: 10.1016/j.aca.2023.341151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/07/2023] [Accepted: 03/26/2023] [Indexed: 04/05/2023]
Abstract
A method using label-free surface enhanced Raman spectroscopy (SERS) based on substrate design is provided for an early detection and differentiation of spike glycoprotein mutation sites in live SARS-CoV-2 variants. Two SERS-active substrates, Au nanocavities (Au NCs) and Au NPs on porous ZrO2 (Au NPs/pZrO2), were used to identify specific peaks of A.3, Alpha, and Delta variants at different concentrations and demonstrated the ability to provide their SERS spectra with detection limits of 0.1–1.0% (or 104−5 copies/mL). Variant identification can be achieved by cross-examining reference spectra and analyzing the substrate-analyte relationship between the suitability of the analyte upon the hotspot(s) formed at high concentrations and the effective detection distance at low concentrations. Mutation sites on the S1 chain of the spike glycoprotein for each variant may be related and distinguishable. This method does not require sample preprocessing and therefore allows for fast screening, which is of high value for more comprehensive and specific studies to distinguish upcoming variants.
Collapse
|
582
|
Atari N, Mamane H, Silberbush A, Zuckerman N, Mandelboim M, Gerchman Y. Disinfection of SARS-CoV-2 by UV-LED 267 nm: comparing different variants. Sci Rep 2023; 13:8229. [PMID: 37217554 PMCID: PMC10201513 DOI: 10.1038/s41598-023-35247-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 05/15/2023] [Indexed: 05/24/2023] Open
Abstract
UV irradiation is an efficient tool for the disinfection of viruses in general and coronavirus specifically. This study explores the disinfection kinetics of SARS-CoV-2 variants wild type (similar to the Wuhan strain) and three variants (Alpha, Delta, and Omicron) by 267 nm UV-LED. All variants showed more than 5 logs average reduction in copy number at 5 mJ/cm2 but inconsistency was evident, especially for the Alpha variant. Increasing the dose to 7 mJ/cm2 did not increase average inactivation but did result in a dramatic decrease in the inactivation inconsistency making this dose the recommended minimum. Sequence analysis suggests that the difference between the variants is likely due to small differences in the frequency of specific UV extra-sensitive nucleotide sequence motifs although this hypothesis requires further experimental testing. In summary, the use of UV-LED with their simple electricity need (can be operated from a battery or photovoltaic panel) and geometrical flexibility could offer many advantages in the prevention of SARS-CoV-2 spread, but minimal UV dose should be carefully considered.
Collapse
Affiliation(s)
- Nofar Atari
- Central Virology Laboratory, Ministry of Health, Chaim Sheba Medical Center, Tel-Hashomer, Ramat-Gan, Israel
| | - Hadas Mamane
- School of Mechanical Engineering, Faculty of Engineering, Tel Aviv University, 69978, Tel Aviv, Israel
| | - Alon Silberbush
- Department of Biology and Environment, Faculty of Natural Sciences, University of Haifa-Oranim, Kiryat Tiv'on, Israel
| | - Neta Zuckerman
- Central Virology Laboratory, Ministry of Health, Chaim Sheba Medical Center, Tel-Hashomer, Ramat-Gan, Israel
| | - Michal Mandelboim
- Central Virology Laboratory, Ministry of Health, Chaim Sheba Medical Center, Tel-Hashomer, Ramat-Gan, Israel
- Department of Epidemiology and Preventive Medicine, School of Public Health, Tel-Aviv University, Tel Aviv, Israel
| | - Yoram Gerchman
- The Institute of Evolution, University of Haifa, Haifa, Israel.
- Oranim College, 3600600, Tivon, Israel.
| |
Collapse
|
583
|
Lexner J, Lindroth Y, Sjöberg K. The risk for celiac disease after Covid-19 infection. BMC Gastroenterol 2023; 23:174. [PMID: 37217874 DOI: 10.1186/s12876-023-02795-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/30/2023] [Indexed: 05/24/2023] Open
Abstract
BACKGROUND Celiac disease (CD) is an autoimmune disease leading to gastrointestinal symptoms and mineral deficiencies. The pathogenetic mechanisms, besides the clear HLA association, are elusive. Among environmental factors infections have been proposed. Covid-19 infection results in a systemic inflammatory response that often also involves the gastrointestinal tract. The aim of the present study was to investigate whether Covid-19 infection could increase the risk for CD. PATIENTS AND METHODS All patients, both children and adults, in the county Skåne (1.4 million citizens) in southern Sweden with newly diagnosed biopsy- or serology-verified CD or a positive tissue transglutaminase antibody test (tTG-ab) during 2016-2021 were identified from registries at the Departments of Pathology and Immunology, respectively. Patients with a positive Covid-19 PCR or antigen test in 2020 and 2021 were identified from the Public Health Agency of Sweden. RESULTS During the Covid-19 pandemic (March 2020 - December 2021), there were 201 050 cases of Covid-19 and 568 patients with biopsy- or serology-verified CD or a first-time positive tTG-ab tests, of which 35 patients had been infected with Covid-19 before CD. The incidence of verified CD and tTG-ab positivity was lower in comparison to before the pandemic (May 2018 - February 2020; 22.5 vs. 25.5 cases per 100 000 person-years, respectively, incidence rate difference (IRD) -3.0, 95% CI -5.7 - -0.3, p = 0.028). The incidence of verified CD and tTG-ab positivity in patients with and without prior Covid-19 infection was 21.1 and 22.4 cases per 100 000 person-years, respectively (IRD - 1.3, 95% CI -8.5-5.9, p = 0.75). CONCLUSIONS Our results indicate that Covid-19 is not a risk factor for CD development. While gastrointestinal infections seem to be an important part of the CD pathogenesis, respiratory infections probably are of less relevance.
Collapse
Affiliation(s)
- Jesper Lexner
- Department of Gastroenterology and Nutrition, Department of Clinical Sciences, Skåne University Hospital, Lund University, Malmö, Sweden
| | - Ylva Lindroth
- Division of Medical Microbiology, Department of Laboratory Medicine, Skåne University Hospital, Lund University, Lund, Sweden
| | - Klas Sjöberg
- Department of Gastroenterology and Nutrition, Department of Clinical Sciences, Skåne University Hospital, Lund University, Malmö, Sweden.
| |
Collapse
|
584
|
Saldivar-Espinoza B, Garcia-Segura P, Novau-Ferré N, Macip G, Martínez R, Puigbò P, Cereto-Massagué A, Pujadas G, Garcia-Vallve S. The Mutational Landscape of SARS-CoV-2. Int J Mol Sci 2023; 24:ijms24109072. [PMID: 37240420 DOI: 10.3390/ijms24109072] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/12/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Mutation research is crucial for detecting and treating SARS-CoV-2 and developing vaccines. Using over 5,300,000 sequences from SARS-CoV-2 genomes and custom Python programs, we analyzed the mutational landscape of SARS-CoV-2. Although almost every nucleotide in the SARS-CoV-2 genome has mutated at some time, the substantial differences in the frequency and regularity of mutations warrant further examination. C>U mutations are the most common. They are found in the largest number of variants, pangolin lineages, and countries, which indicates that they are a driving force behind the evolution of SARS-CoV-2. Not all SARS-CoV-2 genes have mutated in the same way. Fewer non-synonymous single nucleotide variations are found in genes that encode proteins with a critical role in virus replication than in genes with ancillary roles. Some genes, such as spike (S) and nucleocapsid (N), show more non-synonymous mutations than others. Although the prevalence of mutations in the target regions of COVID-19 diagnostic RT-qPCR tests is generally low, in some cases, such as for some primers that bind to the N gene, it is significant. Therefore, ongoing monitoring of SARS-CoV-2 mutations is crucial. The SARS-CoV-2 Mutation Portal provides access to a database of SARS-CoV-2 mutations.
Collapse
Affiliation(s)
- Bryan Saldivar-Espinoza
- Departament de Bioquímica i Biotecnologia, Research Group in Cheminformatics & Nutrition, Campus de Sescelades, Universitat Rovira i Virgili, 43007 Tarragona, Spain
| | - Pol Garcia-Segura
- Departament de Bioquímica i Biotecnologia, Research Group in Cheminformatics & Nutrition, Campus de Sescelades, Universitat Rovira i Virgili, 43007 Tarragona, Spain
| | - Nil Novau-Ferré
- Departament de Bioquímica i Biotecnologia, Research Group in Cheminformatics & Nutrition, Campus de Sescelades, Universitat Rovira i Virgili, 43007 Tarragona, Spain
| | - Guillem Macip
- Departament de Bioquímica i Biotecnologia, Research Group in Cheminformatics & Nutrition, Campus de Sescelades, Universitat Rovira i Virgili, 43007 Tarragona, Spain
| | | | - Pere Puigbò
- Department of Biology, University of Turku, 20500 Turku, Finland
- Department of Biochemistry and Biotechnology, Rovira i Virgili University, 43007 Tarragona, Spain
- Eurecat, Technology Centre of Catalonia, Unit of Nutrition and Health, 43204 Reus, Spain
| | - Adrià Cereto-Massagué
- EURECAT Centre Tecnològic de Catalunya, Centre for Omic Sciences (COS), Joint Unit Universitat Rovira i Virgili-EURECAT, Unique Scientific and Technical Infrastructures (ICTS), 43204 Reus, Spain
| | - Gerard Pujadas
- Departament de Bioquímica i Biotecnologia, Research Group in Cheminformatics & Nutrition, Campus de Sescelades, Universitat Rovira i Virgili, 43007 Tarragona, Spain
| | - Santiago Garcia-Vallve
- Departament de Bioquímica i Biotecnologia, Research Group in Cheminformatics & Nutrition, Campus de Sescelades, Universitat Rovira i Virgili, 43007 Tarragona, Spain
| |
Collapse
|
585
|
Chen DY, Turcinovic J, Feng S, Kenney DJ, Chin CV, Choudhary MC, Conway HL, Semaan M, Close BJ, Tavares AH, Seitz S, Khan N, Kapell S, Crossland NA, Li JZ, Douam F, Baker SC, Connor JH, Saeed M. Cell culture systems for isolation of SARS-CoV-2 clinical isolates and generation of recombinant virus. iScience 2023; 26:106634. [PMID: 37095858 PMCID: PMC10083141 DOI: 10.1016/j.isci.2023.106634] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 02/22/2023] [Accepted: 04/05/2023] [Indexed: 04/26/2023] Open
Abstract
A simple and robust cell culture system is essential for generating authentic SARS-CoV-2 stocks for evaluation of viral pathogenicity, screening of antiviral compounds, and preparation of inactivated vaccines. Evidence suggests that Vero E6, a cell line commonly used in the field to grow SARS-CoV-2, does not support efficient propagation of new viral variants and triggers rapid cell culture adaptation of the virus. We generated a panel of 17 human cell lines overexpressing SARS-CoV-2 entry factors and tested their ability to support viral infection. Two cell lines, Caco-2/AT and HuH-6/AT, demonstrated exceptional susceptibility, yielding highly concentrated virus stocks. Notably, these cell lines were more sensitive than Vero E6 cells in recovering SARS-CoV-2 from clinical specimens. Further, Caco-2/AT cells provided a robust platform for producing genetically reliable recombinant SARS-CoV-2 through a reverse genetics system. These cellular models are a valuable tool for the study of SARS-CoV-2 and its continuously emerging variants.
Collapse
Affiliation(s)
- Da-Yuan Chen
- Department of Biochemistry, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
| | - Jacquelyn Turcinovic
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
- Department of Microbiology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | - Shuchen Feng
- Department of Microbiology and Immunology, Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA
| | - Devin J. Kenney
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
- Department of Microbiology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | - Chue Vin Chin
- Department of Biochemistry, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
| | - Manish C. Choudhary
- Brigham and Women’s Hospital, Boston, MA, USA
- Harvard Medical School, Cambridge, MA, USA
| | - Hasahn L. Conway
- Department of Biochemistry, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
| | - Marc Semaan
- Department of Biochemistry, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
| | - Brianna J. Close
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
- Department of Microbiology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | - Alexander H. Tavares
- Department of Biochemistry, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
| | - Scott Seitz
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
- Department of Microbiology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | - Nazimuddin Khan
- Department of Biochemistry, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
| | - Sebastian Kapell
- Department of Biochemistry, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
| | - Nicholas A. Crossland
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Jonathan Z. Li
- Brigham and Women’s Hospital, Boston, MA, USA
- Harvard Medical School, Cambridge, MA, USA
| | - Florian Douam
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
- Department of Microbiology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | - Susan C. Baker
- Department of Microbiology and Immunology, Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA
| | - John H. Connor
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
- Department of Microbiology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | - Mohsan Saeed
- Department of Biochemistry, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
| |
Collapse
|
586
|
Yu B, Xu C, Huang S, Ni J, Zhou J, Zhang Y, Wu M, Zhang J, Fang L. Development of a universal real-time RT-PCR assay for detection of pan-SARS-coronaviruses with an RNA-based internal control. Front Microbiol 2023; 14:1181097. [PMID: 37275136 PMCID: PMC10232947 DOI: 10.3389/fmicb.2023.1181097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 04/13/2023] [Indexed: 06/07/2023] Open
Abstract
The current pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) exemplifies the critical need for rapid diagnostic assays to prompt intensified virological monitoring both in human and wild animal populations. To date, there are no clinical validated assays for pan-SARS-coronavirus (pan-SARS-CoV) detection. Here, we suggest an innovative primer design strategy for the diagnosis of pan-SARS-CoVs targeting the envelope (E) gene using reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Furthermore, we developed a new primer-probe set targeting human β2-microglobulin (B2M) as an RNA-based internal control for process efficacy. The universal RT-qPCR assay demonstrated no false-positive amplifications with other human coronaviruses or 20 common respiratory viruses, and its limit of detection (LOD) was 159.16 copies/ml at 95% detection probability. In clinical validation, the assay delivered 100% sensitive results in the detection of SARS-CoV-2-positive oropharyngeal samples (n = 120), including three variants of concern (Wuhan, Delta, and Omicron). Taken together, this universal RT-qPCR assay provides a highly sensitive, robust, and rapid detection of SARS-CoV-1, SARS-CoV-2, and animal-derived SARS-related CoVs.
Collapse
Affiliation(s)
- Beibei Yu
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University College of Medicine, Hangzhou, China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou, China
| | - Changping Xu
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Shiwang Huang
- Shangcheng District Center for Disease Control and Prevention, Hangzhou, China
| | - Jun Ni
- Department of Critical Care Medicine, Sir Run Run Shaw Hospital, Zhejiang University College of Medicine, Hangzhou, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
| | - Jiancang Zhou
- Department of Critical Care Medicine, Sir Run Run Shaw Hospital, Zhejiang University College of Medicine, Hangzhou, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
| | - Yuting Zhang
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Maomao Wu
- Wenzhou Center for Disease Control and Prevention, Wenzhou, China
| | - Jun Zhang
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University College of Medicine, Hangzhou, China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou, China
| | - Lei Fang
- Department of Critical Care Medicine, Sir Run Run Shaw Hospital, Zhejiang University College of Medicine, Hangzhou, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
| |
Collapse
|
587
|
Zhang Q, Zhao L, Qi G, Zhang X, Tian C. Raman and fourier transform infrared spectroscopy techniques for detection of coronavirus (COVID-19): a mini review. Front Chem 2023; 11:1193030. [PMID: 37273513 PMCID: PMC10232992 DOI: 10.3389/fchem.2023.1193030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/01/2023] [Indexed: 06/06/2023] Open
Abstract
Coronavirus pandemic has been a huge jeopardy to human health in various systems since it outbroke, early detection and prevention of further escalation has become a priority. The current popular approach is to collect samples using the nasopharyngeal swab method and then test for RNA using the real-time polymerase chain reaction, which suffers from false-positive results and a longer diagnostic time scale. Alternatively, various optical techniques, namely, optical sensing, spectroscopy, and imaging shows a great promise in virus detection. In this mini review, we briefly summarize the development progress of vibrational spectroscopy techniques and its applications in the detection of SARS-CoV family. Vibrational spectroscopy techniques such as Raman spectroscopy and infrared spectroscopy received increasing appreciation in bio-analysis for their speediness, accuracy and cost-effectiveness in detection of SARS-CoV. Further, an account of emerging photonics technologies of SARS-CoV-2 detection and future possibilities is also explained. The progress in the field of vibrational spectroscopy techniques for virus detection unambiguously show a great promise in the development of rapid photonics-based devices for COVID-19 detection.
Collapse
Affiliation(s)
- Qiuqi Zhang
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Lei Zhao
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, College of Chemistry and Chemical Engineering, Linyi University, Linyi, China
| | - Guoliang Qi
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, College of Chemistry and Chemical Engineering, Linyi University, Linyi, China
| | - Xiaoru Zhang
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis and College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Cheng Tian
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, College of Chemistry and Chemical Engineering, Linyi University, Linyi, China
| |
Collapse
|
588
|
Kuznetsova NA, Ogarkova DA, Gushchin VA, Antipyat NА, Bacalin VV, Burgasova OA, Vasilchenko LA, Samkov AA, Simakova YV, Divisenko EV, Siniavin AE, Tkachuk AP, Kolobukhina LV, Shidlovskaya EV, Tyurin IN, Kruzhkova IS, Zlobin VI, Nikiforova MA, Odnoralov MA, Gintsburg AL. [Evaluation of the dynamics of detection of viable SARS-CoV-2 (Coronaviridae: Betacoronavirus: Sarbecovirus) in biological samples obtained from patients with COVID-19 in a health care setting, as one of the indicators of the infectivity of the virus]. Vopr Virusol 2023; 68:105-116. [PMID: 37264845 DOI: 10.36233/0507-4088-160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Indexed: 06/03/2023]
Abstract
INTRODUCTION The study of the mechanisms of transmission of the SARS-CoV-2 virus is the basis for building a strategy for anti-epidemic measures in the context of the COVID-19 pandemic. Understanding in what time frame a patient can spread SARS-CoV-2 is just as important as knowing the transmission mechanisms themselves. This information is necessary to develop effective measures to prevent infection by breaking the chains of transmission of the virus. The aim of the work is to identify the infectious SARS-CoV-2 virus in patient samples in the course of the disease and to determine the duration of virus shedding in patients with varying severity of COVID-19. MATERIALS AND METHODS In patients included in the study, biomaterial (nasopharyngeal swabs) was subjected to analysis by quantitative RT-PCR and virological determination of infectivity of the virus. RESULTS We have determined the timeframe of maintaining the infectivity of the virus in patients hospitalized with severe and moderate COVID-19. Based on the results of the study, we made an analysis of the relationship between the amount of detected SARS-CoV-2 RNA and the infectivity of the virus in vitro in patients with COVID-19. The median time of the infectious virus shedding was 8 days. In addition, a comparative analysis of different protocols for the detection of the viral RNA in relation to the identification of the infectious virus was carried out. CONCLUSION The obtained data make it possible to assess the dynamics of SARS-CoV-2 detection and viral load in patients with COVID-19 and indicate the significance of these parameters for the subsequent spread of the virus and the organization of preventive measures.
Collapse
Affiliation(s)
- N A Kuznetsova
- National Research Center for Epidemiology and Microbiology named after Honorary Academician N.F. Gamaleya of the Ministry of Health of the Russian Federation
| | - D A Ogarkova
- National Research Center for Epidemiology and Microbiology named after Honorary Academician N.F. Gamaleya of the Ministry of Health of the Russian Federation
| | - V A Gushchin
- National Research Center for Epidemiology and Microbiology named after Honorary Academician N.F. Gamaleya of the Ministry of Health of the Russian Federation
| | - N А Antipyat
- Infectious Clinical Hospital No. 1 of the Department of Health of the Moscow
| | | | | | - L A Vasilchenko
- National Research Center for Epidemiology and Microbiology named after Honorary Academician N.F. Gamaleya of the Ministry of Health of the Russian Federation
| | - A A Samkov
- Infectious Clinical Hospital No. 1 of the Department of Health of the Moscow
| | - Y V Simakova
- National Research Center for Epidemiology and Microbiology named after Honorary Academician N.F. Gamaleya of the Ministry of Health of the Russian Federation
| | - E V Divisenko
- National Research Center for Epidemiology and Microbiology named after Honorary Academician N.F. Gamaleya of the Ministry of Health of the Russian Federation
| | - A E Siniavin
- National Research Center for Epidemiology and Microbiology named after Honorary Academician N.F. Gamaleya of the Ministry of Health of the Russian Federation
| | - A P Tkachuk
- National Research Center for Epidemiology and Microbiology named after Honorary Academician N.F. Gamaleya of the Ministry of Health of the Russian Federation
| | - L V Kolobukhina
- National Research Center for Epidemiology and Microbiology named after Honorary Academician N.F. Gamaleya of the Ministry of Health of the Russian Federation
| | - E V Shidlovskaya
- National Research Center for Epidemiology and Microbiology named after Honorary Academician N.F. Gamaleya of the Ministry of Health of the Russian Federation
| | - I N Tyurin
- Infectious Clinical Hospital No. 1 of the Department of Health of the Moscow
| | - I S Kruzhkova
- National Research Center for Epidemiology and Microbiology named after Honorary Academician N.F. Gamaleya of the Ministry of Health of the Russian Federation
| | - V I Zlobin
- National Research Center for Epidemiology and Microbiology named after Honorary Academician N.F. Gamaleya of the Ministry of Health of the Russian Federation
| | - M A Nikiforova
- National Research Center for Epidemiology and Microbiology named after Honorary Academician N.F. Gamaleya of the Ministry of Health of the Russian Federation
| | - M A Odnoralov
- Infectious Clinical Hospital No. 1 of the Department of Health of the Moscow
| | - A L Gintsburg
- National Research Center for Epidemiology and Microbiology named after Honorary Academician N.F. Gamaleya of the Ministry of Health of the Russian Federation
| |
Collapse
|
589
|
Cheng L, Lan L, Ramalingam M, He J, Yang Y, Gao M, Shi Z. A review of current effective COVID-19 testing methods and quality control. Arch Microbiol 2023; 205:239. [PMID: 37195393 DOI: 10.1007/s00203-023-03579-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 05/04/2023] [Accepted: 05/04/2023] [Indexed: 05/18/2023]
Abstract
COVID-19 is a highly infectious disease caused by the SARS-CoV-2 virus, which primarily affects the respiratory system and can lead to severe illness. The virus is extremely contagious, early and accurate diagnosis of SARS-CoV-2 is crucial to contain its spread, to provide prompt treatment, and to prevent complications. Currently, the reverse transcriptase polymerase chain reaction (RT-PCR) is considered to be the gold standard for detecting COVID-19 in its early stages. In addition, loop-mediated isothermal amplification (LMAP), clustering rule interval short palindromic repeats (CRISPR), colloidal gold immunochromatographic assay (GICA), computed tomography (CT), and electrochemical sensors are also common tests. However, these different methods vary greatly in terms of their detection efficiency, specificity, accuracy, sensitivity, cost, and throughput. Besides, most of the current detection methods are conducted in central hospitals and laboratories, which is a great challenge for remote and underdeveloped areas. Therefore, it is essential to review the advantages and disadvantages of different COVID-19 detection methods, as well as the technology that can enhance detection efficiency and improve detection quality in greater details.
Collapse
Affiliation(s)
- Lijia Cheng
- Clinical Medical College & Affiliated Hospital, School of Basic Medical Sciences, Chengdu University, Chengdu, 610106, China.
| | - Liang Lan
- Clinical Medical College & Affiliated Hospital, School of Basic Medical Sciences, Chengdu University, Chengdu, 610106, China
| | - Murugan Ramalingam
- Clinical Medical College & Affiliated Hospital, School of Basic Medical Sciences, Chengdu University, Chengdu, 610106, China
| | - Jianrong He
- Clinical Medical College & Affiliated Hospital, School of Basic Medical Sciences, Chengdu University, Chengdu, 610106, China
| | - Yimin Yang
- Clinical Medical College & Affiliated Hospital, School of Basic Medical Sciences, Chengdu University, Chengdu, 610106, China
| | - Min Gao
- Clinical Medical College & Affiliated Hospital, School of Basic Medical Sciences, Chengdu University, Chengdu, 610106, China
| | - Zheng Shi
- Clinical Medical College & Affiliated Hospital, School of Basic Medical Sciences, Chengdu University, Chengdu, 610106, China.
| |
Collapse
|
590
|
Park KS, Choi A, Kim HJ, Park I, Eom MS, Yeo SG, Son RG, Park TI, Lee G, Soh HT, Hong Y, Pack SP. Ultra-sensitive label-free SERS biosensor with high-throughput screened DNA aptamer for universal detection of SARS-CoV-2 variants from clinical samples. Biosens Bioelectron 2023; 228:115202. [PMID: 36940632 PMCID: PMC9993738 DOI: 10.1016/j.bios.2023.115202] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/28/2023] [Accepted: 03/04/2023] [Indexed: 03/21/2023]
Abstract
COVID-19, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has caused an ongoing global pandemic with economic and social disruption. Moreover, the virus has persistently and rapidly evolved into novel lineages with mutations. The most effective strategy to control the pandemic is suppressing virus spread through early detection of infections. Therefore, developing a rapid, accurate, easy-to-use diagnostic platform against SARS-CoV-2 variants of concern remains necessary. Here, we developed an ultra-sensitive label-free surface-enhanced Raman scattering-based aptasensor as a countermeasure for the universal detection of SARS-CoV-2 variants of concern. In this aptasensor platform, we discovered two DNA aptamers that enable binding to SARS-CoV-2 spike protein via the Particle Display, a high-throughput screening approach. These showed high affinity that exhibited dissociation constants of 1.47 ± 0.30 nM and 1.81 ± 0.39 nM. We designed a combination with the aptamers and silver nanoforest for developing an ultra-sensitive SERS platform and achieved an attomolar (10-18 M) level detection limit with a recombinant trimeric spike protein. Furthermore, using the intrinsic properties of the aptamer signal, we demonstrated a label-free aptasensor approach, enabling use without the Raman tag. Finally, our label-free SERS-combined aptasensor succeeded in detecting SARS-CoV-2 with excellent accuracy, even in clinical samples with variants of concern, including the wild-type, delta, and omicron variants.
Collapse
Affiliation(s)
- Ki Sung Park
- Department of Biotechnology and Bioinformatics, Korea University, Sejong, 30019, Republic of Korea
| | - Anna Choi
- Department of Biotechnology and Bioinformatics, Korea University, Sejong, 30019, Republic of Korea
| | - Hyun Jung Kim
- Department of Biotechnology and Bioinformatics, Korea University, Sejong, 30019, Republic of Korea; Department of Medical Device, Korea Institute of Machinery and Materials (KIMM), Daegu, 42994, Republic of Korea
| | - Insu Park
- Department of Biotechnology and Bioinformatics, Korea University, Sejong, 30019, Republic of Korea; Department of Biomedical Engineering, Konyang University, Daejeon, 35365, Republic of Korea
| | - Mi-Suk Eom
- Division of Infectious Diseases, Sejong Institute of Health & Environment, Sejong, 30015, Republic of Korea
| | - Sang-Gu Yeo
- Division of Infectious Diseases, Sejong Institute of Health & Environment, Sejong, 30015, Republic of Korea
| | - Ryeo Gang Son
- Department of Biotechnology and Bioinformatics, Korea University, Sejong, 30019, Republic of Korea
| | - Tae-In Park
- Department of Biotechnology and Bioinformatics, Korea University, Sejong, 30019, Republic of Korea
| | - Gyudo Lee
- Department of Biotechnology and Bioinformatics, Korea University, Sejong, 30019, Republic of Korea
| | - Hyongsok Tom Soh
- Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA; Department of Radiology, Stanford University, Stanford, CA, 94305, USA
| | - Yoochan Hong
- Department of Medical Device, Korea Institute of Machinery and Materials (KIMM), Daegu, 42994, Republic of Korea.
| | - Seung Pil Pack
- Department of Biotechnology and Bioinformatics, Korea University, Sejong, 30019, Republic of Korea.
| |
Collapse
|
591
|
Haanappel CP, Oude Munnink BB, Sikkema RS, Voor In 't Holt AF, de Jager H, de Boever R, Koene HHHT, Boter M, Chestakova IV, van der Linden A, Molenkamp R, Osbak KK, Arcilla MS, Vos MC, Koopmans MPG, Severin JA. Combining epidemiological data and whole genome sequencing to understand SARS-CoV-2 transmission dynamics in a large tertiary care hospital during the first COVID-19 wave in The Netherlands focusing on healthcare workers. Antimicrob Resist Infect Control 2023; 12:46. [PMID: 37165456 PMCID: PMC10170429 DOI: 10.1186/s13756-023-01247-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/29/2023] [Indexed: 05/12/2023] Open
Abstract
BACKGROUND Healthcare facilities have been challenged by the risk of SARS-CoV-2 transmission between healthcare workers (HCW) and patients. During the first wave of the COVID-19 pandemic, infections among HCW were observed, questioning infection prevention and control (IPC) measures implemented at that time. AIM This study aimed to identify nosocomial transmission routes of SARS-CoV-2 between HCW and patients in a tertiary care hospital. METHODS All SARS-CoV-2 PCR positive HCW and patients identified between 1 March and 19 May 2020, were included in the analysis. Epidemiological data were collected from patient files and HCW contact tracing interviews. Whole genome sequences of SARS-CoV-2 were generated using Nanopore sequencing (WGS). Epidemiological clusters were identified, whereafter WGS and epidemiological data were combined for re-evaluation of epidemiological clusters and identification of potential transmission clusters. HCW infections were further classified into categories based on the likelihood that the infection was acquired via nosocomial transmission. Secondary cases were defined as COVID-19 cases in our hospital, part of a transmission cluster, of which the index case was either a patient or HCW from our hospital. FINDINGS The study population consisted of 293 HCW and 245 patients. Epidemiological data revealed 36 potential epidemiological clusters, with an estimated 222 (75.7%) HCW as secondary cases. WGS results were available for 195 HCW (88.2%) and 20 patients (12.8%) who belonged to an epidemiological cluster. Re-evaluation of the epidemiological clusters, with the available WGS data identified 31 transmission clusters with 65 (29.4%) HCW as secondary cases. Transmission clusters were all part of 18 (50.0%) previously determined epidemiological clusters, demonstrating that several larger outbreaks actually consisted, of several smaller transmission clusters. A total of 21 (7.2%) HCW infections were classified as from confirmed nosocomial, of which 18 were acquired from another HCW and 3 from a patient. CONCLUSION The majority of SARS-CoV-2 infections among HCW could be attributed to community-acquired infection. Infections among HCW that could be classified as due to nosocomial transmission, were mainly caused by HCW-to-HCW transmission rather than patient-to-HCW transmission. It is important to recognize the uncertainties of cluster analyses based solely on epidemiological data.
Collapse
Affiliation(s)
- Cynthia P Haanappel
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC University Medical Center Rotterdam, 3000 CA, Rotterdam, The Netherlands
| | - Bas B Oude Munnink
- Department of Viroscience, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Reina S Sikkema
- Department of Viroscience, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Anne F Voor In 't Holt
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC University Medical Center Rotterdam, 3000 CA, Rotterdam, The Netherlands
| | - Herbert de Jager
- Department of Occupational Health Services, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Rieneke de Boever
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC University Medical Center Rotterdam, 3000 CA, Rotterdam, The Netherlands
| | - Heidy H H T Koene
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC University Medical Center Rotterdam, 3000 CA, Rotterdam, The Netherlands
| | - Marjan Boter
- Department of Viroscience, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Irina V Chestakova
- Department of Viroscience, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Anne van der Linden
- Department of Viroscience, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Richard Molenkamp
- Department of Viroscience, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Kara K Osbak
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC University Medical Center Rotterdam, 3000 CA, Rotterdam, The Netherlands
| | - Maris S Arcilla
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC University Medical Center Rotterdam, 3000 CA, Rotterdam, The Netherlands
| | - Margreet C Vos
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC University Medical Center Rotterdam, 3000 CA, Rotterdam, The Netherlands
| | - Marion P G Koopmans
- Department of Viroscience, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Juliëtte A Severin
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC University Medical Center Rotterdam, 3000 CA, Rotterdam, The Netherlands.
| |
Collapse
|
592
|
Del-Puerto F, Rojas LE, Díaz Acosta CC, Franco LX, Cardozo F, Galeano ME, Valenzuela A, Rojas A, Martínez M, Ayala-Lugo A, Mendoza L, Ovando FS, Martínez MF, Chung HJ, Webby R, Nara E, Caniza MA. The Experience of Testing for Coronavirus Disease (COVID-19) at a Single Diagnostic Center in Paraguay before the Introduction of Vaccination. Viruses 2023; 15:v15051136. [PMID: 37243222 DOI: 10.3390/v15051136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/02/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
Soon after the declaration of the COVID-19 pandemic, the Institute for Health Sciences Research (IICS) of the National University of Asunción, Paraguay became a testing laboratory (COVID-Lab) for SARS-CoV-2. The COVID-Lab testing performance was assessed from 1 April 2020 to 12 May 2021. The effect of the pandemic on the IICS and how the COVID-Lab contributed to the academic and research activities of the institute were also assessed. IICS researchers and staff adjusted their work schedules to support the COVID-Lab. Of the 13,082 nasopharyngeal/oropharyngeal swabs processed, 2704 (20.7%) tested positive for SARS-CoV-2 by RT-PCR. Of the individuals testing positive, 55.4% were female and 48.3% were aged 21-40 years. Challenges faced by the COVID-Lab were unstable reagent access and insufficient staff; shifting obligations regarding research, academic instruction, and grantsmanship; and the continuous demands from the public for information on COVID-19. The IICS provided essential testing and reported on the progress of the pandemic. IICS researchers gained better laboratory equipment and expertise in molecular SARS-CoV-2 testing but struggled to manage their conflicting educational and additional research obligations during the pandemic, which affected their productivity. Therefore, policies protecting the time and resources of the faculty and staff engaged in pandemic-related work or research are necessary components of healthcare emergency preparedness.
Collapse
Affiliation(s)
- Florencia Del-Puerto
- COVID-19 Contingency Technical Committee of the Instituto de Investigaciones en Ciencias de la Salud (IICS) of the Universidad Nacional de Asunción (UNA), San Lorenzo 111241, Paraguay
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones en Ciencias de la Salud, Universidad Nacional de Asunción, San Lorenzo 111241, Paraguay
| | - Leticia E Rojas
- COVID-19 Contingency Technical Committee of the Instituto de Investigaciones en Ciencias de la Salud (IICS) of the Universidad Nacional de Asunción (UNA), San Lorenzo 111241, Paraguay
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones en Ciencias de la Salud, Universidad Nacional de Asunción, San Lorenzo 111241, Paraguay
| | - Chyntia C Díaz Acosta
- COVID-19 Contingency Technical Committee of the Instituto de Investigaciones en Ciencias de la Salud (IICS) of the Universidad Nacional de Asunción (UNA), San Lorenzo 111241, Paraguay
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones en Ciencias de la Salud, Universidad Nacional de Asunción, San Lorenzo 111241, Paraguay
| | - Laura X Franco
- COVID-19 Contingency Technical Committee of the Instituto de Investigaciones en Ciencias de la Salud (IICS) of the Universidad Nacional de Asunción (UNA), San Lorenzo 111241, Paraguay
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones en Ciencias de la Salud, Universidad Nacional de Asunción, San Lorenzo 111241, Paraguay
| | - Fátima Cardozo
- COVID-19 Contingency Technical Committee of the Instituto de Investigaciones en Ciencias de la Salud (IICS) of the Universidad Nacional de Asunción (UNA), San Lorenzo 111241, Paraguay
- Departamento de Salud Pública, Instituto de Investigaciones en Ciencias de la Salud, Universidad Nacional de Asunción, San Lorenzo 111241, Paraguay
| | - María E Galeano
- COVID-19 Contingency Technical Committee of the Instituto de Investigaciones en Ciencias de la Salud (IICS) of the Universidad Nacional de Asunción (UNA), San Lorenzo 111241, Paraguay
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones en Ciencias de la Salud, Universidad Nacional de Asunción, San Lorenzo 111241, Paraguay
| | - Adriana Valenzuela
- COVID-19 Contingency Technical Committee of the Instituto de Investigaciones en Ciencias de la Salud (IICS) of the Universidad Nacional de Asunción (UNA), San Lorenzo 111241, Paraguay
- Departamento de Salud Pública, Instituto de Investigaciones en Ciencias de la Salud, Universidad Nacional de Asunción, San Lorenzo 111241, Paraguay
| | - Alejandra Rojas
- COVID-19 Contingency Technical Committee of the Instituto de Investigaciones en Ciencias de la Salud (IICS) of the Universidad Nacional de Asunción (UNA), San Lorenzo 111241, Paraguay
- Departamento de Producción, Instituto de Investigaciones en Ciencias de la Salud, Universidad Nacional de Asunción, Dr. Cecilio Báez y Dr. Villamayor, Campus Universitario, San Lorenzo 111241, Paraguay
| | - Magaly Martínez
- COVID-19 Contingency Technical Committee of the Instituto de Investigaciones en Ciencias de la Salud (IICS) of the Universidad Nacional de Asunción (UNA), San Lorenzo 111241, Paraguay
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones en Ciencias de la Salud, Universidad Nacional de Asunción, San Lorenzo 111241, Paraguay
| | - Ana Ayala-Lugo
- COVID-19 Contingency Technical Committee of the Instituto de Investigaciones en Ciencias de la Salud (IICS) of the Universidad Nacional de Asunción (UNA), San Lorenzo 111241, Paraguay
- Departamento de Genética, Instituto de Investigaciones en Ciencias de la Salud, Universidad Nacional de Asunción, Dr. Cecilio Báez y Dr. Villamayor, Campus Universitario, San Lorenzo 111241, Paraguay
| | - Laura Mendoza
- COVID-19 Contingency Technical Committee of the Instituto de Investigaciones en Ciencias de la Salud (IICS) of the Universidad Nacional de Asunción (UNA), San Lorenzo 111241, Paraguay
- Departamento de Salud Pública, Instituto de Investigaciones en Ciencias de la Salud, Universidad Nacional de Asunción, San Lorenzo 111241, Paraguay
| | - Fátima S Ovando
- Departamento de Control de Infecciones, Facultad de Ciencias Médicas, Hospital de Clínicas, Universidad Nacional de Asunción, Campus Universitario, San Lorenzo 111241, Paraguay
| | - Mario F Martínez
- COVID-19 Contingency Technical Committee of the Instituto de Investigaciones en Ciencias de la Salud (IICS) of the Universidad Nacional de Asunción (UNA), San Lorenzo 111241, Paraguay
- Dirección General, Instituto de Investigaciones en Ciencias de la Salud, Universidad Nacional de Asunción, Dr. Cecilio Báez y Dr. Villamayor, Campus Universitario, San Lorenzo 111241, Paraguay
| | - Hyun J Chung
- Department of Global Pediatric Medicine, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Richard Webby
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Eva Nara
- COVID-19 Contingency Technical Committee of the Instituto de Investigaciones en Ciencias de la Salud (IICS) of the Universidad Nacional de Asunción (UNA), San Lorenzo 111241, Paraguay
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones en Ciencias de la Salud, Universidad Nacional de Asunción, San Lorenzo 111241, Paraguay
| | - Miguela A Caniza
- Department of Global Pediatric Medicine, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Department of Pediatrics, University of Tennessee Health Science Center College of Medicine, Memphis, TN 38103, USA
| |
Collapse
|
593
|
Lebrun L, Absil L, Remmelink M, De Mendonça R, D'Haene N, Gaspard N, Rusu S, Racu ML, Collin A, Allard J, Zindy E, Schiavo AA, De Clercq S, De Witte O, Decaestecker C, Lopes MB, Salmon I. SARS-Cov-2 infection and neuropathological findings: a report of 18 cases and review of the literature. Acta Neuropathol Commun 2023; 11:78. [PMID: 37165453 PMCID: PMC10170054 DOI: 10.1186/s40478-023-01566-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 04/15/2023] [Indexed: 05/12/2023] Open
Abstract
INTRODUCTION COVID-19-infected patients harbour neurological symptoms such as stroke and anosmia, leading to the hypothesis that there is direct invasion of the central nervous system (CNS) by SARS-CoV-2. Several studies have reported the neuropathological examination of brain samples from patients who died from COVID-19. However, there is still sparse evidence of virus replication in the human brain, suggesting that neurologic symptoms could be related to mechanisms other than CNS infection by the virus. Our objective was to provide an extensive review of the literature on the neuropathological findings of postmortem brain samples from patients who died from COVID-19 and to report our own experience with 18 postmortem brain samples. MATERIAL AND METHODS We used microscopic examination, immunohistochemistry (using two different antibodies) and PCR-based techniques to describe the neuropathological findings and the presence of SARS-CoV-2 virus in postmortem brain samples. For comparison, similar techniques (IHC and PCR) were applied to the lung tissue samples for each patient from our cohort. The systematic literature review was conducted from the beginning of the pandemic in 2019 until June 1st, 2022. RESULTS In our cohort, the most common neuropathological findings were perivascular haemosiderin-laden macrophages and hypoxic-ischaemic changes in neurons, which were found in all cases (n = 18). Only one brain tissue sample harboured SARS-CoV-2 viral spike and nucleocapsid protein expression, while all brain cases harboured SARS-CoV-2 RNA positivity by PCR. A colocalization immunohistochemistry study revealed that SARS-CoV-2 antigens could be located in brain perivascular macrophages. The literature review highlighted that the most frequent neuropathological findings were ischaemic and haemorrhagic lesions, including hypoxic/ischaemic alterations. However, few studies have confirmed the presence of SARS-CoV-2 antigens in brain tissue samples. CONCLUSION This study highlighted the lack of specific neuropathological alterations in COVID-19-infected patients. There is still no evidence of neurotropism for SARS-CoV-2 in our cohort or in the literature.
Collapse
Affiliation(s)
- Laetitia Lebrun
- Department of Pathology, Erasme University Hospital, Université Libre de Bruxelles (ULB)Hôpital Universitaire de Bruxelles (HUB), CUB Hôpital Erasme, 808 Route de Lennik, B-1070, Brussels, Belgium
| | - Lara Absil
- Department of Pathology, Erasme University Hospital, Université Libre de Bruxelles (ULB)Hôpital Universitaire de Bruxelles (HUB), CUB Hôpital Erasme, 808 Route de Lennik, B-1070, Brussels, Belgium
| | - Myriam Remmelink
- Department of Pathology, Erasme University Hospital, Université Libre de Bruxelles (ULB)Hôpital Universitaire de Bruxelles (HUB), CUB Hôpital Erasme, 808 Route de Lennik, B-1070, Brussels, Belgium
| | - Ricardo De Mendonça
- Department of Pathology, Erasme University Hospital, Université Libre de Bruxelles (ULB)Hôpital Universitaire de Bruxelles (HUB), CUB Hôpital Erasme, 808 Route de Lennik, B-1070, Brussels, Belgium
| | - Nicky D'Haene
- Department of Pathology, Erasme University Hospital, Université Libre de Bruxelles (ULB)Hôpital Universitaire de Bruxelles (HUB), CUB Hôpital Erasme, 808 Route de Lennik, B-1070, Brussels, Belgium
| | - Nicolas Gaspard
- Department of Neurology, Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (HUB), CUB Hôpital Erasme, Erasme University Hospital, Brussels, Belgium
| | - Stefan Rusu
- Department of Pathology, Erasme University Hospital, Université Libre de Bruxelles (ULB)Hôpital Universitaire de Bruxelles (HUB), CUB Hôpital Erasme, 808 Route de Lennik, B-1070, Brussels, Belgium
| | - Marie-Lucie Racu
- Department of Pathology, Erasme University Hospital, Université Libre de Bruxelles (ULB)Hôpital Universitaire de Bruxelles (HUB), CUB Hôpital Erasme, 808 Route de Lennik, B-1070, Brussels, Belgium
| | - Amandine Collin
- DIAPath, Center for Microscopy and Molecular Imaging (CMMI), ULB, Gosselies, Belgium
| | - Justine Allard
- DIAPath, Center for Microscopy and Molecular Imaging (CMMI), ULB, Gosselies, Belgium
| | - Egor Zindy
- DIAPath, Center for Microscopy and Molecular Imaging (CMMI), ULB, Gosselies, Belgium
| | - Andrea Alex Schiavo
- Department of Pathology, Erasme University Hospital, Université Libre de Bruxelles (ULB)Hôpital Universitaire de Bruxelles (HUB), CUB Hôpital Erasme, 808 Route de Lennik, B-1070, Brussels, Belgium
| | - Sarah De Clercq
- Department of Pathology, Erasme University Hospital, Université Libre de Bruxelles (ULB)Hôpital Universitaire de Bruxelles (HUB), CUB Hôpital Erasme, 808 Route de Lennik, B-1070, Brussels, Belgium
| | - Olivier De Witte
- Department of Neurosurgery, Université Libre de Bruxelles (ULB)Hôpital Universitaire de Bruxelles (HUB), CUB Hôpital ErasmeErasme University Hospital, Brussels, Belgium
| | - Christine Decaestecker
- DIAPath, Center for Microscopy and Molecular Imaging (CMMI), ULB, Gosselies, Belgium
- Laboratory of Image Synthesis and Analysis, Brussels School of Engineering/École Polytechnique de Brussels, ULB, Brussels, Belgium
| | - Maria-Beatriz Lopes
- Department of Pathology, University of Virginia Health System, Charlottesville, VA, USA
| | - Isabelle Salmon
- Department of Pathology, Erasme University Hospital, Université Libre de Bruxelles (ULB)Hôpital Universitaire de Bruxelles (HUB), CUB Hôpital Erasme, 808 Route de Lennik, B-1070, Brussels, Belgium.
- DIAPath, Center for Microscopy and Molecular Imaging (CMMI), ULB, Gosselies, Belgium.
| |
Collapse
|
594
|
Simon DS, Yew CW, Kumar VS. Multiplexed Reverse Transcription Loop-Mediated Isothermal Amplification Coupled with a Nucleic Acid-Based Lateral Flow Dipstick as a Rapid Diagnostic Method to Detect SARS-CoV-2. Microorganisms 2023; 11:1233. [PMID: 37317207 PMCID: PMC10223058 DOI: 10.3390/microorganisms11051233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 04/30/2023] [Accepted: 05/03/2023] [Indexed: 06/16/2023] Open
Abstract
Due to the high reproduction rate of COVID-19, it is important to identify and isolate infected patients at the early stages of infection. The limitations of current diagnostic methods are speed, cost, and accuracy. Furthermore, new viral variants have emerged with higher rates of infectivity and mortality, many with mutations at various primer binding sites, which may evade detection via conventional PCR kits. Therefore, a rapid method that is sensitive, specific, and cost-effective is needed for a point-of-care molecular test. Accordingly, we developed a rapid molecular SARS-CoV-2 detection kit with high specificity and sensitivity, RT-PCR, taking advantage of the loop-mediated isothermal amplification (LAMP) technique. Four sets of six primers were designed based on conserved regions of the SARS-CoV-2 genome: two outer, two inner and two loop primers. Using the optimized protocol, SARS-CoV-2 genes were detected as quickly as 10 min but were most sensitive at 30 min, detecting as little as 100 copies of template DNA. We then coupled the RT-LAMP with a lateral flow dipstick (LFD) for multiplex detection. The LFD could detect two genic amplifications on a single strip, making it suitable for multiplexed detection. The development of a multiplexed RT-LAMP-LFD reaction on crude VTM samples would be suitable for the point-of-care diagnosis of COVID-19 in diagnostic laboratories as well as in private homes.
Collapse
Affiliation(s)
| | | | - Vijay Subbiah Kumar
- Biotechnology Research Institute, Universiti Malaysia Sabah, Kota Kinabalu 88400, Malaysia; (D.S.S.); (C.-W.Y.)
| |
Collapse
|
595
|
Mitrofanova LB, Makarov IA, Gorshkov AN, Runov AL, Vonsky MS, Pisareva MM, Komissarov AB, Makarova TA, Li Q, Karonova TL, Konradi AO, Shlaykhto EV. Comparative Study of the Myocardium of Patients from Four COVID-19 Waves. Diagnostics (Basel) 2023; 13:1645. [PMID: 37175037 PMCID: PMC10178873 DOI: 10.3390/diagnostics13091645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/27/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023] Open
Abstract
BACKGROUND Few studies have compared COVID-19 patients from different waves. This study aims to conduct a clinical and morphological analysis of patients who died from COVID-19 during four waves. METHODS The study involved 276 patients who died from COVID-19 during four waves, including 77 patients in the first wave, 119 patients in the second wave, and 78 patients in the third wave. We performed a histological examination of myocardium samples from autopsies and additionally analyzed the samples by PCR. We conducted immunohistochemistry of the myocardium for 21 samples using antibodies against CD3, CD45, CD8, CD68, CD34, Ang1, VWF, VEGF, HLA-DR, MHC1, C1q, enteroviral VP1, and SARS-CoV-2 spike protein. We also did immunofluorescent staining of three myocardial specimens using VP1/SARS-CoV-2 antibody cocktails. Further, we ran RT-ddPCR analysis for 14 RNA samples extracted from paraffin-embedded myocardium. Electron microscopic studies of the myocardium were also performed for two samples from the fourth wave. RESULTS Among the 276 cases, active myocarditis was diagnosed in 5% (15/276). Of these cases, 86% of samples expressed VP1, and individual cells contained SARS-CoV-2 spike protein in 22%. Immunofluorescence confirmed the co-localization of VP1 and SARS-CoV-2 spike proteins. ddPCR did not confidently detect SARS-CoV-2 RNA in the myocardium in any myocarditis cases. However, the myocardium sample from wave IV detected a sub-threshold signal of SARS-CoV-2 by qPCR, but myocarditis in this patient was not confirmed. Electron microscopy showed several single particles similar to SARS-CoV-2 virions on the surface of the endothelium of myocardial vessels. A comparison of the cardiovascular complication incidence between three waves revealed that the incidence of hemorrhage (48 vs. 24 vs. 17%), myocardial necrosis (18 vs. 11 vs. 4%), blood clots in the intramural arteries (12 vs. 7 vs. 0%), and myocarditis (19 vs. 1 vs. 6%) decreased over time, and CD8-T-killers appeared. Immunohistochemistry confirmed the presence of endotheliitis in all 21 studied cases. CONCLUSIONS This study compared myocardial damage in patients who died during three COVID-19 waves and showed a decrease in the incidence of endotheliitis complications (thrombosis, hemorrhage, necrosis) and myocarditis over time. However, the connection between myocarditis and SARS-CoV-2 infection remains unproven.
Collapse
Affiliation(s)
| | | | - Andrey Nikolaevich Gorshkov
- Almazov National Medical Research Centre, St. Petersburg 197341, Russia; (L.B.M.)
- Smorodintsev Research Institute of Influenza, St. Petersburg 197376, Russia
| | - Andrey Leonidovich Runov
- Almazov National Medical Research Centre, St. Petersburg 197341, Russia; (L.B.M.)
- D.I. Mendeleyev Institute for Metrology, St. Petersburg 190005, Russia
| | - Maxim Sergeevich Vonsky
- Almazov National Medical Research Centre, St. Petersburg 197341, Russia; (L.B.M.)
- D.I. Mendeleyev Institute for Metrology, St. Petersburg 190005, Russia
| | | | | | | | - Qingli Li
- East China Normal University, Shanghai 200241, China
| | | | | | | |
Collapse
|
596
|
Calvet G, Ogrzewalska M, Tassinari W, Guaraldo L, Resende P, Fuller T, Penetra S, Borges M, Pina-Costa A, Martins E, Moraes I, Santos H, Damasceno L, Medeiros-Filho F, Espindola O, Mota F, Nacife V, Pauvolid-Corrêa A, Whitworth J, Smith C, Siqueira M, Brasil P. Accuracy of saliva for SARS-CoV-2 detection in outpatients and their household contacts during the circulation of the Omicron variant of concern. BMC Infect Dis 2023; 23:295. [PMID: 37147601 PMCID: PMC10161980 DOI: 10.1186/s12879-023-08271-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 04/20/2023] [Indexed: 05/07/2023] Open
Abstract
BACKGROUND While nasopharyngeal (NP) swabs are considered the gold standard for severe acute respiratory coronavirus 2 (SARS-CoV-2) real-time reverse transcriptase-polymerase chain reaction (RT-PCR) detection, several studies have shown that saliva is an alternative specimen for COVID-19 diagnosis and screening. METHODS To analyze the utility of saliva for the diagnosis of COVID-19 during the circulation of the Omicron variant, participants were enrolled in an ongoing cohort designed to assess the natural history of SARS-CoV-2 infection in adults and children. Sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and Cohen's kappa coefficient were calculated to assess diagnostic performance. RESULTS Overall, 818 samples were collected from 365 outpatients from January 3 to February 2, 2022. The median age was 32.8 years (range: 3-94 years). RT-PCR for SARS-CoV-2 was confirmed in 97/121 symptomatic patients (80.2%) and 62/244 (25.4%) asymptomatic patients. Substantial agreement between saliva and combined nasopharyngeal/oropharyngeal samples was observed with a Cohen's kappa value of 0.74 [95% confidence interval (CI): 0.67-0.81]. Sensitivity was 77% (95% CI: 70.9-82.2), specificity 95% (95% CI: 91.9-97), PPV 89.8% (95% CI: 83.1-94.4), NPV 87.9% (95% CI: 83.6-91.5), and accuracy 88.5% (95% CI: 85.0-91.4). Sensitivity was higher among samples collected from symptomatic children aged three years and older and adolescents [84% (95% CI: 70.5-92)] with a Cohen's kappa value of 0.63 (95% CI: 0.35-0.91). CONCLUSIONS Saliva is a reliable fluid for detecting SARS-CoV-2, especially in symptomatic children and adolescents during the circulation of the Omicron variant.
Collapse
Affiliation(s)
- Guilherme Calvet
- Acute Febrile Illnesses Laboratory, Evandro Chagas National Institute of Infectious Diseases, Oswaldo Cruz Foundation, Av. Brasil, 4365, Manguinhos, Rio de Janeiro, Rio de Janeiro, 21045-900, Brazil.
| | - Maria Ogrzewalska
- Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Rio de Janeiro, Brazil
- SARS-CoV-2 National Reference Laboratory for the Brazilian Ministry of Health (MoH) and Regional Reference Laboratory in Americas for the Pan-American Health Organization (PAHO/WHO), Rio de Janeiro, Brazil
| | - Wagner Tassinari
- Federal Rural University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lusiele Guaraldo
- Acute Febrile Illnesses Laboratory, Evandro Chagas National Institute of Infectious Diseases, Oswaldo Cruz Foundation, Av. Brasil, 4365, Manguinhos, Rio de Janeiro, Rio de Janeiro, 21045-900, Brazil
| | - Paola Resende
- Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Rio de Janeiro, Brazil
- SARS-CoV-2 National Reference Laboratory for the Brazilian Ministry of Health (MoH) and Regional Reference Laboratory in Americas for the Pan-American Health Organization (PAHO/WHO), Rio de Janeiro, Brazil
| | - Trevon Fuller
- Acute Febrile Illnesses Laboratory, Evandro Chagas National Institute of Infectious Diseases, Oswaldo Cruz Foundation, Av. Brasil, 4365, Manguinhos, Rio de Janeiro, Rio de Janeiro, 21045-900, Brazil
| | - Stephanie Penetra
- Acute Febrile Illnesses Laboratory, Evandro Chagas National Institute of Infectious Diseases, Oswaldo Cruz Foundation, Av. Brasil, 4365, Manguinhos, Rio de Janeiro, Rio de Janeiro, 21045-900, Brazil
| | - Michele Borges
- Acute Febrile Illnesses Laboratory, Evandro Chagas National Institute of Infectious Diseases, Oswaldo Cruz Foundation, Av. Brasil, 4365, Manguinhos, Rio de Janeiro, Rio de Janeiro, 21045-900, Brazil
| | - Anielle Pina-Costa
- Acute Febrile Illnesses Laboratory, Evandro Chagas National Institute of Infectious Diseases, Oswaldo Cruz Foundation, Av. Brasil, 4365, Manguinhos, Rio de Janeiro, Rio de Janeiro, 21045-900, Brazil
| | - Ezequias Martins
- Acute Febrile Illnesses Laboratory, Evandro Chagas National Institute of Infectious Diseases, Oswaldo Cruz Foundation, Av. Brasil, 4365, Manguinhos, Rio de Janeiro, Rio de Janeiro, 21045-900, Brazil
| | - Isabella Moraes
- Acute Febrile Illnesses Laboratory, Evandro Chagas National Institute of Infectious Diseases, Oswaldo Cruz Foundation, Av. Brasil, 4365, Manguinhos, Rio de Janeiro, Rio de Janeiro, 21045-900, Brazil
| | - Heloisa Santos
- Acute Febrile Illnesses Laboratory, Evandro Chagas National Institute of Infectious Diseases, Oswaldo Cruz Foundation, Av. Brasil, 4365, Manguinhos, Rio de Janeiro, Rio de Janeiro, 21045-900, Brazil
| | - Luana Damasceno
- Acute Febrile Illnesses Laboratory, Evandro Chagas National Institute of Infectious Diseases, Oswaldo Cruz Foundation, Av. Brasil, 4365, Manguinhos, Rio de Janeiro, Rio de Janeiro, 21045-900, Brazil
| | - Fernando Medeiros-Filho
- Acute Febrile Illnesses Laboratory, Evandro Chagas National Institute of Infectious Diseases, Oswaldo Cruz Foundation, Av. Brasil, 4365, Manguinhos, Rio de Janeiro, Rio de Janeiro, 21045-900, Brazil
| | - Otavio Espindola
- Acute Febrile Illnesses Laboratory, Evandro Chagas National Institute of Infectious Diseases, Oswaldo Cruz Foundation, Av. Brasil, 4365, Manguinhos, Rio de Janeiro, Rio de Janeiro, 21045-900, Brazil
| | - Fernando Mota
- Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Rio de Janeiro, Brazil
- SARS-CoV-2 National Reference Laboratory for the Brazilian Ministry of Health (MoH) and Regional Reference Laboratory in Americas for the Pan-American Health Organization (PAHO/WHO), Rio de Janeiro, Brazil
| | - Valéria Nacife
- Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Rio de Janeiro, Brazil
- SARS-CoV-2 National Reference Laboratory for the Brazilian Ministry of Health (MoH) and Regional Reference Laboratory in Americas for the Pan-American Health Organization (PAHO/WHO), Rio de Janeiro, Brazil
| | - Alex Pauvolid-Corrêa
- Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Rio de Janeiro, Brazil
- SARS-CoV-2 National Reference Laboratory for the Brazilian Ministry of Health (MoH) and Regional Reference Laboratory in Americas for the Pan-American Health Organization (PAHO/WHO), Rio de Janeiro, Brazil
| | - Jimmy Whitworth
- Departments of Clinical Research and Epidemiology and Public Health, London School of Hygiene and Tropical Medicine, London, UK
| | - Chris Smith
- Departments of Clinical Research and Epidemiology and Public Health, London School of Hygiene and Tropical Medicine, London, UK
| | - Marilda Siqueira
- Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Rio de Janeiro, Brazil
- SARS-CoV-2 National Reference Laboratory for the Brazilian Ministry of Health (MoH) and Regional Reference Laboratory in Americas for the Pan-American Health Organization (PAHO/WHO), Rio de Janeiro, Brazil
| | - Patrícia Brasil
- Acute Febrile Illnesses Laboratory, Evandro Chagas National Institute of Infectious Diseases, Oswaldo Cruz Foundation, Av. Brasil, 4365, Manguinhos, Rio de Janeiro, Rio de Janeiro, 21045-900, Brazil
| |
Collapse
|
597
|
Razu MH, Monir BB, Moniruzzaman M, Sarkar S, Akhter S, Kamal S, Hasan MA, Afroze M, Imam KMSU, Khan M. Performance Evaluation of SARS-CoV-2 Viral Transport Medium Produced by Bangladesh Reference Institute for Chemical Measurements. Diagnostics (Basel) 2023; 13:diagnostics13091622. [PMID: 37175013 PMCID: PMC10177798 DOI: 10.3390/diagnostics13091622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 01/29/2023] [Accepted: 01/30/2023] [Indexed: 05/15/2023] Open
Abstract
A viral transport medium (VTM) was developed following the Centers for Disease Control and Prevention, USA (US-CDC) standard operating procedure (SOP) DSR-052-05 with necessary improvisation and was used for storing coronavirus disease 2019 (COVID-19) swab specimens. Considering Bangladesh's supply chain and storage conditions, improvisation was essential for extending sample storage time while retaining efficiency. In-house VTM was produced using Hank's balanced salt solution (HBSS) supplemented with 1% bovine serum albumin V (BSA), 0.5 µg /mL of gentamicin sulfate, and 100 µg/mL of fluconazole. The produced VTM composition, quality, sterility, specificity, and efficiency were verified in-house and through an independent contract research organization (CRO). An accelerated stability study projected that under the recommended temperature (4 °C), it would remain stable for four months and preserve samples for over a month. The real-time reverse transcriptase-polymerase chain reaction (rRT-PCR) test detected the targeted N gene and ORF1ab gene from the VTM stored samples. Our VTM is equally as effective as the Sansure Biotech VTM in keeping SARS-CoV-2 RNA specimens detectable in rRT-PCR (100% sensitivity and specificity in random and blinded samples). In conclusion, the BRiCM VTM will make the battle against pandemics easier by effectively collecting and storing nasopharyngeal and oropharyngeal swabs for COVID-19 detection.
Collapse
Affiliation(s)
- Mamudul Hasan Razu
- Bangladesh Reference Institute for Chemical Measurements (BRICM), Dr. Qudrat-E-Khuda Road, Dhanmondi, Dhaka 1205, Bangladesh
| | - Bayzid Bin Monir
- National Institute of Laboratory Medicine and Referral Center (NILMRC), Sher-E-Bangla Nagar, Agargoan, Dhaka 1207, Bangladesh
| | - Md Moniruzzaman
- Bangladesh Reference Institute for Chemical Measurements (BRICM), Dr. Qudrat-E-Khuda Road, Dhanmondi, Dhaka 1205, Bangladesh
| | - Sawgotom Sarkar
- Bangladesh Reference Institute for Chemical Measurements (BRICM), Dr. Qudrat-E-Khuda Road, Dhanmondi, Dhaka 1205, Bangladesh
| | - Sonia Akhter
- Bangladesh Reference Institute for Chemical Measurements (BRICM), Dr. Qudrat-E-Khuda Road, Dhanmondi, Dhaka 1205, Bangladesh
| | - Sabiha Kamal
- Bangladesh Reference Institute for Chemical Measurements (BRICM), Dr. Qudrat-E-Khuda Road, Dhanmondi, Dhaka 1205, Bangladesh
| | - Md Abu Hasan
- Bangladesh Reference Institute for Chemical Measurements (BRICM), Dr. Qudrat-E-Khuda Road, Dhanmondi, Dhaka 1205, Bangladesh
| | - Mirola Afroze
- Bangladesh Reference Institute for Chemical Measurements (BRICM), Dr. Qudrat-E-Khuda Road, Dhanmondi, Dhaka 1205, Bangladesh
| | - Khandaker Md Sharif Uddin Imam
- Bangladesh Reference Institute for Chemical Measurements (BRICM), Dr. Qudrat-E-Khuda Road, Dhanmondi, Dhaka 1205, Bangladesh
| | - Mala Khan
- Bangladesh Reference Institute for Chemical Measurements (BRICM), Dr. Qudrat-E-Khuda Road, Dhanmondi, Dhaka 1205, Bangladesh
| |
Collapse
|
598
|
Struijk R, van den Ouden A, Louwerse J, Čurová K, Burggrave R, McNally B, de Groot T, Mulder B, de Vos G. Ultrafast RNA extraction-free SARS-CoV-2 detection by direct RT-PCR using a rapid thermal cycling approach. Diagn Microbiol Infect Dis 2023; 107:115975. [PMID: 37343400 PMCID: PMC10154057 DOI: 10.1016/j.diagmicrobio.2023.115975] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 02/24/2023] [Accepted: 04/29/2023] [Indexed: 06/23/2023]
Abstract
The COVID19 pandemic has underlined the need for quick and high-throughput SARS-CoV-2 detection assays. Here we report the development of a direct RT-PCR detection method that can reliably detect SARS-CoV-2 gRNA in nasopharyngeal swab samples in under 27 minutes without needing nucleic acid extraction. Fluorescence readouts were highly linear, robust, and sensitive with a LoD95% of determined at 1.46 copies/μL as determined by RT-PCR on a surrogate sample panel containing clinical samples with varying SARS-CoV-2 viral load. We benchmarked our direct RT-PCR method against a reference qPCR method in 368 nasopharyngeal swab samples, confirming a sensitivity score of 99.4% and a specificity score of 98.5% as compared to the reference method. In summary, we here describe a novel rapid direct RT-PCR method to detect SARS-CoV-2 gRNA in clinical specimens, which can be completed in significantly less time compared to conventional PCR methods making it ideal for large-scale screening applications.
Collapse
Affiliation(s)
- Robin Struijk
- Department of Research & Development, Molecular Biology Systems B.V., Goes, The Netherlands
| | - Anton van den Ouden
- Department of Research & Development, Molecular Biology Systems B.V., Goes, The Netherlands
| | - Jeroen Louwerse
- Department of Research & Development, Molecular Biology Systems B.V., Goes, The Netherlands
| | - Katarína Čurová
- Department of Medical and Clinical Microbiology, Faculty of Medicine, Pavol Jozef Šafárik University, Košice, Slovakia
| | - Ronald Burggrave
- Department of Research & Development, Molecular Biology Systems B.V., Goes, The Netherlands
| | - Brian McNally
- Department of Research & Development, Molecular Biology Systems B.V., Goes, The Netherlands
| | - Theun de Groot
- Department of Medical Microbiology and Infectious Diseases, Canisius-Wilhelmina Ziekenhuis, Nijmegen, The Netherlands
| | - Bert Mulder
- Department of Medical Microbiology and Infectious Diseases, Canisius-Wilhelmina Ziekenhuis, Nijmegen, The Netherlands
| | - Gert de Vos
- Department of Research & Development, Molecular Biology Systems B.V., Goes, The Netherlands; Department of Physiology, Faculty of Medicine, Pavol Jozef Šafárik University, Košice, Slovakia.
| |
Collapse
|
599
|
Yu Q, Trinh HD, Lee Y, Kang T, Chen L, Yoon S, Choo J. SERS-ELISA using silica-encapsulated Au core-satellite nanotags for sensitive detection of SARS-CoV-2. SENSORS AND ACTUATORS. B, CHEMICAL 2023; 382:133521. [PMID: 36818494 PMCID: PMC9927800 DOI: 10.1016/j.snb.2023.133521] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/30/2023] [Accepted: 02/13/2023] [Indexed: 06/12/2023]
Abstract
The sensitive detection of viruses is key to preventing the spread of infectious diseases. In this study, we develop a silica-encapsulated Au core-satellite (CS@SiO2) nanotag, which produces a strong and reproducible surface-enhanced Raman scattering (SERS) signal. The combination of SERS from the CS@SiO2 nanotags with enzyme-linked immunosorbent assay (ELISA) achieves a highly sensitive detection of SARS-CoV-2. The CS@SiO2 nanotag is constructed by assembling 32 nm Au nanoparticles (AuNPs) on a 75 nm AuNP. Then the core-satellite particles are encapsulated with SiO2 for facile surface modification and stability. The SERS-ELISA technique using the CS@SiO2 nanotags provides a great sensitivity, yielding a detection limit of 8.81 PFU mL-1, which is 10 times better than conventional ELISA and 100 times better than lateral flow assay strip method. SERS-ELISA is applied to 30 SARS-CoV-2 clinical samples and achieved 100% and 55% sensitivities for 15 and 9 positive samples with cycle thresholds < 30 and > 30, respectively. This new CS@SiO2-SERS-ELISA method is an innovative technique that can significantly reduce the false-negative diagnostic rate for SARS-CoV-2 and thereby contribute to overcoming the current pandemic crisis.
Collapse
Affiliation(s)
- Qian Yu
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea
| | - Hoa Duc Trinh
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea
| | - Yeonji Lee
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea
| | - Taejoon Kang
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, South Korea
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, South Korea
| | - Lingxin Chen
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Sangwoon Yoon
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea
| | - Jaebum Choo
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea
| |
Collapse
|
600
|
AlMalki FA, Albukhaty S, Alyamani AA, Khalaf MN, Thomas S. The relevant information about the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) using the five-question approach (when, where, what, why, and how) and its impact on the environment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:61430-61454. [PMID: 35175517 PMCID: PMC8852932 DOI: 10.1007/s11356-022-18868-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 01/21/2022] [Indexed: 05/08/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is regarded as a threat because it spreads quickly across the world without requiring a passport or establishing an identity. This tiny virus has wreaked havoc on people's lives, killed people, and created psychological problems all over the world. The viral spike protein (S) significantly contributes to host cell entry, and mutations associated with it, particularly in the receptor-binding protein (RBD), either facilitate the escape of virus from neutralizing antibodies or enhance its transmission by increasing the affinity for cell entry receptor, angiotensin-converting enzyme 2 (ACE2). The initial variants identified in Brazil, South Africa, and the UK have spread to various countries. On the other hand, new variants are being detected in India and the USA. The viral genome and proteome were applied for molecular detection techniques, and nanotechnology particles and materials were utilized in protection and prevention strategies. Consequently, the SARS-CoV-2 pandemic has resulted in extraordinary scientific community efforts to develop detection methods, diagnosis tools, and effective antiviral drugs and vaccines, where prevailing academic, governmental, and industrial institutions and organizations continue to engage themselves in large-scale screening of existing drugs, both in vitro and in vivo. In addition, COVID-19 pointed on the possible solutions for the environmental pollution globe problem. Therefore, this review aims to address SARS-CoV-2, its transmission, where it can be found, why it is severe in some people, how it can be stopped, its diagnosis and detection techniques, and its relationship with the environment.
Collapse
Affiliation(s)
- Faizah A AlMalki
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif, 21944, Kingdom of Saudi Arabia.
| | - Salim Albukhaty
- Deptartment of Chemistry, College of Science, University of Misan, Maysan, 62001, Iraq
| | - Amal A Alyamani
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif, 21944, Kingdom of Saudi Arabia
| | - Moayad N Khalaf
- Deptartment of Chemistry, College of Science, University of Basrah, Basrah, Iraq
| | - Sabu Thomas
- Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam, Kerala, 686 560, India
| |
Collapse
|