601
|
Sun Y, Gu Y, Gao X, Jin X, Wink M, Sharopov FS, Yang L, Sethi G. Lycorine suppresses the malignancy of breast carcinoma by modulating epithelial mesenchymal transition and β-catenin signaling. Pharmacol Res 2023; 195:106866. [PMID: 37499704 DOI: 10.1016/j.phrs.2023.106866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/22/2023] [Accepted: 07/23/2023] [Indexed: 07/29/2023]
Abstract
Lycorine, an isoquinoline alkaloid can exhibit significant anti-cancer effects. The present study was conducted to illustrate the underlying mechanisms of action of lycorine on breast carcinoma under in vitro and in vivo settings Tandem Mass Tag assay and Kyoto Encyclopedia of Genes and Genomes analysis revealed that 20 signaling pathways were closely related to tumorigenesis, especially Wnt signaling pathway and tight junctions. The results demonstrated that lycorine evidently inhibited the proliferation of MDA-MB-231 and MCF-7 cells with IC50 values of 1.84 ± 0.21 μM and 7.76 ± 1.16 μM, respectively. It also blocked cell cycle in G2/M phase, caused a decrease in mitochondrial membrane potential, and induced apoptosis pathways through regulating caspase-3, caspase-8, caspase-9, and PARP expression. Moreover, lycorine effectively repressed the β-catenin signaling and reversed epithelial-mesenchymal transition (EMT) process. Furthermore, 4T1/Luc homograft tumor model was used to further demonstrate that lycorine significantly inhibited the growth and metastasis of breast tumor. These findings highlight the significance of lycorine as potential anti-neoplastic agent to combat breast cancer.
Collapse
Affiliation(s)
- Yanfang Sun
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, 928, No.2 Street, Qiantang District, Hangzhou 310018, China.
| | - Yi Gu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, 928, No.2 Street, Qiantang District, Hangzhou 310018, China
| | - Xiaoyan Gao
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, 928, No.2 Street, Qiantang District, Hangzhou 310018, China
| | - Xiaoyan Jin
- Department of Surgical Oncology, Zhejiang Taizhou Municipal Hospital, No. 218, Hengjie Road, Taizhou 318020, China
| | - Michael Wink
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 329, Heidelberg 69120, Germany
| | - Farukh S Sharopov
- Research Institution "Chinese-Tajik Innovation Center for Natural Products", National Academy of Sciences of Tajikistan, No. 267, Айнй Road, Dushanbe 734025, Tajikistan
| | - Linjun Yang
- Department of Surgical Oncology, Zhejiang Taizhou Municipal Hospital, No. 218, Hengjie Road, Taizhou 318020, China.
| | - Gautam Sethi
- Department of Pharmacology, National University of Singapore, NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive, Singapore, 117600, Singapore..
| |
Collapse
|
602
|
Jin Z, Meng YJ, Xu YS, Wang MM, Chen D, Jiang X, Xiong ZF. Prognostic and clinicopathological values of LINC00665 in cancers: a systematic review and China population-based meta-analysis. Clin Exp Med 2023; 23:1475-1487. [PMID: 36219365 DOI: 10.1007/s10238-022-00912-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 10/01/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Recent studies have uncovered that the aberrant expression of LINC00665 contributes to the malignant pathological process of various cancers and is closely related to the unfavorable prognosis of patients with cancer. However, a systematic analysis of the prognostic and clinicopathologic values of LINC00665 in cancers has not been conducted. OBJECTIVE We aim to clarify the association of LINC00665 expression with patient survival and clinicopathologic phenotypes in cancers. METHODS An electronic search of PubMed, Embase and Web of Science was performed to select eligible literature. Pooled hazard ratio (HR) and odds ratio (OR) were calculated to assess the clinical importance of LINC00665. The fixed-effects model was used to analyze the combined HR values and 95% CI when the studies had no significant heterogeneity (P > 0.1 for the Chi-square test or I2 < 50%). Begg's test and sensitivity analysis were also conducted. This study was registered in The International Prospective Register of Systematic Reviews (PROSPERO registration number: CRD42021290123). RESULTS A total of 710 patients from 10 eligible studies were enrolled in this meta-analysis, which was based on China population. The pooled results of this analysis revealed that high-level expression of LINC00665 was notably correlated with poor overall survival (HR = 2.08, 95% CI = 1.57-2.75) and recurrence-free survival (HR = 2.49, 95% CI = 1.63-3.80) in human cancers. Elevated LINC00665 expression was also correlated with more advanced clinical stage, earlier lymph node metastasis, lower tumor differentiation, earlier distant metastasis and larger tumor size. CONCLUSION LINC00665 expression was critically related to the cancer prognosis, which has important prognostic implications for clinical prediction.
Collapse
Affiliation(s)
- Ze Jin
- Division of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ya-Jun Meng
- Division of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu-Shuang Xu
- Division of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Meng-Meng Wang
- Division of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Di Chen
- Division of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Jiang
- Division of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhi-Fan Xiong
- Division of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
603
|
Zhu J, Chu P, Fu X. Unbalanced response to growth variations reshapes the cell fate decision landscape. Nat Chem Biol 2023; 19:1097-1104. [PMID: 36959461 DOI: 10.1038/s41589-023-01302-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 02/27/2023] [Indexed: 03/25/2023]
Abstract
The global regulation of cell growth rate on gene expression perturbs the performance of gene networks, which would impose complex variations on the cell-fate decision landscape. Here we use a simple synthetic circuit of mutual repression that allows a bistable landscape to examine how such global regulation would affect the stability of phenotypic landscape and the accompanying dynamics of cell-fate determination. We show that the landscape experiences a growth-rate-induced bifurcation between monostability and bistability. Theoretical and experimental analyses reveal that this bifurcating deformation of landscape arises from the unbalanced response of gene expression to growth variations. The path of growth transition across the bifurcation would reshape cell-fate decisions. These results demonstrate the importance of growth regulation on cell-fate determination processes, regardless of specific molecular signaling or regulation.
Collapse
Affiliation(s)
- Jingwen Zhu
- CAS Key Laboratory for Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Pan Chu
- CAS Key Laboratory for Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiongfei Fu
- CAS Key Laboratory for Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
604
|
Shunxi W, Xiaoxue Y, Guanbin S, Li Y, Junyu J, Wanqian L. Serine Metabolic Reprogramming in Tumorigenesis, Tumor Immunity, and Clinical Treatment. Adv Nutr 2023; 14:1050-1066. [PMID: 37187454 PMCID: PMC10509429 DOI: 10.1016/j.advnut.2023.05.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 05/04/2023] [Accepted: 05/11/2023] [Indexed: 05/17/2023] Open
Abstract
Serine has been recently identified as an essential metabolite for oncogenesis, progression, and adaptive immunity. Influenced by many physiologic or tumor environmental factors, the metabolic pathways of serine synthesis, uptake, and usage are heterogeneously reprogrammed and frequently amplified in tumor or tumor-associated cells. The hyperactivation of serine metabolism promotes abnormal cellular nucleotide/protein/lipid synthesis, mitochondrial function, and epigenetic modifications, which drive malignant transformation, unlimited proliferation, metastasis, immunosuppression, and drug resistance of tumor cells. Dietary restriction of serine or phosphoglycerate dehydrogenase depletion mitigates tumor growth and extends the survival of tumor patients. Correspondingly, these findings triggered a boom in the development of novel therapeutic agents targeting serine metabolism. In this study, recent discoveries in the underlying mechanism and cellular function of serine metabolic reprogramming are summarized. The vital role of serine metabolism in oncogenesis, tumor stemness, tumor immunity, and therapeutic resistance is outlined. Finally, some potential tumor therapeutic concepts, strategies, and limitations of targeting the serine metabolic pathway are described in detail. Taken together, this review underscores the importance of serine metabolic reprogramming in tumorigenesis and progression and highlights new opportunities for dietary restriction or selective pharmacologic intervention.
Collapse
Affiliation(s)
- Wang Shunxi
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, China
| | - Yuan Xiaoxue
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, China
| | - Song Guanbin
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, China
| | - Yang Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, China
| | - Jin Junyu
- Department of Oncology, Chenjiaqiao Hospital, Shapingba, Chongqing, China.
| | - Liu Wanqian
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, China.
| |
Collapse
|
605
|
Zhou Z, Chen C, Han B, Wang Y, Liu Y, Liu Q, Xu X, Yin Y, Sun B. Circular RNA in cholangiocarcinoma: A systematic review and bibliometric analysis. Pathol Res Pract 2023; 249:154755. [PMID: 37651837 DOI: 10.1016/j.prp.2023.154755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/06/2023] [Accepted: 08/08/2023] [Indexed: 09/02/2023]
Abstract
BACKGROUND Cholangiocarcinoma (CCA) is a common primary liver malignancy with a poor prognosis. Many studies have demonstrated the involvement of circular RNAs (circRNAs) in tumorigenesis and progression. METHODS Four online databases (PubMed, Web of Science, Embase, and Scopus) were searched on May 04, 2023, for original papers regarding CCA and circRNAs. Bibliometric analysis of included studies was performed on R Studio and GraphPad Prism. RESULTS Thirty studies were included in the systematic review and bibliometric analysis. The systematic review showed that circRNAs were involved in CCA proliferation, invasion, metastasis, chemotherapy resistance, and other biological processes and were related to the prognosis of patients and many clinicopathological features. Exosomal circRNAs provide a new idea for the early diagnosis of CCA. The bibliometric analysis showed a significant upward trend in the number of studies on CCA and circRNAs. The 30 included papers had 201 authors and were published in 22 English journals. The first paper was published in 2018, and the second paper was the most cited (148 citations). CONCLUSION This systematic review and bibliometric analysis demonstrates that circRNAs in CCA have not been studied enough. CircRNAs play an important role in the occurrence and progression of CCA. They may become new targets for the diagnosis, treatment, and prognostic monitoring of CCA.
Collapse
Affiliation(s)
- Zheyu Zhou
- Department of General Surgery, Nanjing Drum Tower Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Graduate School of Peking Union Medical College, Nanjing 210008, China
| | - Chaobo Chen
- Department of General Surgery, Xishan People's Hospital of Wuxi City, Wuxi 214105, China; Department of Hepatobiliary and Transplantation Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Bing Han
- Department of Hepatobiliary and Transplantation Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Yinyu Wang
- School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Yang Liu
- Department of Hepatobiliary and Transplantation Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Qiaoyu Liu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Xiaoliang Xu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China.
| | - Yin Yin
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China.
| | - Beicheng Sun
- Department of General Surgery, Nanjing Drum Tower Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Graduate School of Peking Union Medical College, Nanjing 210008, China; Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China.
| |
Collapse
|
606
|
Zhang Y, Lv X, Chen L, Liu Y. The role and function of CLU in cancer biology and therapy. Clin Exp Med 2023; 23:1375-1391. [PMID: 36098834 DOI: 10.1007/s10238-022-00885-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 08/29/2022] [Indexed: 11/03/2022]
Abstract
Clusterin (CLU) is a highly evolutionary conserved glycoprotein with multiple isoform-specific functions and is widely distributed in different species. Accumulated evidence has shown the prominent role of CLU in regulating several essential physiological processes, including programmed cell death, metastasis, invasion, proliferation and cell growth via regulating diverse signaling pathways to mediate cancer progression in various cancers, such as prostate, breast, lung, liver, colon, bladder and pancreatic cancer. Several studies have revealed the potential benefit of inhibiting CLU in CLU inhibition-based targeted cancer therapies in vitro, in vivo or in human, suggesting CLU is a promising therapeutic target. This review discusses the multiple functions and mechanisms of CLU in regulating tumor progression of various cancers and summarizes the inhibitors of CLU used in CLU inhibition-based targeted cancer therapies.
Collapse
Affiliation(s)
- Yefei Zhang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, Department of Biochemistry, Institute of Cancer, College of Life Science, Nanjing Normal University, Nanjing, 210023, People's Republic of China
| | - Xiang Lv
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, Department of Biochemistry, Institute of Cancer, College of Life Science, Nanjing Normal University, Nanjing, 210023, People's Republic of China
| | - Liming Chen
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, Department of Biochemistry, Institute of Cancer, College of Life Science, Nanjing Normal University, Nanjing, 210023, People's Republic of China.
| | - Yan Liu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, Department of Biochemistry, Institute of Cancer, College of Life Science, Nanjing Normal University, Nanjing, 210023, People's Republic of China.
| |
Collapse
|
607
|
Qian X, Zhu L, Xu M, Liu H, Yu X, Shao Q, Qin J. Shikonin suppresses small cell lung cancer growth via inducing ATF3-mediated ferroptosis to promote ROS accumulation. Chem Biol Interact 2023; 382:110588. [PMID: 37268198 DOI: 10.1016/j.cbi.2023.110588] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/17/2023] [Accepted: 05/31/2023] [Indexed: 06/04/2023]
Abstract
Small cell lung cancer (SCLC) is a subtype of lung cancer with a very poor overall survival rate due to its extremely high proliferation and metastasis predilection. Shikonin is an active ingredient extracted from the roots of Lithospermum erythrorhizon, and exerts multiple anti-tumor functions in many cancers. In the present study, the role and underlying mechanism of shikonin in SCLC were investigated for the first time. We found that shikonin effectively suppressed cell proliferation, apoptosis, migration, invasion, and colony formation and slightly induced apoptosis in SCLC cells. Further experiment indicated the shikonin could also induced ferroptosis in SCLC cells. Shikonin treatment effectively suppressed the activation of ERK, the expression of ferroptosis inhibitor GPX4, and elevated the level of 4-HNE, a biomarker of ferroptosis. Both total ROS and lipid ROS were increased, while the GSH levels were decreased in SCLC cells after shikonin treatment. More importantly, our data identified that the function of shikonin was dependent on the up-regulation of ATF3 by performing rescue experiments using shRNA to silence the expression of ATF3, especially in the total and lipid ROS accumulaiton. Xenograft model was established using SBC-2 cells, and the results revealed that shikonin also significantly inhibited tumor growth by inducing ferroptosis. Finally, our data further confirmed that shikonin activated ATF3 transcription by impairing the recruitment of HDAC1 mediated by c-myc on the ATF3 promoter, and subsequently elevating of histone acetylation. Our data documented that shikonin suppressed SCLC by inducing ferroptosis in a ATF3-dependent manner. Shikonin upregulated the expression of ATF3 expression via promoting the histone acetylation by inhibiting c-myc-mediated HDAC1 binding on ATF3 promoter.
Collapse
Affiliation(s)
- Xinyu Qian
- Department of Oncology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine (Hangzhou Cancer Hospital), Hangzhou, Zhejiang, 310006, China
| | - Lin Zhu
- Department of Thoracic Medical Oncology, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Mengzhen Xu
- Department of Thoracic Medical Oncology, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Haoli Liu
- Department of Thoracic Medical Oncology, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Xinyan Yu
- Department of Thoracic Medical Oncology, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Qiuyue Shao
- Department of Thoracic Medical Oncology, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Jing Qin
- Department of Thoracic Medical Oncology, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China; Zhejiang Key Laboratory of Diagnosis & Treatment Technology on Thoracic oncology (lung and Esophagus), Zhejiang Cancer Hospital, Hangzhou, 310022, PR China.
| |
Collapse
|
608
|
Yang Q, Yang B, Chen M. Partner of NOB1 homolog transcriptionally activated by E2F transcription factor 1 promotes the malignant progression and inhibits ferroptosis of pancreatic cancer. CHINESE J PHYSIOL 2023; 66:388-399. [PMID: 37929351 DOI: 10.4103/cjop.cjop-d-23-00063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023] Open
Abstract
Pancreatic cancer (PC) is one of the deadliest malignancies. Partner of NOB1 homolog (PNO1) has been reported to be involved in tumorigenesis. However, the role of PNO1 in PC remains to be elucidated. The purpose of this study was to examine the effects of PNO1 on the progression of PC and the possible mechanism related to E2F transcription factor 1 (E2F1), a transcription factor predicted by the JASPAR database to bind to the PNO1 promoter region and promoted the proliferation of pancreatic ductal adenocarcinoma. First, PNO1 expression in PC tissues and its association with survival rate were analyzed by the Gene Expression Profiling Interactive Analysis database. Western blot and reverse transcription-quantitative polymerase chain reaction were used to evaluate PNO1 expression in several PC cell lines. After PNO1 silencing, cell proliferation, migration, and invasion were measured by colony formation assay, 5-ethynyl-2'-deoxyuridine staining, wound healing, and transwell assays. Then, the lipid reactive oxygen species in PANC-1 cells was estimated by using C11-BODIPY581/591 probe. The levels of glutathione, malondialdehyde, and iron were measured. The binding between PNO1 and E2F1 was confirmed by luciferase and chromatin immunoprecipitation (ChIP) assays. Subsequently, E2F1 was overexpressed in PANC-1 cells with PNO1 knockdown to perform the rescue experiments. Results revealed that PNO1 was highly expressed in PC tissues and PNO1 expression was positively correlated with overall survival rate and disease-free survival rate. Significantly elevated PNO1 expression was also observed in PC cell lines. PNO1 knockdown inhibited the proliferation, migration, and invasion of PANC-1 cells. Moreover, ferroptosis was promoted in PNO1-silenced PANC-1 cells. Results of luciferase and ChIP assays indicated that E2F1 could bind to PNO1 promoter region. Rescue experiments suggested that E2F1 overexpression reversed the impacts of PNO1 depletion on the malignant behaviors and ferroptosis in PANC-1 cells. Summing up, PNO1 transcriptionally activated by E2F1 promotes the malignant progression and inhibits the ferroptosis of PC.
Collapse
Affiliation(s)
- Qin Yang
- Department of Laboratory Medicine, General Hospital of Central Theatre Command, Wuhan, Hubei, China
| | - Bin Yang
- Department of Burn and Plastic Surgery, General Hospital of Central Theatre Command, Wuhan, Hubei, China
| | - Min Chen
- Department of Laboratory Medicine, General Hospital of Central Theatre Command, Wuhan, Hubei, China
| |
Collapse
|
609
|
Haerinck J, Goossens S, Berx G. The epithelial-mesenchymal plasticity landscape: principles of design and mechanisms of regulation. Nat Rev Genet 2023; 24:590-609. [PMID: 37169858 DOI: 10.1038/s41576-023-00601-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2023] [Indexed: 05/13/2023]
Abstract
Epithelial-mesenchymal plasticity (EMP) enables cells to interconvert between several states across the epithelial-mesenchymal landscape, thereby acquiring hybrid epithelial/mesenchymal phenotypic features. This plasticity is crucial for embryonic development and wound healing, but also underlies the acquisition of several malignant traits during cancer progression. Recent research using systems biology and single-cell profiling methods has provided novel insights into the main forces that shape EMP, which include the microenvironment, lineage specification and cell identity, and the genome. Additionally, key roles have emerged for hysteresis (cell memory) and cellular noise, which can drive stochastic transitions between cell states. Here, we review these forces and the distinct but interwoven layers of regulatory control that stabilize EMP states or facilitate epithelial-mesenchymal transitions (EMTs) and discuss the therapeutic potential of manipulating the EMP landscape.
Collapse
Affiliation(s)
- Jef Haerinck
- Molecular and Cellular Oncology Laboratory, Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Steven Goossens
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Unit for Translational Research in Oncology, Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Geert Berx
- Molecular and Cellular Oncology Laboratory, Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium.
| |
Collapse
|
610
|
Peng JM, Su YL. Lymph node metastasis and tumor-educated immune tolerance: Potential therapeutic targets against distant metastasis. Biochem Pharmacol 2023; 215:115731. [PMID: 37541450 DOI: 10.1016/j.bcp.2023.115731] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 07/30/2023] [Accepted: 08/01/2023] [Indexed: 08/06/2023]
Abstract
Lymph node metastasis has been shown to positively associated with the prognosis of many cancers. However, in clinical treatment, lymphadenectomy is not always successful, suggesting that immune cells in the tumor and sentinel lymph nodes still play a pivotal role in tumor immunosuppression. Recent studies had shown that tumors can tolerate immune cells through multiple strategies, including tumor-induced macrophage reprogramming, T cells inactivation, production of B cells pathogenic antibodies and activation of regulatory T cells to promote tumor colonization, growth, and metastasis in lymph nodes. We reviewed the bidirectional effect of immune cells on anti-tumor or promotion of cancer cell metastasis during lymph node metastasis, and the mechanisms by which malignant cancer cells modify immune cells to create a more favorable environment for the growth and survival of cancer cells. Research and treatment strategies focusing on the immune system in lymph nodes and potential immune targets in lymph node metastasis were also be discussed.
Collapse
Affiliation(s)
- Jei-Ming Peng
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, No. 123, Dapi Rd., Niaosong Dist., Kaohsiung, 83301, Taiwan.
| | - Yu-Li Su
- Division of Hematology Oncology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University, College of Medicine, No. 123, Dapi Rd., Niaosong Dist., Kaohsiung, 83301, Taiwan.
| |
Collapse
|
611
|
Xu HQ, Guo ZX, Yan JF, Wang SY, Gao JL, Han XX, Qin WP, Lu WC, Gao CH, Zhu WW, Fu YT, Jiao K. Fibrotic Matrix Induces Mesenchymal Transformation of Epithelial Cells in Oral Submucous Fibrosis. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:1208-1222. [PMID: 37328100 DOI: 10.1016/j.ajpath.2023.05.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/17/2023] [Accepted: 05/30/2023] [Indexed: 06/18/2023]
Abstract
Oral submucous fibrosis (OSF) is a potentially malignant disorder of the oral mucosa; however, whether and how the fibrotic matrix of OSF is involved in the malignant transformation of epithelial cells remains unknown. Herein, oral mucosa tissue from patients with OSF, OSF rat models, and their controls were used to observe the extracellular matrix changes and epithelial-mesenchymal transformation (EMT) in fibrotic lesions. Compared with controls, oral mucous tissues from patients with OSF showed an increased number of myofibroblasts, a decreased number of blood vessels, and increased type I and type III collagen levels. In addition, the oral mucous tissues from humans and OSF rats showed increased stiffness, accompanied by increased EMT activities of epithelial cells. The EMT activities of stiff construct-cultured epithelial cells were increased significantly by exogenous piezo-type mechanosensitive ion channel component 1 (Piezo1) activation, and decreased by yes-associated protein (YAP) inhibition. During ex vivo implantation, oral mucosal epithelial cells of the stiff group showed increased EMT activities and increased levels of Piezo1 and YAP compared with those in the sham and soft groups. These results indicate that increased stiffness of the fibrotic matrix in OSF led to increased proliferation and EMT of mucosal epithelial cells, in which the Piezo1-YAP signal transduction is important.
Collapse
Affiliation(s)
- Hao-Qing Xu
- The College of Life Science, Northwest University, Xi'an, China; Department of Stomatology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China; State Key Laboratory of Stomatognathic Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Zhen-Xing Guo
- Department of Stomatology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China; State Key Laboratory of Stomatognathic Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Jian-Fei Yan
- Department of Stomatology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China; State Key Laboratory of Stomatognathic Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Shu-Yan Wang
- Department of Stomatology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China; State Key Laboratory of Stomatognathic Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Jia-Lu Gao
- Department of Stomatology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China; State Key Laboratory of Stomatognathic Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Xiao-Xiao Han
- The College of Life Science, Northwest University, Xi'an, China; Department of Stomatology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China; State Key Laboratory of Stomatognathic Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Wen-Pin Qin
- Department of Stomatology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China; State Key Laboratory of Stomatognathic Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Wei-Cheng Lu
- Department of Stomatology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China; State Key Laboratory of Stomatognathic Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Chang-He Gao
- Department of Stomatology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China; State Key Laboratory of Stomatognathic Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, China; The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Wei-Wei Zhu
- The College of Life Science, Northwest University, Xi'an, China; Department of Stomatology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China; State Key Laboratory of Stomatognathic Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Yu-Tong Fu
- The College of Life Science, Northwest University, Xi'an, China; Department of Stomatology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China; State Key Laboratory of Stomatognathic Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Kai Jiao
- Department of Stomatology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China; State Key Laboratory of Stomatognathic Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
612
|
Liu H, Liu M, Zhao Y, Mo R. Nanomedicine strategies to counteract cancer stemness and chemoresistance. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2023; 4:630-656. [PMID: 37720349 PMCID: PMC10501898 DOI: 10.37349/etat.2023.00157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/07/2023] [Indexed: 09/19/2023] Open
Abstract
Cancer stem-like cells (CSCs) identified by self-renewal ability and tumor-initiating potential are responsible for tumor recurrence and metastasis in many cancers. Conventional chemotherapy fails to eradicate CSCs that hold a state of dormancy and possess multi-drug resistance. Spurred by the progress of nanotechnology for drug delivery and biomedical applications, nanomedicine has been increasingly developed to tackle stemness-associated chemotherapeutic resistance for cancer therapy. This review focuses on advances in nanomedicine-mediated therapeutic strategies to overcome chemoresistance by specifically targeting CSCs, the combination of chemotherapeutics with chemopotentiators, and programmable controlled drug release. Perspectives from materials and formulations at the nano-scales are specifically surveyed. Future opportunities and challenges are also discussed.
Collapse
Affiliation(s)
- Huayu Liu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, Jiangsu, China
| | - Mingqi Liu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, Jiangsu, China
| | - Yanan Zhao
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, Jiangsu, China
| | - Ran Mo
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, Jiangsu, China
| |
Collapse
|
613
|
Wang Y, Zhong Y, Zheng X, Cheng N, Yang Y, Yang Y, Wang F, Zhuang Q, Huang Y, Guo W, Liao N, Yang X, Zhao B, Liu X. LncRNA TIALD contributes to hepatocellular carcinoma metastasis via inducing AURKA lysosomal degradation. Cell Death Discov 2023; 9:316. [PMID: 37773181 PMCID: PMC10541412 DOI: 10.1038/s41420-023-01620-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/15/2023] [Accepted: 08/18/2023] [Indexed: 10/01/2023] Open
Abstract
The N6-methyladenosine (m6A) RNA methyltransferase METTL16 is an emerging player in RNA modification landscape and responsible for the deposition of m6A in a few transcripts. AURKA (aurora kinase A) has been confirmed as an oncogene in cancer development including hepatocellular carcinoma (HCC). Nevertheless, it remains unclear whether METTL16 mediated m6A modification of lncRNAs can regulate AURKA activation in cancer progression. Here we aimed to investigate the functional links between lncRNAs and the m6A modification in AURKA signaling and HCC progression. Here we show that LncRNA TIALD (transcript that induced AURKA Lysosomal degradation) was down-regulated in HCC tissues by METTL16 mediated m6A methylation to facilitate its RNA degradation, and correlates with poor prognosis. Functional assays reveal that TIALD inhibits HCC metastasis both in vitro and in vivo. Mechanistically, TIALD directly interacts with AURKA and facilitate its degradation through the lysosomal pathway to inhibited EMT and metastasis of HCC. AURKA's specific inhibitor alisertib exerts effective therapeutic effect on liver cancer with low TIALD expression, which might provide a new insight into HCC therapy. Our study uncovers a negative functional loop of METTL16-TIALD-AURKA axis, and identifies a new mechanism for METTL16 mediated m6A-induced decay of TIALD on AURKA signaling in HCC progression, which may provide potential prognostic and therapeutic targets for HCC.
Collapse
Affiliation(s)
- Yingchao Wang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, P. R. China
- Fujian Provincial Clinical Research Center for Hepatobiliary and Pancreatic Tumors, Fuzhou, 350025, P. R. China
- Mengchao Med-X Center, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Yue Zhong
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, P. R. China
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, P. R. China
| | - Xiaoyuan Zheng
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, P. R. China
- Fujian Provincial Clinical Research Center for Hepatobiliary and Pancreatic Tumors, Fuzhou, 350025, P. R. China
| | - Niangmei Cheng
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, P. R. China
- Fujian Provincial Clinical Research Center for Hepatobiliary and Pancreatic Tumors, Fuzhou, 350025, P. R. China
| | - Yong Yang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, P. R. China
- Mengchao Med-X Center, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Ye Yang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, P. R. China
- Mengchao Med-X Center, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Fei Wang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, P. R. China
- Fujian Provincial Clinical Research Center for Hepatobiliary and Pancreatic Tumors, Fuzhou, 350025, P. R. China
| | - Qiuyu Zhuang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, P. R. China
- Fujian Provincial Clinical Research Center for Hepatobiliary and Pancreatic Tumors, Fuzhou, 350025, P. R. China
- Mengchao Med-X Center, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Yao Huang
- Fujian Provincial Clinical Research Center for Hepatobiliary and Pancreatic Tumors, Fuzhou, 350025, P. R. China
| | - Wuhua Guo
- Fujian Provincial Clinical Research Center for Hepatobiliary and Pancreatic Tumors, Fuzhou, 350025, P. R. China
| | - Naishun Liao
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, P. R. China
- Fujian Provincial Clinical Research Center for Hepatobiliary and Pancreatic Tumors, Fuzhou, 350025, P. R. China
- Mengchao Med-X Center, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Xiaoyu Yang
- Fuzhou Hospital of Traditional Chinese Medicine Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, 350001, China
| | - Bixing Zhao
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, P. R. China.
- Fujian Provincial Clinical Research Center for Hepatobiliary and Pancreatic Tumors, Fuzhou, 350025, P. R. China.
- Mengchao Med-X Center, Fuzhou University, Fuzhou, 350116, P. R. China.
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, P. R. China.
- Fujian Provincial Clinical Research Center for Hepatobiliary and Pancreatic Tumors, Fuzhou, 350025, P. R. China.
- Mengchao Med-X Center, Fuzhou University, Fuzhou, 350116, P. R. China.
| |
Collapse
|
614
|
Zhou J, Tu D, Peng R, Tang Y, Deng Q, Su B, Wang S, Tang H, Jin S, Jiang G, Wang Q, Jin X, Zhang C, Cao J, Bai D. RNF173 suppresses RAF/MEK/ERK signaling to regulate invasion and metastasis via GRB2 ubiquitination in Hepatocellular Carcinoma. Cell Commun Signal 2023; 21:224. [PMID: 37626338 PMCID: PMC10464048 DOI: 10.1186/s12964-023-01241-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 07/22/2023] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND The role of the membrane-associated RING-CH (MARCH) family in carcinogenesis has been widely studied, but the member of this family, RNF173, has not yet been thoroughly explored in the context of hepatocellular carcinoma (HCC). METHODS With the use of an HCC tissue microarray and IHC staining, we aim to determine the differential expression of RNF173 in HCC patients and its clinical significance. The biological role of RNF173 is investigated through in vitro and in vivo experiments. RNA sequencing, mass spectrometry, and immunoprecipitation are performed to uncover the underlying mechanism of RNF173's impact on the development of HCC. RESULTS The mRNA and protein levels of RNF173 were significantly lower in HCC tissues than in normal tissues. HCC patients with low RNF173 expression had shorter overall survival and recurrence-free survival, and RNF173 was significantly correlated with tumor number, tumor capsule, tumor differentiation, and BCLC stage. In addition, in vitro and in vivo experiments showed that RNF173 downregulation exacerbated tumor progression, including migration, invasion, and proliferation. GRB2 is a key molecule in the RAF/MEK/ERK pathway. RNF173 inhibits the RAF/MEK/ERK signaling by ubiquitinating and degrading GRB2, thereby suppressing HCC cell proliferation, invasion and migration. Combining clinical samples, we found that HCC patients with high RNF173 and low GRB2 expression had the best prognosis. CONCLUSION RNF173 inhibits the invasion and metastasis of HCC by ubiquitinating and degrading GRB2, thereby suppressing the RAF/MEK/ERK signaling pathway. RNF173 is an independent risk factor for the survival and recurrence of HCC patients. RNF173 may serve as a novel prognostic molecule and potential therapeutic target for HCC. Video Abstract Graphical abstract Model of RNF173 on RAF/MEK/ERK signaling. RNF173 knockdown resulted in impaired ubiquitination and degradation of GRB2, leading to the activation of the RAF/MEK/ERK signaling pathway and promotion of invasion and metastasis in HCC cells.
Collapse
Affiliation(s)
- Jie Zhou
- Department of Hepatobiliary Surgery, Clinical Medical College, Yangzhou University, Yangzhou, 225009, China
| | - Daoyuan Tu
- Department of Hepatobiliary Surgery, Clinical Medical College, Yangzhou University, Yangzhou, 225009, China
| | - Rui Peng
- Department of Hepatobiliary Surgery, Clinical Medical College, Yangzhou University, Yangzhou, 225009, China
| | - Yuhong Tang
- Department of Hepatobiliary Surgery, Clinical Medical College, Yangzhou University, Yangzhou, 225009, China
| | - Qiangwei Deng
- Department of Hepatobiliary Surgery, Clinical Medical College, Yangzhou University, Yangzhou, 225009, China
| | - Bingbing Su
- Department of Hepatobiliary Surgery, Clinical Medical College, Yangzhou University, Yangzhou, 225009, China
| | - Shunyi Wang
- Department of Hepatobiliary Surgery, Clinical Medical College, Yangzhou University, Yangzhou, 225009, China
| | - Hao Tang
- Department of Hepatobiliary Surgery, Clinical Medical College, Yangzhou University, Yangzhou, 225009, China
| | - Shengjie Jin
- Department of Hepatobiliary Surgery, Clinical Medical College, Yangzhou University, Yangzhou, 225009, China
| | - Guoqing Jiang
- Department of Hepatobiliary Surgery, Clinical Medical College, Yangzhou University, Yangzhou, 225009, China
| | - Qian Wang
- Department of Hepatobiliary Surgery, Clinical Medical College, Yangzhou University, Yangzhou, 225009, China
| | - Xin Jin
- Biobank, Clinical Medical College, Yangzhou University, Northern Jiangsu People's Hospital, Yangzhou, China
| | - Chi Zhang
- Department of Hepatobiliary Surgery, Clinical Medical College, Yangzhou University, Yangzhou, 225009, China.
- Subei People's Hospital Hepatobiliary Surgery. Institute of General Surgery, Yangzhou, 225001, China.
| | - Jun Cao
- Department of Hepatobiliary Surgery, Clinical Medical College, Yangzhou University, Yangzhou, 225009, China.
| | - Dousheng Bai
- Department of Hepatobiliary Surgery, Clinical Medical College, Yangzhou University, Yangzhou, 225009, China.
- Subei People's Hospital Hepatobiliary Surgery. Institute of General Surgery, Yangzhou, 225001, China.
| |
Collapse
|
615
|
Liu X, Qin J, Nie J, Gao R, Hu S, Sun H, Wang S, Pan Y. ANGPTL2+cancer-associated fibroblasts and SPP1+macrophages are metastasis accelerators of colorectal cancer. Front Immunol 2023; 14:1185208. [PMID: 37691929 PMCID: PMC10483401 DOI: 10.3389/fimmu.2023.1185208] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 08/09/2023] [Indexed: 09/12/2023] Open
Abstract
Background Liver metastasis (LM) is a leading cause of cancer-related deaths in CRC patients, whereas the associated mechanisms have not yet been fully elucidated. Therefore, it is urgently needed to deeply explore novel metastasis accelerators and therapeutic targets of LM-CRC. Methods The bulk RNA sequencing data and clinicopathological information of CRC patients were enrolled from the TCGA and GEO databases. The single-cell RNA sequencing (scRNA-seq) datasets of CRC were collected from and analyzed in the Tumor Immune Single-cell Hub (TISCH) database. The infiltration levels of cancer-associated fibroblasts (CAFs) and macrophages in CRC tissues were estimated by multiple immune deconvolution algorithms. The prognostic values of genes were identified by the Kaplan-Meier curve with a log-rank test. GSEA analysis was carried out to annotate the significantly enriched gene sets. The biological functions of cells were experimentally verified. Results In the present study, hundreds of differentially expressed genes (DEGs) were selected in LM-CRC compared to primary CRC, and these DEGs were significantly associated with the regulation of endopeptidase activity, blood coagulation, and metabolic processes. Then, SPP1, CAV1, ANGPTL2, and COLEC11 were identified as the characteristic DEGs of LM-CRC, and higher expression levels of SPP1 and ANGPTL2 were significantly associated with worse clinical outcomes of CRC patients. In addition, ANGPTL2 and SPP1 mainly distributed in the tumor microenvironment (TME) of CRC tissues. Subsequent scRNA-seq analysis demonstrated that ANGPTL2 and SPP1 were markedly enriched in the CAFs and macrophages of CRC tissues, respectively. Moreover, we identified the significantly enriched gene sets in LM-CRC, especially those in the SPP1+macrophages and ANGPTL2+CAFs, such as the HALLMARK_EPITHELIAL_MESENCHYMAL_TRANSITION and the HALLMARK_COMPLEMENT. Finally, our in vitro experiments proved that ANGPTL2+CAFs and SPP1+macrophages promote the metastasis of CRC cells. Conclusion Our study selected four characteristic genes of LM-CRC and identified ANGPTL2+CAFs and SPP1+macrophages subtypes as metastasis accelerators of CRC which provided a potential therapeutic target for LM-CRC.
Collapse
Affiliation(s)
- Xiangxiang Liu
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jian Qin
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Junjie Nie
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Rui Gao
- Division of Clinical Pharmacy, General Clinical Research Center, Nanjing First Hospital, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Shangshang Hu
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Huiling Sun
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Shukui Wang
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
- Jiangsu Collaborative Innovation Center on Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yuqin Pan
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
616
|
Jiang PC, Xu LZ, Ning JZ, Cheng F. GREM1 is a potential biomarker for the progression and prognosis of bladder cancer. World J Surg Oncol 2023; 21:255. [PMID: 37605239 PMCID: PMC10463405 DOI: 10.1186/s12957-023-03128-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/29/2023] [Indexed: 08/23/2023] Open
Abstract
BACKGROUND Gremlin-1 (GREM1) is a protein closely related to tumor growth, although its function in bladder cancer (BCa) is currently unknown. Our first objective was to study the GREM1 treatment potential in BCa. METHODS BCa tissue samples were collected for the detection of GREM1 expression using Western blot analysis and Immunofluorescence staining. Association of GREM1 expression with clinicopathology and prognosis as detected by TCGA (The Cancer Genome Atlas) database. The functional investigation was tested by qRT-PCR, western blot analysis, CCK-8, cell apoptosis, wound healing, and transwell assays. The interaction between GREM1 and the downstream PI3K/AKT signaling pathway was assessed by Western blot analysis. RESULTS GREM1 exhibited high expression in BCa tissues and was linked to poor prognosis. Stable knockdown of GREM1 significantly inhibited BCa cell (T24 and 5637) proliferation, apoptosis, migratory, invasive, as well as epithelial-mesenchymal transition (EMT) abilities. GREM1 promotes the progression in BCa via PI3K/AKT signaling pathway. CONCLUSION Findings demonstrate that the progression-promoting effect of GREM1 in BCa, providing a novel biomarker for BCa-targeted therapy.
Collapse
Affiliation(s)
- Peng-Cheng Jiang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People's Republic of China
| | - Li-Zhe Xu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People's Republic of China
| | - Jin-Zhuo Ning
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People's Republic of China.
| | - Fan Cheng
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People's Republic of China.
| |
Collapse
|
617
|
Li Z, Lu T, Chen Z, Yu X, Wang L, Shen G, Huang H, Li Z, Ren Y, Guo W, Hu Y. HOXA11 promotes lymphatic metastasis of gastric cancer via transcriptional activation of TGFβ1. iScience 2023; 26:107346. [PMID: 37539033 PMCID: PMC10393827 DOI: 10.1016/j.isci.2023.107346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/09/2023] [Accepted: 07/06/2023] [Indexed: 08/05/2023] Open
Abstract
Most gastric cancer (GC) patients with early stage often have no lymph node (LN) metastases, while LN metastases appear in the advanced stage. However, there are some patients who present with early stage LN metastases and no LN metastases in the advanced stage. To explore the deeper molecular mechanisms involved, we collected clinical samples from early and advanced stage GC with and without LN metastases, as well as metastatic lymph nodes. Herein, we identified a key target, HOXA11, that was upregulated in GC tissues and closely associated with lymphatic metastases. HOXA11 transcriptionally regulates TGFβ1 expression and activates the TGFβ1/Smad2 pathway, which not only promotes EMT development but also induces VEGF-C secretion and lymphangiogenesis. These findings provide a plausible mechanism for HOXA11-modulated tumor in lymphatic metastasis and suggest that HOXA11 may represent a potential therapeutic target for clinical intervention in LN-metastatic gastric cancer.
Collapse
Affiliation(s)
- Zhenyuan Li
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, the First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, P.R. China
| | - Tailiang Lu
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, the First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, P.R. China
| | - Zhian Chen
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, the First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, P.R. China
| | - Xiang Yu
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, the First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, P.R. China
| | - Lingzhi Wang
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, the First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, P.R. China
| | - Guodong Shen
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, the First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, P.R. China
| | - Huilin Huang
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, the First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, P.R. China
| | - Zhenhao Li
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, the First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, P.R. China
| | - Yingxin Ren
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, the First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, P.R. China
| | - Weihong Guo
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, the First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, P.R. China
| | - Yanfeng Hu
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, the First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, P.R. China
| |
Collapse
|
618
|
Sun X, Yuan Z, Zhang L, Ren M, Yang J, Xu Y, Hao J. Comprehensive Analysis of SLC35A2 in Pan-Cancer and Validation of Its Role in Breast Cancer. J Inflamm Res 2023; 16:3381-3398. [PMID: 37593196 PMCID: PMC10427759 DOI: 10.2147/jir.s419994] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 08/06/2023] [Indexed: 08/19/2023] Open
Abstract
Purpose Elucidation of the oncogenic role of SLC35A2 in human tumors and the potential function and clinical significance in breast cancer. Methods Pan-cancer analysis was performed via various bioinformatics tools to explain the pathogenic role of SLC35A2. A prognostic nomogram was also developed based on the SLC35A2 expression and clinicopathological characteristics in breast cancer patients. In addition, the role of SLC35A2 was validated in breast cancer by in vivo and in vitro experiments. Results SLC35A2 expression is increased in 27 tumor types, and its high expression is substantially correlated with poor prognosis in patients with a variety of cancers. Receiver operating characteristic (ROC) curves showed that SLC35A2 expression levels could accurately distinguish most tumor tissues from normal tissues. High SLC35A2 expression was linked to increased immune infiltration in myeloid-derived suppressor cells (MDSC), as well as immune checkpoints, ferroptosis-related genes, tumor mutational burden (TMB), and microsatellite instability (MSI). SLC35A2 may be involved in tumorigenesis by regulating the glycosylation process. Furthermore, multivariate Cox analysis showed that SLC35A2 was an independent prognostic factor for breast cancer. And the nomogram model had good predictive accuracy for the prognosis of breast cancer patients. Meanwhile, cellular experiments demonstrated that knockdown of SLC35A2 could significantly inhibit the proliferation, migration and invasion of breast cancer cells, while increasing the protein level of E-cadherin and decreasing N-cadherin. A nude mouse xenograft model showed that inhibition of SLA35A2 expression could significantly inhibit tumor growth. Conclusion SLC35A2 has good diagnostic and prognostic values in multiple cancers and is closely related to tumor immune infiltration. In addition, SLA35A2 as an oncogene in breast cancer may be involved in the progression of epithelial mesenchymal transition (EMT).
Collapse
Affiliation(s)
- Xiaonan Sun
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, People’s Republic of China
| | - Zhichao Yuan
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, People’s Republic of China
| | - Lu Zhang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, People’s Republic of China
| | - Min Ren
- Department of Breast Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, People’s Republic of China
| | - Jing Yang
- Department of Breast Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, People’s Republic of China
| | - Yidan Xu
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, People’s Republic of China
| | - Jiqing Hao
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, People’s Republic of China
| |
Collapse
|
619
|
Martino F, Lupi M, Giraudo E, Lanzetti L. Breast cancers as ecosystems: a metabolic perspective. Cell Mol Life Sci 2023; 80:244. [PMID: 37561190 PMCID: PMC10415483 DOI: 10.1007/s00018-023-04902-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/18/2023] [Accepted: 07/28/2023] [Indexed: 08/11/2023]
Abstract
Breast cancer (BC) is the most frequently diagnosed cancer and one of the major causes of cancer death. Despite enormous progress in its management, both from the therapeutic and early diagnosis viewpoints, still around 700,000 patients succumb to the disease each year, worldwide. Late recurrency is the major problem in BC, with many patients developing distant metastases several years after the successful eradication of the primary tumor. This is linked to the phenomenon of metastatic dormancy, a still mysterious trait of the natural history of BC, and of several other types of cancer, by which metastatic cells remain dormant for long periods of time before becoming reactivated to initiate the clinical metastatic disease. In recent years, it has become clear that cancers are best understood if studied as ecosystems in which the impact of non-cancer-cell-autonomous events-dependent on complex interaction between the cancer and its environment, both local and systemic-plays a paramount role, probably as significant as the cell-autonomous alterations occurring in the cancer cell. In adopting this perspective, a metabolic vision of the cancer ecosystem is bound to improve our understanding of the natural history of cancer, across space and time. In BC, many metabolic pathways are coopted into the cancer ecosystem, to serve the anabolic and energy demands of the cancer. Their study is shedding new light on the most critical aspect of BC management, of metastatic dissemination, and that of the related phenomenon of dormancy and fostering the application of the knowledge to the development of metabolic therapies.
Collapse
Affiliation(s)
- Flavia Martino
- Department of Oncology, University of Torino Medical School, Turin, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy
| | - Mariadomenica Lupi
- Department of Oncology, University of Torino Medical School, Turin, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy
| | - Enrico Giraudo
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy
- Department of Science and Drug Technology, University of Torino, Turin, Italy
| | - Letizia Lanzetti
- Department of Oncology, University of Torino Medical School, Turin, Italy.
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy.
| |
Collapse
|
620
|
Wang X, Zhang C, Bao N. Molecular mechanism of palmitic acid and its derivatives in tumor progression. Front Oncol 2023; 13:1224125. [PMID: 37637038 PMCID: PMC10447256 DOI: 10.3389/fonc.2023.1224125] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/24/2023] [Indexed: 08/29/2023] Open
Abstract
Palmitic acid (PA) is a saturated fatty acid commonly found in coconut oil and palm oil. It serves as an energy source for the body and plays a role in the structure and function of cell membranes. Beyond its industrial applications, PA has gained attention for its potential therapeutic properties. Modern pharmacological studies have demonstrated that PA exhibits anti-inflammatory, antioxidant, and immune-enhancing effects. In recent years, PA has emerged as a promising anti-tumor agent with demonstrated efficacy against various malignancies including gastric cancer, liver cancer, cervical cancer, breast cancer, and colorectal cancer. Its anti-tumor effects encompass inducing apoptosis in tumor cells, inhibiting tumor cell proliferation, suppressing metastasis and invasion, enhancing sensitivity to chemotherapy, and improving immune function. The main anticancer mechanism of palmitic acid (PA) involves the induction of cell apoptosis through the mitochondrial pathway, facilitated by the promotion of intracellular reactive oxygen species (ROS) generation. PA also exhibits interference with the cancer cell cycle, leading to cell cycle arrest predominantly in the G1 phase. Moreover, PA induces programmed cell autophagy death, inhibits cell migration, invasion, and angiogenesis, and synergistically enhances the efficacy of chemotherapy drugs while reducing adverse reactions. PA acts on various intracellular and extracellular targets, modulating tumor cell signaling pathways, including the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt), endoplasmic reticulum (ER), B Cell Lymphoma-2 (Bcl-2), P53, and other signaling pathways. Furthermore, derivatives of PA play a significant regulatory role in tumor resistance processes. This paper provides a comprehensive review of recent studies investigating the anti-tumor effects of PA. It summarizes the underlying mechanisms through which PA exerts its anti-tumor effects, aiming to inspire new perspectives for the treatment of malignant tumors in clinical settings and the development of novel anti-cancer drugs.
Collapse
Affiliation(s)
- Xitan Wang
- Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Chaonan Zhang
- Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang, China
- Weifang Medical University, Weifang, Shandong, China
| | - Na Bao
- Jining First People’s Hospital, Jining, Shandong, China
| |
Collapse
|
621
|
Yang J, Liu Y, Liu S. The role of epithelial-mesenchymal transition and autophagy in pancreatic ductal adenocarcinoma invasion. Cell Death Dis 2023; 14:506. [PMID: 37550301 PMCID: PMC10406904 DOI: 10.1038/s41419-023-06032-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 07/20/2023] [Accepted: 08/01/2023] [Indexed: 08/09/2023]
Abstract
Of all pancreatic cancer (PC) cases, approximately 90% are pancreatic ductal adenocarcinoma (PDAC), which progress rapidly due to its high degree of invasiveness and high metastatic potential. Epithelial-mesenchymal transition (EMT) is a prerequisite for cancer cell invasion and spread, and it is mediated by the specific cellular behaviors and the tumor microenvironment. Autophagy has long been a target of cancer therapy, and it has been considered to play a dual and contradictory role, particularly regarding EMT-mediated PDAC invasion. This review discusses the characteristics and the biological role of EMT and autophagy from a cellular perspective, explaining invasion as a survival behavior of PDAC, with the aim of providing novel insights into targeting EMT and autophagy to overcome PDAC invasion.
Collapse
Affiliation(s)
- Jian Yang
- Central Laboratory, The Third Affiliated Hospital, Qiqihar Medical University, Qiqihar, 161000, Heilongjiang Province, P.R. China
| | - Ying Liu
- Department of Medical Oncology, The Third Affiliated Hospital, Qiqihar Medical University, Qiqihar, 161000, Heilongjiang Province, P.R. China
| | - Shi Liu
- Central Laboratory, The Third Affiliated Hospital, Qiqihar Medical University, Qiqihar, 161000, Heilongjiang Province, P.R. China.
| |
Collapse
|
622
|
Huang S, Nan Y, Chen G, Ning N, Du Y, Lu D, Yang Y, Meng F, Yuan L. The Role and Mechanism of Perilla frutescens in Cancer Treatment. Molecules 2023; 28:5883. [PMID: 37570851 PMCID: PMC10421205 DOI: 10.3390/molecules28155883] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 07/29/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
Perilla frutescens is an annual herb of the Labiatae family and is widely grown in several countries in Asia. Perilla frutescens is a plant that is used medicinally in its entirety, as seen in its subdivision into perilla seeds, perilla stalks, and perilla leaves, which vary more markedly in their chemical composition. Several studies have shown that Perilla frutescens has a variety of pharmacological effects, including anti-inflammatory, antibacterial, detoxifying, antioxidant, and hepatoprotective. In the absence of a review of Perilla frutescens for the treatment of cancer. This review provides an overview of the chemical composition and molecular mechanisms of Perilla frutescens for cancer treatment. It was found that the main active components of Perilla frutescens producing cancer therapeutic effects were perilla aldehyde (PAH), rosmarinic acid (Ros A), lignan, and isoestrogen (IK). In addition to these, extracts of the leaves and fruits of Perilla frutescens are also included. Among these, perilla seed oil (PSO) has a preventive effect against colorectal cancer due to the presence of omega-3 polyunsaturated fatty acids. This review also provides new ideas and thoughts for scientific innovation and clinical applications related to Perilla frutescens.
Collapse
Affiliation(s)
- Shicong Huang
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; (S.H.); (Y.N.); (G.C.); (N.N.); (Y.D.)
| | - Yi Nan
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; (S.H.); (Y.N.); (G.C.); (N.N.); (Y.D.)
- Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China
| | - Guoqing Chen
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; (S.H.); (Y.N.); (G.C.); (N.N.); (Y.D.)
| | - Na Ning
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; (S.H.); (Y.N.); (G.C.); (N.N.); (Y.D.)
| | - Yuhua Du
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; (S.H.); (Y.N.); (G.C.); (N.N.); (Y.D.)
| | - Doudou Lu
- Clinical Medical School, Ningxia Medical University, Yinchuan 750004, China;
| | - Yating Yang
- Institute of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan 750004, China; (Y.Y.); (F.M.)
| | - Fandi Meng
- Institute of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan 750004, China; (Y.Y.); (F.M.)
| | - Ling Yuan
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; (S.H.); (Y.N.); (G.C.); (N.N.); (Y.D.)
| |
Collapse
|
623
|
Wang L, Shan Y, Zheng S, Li J, Cui P. miR-4780 Derived from N2-Like Neutrophil Exosome Aggravates Epithelial-Mesenchymal Transition and Angiogenesis in Colorectal Cancer. Stem Cells Int 2023; 2023:2759679. [PMID: 37576407 PMCID: PMC10421714 DOI: 10.1155/2023/2759679] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/26/2022] [Accepted: 04/06/2023] [Indexed: 08/15/2023] Open
Abstract
Despite significant advances in diagnostic methods and treatment strategies, the prognosis for patients with advanced colon cancer remains poor, and mortality rates are often high due to metastasis. Increasing evidence showed that it is of significant importance to investigate how the tumor microenvironment participates in the development of colorectal cancer (CRC). In this manuscript, neutrophils were sequentially stimulated with all-trans retinoic acid and transforming growth factor-β in turn to induce the neutrophil polarization. Differentially expressed miRNA in neutrophil exosomes have been sequenced by microarray profile, and the effect of N2-like neutrophil-derived exosomal miR-4780 on epithelial-mesenchymal transition (EMT) and angiogenesis was investigated. In our results, we found that neutrophils were enriched in CRC tumor tissue and that CD11b expression correlated with tumor site and serous membrane invasion. At the same time, we demonstrated that internalization of N2 exosomes exacerbated the viability, migration, and invasion of CRC cell lines and inhibited apoptosis. To further investigate the molecular mechanism, we analyzed the miRNA expression profile in the N2-like neutrophils, which led to the selection of hsa-miR-4780 for the subsequent experiment. The overexpression of miR-4780 from N2-like neutrophil-derived exosomes exacerbated EMT and angiogenesis. Moreover, miR-4780 can regulate its target gene SOX11 to effect EMT and angiogenesis in CRC cell lines. CRC with liver metastasis model also validated that aberrant expression of miR-4780 in N2-like neutrophil exosomes exacerbated tumor metastasis and development of tumor via EMT and angiogenesis. In conclusion, our current findings reveal an important mechanism by which mR-4780 from N2-like neutrophil exosomes exacerbates tumor metastasis and progression via EMT and angiogenesis.
Collapse
Affiliation(s)
- Liang Wang
- Department of Gastrointestinal and Anal Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuqiang Shan
- Department of Gastrointestinal and Anal Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Sixin Zheng
- Department of Gastrointestinal and Anal Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiangtao Li
- Department of Gastrointestinal and Anal Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Peng Cui
- Department of Gastrointestinal Surgery, Changzhi People's Hospital, Affiliated Hospital of Changzhi Medical College, Changzhi, China
| |
Collapse
|
624
|
He X, Wang L, Li H, Liu Y, Tong C, Xie C, Yan X, Luo D, Xiong X. CSF2 upregulates CXCL3 expression in adipocytes to promote metastasis of breast cancer via the FAK signaling pathway. J Mol Cell Biol 2023; 15:mjad025. [PMID: 37073091 PMCID: PMC10686244 DOI: 10.1093/jmcb/mjad025] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 04/12/2023] [Accepted: 04/17/2023] [Indexed: 04/20/2023] Open
Abstract
Recent studies have demonstrated that cancer-associated adipocytes (CAAs) in the tumor microenvironment are involved in the malignant progression of breast cancer. However, the underlying mechanism of CAA formation and its effects on the development of breast cancer are still unknown. Here, we show that CSF2 is highly expressed in both CAAs and breast cancer cells. CSF2 promotes inflammatory phenotypic changes of adipocytes through the Stat3 signaling pathway, leading to the secretion of multiple cytokines and proteases, particularly C-X-C motif chemokine ligand 3 (CXCL3). Adipocyte-derived CXCL3 binds to its specific receptor CXCR2 on breast cancer cells and activates the FAK pathway, enhancing the mesenchymal phenotype, migration, and invasion of breast cancer cells. In addition, a combination treatment targeting CSF2 and CXCR2 shows a synergistic inhibitory effect on adipocyte-induced lung metastasis of mouse 4T1 cells in vivo. These findings elucidate a novel mechanism of breast cancer metastasis and provide a potential therapeutic strategy for breast cancer metastasis.
Collapse
Affiliation(s)
- Xi He
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang 330006, China
| | - Lieliang Wang
- Department of Breast Surgery, Jiangxi Cancer Hospital, Nanchang 330029, China
| | - Honghui Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang 330006, China
| | - Yaru Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang 330006, China
| | - Chang Tong
- Pediatric Medical School, Nanchang University, Nanchang 330031, China
| | - Caifeng Xie
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang 330006, China
| | - Xiaohua Yan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang 330006, China
| | - Daya Luo
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang 330006, China
| | - Xiangyang Xiong
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang 330006, China
- Province Key Laboratory of Tumor Pathogens and Molecular Pathology, Nanchang University, Nanchang 330006, China
| |
Collapse
|
625
|
Chen W, Zhang Q, Dai X, Chen X, Zhang C, Bai R, Chen Y, Zhang K, Duan X, Qiao Y, Zhao J, Tian F, Liu K, Dong Z, Lu J. PGC-1α promotes colorectal carcinoma metastasis through regulating ABCA1 transcription. Oncogene 2023; 42:2456-2470. [PMID: 37400530 DOI: 10.1038/s41388-023-02762-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 06/13/2023] [Accepted: 06/22/2023] [Indexed: 07/05/2023]
Abstract
Colorectal cancer (CRC) is a highly aggressive cancer in which metastasis plays a key role. However, the mechanisms underlying metastasis have not been fully elucidated. Peroxisome proliferator-activated receptor gamma coactivator 1α (PGC-1α), a regulator of mitochondrial function, has been reported as a complicated factor in cancer. In this study, we found that PGC-1α was highly expressed in CRC tissues and was positively correlated with lymph node and liver metastasis. Subsequently, PGC-1α knockdown was shown to inhibit CRC growth and metastasis in both in vitro and in vivo studies. Transcriptomic analysis revealed that PGC-1α regulated ATP-binding cassette transporter 1 (ABCA1) mediated cholesterol efflux. Mechanistically, PGC-1α interacted with YY1 to promote ABCA1 transcription, resulting in cholesterol efflux, which subsequently promoted CRC metastasis through epithelial-to-mesenchymal transition (EMT). In addition, the study identified the natural compound isoliquiritigenin (ISL) as an inhibitor that targeted ABCA1 and significantly reduced CRC metastasis induced by PGC-1α. Overall, this study sheds light on how PGC-1α promotes CRC metastasis by regulating ABCA1-mediated cholesterol efflux, providing a basis for further research to inhibit CRC metastasis.
Collapse
Affiliation(s)
- Wei Chen
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, 450001, P. R. China
| | - Qiushuang Zhang
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, 450001, P. R. China
| | - Xiaoshuo Dai
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, 450001, P. R. China
| | - Xinhuan Chen
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, 450001, P. R. China
- Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, Henan Province, 450001, P. R. China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan Province, 450052, P. R. China
| | - Chengjuan Zhang
- Department of Pathology, Henan Cancer Hospital, Zhengzhou University, Zhengzhou, Henan Province, 450003, P. R. China
| | - Ruihua Bai
- Department of Pathology, Henan Cancer Hospital, Zhengzhou University, Zhengzhou, Henan Province, 450003, P. R. China
| | - Yihuan Chen
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, 450001, P. R. China
| | - Kai Zhang
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, 450001, P. R. China
| | - Xiaoxuan Duan
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, 450001, P. R. China
| | - Yan Qiao
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, 450001, P. R. China
- Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, Henan Province, 450001, P. R. China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan Province, 450052, P. R. China
| | - Jimin Zhao
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, 450001, P. R. China
- Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, Henan Province, 450001, P. R. China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan Province, 450052, P. R. China
| | - Fang Tian
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, 450001, P. R. China
- Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, Henan Province, 450001, P. R. China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan Province, 450052, P. R. China
| | - Kangdong Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, 450001, P. R. China
- Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, Henan Province, 450001, P. R. China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan Province, 450052, P. R. China
| | - Ziming Dong
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, 450001, P. R. China
- Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, Henan Province, 450001, P. R. China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan Province, 450052, P. R. China
| | - Jing Lu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, 450001, P. R. China.
- Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, Henan Province, 450001, P. R. China.
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan Province, 450052, P. R. China.
| |
Collapse
|
626
|
Yan M, Liu Q. The nature of cancer. Front Med 2023; 17:796-803. [PMID: 36913173 DOI: 10.1007/s11684-022-0975-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 12/05/2022] [Indexed: 03/14/2023]
Affiliation(s)
- Min Yan
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Quentin Liu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China.
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, 116023, China.
| |
Collapse
|
627
|
Liang YC, Li R, Bao SR, Li ZL, Yin HZ, Dai CL. Artificial Downregulation of Ribosomal Protein L34 Restricts the Proliferation and Metastasis of Colorectal Cancer by Suppressing the JAK2/STAT3 Signaling Pathway. Hum Gene Ther 2023; 34:719-731. [PMID: 37427415 DOI: 10.1089/hum.2023.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2023] Open
Abstract
The highly conserved ribosomal protein L34 (RPL34) has been reported to play an essential role in the progression of diverse malignancies. RPL34 is aberrantly expressed in multiple cancers, although its significant in colorectal cancer (CRC) is currently unclear. Here, we demonstrated that RPL34 expression was higher in CRC tissues than in normal tissues. Upon RPL34 overexpression, the ability of proliferation, migration, invasion, and metastasis of CRC cells were significantly enhanced in vitro and in vivo. Furthermore, high expression of RPL34 accelerated cell cycle progression, activated the JAK2/STAT3 signaling pathway, and induced the epithelial-to-mesenchymal transition (EMT) program. Conversely, RPL34 silencing inhibited the CRC malignant progression. Utilizing immunoprecipitation assays, we identified the RPL34 interactor, the cullin-associated NEDD8-dissociated protein 1 (CAND1), which is a negative regulator of cullin-RING ligases. CAND1 overexpression reduced the ubiquitin level of RPL34 and stabilized RPL34 protein. CAND1 silencing in CRC cells resulted in a decrease in the ability of proliferation, migration, and invasion. CAND1 overexpression promoted CRC malignant phenotypes and induced EMT, and RPL34 knockdown rescued CAND1-induced CRC progression. In summary, our study indicates that RPL34 acts as a mediator, is stabilized by CAND1, and promotes proliferation and metastasis, in part, through the activation of the JAK2/STAT3 signaling pathway and induction of EMT in CRC.
Collapse
Affiliation(s)
- Yi-Chao Liang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, P.R. China
| | - Rui Li
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, P.R. China
| | - Shu-Rui Bao
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, P.R. China
| | - Zhi-Long Li
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, P.R. China
| | - Hong-Zhuan Yin
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, P.R. China
| | - Chao-Liu Dai
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, P.R. China
| |
Collapse
|
628
|
He X, Ma Y, Huang Z, Wang G, Wang W, Zhang R, Guo G, Zhang X, Wen Y, Zhang L. SERPINB5 is a prognostic biomarker and promotes proliferation, metastasis and epithelial-mesenchymal transition (EMT) in lung adenocarcinoma. Thorac Cancer 2023; 14:2275-2287. [PMID: 37424293 PMCID: PMC10423661 DOI: 10.1111/1759-7714.15013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/08/2023] [Accepted: 06/11/2023] [Indexed: 07/11/2023] Open
Abstract
BACKGROUND Serine protease inhibitors clade B serpins (SERPINBs) are the largest subclass of protease inhibitors, once thought of as a tumor suppressor gene family. However, some SERPINBs exhibit functions unrelated to the inhibition of catalytic activity. METHODS The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO), Gene Set Cancer Analysis (GSCA), and cBioPortal databases were utilized to investigate SERPINBs expression, prognostic correlation, and genomic variation in 33 cancer types. We also conducted a comprehensive transcriptome analysis in multiple lung adenocarcinoma (LUAD) cohorts to reveal the molecular mechanism of SERPINB5 in LUAD. Then, qPCR and immunohistochemistry were used to verify the expression and prognostic value of SERPINB5 in LUAD patients. Furthermore, knockdown and overexpression of SERPINB5 in LUAD cell lines were performed to evaluate cell proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT). RESULTS The expression of SERPINB5 was upregulated and demethylated in LUAD, and its abnormally high expression was significantly correlated with poor overall survival (OS). In addition, the expression of SERPINB5 was analyzed to determine its prognostic value in LUAD and confirmed that SERPINB5 was an independent predictor of LUAD in TCGA and GEO cohorts and qPCR validation with 106 clinical samples. At last, A knockdown of SERPINB5 in LUAD cells reduced proliferation, migration, and EMT. Proliferation, migration, and invasion are promoted by the overexpression of SERPINB5. CONCLUSION Therefore, SERPINB5 has shown potential as a prognostic biomarker for LUAD, and it may become a potential therapeutic target for lung adenocarcinoma.
Collapse
Affiliation(s)
- Xiaotian He
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhouChina
- Department of Thoracic SurgerySun Yat‐sen University Cancer CenterGuangzhouChina
| | - Yiyang Ma
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhouChina
- Department of Thoracic SurgerySun Yat‐sen University Cancer CenterGuangzhouChina
| | - Zirui Huang
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhouChina
- Department of Thoracic SurgerySun Yat‐sen University Cancer CenterGuangzhouChina
| | - Gongming Wang
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhouChina
- Department of Thoracic SurgerySun Yat‐sen University Cancer CenterGuangzhouChina
| | - Weidong Wang
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhouChina
- Department of Thoracic SurgerySun Yat‐sen University Cancer CenterGuangzhouChina
| | - Rusi Zhang
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhouChina
- Department of Thoracic SurgerySun Yat‐sen University Cancer CenterGuangzhouChina
| | - Guangran Guo
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhouChina
- Department of Thoracic SurgerySun Yat‐sen University Cancer CenterGuangzhouChina
| | - Xuewen Zhang
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhouChina
- Department of AnesthesiologySun Yat‐sen University Cancer CenterGuangzhouChina
| | - Yingsheng Wen
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhouChina
- Department of Thoracic SurgerySun Yat‐sen University Cancer CenterGuangzhouChina
| | - Lanjun Zhang
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhouChina
- Department of Thoracic SurgerySun Yat‐sen University Cancer CenterGuangzhouChina
| |
Collapse
|
629
|
Vu R, Dragan M, Sun P, Werner S, Dai X. Epithelial-Mesenchymal Plasticity and Endothelial-Mesenchymal Transition in Cutaneous Wound Healing. Cold Spring Harb Perspect Biol 2023; 15:a041237. [PMID: 36617638 PMCID: PMC10411868 DOI: 10.1101/cshperspect.a041237] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Epithelial and endothelial cells possess the inherent plasticity to undergo morphological, cellular, and molecular changes leading to their resemblance of mesenchymal cells. A prevailing notion has been that cutaneous wound reepithelialization involves partial epithelial-to-mesenchymal transition (EMT) of wound-edge epidermal cells to enable their transition from a stationary state to a migratory state. In this review, we reflect on past findings that led to this notion and discuss recent studies that suggest a refined view, focusing predominantly on in vivo results using mammalian excisional wound models. We highlight the concept of epithelial-mesenchymal plasticity (EMP), which emphasizes a reversible conversion of epithelial cells across multiple intermediate states within the epithelial-mesenchymal spectrum, and discuss the critical importance of restricting EMT for effective wound reepithelialization. We also outline the current state of knowledge on EMP in pathological wound healing, and on endothelial-to-mesenchymal transition (EndMT), a process similar to EMT, as a possible mechanism contributing to wound fibrosis and scar formation. Harnessing epithelial/endothelial-mesenchymal plasticity may unravel opportunities for developing new therapeutics to treat human wound healing pathologies.
Collapse
Affiliation(s)
- Remy Vu
- Department of Biological Chemistry, University of California, Irvine, California 92697-1700, USA
- NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, California 92697-1700, USA
| | - Morgan Dragan
- Department of Biological Chemistry, University of California, Irvine, California 92697-1700, USA
- NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, California 92697-1700, USA
| | - Peng Sun
- Department of Biological Chemistry, University of California, Irvine, California 92697-1700, USA
| | - Sabine Werner
- Institute of Molecular Health Sciences, Department of Biology, 8093 ETH Zurich, Switzerland
| | - Xing Dai
- Department of Biological Chemistry, University of California, Irvine, California 92697-1700, USA
- NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, California 92697-1700, USA
| |
Collapse
|
630
|
Fu M, Zhang J, Zhang L, Feng Y, Fang X, Zhang J, Wen W, Hua W, Mao Y. Cell Cycle-Related FAM64A Could be Activated by TGF-β Signaling to Promote Glioma Progression. Cell Mol Neurobiol 2023; 43:2975-2987. [PMID: 37081231 PMCID: PMC11410130 DOI: 10.1007/s10571-023-01348-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 04/07/2023] [Indexed: 04/22/2023]
Abstract
Gliomas are aggressive brain tumors characterized by uncontrolled cell proliferation. FAM64A, a cell cycle-related gene, has been found to promote cell proliferation in various tumors, including gliomas. However, the regulatory mechanism and clinical significance of FAM64A in gliomas remain unclear. In this study, we investigated FAM64A expression in gliomas with different grades and constructed FAM64A silenced cell lines to study its functions. Our results demonstrated that FAM64A was highly expressed in glioblastoma (P < 0.001) and associated with a poor prognosis (P < 0.001). Expression profiles at the single-cell resolution indicated FAM64A could play a role in a cell-cycle-dependent way to promote glioma cell proliferation. We further observed that FAM64A silencing in glioma cells resulted in disrupted proliferation and migration ability, and increased cell accumulation in the G2/M phase (P = 0.034). Additionally, TGF-β signaling upregulates FAM64A expression, and SMAD4 and FAM64A co-localize in high-grade glioma tissues. We found FAM64A knockdown inhibited TGF-β-induced epithelial-mesenchymal transition in glioma. Our findings suggest that FAM64A could serve as a diagnostic and therapeutic target in gliomas.
Collapse
Affiliation(s)
- Minjie Fu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Beijing, China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China
- Neurosurgical Institute of Fudan University, Shanghai, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
| | - Jingwen Zhang
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Licheng Zhang
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Beijing, China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China
- Neurosurgical Institute of Fudan University, Shanghai, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
| | - Yuan Feng
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Beijing, China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China
- Neurosurgical Institute of Fudan University, Shanghai, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
| | - Xinqi Fang
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Beijing, China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China
- Neurosurgical Institute of Fudan University, Shanghai, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
| | - Jinsen Zhang
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Beijing, China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China
- Neurosurgical Institute of Fudan University, Shanghai, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
| | - Wenyu Wen
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Beijing, China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China
- Neurosurgical Institute of Fudan University, Shanghai, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
| | - Wei Hua
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.
- National Center for Neurological Disorders, Beijing, China.
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China.
- Neurosurgical Institute of Fudan University, Shanghai, China.
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China.
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.
- National Center for Neurological Disorders, Beijing, China.
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China.
- Neurosurgical Institute of Fudan University, Shanghai, China.
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China.
| |
Collapse
|
631
|
Liu X, Zhang M, Shao C, Sun H, Zhang B, Guo Z, Sun J, Qi F, Zhang Y, Niu H, Sun W. Blood- and Urine-Based Liquid Biopsy for Early-Stage Cancer Investigation: Taken Clear Renal Cell Carcinoma as a Model. Mol Cell Proteomics 2023; 22:100603. [PMID: 37348606 PMCID: PMC10416070 DOI: 10.1016/j.mcpro.2023.100603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 06/12/2023] [Accepted: 06/18/2023] [Indexed: 06/24/2023] Open
Abstract
Liquid biopsy is a noninvasive technique that can provide valuable information for disease characterization by using biofluids as a source of biomarkers. Proteins found in biofluids can offer a wealth of information for understanding pathological processes. In this study, we used early-stage clear cell renal cell carcinoma (ccRCC) as a model to explore the proteomic relationships among tissue, plasma, and urine. We analyzed samples of tumor tissue, plasma, and urine from a cohort of 27 ccRCC patients with T1-2 stage and 27 matched healthy controls, using liquid chromatography-mass spectrometry (LC-MS) for proteomic analysis. We integrated the differential proteins found in the three types of samples to explore ccRCC-associated molecular changes. Our results showed that both plasma and urine proteomes could reflect functional changes in tumor tissue. In plasma, cytoskeletal proteins and metabolic enzymes were differentially expressed, while in urine, adhesion molecules and defense proteins showed differential levels. The differential proteins found in plasma and urine both reflect the binding and catalytic activity of tumor tissue. Additionally, proteins only changed in biofluids could reflect body immune response changes, with plasma proteins involved in actin cytoskeleton and oxidative stress, and urine proteins involved in granulocyte adhesion and leukocyte extravasation signaling. Plasma and urine proteins could effectively distinguish RCC from control, with good performances (plasma/urine: 92.6%/92.6% specificity, 96.3%/92.6% sensitivity, and an area under the curve of 0.981/0.97). In conclusion, biofluids could not only reflect functional changes in tumor tissue but also reflect changes in the body's immune response. These findings will benefit the understanding of body biomarkers in tumors and the discovery of potential disease biomarkers.
Collapse
Affiliation(s)
- Xiaoyan Liu
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Mingxin Zhang
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Chen Shao
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China; Bioinformatics Department, DeepKinase Biotechnologies, Ltd, Beijing, China
| | - Haidan Sun
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Binbin Zhang
- Department of Pharmacy, No.79 Army Group Hospital of People's Liberation Army Ground Force, Liaoyang, China
| | - Zhengguang Guo
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Jiameng Sun
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Feng Qi
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Yushi Zhang
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China.
| | - Haitao Niu
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Wei Sun
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China.
| |
Collapse
|
632
|
Pérez-González A, Bévant K, Blanpain C. Cancer cell plasticity during tumor progression, metastasis and response to therapy. NATURE CANCER 2023; 4:1063-1082. [PMID: 37537300 PMCID: PMC7615147 DOI: 10.1038/s43018-023-00595-y] [Citation(s) in RCA: 110] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 06/01/2023] [Indexed: 08/05/2023]
Abstract
Cell plasticity represents the ability of cells to be reprogrammed and to change their fate and identity, enabling homeostasis restoration and tissue regeneration following damage. Cell plasticity also contributes to pathological conditions, such as cancer, enabling cells to acquire new phenotypic and functional features by transiting across distinct cell states that contribute to tumor initiation, progression, metastasis and resistance to therapy. Here, we review the intrinsic and extrinsic mechanisms driving cell plasticity that promote tumor growth and proliferation as well as metastasis and drug tolerance. Finally, we discuss how cell plasticity could be exploited for anti-cancer therapy.
Collapse
Affiliation(s)
- Andrea Pérez-González
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Kevin Bévant
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Cédric Blanpain
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels, Belgium.
- WELBIO, ULB, Bruxelles, Belgium.
| |
Collapse
|
633
|
Katipally RR, Pitroda SP, Weichselbaum RR, Hellman S. Oligometastases: Characterizing the Role of Epigenetic Regulation of Epithelial-Mesenchymal Transition. Clin Cancer Res 2023; 29:2761-2766. [PMID: 37115507 PMCID: PMC10687742 DOI: 10.1158/1078-0432.ccr-23-0376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/30/2023] [Accepted: 04/25/2023] [Indexed: 04/29/2023]
Abstract
The "oligometastasis" hypothesis proposes that metastases exist as a spectrum and are not always disseminated. According to this theory, a subset of patients with metastatic disease could benefit from aggressive local therapies. However, the identification of patients most likely to exhibit an oligometastatic phenotype remains challenging. Recent literature focusing on basic and translational studies has identified novel epigenetic regulators of epithelial-mesenchymal transition (EMT) and the emergence of a spectrum of metastatic behavior. Herein, we review these scientific advances and suggest that the spectrum of metastatic virulence produced by these epigenetic mechanisms broadly contributes to the emergence of clinically evident "oligometastases." Epigenetic regulation of EMT programs can result in a spectrum of cell trajectories (e.g., quasi-mesenchymal and highly mesenchymal states) with differential propensity to develop metastases. We propose that quasi-mesenchymal cell states may be associated with a polymetastatic phenotype, whereas highly mesenchymal cell states may be associated with a more oligometastatic phenotype. The mechanisms governing epigenetic regulation of EMT and its array of intermediate states are multifaceted and may contribute to the development of the metastatic spectrum observed clinically. Within this context, translational studies that support the role of EMT and its epigenetic regulation are discussed. Continued translation of these mechanistic discoveries into novel biomarkers may help optimally select patients most likely to exhibit an oligometastatic phenotype and benefit from aggressive local therapies, such as surgery, radiotherapy, and other ablative procedures.
Collapse
Affiliation(s)
- Rohan R. Katipally
- Department of Radiation and Cellular Oncology, University of Chicago Medicine, Chicago, IL, USA
| | - Sean P. Pitroda
- Department of Radiation and Cellular Oncology, University of Chicago Medicine, Chicago, IL, USA
| | - Ralph R. Weichselbaum
- Department of Radiation and Cellular Oncology, University of Chicago Medicine, Chicago, IL, USA
| | - Samuel Hellman
- Department of Radiation and Cellular Oncology, University of Chicago Medicine, Chicago, IL, USA
| |
Collapse
|
634
|
Lengrand J, Pastushenko I, Vanuytven S, Song Y, Venet D, Sarate RM, Bellina M, Moers V, Boinet A, Sifrim A, Rama N, Ducarouge B, Van Herck J, Dubois C, Scozzaro S, Lemaire S, Gieskes S, Bonni S, Collin A, Braissand N, Allard J, Zindy E, Decaestecker C, Sotiriou C, Salmon I, Mehlen P, Voet T, Bernet A, Blanpain C. Pharmacological targeting of netrin-1 inhibits EMT in cancer. Nature 2023; 620:402-408. [PMID: 37532929 PMCID: PMC7615210 DOI: 10.1038/s41586-023-06372-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/26/2023] [Indexed: 08/04/2023]
Abstract
Epithelial-to-mesenchymal transition (EMT) regulates tumour initiation, progression, metastasis and resistance to anti-cancer therapy1-7. Although great progress has been made in understanding the role of EMT and its regulatory mechanisms in cancer, no therapeutic strategy to pharmacologically target EMT has been identified. Here we found that netrin-1 is upregulated in a primary mouse model of skin squamous cell carcinoma (SCC) exhibiting spontaneous EMT. Pharmacological inhibition of netrin-1 by administration of NP137, a netrin-1-blocking monoclonal antibody currently used in clinical trials in human cancer (ClinicalTrials.gov identifier NCT02977195 ), decreased the proportion of EMT tumour cells in skin SCC, decreased the number of metastases and increased the sensitivity of tumour cells to chemotherapy. Single-cell RNA sequencing revealed the presence of different EMT states, including epithelial, early and late hybrid EMT, and full EMT states, in control SCC. By contrast, administration of NP137 prevented the progression of cancer cells towards a late EMT state and sustained tumour epithelial states. Short hairpin RNA knockdown of netrin-1 and its receptor UNC5B in EPCAM+ tumour cells inhibited EMT in vitro in the absence of stromal cells and regulated a common gene signature that promotes tumour epithelial state and restricts EMT. To assess the relevance of these findings to human cancers, we treated mice transplanted with the A549 human cancer cell line-which undergoes EMT following TGFβ1 administration8,9-with NP137. Netrin-1 inhibition decreased EMT in these transplanted A549 cells. Together, our results identify a pharmacological strategy for targeting EMT in cancer, opening up novel therapeutic interventions for anti-cancer therapy.
Collapse
MESH Headings
- Animals
- Humans
- Mice
- A549 Cells
- Antibodies, Monoclonal/pharmacology
- Antibodies, Monoclonal/therapeutic use
- Carcinoma, Squamous Cell/drug therapy
- Carcinoma, Squamous Cell/pathology
- Cell Line, Tumor
- Disease Models, Animal
- Epithelial Cell Adhesion Molecule/metabolism
- Epithelial-Mesenchymal Transition/drug effects
- Neoplasm Metastasis/drug therapy
- Netrin Receptors/antagonists & inhibitors
- Netrin Receptors/deficiency
- Netrin Receptors/genetics
- Netrin-1/antagonists & inhibitors
- Netrin-1/deficiency
- Netrin-1/genetics
- RNA, Small Interfering/genetics
- RNA, Small Interfering/pharmacology
- RNA-Seq
- Single-Cell Gene Expression Analysis
- Skin Neoplasms/drug therapy
- Skin Neoplasms/pathology
- Transforming Growth Factor beta1/pharmacology
- Xenograft Model Antitumor Assays
- Antibodies, Monoclonal, Humanized/pharmacology
Collapse
Affiliation(s)
- Justine Lengrand
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels, Belgium
- NETRIS Pharma, Lyon, France
- Laboratory Apoptosis, Cancer and Development, Equipe labellisee 'La Ligue', LabEx DEVweCAN, Institute PLAsCAN, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Lyon, France
| | - Ievgenia Pastushenko
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Sebastiaan Vanuytven
- Department of Human Genetics, University of Leuven, KU Leuven, Leuven, Belgium
- Laboratory of Multi-omic Integrative Bioinformatics, Center for Human Genetics, KU Leuven, Leuven, Belgium
| | - Yura Song
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - David Venet
- Laboratory of Breast Cancer Translational Research J.-C. Heuson, Institut Jules Bordet, Hôpital Universitaire de Bruxelles (H.U.B), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Rahul M Sarate
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Melanie Bellina
- NETRIS Pharma, Lyon, France
- Laboratory Apoptosis, Cancer and Development, Equipe labellisee 'La Ligue', LabEx DEVweCAN, Institute PLAsCAN, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Lyon, France
| | - Virginie Moers
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Alice Boinet
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Alejandro Sifrim
- Laboratory of Multi-omic Integrative Bioinformatics, Center for Human Genetics, KU Leuven, Leuven, Belgium
- KU Leuven Institute for Single-cell Omics, KU Leuven, Leuven, Belgium
| | - Nicolas Rama
- Laboratory Apoptosis, Cancer and Development, Equipe labellisee 'La Ligue', LabEx DEVweCAN, Institute PLAsCAN, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Lyon, France
| | | | - Jens Van Herck
- Department of Human Genetics, University of Leuven, KU Leuven, Leuven, Belgium
| | - Christine Dubois
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Samuel Scozzaro
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Sophie Lemaire
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Sarah Gieskes
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Sophie Bonni
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Amandine Collin
- DIAPath, Center for Microscopy and Molecular Imaging, Université Libre de Bruxelles (ULB), Jumet, Belgium
| | - Nicolas Braissand
- NETRIS Pharma, Lyon, France
- Laboratory Apoptosis, Cancer and Development, Equipe labellisee 'La Ligue', LabEx DEVweCAN, Institute PLAsCAN, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Lyon, France
| | - Justine Allard
- DIAPath, Center for Microscopy and Molecular Imaging, Université Libre de Bruxelles (ULB), Jumet, Belgium
| | - Egor Zindy
- DIAPath, Center for Microscopy and Molecular Imaging, Université Libre de Bruxelles (ULB), Jumet, Belgium
| | - Christine Decaestecker
- DIAPath, Center for Microscopy and Molecular Imaging, Université Libre de Bruxelles (ULB), Jumet, Belgium
- Laboratory of Image Synthesis and Analysis, Ecole Polytechnique-Université libre de Bruxelles (EPB-ULB), Gosselies, Belgium
| | - Christos Sotiriou
- Laboratory of Breast Cancer Translational Research J.-C. Heuson, Institut Jules Bordet, Hôpital Universitaire de Bruxelles (H.U.B), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Isabelle Salmon
- DIAPath, Center for Microscopy and Molecular Imaging, Université Libre de Bruxelles (ULB), Jumet, Belgium
- Centre Universitaire Inter Régional d'Expertise en Anatomie pathologique Hospitalière (CurePath), Brussels, Belgium
- Department of Pathology, Erasme University Hospital, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Patrick Mehlen
- NETRIS Pharma, Lyon, France.
- Laboratory Apoptosis, Cancer and Development, Equipe labellisee 'La Ligue', LabEx DEVweCAN, Institute PLAsCAN, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Lyon, France.
| | - Thierry Voet
- Department of Human Genetics, University of Leuven, KU Leuven, Leuven, Belgium
- KU Leuven Institute for Single-cell Omics, KU Leuven, Leuven, Belgium
| | - Agnès Bernet
- NETRIS Pharma, Lyon, France.
- Laboratory Apoptosis, Cancer and Development, Equipe labellisee 'La Ligue', LabEx DEVweCAN, Institute PLAsCAN, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Lyon, France.
| | - Cédric Blanpain
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels, Belgium.
- WEL (Wallon ExceLlence) Research Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium.
| |
Collapse
|
635
|
Ji Z, Shen J, Lan Y, Yi Q, Liu H. Targeting signaling pathways in osteosarcoma: Mechanisms and clinical studies. MedComm (Beijing) 2023; 4:e308. [PMID: 37441462 PMCID: PMC10333890 DOI: 10.1002/mco2.308] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 05/17/2023] [Accepted: 05/19/2023] [Indexed: 07/15/2023] Open
Abstract
Osteosarcoma (OS) is a highly prevalent bone malignancy among adolescents, accounting for 40% of all primary malignant bone tumors. Neoadjuvant chemotherapy combined with limb-preserving surgery has effectively reduced patient disability and mortality, but pulmonary metastases and OS cells' resistance to chemotherapeutic agents are pressing challenges in the clinical management of OS. There has been an urgent need to identify new biomarkers for OS to develop specific targeted therapies. Recently, the continued advancements in genomic analysis have contributed to the identification of clinically significant molecular biomarkers for diagnosing OS, acting as therapeutic targets, and predicting prognosis. Additionally, the contemporary molecular classifications have revealed that the signaling pathways, including Wnt/β-catenin, PI3K/AKT/mTOR, JAK/STAT3, Hippo, Notch, PD-1/PD-L1, MAPK, and NF-κB, have an integral role in OS onset, progression, metastasis, and treatment response. These molecular classifications and biological markers have created new avenues for more accurate OS diagnosis and relevant treatment. We herein present a review of the recent findings for the modulatory role of signaling pathways as possible biological markers and treatment targets for OS. This review also discusses current OS therapeutic approaches, including signaling pathway-based therapies developed over the past decade. Additionally, the review covers the signaling targets involved in the curative effects of traditional Chinese medicines in the context of expression regulation of relevant genes and proteins through the signaling pathways to inhibit OS cell growth. These findings are expected to provide directions for integrating genomic, molecular, and clinical profiles to enhance OS diagnosis and treatment.
Collapse
Affiliation(s)
- Ziyu Ji
- School of Integrated Traditional Chinese and Western MedicineSouthwest Medical UniversityLuzhouSichuanChina
| | - Jianlin Shen
- Department of OrthopaedicsAffiliated Hospital of Putian UniversityPutianFujianChina
| | - Yujian Lan
- School of Integrated Traditional Chinese and Western MedicineSouthwest Medical UniversityLuzhouSichuanChina
| | - Qian Yi
- Department of PhysiologySchool of Basic Medical ScienceSouthwest Medical UniversityLuzhouSichuanChina
| | - Huan Liu
- Department of OrthopaedicsThe Affiliated Traditional Chinese Medicine Hospital of Southwest Medical UniversityLuzhouSichuanChina
| |
Collapse
|
636
|
Lu R, Tang P, Zhang D, Lin S, Li H, Feng X, Sun M, Zhang H. SOX9/NFIA promotes human ovarian cancer metastasis through the Wnt/β-catenin signaling pathway. Pathol Res Pract 2023; 248:154602. [PMID: 37315400 DOI: 10.1016/j.prp.2023.154602] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 05/03/2023] [Accepted: 06/06/2023] [Indexed: 06/16/2023]
Abstract
To our knowledge, Sex-determining Region Y box 9 (SOX9) has been in connection with a wide range of human cancers. Nevertheless, there remains uncertainty regarding SOX9's role in metastasizing ovarian cancer. In our study, SOX9 was investigated in relation to tumor metastasis in ovarian cancer as well as its potential molecular mechanisms. First, we exhibited an apparent higher expression of SOX9 in ovarian cancer tissues and cells than in normative ones, and the prognosis of patients whose SOX9 levels were high was markedly lower than that of patients whose SOX9 levels were low. Besides, highly expressed SOX9 was correlated with high grade serous carcinoma, poor tumor differentiation, high serum CA125 and lymph node metastasis. Second, SOX9 knockdown exhibited striking inhibition of the migration and invasive ability of ovarian cancer cells, whereas SOX9 overexpression had an inverse role. At the same time, SOX9 could promote ovarian cancer intraperitoneal metastasis in a nude mice in the vivo. In a similar way, SOX9 knockdown dramatically decreased the expression of nuclear factor I-A (NFIA), β-catenin as well as N-cadherin but had an increased in E-cadherin expression, as opposed to the results when SOX9 was overexpressed. Furthermore, NFIA silencing inhibited the expression of NFIA, β-catenin and N-cadherin, in the same way that E-cadherin expression was promoted. In conclusion, this study shows that SOX9 has a promotional effect on human ovarian cancer and that SOX9 promotes the metastasis of tumors by upregulating NFIA and activating on a Wnt/β-catenin signal pathway. SOX9 could be a novel focus for earlier diagnosis, therapy and prospective evaluation in ovarian cancer.
Collapse
Affiliation(s)
- Rong Lu
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Soochow University, Suzhou 215004 Jiangsu Province, China; Department of Gynecology and Obstetrics, The Affiliated Huai'an Hospital of Xuzhou Medical University and The Second People's Hospital of Huai'an, No.60, Huaihai Road (S.), Huai'an 223002 Jiangsu Province, China
| | - Peipei Tang
- Institute of Medicinal Biotechnology, Jiangsu College of Nursing, Huai'an 223003 Jiangsu Province, China
| | - Di Zhang
- Institute of Medicinal Biotechnology, Jiangsu College of Nursing, Huai'an 223003 Jiangsu Province, China
| | - Sen Lin
- Department of Clinical Laboratory, The Affiliated Huai'an Hospital of Xuzhou Medical University and The Second People's Hospital of Huai'an, No.60, Huaihai Road (S.), Huai'an 223002 Jiangsu Province, China
| | - Hong Li
- Department of Pathology, The Affiliated Huai'an Hospital of Xuzhou Medical University and The Second People's Hospital of Huai'an, No.60, Huaihai Road (S.), Huai'an 223002 Jiangsu Province, China
| | - Xian Feng
- Department of Pathology, The Affiliated Huai'an Hospital of Xuzhou Medical University and The Second People's Hospital of Huai'an, No.60, Huaihai Road (S.), Huai'an 223002 Jiangsu Province, China
| | - Meiling Sun
- Department of Gynecology and Obstetrics, The Affiliated Huai'an Hospital of Xuzhou Medical University and The Second People's Hospital of Huai'an, No.60, Huaihai Road (S.), Huai'an 223002 Jiangsu Province, China
| | - Hong Zhang
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Soochow University, Suzhou 215004 Jiangsu Province, China.
| |
Collapse
|
637
|
Zhang J, Zhang Y, Feng D, Zhou H, Gui Z, Zheng M, Hang Z, Gu M, Tan R. Disruption of RCAN1.4 expression mediated by YY1/HDAC2 modulates chronic renal allograft interstitial fibrosis. Cell Death Discov 2023; 9:271. [PMID: 37507403 PMCID: PMC10382480 DOI: 10.1038/s41420-023-01574-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
Chronic allograft dysfunction (CAD) is a major factor that hinders kidney transplant survival in the long run. Epithelial-mesenchymal transition (EMT) has been confirmed to significantly contribute to interstitial fibrosis/tubular atrophy (IF/TA), which is the main histopathological feature of CAD. Aberrant expression of the regulator of calcineurin 1 (RCAN1), recognized as an endogenous inhibitor of the calcineurin phosphatase, has been shown to be extensively involved in various kidney diseases. However, it remains unclear how RCAN1.4 regulates IF/TA formation in CAD patients. Herein, an in vivo mouse renal transplantation model and an in vitro model of human renal tubular epithelial cells (HK-2) treated with tumor necrosis factor-α (TNF-α) were employed. Our results proved that RCAN1.4 expression was decreased in vivo and in vitro, in addition to the up-regulation of Yin Yang 1 (YY1), a transcription factor that has been reported to convey multiple functions in chronic kidney disease (CKD). Knocking in of RCAN1.4 efficiently attenuated chronic renal allograft interstitial fibrosis in vivo and inhibited TNF-α-induced EMT in vitro through regulating anti-oxidative stress and the calcineurin/nuclear factor of activated T cells cytoplasmic 1 (NFATc1) signaling pathway. In addition, suppression of YY1 mediated by shRNA or siRNA alleviated TNF-α-induced EMT through abolishing reactive species partly in an RCAN1.4-dependent manner. Notably, we confirmed that YY1 negatively regulated RCAN1.4 transcription by directly interacting with the RCAN1.4 promoter. In addition, histone deacetylase 2 (HDAC2) interacted with YY1 to form a multi-molecular complex, which was involved in TNF-α-induced RCAN1.4 transcriptional repression. Therefore, RCAN1.4 is suggested to be modulated by the YY1/HDAC2 transcription repressor complex in an epigenetic manner, which is a mediated nephroprotective effect partly through modulating O2⋅- generation and the calcineurin/NFATc1 signaling pathway. Thus, the YY1-RCAN1.4 axis constitutes an innovative target for IF/TA treatment in CAD patients.
Collapse
Affiliation(s)
- Jianjian Zhang
- Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, 210029, Nanjing, China
| | - Yao Zhang
- Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, 210029, Nanjing, China
| | - Dengyuan Feng
- Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, 210029, Nanjing, China
| | - Hai Zhou
- Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, 210029, Nanjing, China
| | - Zeping Gui
- Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, 210029, Nanjing, China
| | - Ming Zheng
- Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, 210029, Nanjing, China
| | - Zhou Hang
- Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, 210029, Nanjing, China
| | - Min Gu
- Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, 210029, Nanjing, China
| | - Ruoyun Tan
- Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, 210029, Nanjing, China.
| |
Collapse
|
638
|
Talukdar SN, McGregor B, Osan JK, Hur J, Mehedi M. Respiratory Syncytial Virus Infection Does Not Induce Epithelial-Mesenchymal Transition. J Virol 2023; 97:e0039423. [PMID: 37338373 PMCID: PMC10373540 DOI: 10.1128/jvi.00394-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/24/2023] [Indexed: 06/21/2023] Open
Abstract
Respiratory syncytial virus (RSV) infection does not cause severe disease in most of us despite suffering from multiple RSV infections during our lives. However, infants, young children, older adults, and immunocompromised patients are unfortunately vulnerable to RSV-associated severe diseases. A recent study suggested that RSV infection causes cell expansion, resulting in bronchial wall thickening in vitro. Whether the virus-induced changes in the lung airway resemble epithelial-mesenchymal transition (EMT) is still unknown. Here, we report that RSV does not induce EMT in three different in vitro lung models: the epithelial A549 cell line, primary normal human bronchial epithelial cells, and pseudostratified airway epithelium. We found that RSV increases the cell surface area and perimeter in the infected airway epithelium, which is distinct from the effects of a potent EMT inducer, transforming growth factor β1 (TGF-β1), driving cell elongation-indicative of cell motility. A genome-wide transcriptome analysis revealed that both RSV and TGF-β1 have distinct modulation patterns of the transcriptome, which suggests that RSV-induced changes are distinct from EMT. IMPORTANCE We have previously shown that RSV infects ciliated cells on the apical side of the lung airway. RSV-induced cytoskeletal inflammation contributes to an uneven increase in the height of the airway epithelium, resembling noncanonical bronchial wall thickening. RSV infection changes epithelial cell morphology by modulating actin-protein 2/3 complex-driven actin polymerization. Therefore, it is prudent to investigate whether RSV-induced cell morphological changes contribute to EMT. Our data indicate that RSV does not induce EMT in at least three different epithelial in vitro models: an epithelial cell line, primary epithelial cells, and pseudostratified bronchial airway epithelium.
Collapse
Affiliation(s)
- Sattya N. Talukdar
- Department of Biomedical Sciences, University of North Dakota School of Medicine & Health Sciences, Grand Forks, North Dakota, USA
| | - Brett McGregor
- Department of Biomedical Sciences, University of North Dakota School of Medicine & Health Sciences, Grand Forks, North Dakota, USA
| | - Jaspreet K. Osan
- Department of Biomedical Sciences, University of North Dakota School of Medicine & Health Sciences, Grand Forks, North Dakota, USA
| | - Junguk Hur
- Department of Biomedical Sciences, University of North Dakota School of Medicine & Health Sciences, Grand Forks, North Dakota, USA
| | - Masfique Mehedi
- Department of Biomedical Sciences, University of North Dakota School of Medicine & Health Sciences, Grand Forks, North Dakota, USA
| |
Collapse
|
639
|
Simiczyjew A, Wądzyńska J, Pietraszek-Gremplewicz K, Kot M, Ziętek M, Matkowski R, Nowak D. Melanoma cells induce dedifferentiation and metabolic changes in adipocytes present in the tumor niche. Cell Mol Biol Lett 2023; 28:58. [PMID: 37481560 PMCID: PMC10363323 DOI: 10.1186/s11658-023-00476-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 06/30/2023] [Indexed: 07/24/2023] Open
Abstract
BACKGROUND One of the factors that affect the progression of melanoma is the tumor microenvironment, which consists of cellular elements, extracellular matrix, acidification, and a hypoxic state. Adipocytes are one of the types of cell present in the niche and are localized in the deepest layer of the skin. However, the relationship between fat cells and melanoma remains unclear. METHODS We assessed the influence of melanoma cells on adipocytes using an indirect coculture system. We estimated the level of cancer-associated adipocyte (CAA) markers through quantitative PCR analysis. The fibroblastic phenotype of CAAs was confirmed by cell staining and western blotting analysis. The lipid content was estimated by lipid detection in CAAs using LipidSpot and by quantitative analysis using Oil Red O. The expression of proteins involved in lipid synthesis, delipidation, and metabolic processes were assessed through quantitative PCR or western blotting analysis. Lactate secretion was established using a Lactate-Glo™ assay. Proteins secreted by CAAs were identified in cytokine and angiogenesis arrays. The proliferation of melanoma cells cocultured with CAAs was assessed using an XTT proliferation assay. Statistical analysis was performed using a one-way ANOVA followed by Tukey's test in GraphPad Prism 7 software. RESULTS Obtained CAAs were identified by decreased levels of leptin, adiponectin, resistin, and FABP4. Adipocytes cocultured with melanoma presented fibroblastic features, such as a similar proteolytic pattern to that of 3T3L1 fibroblasts and increased levels of vimentin and TGFβRIII. Melanoma cells led to a reduction of lipid content in CAAs, possibly by downregulation of lipid synthesis pathways (lower FADS, SC4MOL, FASN) or enhancement of lipolysis (higher level of phosphorylation of ERK and STAT3). Adipocytes cocultured with melanoma cells secreted higher IL6 and SerpinE1 levels and produced less CCL2, CXCL1, and angiogenic molecules. CAAs also showed metabolic changes comprising the increased secretion of lactate and enhanced production of glucose, lactate, and ion transporters. In addition, changes in adipocytes observed following melanoma coculture resulted in a higher proliferation rate of cancer cells. CONCLUSIONS Melanoma cells led to decreased lipid content in adipocytes, which might be related to enhanced delipidation or reduction of lipid synthesis. Fibroblast-like CAAs showed metabolic changes that may be the reason for accelerated proliferation of melanoma cells.
Collapse
Affiliation(s)
- Aleksandra Simiczyjew
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, 50-383, Wroclaw, Poland.
| | - Justyna Wądzyńska
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, 50-383, Wroclaw, Poland
| | | | - Magdalena Kot
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, 50-383, Wroclaw, Poland
| | - Marcin Ziętek
- Department of Oncology and Division of Surgical Oncology, Wroclaw Medical University, Plac Hirszfelda 12, 53-413, Wroclaw, Poland
- Lower Silesian Oncology, Pulmonology, and Hematology Center, Plac Hirszfelda 12, 53-413, Wroclaw, Poland
| | - Rafał Matkowski
- Department of Oncology and Division of Surgical Oncology, Wroclaw Medical University, Plac Hirszfelda 12, 53-413, Wroclaw, Poland
- Lower Silesian Oncology, Pulmonology, and Hematology Center, Plac Hirszfelda 12, 53-413, Wroclaw, Poland
| | - Dorota Nowak
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, 50-383, Wroclaw, Poland
| |
Collapse
|
640
|
Liu Y, Meng Z, Niu J, Tian L, Chen Y, Meng Q, Liu Y, Zhou Z. Cardiac tropoini T (TNNT2) plays a potential oncogenic role in colorectal carcinogenesis. Cancer Cell Int 2023; 23:146. [PMID: 37481519 PMCID: PMC10363310 DOI: 10.1186/s12935-023-02977-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/26/2023] [Indexed: 07/24/2023] Open
Abstract
PURPOSE Colorectal cancer (CRC) is the third most common cancer in the world. The purpose of this study was to investigate the role of TNNT2 in the proliferation, migration and invasion of CRC cells and its expression in CRC tissues to better understand the regulatory role of TNNT2 in CRC. METHODS Western blotting (WB) and qPCR were used to detect the expression of TNNT2 in colorectal cancer tissues and paracancerous tissues. CCK-8, colony formation, Transwell and other experiments were used to clarify the role of TNNT2 in the proliferation, migration and invasion of colorectal cancer cells. Changes in TNNT2, EGFR and HER2 mRNA transcription levels were detected by SYBR Real-Time PCR assay, and the effects of TNNT2 overexpression or knockdown on the expression of EGFR, HER2 and EMT-related proteins in CRC cells were determined by WB. TNNT2 and EGFR intreaction was carried out in HCT116 cells by coimmunoprecipitation experiments. RESULTS The protein and mRNA expression level of TNNT2 in CRC tissues were higher than those in paracancerous tissues. The CCK-8 results suggested that overexpression of TNNT2 significantly promoted the proliferation of HCT116 and RKO cells, and TNNT2 konckdown gets the opposite result; and the colony formation results were the same as tthose of CCK-8 assay. Transwell invasion and migration experiments showed that overexpression of TNNT2 promoted the migration and invasion of HCT116 and PKO cells, and TNNT2 konckdown suppressed the migration and invasion of the these cells. The SYBR Green I real-time PCR method revealed that them RNA levels of TNNT2, EGFR and HER2 in the TNNT2 overexpression group were higher than those in RKO cells. WB showed that overexpressing TNNT2 increased the expression of EGFR and HER2 in HCT16 and RKO cells,decreased the expression of EMT marker E-cadherin, and increased the expression of Vimentin and N-cadherin. Konckdown of TNNT2 decreased the expression of EGFR and HER2, increased the expression of E-cadherin, and decreased the expression of Vimentin and N-cadherin in HCT16 and RKO cells. The immunocoprecipitation experiment showed that there was an interaction between EGFR and TNNT2. CONCLUSION TNNT2 can promote the proliferation, invasion and metastasis of colorectal cancer cells. There is an interaction between TNNT2 and EGFR protein. TNNT2 can upregulate EGFR and HER2-related proteins in colorectal cancer cells and promote the occurrence of EMT. Therefore, TNNT2 can promote the invasion and metastasis of CRC cells through the EGFR/HER2/EMT signal axis, suggesting that TNNT2 is a potential target of CRC treatment.
Collapse
Affiliation(s)
- Yifan Liu
- Hebei Medical University, Shijiazhuang, 050011, Hebei, China
| | - Ze Meng
- The First Affiliated Hospital of Xingtai Medical College, Xingtai, 054000, Hebei, China
| | - Junqiang Niu
- The First Affiliated Hospital of Xingtai Medical College, Xingtai, 054000, Hebei, China
| | - Le Tian
- Hebei Medical University, Shijiazhuang, 050011, Hebei, China
| | - Yishan Chen
- Hebei Medical University, Shijiazhuang, 050011, Hebei, China
| | - Qingju Meng
- The First Affiliated Hospital of Xingtai Medical College, Xingtai, 054000, Hebei, China
| | - Yibing Liu
- The Fourth Hospital of Hebei Medical University, 12 JianKang Road, Shijiazhuang, 050011, Hebei, China.
| | - Zhiguo Zhou
- The Fourth Hospital of Hebei Medical University, 12 JianKang Road, Shijiazhuang, 050011, Hebei, China.
| |
Collapse
|
641
|
An L, Gong H, Yu X, Zhang W, Liu X, Yang X, Shu L, Liu J, Yang L. Downregulation of MAL2 inhibits breast cancer progression through regulating β-catenin/c-Myc axis. Cancer Cell Int 2023; 23:144. [PMID: 37480012 PMCID: PMC10362617 DOI: 10.1186/s12935-023-02993-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 07/13/2023] [Indexed: 07/23/2023] Open
Abstract
PURPOSE Myelin and lymphocyte protein 2 (MAL2) is mainly involved in endocytosis under physiological conditions and mediates the transport of materials across the membranes of cell and organelle. It has been reported that MAL2 is significantly upregulated in diverse cancers. This study aimed to investigate the role of MAL2 in breast cancer (BC). METHODS Bioinformatics analysis and Immunohistochemical assay were applied to detect the correlation between MAL2 expression in breast cancer tissues and the prognosis of breast cancer patients. Functional experiments were carried out to investigate the role of MAL2 in vitro and in vivo. The molecular mechanisms involved in MAL2-induced β-catenin and c-Myc expression and β-catenin/c-Myc-mediated enhancement of BC progression were confirmed by western blot, β-catenin inhibitor and agonist, Co-IP and immunofluorescence colocalization assays. RESULTS Results from the cancer genome atlas (TCGA) and clinical samples confirmed a significant upregulation of MAL2 in BC tissues than in adjacent non-tumor tissues. High expression of MAL2 was associated with worse prognosis. Functional experiments demonstrated that MAL2 knockdown reduced the migration and invasion associating with EMT, increased the apoptosis of BC cells in vitro and reduced the metastatic capacity in vivo. Mechanistically, MAL2 interacts with β-catenin in BC cells. MAL2 silencing reduced the expression of β-catenin and c-Myc, while the β-catenin agonist SKL2001 partially rescued the downregulation of c-Myc and inhibition of migration and invasion caused by MAL2 knockdown in BC cells. CONCLUSION These observations provided evidence that MAL2 acted as a potential tumor promoter by regulating EMT and β-catenin/c-Myc axis, suggesting potential implications for anti-metastatic therapy for BC.
Collapse
Affiliation(s)
- Lijun An
- Department of Immunology, Basic Medical College, Guizhou Medical University, Dongqing Road, Guian New District, Guiyang, Guizhou, 550004, China
| | - Huiyuan Gong
- Department of Immunology, Basic Medical College, Guizhou Medical University, Dongqing Road, Guian New District, Guiyang, Guizhou, 550004, China
| | - Xiaojing Yu
- Department of Immunology, Basic Medical College, Guizhou Medical University, Dongqing Road, Guian New District, Guiyang, Guizhou, 550004, China
| | - Wangming Zhang
- Department of Immunology, Basic Medical College, Guizhou Medical University, Dongqing Road, Guian New District, Guiyang, Guizhou, 550004, China
| | - Xiaohua Liu
- Department of Immunology, Basic Medical College, Guizhou Medical University, Dongqing Road, Guian New District, Guiyang, Guizhou, 550004, China
| | - Xiaomin Yang
- Department of Immunology, Basic Medical College, Guizhou Medical University, Dongqing Road, Guian New District, Guiyang, Guizhou, 550004, China
| | - Liping Shu
- Department of Immunology, Basic Medical College, Guizhou Medical University, Dongqing Road, Guian New District, Guiyang, Guizhou, 550004, China
| | - Jielin Liu
- Department of Immunology, Basic Medical College, Guizhou Medical University, Dongqing Road, Guian New District, Guiyang, Guizhou, 550004, China
| | - Liuqi Yang
- Department of Immunology, Basic Medical College, Guizhou Medical University, Dongqing Road, Guian New District, Guiyang, Guizhou, 550004, China.
| |
Collapse
|
642
|
Tseng TH, Shao YC, Lee YJ, Lee HJ. 2-(4-Benzyloxy-3-methoxyphenyl)-5-(carbethoxyethylene)-7-methoxy-benzofuran, a Benzofuran Derivative, Suppresses Metastasis Effects in P53-Mutant Hepatocellular Carcinoma Cells. Biomedicines 2023; 11:2027. [PMID: 37509669 PMCID: PMC10377018 DOI: 10.3390/biomedicines11072027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/10/2023] [Accepted: 07/16/2023] [Indexed: 07/30/2023] Open
Abstract
2-(4-Benzyloxy-3-methoxyphenyl)-5-(carbethoxyethylene)-7-methoxy-benzofuran (BMBF), a benzofuran derivative, is an intermediate found in the process of total synthesis of ailanthoidol. Benzofuran derivatives are a class of compounds that possess various biological and pharmacological activities. The present study explored the anti-metastasis effects of BMBF in hepatocellular carcinoma (HCC). Our preliminary findings indicate that BMBF suppresses the proliferation and changes the morphology of Huh7-an HCC cell line with a mutated p53 gene (Y220C). According to a scratching motility assay, non-cytotoxic concentrations of BMBF significantly inhibited the motility and migration in Huh7 cells. BMBF upregulated the expression of E-cadherin and downregulated the expression of vimentin, Slug, and MMP9, which are associated with epithelial-mesenchymal transition (EMT) and metastasis in Huh7 cells. BMBF decreased the expression of integrin α7, deactivated its downstream signal FAK/AKT, and inhibited p53 protein levels. Cell transfection with p53 siRNA resulted in the prevention of cell invasion because of the reduction in integrin α7, Slug, and MMP-9 in Huh7 cells. BMBF had anti-metastatic effects in PLC/PRF/5-an HCC cell line with R249S, a mutated p53 gene. Our findings indicate that BMBF has anti-metastatic effects in downregulating p53 and mediating the suppression of integrin α7, EMT, and MMP-9 in HCC cells with a mutated p53 gene.
Collapse
Affiliation(s)
- Tsui-Hwa Tseng
- Department of Medical Applied Chemistry, Chung Shan Medical University, Taichung 40201, Taiwan
- Department of Medical Education, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Yi-Chia Shao
- Department of Medical Applied Chemistry, Chung Shan Medical University, Taichung 40201, Taiwan
| | - Yean-Jang Lee
- Department of Chemistry, National Changhua University of Education, Changhua 50007, Taiwan
| | - Huei-Jane Lee
- Department of Biochemistry, School of Medicine, College of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
- Department of Clinical Laboratory, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| |
Collapse
|
643
|
Li F, Wang H, Wang C, Li Y, Song JY, Fan KY, Li C, Ma QL, Yu Q, Zhang SP. Comprehensive analysis of the role of a four-gene signature based on EMT in the prognosis, immunity, and treatment of lung squamous cell carcinoma. Aging (Albany NY) 2023; 15:6865-6893. [PMID: 37462692 PMCID: PMC10415548 DOI: 10.18632/aging.204878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/15/2023] [Indexed: 08/07/2023]
Abstract
Epithelial-mesenchymal transition (EMT), a biological process through which epithelial cells transform into mesenchymal cells, contributes to tumor progression and metastasis. However, a comprehensive analysis of the role of EMT-related genes in Lung squamous cell carcinoma (LUSC) is still lacking. In this study, data were downloaded from available databases, including The Cancer Genome Atlas (TCGA) database and the Gene Expression Omnibus (GEO) database. The association between differentially expressed EMT-related genes (EMT-RDGs) and LUSC prognosis, drug sensitivity, mutation, and immunity was analyzed using bioinformatics methods. In the results, Lasso and univariate Cox regression analyses identified four EMT-RDGs that were differentially expressed, and used to establish a prognostic model capable of distinguishing between high- and low-risk groups. Then, prognostic factors were identified by multivariate Cox regression analysis and used to construct a nomogram. The high-risk group had a significantly poorer prognosis than the low-risk group. The tumor immune environment was significantly different between the two groups, with the low-risk group exhibiting a better response to immunotherapy. In addition, the half-maximal inhibitory concentration prediction indicating that the constructed model could effectively predict sensitivity to chemotherapy. This study provides new reference for further exploration of new clinical therapeutic strategies for LUSC.
Collapse
Affiliation(s)
- Feng Li
- Department of Cell Biology, Shanxi Province Cancer Hospital, Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Hui Wang
- Department of Thoracic Surgery, Yangquan First People's Hospital, Yangquan, China
| | - Can Wang
- Shanxi Medical University, School of Management, Taiyuan, China
| | - Yun Li
- The First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Jing-Yan Song
- The First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Ke-Yi Fan
- The First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Chao Li
- Department of Thoracic Surgery, Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Affiliated Tumor Hospital of Shanxi Medical University, Taiyuan, China
| | - Quan-Lin Ma
- Department of Cardiothoracic Surgery, Shanxi Fenyang Hospital, Fenyang, China
| | - Qi Yu
- Shanxi Medical University, School of Management, Taiyuan, China
- Institute of Medical Data Science, Shanxi Medical University, Taiyuan, China
| | - Shuang-Ping Zhang
- Department of Thoracic Surgery, Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Affiliated Tumor Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
644
|
He Y, Zhang Q, Chen Y, Wu Y, Quan Y, Chen W, Yao J, Zhang P. ZHX2 deficiency enriches hybrid MET cells through regulating E-cadherin expression. Cell Death Dis 2023; 14:444. [PMID: 37460540 DOI: 10.1038/s41419-023-05974-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 06/18/2023] [Accepted: 07/10/2023] [Indexed: 07/20/2023]
Abstract
Growing evidence indicates that the epithelial to mesenchymal (E/M) hybrid state plays a key role in tumorigenesis. Importantly, a hybrid mesenchymal to epithelial transition (MET) state in which individual cells express both epithelial and mesenchymal markers was recently identified in vivo, further strengthening the bonds between the hybrid EMT state and cancer progression. However, the role and the molecular mechanisms by which the hybrid MET state is maintained in triple-negative breast cancer cells (TNBC) remain elusive. Here, we find that loss of ZHX2 expression results in the hybrid MET phenotype in mesenchymal TNBC cells. Mechanistically, through directly binding to the CDH1 promoter, depletion of ZHX2 specifically reactivates expression of CDH1 encoding E-cadherin, an epithelial marker that is crucial for maintaining epithelial phenotype. Functionally, loss of ZHX2 expression enriches the hybrid MET cells and inhibits the migration and dissemination of TNBC cells or organoids, which could be reversed by restoration of E-cadherin. Moreover, depletion of ZHX2 suppresses lung metastasis in preclinical models of TNBC. In patients with TNBC, ZHX2 expression was amplified and negatively correlated with the expression of E-cadherin. These findings suggest that loss of ZHX2 promotes the hybrid MET state to impair TNBC progression.
Collapse
Affiliation(s)
- Yan He
- National Engineering Research Center for Nanomedicine, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Qimin Zhang
- National Engineering Research Center for Nanomedicine, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Yuanhong Chen
- National Engineering Research Center for Nanomedicine, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Yingjian Wu
- National Engineering Research Center for Nanomedicine, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan Quan
- Stem Cell Laboratory, the Second Affiliated Hospital, Fujian Medical University, Quanzhou, China.
| | - Weihua Chen
- National Engineering Research Center for Nanomedicine, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Yao
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peijing Zhang
- National Engineering Research Center for Nanomedicine, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
645
|
Zhang X, Wang C, Yu J, Bu J, Ai F, Wang Y, Lin J, Zhu X. Extracellular vesicles in the treatment and diagnosis of breast cancer: a status update. Front Endocrinol (Lausanne) 2023; 14:1202493. [PMID: 37534210 PMCID: PMC10393036 DOI: 10.3389/fendo.2023.1202493] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/30/2023] [Indexed: 08/04/2023] Open
Abstract
Breast cancer is one of the leading causes of cancer-related death in women. Currently, the treatment of breast cancer is limited by the lack of effectively targeted therapy and patients often suffer from higher severity, metastasis, and resistance. Extracellular vesicles (EVs) consist of lipid bilayers that encapsulate a complex cargo, including proteins, nucleic acids, and metabolites. These bioactive cargoes have been found to play crucial roles in breast cancer initiation and progression. Moreover, EV cargoes play pivotal roles in converting mammary cells to carcinogenic cells and metastatic foci by extensively inducing proliferation, angiogenesis, pre-metastatic niche formation, migration, and chemoresistance. The present update review mainly discusses EVs cargoes released from breast cancer cells and tumor-derived EVs in the breast cancer microenvironment, focusing on proliferation, metastasis, chemoresistance, and their clinical potential as effective biomarkers.
Collapse
Affiliation(s)
- Xiaoying Zhang
- Department of General Surgery, Huangyan Hospital, Wenzhou Medical University, Taizhou, Zhejiang, China
| | - Caizheng Wang
- Department of General Surgery, Huangyan Hospital, Wenzhou Medical University, Taizhou, Zhejiang, China
| | - Jiahui Yu
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jiawen Bu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Fulv Ai
- Department of General Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, China
| | - Yue Wang
- Department of General Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, China
| | - Jie Lin
- Department of General Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, China
| | - Xudong Zhu
- Department of General Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, China
| |
Collapse
|
646
|
Gu Y, Zhang Z, Camps MG, Ossendorp F, Wijdeven RH, ten Dijke P. Genome-wide CRISPR screens define determinants of epithelial-mesenchymal transition mediated immune evasion by pancreatic cancer cells. SCIENCE ADVANCES 2023; 9:eadf9915. [PMID: 37450593 PMCID: PMC10348683 DOI: 10.1126/sciadv.adf9915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 06/12/2023] [Indexed: 07/18/2023]
Abstract
The genetic circuits that allow cancer cells to evade immune killing via epithelial mesenchymal plasticity remain poorly understood. Here, we showed that mesenchymal-like (Mes) KPC3 pancreatic cancer cells were more resistant to cytotoxic T lymphocyte (CTL)-mediated killing than the parental epithelial-like (Epi) cells and used parallel genome-wide CRISPR screens to assess the molecular underpinnings of this difference. Core CTL-evasion genes (such as IFN-γ pathway components) were clearly evident in both types. Moreover, we identified and validated multiple Mes-specific regulators of cytotoxicity, such as Egfr and Mfge8. Both genes were significantly higher expressed in Mes cancer cells, and their depletion sensitized Mes cancer cells to CTL-mediated killing. Notably, Mes cancer cells secreted more Mfge8 to inhibit proliferation of CD8+ T cells and production of IFN-γ and TNFα. Clinically, increased Egfr and Mfge8 expression was correlated with a worse prognosis. Thus, Mes cancer cells use Egfr-mediated intrinsic and Mfge8-mediated extrinsic mechanisms to facilitate immune escape from CD8+ T cells.
Collapse
Affiliation(s)
- Yuanzhuo Gu
- Oncode Institute and Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, Netherlands
| | - Zhengkui Zhang
- Institutes of Biology and Medical Science, Soochow University, Suzhou 215123, China
| | - Marcel G. M. Camps
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Ferry Ossendorp
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Ruud H. Wijdeven
- Oncode Institute and Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, Netherlands
| | - Peter ten Dijke
- Oncode Institute and Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, Netherlands
| |
Collapse
|
647
|
Santamaria G, Cioce M, Rizzuto A, Fazio VM, Viglietto G, Lucibello M. Harnessing the value of TCTP in breast cancer treatment resistance: an opportunity for personalized therapy. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2023; 6:447-467. [PMID: 37842235 PMCID: PMC10571059 DOI: 10.20517/cdr.2023.21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/25/2023] [Accepted: 06/15/2023] [Indexed: 10/17/2023]
Abstract
Early identification of breast cancer (BC) patients at a high risk of progression may aid in therapeutic and prognostic aims. This is especially true for metastatic disease, which is responsible for most cancer-related deaths. Growing evidence indicates that the translationally controlled tumor protein (TCTP) may be a clinically relevant marker for identifying poorly differentiated aggressive BC tumors. TCTP is an intriguing protein with pleiotropic functions, which is involved in multiple signaling pathways. TCTP may also be involved in stress response, cell growth and proliferation-related processes, underlying its potential role in the initiation of metastatic growth. Thus, TCTP marks specific cancer cell sub-populations with pronounced stress adaptation, stem-like and immune-evasive properties. Therefore, we have shown that in vivo phospho-TCTP levels correlate with the response of BC cells to anti-HER2 agents. In this review, we discuss the clinical relevance of TCTP for personalized therapy, specific TCTP-targeting strategies, and currently available therapeutic agents. We propose TCTP as an actionable clinically relevant target that could potentially improve patient outcomes.
Collapse
Affiliation(s)
- Gianluca Santamaria
- Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, Catanzaro 88100, Italy
- These authors contributed equally
| | - Mario Cioce
- Department of Medicine, Laboratory of Molecular Medicine and Biotechnology, University Campus Bio-Medico of Rome, Rome 00128, Italy
- Institute of Translational Pharmacology, National Research Council of Italy (CNR), Rome 00133, Italy
- These authors contributed equally
| | - Antonia Rizzuto
- Department of Medical and Surgical Sciences, “Magna Graecia” University of Catanzaro, Catanzaro 88100, Italy
| | - Vito Michele Fazio
- Department of Medicine, Laboratory of Molecular Medicine and Biotechnology, University Campus Bio-Medico of Rome, Rome 00128, Italy
- Institute of Translational Pharmacology, National Research Council of Italy (CNR), Rome 00133, Italy
| | - Giuseppe Viglietto
- Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, Catanzaro 88100, Italy
| | - Maria Lucibello
- Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, Catanzaro 88100, Italy
- Department of Biomedical Sciences, Institute for Biomedical Research and Innovation, National Research Council of Italy (CNR), Catanzaro 88100, Italy
| |
Collapse
|
648
|
Cutshaw G, Uthaman S, Hassan N, Kothadiya S, Wen X, Bardhan R. The Emerging Role of Raman Spectroscopy as an Omics Approach for Metabolic Profiling and Biomarker Detection toward Precision Medicine. Chem Rev 2023; 123:8297-8346. [PMID: 37318957 PMCID: PMC10626597 DOI: 10.1021/acs.chemrev.2c00897] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Omics technologies have rapidly evolved with the unprecedented potential to shape precision medicine. Novel omics approaches are imperative toallow rapid and accurate data collection and integration with clinical information and enable a new era of healthcare. In this comprehensive review, we highlight the utility of Raman spectroscopy (RS) as an emerging omics technology for clinically relevant applications using clinically significant samples and models. We discuss the use of RS both as a label-free approach for probing the intrinsic metabolites of biological materials, and as a labeled approach where signal from Raman reporters conjugated to nanoparticles (NPs) serve as an indirect measure for tracking protein biomarkers in vivo and for high throughout proteomics. We summarize the use of machine learning algorithms for processing RS data to allow accurate detection and evaluation of treatment response specifically focusing on cancer, cardiac, gastrointestinal, and neurodegenerative diseases. We also highlight the integration of RS with established omics approaches for holistic diagnostic information. Further, we elaborate on metal-free NPs that leverage the biological Raman-silent region overcoming the challenges of traditional metal NPs. We conclude the review with an outlook on future directions that will ultimately allow the adaptation of RS as a clinical approach and revolutionize precision medicine.
Collapse
Affiliation(s)
- Gabriel Cutshaw
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50012, USA
- Nanovaccine Institute, Iowa State University, Ames, IA 50012, USA
| | - Saji Uthaman
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50012, USA
- Nanovaccine Institute, Iowa State University, Ames, IA 50012, USA
| | - Nora Hassan
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50012, USA
- Nanovaccine Institute, Iowa State University, Ames, IA 50012, USA
| | - Siddhant Kothadiya
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50012, USA
- Nanovaccine Institute, Iowa State University, Ames, IA 50012, USA
| | - Xiaona Wen
- Biologics Analytical Research and Development, Merck & Co., Inc., Rahway, NJ, 07065, USA
| | - Rizia Bardhan
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50012, USA
- Nanovaccine Institute, Iowa State University, Ames, IA 50012, USA
| |
Collapse
|
649
|
Li B, Hu Y, Li QY, Tang YM, Lin Z. Procoagulant genes may affect angiogenesis, epithelial-mesenchymal transition, survival prognosis and tumor immune microenvironment in patients with urothelial carcinoma. Aging (Albany NY) 2023; 15:6429-6444. [PMID: 37453055 PMCID: PMC10373971 DOI: 10.18632/aging.204860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 06/14/2023] [Indexed: 07/18/2023]
Abstract
Factors related to coagulation regulation are closely related to angiogenesis, epithelial-mesenchymal transition, tumor proliferation and metastasis, and tumor immune microenvironment remodeling in tumors. To date, there are no quantitative indicators of coagulation associated with urothelial cancer. We classified urothelial cancer into high coagulation and low coagulation subtypes by screening for procoagulant-related molecular features and screened out relevant genes representing the coagulation state of urothelial carcinoma. Tumors with increased procoagulant gene expression were consistently associated with higher T-staging (p < 0.001), lymph node metastasis (p < 0.001), stage (p < 0.001), and grade (p = 0.046). Furthermore, high expression of procoagulant genes predicts a worse prognosis, a higher tumor proliferation rate and increased angiogenesis within the tumor. In addition, according to cibersort algorithm, the increased expression of procoagulant gene was negatively correlated with the degree of T-lymphocyte infiltration and positively correlated with the degree of M2 macrophage infiltration. Increased expression of procoagulant genes in data sets treated with immune checkpoints also predicted worse response and worse prognosis. At the same time, the expression of procoagulant genes in bladder cancer promoted the activation of coagulation, EMT, TGF-β and WNT pathways.
Collapse
Affiliation(s)
- Bin Li
- Department of Urology, The First People’s Hospital of Foshan, Foshan, Guangdong, China
| | - Yuan Hu
- Department of Urology, The First People’s Hospital of Foshan, Foshan, Guangdong, China
| | - Qiu-yang Li
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yi-Ming Tang
- Department of Urology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Zhe Lin
- Department of Urology, The First People’s Hospital of Foshan, Foshan, Guangdong, China
| |
Collapse
|
650
|
Shen X, Jin X, Fang S, Chen J. EFEMP2 upregulates PD-L1 expression via EGFR/ERK1/2/c-Jun signaling to promote the invasion of ovarian cancer cells. Cell Mol Biol Lett 2023; 28:53. [PMID: 37420173 DOI: 10.1186/s11658-023-00471-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 06/24/2023] [Indexed: 07/09/2023] Open
Abstract
BACKGROUND Fibulin-like extracellular matrix protein 2 (EFEMP2) has been reported to be related to the progression of various cancers. We have previously reported that EFEMP2 was highly expressed in ovarian cancer and was strongly associated with poor prognosis in patients. This study intends to further explore its interacting proteins and possible downstream signaling pathways. METHOD The expression of EFEMP2 was detected by RT-qPCR, ICC and western blot in 4 kinds of ovarian cancer cells with different migration and invasion ability. Cell models with strong or weak EFEMP2 expression were constructed by lentivirus transfection. The effects of the down-regulation and up-regulation of EFEMP2 on the biological behavior of ovarian cancer cells were studied through in-vitro and in-vivo functional tests. The phosphorylation pathway profiling array and KEGG database analyses identified the downstream EGFR/ERK1/2/c-Jun signaling pathway and the programmed death-1 (PD-L1) pathway enrichment. Additionally, the protein interaction between EFEMP2 and EGFR was detected by immunoprecipitation. RESULT EFEMP2 was positively correlated with the invasion ability of ovarian cancer cells, its down-regulation inhibited the migrative, invasive and cloning capacity of cancer cells in vitro and suppressed the tumor proliferation and intraperitoneal diffusion in vivo, while its up-regulation did the opposite. Moreover, EFEMP2 could bind to EGFR to induce PD-L1 regulation in ovarian cancer, which was caused by the activation of EGFR/ERK1/2/c-Jun signaling. Similar to EFEMP2, PD-L1 was also highly expressed in aggressive cells and had the ability to promote the invasion and metastasis of ovarian cancer cells both in vitro and in vivo, and PD-L1 upregulation was partly caused by EFEMP2 activation. Afatinib combined with trametinib had an obvious effect of inhibiting the intraperitoneal diffusion of ovarian cancer cells, especially in the group with low expression of EFEMP2, while overexpression of PD-L1 could reverse this phenomenon. CONCLUSION EFEMP2 could bind to EGFR to activate ERK1/2/c-Jun pathway and regulate PD-L1 expression, furthermore PD-L1 was extremely essential for EFEMP2 to promote ovarian cancer cells invasion and dissemination in vitro and in vivo. Targeted therapy against the source gene EFEMP2 is our future research direction, which may better inhibit the invasion and metastasis of ovarian cancer cells.
Collapse
Affiliation(s)
- Xin Shen
- Department of Maternal and Child Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Xuli Jin
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Shuang Fang
- Jinan Medical Center Management Committee, Jinan, 250000, China
| | - Jie Chen
- Department of Maternal and Child Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.
| |
Collapse
|