601
|
Chen Q, Takada R, Noda C, Kobayashi S, Takada S. Different populations of Wnt-containing vesicles are individually released from polarized epithelial cells. Sci Rep 2016; 6:35562. [PMID: 27765945 PMCID: PMC5073244 DOI: 10.1038/srep35562] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 10/03/2016] [Indexed: 12/11/2022] Open
Abstract
Accumulating evidence suggests that exosomes are heterogeneous in molecular composition and physical properties. Here we examined whether epithelial cells secrete a heterogeneous population of exosomes, and if that is the case, whether epithelial cell polarity affects release of different populations of exosomes, especially that of those carrying Wnt. Sucrose-density ultracentrifugation and molecular marker analysis revealed that different populations of exosomes or exosome-like vesicles were released from MDCK cells depending on the cell polarity. Wnt3a associated with these vesicles were detectable in culture media collected from both apical and basolateral sides of the cells. Basolaterally secreted Wnt3a were co-fractionated with a typical exosomal protein TSG101 in fractions having typical exosome densities. In contrast, most of apically secreted Wnt3a, as well as Wnt11, were co-fractionated with CD63 and Hsp70, which are also common to the most exosomes, but recovered in higher density fractions. Wnt3a exhibiting similar floatation behavior to the apically secreted ones were also detectable in the culture media of Wnt3a-expressing L and HEK293 cells. The lipidation of Wnt3a was required for its basolateral secretion in exosomes but was dispensable for the apical one. Thus, epithelial cells release Wnt via distinct populations of vesicles differing in secretion polarity and lipidation dependency.
Collapse
Affiliation(s)
- Qiuhong Chen
- Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan.,National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
| | - Ritsuko Takada
- Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan.,National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
| | - Chiyo Noda
- Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan.,National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
| | - Satoru Kobayashi
- Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan.,National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan.,The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Aichi 444-8787, Japan.,Life Science Center, Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| | - Shinji Takada
- Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan.,National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan.,The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Aichi 444-8787, Japan
| |
Collapse
|
602
|
Yuyama K, Igarashi Y. Physiological and pathological roles of exosomes in the nervous system. Biomol Concepts 2016; 7:53-68. [PMID: 26812803 DOI: 10.1515/bmc-2015-0033] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 12/22/2015] [Indexed: 01/23/2023] Open
Abstract
Exosomes represent a subtype of extracellular nanovesicles that are generated from the luminal budding of limiting endosomal membranes and subsequent exocytosis. They encapsulate or associate with obsolete molecules to eliminate or to transfer their cargos in intercellular communication. The exosomes are also released and transported between neurons and glia in the nervous system, having a broad impact on nerve development, activation and regeneration. Accumulating evidence suggests that the exosomes are attributed to the pathogenesis of several neurodegenerative diseases such as prion disease, Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, as well as aging, in which the exosomes lack the capacity for cellular self-repair and spread their enclosed pathological agents among neurons. In this article, we review the current proposed functions of exosomes in physiological and pathological processes in the nervous system.
Collapse
|
603
|
MacDonald C, Stamnes MA, Katzmann DJ, Piper RC. Tetraspan cargo adaptors usher GPI-anchored proteins into multivesicular bodies. Cell Cycle 2016; 14:3673-8. [PMID: 26505929 DOI: 10.1080/15384101.2015.1100773] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Ubiquitinated membrane proteins are sorted into intralumenal endosomal vesicles on their way for degradation in lysosomes. Here we summarize the discovery of the Cos proteins, which work to organize and segregate ubiquitinated cargo prior to its incorporation into intralumenal vesicles of the multivesicular body (MVB). Importantly, cargoes such as GPI-anchored proteins (GPI-APs) that cannot undergo ubiquitination, rely entirely on Cos proteins for sorting into intralumenal vesicles using the same pathway that depends on ESCRTs and ubiquitin ligases that typical polytopic membrane proteins do. Here we show Cos proteins provide functions as not only adaptor proteins for ubiquitin ligases, but also as cargo carriers that can physically usher a variety of other proteins into the MVB pathway. We then discuss the significance of this new sorting model and the broader implications for this cargo adaptor mechanism, whereby yeast Cos proteins, and their likely animal analogs, provide a ubiquitin sorting signal in trans to enable sorting of a membrane protein network into intralumenal vesicles.
Collapse
Affiliation(s)
- Chris MacDonald
- a Molecular Physiology and Biophysics; University of Iowa ; Iowa City , IA USA
| | - Mark A Stamnes
- a Molecular Physiology and Biophysics; University of Iowa ; Iowa City , IA USA
| | - David J Katzmann
- b Biochemistry and Molecular Biology; Mayo Clinic College of Medicine ; Rochester , MN USA
| | - Robert C Piper
- a Molecular Physiology and Biophysics; University of Iowa ; Iowa City , IA USA
| |
Collapse
|
604
|
Kanemoto S, Nitani R, Murakami T, Kaneko M, Asada R, Matsuhisa K, Saito A, Imaizumi K. Multivesicular body formation enhancement and exosome release during endoplasmic reticulum stress. Biochem Biophys Res Commun 2016; 480:166-172. [PMID: 27725157 DOI: 10.1016/j.bbrc.2016.10.019] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 10/07/2016] [Indexed: 11/19/2022]
Abstract
The endoplasmic reticulum (ER) plays a pivotal role in maintaining cellular homeostasis. However, numerous environmental and genetic factors give rise to ER stress by inducing an accumulation of unfolded proteins. Under ER stress conditions, cells initiate the unfolded protein response (UPR). Here, we demonstrate a novel aspect of the UPR by electron microscopy and immunostaining analyses, whereby multivesicular body (MVB) formation was enhanced after ER stress. This MVB formation was influenced by inhibition of ER stress transducers inositol required enzyme 1 (IRE1) and PKR-like ER kinase (PERK). Furthermore, exosome release was also increased during ER stress. However, in IRE1 or PERK deficient cells, exosome release was not upregulated, indicating that IRE1- and PERK-mediated pathways are involved in ER stress-dependent exosome release.
Collapse
Affiliation(s)
- Soshi Kanemoto
- Department of Biochemistry, Institute of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan.
| | - Ryota Nitani
- Department of Biochemistry, Institute of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Tatsuhiko Murakami
- Department of Biochemistry, Institute of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Masayuki Kaneko
- Department of Biochemistry, Institute of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Rie Asada
- Department of Biochemistry, Institute of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Koji Matsuhisa
- Department of Biochemistry, Institute of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Atsushi Saito
- Department of Biochemistry, Institute of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Kazunori Imaizumi
- Department of Biochemistry, Institute of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan.
| |
Collapse
|
605
|
Abstract
Cancer diagnosis and therapy is steadily improving. Still, diagnosis is frequently late and diagnosis and follow-up procedures mostly are time-consuming and expensive. Searching for tumor-derived exosomes (TEX) in body fluids may provide an alternative, minimally invasive, yet highly reliable diagnostic tool. Beyond this, there is strong evidence that TEX could become a potent therapeutics. Exosomes, small vesicles delivered by many cells of the organism, are found in all body fluids. Exosomes are characterized by lipid composition, common and donor cell specific proteins, mRNA, small non-coding RNA including miRNA and DNA. Particularly the protein and miRNA markers received much attention as they may allow for highly specific diagnosis and can provide hints toward tumor aggressiveness and progression, where exosome-based diagnosis and follow-up is greatly facilitated by the recovery of exosomes in body fluids, particularly the peripheral blood. Beyond this, exosomes are the most important intercellular communicators that modulate, instruct, and reprogram their surrounding as well as distant organs. In concern about TEX this includes message transfer from tumor cells toward the tumor stroma, the premetastatic niche, the hematopoietic system and, last but not least, the instruction of non-cancer stem cells by cancer-initiating cells (CIC). Taking this into account, it becomes obvious that "tailored" exosomes offer themselves as potent therapeutic delivery system. In brief, during the last 4-5 years there is an ever-increasing, overwhelming interest in exosome research. This boom appears fully justified provided the content of the exosomes becomes most thoroughly analyzed and their mode of intercellular interaction can be unraveled in detail as this knowledge will open new doors toward cancer diagnosis and therapy including immunotherapy and CIC reprogramming.
Collapse
Affiliation(s)
- Margot Zöller
- Tumor Cell Biology, University Hospital of Surgery, im Neuenheimer Feld 365, 69120, Heidelberg, Germany.
| |
Collapse
|
606
|
Bissig C, Rochin L, van Niel G. PMEL Amyloid Fibril Formation: The Bright Steps of Pigmentation. Int J Mol Sci 2016; 17:ijms17091438. [PMID: 27589732 PMCID: PMC5037717 DOI: 10.3390/ijms17091438] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 08/12/2016] [Accepted: 08/22/2016] [Indexed: 02/06/2023] Open
Abstract
In pigment cells, melanin synthesis takes place in specialized organelles, called melanosomes. The biogenesis and maturation of melanosomes is initiated by an unpigmented step that takes place prior to the initiation of melanin synthesis and leads to the formation of luminal fibrils deriving from the pigment cell-specific pre-melanosomal protein (PMEL). In the lumen of melanosomes, PMEL fibrils optimize sequestration and condensation of the pigment melanin. Interestingly, PMEL fibrils have been described to adopt a typical amyloid-like structure. In contrast to pathological amyloids often associated with neurodegenerative diseases, PMEL fibrils represent an emergent category of physiological amyloids due to their beneficial cellular functions. The formation of PMEL fibrils within melanosomes is tightly regulated by diverse mechanisms, such as PMEL traffic, cleavage and sorting. These mechanisms revealed increasing analogies between the formation of physiological PMEL fibrils and pathological amyloid fibrils. In this review we summarize the known mechanisms of PMEL fibrillation and discuss how the recent understanding of physiological PMEL amyloid formation may help to shed light on processes involved in pathological amyloid formation.
Collapse
Affiliation(s)
- Christin Bissig
- Institut Curie, Paris Sciences et Lettres Research University, UMR144, Centre de Recherche, 26 rue d'ULM, Paris F-75231, France.
- Centre National de la Recherche Scientifique, UMR144, Paris F-75248, France.
| | - Leila Rochin
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3BX, UK.
| | - Guillaume van Niel
- Institut Curie, Paris Sciences et Lettres Research University, UMR144, Centre de Recherche, 26 rue d'ULM, Paris F-75231, France.
- Centre National de la Recherche Scientifique, UMR144, Paris F-75248, France.
| |
Collapse
|
607
|
Generation of a novel transgenic rat model for tracing extracellular vesicles in body fluids. Sci Rep 2016; 6:31172. [PMID: 27539050 PMCID: PMC4990884 DOI: 10.1038/srep31172] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 07/13/2016] [Indexed: 12/16/2022] Open
Abstract
Extracellular vesicles (EVs) play an important role in the transfer of biomolecules between cells. To elucidate the intercellular transfer fate of EVs in vivo, we generated a new transgenic (Tg) rat model using green fluorescent protein (GFP)-tagged human CD63. CD63 protein is highly enriched on EV membranes via trafficking into late endosomes and is often used as an EV marker. The new Tg rat line in which human CD63-GFP is under control of the CAG promoter exhibited high expression of GFP in various body tissues. Exogenous human CD63-GFP was detected on EVs isolated from three body fluids of the Tg rats: blood serum, breast milk and amniotic fluid. In vitro culture allowed transfer of serum-derived CD63-GFP EVs into recipient rat embryonic fibroblasts, where the EVs localized in endocytic organelles. These results suggested that this Tg rat model should provide significant information for understanding the intercellular transfer and/or mother-child transfer of EVs in vivo.
Collapse
|
608
|
Ventimiglia LN, Alonso MA. Biogenesis and Function of T Cell-Derived Exosomes. Front Cell Dev Biol 2016; 4:84. [PMID: 27583248 PMCID: PMC4987406 DOI: 10.3389/fcell.2016.00084] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 08/02/2016] [Indexed: 12/23/2022] Open
Abstract
Exosomes are a particular type of extracellular vesicle, characterized by their endosomal origin as intraluminal vesicles present in large endosomes with a multivesicular structure. After these endosomes fuse with the plasma membrane, exosomes are secreted into the extracellular space. The ability of exosomes to carry and selectively deliver bioactive molecules (e.g., lipids, proteins, and nucleic acids) confers on them the capacity to modulate the activity of receptor cells, even if these cells are located in distant tissues or organs. Since exosomal cargo depends on cell type, a detailed understanding of the mechanisms that regulate the biochemical composition of exosomes is fundamental to a comprehensive view of exosome function. Here, we review the latest advances concerning exosome function and biogenesis in T cells, with particular focus on the mechanism of protein sorting at multivesicular endosomes. Exosomes secreted by specific T-cell subsets can modulate the activity of immune cells, including other T-cell subsets. Ceramide, tetraspanins and MAL have been revealed to be important in exosome biogenesis by T cells. These molecules, therefore, constitute potential molecular targets for artificially modulating exosome production and, hence, the immune response for therapeutic purposes.
Collapse
Affiliation(s)
- Leandro N Ventimiglia
- Cell Biology and Immunology, Centro de Biología Molecular "Severo Ochoa," Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid Madrid, Spain
| | - Miguel A Alonso
- Cell Biology and Immunology, Centro de Biología Molecular "Severo Ochoa," Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid Madrid, Spain
| |
Collapse
|
609
|
Stremersch S, De Smedt SC, Raemdonck K. Therapeutic and diagnostic applications of extracellular vesicles. J Control Release 2016; 244:167-183. [PMID: 27491882 DOI: 10.1016/j.jconrel.2016.07.054] [Citation(s) in RCA: 142] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Revised: 07/24/2016] [Accepted: 07/29/2016] [Indexed: 02/07/2023]
Abstract
During the past two decades, extracellular vesicles (EVs) have been identified as important mediators of intercellular communication, enabling the functional transfer of bioactive molecules from one cell to another. Consequently, it is becoming increasingly clear that these vesicles are involved in many (patho)physiological processes, providing opportunities for therapeutic applications. Moreover, it is known that the molecular composition of EVs reflects the physiological status of the producing cell and tissue, rationalizing their exploitation as biomarkers in various diseases. In this review the composition, biogenesis and diversity of EVs is discussed in a therapeutic and diagnostic context. We describe emerging therapeutic applications, including the use of EVs as drug delivery vehicles and as cell-free vaccines, and reflect on future challenges for clinical translation. Finally, we discuss the use of EVs as a biomarker source and highlight recent studies and clinical successes.
Collapse
Affiliation(s)
- Stephan Stremersch
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Stefaan C De Smedt
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Koen Raemdonck
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| |
Collapse
|
610
|
Abstract
Viruses have developed a spectrum of ways to modify cellular pathways to hijack the cell machinery for the synthesis of their nucleic acid and proteins. Similarly, they use intracellular vesicular mechanisms of trafficking for their assembly and eventual release, with a number of viruses acquiring their envelope from internal or plasma cell membranes. There is an increasing number of reports on viral exploitation of cell secretome pathways to avoid recognition and stimulation of the immune response. Extracellular vesicles (EV) containing viral particles have been shown to shield viruses after exiting the host cell, in some cases challenging the boundaries between viral groups traditionally characterised as enveloped and non-enveloped. Apart from viral particles, EV can spread the virus also carrying viral genome and can modify the target cells through their cargo of virus-coded miRNAs and proteins as well as selectively packaged cellular mRNAs, miRNAs, proteins and lipids, differing in composition and quantities from the cell of origin.
Collapse
Affiliation(s)
- Juraj Petrik
- Scottish National Blood Transfusion Service and University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
611
|
Abstract
In order to achieve coordinated growth and patterning during development, cells must communicate with one another, sending and receiving signals that regulate their activities. Such developmental signals can be soluble, bound to the extracellular matrix, or tethered to the surface of adjacent cells. Cells can also signal by releasing exosomes – extracellular vesicles containing bioactive molecules such as RNA, DNA and enzymes. Recent work has suggested that exosomes can also carry signalling proteins, including ligands of the Notch receptor and secreted proteins of the Hedgehog and WNT families. Here, we describe the various types of exosomes and their biogenesis. We then survey the experimental strategies used so far to interfere with exosome formation and critically assess the role of exosomes in developmental signalling.
Collapse
Affiliation(s)
- Ian John McGough
- Laboratory of Epithelial Interactions, The Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, London NW7 1AA, UK
| | - Jean-Paul Vincent
- Laboratory of Epithelial Interactions, The Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, London NW7 1AA, UK
| |
Collapse
|
612
|
Heiler S, Wang Z, Zöller M. Pancreatic cancer stem cell markers and exosomes - the incentive push. World J Gastroenterol 2016; 22:5971-6007. [PMID: 27468191 PMCID: PMC4948278 DOI: 10.3748/wjg.v22.i26.5971] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Revised: 06/03/2016] [Accepted: 06/28/2016] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer (PaCa) has the highest death rate and incidence is increasing. Poor prognosis is due to late diagnosis and early metastatic spread, which is ascribed to a minor population of so called cancer stem cells (CSC) within the mass of the primary tumor. CSC are defined by biological features, which they share with adult stem cells like longevity, rare cell division, the capacity for self renewal, differentiation, drug resistance and the requirement for a niche. CSC can also be identified by sets of markers, which for pancreatic CSC (Pa-CSC) include CD44v6, c-Met, Tspan8, alpha6beta4, CXCR4, CD133, EpCAM and claudin7. The functional relevance of CSC markers is still disputed. We hypothesize that Pa-CSC markers play a decisive role in tumor progression. This is fostered by the location in glycolipid-enriched membrane domains, which function as signaling platform and support connectivity of the individual Pa-CSC markers. Outside-in signaling supports apoptosis resistance, stem cell gene expression and tumor suppressor gene repression as well as miRNA transcription and silencing. Pa-CSC markers also contribute to motility and invasiveness. By ligand binding host cells are triggered towards creating a milieu supporting Pa-CSC maintenance. Furthermore, CSC markers contribute to the generation, loading and delivery of exosomes, whereby CSC gain the capacity for a cell-cell contact independent crosstalk with the host and neighboring non-CSC. This allows Pa-CSC exosomes (TEX) to reprogram neighboring non-CSC towards epithelial mesenchymal transition and to stimulate host cells towards preparing a niche for metastasizing tumor cells. Finally, TEX communicate with the matrix to support tumor cell motility, invasion and homing. We will discuss the possibility that CSC markers are the initial trigger for these processes and what is the special contribution of CSC-TEX.
Collapse
|
613
|
Hurwitz SN, Conlon MM, Rider MA, Brownstein NC, Meckes DG. Nanoparticle analysis sheds budding insights into genetic drivers of extracellular vesicle biogenesis. J Extracell Vesicles 2016; 5:31295. [PMID: 27421995 PMCID: PMC4947197 DOI: 10.3402/jev.v5.31295] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 06/02/2016] [Accepted: 06/07/2016] [Indexed: 01/22/2023] Open
Abstract
Background Extracellular vesicles (EVs) are important mediators of cell-to-cell communication in healthy and pathological environments. Because EVs are present in a variety of biological fluids and contain molecular signatures of their cell or tissue of origin, they have great diagnostic and prognostic value. The ability of EVs to deliver biologically active proteins, RNAs and lipids to cells has generated interest in developing novel therapeutics. Despite their potential medical use, many of the mechanisms underlying EV biogenesis and secretion remain unknown. Methods Here, we characterized vesicle secretion across the NCI-60 panel of human cancer cells by nanoparticle tracking analysis. Using CellMiner, the quantity of EVs secreted by each cell line was compared to reference transcriptomics data to identify gene products associated with vesicle secretion. Results Gene products positively associated with the quantity of exosomal-sized vesicles included vesicular trafficking classes of proteins with Rab GTPase function and sphingolipid metabolism. Positive correlates of larger microvesicle-sized vesicle secretion included gene products involved in cytoskeletal dynamics and exocytosis, as well as Rab GTPase activation. One of the identified targets, CD63, was further evaluated for its role in vesicle secretion. Clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 knockout of the CD63 gene in HEK293 cells resulted in a decrease in small vesicle secretion, suggesting the importance of CD63 in exosome biogenesis. Conclusion These observations reveal new insights into genes involved in exosome and microvesicle formation, and may provide a means to distinguish EV sub-populations. This study offers a foundation for further exploration of targets involved in EV biogenesis and secretion.
Collapse
Affiliation(s)
- Stephanie N Hurwitz
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, USA
| | - Meghan M Conlon
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, USA
| | - Mark A Rider
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, USA
| | - Naomi C Brownstein
- Department of Behavioral Sciences and Social Medicine, Florida State University College of Medicine, Tallahassee, FL, USA
| | - David G Meckes
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, USA;
| |
Collapse
|
614
|
Ha D, Yang N, Nadithe V. Exosomes as therapeutic drug carriers and delivery vehicles across biological membranes: current perspectives and future challenges. Acta Pharm Sin B 2016; 6:287-96. [PMID: 27471669 PMCID: PMC4951582 DOI: 10.1016/j.apsb.2016.02.001] [Citation(s) in RCA: 957] [Impact Index Per Article: 106.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 01/19/2016] [Accepted: 01/26/2016] [Indexed: 02/07/2023] Open
Abstract
Exosomes are small intracellular membrane-based vesicles with different compositions that are involved in several biological and pathological processes. The exploitation of exosomes as drug delivery vehicles offers important advantages compared to other nanoparticulate drug delivery systems such as liposomes and polymeric nanoparticles; exosomes are non-immunogenic in nature due to similar composition as body׳s own cells. In this article, the origin and structure of exosomes as well as their biological functions are outlined. We will then focus on specific applications of exosomes as drug delivery systems in pharmaceutical drug development. An overview of the advantages and challenges faced when using exosomes as a pharmaceutical drug delivery vehicles will also be discussed.
Collapse
Key Words
- ALIX, ALG-2 interacting protein X
- ATPase, adenosine triphosphatase
- BBB, blood–brain barrier
- CCK-8, cell counting kit-8
- CD, cluster of differentiation
- DIL, 1,1′-dioctadecyl-3,3,3′,3′-tetramethylindocarbocyanine perchlorate
- DNA, deoxyribonucleic acid
- Drug delivery systems
- EGF, epidermal growth factor
- EGFR, epidermal growth factor receptor
- ESCRT, endosomal sorting complexes required for transport
- EV, extracellular vesicle
- EpCAM, epithelial cell adhesion molecule
- Exosomes
- Extracellular vesicles
- HEK293, human embryonic kidney cell line 293
- HIV, human immunodeficiency virus
- HMGA2, high-mobility group AT-hook protein
- HeLa, Henrietta Lacks cells
- Hsp, heat shock proteins
- IL-6, interleukin-6
- ILVs, intraluminal vesicles
- LPS, lipopolysaccharides
- MAPK-1, mitogen-activated protein kinase 1
- MHC, major histocompatibility complex
- MPS, mononuclear phagocyte system
- MVB, multi-vesicular body biogenesis
- Nanocarrier
- PBMC, peripheral blood mononuclear cells
- PD, Parkinson’s disease
- PEG, polyethylene glycol
- RNA, ribonucleic acid
- ROS, reactive oxygen species
- RPE1, retinal pigment epithelial cells 1
- TNF-α, tumor necrosis factor α
- TSG101, tumor susceptibility gene 101
- VPS4, vacuolar protein sorting-associated protein 4
- kRAS, Kirsten rat sarcoma
- mRNA, messenger RNA
- miRNA, micro RNA
- siRNA, small interference RNA
Collapse
Affiliation(s)
| | | | - Venkatareddy Nadithe
- Manchester University, College of Pharmacy, Natural & Health Sciences, Fort Wayne, IN 46845, USA
| |
Collapse
|
615
|
Abstract
Viruses have evolved many mechanisms by which to evade and subvert the immune system to ensure survival and persistence. However, for each method undertaken by the immune system for pathogen removal, there is a counteracting mechanism utilized by pathogens. The new and emerging role of microvesicles in immune intercellular communication and function is no different. Viruses across many different families have evolved to insert viral components in exosomes, a subtype of microvesicle, with many varying downstream effects. When assessed cumulatively, viral antigens in exosomes increase persistence through cloaking viral genomes, decoying the immune system, and even by increasing viral infection in uninfected cells. Exosomes therefore represent a source of viral antigen that can be used as a biomarker for disease and targeted for therapy in the control and eradication of these disorders. With the rise in the persistence of new and reemerging viruses like Ebola and Zika, exploring the role of exosomes become more important than ever.
Collapse
Affiliation(s)
- Monique R Anderson
- National Institutes of Health, National Institute of Neurological Disorders and Stroke, Neuroimmunology Branch, Viral Immunology Section, Bethesda, MD, 20892, USA.
- Department of Pathology Molecular and Cellular Basis of Disease Graduate Program, University of Virginia School of Medicine, Charlottesville, VA, 22903, USA.
| | - Fatah Kashanchi
- George Mason University, National Center for Biodefense and Infectious Disease, Laboratory of Molecular Virology, Manassas, VA, 20110, USA
| | - Steven Jacobson
- National Institutes of Health, National Institute of Neurological Disorders and Stroke, Neuroimmunology Branch, Viral Immunology Section, Bethesda, MD, 20892, USA
| |
Collapse
|
616
|
A novel TP53 pathway influences the HGS-mediated exosome formation in colorectal cancer. Sci Rep 2016; 6:28083. [PMID: 27312428 PMCID: PMC4911576 DOI: 10.1038/srep28083] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 05/31/2016] [Indexed: 01/16/2023] Open
Abstract
Tumor-derived exosomes are important for cell-cell communication. However, the role of TP53 in the control of exosome production in colorectal cancer (CRC) is controversial and unclear. The features of exosomes secreted from HCT116 TP53-wild type (WT), TP53-knockout (KO) and constructed TP53 (R273H)-mutant (MT) cells were assessed. The exosomes from the MT and KO cells exhibited significantly reduced sizes compared with the WT cells. A comprehensive proteomic analysis of exosomal proteins was performed using the isobaric tag for relative and absolute quantitation (iTRAQ)-2D-LC-MS/MS strategy. A total of 3437 protein groups with ≥2 matched peptides were identified. Specifically, hepatocyte growth factor-regulated tyrosine kinase substrate (HGS) was consistently down-regulated in the exosomes from the MT and KO cells. Functional studies demonstrated that low HGS levels were responsible for the decreased exosome size. TP53 regulated HGS expression and thus HGS-dependent exosome formation. Furthermore, the HGS expression was gradually increased concomitant with CRC carcinogenesis and was an independent poor prognostic factor. In conclusion, a novel HGS-dependent TP53 mechanism in exosome formation was identified in CRC. HGS may serve as a novel prognostic biomarker and a candidate target for therapeutic interventions.
Collapse
|
617
|
Fonseca P, Vardaki I, Occhionero A, Panaretakis T. Metabolic and Signaling Functions of Cancer Cell-Derived Extracellular Vesicles. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 326:175-99. [PMID: 27572129 DOI: 10.1016/bs.ircmb.2016.04.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Extracellular vesicles have gained tremendous attention in the recent years as a novel mechanism of cell to cell communication. There are several types of extracellular vesicles, including exosomes, microvesicles, exosome, like vesicles, apoptotic bodies that differ mainly in the mechanism of biogenesis and secretion. The most well studied type of extracellular vesicles are the exosomes which are endosome-derived vesicles with a diameter of 50-150nm and enriched in ESCRT proteins including Alix, TSG101, Hsp70, and tetraspanins. It is now well established that exosomes promote tumor growth, alter the tumor microenvironment, facilitate the dissemination of cancer cells in an organotropic manner, modulate immune responses, and mediate resistance to therapy. Exosomes have also been recently implicated in an emerging hallmark of cancer, the cancer cell metabolism. The metabolic state of the cell defines, to a certain extent, both the rate of secretion and the molecular content of tumor-derived exosomes. Furthermore, exosomes have been shown to possess intrinsic metabolic activity since they can synthesize ATP by glycolysis. It follows that exosomes carry a number of metabolic enzymes and metabolites, including lactate, PGE, LDH isoforms, pyruvate, and monocarboxylate transporters. Last but not the least, exosomes are implicated in fatty acid synthesis and cholesterol metabolism and are thought to be crucial for the transcellular metabolism procedure. Uptake of exosomes is thought to alter the intracellular metabolic state of the cell. In summary, we describe the state of the art on the role of metabolism in the secretion, uptake, and the biological effects of exosomes in the metabolism of recipient cells.
Collapse
Affiliation(s)
- P Fonseca
- Department of Oncology-Pathology, Karolinska Institutet and University Hospital, Stockholm, Sweden
| | - I Vardaki
- Department of Oncology-Pathology, Karolinska Institutet and University Hospital, Stockholm, Sweden
| | - A Occhionero
- Department of Oncology-Pathology, Karolinska Institutet and University Hospital, Stockholm, Sweden
| | - T Panaretakis
- Department of Oncology-Pathology, Karolinska Institutet and University Hospital, Stockholm, Sweden.
| |
Collapse
|
618
|
Thompson AG, Gray E, Heman-Ackah SM, Mäger I, Talbot K, Andaloussi SE, Wood MJ, Turner MR. Extracellular vesicles in neurodegenerative disease - pathogenesis to biomarkers. Nat Rev Neurol 2016; 12:346-57. [PMID: 27174238 DOI: 10.1038/nrneurol.2016.68] [Citation(s) in RCA: 304] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
To develop effective disease-modifying therapies for neurodegenerative diseases, reliable markers of diagnosis, disease activity and progression are a research priority. The fact that neurodegenerative pathology is primarily associated with distinct subsets of cells in discrete areas of the CNS makes the identification of relevant biomarker molecules a challenge. The trafficking of macromolecules from the CNS to the cerebrospinal fluid and blood, mediated by extracellular vesicles (EVs), presents a promising source of CNS-specific biomarkers. EVs are released by almost all cell types and carry a cargo of protein and nucleic acid that varies according to the cell of origin. EV output changes with cell status and reflects intracellular events, so surface marker expression can be used to identify the cell type from which EVs originate. EVs could, therefore, provide an enriched pool of information about core neuropathogenic, cell-specific processes. This Review examines the current knowledge of the biology and function of EVs, discusses the evidence for their involvement in the pathogenesis of neurodegenerative diseases, and considers their potential as biomarkers of disease.
Collapse
Affiliation(s)
- Alexander G Thompson
- Nuffield Department of Clinical Neurosciences, University of Oxford, Level 6, West Wing, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Elizabeth Gray
- Nuffield Department of Clinical Neurosciences, University of Oxford, Level 6, West Wing, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Sabrina M Heman-Ackah
- Department of Physiology, Anatomy and Genetics, University of Oxford, Le Gros Clark Building, South Parks Road, Oxford OX1 3QX, UK
| | - Imre Mäger
- Department of Physiology, Anatomy and Genetics, University of Oxford, Le Gros Clark Building, South Parks Road, Oxford OX1 3QX, UK
| | - Kevin Talbot
- Nuffield Department of Clinical Neurosciences, University of Oxford, Level 6, West Wing, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Samir El Andaloussi
- Department of Physiology, Anatomy and Genetics, University of Oxford, Le Gros Clark Building, South Parks Road, Oxford OX1 3QX, UK.,Department of Laboratory Medicine, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Matthew J Wood
- Department of Physiology, Anatomy and Genetics, University of Oxford, Le Gros Clark Building, South Parks Road, Oxford OX1 3QX, UK
| | - Martin R Turner
- Nuffield Department of Clinical Neurosciences, University of Oxford, Level 6, West Wing, John Radcliffe Hospital, Oxford OX3 9DU, UK
| |
Collapse
|
619
|
van Niel G. Study of Exosomes Shed New Light on Physiology of Amyloidogenesis. Cell Mol Neurobiol 2016; 36:327-42. [PMID: 26983829 PMCID: PMC11482316 DOI: 10.1007/s10571-016-0357-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 02/27/2016] [Indexed: 12/18/2022]
Abstract
Accumulation of toxic amyloid oligomers, a key feature in the pathogenesis of amyloid-related diseases, results from an imbalance between generation and clearance of amyloidogenic proteins. Cell biology has brought to light the key roles of multivesicular endosomes (MVEs) and their intraluminal vesicles (ILVs), which can be secreted as exosomes, in amyloid generation and clearance. To better understand these roles, we have investigated a relevant physiological model of amyloid formation in pigment cells. These cells have tuned their endosomes to optimize the formation of functional amyloid fibrils from the premelanosome protein (PMEL) and to avoid potential accumulation of toxic species. The functional amyloids derived from PMEL reveal striking analogies with the generation of Aβ peptides. We have recently strengthened these analogies using extracellular vesicles as reporters of the endosomal processes that regulate PMEL melanogenesis. We have shown that in pigmented cells, apolipoprotein E (ApoE) is associated with ILVs and exosomes, and regulates the formation of PMEL amyloid fibrils in endosomes. This process secures the generation of amyloid fibrils by exploiting ILVs as amyloid-nucleating platforms. This physiological model of amyloidogenesis could shed new light on the roles of MVEs and exosomes in conditions with pathological amyloid metabolism, such as Alzheimer's disease.
Collapse
Affiliation(s)
- Guillaume van Niel
- Institut Curie, PSL Research University, UMR144, Centre de Recherche, 26 rue d'ULM, 75231, Paris, France.
- Centre National de la Recherche Scientifique, UMR144, 75248, Paris, France.
| |
Collapse
|
620
|
Masse I, Agaësse G, Berthier-Vergnes O. [Tetraspanins in cutaneous physiopathology]. Med Sci (Paris) 2016; 32:267-73. [PMID: 27011245 DOI: 10.1051/medsci/20163203011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Tetraspanins are transmembrane proteins that interact laterally with each other and with different partners such as integrins, immunoglobulin (Ig)-domain-containing proteins, growth factors and cytokine receptors. Such tetraspanin-partner complexes help to organize dynamic membrane networks called "tetraspanin web", which trigger different signalling pathways. Despite the fact that tetraspanins seem abundantly and widely expressed, their function remained unclear. However, it is well established that they control fundamental cellular processes including cell survival, adhesion, migration, invasion or viral infection, but the underlying molecular mechanisms are not well elucidated. This review focuses on tetraspanins that are expressed in epidermis and the roles they play in normal and pathological conditions, specifically in skin cancer.
Collapse
Affiliation(s)
- Ingrid Masse
- Université de Lyon 1, F-69003 Lyon, France - CNRS, UMR5534, centre de génétique et de physiologie moléculaires et cellulaires, 16, rue Raphaël Dubois, Villeurbanne, F-69622, France
| | - Gweltaz Agaësse
- Université de Lyon 1, F-69003 Lyon, France - CNRS, UMR5534, centre de génétique et de physiologie moléculaires et cellulaires, 16, rue Raphaël Dubois, Villeurbanne, F-69622, France
| | - Odile Berthier-Vergnes
- Université de Lyon 1, F-69003 Lyon, France - CNRS, UMR5534, centre de génétique et de physiologie moléculaires et cellulaires, 16, rue Raphaël Dubois, Villeurbanne, F-69622, France
| |
Collapse
|
621
|
Cells release subpopulations of exosomes with distinct molecular and biological properties. Sci Rep 2016; 6:22519. [PMID: 26931825 PMCID: PMC4773763 DOI: 10.1038/srep22519] [Citation(s) in RCA: 715] [Impact Index Per Article: 79.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 02/11/2016] [Indexed: 12/16/2022] Open
Abstract
Cells release nano-sized membrane vesicles that are involved in intercellular communication by transferring biological information between cells. It is generally accepted that cells release at least three types of extracellular vesicles (EVs): apoptotic bodies, microvesicles and exosomes. While a wide range of putative biological functions have been attributed to exosomes, they are assumed to represent a homogenous population of EVs. We hypothesized the existence of subpopulations of exosomes with defined molecular compositions and biological properties. Density gradient centrifugation of isolated exosomes revealed the presence of two distinct subpopulations, differing in biophysical properties and their proteomic and RNA repertoires. Interestingly, the subpopulations mediated differential effects on the gene expression programmes in recipient cells. In conclusion, we demonstrate that cells release distinct exosome subpopulations with unique compositions that elicit differential effects on recipient cells. Further dissection of exosome heterogeneity will advance our understanding of exosomal biology in health and disease and accelerate the development of exosome-based diagnostics and therapeutics.
Collapse
|
622
|
Koliha N, Wiencek Y, Heider U, Jüngst C, Kladt N, Krauthäuser S, Johnston ICD, Bosio A, Schauss A, Wild S. A novel multiplex bead-based platform highlights the diversity of extracellular vesicles. J Extracell Vesicles 2016; 5:29975. [PMID: 26901056 PMCID: PMC4762227 DOI: 10.3402/jev.v5.29975] [Citation(s) in RCA: 222] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 01/12/2016] [Accepted: 01/13/2016] [Indexed: 01/15/2023] Open
Abstract
The surface protein composition of extracellular vesicles (EVs) is related to the originating cell and may play a role in vesicle function. Knowledge of the protein content of individual EVs is still limited because of the technical challenges to analyse small vesicles. Here, we introduce a novel multiplex bead-based platform to investigate up to 39 different surface markers in one sample. The combination of capture antibody beads with fluorescently labelled detection antibodies allows the analysis of EVs that carry surface markers recognized by both antibodies. This new method enables an easy screening of surface markers on populations of EVs. By combining different capture and detection antibodies, additional information on relative expression levels and potential vesicle subpopulations is gained. We also established a protocol to visualize individual EVs by stimulated emission depletion (STED) microscopy. Thereby, markers on single EVs can be detected by fluorophore-conjugated antibodies. We used the multiplex platform and STED microscopy to show for the first time that NK cell–derived EVs and platelet-derived EVs are devoid of CD9 or CD81, respectively, and that EVs isolated from activated B cells comprise different EV subpopulations. We speculate that, according to our STED data, tetraspanins might not be homogenously distributed but may mostly appear as clusters on EV subpopulations. Finally, we demonstrate that EV mixtures can be separated by magnetic beads and analysed subsequently with the multiplex platform. Both the multiplex bead-based platform and STED microscopy revealed subpopulations of EVs that have been indistinguishable by most analysis tools used so far. We expect that an in-depth view on EV heterogeneity will contribute to our understanding of different EVs and functions.
Collapse
Affiliation(s)
- Nina Koliha
- Miltenyi Biotec GmbH, Bergisch Gladbach, Germany
| | | | - Ute Heider
- Miltenyi Biotec GmbH, Bergisch Gladbach, Germany
| | - Christian Jüngst
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Nikolay Kladt
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | | | | | | | - Astrid Schauss
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Stefan Wild
- Miltenyi Biotec GmbH, Bergisch Gladbach, Germany;
| |
Collapse
|
623
|
Exosome-mediated communication in the ovarian follicle. J Assist Reprod Genet 2016; 33:303-311. [PMID: 26814471 DOI: 10.1007/s10815-016-0657-9] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 01/07/2016] [Indexed: 01/14/2023] Open
Abstract
Cells are able to produce and release different types of vesicles, such as microvesicles and exosomes, in the extracellular microenvironment. According to the scientific community, both microvesicles and exosomes are able to take on and transfer different macromolecules from and to other cells, and in this way, they can influence the recipient cell function. Among the different macromolecule cargos, the most studied are microRNAs. MicroRNAs are a large family of non-coding RNAs involved in the regulation of gene expression. They control every cellular process and their altered regulation is involved in human diseases. Their presence in mammalian follicular fluid has been recently demonstrated, and here, they are enclosed within microvesicles and exosomes or they can also be associated to protein complexes. The presence of microvesicles and exosomes carrying microRNAs in follicular fluid could represent an alternative mechanism of autocrine and paracrine communication inside the ovarian follicle. The outcomes from these studies could be important in basic reproductive research but could also be useful for clinical application. In fact, the characterization of extracellular vesicles in follicular fluid could improve reproductive disease diagnosis and provide biomarkers of oocyte quality in ART (Assisted Reproductive Treatment).
Collapse
|
624
|
Carrière J, Barnich N, Nguyen HTT. Exosomes: From Functions in Host-Pathogen Interactions and Immunity to Diagnostic and Therapeutic Opportunities. Rev Physiol Biochem Pharmacol 2016; 172:39-75. [PMID: 27600934 DOI: 10.1007/112_2016_7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Since their first description in the 1980s, exosomes, small endosomal-derived extracellular vesicles, have been involved in innate and adaptive immunity through modulating immune responses and mediating antigen presentation. Increasing evidence has reported the role of exosomes in host-pathogen interactions and particularly in the activation of antimicrobial immune responses. The growing interest concerning exosomes in infectious diseases, their accessibility in various body fluids, and their capacity to convey a rich content (e.g., proteins, lipids, and nucleic acids) to distant recipient cells led the scientific community to consider the use of exosomes as potential new diagnostic and therapeutic tools. In this review, we summarize current understandings of exosome biogenesis and their composition and highlight the function of exosomes as immunomodulators in pathological states such as in infectious disorders. The potential of using exosomes as diagnostic and therapeutic tools is also discussed.
Collapse
Affiliation(s)
- Jessica Carrière
- University of Clermont Auvergne, M2iSH, UMR 1071 INSERM/University of Auvergne, Clermont-Ferrand, 63001, France.,INRA USC 2018, Clermont-Ferrand, 63001, France
| | - Nicolas Barnich
- University of Clermont Auvergne, M2iSH, UMR 1071 INSERM/University of Auvergne, Clermont-Ferrand, 63001, France.,INRA USC 2018, Clermont-Ferrand, 63001, France
| | - Hang Thi Thu Nguyen
- University of Clermont Auvergne, M2iSH, UMR 1071 INSERM/University of Auvergne, Clermont-Ferrand, 63001, France. .,INRA USC 2018, Clermont-Ferrand, 63001, France.
| |
Collapse
|
625
|
Ho T, Watt B, Spruce LA, Seeholzer SH, Marks MS. The Kringle-like Domain Facilitates Post-endoplasmic Reticulum Changes to Premelanosome Protein (PMEL) Oligomerization and Disulfide Bond Configuration and Promotes Amyloid Formation. J Biol Chem 2015; 291:3595-612. [PMID: 26694611 DOI: 10.1074/jbc.m115.692442] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Indexed: 11/06/2022] Open
Abstract
The formation of functional amyloid must be carefully regulated to prevent the accumulation of potentially toxic products. Premelanosome protein (PMEL) forms non-toxic functional amyloid fibrils that assemble into sheets upon which melanins ultimately are deposited within the melanosomes of pigment cells. PMEL is synthesized in the endoplasmic reticulum but forms amyloid only within post-Golgi melanosome precursors; thus, PMEL must traverse the secretory pathway in a non-amyloid form. Here, we identified two pre-amyloid PMEL intermediates that likely regulate the timing of fibril formation. Analyses by non-reducing SDS-PAGE, size exclusion chromatography, and sedimentation velocity revealed two native high Mr disulfide-bonded species that contain Golgi-modified forms of PMEL. These species correspond to disulfide bond-containing dimeric and monomeric PMEL isoforms that contain no other proteins as judged by two-dimensional PAGE of metabolically labeled/immunoprecipitated PMEL and by mass spectrometry of affinity-purified complexes. Metabolic pulse-chase analyses, small molecule inhibitor treatments, and evaluation of site-directed mutants suggest that the PMEL dimer forms around the time of endoplasmic reticulum exit and is resolved by disulfide bond rearrangement into a monomeric form within the late Golgi or a post-Golgi compartment. Mutagenesis of individual cysteine residues within the non-amyloid cysteine-rich Kringle-like domain stabilizes the disulfide-bonded dimer and impairs fibril formation as determined by electron microscopy. Our data show that the Kringle-like domain facilitates the resolution of disulfide-bonded PMEL dimers and promotes PMEL functional amyloid formation, thereby suggesting that PMEL dimers must be resolved to monomers to generate functional amyloid fibrils.
Collapse
Affiliation(s)
- Tina Ho
- From the Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104 and the Cell and Molecular Biology Graduate Group, the Department of Pathology and Laboratory Medicine, and
| | - Brenda Watt
- From the Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104 and the Cell and Molecular Biology Graduate Group, the Department of Pathology and Laboratory Medicine, and
| | - Lynn A Spruce
- From the Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104 and
| | - Steven H Seeholzer
- From the Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104 and
| | - Michael S Marks
- From the Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104 and the Cell and Molecular Biology Graduate Group, the Department of Pathology and Laboratory Medicine, and the Department of Physiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| |
Collapse
|
626
|
The Dual Role of Exosomes in Hepatitis A and C Virus Transmission and Viral Immune Activation. Viruses 2015; 7:6707-15. [PMID: 26694453 PMCID: PMC4690890 DOI: 10.3390/v7122967] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 11/30/2015] [Accepted: 12/10/2015] [Indexed: 12/21/2022] Open
Abstract
Exosomes are small nanovesicles of about 100 nm in diameter that act as intercellular messengers because they can shuttle RNA, proteins and lipids between different cells. Many studies have found that exosomes also play various roles in viral pathogenesis. Hepatitis A virus (HAV; a picornavirus) and Hepatitis C virus (HCV; a flavivirus) two single strand plus-sense RNA viruses, in particular, have been found to use exosomes for viral transmission thus evading antibody-mediated immune responses. Paradoxically, both viral exosomes can also be detected by plasmacytoid dendritic cells (pDCs) leading to innate immune activation and type I interferon production. This article will review recent findings regarding these two viruses and outline how exosomes are involved in their transmission and immune sensing.
Collapse
|
627
|
Vilette D, Laulagnier K, Huor A, Alais S, Simoes S, Maryse R, Provansal M, Lehmann S, Andreoletti O, Schaeffer L, Raposo G, Leblanc P. Efficient inhibition of infectious prions multiplication and release by targeting the exosomal pathway. Cell Mol Life Sci 2015; 72:4409-27. [PMID: 26047659 PMCID: PMC11113226 DOI: 10.1007/s00018-015-1945-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 05/06/2015] [Accepted: 05/28/2015] [Indexed: 10/23/2022]
Abstract
Exosomes are secreted membrane vesicles of endosomal origin present in biological fluids. Exosomes may serve as shuttles for amyloidogenic proteins, notably infectious prions, and may participate in their spreading in vivo. To explore the significance of the exosome pathway on prion infectivity and release, we investigated the role of the endosomal sorting complex required for transport (ESCRT) machinery and the need for ceramide, both involved in exosome biogenesis. Silencing of HRS-ESCRT-0 subunit drastically impairs the formation of cellular infectious prion due to an altered trafficking of cholesterol. Depletion of Tsg101-ESCRT-I subunit or impairment of the production of ceramide significantly strongly decreases infectious prion release. Together, our data reveal that ESCRT-dependent and -independent pathways can concomitantly regulate the exosomal secretion of infectious prion, showing that both pathways operate for the exosomal trafficking of a particular cargo. These data open up a new avenue to regulate prion release and propagation.
Collapse
Affiliation(s)
- Didier Vilette
- UMR INRA/ENVT 1225, Interactions Hôte Agent Pathogène, Toulouse, France.
| | - Karine Laulagnier
- CNRS, UMR5239, Laboratoire de Biologie Moléculaire de la Cellule (LBMC), ENS Lyon, 46 allée d'Italie, 69364, Lyon 7, France
- Inserm, U836, Neurodégénérescence et Plasticité, Institute of Neuroscience, Grenoble, France
| | - Alvina Huor
- UMR INRA/ENVT 1225, Interactions Hôte Agent Pathogène, Toulouse, France
| | - Sandrine Alais
- Centre International de Recherche en Infectiologie (CIRI), INSERM U1111, CNRS UMR5308, UCBL, ENS Lyon, Lyon, France
| | - Sabrina Simoes
- Institut Curie, CNRS-UMR144-Structure and Membrane Compartments, 26 rue d'Ulm, 75248, Paris Cedex 05, France
| | - Romao Maryse
- Institut Curie, CNRS-UMR144-Structure and Membrane Compartments, 26 rue d'Ulm, 75248, Paris Cedex 05, France
| | - Monique Provansal
- Institut de Médecine Régénératrice et de Biothérapie (I.M.R.B.), Physiopathologie, diagnostic et thérapie cellulaire des affections neurodégénératives, INSERM Université Montpellier 1 U1040 CHU de Montpellier, Université Montpellier 1, Montpellier, France
| | - Sylvain Lehmann
- Institut de Médecine Régénératrice et de Biothérapie (I.M.R.B.), Physiopathologie, diagnostic et thérapie cellulaire des affections neurodégénératives, INSERM Université Montpellier 1 U1040 CHU de Montpellier, Université Montpellier 1, Montpellier, France
| | | | - Laurent Schaeffer
- CNRS, UMR5239, Laboratoire de Biologie Moléculaire de la Cellule (LBMC), ENS Lyon, 46 allée d'Italie, 69364, Lyon 7, France
| | - Graça Raposo
- Institut Curie, CNRS-UMR144-Structure and Membrane Compartments, 26 rue d'Ulm, 75248, Paris Cedex 05, France
| | - Pascal Leblanc
- CNRS, UMR5239, Laboratoire de Biologie Moléculaire de la Cellule (LBMC), ENS Lyon, 46 allée d'Italie, 69364, Lyon 7, France.
| |
Collapse
|
628
|
Affiliation(s)
- Alejandra Tomas
- a Department of Cell Biology ; UCL Institute of Ophthalmology; University College London ; London , UK.,b Section of Cell Biology and Functional Genomics; Division of Diabetes, Endocrinology and Metabolism ; Department of Medicine; Imperial College London ; London , UK
| | - Clare E Futter
- a Department of Cell Biology ; UCL Institute of Ophthalmology; University College London ; London , UK
| |
Collapse
|
629
|
MacDonald C, Payne JA, Aboian M, Smith W, Katzmann DJ, Piper RC. A family of tetraspans organizes cargo for sorting into multivesicular bodies. Dev Cell 2015; 33:328-42. [PMID: 25942624 DOI: 10.1016/j.devcel.2015.03.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 01/22/2015] [Accepted: 03/04/2015] [Indexed: 12/11/2022]
Abstract
The abundance of cell-surface membrane proteins is regulated by internalization and delivery into intralumenal vesicles (ILVs) of multivesicular bodies (MVBs). Many cargoes are ubiquitinated, allowing access to an ESCRT-dependent pathway into MVBs. Yet how nonubiquitinated proteins, such as glycosylphosphatidylinositol-anchored proteins, enter MVBs is unclear, supporting the possibility of mechanistically distinct ILV biogenesis pathways. Here we show that a family of highly ubiquitinated tetraspan Cos proteins provides a Ub signal in trans, allowing sorting of nonubiquitinated MVB cargo into the canonical ESCRT- and Ub-dependent pathway. Cos proteins create discrete endosomal subdomains that concentrate Ub cargo prior to their envelopment into ILVs, and the activity of Cos proteins is required not only for efficient sorting of canonical Ub cargo but also for sorting nonubiquitinated cargo into MVBs. Expression of these proteins increases during nutrient stress through an NAD(+)/Sir2-dependent mechanism that in turn accelerates the downregulation of a broad range of cell-surface proteins.
Collapse
Affiliation(s)
- Chris MacDonald
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA 52242, USA
| | - Johanna A Payne
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Mariam Aboian
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA; Department of Radiology and Biomedical Imaging, University of California San Francisco School of Medicine, San Francisco, CA 94143, USA
| | - William Smith
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA 52242, USA
| | - David J Katzmann
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA.
| | - Robert C Piper
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
630
|
van Niel G, Bergam P, Di Cicco A, Hurbain I, Lo Cicero A, Dingli F, Palmulli R, Fort C, Potier MC, Schurgers LJ, Loew D, Levy D, Raposo G. Apolipoprotein E Regulates Amyloid Formation within Endosomes of Pigment Cells. Cell Rep 2015; 13:43-51. [PMID: 26387950 DOI: 10.1016/j.celrep.2015.08.057] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 07/02/2015] [Accepted: 08/20/2015] [Indexed: 01/20/2023] Open
Abstract
Accumulation of toxic amyloid oligomers is a key feature in the pathogenesis of amyloid-related diseases. Formation of mature amyloid fibrils is one defense mechanism to neutralize toxic prefibrillar oligomers. This mechanism is notably influenced by apolipoprotein E variants. Cells that produce mature amyloid fibrils to serve physiological functions must exploit specific mechanisms to avoid potential accumulation of toxic species. Pigment cells have tuned their endosomes to maximize the formation of functional amyloid from the protein PMEL. Here, we show that ApoE is associated with intraluminal vesicles (ILV) within endosomes and remain associated with ILVs when they are secreted as exosomes. ApoE functions in the ESCRT-independent sorting mechanism of PMEL onto ILVs and regulates the endosomal formation of PMEL amyloid fibrils in vitro and in vivo. This process secures the physiological formation of amyloid fibrils by exploiting ILVs as amyloid nucleating platforms.
Collapse
Affiliation(s)
- Guillaume van Niel
- Institut Curie, PSL Research University, UMR144, Centre de Recherche, 26 rue d'ULM, Paris 75231, France; Centre National de la Recherche Scientifique, UMR144, Paris 75248, France; Cell and Tissue Imaging Core Facility PICT-IBiSA, Institut Curie, Paris 75248, France.
| | - Ptissam Bergam
- Institut Curie, PSL Research University, UMR144, Centre de Recherche, 26 rue d'ULM, Paris 75231, France; Centre National de la Recherche Scientifique, UMR144, Paris 75248, France; Cell and Tissue Imaging Core Facility PICT-IBiSA, Institut Curie, Paris 75248, France
| | - Aurelie Di Cicco
- Cell and Tissue Imaging Core Facility PICT-IBiSA, Institut Curie, Paris 75248, France; Institut Curie, PSL Research University, UMR168, Centre de Recherche, 26 rue d'ULM, Paris 75231, France; Centre National de la Recherche Scientifique, UMR 168, Paris 75231, France
| | - Ilse Hurbain
- Institut Curie, PSL Research University, UMR144, Centre de Recherche, 26 rue d'ULM, Paris 75231, France; Centre National de la Recherche Scientifique, UMR144, Paris 75248, France; Cell and Tissue Imaging Core Facility PICT-IBiSA, Institut Curie, Paris 75248, France
| | - Alessandra Lo Cicero
- Institut Curie, PSL Research University, UMR144, Centre de Recherche, 26 rue d'ULM, Paris 75231, France; Centre National de la Recherche Scientifique, UMR144, Paris 75248, France
| | - Florent Dingli
- Institut Curie, PSL Research University, Centre de Recherche, Laboratoire de Spectrométrie de Masse Protéomique, Paris 75248, France
| | - Roberta Palmulli
- Institut Curie, PSL Research University, UMR144, Centre de Recherche, 26 rue d'ULM, Paris 75231, France; Centre National de la Recherche Scientifique, UMR144, Paris 75248, France
| | - Cecile Fort
- Institut Curie, PSL Research University, UMR144, Centre de Recherche, 26 rue d'ULM, Paris 75231, France; Centre National de la Recherche Scientifique, UMR144, Paris 75248, France
| | - Marie Claude Potier
- Institut du Cerveau et de la Moelle, CNRS UMR7225, INSERM U1127, UPMC Hôpital de la Pitié-Salpêtrière, 47 Bd de l'Hôpital, Paris 75013, France
| | - Leon J Schurgers
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, P.O. Box 616, 6200 MD Maastricht, the Netherlands
| | - Damarys Loew
- Institut Curie, PSL Research University, Centre de Recherche, Laboratoire de Spectrométrie de Masse Protéomique, Paris 75248, France
| | - Daniel Levy
- Cell and Tissue Imaging Core Facility PICT-IBiSA, Institut Curie, Paris 75248, France; Institut Curie, PSL Research University, UMR168, Centre de Recherche, 26 rue d'ULM, Paris 75231, France; Centre National de la Recherche Scientifique, UMR 168, Paris 75231, France
| | - Graça Raposo
- Institut Curie, PSL Research University, UMR144, Centre de Recherche, 26 rue d'ULM, Paris 75231, France; Centre National de la Recherche Scientifique, UMR144, Paris 75248, France; Cell and Tissue Imaging Core Facility PICT-IBiSA, Institut Curie, Paris 75248, France
| |
Collapse
|
631
|
Alenquer M, Amorim MJ. Exosome Biogenesis, Regulation, and Function in Viral Infection. Viruses 2015; 7:5066-83. [PMID: 26393640 PMCID: PMC4584306 DOI: 10.3390/v7092862] [Citation(s) in RCA: 277] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 08/31/2015] [Accepted: 09/07/2015] [Indexed: 12/16/2022] Open
Abstract
Exosomes are extracellular vesicles released upon fusion of multivesicular bodies (MVBs) with the cellular plasma membrane. They originate as intraluminal vesicles (ILVs) during the process of MVB formation. Exosomes were shown to contain selectively sorted functional proteins, lipids, and RNAs, mediating cell-to-cell communications and hence playing a role in the physiology of the healthy and diseased organism. Challenges in the field include the identification of mechanisms sustaining packaging of membrane-bound and soluble material to these vesicles and the understanding of the underlying processes directing MVBs for degradation or fusion with the plasma membrane. The investigation into the formation and roles of exosomes in viral infection is in its early years. Although still controversial, exosomes can, in principle, incorporate any functional factor, provided they have an appropriate sorting signal, and thus are prone to viral exploitation. This review initially focuses on the composition and biogenesis of exosomes. It then explores the regulatory mechanisms underlying their biogenesis. Exosomes are part of the endocytic system, which is tightly regulated and able to respond to several stimuli that lead to alterations in the composition of its sub-compartments. We discuss the current knowledge of how these changes affect exosomal release. We then summarize how different viruses exploit specific proteins of endocytic sub-compartments and speculate that it could interfere with exosome function, although no direct link between viral usage of the endocytic system and exosome release has yet been reported. Many recent reports have ascribed functions to exosomes released from cells infected with a variety of animal viruses, including viral spread, host immunity, and manipulation of the microenvironment, which are discussed. Given the ever-growing roles and importance of exosomes in viral infections, understanding what regulates their composition and levels, and defining their functions will ultimately provide additional insights into the virulence and persistence of infections.
Collapse
Affiliation(s)
- Marta Alenquer
- Cell Biology of Viral Infection Lab, Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, 2778-156 Oeiras, Portugal.
| | - Maria João Amorim
- Cell Biology of Viral Infection Lab, Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, 2778-156 Oeiras, Portugal.
| |
Collapse
|
632
|
Abstract
The ESCRT proteins are an ancient system that buds membranes and severs membrane necks from their inner face. Three "classical" functions of the ESCRTs have dominated research into these proteins since their discovery in 2001: the biogenesis of multivesicular bodies in endolysosomal sorting; the budding of HIV-1 and other viruses from the plasma membrane of infected cells; and the membrane abscission step in cytokinesis. The past few years have seen an explosion of novel functions: the biogenesis of microvesicles and exosomes; plasma membrane wound repair; neuron pruning; extraction of defective nuclear pore complexes; nuclear envelope reformation; plus-stranded RNA virus replication compartment formation; and micro- and macroautophagy. Most, and perhaps all, of the functions involve the conserved membrane-neck-directed activities of the ESCRTs, revealing a remarkably widespread role for this machinery through a broad swath of cell biology.
Collapse
Affiliation(s)
- James H Hurley
- Department of Molecular and Cell Biology and California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA, USA Life Sciences Division, Lawrence Berkeley National Lab, Berkeley, CA, USA
| |
Collapse
|
633
|
Dubois L, Ronquist KKG, Ek B, Ronquist G, Larsson A. Proteomic Profiling of Detergent Resistant Membranes (Lipid Rafts) of Prostasomes. Mol Cell Proteomics 2015; 14:3015-22. [PMID: 26272980 DOI: 10.1074/mcp.m114.047530] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Indexed: 01/11/2023] Open
Abstract
Prostasomes are exosomes derived from prostate epithelial cells through exocytosis by multivesicular bodies. Prostasomes have a bilayered membrane and readily interact with sperm. The membrane lipid composition is unusual with a high contribution of sphingomyelin at the expense of phosphatidylcholine and saturated and monounsaturated fatty acids are dominant. Lipid rafts are liquid-ordered domains that are more tightly packed than the surrounding nonraft phase of the bilayer. Lipid rafts are proposed to be highly dynamic, submicroscopic assemblies that float freely within the liquid disordered membrane bilayer and some proteins preferentially partition into the ordered raft domains. We asked the question whether lipid rafts do exist in prostasomes and, if so, which proteins might be associated with them. Prostasomes of density range 1.13-1.19g/ml were subjected to density gradient ultracentrifugation in sucrose fabricated by phosphate buffered saline (PBS) containing 1% Triton X-100 with capacity for banding at 1.10 g/ml, i.e. the classical density of lipid rafts. Prepared prostasomal lipid rafts (by gradient ultracentrifugation) were analyzed by mass spectrometry. The clearly visible band on top of 1.10g/ml sucrose in the Triton X-100 containing gradient was subjected to liquid chromatography-tandem MS and more than 370 lipid raft associated proteins were identified. Several of them were involved in intraluminal vesicle formation, e.g. tetraspanins, ESCRTs, and Ras-related proteins. This is the first comprehensive liquid chromatography-tandem MS profiling of proteins in lipid rafts derived from exosomes. Data are available via ProteomeXchange with identifier PXD002163.
Collapse
Affiliation(s)
- Louise Dubois
- From the ‡Department of Medical Sciences, Uppsala University, 75185 Uppsala, Sweden
| | - Karl K Göran Ronquist
- From the ‡Department of Medical Sciences, Uppsala University, 75185 Uppsala, Sweden;
| | - Bo Ek
- §Department of Analytical Chemistry, Science for Life Laboratory, Uppsala University, 751 24 Uppsala, Sweden
| | - Gunnar Ronquist
- From the ‡Department of Medical Sciences, Uppsala University, 75185 Uppsala, Sweden
| | - Anders Larsson
- From the ‡Department of Medical Sciences, Uppsala University, 75185 Uppsala, Sweden
| |
Collapse
|
634
|
Abstract
Tumor-derived exosomes (TEX) are emerging as a new type of cancer biomarker. TEX are membrane-bound, virus-size vesicles of endocytic origin present in all body fluids of cancer patients. Based on the expanding albeit incomplete knowledge of their biogenesis, secretion by tumor cells and cancer cell-specific molecular and genetic contents, TEX are viewed as promising, clinically-relevant surrogates of cancer progression and response to therapy. Preliminary proteomic, genetic and functional profiling of tumor cell-derived or cancer plasma-derived exosomes confirms their unique characteristics. Alterations in protein or nucleic acid profiles of exosomes in plasma of cancer patients responding to therapies appear to correlate with clinical endpoints. However, methods for TEX isolation and separation from the bulk of human plasma-derived exosomes are not yet established and their role as biomarkers remains to be confirmed. Further development and validation of TEX as noninvasive, liquid equivalents of tumor biopsies are necessary to move this effort forward.
Collapse
Affiliation(s)
- Theresa L. Whiteside
- University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213, Departments of Pathology, Immunology and Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, , Phone: 412-624-0096, FAX: 412-624-0264
| |
Collapse
|
635
|
Abstract
Exosomes are membranous nanovesicles of endocytic origin that carry host and pathogen derived genomic, proteomic, and lipid cargos. Exosomes are secreted by most cell types into the extracellular milieu and are subsequently internalized by recipient cells. Upon internalization, exosomes condition recipient cells by donating their cargos and/or activating various signal transduction pathways, consequently regulating physiological and pathophysiological processes. The role of exosomes in viral pathogenesis, especially human immunodeficiency virus type 1 [HIV-1] is beginning to unravel. Recent research reports suggest that exosomes from various sources play important but different roles in the pathogenesis of HIV-1. From these reports, it appears that the source of exosomes is the defining factor for the exosomal effect on HIV-1. In this review, we will describe how HIV-1 infection is modulated by exosomes and in turn how exosomes are targeted by HIV-1 factors. Finally, we will discuss potentially emerging therapeutic options based on exosomal cargos that may have promise in preventing HIV-1 transmission.
Collapse
|
636
|
Gomez-Lamarca MJ, Snowdon LA, Seib E, Klein T, Bray SJ. Rme-8 depletion perturbs Notch recycling and predisposes to pathogenic signaling. J Cell Biol 2015; 210:303-18. [PMID: 26169355 PMCID: PMC4508892 DOI: 10.1083/jcb.201411001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 06/11/2015] [Indexed: 02/07/2023] Open
Abstract
The retromer-associated DNAJ protein Rme-8 is necessary for normal Notch recycling, and reductions in Rme-8 sensitize cells so that additional loss-of-sorting retromer or ESCRT-0 components have catastrophic effects. Notch signaling is a major regulator of cell fate, proliferation, and differentiation. Like other signaling pathways, its activity is strongly influenced by intracellular trafficking. Besides contributing to signal activation and down-regulation, differential fluxes between trafficking routes can cause aberrant Notch pathway activation. Investigating the function of the retromer-associated DNAJ protein Rme-8 in vivo, we demonstrate a critical role in regulating Notch receptor recycling. In the absence of Rme-8, Notch accumulated in enlarged tubulated Rab4-positive endosomes, and as a consequence, signaling was compromised. Strikingly, when the retromer component Vps26 was depleted at the same time, Notch no longer accumulated and instead was ectopically activated. Likewise, depletion of ESCRT-0 components Hrs or Stam in combination with Rme-8 also led to high levels of ectopic Notch activity. Together, these results highlight the importance of Rme-8 in coordinating normal endocytic recycling route and reveal that its absence predisposes toward conditions in which pathological Notch signaling can occur.
Collapse
Affiliation(s)
- Maria J Gomez-Lamarca
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, England, UK
| | - Laura A Snowdon
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, England, UK
| | - Ekatarina Seib
- Institute of Genetics, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Thomas Klein
- Institute of Genetics, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Sarah J Bray
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, England, UK
| |
Collapse
|
637
|
Exosomes and Their Role in the Life Cycle and Pathogenesis of RNA Viruses. Viruses 2015; 7:3204-25. [PMID: 26102580 PMCID: PMC4488737 DOI: 10.3390/v7062770] [Citation(s) in RCA: 189] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 06/03/2015] [Accepted: 06/05/2015] [Indexed: 12/21/2022] Open
Abstract
Exosomes are membrane-enclosed vesicles actively released into the extracellular space, whose content reflect the physiological/pathological state of the cells they originate from. These vesicles participate in cell-to-cell communication and transfer of biologically active proteins, lipids, and RNAs. Their role in viral infections is just beginning to be appreciated. RNA viruses are an important class of pathogens and affect millions of people worldwide. Recent studies on Human Immunodeficiency Virus (HIV), Hepatitis C Virus (HCV), human T-cell lymphotropic virus (HTLV), and Dengue Virus (DENV) have demonstrated that exosomes released from infected cells harbor and deliver many regulatory factors including viral RNA and proteins, viral and cellular miRNA, and other host functional genetic elements to neighboring cells, helping to establish productive infections and modulating cellular responses. Exosomes can either spread or limit an infection depending on the type of pathogen and target cells, and can be exploited as candidates for development of antiviral or vaccine treatments. This review summarizes recent progress made in understanding the role of exosomes in RNA virus infections with an emphasis on their potential contribution to pathogenesis.
Collapse
|
638
|
Tomas A, Vaughan SO, Burgoyne T, Sorkin A, Hartley JA, Hochhauser D, Futter CE. WASH and Tsg101/ALIX-dependent diversion of stress-internalized EGFR from the canonical endocytic pathway. Nat Commun 2015; 6:7324. [PMID: 26066081 PMCID: PMC4490399 DOI: 10.1038/ncomms8324] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 04/27/2015] [Indexed: 12/14/2022] Open
Abstract
Stress exposure triggers ligand-independent EGF receptor (EGFR) endocytosis, but its post-endocytic fate and role in regulating signalling are unclear. We show that the p38 MAP kinase-dependent, EGFR tyrosine kinase (TK)-independent EGFR internalization induced by ultraviolet light C (UVC) or the cancer therapeutic cisplatin, is followed by diversion from the canonical endocytic pathway. Instead of lysosomal degradation or plasma membrane recycling, EGFR accumulates in a subset of LBPA-rich perinuclear multivesicular bodies (MVBs) distinct from those carrying EGF-stimulated EGFR. Stress-internalized EGFR co-segregates with exogenously expressed pre-melanosomal markers OA1 and fibrillar PMEL, following early endosomal sorting by the actin polymerization-promoting WASH complex. Stress-internalized EGFR is retained intracellularly by continued p38 activity in a mechanism involving ubiquitin-independent, ESCRT/ALIX-dependent incorporation onto intraluminal vesicles (ILVs) of MVBs. In contrast to the internalization-independent EGF-stimulated activation, UVC/cisplatin-triggered EGFR activation depends on EGFR internalization and intracellular retention. EGFR signalling from this MVB subpopulation delays apoptosis and might contribute to chemoresistance.
Collapse
Affiliation(s)
- Alejandra Tomas
- Department of Cell Biology, UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK
- Present address: Section of Cell Biology, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK
| | - Simon O. Vaughan
- Department of Cell Biology, UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK
| | - Thomas Burgoyne
- Department of Cell Biology, UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK
| | - Alexander Sorkin
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | - John A. Hartley
- Cancer Research UK Drug-DNA Interactions Research Group, UCL Cancer Institute, Paul O'Gorman Building, University College London, 72 Huntley Street, London WC1E 6BT, UK
| | - Daniel Hochhauser
- Cancer Research UK Drug-DNA Interactions Research Group, UCL Cancer Institute, Paul O'Gorman Building, University College London, 72 Huntley Street, London WC1E 6BT, UK
| | - Clare E. Futter
- Department of Cell Biology, UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK
| |
Collapse
|
639
|
Miller IV, Grunewald TGP. Tumour-derived exosomes: Tiny envelopes for big stories. Biol Cell 2015; 107:287-305. [PMID: 25923825 DOI: 10.1111/boc.201400095] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 04/24/2015] [Indexed: 12/14/2022]
Abstract
The discovery of exosomes, which are small, 30-100 nm sized extracellular vesicles that are released by virtual all cells, has initiated a rapidly expanding and vibrant research field. Current investigations are mainly directed toward the role of exosomes in intercellular communication and their potential value as biomarkers for a broad set of diseases. By horizontal transfer of molecular information such as micro RNAs, messenger RNAs or proteins, as well as by receptor-cell interactions, exosomes are capable to mediate the reprogramming of surrounding cells. Herein, we review how especially cancer cells take advantage of this mechanism to influence their microenvironment in favour of immune escape, therapy resistance, tumour growth and metastasis. Moreover, we provide a comprehensive microarray analysis (n > 1970) to study the expression patterns of genes known to be intimately involved in exosome biogenesis across 26 different cancer entities and a normal tissue atlas. Consistent with the elevated production of exosomes observed in cancer patient plasma, we found a significant overexpression especially of RAB27A, CHMP4C and SYTL4 in the corresponding cancer entities as compared to matched normal tissues. Finally, we discuss the immune-modulatory and anti-tumorigenic functions of exosomes as well as innovative approaches to specifically target the exosomal circuits in experimental cancer therapy.
Collapse
Affiliation(s)
- Isabella V Miller
- Department of Medicine II, Würzburg University Medical Centre, Würzburg, 97080, Germany
| | - Thomas G P Grunewald
- Laboratory for Paediatric Sarcoma Biology, Institute for Pathology of the LMU Munich, Munich, 80337, Germany
| |
Collapse
|
640
|
Role of the N-terminal transmembrane domain in the endo-lysosomal targeting and function of the human ABCB6 protein. Biochem J 2015; 467:127-39. [PMID: 25627919 PMCID: PMC4410673 DOI: 10.1042/bj20141085] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
ATP-binding cassette, subfamily B (ABCB) 6 is a homodimeric ATP-binding cassette (ABC) transporter present in the plasma membrane and in the intracellular organelles. The intracellular localization of ABCB6 has been a matter of debate, as it has been suggested to reside in the mitochondria and the endo-lysosomal system. Using a variety of imaging modalities, including confocal microscopy and EM, we confirm the endo-lysosomal localization of ABCB6 and show that the protein is internalized from the plasma membrane through endocytosis, to be distributed to multivesicular bodies and lysosomes. In addition to the canonical nucleotide-binding domain (NBD) and transmembrane domain (TMD), ABCB6 contains a unique N-terminal TMD (TMD0), which does not show sequence homology to known proteins. We investigated the functional role of these domains through the molecular dissection of ABCB6. We find that the folding, dimerization, membrane insertion and ATP binding/hydrolysis of the core–ABCB6 complex devoid of TMD0 are preserved. However, in contrast with the full-length transporter, the core–ABCB6 construct is retained at the plasma membrane and does not appear in Rab5-positive endosomes. TMD0 is directly targeted to the lysosomes, without passage to the plasma membrane. Collectively, our results reveal that TMD0 represents an independently folding unit, which is dispensable for catalysis, but has a crucial role in the lysosomal targeting of ABCB6. The intracellular localization of ATP-binding cassette, sub family B (ABCB) 6 is a matter of debate. We show that ABCB6 is internalized from the plasma membrane to multivesicular bodies and lysosomes. Molecular dissection of the ABCB6 protein reveals a role of its N-terminal domain in targeting.
Collapse
|
641
|
Edgar JR, Willén K, Gouras GK, Futter CE. ESCRTs regulate amyloid precursor protein sorting in multivesicular bodies and intracellular amyloid-β accumulation. J Cell Sci 2015; 128:2520-8. [PMID: 26002056 PMCID: PMC4510853 DOI: 10.1242/jcs.170233] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 05/21/2015] [Indexed: 01/26/2023] Open
Abstract
Intracellular amyloid-β (Aβ) accumulation is a key feature of early Alzheimer's disease and precedes the appearance of Aβ in extracellular plaques. Aβ is generated through proteolytic processing of amyloid precursor protein (APP), but the intracellular site of Aβ production is unclear. APP has been localized to multivesicular bodies (MVBs) where sorting of APP onto intraluminal vesicles (ILVs) could promote amyloidogenic processing, or reduce Aβ production or accumulation by sorting APP and processing products to lysosomes for degradation. Here, we show that APP localizes to the ILVs of a subset of MVBs that also traffic EGF receptor (EGFR), and that it is delivered to lysosomes for degradation. Depletion of the endosomal sorting complexes required for transport (ESCRT) components, Hrs (also known as Hgs) or Tsg101, inhibited targeting of APP to ILVs and the subsequent delivery to lysosomes, and led to increased intracellular Aβ accumulation. This was accompanied by dramatically decreased Aβ secretion. Thus, the early ESCRT machinery has a dual role in limiting intracellular Aβ accumulation through targeting of APP and processing products to the lysosome for degradation, and promoting Aβ secretion.
Collapse
Affiliation(s)
- James R Edgar
- Department of Cell Biology, UCL Institute of Ophthalmology, London EC1 V9EL, UK Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, UK
| | - Katarina Willén
- Department of Experimental Medical Science, Lund University, Lund 22184, Sweden
| | - Gunnar K Gouras
- Department of Experimental Medical Science, Lund University, Lund 22184, Sweden
| | - Clare E Futter
- Department of Cell Biology, UCL Institute of Ophthalmology, London EC1 V9EL, UK
| |
Collapse
|
642
|
Extracellular vesicles shuffling intercellular messages: for good or for bad. Curr Opin Cell Biol 2015; 35:69-77. [PMID: 26001269 DOI: 10.1016/j.ceb.2015.04.013] [Citation(s) in RCA: 375] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 04/17/2015] [Accepted: 04/19/2015] [Indexed: 02/08/2023]
Abstract
The release of extracellular vesicles (EVs) is a highly conserved process exploited by diverse organisms as a mode of intercellular communication. Vesicles of sizes ranging from 30 to 1000nm, or even larger, are generated by blebbing of the plasma membrane (microvesicles) or formed in multivesicular endosomes (MVEs) to be secreted by exocytosis as exosomes. Exosomes, microvesicles and other EVs contain membrane and cytosolic components that include proteins, lipids and RNAs, a composition that differs related to their site of biogenesis. Several mechanisms are involved in vesicle formation at the plasma membrane or in endosomes, which is reflected in their heterogeneity, size and composition. EVs have significant promise for therapeutics and diagnostics and for understanding physiological and pathological processes all of which have boosted research to find modulators of their composition, secretion and targeting.
Collapse
|
643
|
Frydrychowicz M, Kolecka-Bednarczyk A, Madejczyk M, Yasar S, Dworacki G. Exosomes - structure, biogenesis and biological role in non-small-cell lung cancer. Scand J Immunol 2015; 81:2-10. [PMID: 25359529 DOI: 10.1111/sji.12247] [Citation(s) in RCA: 160] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 10/06/2014] [Indexed: 12/12/2022]
Abstract
Many different cells produce and release membraneous microvesicles (MV) or exosomes into their microenvironment. Exosomes represent a specific subtype of secreted derived vesicles which are defined as homogenous vesicles of 30-100 nm lined by a lipid bilayer, which contain a specific set of proteins, lipids, and nucleic acids. There are clear evidences that they serve as important biological signals messengers and carriers in physiological as well as in pathological processes. Those derived from tumours (tumour-derived exosomes, TD-exosomes) function as protumourigenic factors that can mediate intercellular communication in the tumour microenvironment and also contribute to cancer progression. The main functions of exosomes in the cancer microenvironment include the following: promotion of primary cancer growth, stimulation of angiogenesis, activation of stromal fibroblasts, sculpting the cancer ECM, generation of a premetastatic niche and suppression of host immune response. Exosomes have recently emerged as potentially promising diagnostic and prognostic biomarkers in cancer and other diseases. This article is a summary of information about the structure and origin of exosomes and also indicates the importance of exosomes and microRNAs in lung cancer. The role of exosomes in NSCLC is little known, and its explanation requires thorough research.
Collapse
Affiliation(s)
- M Frydrychowicz
- Department of Immunology, Poznan University of Medical Sciences, Poznan, Poland
| | | | | | | | | |
Collapse
|
644
|
Verma M, Lam TK, Hebert E, Divi RL. Extracellular vesicles: potential applications in cancer diagnosis, prognosis, and epidemiology. BMC Clin Pathol 2015; 15:6. [PMID: 25883534 PMCID: PMC4399158 DOI: 10.1186/s12907-015-0005-5] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 03/26/2015] [Indexed: 12/18/2022] Open
Abstract
Both normal and diseased cells continuously shed extracellular vesicles (EVs) into extracellular space, and the EVs carry molecular signatures and effectors of both health and disease. EVs reflect dynamic changes that are occurring in cells and tissue microenvironment in health and at a different stage of a disease. EVs are capable of altering the function of the recipient cells. Trafficking and reciprocal exchange of molecular information by EVs among different organs and cell types have been shown to contribute to horizontal cellular transformation, cellular reprogramming, functional alterations, and metastasis. EV contents may include tumor suppressors, phosphoproteins, proteases, growth factors, bioactive lipids, mutant oncoproteins, oncogenic transcripts, microRNAs, and DNA sequences. Therefore, the EVs present in biofluids offer unprecedented, remote, and non-invasive access to crucial molecular information about the health status of cells, including their driver mutations, classifiers, molecular subtypes, therapeutic targets, and biomarkers of drug resistance. In addition, EVs may offer a non-invasive means to assess cancer initiation, progression, risk, survival, and treatment outcomes. The goal of this review is to highlight the current status of information on the role of EVs in cancer, and to explore the utility of EVs for cancer diagnosis, prognosis, and epidemiology.
Collapse
Affiliation(s)
- Mukesh Verma
- grid.48336.3a0000000419368075Epidemiology and Genomics Research Program, Division of Cancer Control and Population Sciences, National Cancer Institute, National Institutes of Health, Rockville, MD 20850 USA
| | - Tram Kim Lam
- grid.48336.3a0000000419368075Epidemiology and Genomics Research Program, Division of Cancer Control and Population Sciences, National Cancer Institute, National Institutes of Health, Rockville, MD 20850 USA
| | - Elizabeth Hebert
- grid.48336.3a0000000419368075Epidemiology and Genomics Research Program, Division of Cancer Control and Population Sciences, National Cancer Institute, National Institutes of Health, Rockville, MD 20850 USA
| | - Rao L Divi
- grid.48336.3a0000000419368075Epidemiology and Genomics Research Program, Division of Cancer Control and Population Sciences, National Cancer Institute, National Institutes of Health, Rockville, MD 20850 USA
| |
Collapse
|
645
|
Abstract
The complexity of mechanisms driving protein sorting into exosomes is only beginning to emerge. In a paper recently published in Cell Research, Roucourt et al. report that trimming of heparan sulfate side chains of syndecans by endosomal heparanase facilitates sorting into exosomes by the formation of tight syndecan clusters that are recruited by the multivalent adaptor syntenin to the ALIX-ESCRT sorting machinery at endosomes.
Collapse
Affiliation(s)
- Willem Stoorvogel
- Utrecht University, Faculty of Veterinary Medicine, Dept. of Biochemistry & Cell Biology, Yalelaan 2, 3584 CM, The Netherlands
| |
Collapse
|
646
|
Arellano-Anaya ZE, Huor A, Leblanc P, Lehmann S, Provansal M, Raposo G, Andréoletti O, Vilette D. Prion strains are differentially released through the exosomal pathway. Cell Mol Life Sci 2015; 72:1185-96. [PMID: 25227242 PMCID: PMC11113346 DOI: 10.1007/s00018-014-1735-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 08/20/2014] [Accepted: 09/12/2014] [Indexed: 12/14/2022]
Abstract
Cell-to-cell transfer of prions is a crucial step in the spreading of prion infection through infected tissue. At the cellular level, several distinct pathways including direct cell-cell contacts and release of various types of infectious extracellular vesicles have been described that may potentially lead to infection of naïve cells. The relative contribution of these pathways and whether they may vary depending on the prion strain and/or on the infected cell type are not yet known. In this study we used a single cell type (RK13) infected with three different prion strains. We showed that in each case, most of the extracellular prions resulted from active cell secretion through the exosomal pathway. Further, quantitative analysis of secreted infectivity indicated that the proportion of prions eventually secreted was dramatically dependent on the prion strain. Our data also highlight that infectious exosomes secreted from cultured cells might represent a biologically pertinent material for spiking experiments. Also discussed is the appealing possibility that abnormal PrP from different prion strains may differentially interact with the cellular machinery to promote secretion.
Collapse
Affiliation(s)
- Zaira E. Arellano-Anaya
- INRA, UMR 1225, IHAP, 31076 Toulouse, France
- Université de Toulouse, INP, ENVT, UMR 1225, IHAP, 31076 Toulouse, France
| | - Alvina Huor
- INRA, UMR 1225, IHAP, 31076 Toulouse, France
- Université de Toulouse, INP, ENVT, UMR 1225, IHAP, 31076 Toulouse, France
| | - Pascal Leblanc
- Laboratoire de Biologie Moléculaire de la Cellule (LBMC), Equipe Différenciation Neuromusculaire, Ecole Normale Supérieure-Lyon, CNRS, UMR 5239, 46 allée d’Italie, 69364 Lyon Cedex 07, France
| | - Sylvain Lehmann
- Institut de Médecine Régénératrice et de Biothérapie (I.M.R.B.), Physiopathologie, Diagnostic et Thérapie Cellulaire des Affections Neurodégénératives, Institut National de la Santé et de la Recherche Médicale Université Montpellier 1 U1040 Centre Hospitalo-Universitaire de Montpellier, Université Montpellier 1, Montpellier, France
- Institut de Génétique Humaine, Centre National de la Recherche Scientifique, UPR 1142, Montpellier, France
| | - Monique Provansal
- Institut de Médecine Régénératrice et de Biothérapie (I.M.R.B.), Physiopathologie, Diagnostic et Thérapie Cellulaire des Affections Neurodégénératives, Institut National de la Santé et de la Recherche Médicale Université Montpellier 1 U1040 Centre Hospitalo-Universitaire de Montpellier, Université Montpellier 1, Montpellier, France
- Institut de Génétique Humaine, Centre National de la Recherche Scientifique, UPR 1142, Montpellier, France
| | - Graça Raposo
- Institut Curie, UMR 144, CNRS, Structure and Membrane Compartments, Cell and Tissue Imaging Facility (PICT-IBiSA), 26 rue d’Ulm, 75248 Paris Cedex 05, France
| | - Olivier Andréoletti
- INRA, UMR 1225, IHAP, 31076 Toulouse, France
- Université de Toulouse, INP, ENVT, UMR 1225, IHAP, 31076 Toulouse, France
| | - Didier Vilette
- INRA, UMR 1225, IHAP, 31076 Toulouse, France
- Université de Toulouse, INP, ENVT, UMR 1225, IHAP, 31076 Toulouse, France
| |
Collapse
|
647
|
Liu X, Chinello C, Musante L, Cazzaniga M, Tataruch D, Calzaferri G, James Smith A, De Sio G, Magni F, Zou H, Holthofer H. Intraluminal proteome and peptidome of human urinary extracellular vesicles. Proteomics Clin Appl 2015; 9:568-73. [DOI: 10.1002/prca.201400085] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 10/28/2014] [Accepted: 11/26/2014] [Indexed: 12/11/2022]
Affiliation(s)
- Xinyu Liu
- Centre for BioAnalytical Sciences; Dublin City University; Dublin Ireland
- Institute of Nephrology and Urology; The Third Affiliated Hospital of Southern Medical University; Guangzhou China
| | - Clizia Chinello
- Department of Health Science; University of Milano-Bicocca; Monza Italy
| | - Luca Musante
- Centre for BioAnalytical Sciences; Dublin City University; Dublin Ireland
| | - Marta Cazzaniga
- Department of Health Science; University of Milano-Bicocca; Monza Italy
| | - Dorota Tataruch
- Centre for BioAnalytical Sciences; Dublin City University; Dublin Ireland
| | - Giulio Calzaferri
- Centre for BioAnalytical Sciences; Dublin City University; Dublin Ireland
| | | | - Gabriele De Sio
- Department of Health Science; University of Milano-Bicocca; Monza Italy
| | - Fulvio Magni
- Department of Health Science; University of Milano-Bicocca; Monza Italy
| | - Hequn Zou
- Institute of Nephrology and Urology; The Third Affiliated Hospital of Southern Medical University; Guangzhou China
| | - Harry Holthofer
- Centre for BioAnalytical Sciences; Dublin City University; Dublin Ireland
| |
Collapse
|
648
|
Minciacchi VR, Freeman MR, Di Vizio D. Extracellular vesicles in cancer: exosomes, microvesicles and the emerging role of large oncosomes. Semin Cell Dev Biol 2015; 40:41-51. [PMID: 25721812 DOI: 10.1016/j.semcdb.2015.02.010] [Citation(s) in RCA: 697] [Impact Index Per Article: 69.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 02/18/2015] [Accepted: 02/18/2015] [Indexed: 02/08/2023]
Abstract
Since their first description, extracellular vesicles (EVs) have been the topic of avid study in a variety of physiologic contexts and are now thought to play an important role in cancer. The state of knowledge on biogenesis, molecular content and horizontal communication of diverse types of cancer EVs has expanded considerably in recent years. As a consequence, a plethora of information about EV composition and molecular function has emerged, along with the notion that cancer cells rely on these particles to invade tissues and propagate oncogenic signals at distance. The number of in vivo studies, designed to achieve a deeper understanding of the extent to which EV biology can be applied to clinically relevant settings, is rapidly growing. This review summarizes recent studies on cancer-derived EV functions, with an overview about biogenesis and molecular cargo of exosomes, microvesicles and large oncosomes. We also discuss current challenges and emerging technologies that might improve EV detection in various biological systems. Further studies on the functional role of EVs in specific steps of cancer formation and progression will expand our understanding of the diversity of paracrine signaling mechanisms in malignant growth.
Collapse
Affiliation(s)
- Valentina R Minciacchi
- Division of Cancer Biology and Therapeutics, Departments of Surgery, Biomedical Sciences and Pathology and Laboratory Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Michael R Freeman
- Division of Cancer Biology and Therapeutics, Departments of Surgery, Biomedical Sciences and Pathology and Laboratory Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States; The Urological Diseases Research Center; Boston Children's Hospital, Boston, MA, United States; Department of Surgery, Harvard Medical School, Boston, MA, United States
| | - Dolores Di Vizio
- Division of Cancer Biology and Therapeutics, Departments of Surgery, Biomedical Sciences and Pathology and Laboratory Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States; The Urological Diseases Research Center; Boston Children's Hospital, Boston, MA, United States; Department of Surgery, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
649
|
Burgoyne T, O'Connor MN, Seabra MC, Cutler DF, Futter CE. Regulation of melanosome number, shape and movement in the zebrafish retinal pigment epithelium by OA1 and PMEL. J Cell Sci 2015; 128:1400-7. [PMID: 25690007 PMCID: PMC4379728 DOI: 10.1242/jcs.164400] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Analysis of melanosome biogenesis in the retinal pigment epithelium (RPE) is challenging because it occurs predominantly in a short embryonic time window. Here, we show that the zebrafish provides an ideal model system for studying this process because in the RPE the timing of melanosome biogenesis facilitates molecular manipulation using morpholinos. Morpholino-mediated knockdown of OA1 (also known as GPR143), mutations in the human homologue of which cause the most common form of human ocular albinism, induces a major reduction in melanosome number, recapitulating a key feature of the mammalian disease where reduced melanosome numbers precede macromelanosome formation. We further show that PMEL, a key component of mammalian melanosome biogenesis, is required for the generation of cylindrical melanosomes in zebrafish, which in turn is required for melanosome movement into the apical processes and maintenance of photoreceptor integrity. Spherical and cylindrical melanosomes containing similar melanin volumes co-exist in the cell body but only cylindrical melanosomes enter the apical processes. Taken together, our findings indicate that melanosome number and shape are independently regulated and that melanosome shape controls a function in the RPE that depends on localisation in the apical processes.
Collapse
Affiliation(s)
| | - Marie N O'Connor
- UCL Institute of Ophthalmology, London EC1V 9EL, UK MRC Laboratory for Molecular Cell Biology, University College, London WC1E 6BT, UK
| | | | - Daniel F Cutler
- MRC Laboratory for Molecular Cell Biology, University College, London WC1E 6BT, UK
| | | |
Collapse
|
650
|
Abstract
Information exchange executed by extracellular vesicles, including exosomes, is a newly described form of intercellular communication important in the development and physiology of neural systems. These vesicles can be released from cells, are packed with information including signaling proteins and both coding and regulatory RNAs, and can be taken up by target cells, thereby facilitating the transfer of multilevel information. Recent studies demonstrate their critical role in physiological processes, including nerve regeneration, synaptic function, and behavior. These vesicles also have a sinister role in the propagation of toxic amyloid proteins in neurodegenerative conditions, including prion diseases and Alzheimer's and Parkinson's diseases, in inducing neuroinflammation by exchange of information between the neurons and glia, as well as in aiding tumor progression in the brain by subversion of normal cells. This article provides a summary of topics covered in a symposium and is not meant to be a comprehensive review of the subject.
Collapse
|